xref: /freebsd/sys/powerpc/fpu/fpu_explode.c (revision fdafd315ad0d0f28a11b9fb4476a9ab059c62b92)
1 /*	$NetBSD: fpu_explode.c,v 1.6 2005/12/11 12:18:42 christos Exp $ */
2 
3 /*-
4  * SPDX-License-Identifier: BSD-3-Clause
5  *
6  * Copyright (c) 1992, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  *
9  * This software was developed by the Computer Systems Engineering group
10  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
11  * contributed to Berkeley.
12  *
13  * All advertising materials mentioning features or use of this software
14  * must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Lawrence Berkeley Laboratory.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  */
42 
43 /*
44  * FPU subroutines: `explode' the machine's `packed binary' format numbers
45  * into our internal format.
46  */
47 
48 #include <sys/types.h>
49 #include <sys/systm.h>
50 
51 #include <machine/fpu.h>
52 #include <machine/ieee.h>
53 #include <machine/pcb.h>
54 
55 #include <powerpc/fpu/fpu_arith.h>
56 #include <powerpc/fpu/fpu_emu.h>
57 #include <powerpc/fpu/fpu_extern.h>
58 #include <powerpc/fpu/fpu_instr.h>
59 
60 /*
61  * N.B.: in all of the following, we assume the FP format is
62  *
63  *	---------------------------
64  *	| s | exponent | fraction |
65  *	---------------------------
66  *
67  * (which represents -1**s * 1.fraction * 2**exponent), so that the
68  * sign bit is way at the top (bit 31), the exponent is next, and
69  * then the remaining bits mark the fraction.  A zero exponent means
70  * zero or denormalized (0.fraction rather than 1.fraction), and the
71  * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
72  *
73  * Since the sign bit is always the topmost bit---this holds even for
74  * integers---we set that outside all the *tof functions.  Each function
75  * returns the class code for the new number (but note that we use
76  * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
77  */
78 
79 /*
80  * int -> fpn.
81  */
82 int
fpu_itof(struct fpn * fp,u_int i)83 fpu_itof(struct fpn *fp, u_int i)
84 {
85 
86 	if (i == 0)
87 		return (FPC_ZERO);
88 	/*
89 	 * The value FP_1 represents 2^FP_LG, so set the exponent
90 	 * there and let normalization fix it up.  Convert negative
91 	 * numbers to sign-and-magnitude.  Note that this relies on
92 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
93 	 */
94 	fp->fp_exp = FP_LG;
95 	fp->fp_mant[0] = (int)i < 0 ? -i : i;
96 	fp->fp_mant[1] = 0;
97 	fp->fp_mant[2] = 0;
98 	fp->fp_mant[3] = 0;
99 	fpu_norm(fp);
100 	return (FPC_NUM);
101 }
102 
103 /*
104  * 64-bit int -> fpn.
105  */
106 int
fpu_xtof(struct fpn * fp,u_int64_t i)107 fpu_xtof(struct fpn *fp, u_int64_t i)
108 {
109 
110 	if (i == 0)
111 		return (FPC_ZERO);
112 	/*
113 	 * The value FP_1 represents 2^FP_LG, so set the exponent
114 	 * there and let normalization fix it up.  Convert negative
115 	 * numbers to sign-and-magnitude.  Note that this relies on
116 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
117 	 */
118 	fp->fp_exp = FP_LG2;
119 	*((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
120 	fp->fp_mant[2] = 0;
121 	fp->fp_mant[3] = 0;
122 	fpu_norm(fp);
123 	return (FPC_NUM);
124 }
125 
126 #define	mask(nbits) ((1L << (nbits)) - 1)
127 
128 /*
129  * All external floating formats convert to internal in the same manner,
130  * as defined here.  Note that only normals get an implied 1.0 inserted.
131  */
132 #define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
133 	if (exp == 0) { \
134 		if (allfrac == 0) \
135 			return (FPC_ZERO); \
136 		fp->fp_exp = 1 - expbias; \
137 		fp->fp_mant[0] = f0; \
138 		fp->fp_mant[1] = f1; \
139 		fp->fp_mant[2] = f2; \
140 		fp->fp_mant[3] = f3; \
141 		fpu_norm(fp); \
142 		return (FPC_NUM); \
143 	} \
144 	if (exp == (2 * expbias + 1)) { \
145 		if (allfrac == 0) \
146 			return (FPC_INF); \
147 		fp->fp_mant[0] = f0; \
148 		fp->fp_mant[1] = f1; \
149 		fp->fp_mant[2] = f2; \
150 		fp->fp_mant[3] = f3; \
151 		return (FPC_QNAN); \
152 	} \
153 	fp->fp_exp = exp - expbias; \
154 	fp->fp_mant[0] = FP_1 | f0; \
155 	fp->fp_mant[1] = f1; \
156 	fp->fp_mant[2] = f2; \
157 	fp->fp_mant[3] = f3; \
158 	return (FPC_NUM)
159 
160 /*
161  * 32-bit single precision -> fpn.
162  * We assume a single occupies at most (64-FP_LG) bits in the internal
163  * format: i.e., needs at most fp_mant[0] and fp_mant[1].
164  */
165 int
fpu_stof(struct fpn * fp,u_int i)166 fpu_stof(struct fpn *fp, u_int i)
167 {
168 	int exp;
169 	u_int frac, f0, f1;
170 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
171 
172 	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
173 	frac = i & mask(SNG_FRACBITS);
174 	f0 = frac >> SNG_SHIFT;
175 	f1 = frac << (32 - SNG_SHIFT);
176 	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
177 }
178 
179 /*
180  * 64-bit double -> fpn.
181  * We assume this uses at most (96-FP_LG) bits.
182  */
183 int
fpu_dtof(struct fpn * fp,u_int i,u_int j)184 fpu_dtof(struct fpn *fp, u_int i, u_int j)
185 {
186 	int exp;
187 	u_int frac, f0, f1, f2;
188 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
189 
190 	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
191 	frac = i & mask(DBL_FRACBITS - 32);
192 	f0 = frac >> DBL_SHIFT;
193 	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
194 	f2 = j << (32 - DBL_SHIFT);
195 	frac |= j;
196 	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
197 }
198 
199 /*
200  * Explode the contents of a register / regpair / regquad.
201  * If the input is a signalling NaN, an NV (invalid) exception
202  * will be set.  (Note that nothing but NV can occur until ALU
203  * operations are performed.)
204  */
205 void
fpu_explode(struct fpemu * fe,struct fpn * fp,int type,int reg)206 fpu_explode(struct fpemu *fe, struct fpn *fp, int type, int reg)
207 {
208 	u_int s, *space;
209 	u_int64_t l, *xspace;
210 
211 	xspace = (u_int64_t *)&fe->fe_fpstate->fpr[reg].fpr;
212 	l = xspace[0];
213 	space = (u_int *)&fe->fe_fpstate->fpr[reg].fpr;
214 	s = space[0];
215 	fp->fp_sign = s >> 31;
216 	fp->fp_sticky = 0;
217 	switch (type) {
218 	case FTYPE_LNG:
219 		s = fpu_xtof(fp, l);
220 		break;
221 
222 	case FTYPE_INT:
223 		s = fpu_itof(fp, space[1]);
224 		break;
225 
226 	case FTYPE_SNG:
227 		s = fpu_stof(fp, s);
228 		break;
229 
230 	case FTYPE_DBL:
231 		s = fpu_dtof(fp, s, space[1]);
232 		break;
233 
234 	default:
235 		panic("fpu_explode");
236 		panic("fpu_explode: invalid type %d", type);
237 	}
238 
239 	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
240 		/*
241 		 * Input is a signalling NaN.  All operations that return
242 		 * an input NaN operand put it through a ``NaN conversion'',
243 		 * which basically just means ``turn on the quiet bit''.
244 		 * We do this here so that all NaNs internally look quiet
245 		 * (we can tell signalling ones by their class).
246 		 */
247 		fp->fp_mant[0] |= FP_QUIETBIT;
248 		fe->fe_cx = FPSCR_VXSNAN;	/* assert invalid operand */
249 		s = FPC_SNAN;
250 	}
251 	fp->fp_class = s;
252 	DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
253 		((type == FTYPE_INT) ? 'i' :
254 			((type == FTYPE_SNG) ? 's' :
255 				((type == FTYPE_DBL) ? 'd' : '?'))),
256 		reg));
257 	DUMPFPN(FPE_REG, fp);
258 	DPRINTF(FPE_REG, ("\n"));
259 }
260