xref: /freebsd/crypto/openssl/providers/implementations/kdfs/scrypt.c (revision e7be843b4a162e68651d3911f0357ed464915629)
1 /*
2  * Copyright 2017-2025 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include <stdlib.h>
11 #include <stdarg.h>
12 #include <string.h>
13 #include <openssl/evp.h>
14 #include <openssl/kdf.h>
15 #include <openssl/err.h>
16 #include <openssl/core_names.h>
17 #include <openssl/proverr.h>
18 #include "crypto/evp.h"
19 #include "internal/numbers.h"
20 #include "prov/implementations.h"
21 #include "prov/provider_ctx.h"
22 #include "prov/providercommon.h"
23 #include "prov/provider_util.h"
24 
25 #ifndef OPENSSL_NO_SCRYPT
26 
27 static OSSL_FUNC_kdf_newctx_fn kdf_scrypt_new;
28 static OSSL_FUNC_kdf_dupctx_fn kdf_scrypt_dup;
29 static OSSL_FUNC_kdf_freectx_fn kdf_scrypt_free;
30 static OSSL_FUNC_kdf_reset_fn kdf_scrypt_reset;
31 static OSSL_FUNC_kdf_derive_fn kdf_scrypt_derive;
32 static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_scrypt_settable_ctx_params;
33 static OSSL_FUNC_kdf_set_ctx_params_fn kdf_scrypt_set_ctx_params;
34 static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_scrypt_gettable_ctx_params;
35 static OSSL_FUNC_kdf_get_ctx_params_fn kdf_scrypt_get_ctx_params;
36 
37 static int scrypt_alg(const char *pass, size_t passlen,
38                       const unsigned char *salt, size_t saltlen,
39                       uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
40                       unsigned char *key, size_t keylen, EVP_MD *sha256,
41                       OSSL_LIB_CTX *libctx, const char *propq);
42 
43 typedef struct {
44     OSSL_LIB_CTX *libctx;
45     char *propq;
46     unsigned char *pass;
47     size_t pass_len;
48     unsigned char *salt;
49     size_t salt_len;
50     uint64_t N;
51     uint64_t r, p;
52     uint64_t maxmem_bytes;
53     EVP_MD *sha256;
54 } KDF_SCRYPT;
55 
56 static void kdf_scrypt_init(KDF_SCRYPT *ctx);
57 
kdf_scrypt_new_inner(OSSL_LIB_CTX * libctx)58 static void *kdf_scrypt_new_inner(OSSL_LIB_CTX *libctx)
59 {
60     KDF_SCRYPT *ctx;
61 
62     if (!ossl_prov_is_running())
63         return NULL;
64 
65     ctx = OPENSSL_zalloc(sizeof(*ctx));
66     if (ctx == NULL)
67         return NULL;
68     ctx->libctx = libctx;
69     kdf_scrypt_init(ctx);
70     return ctx;
71 }
72 
kdf_scrypt_new(void * provctx)73 static void *kdf_scrypt_new(void *provctx)
74 {
75     return kdf_scrypt_new_inner(PROV_LIBCTX_OF(provctx));
76 }
77 
kdf_scrypt_free(void * vctx)78 static void kdf_scrypt_free(void *vctx)
79 {
80     KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
81 
82     if (ctx != NULL) {
83         OPENSSL_free(ctx->propq);
84         EVP_MD_free(ctx->sha256);
85         kdf_scrypt_reset(ctx);
86         OPENSSL_free(ctx);
87     }
88 }
89 
kdf_scrypt_reset(void * vctx)90 static void kdf_scrypt_reset(void *vctx)
91 {
92     KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
93 
94     OPENSSL_free(ctx->salt);
95     ctx->salt = NULL;
96     OPENSSL_clear_free(ctx->pass, ctx->pass_len);
97     ctx->pass = NULL;
98     kdf_scrypt_init(ctx);
99 }
100 
kdf_scrypt_dup(void * vctx)101 static void *kdf_scrypt_dup(void *vctx)
102 {
103     const KDF_SCRYPT *src = (const KDF_SCRYPT *)vctx;
104     KDF_SCRYPT *dest;
105 
106     dest = kdf_scrypt_new_inner(src->libctx);
107     if (dest != NULL) {
108         if (src->sha256 != NULL && !EVP_MD_up_ref(src->sha256))
109             goto err;
110         if (src->propq != NULL) {
111             dest->propq = OPENSSL_strdup(src->propq);
112             if (dest->propq == NULL)
113                 goto err;
114         }
115         if (!ossl_prov_memdup(src->salt, src->salt_len,
116                               &dest->salt, &dest->salt_len)
117                 || !ossl_prov_memdup(src->pass, src->pass_len,
118                                      &dest->pass , &dest->pass_len))
119             goto err;
120         dest->N = src->N;
121         dest->r = src->r;
122         dest->p = src->p;
123         dest->maxmem_bytes = src->maxmem_bytes;
124         dest->sha256 = src->sha256;
125     }
126     return dest;
127 
128  err:
129     kdf_scrypt_free(dest);
130     return NULL;
131 }
132 
kdf_scrypt_init(KDF_SCRYPT * ctx)133 static void kdf_scrypt_init(KDF_SCRYPT *ctx)
134 {
135     /* Default values are the most conservative recommendation given in the
136      * original paper of C. Percival. Derivation uses roughly 1 GiB of memory
137      * for this parameter choice (approx. 128 * r * N * p bytes).
138      */
139     ctx->N = 1 << 20;
140     ctx->r = 8;
141     ctx->p = 1;
142     ctx->maxmem_bytes = 1025 * 1024 * 1024;
143 }
144 
scrypt_set_membuf(unsigned char ** buffer,size_t * buflen,const OSSL_PARAM * p)145 static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen,
146                              const OSSL_PARAM *p)
147 {
148     OPENSSL_clear_free(*buffer, *buflen);
149     *buffer = NULL;
150     *buflen = 0;
151 
152     if (p->data_size == 0) {
153         if ((*buffer = OPENSSL_malloc(1)) == NULL)
154             return 0;
155     } else if (p->data != NULL) {
156         if (!OSSL_PARAM_get_octet_string(p, (void **)buffer, 0, buflen))
157             return 0;
158     }
159     return 1;
160 }
161 
set_digest(KDF_SCRYPT * ctx)162 static int set_digest(KDF_SCRYPT *ctx)
163 {
164     EVP_MD_free(ctx->sha256);
165     ctx->sha256 = EVP_MD_fetch(ctx->libctx, "sha256", ctx->propq);
166     if (ctx->sha256 == NULL) {
167         ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOAD_SHA256);
168         return 0;
169     }
170     return 1;
171 }
172 
set_property_query(KDF_SCRYPT * ctx,const char * propq)173 static int set_property_query(KDF_SCRYPT *ctx, const char *propq)
174 {
175     OPENSSL_free(ctx->propq);
176     ctx->propq = NULL;
177     if (propq != NULL) {
178         ctx->propq = OPENSSL_strdup(propq);
179         if (ctx->propq == NULL)
180             return 0;
181     }
182     return 1;
183 }
184 
kdf_scrypt_derive(void * vctx,unsigned char * key,size_t keylen,const OSSL_PARAM params[])185 static int kdf_scrypt_derive(void *vctx, unsigned char *key, size_t keylen,
186                              const OSSL_PARAM params[])
187 {
188     KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
189 
190     if (!ossl_prov_is_running() || !kdf_scrypt_set_ctx_params(ctx, params))
191         return 0;
192 
193     if (ctx->pass == NULL) {
194         ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_PASS);
195         return 0;
196     }
197 
198     if (ctx->salt == NULL) {
199         ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT);
200         return 0;
201     }
202 
203     if (ctx->sha256 == NULL && !set_digest(ctx))
204         return 0;
205 
206     return scrypt_alg((char *)ctx->pass, ctx->pass_len, ctx->salt,
207                       ctx->salt_len, ctx->N, ctx->r, ctx->p,
208                       ctx->maxmem_bytes, key, keylen, ctx->sha256,
209                       ctx->libctx, ctx->propq);
210 }
211 
is_power_of_two(uint64_t value)212 static int is_power_of_two(uint64_t value)
213 {
214     return (value != 0) && ((value & (value - 1)) == 0);
215 }
216 
kdf_scrypt_set_ctx_params(void * vctx,const OSSL_PARAM params[])217 static int kdf_scrypt_set_ctx_params(void *vctx, const OSSL_PARAM params[])
218 {
219     const OSSL_PARAM *p;
220     KDF_SCRYPT *ctx = vctx;
221     uint64_t u64_value;
222 
223     if (ossl_param_is_empty(params))
224         return 1;
225 
226     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PASSWORD)) != NULL)
227         if (!scrypt_set_membuf(&ctx->pass, &ctx->pass_len, p))
228             return 0;
229 
230     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL)
231         if (!scrypt_set_membuf(&ctx->salt, &ctx->salt_len, p))
232             return 0;
233 
234     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_N))
235         != NULL) {
236         if (!OSSL_PARAM_get_uint64(p, &u64_value)
237             || u64_value <= 1
238             || !is_power_of_two(u64_value))
239             return 0;
240         ctx->N = u64_value;
241     }
242 
243     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_R))
244         != NULL) {
245         if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
246             return 0;
247         ctx->r = u64_value;
248     }
249 
250     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_P))
251         != NULL) {
252         if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
253             return 0;
254         ctx->p = u64_value;
255     }
256 
257     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_MAXMEM))
258         != NULL) {
259         if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
260             return 0;
261         ctx->maxmem_bytes = u64_value;
262     }
263 
264     p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PROPERTIES);
265     if (p != NULL) {
266         if (p->data_type != OSSL_PARAM_UTF8_STRING
267             || !set_property_query(ctx, p->data)
268             || !set_digest(ctx))
269             return 0;
270     }
271     return 1;
272 }
273 
kdf_scrypt_settable_ctx_params(ossl_unused void * ctx,ossl_unused void * p_ctx)274 static const OSSL_PARAM *kdf_scrypt_settable_ctx_params(ossl_unused void *ctx,
275                                                         ossl_unused void *p_ctx)
276 {
277     static const OSSL_PARAM known_settable_ctx_params[] = {
278         OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0),
279         OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0),
280         OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_N, NULL),
281         OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_R, NULL),
282         OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_P, NULL),
283         OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_MAXMEM, NULL),
284         OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
285         OSSL_PARAM_END
286     };
287     return known_settable_ctx_params;
288 }
289 
kdf_scrypt_get_ctx_params(void * vctx,OSSL_PARAM params[])290 static int kdf_scrypt_get_ctx_params(void *vctx, OSSL_PARAM params[])
291 {
292     OSSL_PARAM *p;
293 
294     if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL)
295         return OSSL_PARAM_set_size_t(p, SIZE_MAX);
296     return -2;
297 }
298 
kdf_scrypt_gettable_ctx_params(ossl_unused void * ctx,ossl_unused void * p_ctx)299 static const OSSL_PARAM *kdf_scrypt_gettable_ctx_params(ossl_unused void *ctx,
300                                                         ossl_unused void *p_ctx)
301 {
302     static const OSSL_PARAM known_gettable_ctx_params[] = {
303         OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
304         OSSL_PARAM_END
305     };
306     return known_gettable_ctx_params;
307 }
308 
309 const OSSL_DISPATCH ossl_kdf_scrypt_functions[] = {
310     { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_scrypt_new },
311     { OSSL_FUNC_KDF_DUPCTX, (void(*)(void))kdf_scrypt_dup },
312     { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_scrypt_free },
313     { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_scrypt_reset },
314     { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_scrypt_derive },
315     { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
316       (void(*)(void))kdf_scrypt_settable_ctx_params },
317     { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_scrypt_set_ctx_params },
318     { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
319       (void(*)(void))kdf_scrypt_gettable_ctx_params },
320     { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_scrypt_get_ctx_params },
321     OSSL_DISPATCH_END
322 };
323 
324 #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
salsa208_word_specification(uint32_t inout[16])325 static void salsa208_word_specification(uint32_t inout[16])
326 {
327     int i;
328     uint32_t x[16];
329 
330     memcpy(x, inout, sizeof(x));
331     for (i = 8; i > 0; i -= 2) {
332         x[4] ^= R(x[0] + x[12], 7);
333         x[8] ^= R(x[4] + x[0], 9);
334         x[12] ^= R(x[8] + x[4], 13);
335         x[0] ^= R(x[12] + x[8], 18);
336         x[9] ^= R(x[5] + x[1], 7);
337         x[13] ^= R(x[9] + x[5], 9);
338         x[1] ^= R(x[13] + x[9], 13);
339         x[5] ^= R(x[1] + x[13], 18);
340         x[14] ^= R(x[10] + x[6], 7);
341         x[2] ^= R(x[14] + x[10], 9);
342         x[6] ^= R(x[2] + x[14], 13);
343         x[10] ^= R(x[6] + x[2], 18);
344         x[3] ^= R(x[15] + x[11], 7);
345         x[7] ^= R(x[3] + x[15], 9);
346         x[11] ^= R(x[7] + x[3], 13);
347         x[15] ^= R(x[11] + x[7], 18);
348         x[1] ^= R(x[0] + x[3], 7);
349         x[2] ^= R(x[1] + x[0], 9);
350         x[3] ^= R(x[2] + x[1], 13);
351         x[0] ^= R(x[3] + x[2], 18);
352         x[6] ^= R(x[5] + x[4], 7);
353         x[7] ^= R(x[6] + x[5], 9);
354         x[4] ^= R(x[7] + x[6], 13);
355         x[5] ^= R(x[4] + x[7], 18);
356         x[11] ^= R(x[10] + x[9], 7);
357         x[8] ^= R(x[11] + x[10], 9);
358         x[9] ^= R(x[8] + x[11], 13);
359         x[10] ^= R(x[9] + x[8], 18);
360         x[12] ^= R(x[15] + x[14], 7);
361         x[13] ^= R(x[12] + x[15], 9);
362         x[14] ^= R(x[13] + x[12], 13);
363         x[15] ^= R(x[14] + x[13], 18);
364     }
365     for (i = 0; i < 16; ++i)
366         inout[i] += x[i];
367     OPENSSL_cleanse(x, sizeof(x));
368 }
369 
scryptBlockMix(uint32_t * B_,uint32_t * B,uint64_t r)370 static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r)
371 {
372     uint64_t i, j;
373     uint32_t X[16], *pB;
374 
375     memcpy(X, B + (r * 2 - 1) * 16, sizeof(X));
376     pB = B;
377     for (i = 0; i < r * 2; i++) {
378         for (j = 0; j < 16; j++)
379             X[j] ^= *pB++;
380         salsa208_word_specification(X);
381         memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X));
382     }
383     OPENSSL_cleanse(X, sizeof(X));
384 }
385 
scryptROMix(unsigned char * B,uint64_t r,uint64_t N,uint32_t * X,uint32_t * T,uint32_t * V)386 static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N,
387                         uint32_t *X, uint32_t *T, uint32_t *V)
388 {
389     unsigned char *pB;
390     uint32_t *pV;
391     uint64_t i, k;
392 
393     /* Convert from little endian input */
394     for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) {
395         *pV = *pB++;
396         *pV |= *pB++ << 8;
397         *pV |= *pB++ << 16;
398         *pV |= (uint32_t)*pB++ << 24;
399     }
400 
401     for (i = 1; i < N; i++, pV += 32 * r)
402         scryptBlockMix(pV, pV - 32 * r, r);
403 
404     scryptBlockMix(X, V + (N - 1) * 32 * r, r);
405 
406     for (i = 0; i < N; i++) {
407         uint32_t j;
408         j = X[16 * (2 * r - 1)] % N;
409         pV = V + 32 * r * j;
410         for (k = 0; k < 32 * r; k++)
411             T[k] = X[k] ^ *pV++;
412         scryptBlockMix(X, T, r);
413     }
414     /* Convert output to little endian */
415     for (i = 0, pB = B; i < 32 * r; i++) {
416         uint32_t xtmp = X[i];
417         *pB++ = xtmp & 0xff;
418         *pB++ = (xtmp >> 8) & 0xff;
419         *pB++ = (xtmp >> 16) & 0xff;
420         *pB++ = (xtmp >> 24) & 0xff;
421     }
422 }
423 
424 #ifndef SIZE_MAX
425 # define SIZE_MAX    ((size_t)-1)
426 #endif
427 
428 /*
429  * Maximum power of two that will fit in uint64_t: this should work on
430  * most (all?) platforms.
431  */
432 
433 #define LOG2_UINT64_MAX         (sizeof(uint64_t) * 8 - 1)
434 
435 /*
436  * Maximum value of p * r:
437  * p <= ((2^32-1) * hLen) / MFLen =>
438  * p <= ((2^32-1) * 32) / (128 * r) =>
439  * p * r <= (2^30-1)
440  */
441 
442 #define SCRYPT_PR_MAX   ((1 << 30) - 1)
443 
scrypt_alg(const char * pass,size_t passlen,const unsigned char * salt,size_t saltlen,uint64_t N,uint64_t r,uint64_t p,uint64_t maxmem,unsigned char * key,size_t keylen,EVP_MD * sha256,OSSL_LIB_CTX * libctx,const char * propq)444 static int scrypt_alg(const char *pass, size_t passlen,
445                       const unsigned char *salt, size_t saltlen,
446                       uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
447                       unsigned char *key, size_t keylen, EVP_MD *sha256,
448                       OSSL_LIB_CTX *libctx, const char *propq)
449 {
450     int rv = 0;
451     unsigned char *B;
452     uint32_t *X, *V, *T;
453     uint64_t i, Blen, Vlen;
454 
455     /* Sanity check parameters */
456     /* initial check, r,p must be non zero, N >= 2 and a power of 2 */
457     if (r == 0 || p == 0 || N < 2 || (N & (N - 1)))
458         return 0;
459     /* Check p * r < SCRYPT_PR_MAX avoiding overflow */
460     if (p > SCRYPT_PR_MAX / r) {
461         ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
462         return 0;
463     }
464 
465     /*
466      * Need to check N: if 2^(128 * r / 8) overflows limit this is
467      * automatically satisfied since N <= UINT64_MAX.
468      */
469 
470     if (16 * r <= LOG2_UINT64_MAX) {
471         if (N >= (((uint64_t)1) << (16 * r))) {
472             ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
473             return 0;
474         }
475     }
476 
477     /* Memory checks: check total allocated buffer size fits in uint64_t */
478 
479     /*
480      * B size in section 5 step 1.S
481      * Note: we know p * 128 * r < UINT64_MAX because we already checked
482      * p * r < SCRYPT_PR_MAX
483      */
484     Blen = p * 128 * r;
485     /*
486      * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would
487      * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.]
488      */
489     if (Blen > INT_MAX) {
490         ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
491         return 0;
492     }
493 
494     /*
495      * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t
496      * This is combined size V, X and T (section 4)
497      */
498     i = UINT64_MAX / (32 * sizeof(uint32_t));
499     if (N + 2 > i / r) {
500         ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
501         return 0;
502     }
503     Vlen = 32 * r * (N + 2) * sizeof(uint32_t);
504 
505     /* check total allocated size fits in uint64_t */
506     if (Blen > UINT64_MAX - Vlen) {
507         ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
508         return 0;
509     }
510 
511     /* Check that the maximum memory doesn't exceed a size_t limits */
512     if (maxmem > SIZE_MAX)
513         maxmem = SIZE_MAX;
514 
515     if (Blen + Vlen > maxmem) {
516         ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
517         return 0;
518     }
519 
520     /* If no key return to indicate parameters are OK */
521     if (key == NULL)
522         return 1;
523 
524     B = OPENSSL_malloc((size_t)(Blen + Vlen));
525     if (B == NULL)
526         return 0;
527     X = (uint32_t *)(B + Blen);
528     T = X + 32 * r;
529     V = T + 32 * r;
530     if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, salt, saltlen, 1, sha256,
531                                   (int)Blen, B, libctx, propq) == 0)
532         goto err;
533 
534     for (i = 0; i < p; i++)
535         scryptROMix(B + 128 * r * i, r, N, X, T, V);
536 
537     if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, B, (int)Blen, 1, sha256,
538                                   keylen, key, libctx, propq) == 0)
539         goto err;
540     rv = 1;
541  err:
542     if (rv == 0)
543         ERR_raise(ERR_LIB_EVP, EVP_R_PBKDF2_ERROR);
544 
545     OPENSSL_clear_free(B, (size_t)(Blen + Vlen));
546     return rv;
547 }
548 
549 #endif
550