xref: /linux/drivers/hwmon/pmbus/pmbus_core.c (revision 442bc81bd344dc52c37d8f80b854cc6da062b2d0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Hardware monitoring driver for PMBus devices
4  *
5  * Copyright (c) 2010, 2011 Ericsson AB.
6  * Copyright (c) 2012 Guenter Roeck
7  */
8 
9 #include <linux/debugfs.h>
10 #include <linux/delay.h>
11 #include <linux/kernel.h>
12 #include <linux/math64.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/i2c.h>
18 #include <linux/hwmon.h>
19 #include <linux/hwmon-sysfs.h>
20 #include <linux/pmbus.h>
21 #include <linux/regulator/driver.h>
22 #include <linux/regulator/machine.h>
23 #include <linux/of.h>
24 #include <linux/thermal.h>
25 #include "pmbus.h"
26 
27 /*
28  * Number of additional attribute pointers to allocate
29  * with each call to krealloc
30  */
31 #define PMBUS_ATTR_ALLOC_SIZE	32
32 #define PMBUS_NAME_SIZE		24
33 
34 static int wp = -1;
35 module_param(wp, int, 0444);
36 
37 struct pmbus_sensor {
38 	struct pmbus_sensor *next;
39 	char name[PMBUS_NAME_SIZE];	/* sysfs sensor name */
40 	struct device_attribute attribute;
41 	u8 page;		/* page number */
42 	u8 phase;		/* phase number, 0xff for all phases */
43 	u16 reg;		/* register */
44 	enum pmbus_sensor_classes class;	/* sensor class */
45 	bool update;		/* runtime sensor update needed */
46 	bool convert;		/* Whether or not to apply linear/vid/direct */
47 	int data;		/* Sensor data.
48 				   Negative if there was a read error */
49 };
50 #define to_pmbus_sensor(_attr) \
51 	container_of(_attr, struct pmbus_sensor, attribute)
52 
53 struct pmbus_boolean {
54 	char name[PMBUS_NAME_SIZE];	/* sysfs boolean name */
55 	struct sensor_device_attribute attribute;
56 	struct pmbus_sensor *s1;
57 	struct pmbus_sensor *s2;
58 };
59 #define to_pmbus_boolean(_attr) \
60 	container_of(_attr, struct pmbus_boolean, attribute)
61 
62 struct pmbus_label {
63 	char name[PMBUS_NAME_SIZE];	/* sysfs label name */
64 	struct device_attribute attribute;
65 	char label[PMBUS_NAME_SIZE];	/* label */
66 };
67 #define to_pmbus_label(_attr) \
68 	container_of(_attr, struct pmbus_label, attribute)
69 
70 /* Macros for converting between sensor index and register/page/status mask */
71 
72 #define PB_STATUS_MASK	0xffff
73 #define PB_REG_SHIFT	16
74 #define PB_REG_MASK	0x3ff
75 #define PB_PAGE_SHIFT	26
76 #define PB_PAGE_MASK	0x3f
77 
78 #define pb_reg_to_index(page, reg, mask)	(((page) << PB_PAGE_SHIFT) | \
79 						 ((reg) << PB_REG_SHIFT) | (mask))
80 
81 #define pb_index_to_page(index)			(((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
82 #define pb_index_to_reg(index)			(((index) >> PB_REG_SHIFT) & PB_REG_MASK)
83 #define pb_index_to_mask(index)			((index) & PB_STATUS_MASK)
84 
85 struct pmbus_data {
86 	struct device *dev;
87 	struct device *hwmon_dev;
88 	struct regulator_dev **rdevs;
89 
90 	u32 flags;		/* from platform data */
91 
92 	u8 revision;	/* The PMBus revision the device is compliant with */
93 
94 	int exponent[PMBUS_PAGES];
95 				/* linear mode: exponent for output voltages */
96 
97 	const struct pmbus_driver_info *info;
98 
99 	int max_attributes;
100 	int num_attributes;
101 	struct attribute_group group;
102 	const struct attribute_group **groups;
103 	struct dentry *debugfs;		/* debugfs device directory */
104 
105 	struct pmbus_sensor *sensors;
106 
107 	struct mutex update_lock;
108 
109 	bool has_status_word;		/* device uses STATUS_WORD register */
110 	int (*read_status)(struct i2c_client *client, int page);
111 
112 	s16 currpage;	/* current page, -1 for unknown/unset */
113 	s16 currphase;	/* current phase, 0xff for all, -1 for unknown/unset */
114 
115 	int vout_low[PMBUS_PAGES];	/* voltage low margin */
116 	int vout_high[PMBUS_PAGES];	/* voltage high margin */
117 	ktime_t write_time;		/* Last SMBUS write timestamp */
118 	ktime_t access_time;		/* Last SMBUS access timestamp */
119 };
120 
121 struct pmbus_debugfs_entry {
122 	struct i2c_client *client;
123 	u8 page;
124 	u8 reg;
125 };
126 
127 static const int pmbus_fan_rpm_mask[] = {
128 	PB_FAN_1_RPM,
129 	PB_FAN_2_RPM,
130 	PB_FAN_1_RPM,
131 	PB_FAN_2_RPM,
132 };
133 
134 static const int pmbus_fan_config_registers[] = {
135 	PMBUS_FAN_CONFIG_12,
136 	PMBUS_FAN_CONFIG_12,
137 	PMBUS_FAN_CONFIG_34,
138 	PMBUS_FAN_CONFIG_34
139 };
140 
141 static const int pmbus_fan_command_registers[] = {
142 	PMBUS_FAN_COMMAND_1,
143 	PMBUS_FAN_COMMAND_2,
144 	PMBUS_FAN_COMMAND_3,
145 	PMBUS_FAN_COMMAND_4,
146 };
147 
pmbus_clear_cache(struct i2c_client * client)148 void pmbus_clear_cache(struct i2c_client *client)
149 {
150 	struct pmbus_data *data = i2c_get_clientdata(client);
151 	struct pmbus_sensor *sensor;
152 
153 	for (sensor = data->sensors; sensor; sensor = sensor->next)
154 		sensor->data = -ENODATA;
155 }
156 EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, "PMBUS");
157 
pmbus_set_update(struct i2c_client * client,u8 reg,bool update)158 void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
159 {
160 	struct pmbus_data *data = i2c_get_clientdata(client);
161 	struct pmbus_sensor *sensor;
162 
163 	for (sensor = data->sensors; sensor; sensor = sensor->next)
164 		if (sensor->reg == reg)
165 			sensor->update = update;
166 }
167 EXPORT_SYMBOL_NS_GPL(pmbus_set_update, "PMBUS");
168 
169 /* Some chips need a delay between accesses. */
pmbus_wait(struct i2c_client * client)170 static void pmbus_wait(struct i2c_client *client)
171 {
172 	struct pmbus_data *data = i2c_get_clientdata(client);
173 	const struct pmbus_driver_info *info = data->info;
174 	s64 delta;
175 
176 	if (info->access_delay) {
177 		delta = ktime_us_delta(ktime_get(), data->access_time);
178 
179 		if (delta < info->access_delay)
180 			fsleep(info->access_delay - delta);
181 	} else if (info->write_delay) {
182 		delta = ktime_us_delta(ktime_get(), data->write_time);
183 
184 		if (delta < info->write_delay)
185 			fsleep(info->write_delay - delta);
186 	}
187 }
188 
189 /* Sets the last accessed timestamp for pmbus_wait */
pmbus_update_ts(struct i2c_client * client,bool write_op)190 static void pmbus_update_ts(struct i2c_client *client, bool write_op)
191 {
192 	struct pmbus_data *data = i2c_get_clientdata(client);
193 	const struct pmbus_driver_info *info = data->info;
194 
195 	if (info->access_delay) {
196 		data->access_time = ktime_get();
197 	} else if (info->write_delay && write_op) {
198 		data->write_time = ktime_get();
199 	}
200 }
201 
pmbus_set_page(struct i2c_client * client,int page,int phase)202 int pmbus_set_page(struct i2c_client *client, int page, int phase)
203 {
204 	struct pmbus_data *data = i2c_get_clientdata(client);
205 	int rv;
206 
207 	if (page < 0)
208 		return 0;
209 
210 	if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
211 	    data->info->pages > 1 && page != data->currpage) {
212 		pmbus_wait(client);
213 		rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
214 		pmbus_update_ts(client, true);
215 		if (rv < 0)
216 			return rv;
217 
218 		pmbus_wait(client);
219 		rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
220 		pmbus_update_ts(client, false);
221 		if (rv < 0)
222 			return rv;
223 
224 		if (rv != page)
225 			return -EIO;
226 	}
227 	data->currpage = page;
228 
229 	if (data->info->phases[page] && data->currphase != phase &&
230 	    !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
231 		pmbus_wait(client);
232 		rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
233 					       phase);
234 		pmbus_update_ts(client, true);
235 		if (rv)
236 			return rv;
237 	}
238 	data->currphase = phase;
239 
240 	return 0;
241 }
242 EXPORT_SYMBOL_NS_GPL(pmbus_set_page, "PMBUS");
243 
pmbus_write_byte(struct i2c_client * client,int page,u8 value)244 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
245 {
246 	int rv;
247 
248 	rv = pmbus_set_page(client, page, 0xff);
249 	if (rv < 0)
250 		return rv;
251 
252 	pmbus_wait(client);
253 	rv = i2c_smbus_write_byte(client, value);
254 	pmbus_update_ts(client, true);
255 
256 	return rv;
257 }
258 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, "PMBUS");
259 
260 /*
261  * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
262  * a device specific mapping function exists and calls it if necessary.
263  */
_pmbus_write_byte(struct i2c_client * client,int page,u8 value)264 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
265 {
266 	struct pmbus_data *data = i2c_get_clientdata(client);
267 	const struct pmbus_driver_info *info = data->info;
268 	int status;
269 
270 	if (info->write_byte) {
271 		status = info->write_byte(client, page, value);
272 		if (status != -ENODATA)
273 			return status;
274 	}
275 	return pmbus_write_byte(client, page, value);
276 }
277 
pmbus_write_word_data(struct i2c_client * client,int page,u8 reg,u16 word)278 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
279 			  u16 word)
280 {
281 	int rv;
282 
283 	rv = pmbus_set_page(client, page, 0xff);
284 	if (rv < 0)
285 		return rv;
286 
287 	pmbus_wait(client);
288 	rv = i2c_smbus_write_word_data(client, reg, word);
289 	pmbus_update_ts(client, true);
290 
291 	return rv;
292 }
293 EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, "PMBUS");
294 
295 
pmbus_write_virt_reg(struct i2c_client * client,int page,int reg,u16 word)296 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
297 				u16 word)
298 {
299 	int bit;
300 	int id;
301 	int rv;
302 
303 	switch (reg) {
304 	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
305 		id = reg - PMBUS_VIRT_FAN_TARGET_1;
306 		bit = pmbus_fan_rpm_mask[id];
307 		rv = pmbus_update_fan(client, page, id, bit, bit, word);
308 		break;
309 	default:
310 		rv = -ENXIO;
311 		break;
312 	}
313 
314 	return rv;
315 }
316 
317 /*
318  * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
319  * a device specific mapping function exists and calls it if necessary.
320  */
_pmbus_write_word_data(struct i2c_client * client,int page,int reg,u16 word)321 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
322 				  u16 word)
323 {
324 	struct pmbus_data *data = i2c_get_clientdata(client);
325 	const struct pmbus_driver_info *info = data->info;
326 	int status;
327 
328 	if (info->write_word_data) {
329 		status = info->write_word_data(client, page, reg, word);
330 		if (status != -ENODATA)
331 			return status;
332 	}
333 
334 	if (reg >= PMBUS_VIRT_BASE)
335 		return pmbus_write_virt_reg(client, page, reg, word);
336 
337 	return pmbus_write_word_data(client, page, reg, word);
338 }
339 
340 /*
341  * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if
342  * a device specific mapping function exists and calls it if necessary.
343  */
_pmbus_write_byte_data(struct i2c_client * client,int page,int reg,u8 value)344 static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value)
345 {
346 	struct pmbus_data *data = i2c_get_clientdata(client);
347 	const struct pmbus_driver_info *info = data->info;
348 	int status;
349 
350 	if (info->write_byte_data) {
351 		status = info->write_byte_data(client, page, reg, value);
352 		if (status != -ENODATA)
353 			return status;
354 	}
355 	return pmbus_write_byte_data(client, page, reg, value);
356 }
357 
358 /*
359  * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
360  * a device specific mapping function exists and calls it if necessary.
361  */
_pmbus_read_byte_data(struct i2c_client * client,int page,int reg)362 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
363 {
364 	struct pmbus_data *data = i2c_get_clientdata(client);
365 	const struct pmbus_driver_info *info = data->info;
366 	int status;
367 
368 	if (info->read_byte_data) {
369 		status = info->read_byte_data(client, page, reg);
370 		if (status != -ENODATA)
371 			return status;
372 	}
373 	return pmbus_read_byte_data(client, page, reg);
374 }
375 
pmbus_update_fan(struct i2c_client * client,int page,int id,u8 config,u8 mask,u16 command)376 int pmbus_update_fan(struct i2c_client *client, int page, int id,
377 		     u8 config, u8 mask, u16 command)
378 {
379 	int from;
380 	int rv;
381 	u8 to;
382 
383 	from = _pmbus_read_byte_data(client, page,
384 				    pmbus_fan_config_registers[id]);
385 	if (from < 0)
386 		return from;
387 
388 	to = (from & ~mask) | (config & mask);
389 	if (to != from) {
390 		rv = _pmbus_write_byte_data(client, page,
391 					   pmbus_fan_config_registers[id], to);
392 		if (rv < 0)
393 			return rv;
394 	}
395 
396 	return _pmbus_write_word_data(client, page,
397 				      pmbus_fan_command_registers[id], command);
398 }
399 EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, "PMBUS");
400 
pmbus_read_word_data(struct i2c_client * client,int page,int phase,u8 reg)401 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
402 {
403 	int rv;
404 
405 	rv = pmbus_set_page(client, page, phase);
406 	if (rv < 0)
407 		return rv;
408 
409 	pmbus_wait(client);
410 	rv = i2c_smbus_read_word_data(client, reg);
411 	pmbus_update_ts(client, false);
412 
413 	return rv;
414 }
415 EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, "PMBUS");
416 
pmbus_read_virt_reg(struct i2c_client * client,int page,int reg)417 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
418 {
419 	int rv;
420 	int id;
421 
422 	switch (reg) {
423 	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
424 		id = reg - PMBUS_VIRT_FAN_TARGET_1;
425 		rv = pmbus_get_fan_rate_device(client, page, id, rpm);
426 		break;
427 	default:
428 		rv = -ENXIO;
429 		break;
430 	}
431 
432 	return rv;
433 }
434 
435 /*
436  * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
437  * a device specific mapping function exists and calls it if necessary.
438  */
_pmbus_read_word_data(struct i2c_client * client,int page,int phase,int reg)439 static int _pmbus_read_word_data(struct i2c_client *client, int page,
440 				 int phase, int reg)
441 {
442 	struct pmbus_data *data = i2c_get_clientdata(client);
443 	const struct pmbus_driver_info *info = data->info;
444 	int status;
445 
446 	if (info->read_word_data) {
447 		status = info->read_word_data(client, page, phase, reg);
448 		if (status != -ENODATA)
449 			return status;
450 	}
451 
452 	if (reg >= PMBUS_VIRT_BASE)
453 		return pmbus_read_virt_reg(client, page, reg);
454 
455 	return pmbus_read_word_data(client, page, phase, reg);
456 }
457 
458 /* Same as above, but without phase parameter, for use in check functions */
__pmbus_read_word_data(struct i2c_client * client,int page,int reg)459 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
460 {
461 	return _pmbus_read_word_data(client, page, 0xff, reg);
462 }
463 
pmbus_read_byte_data(struct i2c_client * client,int page,u8 reg)464 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
465 {
466 	int rv;
467 
468 	rv = pmbus_set_page(client, page, 0xff);
469 	if (rv < 0)
470 		return rv;
471 
472 	pmbus_wait(client);
473 	rv = i2c_smbus_read_byte_data(client, reg);
474 	pmbus_update_ts(client, false);
475 
476 	return rv;
477 }
478 EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, "PMBUS");
479 
pmbus_write_byte_data(struct i2c_client * client,int page,u8 reg,u8 value)480 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
481 {
482 	int rv;
483 
484 	rv = pmbus_set_page(client, page, 0xff);
485 	if (rv < 0)
486 		return rv;
487 
488 	pmbus_wait(client);
489 	rv = i2c_smbus_write_byte_data(client, reg, value);
490 	pmbus_update_ts(client, true);
491 
492 	return rv;
493 }
494 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, "PMBUS");
495 
pmbus_update_byte_data(struct i2c_client * client,int page,u8 reg,u8 mask,u8 value)496 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
497 			   u8 mask, u8 value)
498 {
499 	unsigned int tmp;
500 	int rv;
501 
502 	rv = _pmbus_read_byte_data(client, page, reg);
503 	if (rv < 0)
504 		return rv;
505 
506 	tmp = (rv & ~mask) | (value & mask);
507 
508 	if (tmp != rv)
509 		rv = _pmbus_write_byte_data(client, page, reg, tmp);
510 
511 	return rv;
512 }
513 EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, "PMBUS");
514 
pmbus_read_block_data(struct i2c_client * client,int page,u8 reg,char * data_buf)515 static int pmbus_read_block_data(struct i2c_client *client, int page, u8 reg,
516 				 char *data_buf)
517 {
518 	int rv;
519 
520 	rv = pmbus_set_page(client, page, 0xff);
521 	if (rv < 0)
522 		return rv;
523 
524 	pmbus_wait(client);
525 	rv = i2c_smbus_read_block_data(client, reg, data_buf);
526 	pmbus_update_ts(client, false);
527 
528 	return rv;
529 }
530 
pmbus_find_sensor(struct pmbus_data * data,int page,int reg)531 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
532 					      int reg)
533 {
534 	struct pmbus_sensor *sensor;
535 
536 	for (sensor = data->sensors; sensor; sensor = sensor->next) {
537 		if (sensor->page == page && sensor->reg == reg)
538 			return sensor;
539 	}
540 
541 	return ERR_PTR(-EINVAL);
542 }
543 
pmbus_get_fan_rate(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode,bool from_cache)544 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
545 			      enum pmbus_fan_mode mode,
546 			      bool from_cache)
547 {
548 	struct pmbus_data *data = i2c_get_clientdata(client);
549 	bool want_rpm, have_rpm;
550 	struct pmbus_sensor *s;
551 	int config;
552 	int reg;
553 
554 	want_rpm = (mode == rpm);
555 
556 	if (from_cache) {
557 		reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
558 		s = pmbus_find_sensor(data, page, reg + id);
559 		if (IS_ERR(s))
560 			return PTR_ERR(s);
561 
562 		return s->data;
563 	}
564 
565 	config = _pmbus_read_byte_data(client, page,
566 				      pmbus_fan_config_registers[id]);
567 	if (config < 0)
568 		return config;
569 
570 	have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
571 	if (want_rpm == have_rpm)
572 		return pmbus_read_word_data(client, page, 0xff,
573 					    pmbus_fan_command_registers[id]);
574 
575 	/* Can't sensibly map between RPM and PWM, just return zero */
576 	return 0;
577 }
578 
pmbus_get_fan_rate_device(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)579 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
580 			      enum pmbus_fan_mode mode)
581 {
582 	return pmbus_get_fan_rate(client, page, id, mode, false);
583 }
584 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, "PMBUS");
585 
pmbus_get_fan_rate_cached(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)586 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
587 			      enum pmbus_fan_mode mode)
588 {
589 	return pmbus_get_fan_rate(client, page, id, mode, true);
590 }
591 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, "PMBUS");
592 
pmbus_clear_fault_page(struct i2c_client * client,int page)593 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
594 {
595 	_pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
596 }
597 
pmbus_clear_faults(struct i2c_client * client)598 void pmbus_clear_faults(struct i2c_client *client)
599 {
600 	struct pmbus_data *data = i2c_get_clientdata(client);
601 	int i;
602 
603 	for (i = 0; i < data->info->pages; i++)
604 		pmbus_clear_fault_page(client, i);
605 }
606 EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, "PMBUS");
607 
pmbus_check_status_cml(struct i2c_client * client)608 static int pmbus_check_status_cml(struct i2c_client *client)
609 {
610 	struct pmbus_data *data = i2c_get_clientdata(client);
611 	int status, status2;
612 
613 	status = data->read_status(client, -1);
614 	if (status < 0 || (status & PB_STATUS_CML)) {
615 		status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
616 		if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
617 			return -EIO;
618 	}
619 	return 0;
620 }
621 
pmbus_check_register(struct i2c_client * client,int (* func)(struct i2c_client * client,int page,int reg),int page,int reg)622 static bool pmbus_check_register(struct i2c_client *client,
623 				 int (*func)(struct i2c_client *client,
624 					     int page, int reg),
625 				 int page, int reg)
626 {
627 	int rv;
628 	struct pmbus_data *data = i2c_get_clientdata(client);
629 
630 	rv = func(client, page, reg);
631 	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
632 		rv = pmbus_check_status_cml(client);
633 	if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
634 		data->read_status(client, -1);
635 	if (reg < PMBUS_VIRT_BASE)
636 		pmbus_clear_fault_page(client, -1);
637 	return rv >= 0;
638 }
639 
pmbus_check_status_register(struct i2c_client * client,int page)640 static bool pmbus_check_status_register(struct i2c_client *client, int page)
641 {
642 	int status;
643 	struct pmbus_data *data = i2c_get_clientdata(client);
644 
645 	status = data->read_status(client, page);
646 	if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
647 	    (status & PB_STATUS_CML)) {
648 		status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
649 		if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
650 			status = -EIO;
651 	}
652 
653 	pmbus_clear_fault_page(client, -1);
654 	return status >= 0;
655 }
656 
pmbus_check_byte_register(struct i2c_client * client,int page,int reg)657 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
658 {
659 	return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
660 }
661 EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, "PMBUS");
662 
pmbus_check_word_register(struct i2c_client * client,int page,int reg)663 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
664 {
665 	return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
666 }
667 EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, "PMBUS");
668 
pmbus_check_block_register(struct i2c_client * client,int page,int reg)669 static bool __maybe_unused pmbus_check_block_register(struct i2c_client *client,
670 						      int page, int reg)
671 {
672 	int rv;
673 	struct pmbus_data *data = i2c_get_clientdata(client);
674 	char data_buf[I2C_SMBUS_BLOCK_MAX + 2];
675 
676 	rv = pmbus_read_block_data(client, page, reg, data_buf);
677 	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
678 		rv = pmbus_check_status_cml(client);
679 	if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
680 		data->read_status(client, -1);
681 	pmbus_clear_fault_page(client, -1);
682 	return rv >= 0;
683 }
684 
pmbus_get_driver_info(struct i2c_client * client)685 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
686 {
687 	struct pmbus_data *data = i2c_get_clientdata(client);
688 
689 	return data->info;
690 }
691 EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, "PMBUS");
692 
pmbus_get_status(struct i2c_client * client,int page,int reg)693 static int pmbus_get_status(struct i2c_client *client, int page, int reg)
694 {
695 	struct pmbus_data *data = i2c_get_clientdata(client);
696 	int status;
697 
698 	switch (reg) {
699 	case PMBUS_STATUS_WORD:
700 		status = data->read_status(client, page);
701 		break;
702 	default:
703 		status = _pmbus_read_byte_data(client, page, reg);
704 		break;
705 	}
706 	if (status < 0)
707 		pmbus_clear_faults(client);
708 	return status;
709 }
710 
pmbus_update_sensor_data(struct i2c_client * client,struct pmbus_sensor * sensor)711 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
712 {
713 	if (sensor->data < 0 || sensor->update)
714 		sensor->data = _pmbus_read_word_data(client, sensor->page,
715 						     sensor->phase, sensor->reg);
716 }
717 
718 /*
719  * Convert ieee754 sensor values to milli- or micro-units
720  * depending on sensor type.
721  *
722  * ieee754 data format:
723  *	bit 15:		sign
724  *	bit 10..14:	exponent
725  *	bit 0..9:	mantissa
726  * exponent=0:
727  *	v=(−1)^signbit * 2^(−14) * 0.significantbits
728  * exponent=1..30:
729  *	v=(−1)^signbit * 2^(exponent - 15) * 1.significantbits
730  * exponent=31:
731  *	v=NaN
732  *
733  * Add the number mantissa bits into the calculations for simplicity.
734  * To do that, add '10' to the exponent. By doing that, we can just add
735  * 0x400 to normal values and get the expected result.
736  */
pmbus_reg2data_ieee754(struct pmbus_data * data,struct pmbus_sensor * sensor)737 static long pmbus_reg2data_ieee754(struct pmbus_data *data,
738 				   struct pmbus_sensor *sensor)
739 {
740 	int exponent;
741 	bool sign;
742 	long val;
743 
744 	/* only support half precision for now */
745 	sign = sensor->data & 0x8000;
746 	exponent = (sensor->data >> 10) & 0x1f;
747 	val = sensor->data & 0x3ff;
748 
749 	if (exponent == 0) {			/* subnormal */
750 		exponent = -(14 + 10);
751 	} else if (exponent ==  0x1f) {		/* NaN, convert to min/max */
752 		exponent = 0;
753 		val = 65504;
754 	} else {
755 		exponent -= (15 + 10);		/* normal */
756 		val |= 0x400;
757 	}
758 
759 	/* scale result to milli-units for all sensors except fans */
760 	if (sensor->class != PSC_FAN)
761 		val = val * 1000L;
762 
763 	/* scale result to micro-units for power sensors */
764 	if (sensor->class == PSC_POWER)
765 		val = val * 1000L;
766 
767 	if (exponent >= 0)
768 		val <<= exponent;
769 	else
770 		val >>= -exponent;
771 
772 	if (sign)
773 		val = -val;
774 
775 	return val;
776 }
777 
778 /*
779  * Convert linear sensor values to milli- or micro-units
780  * depending on sensor type.
781  */
pmbus_reg2data_linear(struct pmbus_data * data,struct pmbus_sensor * sensor)782 static s64 pmbus_reg2data_linear(struct pmbus_data *data,
783 				 struct pmbus_sensor *sensor)
784 {
785 	s16 exponent;
786 	s32 mantissa;
787 	s64 val;
788 
789 	if (sensor->class == PSC_VOLTAGE_OUT) {	/* LINEAR16 */
790 		exponent = data->exponent[sensor->page];
791 		mantissa = (u16) sensor->data;
792 	} else {				/* LINEAR11 */
793 		exponent = ((s16)sensor->data) >> 11;
794 		mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
795 	}
796 
797 	val = mantissa;
798 
799 	/* scale result to milli-units for all sensors except fans */
800 	if (sensor->class != PSC_FAN)
801 		val = val * 1000LL;
802 
803 	/* scale result to micro-units for power sensors */
804 	if (sensor->class == PSC_POWER)
805 		val = val * 1000LL;
806 
807 	if (exponent >= 0)
808 		val <<= exponent;
809 	else
810 		val >>= -exponent;
811 
812 	return val;
813 }
814 
815 /*
816  * Convert direct sensor values to milli- or micro-units
817  * depending on sensor type.
818  */
pmbus_reg2data_direct(struct pmbus_data * data,struct pmbus_sensor * sensor)819 static s64 pmbus_reg2data_direct(struct pmbus_data *data,
820 				 struct pmbus_sensor *sensor)
821 {
822 	s64 b, val = (s16)sensor->data;
823 	s32 m, R;
824 
825 	m = data->info->m[sensor->class];
826 	b = data->info->b[sensor->class];
827 	R = data->info->R[sensor->class];
828 
829 	if (m == 0)
830 		return 0;
831 
832 	/* X = 1/m * (Y * 10^-R - b) */
833 	R = -R;
834 	/* scale result to milli-units for everything but fans */
835 	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
836 		R += 3;
837 		b *= 1000;
838 	}
839 
840 	/* scale result to micro-units for power sensors */
841 	if (sensor->class == PSC_POWER) {
842 		R += 3;
843 		b *= 1000;
844 	}
845 
846 	while (R > 0) {
847 		val *= 10;
848 		R--;
849 	}
850 	while (R < 0) {
851 		val = div_s64(val + 5LL, 10L);  /* round closest */
852 		R++;
853 	}
854 
855 	val = div_s64(val - b, m);
856 	return val;
857 }
858 
859 /*
860  * Convert VID sensor values to milli- or micro-units
861  * depending on sensor type.
862  */
pmbus_reg2data_vid(struct pmbus_data * data,struct pmbus_sensor * sensor)863 static s64 pmbus_reg2data_vid(struct pmbus_data *data,
864 			      struct pmbus_sensor *sensor)
865 {
866 	long val = sensor->data;
867 	long rv = 0;
868 
869 	switch (data->info->vrm_version[sensor->page]) {
870 	case vr11:
871 		if (val >= 0x02 && val <= 0xb2)
872 			rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
873 		break;
874 	case vr12:
875 		if (val >= 0x01)
876 			rv = 250 + (val - 1) * 5;
877 		break;
878 	case vr13:
879 		if (val >= 0x01)
880 			rv = 500 + (val - 1) * 10;
881 		break;
882 	case imvp9:
883 		if (val >= 0x01)
884 			rv = 200 + (val - 1) * 10;
885 		break;
886 	case amd625mv:
887 		if (val >= 0x0 && val <= 0xd8)
888 			rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
889 		break;
890 	}
891 	return rv;
892 }
893 
pmbus_reg2data(struct pmbus_data * data,struct pmbus_sensor * sensor)894 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
895 {
896 	s64 val;
897 
898 	if (!sensor->convert)
899 		return sensor->data;
900 
901 	switch (data->info->format[sensor->class]) {
902 	case direct:
903 		val = pmbus_reg2data_direct(data, sensor);
904 		break;
905 	case vid:
906 		val = pmbus_reg2data_vid(data, sensor);
907 		break;
908 	case ieee754:
909 		val = pmbus_reg2data_ieee754(data, sensor);
910 		break;
911 	case linear:
912 	default:
913 		val = pmbus_reg2data_linear(data, sensor);
914 		break;
915 	}
916 	return val;
917 }
918 
919 #define MAX_IEEE_MANTISSA	(0x7ff * 1000)
920 #define MIN_IEEE_MANTISSA	(0x400 * 1000)
921 
pmbus_data2reg_ieee754(struct pmbus_data * data,struct pmbus_sensor * sensor,long val)922 static u16 pmbus_data2reg_ieee754(struct pmbus_data *data,
923 				  struct pmbus_sensor *sensor, long val)
924 {
925 	u16 exponent = (15 + 10);
926 	long mantissa;
927 	u16 sign = 0;
928 
929 	/* simple case */
930 	if (val == 0)
931 		return 0;
932 
933 	if (val < 0) {
934 		sign = 0x8000;
935 		val = -val;
936 	}
937 
938 	/* Power is in uW. Convert to mW before converting. */
939 	if (sensor->class == PSC_POWER)
940 		val = DIV_ROUND_CLOSEST(val, 1000L);
941 
942 	/*
943 	 * For simplicity, convert fan data to milli-units
944 	 * before calculating the exponent.
945 	 */
946 	if (sensor->class == PSC_FAN)
947 		val = val * 1000;
948 
949 	/* Reduce large mantissa until it fits into 10 bit */
950 	while (val > MAX_IEEE_MANTISSA && exponent < 30) {
951 		exponent++;
952 		val >>= 1;
953 	}
954 	/*
955 	 * Increase small mantissa to generate valid 'normal'
956 	 * number
957 	 */
958 	while (val < MIN_IEEE_MANTISSA && exponent > 1) {
959 		exponent--;
960 		val <<= 1;
961 	}
962 
963 	/* Convert mantissa from milli-units to units */
964 	mantissa = DIV_ROUND_CLOSEST(val, 1000);
965 
966 	/*
967 	 * Ensure that the resulting number is within range.
968 	 * Valid range is 0x400..0x7ff, where bit 10 reflects
969 	 * the implied high bit in normalized ieee754 numbers.
970 	 * Set the range to 0x400..0x7ff to reflect this.
971 	 * The upper bit is then removed by the mask against
972 	 * 0x3ff in the final assignment.
973 	 */
974 	if (mantissa > 0x7ff)
975 		mantissa = 0x7ff;
976 	else if (mantissa < 0x400)
977 		mantissa = 0x400;
978 
979 	/* Convert to sign, 5 bit exponent, 10 bit mantissa */
980 	return sign | (mantissa & 0x3ff) | ((exponent << 10) & 0x7c00);
981 }
982 
983 #define MAX_LIN_MANTISSA	(1023 * 1000)
984 #define MIN_LIN_MANTISSA	(511 * 1000)
985 
pmbus_data2reg_linear(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)986 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
987 				 struct pmbus_sensor *sensor, s64 val)
988 {
989 	s16 exponent = 0, mantissa;
990 	bool negative = false;
991 
992 	/* simple case */
993 	if (val == 0)
994 		return 0;
995 
996 	if (sensor->class == PSC_VOLTAGE_OUT) {
997 		/* LINEAR16 does not support negative voltages */
998 		if (val < 0)
999 			return 0;
1000 
1001 		/*
1002 		 * For a static exponents, we don't have a choice
1003 		 * but to adjust the value to it.
1004 		 */
1005 		if (data->exponent[sensor->page] < 0)
1006 			val <<= -data->exponent[sensor->page];
1007 		else
1008 			val >>= data->exponent[sensor->page];
1009 		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
1010 		return clamp_val(val, 0, 0xffff);
1011 	}
1012 
1013 	if (val < 0) {
1014 		negative = true;
1015 		val = -val;
1016 	}
1017 
1018 	/* Power is in uW. Convert to mW before converting. */
1019 	if (sensor->class == PSC_POWER)
1020 		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
1021 
1022 	/*
1023 	 * For simplicity, convert fan data to milli-units
1024 	 * before calculating the exponent.
1025 	 */
1026 	if (sensor->class == PSC_FAN)
1027 		val = val * 1000LL;
1028 
1029 	/* Reduce large mantissa until it fits into 10 bit */
1030 	while (val >= MAX_LIN_MANTISSA && exponent < 15) {
1031 		exponent++;
1032 		val >>= 1;
1033 	}
1034 	/* Increase small mantissa to improve precision */
1035 	while (val < MIN_LIN_MANTISSA && exponent > -15) {
1036 		exponent--;
1037 		val <<= 1;
1038 	}
1039 
1040 	/* Convert mantissa from milli-units to units */
1041 	mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
1042 
1043 	/* restore sign */
1044 	if (negative)
1045 		mantissa = -mantissa;
1046 
1047 	/* Convert to 5 bit exponent, 11 bit mantissa */
1048 	return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
1049 }
1050 
pmbus_data2reg_direct(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)1051 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
1052 				 struct pmbus_sensor *sensor, s64 val)
1053 {
1054 	s64 b;
1055 	s32 m, R;
1056 
1057 	m = data->info->m[sensor->class];
1058 	b = data->info->b[sensor->class];
1059 	R = data->info->R[sensor->class];
1060 
1061 	/* Power is in uW. Adjust R and b. */
1062 	if (sensor->class == PSC_POWER) {
1063 		R -= 3;
1064 		b *= 1000;
1065 	}
1066 
1067 	/* Calculate Y = (m * X + b) * 10^R */
1068 	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
1069 		R -= 3;		/* Adjust R and b for data in milli-units */
1070 		b *= 1000;
1071 	}
1072 	val = val * m + b;
1073 
1074 	while (R > 0) {
1075 		val *= 10;
1076 		R--;
1077 	}
1078 	while (R < 0) {
1079 		val = div_s64(val + 5LL, 10L);  /* round closest */
1080 		R++;
1081 	}
1082 
1083 	return (u16)clamp_val(val, S16_MIN, S16_MAX);
1084 }
1085 
pmbus_data2reg_vid(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)1086 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
1087 			      struct pmbus_sensor *sensor, s64 val)
1088 {
1089 	val = clamp_val(val, 500, 1600);
1090 
1091 	return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
1092 }
1093 
pmbus_data2reg(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)1094 static u16 pmbus_data2reg(struct pmbus_data *data,
1095 			  struct pmbus_sensor *sensor, s64 val)
1096 {
1097 	u16 regval;
1098 
1099 	if (!sensor->convert)
1100 		return val;
1101 
1102 	switch (data->info->format[sensor->class]) {
1103 	case direct:
1104 		regval = pmbus_data2reg_direct(data, sensor, val);
1105 		break;
1106 	case vid:
1107 		regval = pmbus_data2reg_vid(data, sensor, val);
1108 		break;
1109 	case ieee754:
1110 		regval = pmbus_data2reg_ieee754(data, sensor, val);
1111 		break;
1112 	case linear:
1113 	default:
1114 		regval = pmbus_data2reg_linear(data, sensor, val);
1115 		break;
1116 	}
1117 	return regval;
1118 }
1119 
1120 /*
1121  * Return boolean calculated from converted data.
1122  * <index> defines a status register index and mask.
1123  * The mask is in the lower 8 bits, the register index is in bits 8..23.
1124  *
1125  * The associated pmbus_boolean structure contains optional pointers to two
1126  * sensor attributes. If specified, those attributes are compared against each
1127  * other to determine if a limit has been exceeded.
1128  *
1129  * If the sensor attribute pointers are NULL, the function returns true if
1130  * (status[reg] & mask) is true.
1131  *
1132  * If sensor attribute pointers are provided, a comparison against a specified
1133  * limit has to be performed to determine the boolean result.
1134  * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
1135  * sensor values referenced by sensor attribute pointers s1 and s2).
1136  *
1137  * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
1138  * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
1139  *
1140  * If a negative value is stored in any of the referenced registers, this value
1141  * reflects an error code which will be returned.
1142  */
pmbus_get_boolean(struct i2c_client * client,struct pmbus_boolean * b,int index)1143 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
1144 			     int index)
1145 {
1146 	struct pmbus_data *data = i2c_get_clientdata(client);
1147 	struct pmbus_sensor *s1 = b->s1;
1148 	struct pmbus_sensor *s2 = b->s2;
1149 	u16 mask = pb_index_to_mask(index);
1150 	u8 page = pb_index_to_page(index);
1151 	u16 reg = pb_index_to_reg(index);
1152 	int ret, status;
1153 	u16 regval;
1154 
1155 	mutex_lock(&data->update_lock);
1156 	status = pmbus_get_status(client, page, reg);
1157 	if (status < 0) {
1158 		ret = status;
1159 		goto unlock;
1160 	}
1161 
1162 	if (s1)
1163 		pmbus_update_sensor_data(client, s1);
1164 	if (s2)
1165 		pmbus_update_sensor_data(client, s2);
1166 
1167 	regval = status & mask;
1168 	if (regval) {
1169 		if (data->revision >= PMBUS_REV_12) {
1170 			ret = _pmbus_write_byte_data(client, page, reg, regval);
1171 			if (ret)
1172 				goto unlock;
1173 		} else {
1174 			pmbus_clear_fault_page(client, page);
1175 		}
1176 
1177 	}
1178 	if (s1 && s2) {
1179 		s64 v1, v2;
1180 
1181 		if (s1->data < 0) {
1182 			ret = s1->data;
1183 			goto unlock;
1184 		}
1185 		if (s2->data < 0) {
1186 			ret = s2->data;
1187 			goto unlock;
1188 		}
1189 
1190 		v1 = pmbus_reg2data(data, s1);
1191 		v2 = pmbus_reg2data(data, s2);
1192 		ret = !!(regval && v1 >= v2);
1193 	} else {
1194 		ret = !!regval;
1195 	}
1196 unlock:
1197 	mutex_unlock(&data->update_lock);
1198 	return ret;
1199 }
1200 
pmbus_show_boolean(struct device * dev,struct device_attribute * da,char * buf)1201 static ssize_t pmbus_show_boolean(struct device *dev,
1202 				  struct device_attribute *da, char *buf)
1203 {
1204 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
1205 	struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
1206 	struct i2c_client *client = to_i2c_client(dev->parent);
1207 	int val;
1208 
1209 	val = pmbus_get_boolean(client, boolean, attr->index);
1210 	if (val < 0)
1211 		return val;
1212 	return sysfs_emit(buf, "%d\n", val);
1213 }
1214 
pmbus_show_sensor(struct device * dev,struct device_attribute * devattr,char * buf)1215 static ssize_t pmbus_show_sensor(struct device *dev,
1216 				 struct device_attribute *devattr, char *buf)
1217 {
1218 	struct i2c_client *client = to_i2c_client(dev->parent);
1219 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1220 	struct pmbus_data *data = i2c_get_clientdata(client);
1221 	ssize_t ret;
1222 
1223 	mutex_lock(&data->update_lock);
1224 	pmbus_update_sensor_data(client, sensor);
1225 	if (sensor->data < 0)
1226 		ret = sensor->data;
1227 	else
1228 		ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor));
1229 	mutex_unlock(&data->update_lock);
1230 	return ret;
1231 }
1232 
pmbus_set_sensor(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)1233 static ssize_t pmbus_set_sensor(struct device *dev,
1234 				struct device_attribute *devattr,
1235 				const char *buf, size_t count)
1236 {
1237 	struct i2c_client *client = to_i2c_client(dev->parent);
1238 	struct pmbus_data *data = i2c_get_clientdata(client);
1239 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1240 	ssize_t rv = count;
1241 	s64 val;
1242 	int ret;
1243 	u16 regval;
1244 
1245 	if (kstrtos64(buf, 10, &val) < 0)
1246 		return -EINVAL;
1247 
1248 	mutex_lock(&data->update_lock);
1249 	regval = pmbus_data2reg(data, sensor, val);
1250 	ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
1251 	if (ret < 0)
1252 		rv = ret;
1253 	else
1254 		sensor->data = -ENODATA;
1255 	mutex_unlock(&data->update_lock);
1256 	return rv;
1257 }
1258 
pmbus_show_label(struct device * dev,struct device_attribute * da,char * buf)1259 static ssize_t pmbus_show_label(struct device *dev,
1260 				struct device_attribute *da, char *buf)
1261 {
1262 	struct pmbus_label *label = to_pmbus_label(da);
1263 
1264 	return sysfs_emit(buf, "%s\n", label->label);
1265 }
1266 
pmbus_add_attribute(struct pmbus_data * data,struct attribute * attr)1267 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1268 {
1269 	if (data->num_attributes >= data->max_attributes - 1) {
1270 		int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1271 		void *new_attrs = devm_krealloc_array(data->dev, data->group.attrs,
1272 						      new_max_attrs, sizeof(void *),
1273 						      GFP_KERNEL);
1274 		if (!new_attrs)
1275 			return -ENOMEM;
1276 		data->group.attrs = new_attrs;
1277 		data->max_attributes = new_max_attrs;
1278 	}
1279 
1280 	data->group.attrs[data->num_attributes++] = attr;
1281 	data->group.attrs[data->num_attributes] = NULL;
1282 	return 0;
1283 }
1284 
pmbus_dev_attr_init(struct device_attribute * dev_attr,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count))1285 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1286 				const char *name,
1287 				umode_t mode,
1288 				ssize_t (*show)(struct device *dev,
1289 						struct device_attribute *attr,
1290 						char *buf),
1291 				ssize_t (*store)(struct device *dev,
1292 						 struct device_attribute *attr,
1293 						 const char *buf, size_t count))
1294 {
1295 	sysfs_attr_init(&dev_attr->attr);
1296 	dev_attr->attr.name = name;
1297 	dev_attr->attr.mode = mode;
1298 	dev_attr->show = show;
1299 	dev_attr->store = store;
1300 }
1301 
pmbus_attr_init(struct sensor_device_attribute * a,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count),int idx)1302 static void pmbus_attr_init(struct sensor_device_attribute *a,
1303 			    const char *name,
1304 			    umode_t mode,
1305 			    ssize_t (*show)(struct device *dev,
1306 					    struct device_attribute *attr,
1307 					    char *buf),
1308 			    ssize_t (*store)(struct device *dev,
1309 					     struct device_attribute *attr,
1310 					     const char *buf, size_t count),
1311 			    int idx)
1312 {
1313 	pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1314 	a->index = idx;
1315 }
1316 
pmbus_add_boolean(struct pmbus_data * data,const char * name,const char * type,int seq,struct pmbus_sensor * s1,struct pmbus_sensor * s2,u8 page,u16 reg,u16 mask)1317 static int pmbus_add_boolean(struct pmbus_data *data,
1318 			     const char *name, const char *type, int seq,
1319 			     struct pmbus_sensor *s1,
1320 			     struct pmbus_sensor *s2,
1321 			     u8 page, u16 reg, u16 mask)
1322 {
1323 	struct pmbus_boolean *boolean;
1324 	struct sensor_device_attribute *a;
1325 
1326 	if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1327 		return -EINVAL;
1328 
1329 	boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1330 	if (!boolean)
1331 		return -ENOMEM;
1332 
1333 	a = &boolean->attribute;
1334 
1335 	snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1336 		 name, seq, type);
1337 	boolean->s1 = s1;
1338 	boolean->s2 = s2;
1339 	pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1340 			pb_reg_to_index(page, reg, mask));
1341 
1342 	return pmbus_add_attribute(data, &a->dev_attr.attr);
1343 }
1344 
1345 /* of thermal for pmbus temperature sensors */
1346 struct pmbus_thermal_data {
1347 	struct pmbus_data *pmbus_data;
1348 	struct pmbus_sensor *sensor;
1349 };
1350 
pmbus_thermal_get_temp(struct thermal_zone_device * tz,int * temp)1351 static int pmbus_thermal_get_temp(struct thermal_zone_device *tz, int *temp)
1352 {
1353 	struct pmbus_thermal_data *tdata = thermal_zone_device_priv(tz);
1354 	struct pmbus_sensor *sensor = tdata->sensor;
1355 	struct pmbus_data *pmbus_data = tdata->pmbus_data;
1356 	struct i2c_client *client = to_i2c_client(pmbus_data->dev);
1357 	struct device *dev = pmbus_data->hwmon_dev;
1358 	int ret = 0;
1359 
1360 	if (!dev) {
1361 		/* May not even get to hwmon yet */
1362 		*temp = 0;
1363 		return 0;
1364 	}
1365 
1366 	mutex_lock(&pmbus_data->update_lock);
1367 	pmbus_update_sensor_data(client, sensor);
1368 	if (sensor->data < 0)
1369 		ret = sensor->data;
1370 	else
1371 		*temp = (int)pmbus_reg2data(pmbus_data, sensor);
1372 	mutex_unlock(&pmbus_data->update_lock);
1373 
1374 	return ret;
1375 }
1376 
1377 static const struct thermal_zone_device_ops pmbus_thermal_ops = {
1378 	.get_temp = pmbus_thermal_get_temp,
1379 };
1380 
pmbus_thermal_add_sensor(struct pmbus_data * pmbus_data,struct pmbus_sensor * sensor,int index)1381 static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data,
1382 				    struct pmbus_sensor *sensor, int index)
1383 {
1384 	struct device *dev = pmbus_data->dev;
1385 	struct pmbus_thermal_data *tdata;
1386 	struct thermal_zone_device *tzd;
1387 
1388 	tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL);
1389 	if (!tdata)
1390 		return -ENOMEM;
1391 
1392 	tdata->sensor = sensor;
1393 	tdata->pmbus_data = pmbus_data;
1394 
1395 	tzd = devm_thermal_of_zone_register(dev, index, tdata,
1396 					    &pmbus_thermal_ops);
1397 	/*
1398 	 * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV,
1399 	 * so ignore that error but forward any other error.
1400 	 */
1401 	if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV))
1402 		return PTR_ERR(tzd);
1403 
1404 	return 0;
1405 }
1406 
pmbus_add_sensor(struct pmbus_data * data,const char * name,const char * type,int seq,int page,int phase,int reg,enum pmbus_sensor_classes class,bool update,bool readonly,bool convert)1407 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1408 					     const char *name, const char *type,
1409 					     int seq, int page, int phase,
1410 					     int reg,
1411 					     enum pmbus_sensor_classes class,
1412 					     bool update, bool readonly,
1413 					     bool convert)
1414 {
1415 	struct pmbus_sensor *sensor;
1416 	struct device_attribute *a;
1417 
1418 	sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1419 	if (!sensor)
1420 		return NULL;
1421 	a = &sensor->attribute;
1422 
1423 	if (type)
1424 		snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1425 			 name, seq, type);
1426 	else
1427 		snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1428 			 name, seq);
1429 
1430 	if (data->flags & PMBUS_WRITE_PROTECTED)
1431 		readonly = true;
1432 
1433 	sensor->page = page;
1434 	sensor->phase = phase;
1435 	sensor->reg = reg;
1436 	sensor->class = class;
1437 	sensor->update = update;
1438 	sensor->convert = convert;
1439 	sensor->data = -ENODATA;
1440 	pmbus_dev_attr_init(a, sensor->name,
1441 			    readonly ? 0444 : 0644,
1442 			    pmbus_show_sensor, pmbus_set_sensor);
1443 
1444 	if (pmbus_add_attribute(data, &a->attr))
1445 		return NULL;
1446 
1447 	sensor->next = data->sensors;
1448 	data->sensors = sensor;
1449 
1450 	/* temperature sensors with _input values are registered with thermal */
1451 	if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0)
1452 		pmbus_thermal_add_sensor(data, sensor, seq);
1453 
1454 	return sensor;
1455 }
1456 
pmbus_add_label(struct pmbus_data * data,const char * name,int seq,const char * lstring,int index,int phase)1457 static int pmbus_add_label(struct pmbus_data *data,
1458 			   const char *name, int seq,
1459 			   const char *lstring, int index, int phase)
1460 {
1461 	struct pmbus_label *label;
1462 	struct device_attribute *a;
1463 
1464 	label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1465 	if (!label)
1466 		return -ENOMEM;
1467 
1468 	a = &label->attribute;
1469 
1470 	snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1471 	if (!index) {
1472 		if (phase == 0xff)
1473 			strncpy(label->label, lstring,
1474 				sizeof(label->label) - 1);
1475 		else
1476 			snprintf(label->label, sizeof(label->label), "%s.%d",
1477 				 lstring, phase);
1478 	} else {
1479 		if (phase == 0xff)
1480 			snprintf(label->label, sizeof(label->label), "%s%d",
1481 				 lstring, index);
1482 		else
1483 			snprintf(label->label, sizeof(label->label), "%s%d.%d",
1484 				 lstring, index, phase);
1485 	}
1486 
1487 	pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1488 	return pmbus_add_attribute(data, &a->attr);
1489 }
1490 
1491 /*
1492  * Search for attributes. Allocate sensors, booleans, and labels as needed.
1493  */
1494 
1495 /*
1496  * The pmbus_limit_attr structure describes a single limit attribute
1497  * and its associated alarm attribute.
1498  */
1499 struct pmbus_limit_attr {
1500 	u16 reg;		/* Limit register */
1501 	u16 sbit;		/* Alarm attribute status bit */
1502 	bool update;		/* True if register needs updates */
1503 	bool low;		/* True if low limit; for limits with compare
1504 				   functions only */
1505 	const char *attr;	/* Attribute name */
1506 	const char *alarm;	/* Alarm attribute name */
1507 };
1508 
1509 /*
1510  * The pmbus_sensor_attr structure describes one sensor attribute. This
1511  * description includes a reference to the associated limit attributes.
1512  */
1513 struct pmbus_sensor_attr {
1514 	u16 reg;			/* sensor register */
1515 	u16 gbit;			/* generic status bit */
1516 	u8 nlimit;			/* # of limit registers */
1517 	enum pmbus_sensor_classes class;/* sensor class */
1518 	const char *label;		/* sensor label */
1519 	bool paged;			/* true if paged sensor */
1520 	bool update;			/* true if update needed */
1521 	bool compare;			/* true if compare function needed */
1522 	u32 func;			/* sensor mask */
1523 	u32 sfunc;			/* sensor status mask */
1524 	int sreg;			/* status register */
1525 	const struct pmbus_limit_attr *limit;/* limit registers */
1526 };
1527 
1528 /*
1529  * Add a set of limit attributes and, if supported, the associated
1530  * alarm attributes.
1531  * returns 0 if no alarm register found, 1 if an alarm register was found,
1532  * < 0 on errors.
1533  */
pmbus_add_limit_attrs(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,struct pmbus_sensor * base,const struct pmbus_sensor_attr * attr)1534 static int pmbus_add_limit_attrs(struct i2c_client *client,
1535 				 struct pmbus_data *data,
1536 				 const struct pmbus_driver_info *info,
1537 				 const char *name, int index, int page,
1538 				 struct pmbus_sensor *base,
1539 				 const struct pmbus_sensor_attr *attr)
1540 {
1541 	const struct pmbus_limit_attr *l = attr->limit;
1542 	int nlimit = attr->nlimit;
1543 	int have_alarm = 0;
1544 	int i, ret;
1545 	struct pmbus_sensor *curr;
1546 
1547 	for (i = 0; i < nlimit; i++) {
1548 		if (pmbus_check_word_register(client, page, l->reg)) {
1549 			curr = pmbus_add_sensor(data, name, l->attr, index,
1550 						page, 0xff, l->reg, attr->class,
1551 						attr->update || l->update,
1552 						false, true);
1553 			if (!curr)
1554 				return -ENOMEM;
1555 			if (l->sbit && (info->func[page] & attr->sfunc)) {
1556 				ret = pmbus_add_boolean(data, name,
1557 					l->alarm, index,
1558 					attr->compare ?  l->low ? curr : base
1559 						      : NULL,
1560 					attr->compare ? l->low ? base : curr
1561 						      : NULL,
1562 					page, attr->sreg, l->sbit);
1563 				if (ret)
1564 					return ret;
1565 				have_alarm = 1;
1566 			}
1567 		}
1568 		l++;
1569 	}
1570 	return have_alarm;
1571 }
1572 
pmbus_add_sensor_attrs_one(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,int phase,const struct pmbus_sensor_attr * attr,bool paged)1573 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1574 				      struct pmbus_data *data,
1575 				      const struct pmbus_driver_info *info,
1576 				      const char *name,
1577 				      int index, int page, int phase,
1578 				      const struct pmbus_sensor_attr *attr,
1579 				      bool paged)
1580 {
1581 	struct pmbus_sensor *base;
1582 	bool upper = !!(attr->gbit & 0xff00);	/* need to check STATUS_WORD */
1583 	int ret;
1584 
1585 	if (attr->label) {
1586 		ret = pmbus_add_label(data, name, index, attr->label,
1587 				      paged ? page + 1 : 0, phase);
1588 		if (ret)
1589 			return ret;
1590 	}
1591 	base = pmbus_add_sensor(data, name, "input", index, page, phase,
1592 				attr->reg, attr->class, true, true, true);
1593 	if (!base)
1594 		return -ENOMEM;
1595 	/* No limit and alarm attributes for phase specific sensors */
1596 	if (attr->sfunc && phase == 0xff) {
1597 		ret = pmbus_add_limit_attrs(client, data, info, name,
1598 					    index, page, base, attr);
1599 		if (ret < 0)
1600 			return ret;
1601 		/*
1602 		 * Add generic alarm attribute only if there are no individual
1603 		 * alarm attributes, if there is a global alarm bit, and if
1604 		 * the generic status register (word or byte, depending on
1605 		 * which global bit is set) for this page is accessible.
1606 		 */
1607 		if (!ret && attr->gbit &&
1608 		    (!upper || data->has_status_word) &&
1609 		    pmbus_check_status_register(client, page)) {
1610 			ret = pmbus_add_boolean(data, name, "alarm", index,
1611 						NULL, NULL,
1612 						page, PMBUS_STATUS_WORD,
1613 						attr->gbit);
1614 			if (ret)
1615 				return ret;
1616 		}
1617 	}
1618 	return 0;
1619 }
1620 
pmbus_sensor_is_paged(const struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)1621 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1622 				  const struct pmbus_sensor_attr *attr)
1623 {
1624 	int p;
1625 
1626 	if (attr->paged)
1627 		return true;
1628 
1629 	/*
1630 	 * Some attributes may be present on more than one page despite
1631 	 * not being marked with the paged attribute. If that is the case,
1632 	 * then treat the sensor as being paged and add the page suffix to the
1633 	 * attribute name.
1634 	 * We don't just add the paged attribute to all such attributes, in
1635 	 * order to maintain the un-suffixed labels in the case where the
1636 	 * attribute is only on page 0.
1637 	 */
1638 	for (p = 1; p < info->pages; p++) {
1639 		if (info->func[p] & attr->func)
1640 			return true;
1641 	}
1642 	return false;
1643 }
1644 
pmbus_add_sensor_attrs(struct i2c_client * client,struct pmbus_data * data,const char * name,const struct pmbus_sensor_attr * attrs,int nattrs)1645 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1646 				  struct pmbus_data *data,
1647 				  const char *name,
1648 				  const struct pmbus_sensor_attr *attrs,
1649 				  int nattrs)
1650 {
1651 	const struct pmbus_driver_info *info = data->info;
1652 	int index, i;
1653 	int ret;
1654 
1655 	index = 1;
1656 	for (i = 0; i < nattrs; i++) {
1657 		int page, pages;
1658 		bool paged = pmbus_sensor_is_paged(info, attrs);
1659 
1660 		pages = paged ? info->pages : 1;
1661 		for (page = 0; page < pages; page++) {
1662 			if (info->func[page] & attrs->func) {
1663 				ret = pmbus_add_sensor_attrs_one(client, data, info,
1664 								 name, index, page,
1665 								 0xff, attrs, paged);
1666 				if (ret)
1667 					return ret;
1668 				index++;
1669 			}
1670 			if (info->phases[page]) {
1671 				int phase;
1672 
1673 				for (phase = 0; phase < info->phases[page];
1674 				     phase++) {
1675 					if (!(info->pfunc[phase] & attrs->func))
1676 						continue;
1677 					ret = pmbus_add_sensor_attrs_one(client,
1678 						data, info, name, index, page,
1679 						phase, attrs, paged);
1680 					if (ret)
1681 						return ret;
1682 					index++;
1683 				}
1684 			}
1685 		}
1686 		attrs++;
1687 	}
1688 	return 0;
1689 }
1690 
1691 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1692 	{
1693 		.reg = PMBUS_VIN_UV_WARN_LIMIT,
1694 		.attr = "min",
1695 		.alarm = "min_alarm",
1696 		.sbit = PB_VOLTAGE_UV_WARNING,
1697 	}, {
1698 		.reg = PMBUS_VIN_UV_FAULT_LIMIT,
1699 		.attr = "lcrit",
1700 		.alarm = "lcrit_alarm",
1701 		.sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF,
1702 	}, {
1703 		.reg = PMBUS_VIN_OV_WARN_LIMIT,
1704 		.attr = "max",
1705 		.alarm = "max_alarm",
1706 		.sbit = PB_VOLTAGE_OV_WARNING,
1707 	}, {
1708 		.reg = PMBUS_VIN_OV_FAULT_LIMIT,
1709 		.attr = "crit",
1710 		.alarm = "crit_alarm",
1711 		.sbit = PB_VOLTAGE_OV_FAULT,
1712 	}, {
1713 		.reg = PMBUS_VIRT_READ_VIN_AVG,
1714 		.update = true,
1715 		.attr = "average",
1716 	}, {
1717 		.reg = PMBUS_VIRT_READ_VIN_MIN,
1718 		.update = true,
1719 		.attr = "lowest",
1720 	}, {
1721 		.reg = PMBUS_VIRT_READ_VIN_MAX,
1722 		.update = true,
1723 		.attr = "highest",
1724 	}, {
1725 		.reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1726 		.attr = "reset_history",
1727 	}, {
1728 		.reg = PMBUS_MFR_VIN_MIN,
1729 		.attr = "rated_min",
1730 	}, {
1731 		.reg = PMBUS_MFR_VIN_MAX,
1732 		.attr = "rated_max",
1733 	},
1734 };
1735 
1736 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1737 	{
1738 		.reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1739 		.attr = "min",
1740 		.alarm = "min_alarm",
1741 		.sbit = PB_VOLTAGE_UV_WARNING,
1742 	}, {
1743 		.reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1744 		.attr = "lcrit",
1745 		.alarm = "lcrit_alarm",
1746 		.sbit = PB_VOLTAGE_UV_FAULT,
1747 	}, {
1748 		.reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1749 		.attr = "max",
1750 		.alarm = "max_alarm",
1751 		.sbit = PB_VOLTAGE_OV_WARNING,
1752 	}, {
1753 		.reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1754 		.attr = "crit",
1755 		.alarm = "crit_alarm",
1756 		.sbit = PB_VOLTAGE_OV_FAULT,
1757 	}
1758 };
1759 
1760 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1761 	{
1762 		.reg = PMBUS_VOUT_UV_WARN_LIMIT,
1763 		.attr = "min",
1764 		.alarm = "min_alarm",
1765 		.sbit = PB_VOLTAGE_UV_WARNING,
1766 	}, {
1767 		.reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1768 		.attr = "lcrit",
1769 		.alarm = "lcrit_alarm",
1770 		.sbit = PB_VOLTAGE_UV_FAULT,
1771 	}, {
1772 		.reg = PMBUS_VOUT_OV_WARN_LIMIT,
1773 		.attr = "max",
1774 		.alarm = "max_alarm",
1775 		.sbit = PB_VOLTAGE_OV_WARNING,
1776 	}, {
1777 		.reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1778 		.attr = "crit",
1779 		.alarm = "crit_alarm",
1780 		.sbit = PB_VOLTAGE_OV_FAULT,
1781 	}, {
1782 		.reg = PMBUS_VIRT_READ_VOUT_AVG,
1783 		.update = true,
1784 		.attr = "average",
1785 	}, {
1786 		.reg = PMBUS_VIRT_READ_VOUT_MIN,
1787 		.update = true,
1788 		.attr = "lowest",
1789 	}, {
1790 		.reg = PMBUS_VIRT_READ_VOUT_MAX,
1791 		.update = true,
1792 		.attr = "highest",
1793 	}, {
1794 		.reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1795 		.attr = "reset_history",
1796 	}, {
1797 		.reg = PMBUS_MFR_VOUT_MIN,
1798 		.attr = "rated_min",
1799 	}, {
1800 		.reg = PMBUS_MFR_VOUT_MAX,
1801 		.attr = "rated_max",
1802 	},
1803 };
1804 
1805 static const struct pmbus_sensor_attr voltage_attributes[] = {
1806 	{
1807 		.reg = PMBUS_READ_VIN,
1808 		.class = PSC_VOLTAGE_IN,
1809 		.label = "vin",
1810 		.func = PMBUS_HAVE_VIN,
1811 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1812 		.sreg = PMBUS_STATUS_INPUT,
1813 		.gbit = PB_STATUS_VIN_UV,
1814 		.limit = vin_limit_attrs,
1815 		.nlimit = ARRAY_SIZE(vin_limit_attrs),
1816 	}, {
1817 		.reg = PMBUS_VIRT_READ_VMON,
1818 		.class = PSC_VOLTAGE_IN,
1819 		.label = "vmon",
1820 		.func = PMBUS_HAVE_VMON,
1821 		.sfunc = PMBUS_HAVE_STATUS_VMON,
1822 		.sreg = PMBUS_VIRT_STATUS_VMON,
1823 		.limit = vmon_limit_attrs,
1824 		.nlimit = ARRAY_SIZE(vmon_limit_attrs),
1825 	}, {
1826 		.reg = PMBUS_READ_VCAP,
1827 		.class = PSC_VOLTAGE_IN,
1828 		.label = "vcap",
1829 		.func = PMBUS_HAVE_VCAP,
1830 	}, {
1831 		.reg = PMBUS_READ_VOUT,
1832 		.class = PSC_VOLTAGE_OUT,
1833 		.label = "vout",
1834 		.paged = true,
1835 		.func = PMBUS_HAVE_VOUT,
1836 		.sfunc = PMBUS_HAVE_STATUS_VOUT,
1837 		.sreg = PMBUS_STATUS_VOUT,
1838 		.gbit = PB_STATUS_VOUT_OV,
1839 		.limit = vout_limit_attrs,
1840 		.nlimit = ARRAY_SIZE(vout_limit_attrs),
1841 	}
1842 };
1843 
1844 /* Current attributes */
1845 
1846 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1847 	{
1848 		.reg = PMBUS_IIN_OC_WARN_LIMIT,
1849 		.attr = "max",
1850 		.alarm = "max_alarm",
1851 		.sbit = PB_IIN_OC_WARNING,
1852 	}, {
1853 		.reg = PMBUS_IIN_OC_FAULT_LIMIT,
1854 		.attr = "crit",
1855 		.alarm = "crit_alarm",
1856 		.sbit = PB_IIN_OC_FAULT,
1857 	}, {
1858 		.reg = PMBUS_VIRT_READ_IIN_AVG,
1859 		.update = true,
1860 		.attr = "average",
1861 	}, {
1862 		.reg = PMBUS_VIRT_READ_IIN_MIN,
1863 		.update = true,
1864 		.attr = "lowest",
1865 	}, {
1866 		.reg = PMBUS_VIRT_READ_IIN_MAX,
1867 		.update = true,
1868 		.attr = "highest",
1869 	}, {
1870 		.reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1871 		.attr = "reset_history",
1872 	}, {
1873 		.reg = PMBUS_MFR_IIN_MAX,
1874 		.attr = "rated_max",
1875 	},
1876 };
1877 
1878 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1879 	{
1880 		.reg = PMBUS_IOUT_OC_WARN_LIMIT,
1881 		.attr = "max",
1882 		.alarm = "max_alarm",
1883 		.sbit = PB_IOUT_OC_WARNING,
1884 	}, {
1885 		.reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1886 		.attr = "lcrit",
1887 		.alarm = "lcrit_alarm",
1888 		.sbit = PB_IOUT_UC_FAULT,
1889 	}, {
1890 		.reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1891 		.attr = "crit",
1892 		.alarm = "crit_alarm",
1893 		.sbit = PB_IOUT_OC_FAULT,
1894 	}, {
1895 		.reg = PMBUS_VIRT_READ_IOUT_AVG,
1896 		.update = true,
1897 		.attr = "average",
1898 	}, {
1899 		.reg = PMBUS_VIRT_READ_IOUT_MIN,
1900 		.update = true,
1901 		.attr = "lowest",
1902 	}, {
1903 		.reg = PMBUS_VIRT_READ_IOUT_MAX,
1904 		.update = true,
1905 		.attr = "highest",
1906 	}, {
1907 		.reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1908 		.attr = "reset_history",
1909 	}, {
1910 		.reg = PMBUS_MFR_IOUT_MAX,
1911 		.attr = "rated_max",
1912 	},
1913 };
1914 
1915 static const struct pmbus_sensor_attr current_attributes[] = {
1916 	{
1917 		.reg = PMBUS_READ_IIN,
1918 		.class = PSC_CURRENT_IN,
1919 		.label = "iin",
1920 		.func = PMBUS_HAVE_IIN,
1921 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1922 		.sreg = PMBUS_STATUS_INPUT,
1923 		.gbit = PB_STATUS_INPUT,
1924 		.limit = iin_limit_attrs,
1925 		.nlimit = ARRAY_SIZE(iin_limit_attrs),
1926 	}, {
1927 		.reg = PMBUS_READ_IOUT,
1928 		.class = PSC_CURRENT_OUT,
1929 		.label = "iout",
1930 		.paged = true,
1931 		.func = PMBUS_HAVE_IOUT,
1932 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1933 		.sreg = PMBUS_STATUS_IOUT,
1934 		.gbit = PB_STATUS_IOUT_OC,
1935 		.limit = iout_limit_attrs,
1936 		.nlimit = ARRAY_SIZE(iout_limit_attrs),
1937 	}
1938 };
1939 
1940 /* Power attributes */
1941 
1942 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1943 	{
1944 		.reg = PMBUS_PIN_OP_WARN_LIMIT,
1945 		.attr = "max",
1946 		.alarm = "alarm",
1947 		.sbit = PB_PIN_OP_WARNING,
1948 	}, {
1949 		.reg = PMBUS_VIRT_READ_PIN_AVG,
1950 		.update = true,
1951 		.attr = "average",
1952 	}, {
1953 		.reg = PMBUS_VIRT_READ_PIN_MIN,
1954 		.update = true,
1955 		.attr = "input_lowest",
1956 	}, {
1957 		.reg = PMBUS_VIRT_READ_PIN_MAX,
1958 		.update = true,
1959 		.attr = "input_highest",
1960 	}, {
1961 		.reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1962 		.attr = "reset_history",
1963 	}, {
1964 		.reg = PMBUS_MFR_PIN_MAX,
1965 		.attr = "rated_max",
1966 	},
1967 };
1968 
1969 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1970 	{
1971 		.reg = PMBUS_POUT_MAX,
1972 		.attr = "cap",
1973 		.alarm = "cap_alarm",
1974 		.sbit = PB_POWER_LIMITING,
1975 	}, {
1976 		.reg = PMBUS_POUT_OP_WARN_LIMIT,
1977 		.attr = "max",
1978 		.alarm = "max_alarm",
1979 		.sbit = PB_POUT_OP_WARNING,
1980 	}, {
1981 		.reg = PMBUS_POUT_OP_FAULT_LIMIT,
1982 		.attr = "crit",
1983 		.alarm = "crit_alarm",
1984 		.sbit = PB_POUT_OP_FAULT,
1985 	}, {
1986 		.reg = PMBUS_VIRT_READ_POUT_AVG,
1987 		.update = true,
1988 		.attr = "average",
1989 	}, {
1990 		.reg = PMBUS_VIRT_READ_POUT_MIN,
1991 		.update = true,
1992 		.attr = "input_lowest",
1993 	}, {
1994 		.reg = PMBUS_VIRT_READ_POUT_MAX,
1995 		.update = true,
1996 		.attr = "input_highest",
1997 	}, {
1998 		.reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1999 		.attr = "reset_history",
2000 	}, {
2001 		.reg = PMBUS_MFR_POUT_MAX,
2002 		.attr = "rated_max",
2003 	},
2004 };
2005 
2006 static const struct pmbus_sensor_attr power_attributes[] = {
2007 	{
2008 		.reg = PMBUS_READ_PIN,
2009 		.class = PSC_POWER,
2010 		.label = "pin",
2011 		.func = PMBUS_HAVE_PIN,
2012 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
2013 		.sreg = PMBUS_STATUS_INPUT,
2014 		.gbit = PB_STATUS_INPUT,
2015 		.limit = pin_limit_attrs,
2016 		.nlimit = ARRAY_SIZE(pin_limit_attrs),
2017 	}, {
2018 		.reg = PMBUS_READ_POUT,
2019 		.class = PSC_POWER,
2020 		.label = "pout",
2021 		.paged = true,
2022 		.func = PMBUS_HAVE_POUT,
2023 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
2024 		.sreg = PMBUS_STATUS_IOUT,
2025 		.limit = pout_limit_attrs,
2026 		.nlimit = ARRAY_SIZE(pout_limit_attrs),
2027 	}
2028 };
2029 
2030 /* Temperature atributes */
2031 
2032 static const struct pmbus_limit_attr temp_limit_attrs[] = {
2033 	{
2034 		.reg = PMBUS_UT_WARN_LIMIT,
2035 		.low = true,
2036 		.attr = "min",
2037 		.alarm = "min_alarm",
2038 		.sbit = PB_TEMP_UT_WARNING,
2039 	}, {
2040 		.reg = PMBUS_UT_FAULT_LIMIT,
2041 		.low = true,
2042 		.attr = "lcrit",
2043 		.alarm = "lcrit_alarm",
2044 		.sbit = PB_TEMP_UT_FAULT,
2045 	}, {
2046 		.reg = PMBUS_OT_WARN_LIMIT,
2047 		.attr = "max",
2048 		.alarm = "max_alarm",
2049 		.sbit = PB_TEMP_OT_WARNING,
2050 	}, {
2051 		.reg = PMBUS_OT_FAULT_LIMIT,
2052 		.attr = "crit",
2053 		.alarm = "crit_alarm",
2054 		.sbit = PB_TEMP_OT_FAULT,
2055 	}, {
2056 		.reg = PMBUS_VIRT_READ_TEMP_MIN,
2057 		.attr = "lowest",
2058 	}, {
2059 		.reg = PMBUS_VIRT_READ_TEMP_AVG,
2060 		.attr = "average",
2061 	}, {
2062 		.reg = PMBUS_VIRT_READ_TEMP_MAX,
2063 		.attr = "highest",
2064 	}, {
2065 		.reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
2066 		.attr = "reset_history",
2067 	}, {
2068 		.reg = PMBUS_MFR_MAX_TEMP_1,
2069 		.attr = "rated_max",
2070 	},
2071 };
2072 
2073 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
2074 	{
2075 		.reg = PMBUS_UT_WARN_LIMIT,
2076 		.low = true,
2077 		.attr = "min",
2078 		.alarm = "min_alarm",
2079 		.sbit = PB_TEMP_UT_WARNING,
2080 	}, {
2081 		.reg = PMBUS_UT_FAULT_LIMIT,
2082 		.low = true,
2083 		.attr = "lcrit",
2084 		.alarm = "lcrit_alarm",
2085 		.sbit = PB_TEMP_UT_FAULT,
2086 	}, {
2087 		.reg = PMBUS_OT_WARN_LIMIT,
2088 		.attr = "max",
2089 		.alarm = "max_alarm",
2090 		.sbit = PB_TEMP_OT_WARNING,
2091 	}, {
2092 		.reg = PMBUS_OT_FAULT_LIMIT,
2093 		.attr = "crit",
2094 		.alarm = "crit_alarm",
2095 		.sbit = PB_TEMP_OT_FAULT,
2096 	}, {
2097 		.reg = PMBUS_VIRT_READ_TEMP2_MIN,
2098 		.attr = "lowest",
2099 	}, {
2100 		.reg = PMBUS_VIRT_READ_TEMP2_AVG,
2101 		.attr = "average",
2102 	}, {
2103 		.reg = PMBUS_VIRT_READ_TEMP2_MAX,
2104 		.attr = "highest",
2105 	}, {
2106 		.reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
2107 		.attr = "reset_history",
2108 	}, {
2109 		.reg = PMBUS_MFR_MAX_TEMP_2,
2110 		.attr = "rated_max",
2111 	},
2112 };
2113 
2114 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
2115 	{
2116 		.reg = PMBUS_UT_WARN_LIMIT,
2117 		.low = true,
2118 		.attr = "min",
2119 		.alarm = "min_alarm",
2120 		.sbit = PB_TEMP_UT_WARNING,
2121 	}, {
2122 		.reg = PMBUS_UT_FAULT_LIMIT,
2123 		.low = true,
2124 		.attr = "lcrit",
2125 		.alarm = "lcrit_alarm",
2126 		.sbit = PB_TEMP_UT_FAULT,
2127 	}, {
2128 		.reg = PMBUS_OT_WARN_LIMIT,
2129 		.attr = "max",
2130 		.alarm = "max_alarm",
2131 		.sbit = PB_TEMP_OT_WARNING,
2132 	}, {
2133 		.reg = PMBUS_OT_FAULT_LIMIT,
2134 		.attr = "crit",
2135 		.alarm = "crit_alarm",
2136 		.sbit = PB_TEMP_OT_FAULT,
2137 	}, {
2138 		.reg = PMBUS_MFR_MAX_TEMP_3,
2139 		.attr = "rated_max",
2140 	},
2141 };
2142 
2143 static const struct pmbus_sensor_attr temp_attributes[] = {
2144 	{
2145 		.reg = PMBUS_READ_TEMPERATURE_1,
2146 		.class = PSC_TEMPERATURE,
2147 		.paged = true,
2148 		.update = true,
2149 		.compare = true,
2150 		.func = PMBUS_HAVE_TEMP,
2151 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2152 		.sreg = PMBUS_STATUS_TEMPERATURE,
2153 		.gbit = PB_STATUS_TEMPERATURE,
2154 		.limit = temp_limit_attrs,
2155 		.nlimit = ARRAY_SIZE(temp_limit_attrs),
2156 	}, {
2157 		.reg = PMBUS_READ_TEMPERATURE_2,
2158 		.class = PSC_TEMPERATURE,
2159 		.paged = true,
2160 		.update = true,
2161 		.compare = true,
2162 		.func = PMBUS_HAVE_TEMP2,
2163 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2164 		.sreg = PMBUS_STATUS_TEMPERATURE,
2165 		.gbit = PB_STATUS_TEMPERATURE,
2166 		.limit = temp_limit_attrs2,
2167 		.nlimit = ARRAY_SIZE(temp_limit_attrs2),
2168 	}, {
2169 		.reg = PMBUS_READ_TEMPERATURE_3,
2170 		.class = PSC_TEMPERATURE,
2171 		.paged = true,
2172 		.update = true,
2173 		.compare = true,
2174 		.func = PMBUS_HAVE_TEMP3,
2175 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2176 		.sreg = PMBUS_STATUS_TEMPERATURE,
2177 		.gbit = PB_STATUS_TEMPERATURE,
2178 		.limit = temp_limit_attrs3,
2179 		.nlimit = ARRAY_SIZE(temp_limit_attrs3),
2180 	}
2181 };
2182 
2183 static const int pmbus_fan_registers[] = {
2184 	PMBUS_READ_FAN_SPEED_1,
2185 	PMBUS_READ_FAN_SPEED_2,
2186 	PMBUS_READ_FAN_SPEED_3,
2187 	PMBUS_READ_FAN_SPEED_4
2188 };
2189 
2190 static const int pmbus_fan_status_registers[] = {
2191 	PMBUS_STATUS_FAN_12,
2192 	PMBUS_STATUS_FAN_12,
2193 	PMBUS_STATUS_FAN_34,
2194 	PMBUS_STATUS_FAN_34
2195 };
2196 
2197 static const u32 pmbus_fan_flags[] = {
2198 	PMBUS_HAVE_FAN12,
2199 	PMBUS_HAVE_FAN12,
2200 	PMBUS_HAVE_FAN34,
2201 	PMBUS_HAVE_FAN34
2202 };
2203 
2204 static const u32 pmbus_fan_status_flags[] = {
2205 	PMBUS_HAVE_STATUS_FAN12,
2206 	PMBUS_HAVE_STATUS_FAN12,
2207 	PMBUS_HAVE_STATUS_FAN34,
2208 	PMBUS_HAVE_STATUS_FAN34
2209 };
2210 
2211 /* Fans */
2212 
2213 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
pmbus_add_fan_ctrl(struct i2c_client * client,struct pmbus_data * data,int index,int page,int id,u8 config)2214 static int pmbus_add_fan_ctrl(struct i2c_client *client,
2215 		struct pmbus_data *data, int index, int page, int id,
2216 		u8 config)
2217 {
2218 	struct pmbus_sensor *sensor;
2219 
2220 	sensor = pmbus_add_sensor(data, "fan", "target", index, page,
2221 				  0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
2222 				  false, false, true);
2223 
2224 	if (!sensor)
2225 		return -ENOMEM;
2226 
2227 	if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
2228 			(data->info->func[page] & PMBUS_HAVE_PWM34)))
2229 		return 0;
2230 
2231 	sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
2232 				  0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
2233 				  false, false, true);
2234 
2235 	if (!sensor)
2236 		return -ENOMEM;
2237 
2238 	sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
2239 				  0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
2240 				  true, false, false);
2241 
2242 	if (!sensor)
2243 		return -ENOMEM;
2244 
2245 	return 0;
2246 }
2247 
pmbus_add_fan_attributes(struct i2c_client * client,struct pmbus_data * data)2248 static int pmbus_add_fan_attributes(struct i2c_client *client,
2249 				    struct pmbus_data *data)
2250 {
2251 	const struct pmbus_driver_info *info = data->info;
2252 	int index = 1;
2253 	int page;
2254 	int ret;
2255 
2256 	for (page = 0; page < info->pages; page++) {
2257 		int f;
2258 
2259 		for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
2260 			int regval;
2261 
2262 			if (!(info->func[page] & pmbus_fan_flags[f]))
2263 				break;
2264 
2265 			if (!pmbus_check_word_register(client, page,
2266 						       pmbus_fan_registers[f]))
2267 				break;
2268 
2269 			/*
2270 			 * Skip fan if not installed.
2271 			 * Each fan configuration register covers multiple fans,
2272 			 * so we have to do some magic.
2273 			 */
2274 			regval = _pmbus_read_byte_data(client, page,
2275 				pmbus_fan_config_registers[f]);
2276 			if (regval < 0 ||
2277 			    (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
2278 				continue;
2279 
2280 			if (pmbus_add_sensor(data, "fan", "input", index,
2281 					     page, 0xff, pmbus_fan_registers[f],
2282 					     PSC_FAN, true, true, true) == NULL)
2283 				return -ENOMEM;
2284 
2285 			/* Fan control */
2286 			if (pmbus_check_word_register(client, page,
2287 					pmbus_fan_command_registers[f])) {
2288 				ret = pmbus_add_fan_ctrl(client, data, index,
2289 							 page, f, regval);
2290 				if (ret < 0)
2291 					return ret;
2292 			}
2293 
2294 			/*
2295 			 * Each fan status register covers multiple fans,
2296 			 * so we have to do some magic.
2297 			 */
2298 			if ((info->func[page] & pmbus_fan_status_flags[f]) &&
2299 			    pmbus_check_byte_register(client,
2300 					page, pmbus_fan_status_registers[f])) {
2301 				int reg;
2302 
2303 				if (f > 1)	/* fan 3, 4 */
2304 					reg = PMBUS_STATUS_FAN_34;
2305 				else
2306 					reg = PMBUS_STATUS_FAN_12;
2307 				ret = pmbus_add_boolean(data, "fan",
2308 					"alarm", index, NULL, NULL, page, reg,
2309 					PB_FAN_FAN1_WARNING >> (f & 1));
2310 				if (ret)
2311 					return ret;
2312 				ret = pmbus_add_boolean(data, "fan",
2313 					"fault", index, NULL, NULL, page, reg,
2314 					PB_FAN_FAN1_FAULT >> (f & 1));
2315 				if (ret)
2316 					return ret;
2317 			}
2318 			index++;
2319 		}
2320 	}
2321 	return 0;
2322 }
2323 
2324 struct pmbus_samples_attr {
2325 	int reg;
2326 	char *name;
2327 };
2328 
2329 struct pmbus_samples_reg {
2330 	int page;
2331 	struct pmbus_samples_attr *attr;
2332 	struct device_attribute dev_attr;
2333 };
2334 
2335 static struct pmbus_samples_attr pmbus_samples_registers[] = {
2336 	{
2337 		.reg = PMBUS_VIRT_SAMPLES,
2338 		.name = "samples",
2339 	}, {
2340 		.reg = PMBUS_VIRT_IN_SAMPLES,
2341 		.name = "in_samples",
2342 	}, {
2343 		.reg = PMBUS_VIRT_CURR_SAMPLES,
2344 		.name = "curr_samples",
2345 	}, {
2346 		.reg = PMBUS_VIRT_POWER_SAMPLES,
2347 		.name = "power_samples",
2348 	}, {
2349 		.reg = PMBUS_VIRT_TEMP_SAMPLES,
2350 		.name = "temp_samples",
2351 	}
2352 };
2353 
2354 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2355 
pmbus_show_samples(struct device * dev,struct device_attribute * devattr,char * buf)2356 static ssize_t pmbus_show_samples(struct device *dev,
2357 				  struct device_attribute *devattr, char *buf)
2358 {
2359 	int val;
2360 	struct i2c_client *client = to_i2c_client(dev->parent);
2361 	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2362 	struct pmbus_data *data = i2c_get_clientdata(client);
2363 
2364 	mutex_lock(&data->update_lock);
2365 	val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2366 	mutex_unlock(&data->update_lock);
2367 	if (val < 0)
2368 		return val;
2369 
2370 	return sysfs_emit(buf, "%d\n", val);
2371 }
2372 
pmbus_set_samples(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)2373 static ssize_t pmbus_set_samples(struct device *dev,
2374 				 struct device_attribute *devattr,
2375 				 const char *buf, size_t count)
2376 {
2377 	int ret;
2378 	long val;
2379 	struct i2c_client *client = to_i2c_client(dev->parent);
2380 	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2381 	struct pmbus_data *data = i2c_get_clientdata(client);
2382 
2383 	if (kstrtol(buf, 0, &val) < 0)
2384 		return -EINVAL;
2385 
2386 	mutex_lock(&data->update_lock);
2387 	ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2388 	mutex_unlock(&data->update_lock);
2389 
2390 	return ret ? : count;
2391 }
2392 
pmbus_add_samples_attr(struct pmbus_data * data,int page,struct pmbus_samples_attr * attr)2393 static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2394 				  struct pmbus_samples_attr *attr)
2395 {
2396 	struct pmbus_samples_reg *reg;
2397 
2398 	reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2399 	if (!reg)
2400 		return -ENOMEM;
2401 
2402 	reg->attr = attr;
2403 	reg->page = page;
2404 
2405 	pmbus_dev_attr_init(&reg->dev_attr, attr->name, 0644,
2406 			    pmbus_show_samples, pmbus_set_samples);
2407 
2408 	return pmbus_add_attribute(data, &reg->dev_attr.attr);
2409 }
2410 
pmbus_add_samples_attributes(struct i2c_client * client,struct pmbus_data * data)2411 static int pmbus_add_samples_attributes(struct i2c_client *client,
2412 					struct pmbus_data *data)
2413 {
2414 	const struct pmbus_driver_info *info = data->info;
2415 	int s;
2416 
2417 	if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2418 		return 0;
2419 
2420 	for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2421 		struct pmbus_samples_attr *attr;
2422 		int ret;
2423 
2424 		attr = &pmbus_samples_registers[s];
2425 		if (!pmbus_check_word_register(client, 0, attr->reg))
2426 			continue;
2427 
2428 		ret = pmbus_add_samples_attr(data, 0, attr);
2429 		if (ret)
2430 			return ret;
2431 	}
2432 
2433 	return 0;
2434 }
2435 
pmbus_find_attributes(struct i2c_client * client,struct pmbus_data * data)2436 static int pmbus_find_attributes(struct i2c_client *client,
2437 				 struct pmbus_data *data)
2438 {
2439 	int ret;
2440 
2441 	/* Voltage sensors */
2442 	ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2443 				     ARRAY_SIZE(voltage_attributes));
2444 	if (ret)
2445 		return ret;
2446 
2447 	/* Current sensors */
2448 	ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2449 				     ARRAY_SIZE(current_attributes));
2450 	if (ret)
2451 		return ret;
2452 
2453 	/* Power sensors */
2454 	ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2455 				     ARRAY_SIZE(power_attributes));
2456 	if (ret)
2457 		return ret;
2458 
2459 	/* Temperature sensors */
2460 	ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2461 				     ARRAY_SIZE(temp_attributes));
2462 	if (ret)
2463 		return ret;
2464 
2465 	/* Fans */
2466 	ret = pmbus_add_fan_attributes(client, data);
2467 	if (ret)
2468 		return ret;
2469 
2470 	ret = pmbus_add_samples_attributes(client, data);
2471 	return ret;
2472 }
2473 
2474 /*
2475  * The pmbus_class_attr_map structure maps one sensor class to
2476  * it's corresponding sensor attributes array.
2477  */
2478 struct pmbus_class_attr_map {
2479 	enum pmbus_sensor_classes class;
2480 	int nattr;
2481 	const struct pmbus_sensor_attr *attr;
2482 };
2483 
2484 static const struct pmbus_class_attr_map class_attr_map[] = {
2485 	{
2486 		.class = PSC_VOLTAGE_IN,
2487 		.attr = voltage_attributes,
2488 		.nattr = ARRAY_SIZE(voltage_attributes),
2489 	}, {
2490 		.class = PSC_VOLTAGE_OUT,
2491 		.attr = voltage_attributes,
2492 		.nattr = ARRAY_SIZE(voltage_attributes),
2493 	}, {
2494 		.class = PSC_CURRENT_IN,
2495 		.attr = current_attributes,
2496 		.nattr = ARRAY_SIZE(current_attributes),
2497 	}, {
2498 		.class = PSC_CURRENT_OUT,
2499 		.attr = current_attributes,
2500 		.nattr = ARRAY_SIZE(current_attributes),
2501 	}, {
2502 		.class = PSC_POWER,
2503 		.attr = power_attributes,
2504 		.nattr = ARRAY_SIZE(power_attributes),
2505 	}, {
2506 		.class = PSC_TEMPERATURE,
2507 		.attr = temp_attributes,
2508 		.nattr = ARRAY_SIZE(temp_attributes),
2509 	}
2510 };
2511 
2512 /*
2513  * Read the coefficients for direct mode.
2514  */
pmbus_read_coefficients(struct i2c_client * client,struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)2515 static int pmbus_read_coefficients(struct i2c_client *client,
2516 				   struct pmbus_driver_info *info,
2517 				   const struct pmbus_sensor_attr *attr)
2518 {
2519 	int rv;
2520 	union i2c_smbus_data data;
2521 	enum pmbus_sensor_classes class = attr->class;
2522 	s8 R;
2523 	s16 m, b;
2524 
2525 	data.block[0] = 2;
2526 	data.block[1] = attr->reg;
2527 	data.block[2] = 0x01;
2528 
2529 	pmbus_wait(client);
2530 	rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2531 			    I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS,
2532 			    I2C_SMBUS_BLOCK_PROC_CALL, &data);
2533 	pmbus_update_ts(client, true);
2534 
2535 	if (rv < 0)
2536 		return rv;
2537 
2538 	if (data.block[0] != 5)
2539 		return -EIO;
2540 
2541 	m = data.block[1] | (data.block[2] << 8);
2542 	b = data.block[3] | (data.block[4] << 8);
2543 	R = data.block[5];
2544 	info->m[class] = m;
2545 	info->b[class] = b;
2546 	info->R[class] = R;
2547 
2548 	return rv;
2549 }
2550 
pmbus_init_coefficients(struct i2c_client * client,struct pmbus_driver_info * info)2551 static int pmbus_init_coefficients(struct i2c_client *client,
2552 				   struct pmbus_driver_info *info)
2553 {
2554 	int i, n, ret = -EINVAL;
2555 	const struct pmbus_class_attr_map *map;
2556 	const struct pmbus_sensor_attr *attr;
2557 
2558 	for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
2559 		map = &class_attr_map[i];
2560 		if (info->format[map->class] != direct)
2561 			continue;
2562 		for (n = 0; n < map->nattr; n++) {
2563 			attr = &map->attr[n];
2564 			if (map->class != attr->class)
2565 				continue;
2566 			ret = pmbus_read_coefficients(client, info, attr);
2567 			if (ret >= 0)
2568 				break;
2569 		}
2570 		if (ret < 0) {
2571 			dev_err(&client->dev,
2572 				"No coefficients found for sensor class %d\n",
2573 				map->class);
2574 			return -EINVAL;
2575 		}
2576 	}
2577 
2578 	return 0;
2579 }
2580 
2581 /*
2582  * Identify chip parameters.
2583  * This function is called for all chips.
2584  */
pmbus_identify_common(struct i2c_client * client,struct pmbus_data * data,int page)2585 static int pmbus_identify_common(struct i2c_client *client,
2586 				 struct pmbus_data *data, int page)
2587 {
2588 	int vout_mode = -1;
2589 
2590 	if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2591 		vout_mode = _pmbus_read_byte_data(client, page,
2592 						  PMBUS_VOUT_MODE);
2593 	if (vout_mode >= 0 && vout_mode != 0xff) {
2594 		/*
2595 		 * Not all chips support the VOUT_MODE command,
2596 		 * so a failure to read it is not an error.
2597 		 */
2598 		switch (vout_mode >> 5) {
2599 		case 0:	/* linear mode      */
2600 			if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2601 				return -ENODEV;
2602 
2603 			data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
2604 			break;
2605 		case 1: /* VID mode         */
2606 			if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2607 				return -ENODEV;
2608 			break;
2609 		case 2:	/* direct mode      */
2610 			if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2611 				return -ENODEV;
2612 			break;
2613 		case 3:	/* ieee 754 half precision */
2614 			if (data->info->format[PSC_VOLTAGE_OUT] != ieee754)
2615 				return -ENODEV;
2616 			break;
2617 		default:
2618 			return -ENODEV;
2619 		}
2620 	}
2621 
2622 	return 0;
2623 }
2624 
pmbus_read_status_byte(struct i2c_client * client,int page)2625 static int pmbus_read_status_byte(struct i2c_client *client, int page)
2626 {
2627 	return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2628 }
2629 
pmbus_read_status_word(struct i2c_client * client,int page)2630 static int pmbus_read_status_word(struct i2c_client *client, int page)
2631 {
2632 	return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2633 }
2634 
2635 /* PEC attribute support */
2636 
pec_show(struct device * dev,struct device_attribute * dummy,char * buf)2637 static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
2638 			char *buf)
2639 {
2640 	struct i2c_client *client = to_i2c_client(dev);
2641 
2642 	return sysfs_emit(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
2643 }
2644 
pec_store(struct device * dev,struct device_attribute * dummy,const char * buf,size_t count)2645 static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
2646 			 const char *buf, size_t count)
2647 {
2648 	struct i2c_client *client = to_i2c_client(dev);
2649 	bool enable;
2650 	int err;
2651 
2652 	err = kstrtobool(buf, &enable);
2653 	if (err < 0)
2654 		return err;
2655 
2656 	if (enable)
2657 		client->flags |= I2C_CLIENT_PEC;
2658 	else
2659 		client->flags &= ~I2C_CLIENT_PEC;
2660 
2661 	return count;
2662 }
2663 
2664 static DEVICE_ATTR_RW(pec);
2665 
pmbus_remove_pec(void * dev)2666 static void pmbus_remove_pec(void *dev)
2667 {
2668 	device_remove_file(dev, &dev_attr_pec);
2669 }
2670 
pmbus_init_wp(struct i2c_client * client,struct pmbus_data * data)2671 static void pmbus_init_wp(struct i2c_client *client, struct pmbus_data *data)
2672 {
2673 	int ret;
2674 
2675 	switch (wp) {
2676 	case 0:
2677 		_pmbus_write_byte_data(client, -1,
2678 				       PMBUS_WRITE_PROTECT, 0);
2679 		break;
2680 
2681 	case 1:
2682 		_pmbus_write_byte_data(client, -1,
2683 				       PMBUS_WRITE_PROTECT, PB_WP_VOUT);
2684 		break;
2685 
2686 	case 2:
2687 		_pmbus_write_byte_data(client, -1,
2688 				       PMBUS_WRITE_PROTECT, PB_WP_OP);
2689 		break;
2690 
2691 	case 3:
2692 		_pmbus_write_byte_data(client, -1,
2693 				       PMBUS_WRITE_PROTECT, PB_WP_ALL);
2694 		break;
2695 
2696 	default:
2697 		/* Ignore the other values */
2698 		break;
2699 	}
2700 
2701 	ret = _pmbus_read_byte_data(client, -1, PMBUS_WRITE_PROTECT);
2702 	if (ret < 0)
2703 		return;
2704 
2705 	switch (ret & PB_WP_ANY) {
2706 	case PB_WP_ALL:
2707 		data->flags |= PMBUS_OP_PROTECTED;
2708 		fallthrough;
2709 	case PB_WP_OP:
2710 		data->flags |= PMBUS_VOUT_PROTECTED;
2711 		fallthrough;
2712 	case PB_WP_VOUT:
2713 		data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2714 		break;
2715 
2716 	default:
2717 		break;
2718 	}
2719 }
2720 
pmbus_init_common(struct i2c_client * client,struct pmbus_data * data,struct pmbus_driver_info * info)2721 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2722 			     struct pmbus_driver_info *info)
2723 {
2724 	struct device *dev = &client->dev;
2725 	int page, ret;
2726 
2727 	/*
2728 	 * Figure out if PEC is enabled before accessing any other register.
2729 	 * Make sure PEC is disabled, will be enabled later if needed.
2730 	 */
2731 	client->flags &= ~I2C_CLIENT_PEC;
2732 
2733 	/* Enable PEC if the controller and bus supports it */
2734 	if (!(data->flags & PMBUS_NO_CAPABILITY)) {
2735 		pmbus_wait(client);
2736 		ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2737 		pmbus_update_ts(client, false);
2738 
2739 		if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
2740 			if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC))
2741 				client->flags |= I2C_CLIENT_PEC;
2742 		}
2743 	}
2744 
2745 	/*
2746 	 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2747 	 * to use PMBUS_STATUS_BYTE instead if that is the case.
2748 	 * Bail out if both registers are not supported.
2749 	 */
2750 	data->read_status = pmbus_read_status_word;
2751 	pmbus_wait(client);
2752 	ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2753 	pmbus_update_ts(client, false);
2754 
2755 	if (ret < 0 || ret == 0xffff) {
2756 		data->read_status = pmbus_read_status_byte;
2757 		pmbus_wait(client);
2758 		ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2759 		pmbus_update_ts(client, false);
2760 
2761 		if (ret < 0 || ret == 0xff) {
2762 			dev_err(dev, "PMBus status register not found\n");
2763 			return -ENODEV;
2764 		}
2765 	} else {
2766 		data->has_status_word = true;
2767 	}
2768 
2769 	/*
2770 	 * Check if the chip is write protected. If it is, we can not clear
2771 	 * faults, and we should not try it. Also, in that case, writes into
2772 	 * limit registers need to be disabled.
2773 	 */
2774 	if (!(data->flags & PMBUS_NO_WRITE_PROTECT))
2775 		pmbus_init_wp(client, data);
2776 
2777 	ret = i2c_smbus_read_byte_data(client, PMBUS_REVISION);
2778 	if (ret >= 0)
2779 		data->revision = ret;
2780 
2781 	if (data->info->pages)
2782 		pmbus_clear_faults(client);
2783 	else
2784 		pmbus_clear_fault_page(client, -1);
2785 
2786 	if (info->identify) {
2787 		ret = (*info->identify)(client, info);
2788 		if (ret < 0) {
2789 			dev_err(dev, "Chip identification failed\n");
2790 			return ret;
2791 		}
2792 	}
2793 
2794 	if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2795 		dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2796 		return -ENODEV;
2797 	}
2798 
2799 	for (page = 0; page < info->pages; page++) {
2800 		ret = pmbus_identify_common(client, data, page);
2801 		if (ret < 0) {
2802 			dev_err(dev, "Failed to identify chip capabilities\n");
2803 			return ret;
2804 		}
2805 	}
2806 
2807 	if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
2808 		if (!i2c_check_functionality(client->adapter,
2809 					     I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
2810 			return -ENODEV;
2811 
2812 		ret = pmbus_init_coefficients(client, info);
2813 		if (ret < 0)
2814 			return ret;
2815 	}
2816 
2817 	if (client->flags & I2C_CLIENT_PEC) {
2818 		/*
2819 		 * If I2C_CLIENT_PEC is set here, both the I2C adapter and the
2820 		 * chip support PEC. Add 'pec' attribute to client device to let
2821 		 * the user control it.
2822 		 */
2823 		ret = device_create_file(dev, &dev_attr_pec);
2824 		if (ret)
2825 			return ret;
2826 		ret = devm_add_action_or_reset(dev, pmbus_remove_pec, dev);
2827 		if (ret)
2828 			return ret;
2829 	}
2830 
2831 	return 0;
2832 }
2833 
2834 /* A PMBus status flag and the corresponding REGULATOR_ERROR_* and REGULATOR_EVENTS_* flag */
2835 struct pmbus_status_assoc {
2836 	int pflag, rflag, eflag;
2837 };
2838 
2839 /* PMBus->regulator bit mappings for a PMBus status register */
2840 struct pmbus_status_category {
2841 	int func;
2842 	int reg;
2843 	const struct pmbus_status_assoc *bits; /* zero-terminated */
2844 };
2845 
2846 static const struct pmbus_status_category __maybe_unused pmbus_status_flag_map[] = {
2847 	{
2848 		.func = PMBUS_HAVE_STATUS_VOUT,
2849 		.reg = PMBUS_STATUS_VOUT,
2850 		.bits = (const struct pmbus_status_assoc[]) {
2851 			{ PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN,
2852 			REGULATOR_EVENT_UNDER_VOLTAGE_WARN },
2853 			{ PB_VOLTAGE_UV_FAULT,   REGULATOR_ERROR_UNDER_VOLTAGE,
2854 			REGULATOR_EVENT_UNDER_VOLTAGE },
2855 			{ PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN,
2856 			REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2857 			{ PB_VOLTAGE_OV_FAULT,   REGULATOR_ERROR_REGULATION_OUT,
2858 			REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2859 			{ },
2860 		},
2861 	}, {
2862 		.func = PMBUS_HAVE_STATUS_IOUT,
2863 		.reg = PMBUS_STATUS_IOUT,
2864 		.bits = (const struct pmbus_status_assoc[]) {
2865 			{ PB_IOUT_OC_WARNING,   REGULATOR_ERROR_OVER_CURRENT_WARN,
2866 			REGULATOR_EVENT_OVER_CURRENT_WARN },
2867 			{ PB_IOUT_OC_FAULT,     REGULATOR_ERROR_OVER_CURRENT,
2868 			REGULATOR_EVENT_OVER_CURRENT },
2869 			{ PB_IOUT_OC_LV_FAULT,  REGULATOR_ERROR_OVER_CURRENT,
2870 			REGULATOR_EVENT_OVER_CURRENT },
2871 			{ },
2872 		},
2873 	}, {
2874 		.func = PMBUS_HAVE_STATUS_TEMP,
2875 		.reg = PMBUS_STATUS_TEMPERATURE,
2876 		.bits = (const struct pmbus_status_assoc[]) {
2877 			{ PB_TEMP_OT_WARNING,    REGULATOR_ERROR_OVER_TEMP_WARN,
2878 			REGULATOR_EVENT_OVER_TEMP_WARN },
2879 			{ PB_TEMP_OT_FAULT,      REGULATOR_ERROR_OVER_TEMP,
2880 			REGULATOR_EVENT_OVER_TEMP },
2881 			{ },
2882 		},
2883 	},
2884 };
2885 
_pmbus_is_enabled(struct i2c_client * client,u8 page)2886 static int _pmbus_is_enabled(struct i2c_client *client, u8 page)
2887 {
2888 	int ret;
2889 
2890 	ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2891 
2892 	if (ret < 0)
2893 		return ret;
2894 
2895 	return !!(ret & PB_OPERATION_CONTROL_ON);
2896 }
2897 
pmbus_is_enabled(struct i2c_client * client,u8 page)2898 static int __maybe_unused pmbus_is_enabled(struct i2c_client *client, u8 page)
2899 {
2900 	struct pmbus_data *data = i2c_get_clientdata(client);
2901 	int ret;
2902 
2903 	mutex_lock(&data->update_lock);
2904 	ret = _pmbus_is_enabled(client, page);
2905 	mutex_unlock(&data->update_lock);
2906 
2907 	return ret;
2908 }
2909 
2910 #define to_dev_attr(_dev_attr) \
2911 	container_of(_dev_attr, struct device_attribute, attr)
2912 
pmbus_notify(struct pmbus_data * data,int page,int reg,int flags)2913 static void pmbus_notify(struct pmbus_data *data, int page, int reg, int flags)
2914 {
2915 	int i;
2916 
2917 	for (i = 0; i < data->num_attributes; i++) {
2918 		struct device_attribute *da = to_dev_attr(data->group.attrs[i]);
2919 		struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
2920 		int index = attr->index;
2921 		u16 smask = pb_index_to_mask(index);
2922 		u8 spage = pb_index_to_page(index);
2923 		u16 sreg = pb_index_to_reg(index);
2924 
2925 		if (reg == sreg && page == spage && (smask & flags)) {
2926 			dev_dbg(data->dev, "sysfs notify: %s", da->attr.name);
2927 			sysfs_notify(&data->dev->kobj, NULL, da->attr.name);
2928 			kobject_uevent(&data->dev->kobj, KOBJ_CHANGE);
2929 			flags &= ~smask;
2930 		}
2931 
2932 		if (!flags)
2933 			break;
2934 	}
2935 }
2936 
_pmbus_get_flags(struct pmbus_data * data,u8 page,unsigned int * flags,unsigned int * event,bool notify)2937 static int _pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2938 			   unsigned int *event, bool notify)
2939 {
2940 	int i, status;
2941 	const struct pmbus_status_category *cat;
2942 	const struct pmbus_status_assoc *bit;
2943 	struct device *dev = data->dev;
2944 	struct i2c_client *client = to_i2c_client(dev);
2945 	int func = data->info->func[page];
2946 
2947 	*flags = 0;
2948 	*event = 0;
2949 
2950 	for (i = 0; i < ARRAY_SIZE(pmbus_status_flag_map); i++) {
2951 		cat = &pmbus_status_flag_map[i];
2952 		if (!(func & cat->func))
2953 			continue;
2954 
2955 		status = _pmbus_read_byte_data(client, page, cat->reg);
2956 		if (status < 0)
2957 			return status;
2958 
2959 		for (bit = cat->bits; bit->pflag; bit++)
2960 			if (status & bit->pflag) {
2961 				*flags |= bit->rflag;
2962 				*event |= bit->eflag;
2963 			}
2964 
2965 		if (notify && status)
2966 			pmbus_notify(data, page, cat->reg, status);
2967 
2968 	}
2969 
2970 	/*
2971 	 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_*
2972 	 * bits.  Some of the other bits are tempting (especially for cases
2973 	 * where we don't have the relevant PMBUS_HAVE_STATUS_*
2974 	 * functionality), but there's an unfortunate ambiguity in that
2975 	 * they're defined as indicating a fault *or* a warning, so we can't
2976 	 * easily determine whether to report REGULATOR_ERROR_<foo> or
2977 	 * REGULATOR_ERROR_<foo>_WARN.
2978 	 */
2979 	status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2980 	if (status < 0)
2981 		return status;
2982 
2983 	if (_pmbus_is_enabled(client, page)) {
2984 		if (status & PB_STATUS_OFF) {
2985 			*flags |= REGULATOR_ERROR_FAIL;
2986 			*event |= REGULATOR_EVENT_FAIL;
2987 		}
2988 
2989 		if (status & PB_STATUS_POWER_GOOD_N) {
2990 			*flags |= REGULATOR_ERROR_REGULATION_OUT;
2991 			*event |= REGULATOR_EVENT_REGULATION_OUT;
2992 		}
2993 	}
2994 	/*
2995 	 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are
2996 	 * defined strictly as fault indicators (not warnings).
2997 	 */
2998 	if (status & PB_STATUS_IOUT_OC) {
2999 		*flags |= REGULATOR_ERROR_OVER_CURRENT;
3000 		*event |= REGULATOR_EVENT_OVER_CURRENT;
3001 	}
3002 	if (status & PB_STATUS_VOUT_OV) {
3003 		*flags |= REGULATOR_ERROR_REGULATION_OUT;
3004 		*event |= REGULATOR_EVENT_FAIL;
3005 	}
3006 
3007 	/*
3008 	 * If we haven't discovered any thermal faults or warnings via
3009 	 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as
3010 	 * a (conservative) best-effort interpretation.
3011 	 */
3012 	if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) &&
3013 	    (status & PB_STATUS_TEMPERATURE)) {
3014 		*flags |= REGULATOR_ERROR_OVER_TEMP_WARN;
3015 		*event |= REGULATOR_EVENT_OVER_TEMP_WARN;
3016 	}
3017 
3018 
3019 	return 0;
3020 }
3021 
pmbus_get_flags(struct pmbus_data * data,u8 page,unsigned int * flags,unsigned int * event,bool notify)3022 static int __maybe_unused pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
3023 					  unsigned int *event, bool notify)
3024 {
3025 	int ret;
3026 
3027 	mutex_lock(&data->update_lock);
3028 	ret = _pmbus_get_flags(data, page, flags, event, notify);
3029 	mutex_unlock(&data->update_lock);
3030 
3031 	return ret;
3032 }
3033 
3034 #if IS_ENABLED(CONFIG_REGULATOR)
pmbus_regulator_is_enabled(struct regulator_dev * rdev)3035 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
3036 {
3037 	struct device *dev = rdev_get_dev(rdev);
3038 	struct i2c_client *client = to_i2c_client(dev->parent);
3039 
3040 	return pmbus_is_enabled(client, rdev_get_id(rdev));
3041 }
3042 
_pmbus_regulator_on_off(struct regulator_dev * rdev,bool enable)3043 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
3044 {
3045 	struct device *dev = rdev_get_dev(rdev);
3046 	struct i2c_client *client = to_i2c_client(dev->parent);
3047 	struct pmbus_data *data = i2c_get_clientdata(client);
3048 	u8 page = rdev_get_id(rdev);
3049 	int ret;
3050 
3051 	mutex_lock(&data->update_lock);
3052 	ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION,
3053 				     PB_OPERATION_CONTROL_ON,
3054 				     enable ? PB_OPERATION_CONTROL_ON : 0);
3055 	mutex_unlock(&data->update_lock);
3056 
3057 	return ret;
3058 }
3059 
pmbus_regulator_enable(struct regulator_dev * rdev)3060 static int pmbus_regulator_enable(struct regulator_dev *rdev)
3061 {
3062 	return _pmbus_regulator_on_off(rdev, 1);
3063 }
3064 
pmbus_regulator_disable(struct regulator_dev * rdev)3065 static int pmbus_regulator_disable(struct regulator_dev *rdev)
3066 {
3067 	return _pmbus_regulator_on_off(rdev, 0);
3068 }
3069 
pmbus_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)3070 static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags)
3071 {
3072 	struct device *dev = rdev_get_dev(rdev);
3073 	struct i2c_client *client = to_i2c_client(dev->parent);
3074 	struct pmbus_data *data = i2c_get_clientdata(client);
3075 	int event;
3076 
3077 	return pmbus_get_flags(data, rdev_get_id(rdev), flags, &event, false);
3078 }
3079 
pmbus_regulator_get_status(struct regulator_dev * rdev)3080 static int pmbus_regulator_get_status(struct regulator_dev *rdev)
3081 {
3082 	struct device *dev = rdev_get_dev(rdev);
3083 	struct i2c_client *client = to_i2c_client(dev->parent);
3084 	struct pmbus_data *data = i2c_get_clientdata(client);
3085 	u8 page = rdev_get_id(rdev);
3086 	int status, ret;
3087 	int event;
3088 
3089 	mutex_lock(&data->update_lock);
3090 	status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
3091 	if (status < 0) {
3092 		ret = status;
3093 		goto unlock;
3094 	}
3095 
3096 	if (status & PB_STATUS_OFF) {
3097 		ret = REGULATOR_STATUS_OFF;
3098 		goto unlock;
3099 	}
3100 
3101 	/* If regulator is ON & reports power good then return ON */
3102 	if (!(status & PB_STATUS_POWER_GOOD_N)) {
3103 		ret = REGULATOR_STATUS_ON;
3104 		goto unlock;
3105 	}
3106 
3107 	ret = _pmbus_get_flags(data, rdev_get_id(rdev), &status, &event, false);
3108 	if (ret)
3109 		goto unlock;
3110 
3111 	if (status & (REGULATOR_ERROR_UNDER_VOLTAGE | REGULATOR_ERROR_OVER_CURRENT |
3112 	   REGULATOR_ERROR_REGULATION_OUT | REGULATOR_ERROR_FAIL | REGULATOR_ERROR_OVER_TEMP)) {
3113 		ret = REGULATOR_STATUS_ERROR;
3114 		goto unlock;
3115 	}
3116 
3117 	ret = REGULATOR_STATUS_UNDEFINED;
3118 
3119 unlock:
3120 	mutex_unlock(&data->update_lock);
3121 	return ret;
3122 }
3123 
pmbus_regulator_get_low_margin(struct i2c_client * client,int page)3124 static int pmbus_regulator_get_low_margin(struct i2c_client *client, int page)
3125 {
3126 	struct pmbus_data *data = i2c_get_clientdata(client);
3127 	struct pmbus_sensor s = {
3128 		.page = page,
3129 		.class = PSC_VOLTAGE_OUT,
3130 		.convert = true,
3131 		.data = -1,
3132 	};
3133 
3134 	if (data->vout_low[page] < 0) {
3135 		if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MIN))
3136 			s.data = _pmbus_read_word_data(client, page, 0xff,
3137 						       PMBUS_MFR_VOUT_MIN);
3138 		if (s.data < 0) {
3139 			s.data = _pmbus_read_word_data(client, page, 0xff,
3140 						       PMBUS_VOUT_MARGIN_LOW);
3141 			if (s.data < 0)
3142 				return s.data;
3143 		}
3144 		data->vout_low[page] = pmbus_reg2data(data, &s);
3145 	}
3146 
3147 	return data->vout_low[page];
3148 }
3149 
pmbus_regulator_get_high_margin(struct i2c_client * client,int page)3150 static int pmbus_regulator_get_high_margin(struct i2c_client *client, int page)
3151 {
3152 	struct pmbus_data *data = i2c_get_clientdata(client);
3153 	struct pmbus_sensor s = {
3154 		.page = page,
3155 		.class = PSC_VOLTAGE_OUT,
3156 		.convert = true,
3157 		.data = -1,
3158 	};
3159 
3160 	if (data->vout_high[page] < 0) {
3161 		if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MAX))
3162 			s.data = _pmbus_read_word_data(client, page, 0xff,
3163 						       PMBUS_MFR_VOUT_MAX);
3164 		if (s.data < 0) {
3165 			s.data = _pmbus_read_word_data(client, page, 0xff,
3166 						       PMBUS_VOUT_MARGIN_HIGH);
3167 			if (s.data < 0)
3168 				return s.data;
3169 		}
3170 		data->vout_high[page] = pmbus_reg2data(data, &s);
3171 	}
3172 
3173 	return data->vout_high[page];
3174 }
3175 
pmbus_regulator_get_voltage(struct regulator_dev * rdev)3176 static int pmbus_regulator_get_voltage(struct regulator_dev *rdev)
3177 {
3178 	struct device *dev = rdev_get_dev(rdev);
3179 	struct i2c_client *client = to_i2c_client(dev->parent);
3180 	struct pmbus_data *data = i2c_get_clientdata(client);
3181 	struct pmbus_sensor s = {
3182 		.page = rdev_get_id(rdev),
3183 		.class = PSC_VOLTAGE_OUT,
3184 		.convert = true,
3185 	};
3186 
3187 	s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT);
3188 	if (s.data < 0)
3189 		return s.data;
3190 
3191 	return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */
3192 }
3193 
pmbus_regulator_set_voltage(struct regulator_dev * rdev,int min_uv,int max_uv,unsigned int * selector)3194 static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv,
3195 				       int max_uv, unsigned int *selector)
3196 {
3197 	struct device *dev = rdev_get_dev(rdev);
3198 	struct i2c_client *client = to_i2c_client(dev->parent);
3199 	struct pmbus_data *data = i2c_get_clientdata(client);
3200 	struct pmbus_sensor s = {
3201 		.page = rdev_get_id(rdev),
3202 		.class = PSC_VOLTAGE_OUT,
3203 		.convert = true,
3204 		.data = -1,
3205 	};
3206 	int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */
3207 	int low, high;
3208 
3209 	*selector = 0;
3210 
3211 	low = pmbus_regulator_get_low_margin(client, s.page);
3212 	if (low < 0)
3213 		return low;
3214 
3215 	high = pmbus_regulator_get_high_margin(client, s.page);
3216 	if (high < 0)
3217 		return high;
3218 
3219 	/* Make sure we are within margins */
3220 	if (low > val)
3221 		val = low;
3222 	if (high < val)
3223 		val = high;
3224 
3225 	val = pmbus_data2reg(data, &s, val);
3226 
3227 	return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val);
3228 }
3229 
pmbus_regulator_list_voltage(struct regulator_dev * rdev,unsigned int selector)3230 static int pmbus_regulator_list_voltage(struct regulator_dev *rdev,
3231 					 unsigned int selector)
3232 {
3233 	struct device *dev = rdev_get_dev(rdev);
3234 	struct i2c_client *client = to_i2c_client(dev->parent);
3235 	struct pmbus_data *data = i2c_get_clientdata(client);
3236 	int val, low, high;
3237 
3238 	if (data->flags & PMBUS_VOUT_PROTECTED)
3239 		return 0;
3240 
3241 	if (selector >= rdev->desc->n_voltages ||
3242 	    selector < rdev->desc->linear_min_sel)
3243 		return -EINVAL;
3244 
3245 	selector -= rdev->desc->linear_min_sel;
3246 	val = DIV_ROUND_CLOSEST(rdev->desc->min_uV +
3247 				(rdev->desc->uV_step * selector), 1000); /* convert to mV */
3248 
3249 	low = pmbus_regulator_get_low_margin(client, rdev_get_id(rdev));
3250 	if (low < 0)
3251 		return low;
3252 
3253 	high = pmbus_regulator_get_high_margin(client, rdev_get_id(rdev));
3254 	if (high < 0)
3255 		return high;
3256 
3257 	if (val >= low && val <= high)
3258 		return val * 1000; /* unit is uV */
3259 
3260 	return 0;
3261 }
3262 
3263 const struct regulator_ops pmbus_regulator_ops = {
3264 	.enable = pmbus_regulator_enable,
3265 	.disable = pmbus_regulator_disable,
3266 	.is_enabled = pmbus_regulator_is_enabled,
3267 	.get_error_flags = pmbus_regulator_get_error_flags,
3268 	.get_status = pmbus_regulator_get_status,
3269 	.get_voltage = pmbus_regulator_get_voltage,
3270 	.set_voltage = pmbus_regulator_set_voltage,
3271 	.list_voltage = pmbus_regulator_list_voltage,
3272 };
3273 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, "PMBUS");
3274 
pmbus_regulator_init_cb(struct regulator_dev * rdev,struct regulator_config * config)3275 int pmbus_regulator_init_cb(struct regulator_dev *rdev,
3276 			    struct regulator_config *config)
3277 {
3278 	struct pmbus_data *data = config->driver_data;
3279 	struct regulation_constraints *constraints = rdev->constraints;
3280 
3281 	if (data->flags & PMBUS_OP_PROTECTED)
3282 		constraints->valid_ops_mask &= ~REGULATOR_CHANGE_STATUS;
3283 
3284 	if (data->flags & PMBUS_VOUT_PROTECTED)
3285 		constraints->valid_ops_mask &= ~REGULATOR_CHANGE_VOLTAGE;
3286 
3287 	return 0;
3288 }
3289 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_init_cb, "PMBUS");
3290 
pmbus_regulator_register(struct pmbus_data * data)3291 static int pmbus_regulator_register(struct pmbus_data *data)
3292 {
3293 	struct device *dev = data->dev;
3294 	const struct pmbus_driver_info *info = data->info;
3295 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3296 	int i;
3297 
3298 	data->rdevs = devm_kzalloc(dev, sizeof(struct regulator_dev *) * info->num_regulators,
3299 				   GFP_KERNEL);
3300 	if (!data->rdevs)
3301 		return -ENOMEM;
3302 
3303 	for (i = 0; i < info->num_regulators; i++) {
3304 		struct regulator_config config = { };
3305 
3306 		config.dev = dev;
3307 		config.driver_data = data;
3308 
3309 		if (pdata && pdata->reg_init_data)
3310 			config.init_data = &pdata->reg_init_data[i];
3311 
3312 		data->rdevs[i] = devm_regulator_register(dev, &info->reg_desc[i],
3313 							 &config);
3314 		if (IS_ERR(data->rdevs[i]))
3315 			return dev_err_probe(dev, PTR_ERR(data->rdevs[i]),
3316 					     "Failed to register %s regulator\n",
3317 					     info->reg_desc[i].name);
3318 	}
3319 
3320 	return 0;
3321 }
3322 
pmbus_regulator_notify(struct pmbus_data * data,int page,int event)3323 static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3324 {
3325 		int j;
3326 
3327 		for (j = 0; j < data->info->num_regulators; j++) {
3328 			if (page == rdev_get_id(data->rdevs[j])) {
3329 				regulator_notifier_call_chain(data->rdevs[j], event, NULL);
3330 				break;
3331 			}
3332 		}
3333 		return 0;
3334 }
3335 #else
pmbus_regulator_register(struct pmbus_data * data)3336 static int pmbus_regulator_register(struct pmbus_data *data)
3337 {
3338 	return 0;
3339 }
3340 
pmbus_regulator_notify(struct pmbus_data * data,int page,int event)3341 static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3342 {
3343 		return 0;
3344 }
3345 #endif
3346 
pmbus_write_smbalert_mask(struct i2c_client * client,u8 page,u8 reg,u8 val)3347 static int pmbus_write_smbalert_mask(struct i2c_client *client, u8 page, u8 reg, u8 val)
3348 {
3349 	int ret;
3350 
3351 	ret = _pmbus_write_word_data(client, page, PMBUS_SMBALERT_MASK, reg | (val << 8));
3352 
3353 	/*
3354 	 * Clear fault systematically in case writing PMBUS_SMBALERT_MASK
3355 	 * is not supported by the chip.
3356 	 */
3357 	pmbus_clear_fault_page(client, page);
3358 
3359 	return ret;
3360 }
3361 
pmbus_fault_handler(int irq,void * pdata)3362 static irqreturn_t pmbus_fault_handler(int irq, void *pdata)
3363 {
3364 	struct pmbus_data *data = pdata;
3365 	struct i2c_client *client = to_i2c_client(data->dev);
3366 
3367 	int i, status, event;
3368 	mutex_lock(&data->update_lock);
3369 	for (i = 0; i < data->info->pages; i++) {
3370 		_pmbus_get_flags(data, i, &status, &event, true);
3371 
3372 		if (event)
3373 			pmbus_regulator_notify(data, i, event);
3374 	}
3375 
3376 	pmbus_clear_faults(client);
3377 	mutex_unlock(&data->update_lock);
3378 
3379 	return IRQ_HANDLED;
3380 }
3381 
pmbus_irq_setup(struct i2c_client * client,struct pmbus_data * data)3382 static int pmbus_irq_setup(struct i2c_client *client, struct pmbus_data *data)
3383 {
3384 	struct device *dev = &client->dev;
3385 	const struct pmbus_status_category *cat;
3386 	const struct pmbus_status_assoc *bit;
3387 	int i, j, err, func;
3388 	u8 mask;
3389 
3390 	static const u8 misc_status[] = {PMBUS_STATUS_CML, PMBUS_STATUS_OTHER,
3391 					 PMBUS_STATUS_MFR_SPECIFIC, PMBUS_STATUS_FAN_12,
3392 					 PMBUS_STATUS_FAN_34};
3393 
3394 	if (!client->irq)
3395 		return 0;
3396 
3397 	for (i = 0; i < data->info->pages; i++) {
3398 		func = data->info->func[i];
3399 
3400 		for (j = 0; j < ARRAY_SIZE(pmbus_status_flag_map); j++) {
3401 			cat = &pmbus_status_flag_map[j];
3402 			if (!(func & cat->func))
3403 				continue;
3404 			mask = 0;
3405 			for (bit = cat->bits; bit->pflag; bit++)
3406 				mask |= bit->pflag;
3407 
3408 			err = pmbus_write_smbalert_mask(client, i, cat->reg, ~mask);
3409 			if (err)
3410 				dev_dbg_once(dev, "Failed to set smbalert for reg 0x%02x\n",
3411 					     cat->reg);
3412 		}
3413 
3414 		for (j = 0; j < ARRAY_SIZE(misc_status); j++)
3415 			pmbus_write_smbalert_mask(client, i, misc_status[j], 0xff);
3416 	}
3417 
3418 	/* Register notifiers */
3419 	err = devm_request_threaded_irq(dev, client->irq, NULL, pmbus_fault_handler,
3420 					IRQF_ONESHOT, "pmbus-irq", data);
3421 	if (err) {
3422 		dev_err(dev, "failed to request an irq %d\n", err);
3423 		return err;
3424 	}
3425 
3426 	return 0;
3427 }
3428 
3429 static struct dentry *pmbus_debugfs_dir;	/* pmbus debugfs directory */
3430 
3431 #if IS_ENABLED(CONFIG_DEBUG_FS)
pmbus_debugfs_get(void * data,u64 * val)3432 static int pmbus_debugfs_get(void *data, u64 *val)
3433 {
3434 	int rc;
3435 	struct pmbus_debugfs_entry *entry = data;
3436 	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3437 
3438 	rc = mutex_lock_interruptible(&pdata->update_lock);
3439 	if (rc)
3440 		return rc;
3441 	rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
3442 	mutex_unlock(&pdata->update_lock);
3443 	if (rc < 0)
3444 		return rc;
3445 
3446 	*val = rc;
3447 
3448 	return 0;
3449 }
3450 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
3451 			 "0x%02llx\n");
3452 
pmbus_debugfs_get_status(void * data,u64 * val)3453 static int pmbus_debugfs_get_status(void *data, u64 *val)
3454 {
3455 	int rc;
3456 	struct pmbus_debugfs_entry *entry = data;
3457 	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3458 
3459 	rc = mutex_lock_interruptible(&pdata->update_lock);
3460 	if (rc)
3461 		return rc;
3462 	rc = pdata->read_status(entry->client, entry->page);
3463 	mutex_unlock(&pdata->update_lock);
3464 	if (rc < 0)
3465 		return rc;
3466 
3467 	*val = rc;
3468 
3469 	return 0;
3470 }
3471 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
3472 			 NULL, "0x%04llx\n");
3473 
pmbus_debugfs_mfr_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)3474 static ssize_t pmbus_debugfs_mfr_read(struct file *file, char __user *buf,
3475 				       size_t count, loff_t *ppos)
3476 {
3477 	int rc;
3478 	struct pmbus_debugfs_entry *entry = file->private_data;
3479 	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3480 	char data[I2C_SMBUS_BLOCK_MAX + 2] = { 0 };
3481 
3482 	rc = mutex_lock_interruptible(&pdata->update_lock);
3483 	if (rc)
3484 		return rc;
3485 	rc = pmbus_read_block_data(entry->client, entry->page, entry->reg,
3486 				   data);
3487 	mutex_unlock(&pdata->update_lock);
3488 	if (rc < 0)
3489 		return rc;
3490 
3491 	/* Add newline at the end of a read data */
3492 	data[rc] = '\n';
3493 
3494 	/* Include newline into the length */
3495 	rc += 1;
3496 
3497 	return simple_read_from_buffer(buf, count, ppos, data, rc);
3498 }
3499 
3500 static const struct file_operations pmbus_debugfs_ops_mfr = {
3501 	.llseek = noop_llseek,
3502 	.read = pmbus_debugfs_mfr_read,
3503 	.write = NULL,
3504 	.open = simple_open,
3505 };
3506 
pmbus_remove_debugfs(void * data)3507 static void pmbus_remove_debugfs(void *data)
3508 {
3509 	struct dentry *entry = data;
3510 
3511 	debugfs_remove_recursive(entry);
3512 }
3513 
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)3514 static int pmbus_init_debugfs(struct i2c_client *client,
3515 			      struct pmbus_data *data)
3516 {
3517 	int i, idx = 0;
3518 	char name[PMBUS_NAME_SIZE];
3519 	struct pmbus_debugfs_entry *entries;
3520 
3521 	if (!pmbus_debugfs_dir)
3522 		return -ENODEV;
3523 
3524 	/*
3525 	 * Create the debugfs directory for this device. Use the hwmon device
3526 	 * name to avoid conflicts (hwmon numbers are globally unique).
3527 	 */
3528 	data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
3529 					   pmbus_debugfs_dir);
3530 	if (IS_ERR_OR_NULL(data->debugfs)) {
3531 		data->debugfs = NULL;
3532 		return -ENODEV;
3533 	}
3534 
3535 	/*
3536 	 * Allocate the max possible entries we need.
3537 	 * 7 entries device-specific
3538 	 * 10 entries page-specific
3539 	 */
3540 	entries = devm_kcalloc(data->dev,
3541 			       7 + data->info->pages * 10, sizeof(*entries),
3542 			       GFP_KERNEL);
3543 	if (!entries)
3544 		return -ENOMEM;
3545 
3546 	/*
3547 	 * Add device-specific entries.
3548 	 * Please note that the PMBUS standard allows all registers to be
3549 	 * page-specific.
3550 	 * To reduce the number of debugfs entries for devices with many pages
3551 	 * assume that values of the following registers are the same for all
3552 	 * pages and report values only for page 0.
3553 	 */
3554 	if (pmbus_check_byte_register(client, 0, PMBUS_REVISION)) {
3555 		entries[idx].client = client;
3556 		entries[idx].page = 0;
3557 		entries[idx].reg = PMBUS_REVISION;
3558 		debugfs_create_file("revision", 0444, data->debugfs,
3559 				    &entries[idx++],
3560 				    &pmbus_debugfs_ops);
3561 	}
3562 
3563 	if (pmbus_check_block_register(client, 0, PMBUS_MFR_ID)) {
3564 		entries[idx].client = client;
3565 		entries[idx].page = 0;
3566 		entries[idx].reg = PMBUS_MFR_ID;
3567 		debugfs_create_file("mfr_id", 0444, data->debugfs,
3568 				    &entries[idx++],
3569 				    &pmbus_debugfs_ops_mfr);
3570 	}
3571 
3572 	if (pmbus_check_block_register(client, 0, PMBUS_MFR_MODEL)) {
3573 		entries[idx].client = client;
3574 		entries[idx].page = 0;
3575 		entries[idx].reg = PMBUS_MFR_MODEL;
3576 		debugfs_create_file("mfr_model", 0444, data->debugfs,
3577 				    &entries[idx++],
3578 				    &pmbus_debugfs_ops_mfr);
3579 	}
3580 
3581 	if (pmbus_check_block_register(client, 0, PMBUS_MFR_REVISION)) {
3582 		entries[idx].client = client;
3583 		entries[idx].page = 0;
3584 		entries[idx].reg = PMBUS_MFR_REVISION;
3585 		debugfs_create_file("mfr_revision", 0444, data->debugfs,
3586 				    &entries[idx++],
3587 				    &pmbus_debugfs_ops_mfr);
3588 	}
3589 
3590 	if (pmbus_check_block_register(client, 0, PMBUS_MFR_LOCATION)) {
3591 		entries[idx].client = client;
3592 		entries[idx].page = 0;
3593 		entries[idx].reg = PMBUS_MFR_LOCATION;
3594 		debugfs_create_file("mfr_location", 0444, data->debugfs,
3595 				    &entries[idx++],
3596 				    &pmbus_debugfs_ops_mfr);
3597 	}
3598 
3599 	if (pmbus_check_block_register(client, 0, PMBUS_MFR_DATE)) {
3600 		entries[idx].client = client;
3601 		entries[idx].page = 0;
3602 		entries[idx].reg = PMBUS_MFR_DATE;
3603 		debugfs_create_file("mfr_date", 0444, data->debugfs,
3604 				    &entries[idx++],
3605 				    &pmbus_debugfs_ops_mfr);
3606 	}
3607 
3608 	if (pmbus_check_block_register(client, 0, PMBUS_MFR_SERIAL)) {
3609 		entries[idx].client = client;
3610 		entries[idx].page = 0;
3611 		entries[idx].reg = PMBUS_MFR_SERIAL;
3612 		debugfs_create_file("mfr_serial", 0444, data->debugfs,
3613 				    &entries[idx++],
3614 				    &pmbus_debugfs_ops_mfr);
3615 	}
3616 
3617 	/* Add page specific entries */
3618 	for (i = 0; i < data->info->pages; ++i) {
3619 		/* Check accessibility of status register if it's not page 0 */
3620 		if (!i || pmbus_check_status_register(client, i)) {
3621 			/* No need to set reg as we have special read op. */
3622 			entries[idx].client = client;
3623 			entries[idx].page = i;
3624 			scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
3625 			debugfs_create_file(name, 0444, data->debugfs,
3626 					    &entries[idx++],
3627 					    &pmbus_debugfs_ops_status);
3628 		}
3629 
3630 		if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
3631 			entries[idx].client = client;
3632 			entries[idx].page = i;
3633 			entries[idx].reg = PMBUS_STATUS_VOUT;
3634 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
3635 			debugfs_create_file(name, 0444, data->debugfs,
3636 					    &entries[idx++],
3637 					    &pmbus_debugfs_ops);
3638 		}
3639 
3640 		if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
3641 			entries[idx].client = client;
3642 			entries[idx].page = i;
3643 			entries[idx].reg = PMBUS_STATUS_IOUT;
3644 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
3645 			debugfs_create_file(name, 0444, data->debugfs,
3646 					    &entries[idx++],
3647 					    &pmbus_debugfs_ops);
3648 		}
3649 
3650 		if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
3651 			entries[idx].client = client;
3652 			entries[idx].page = i;
3653 			entries[idx].reg = PMBUS_STATUS_INPUT;
3654 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
3655 			debugfs_create_file(name, 0444, data->debugfs,
3656 					    &entries[idx++],
3657 					    &pmbus_debugfs_ops);
3658 		}
3659 
3660 		if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
3661 			entries[idx].client = client;
3662 			entries[idx].page = i;
3663 			entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
3664 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
3665 			debugfs_create_file(name, 0444, data->debugfs,
3666 					    &entries[idx++],
3667 					    &pmbus_debugfs_ops);
3668 		}
3669 
3670 		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
3671 			entries[idx].client = client;
3672 			entries[idx].page = i;
3673 			entries[idx].reg = PMBUS_STATUS_CML;
3674 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
3675 			debugfs_create_file(name, 0444, data->debugfs,
3676 					    &entries[idx++],
3677 					    &pmbus_debugfs_ops);
3678 		}
3679 
3680 		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
3681 			entries[idx].client = client;
3682 			entries[idx].page = i;
3683 			entries[idx].reg = PMBUS_STATUS_OTHER;
3684 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
3685 			debugfs_create_file(name, 0444, data->debugfs,
3686 					    &entries[idx++],
3687 					    &pmbus_debugfs_ops);
3688 		}
3689 
3690 		if (pmbus_check_byte_register(client, i,
3691 					      PMBUS_STATUS_MFR_SPECIFIC)) {
3692 			entries[idx].client = client;
3693 			entries[idx].page = i;
3694 			entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
3695 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
3696 			debugfs_create_file(name, 0444, data->debugfs,
3697 					    &entries[idx++],
3698 					    &pmbus_debugfs_ops);
3699 		}
3700 
3701 		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
3702 			entries[idx].client = client;
3703 			entries[idx].page = i;
3704 			entries[idx].reg = PMBUS_STATUS_FAN_12;
3705 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
3706 			debugfs_create_file(name, 0444, data->debugfs,
3707 					    &entries[idx++],
3708 					    &pmbus_debugfs_ops);
3709 		}
3710 
3711 		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
3712 			entries[idx].client = client;
3713 			entries[idx].page = i;
3714 			entries[idx].reg = PMBUS_STATUS_FAN_34;
3715 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
3716 			debugfs_create_file(name, 0444, data->debugfs,
3717 					    &entries[idx++],
3718 					    &pmbus_debugfs_ops);
3719 		}
3720 	}
3721 
3722 	return devm_add_action_or_reset(data->dev,
3723 					pmbus_remove_debugfs, data->debugfs);
3724 }
3725 #else
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)3726 static int pmbus_init_debugfs(struct i2c_client *client,
3727 			      struct pmbus_data *data)
3728 {
3729 	return 0;
3730 }
3731 #endif	/* IS_ENABLED(CONFIG_DEBUG_FS) */
3732 
pmbus_do_probe(struct i2c_client * client,struct pmbus_driver_info * info)3733 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
3734 {
3735 	struct device *dev = &client->dev;
3736 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3737 	struct pmbus_data *data;
3738 	size_t groups_num = 0;
3739 	int ret;
3740 	int i;
3741 	char *name;
3742 
3743 	if (!info)
3744 		return -ENODEV;
3745 
3746 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
3747 				     | I2C_FUNC_SMBUS_BYTE_DATA
3748 				     | I2C_FUNC_SMBUS_WORD_DATA))
3749 		return -ENODEV;
3750 
3751 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
3752 	if (!data)
3753 		return -ENOMEM;
3754 
3755 	if (info->groups)
3756 		while (info->groups[groups_num])
3757 			groups_num++;
3758 
3759 	data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
3760 				    GFP_KERNEL);
3761 	if (!data->groups)
3762 		return -ENOMEM;
3763 
3764 	i2c_set_clientdata(client, data);
3765 	mutex_init(&data->update_lock);
3766 	data->dev = dev;
3767 
3768 	if (pdata)
3769 		data->flags = pdata->flags;
3770 	data->info = info;
3771 	data->currpage = -1;
3772 	data->currphase = -1;
3773 
3774 	for (i = 0; i < ARRAY_SIZE(data->vout_low); i++) {
3775 		data->vout_low[i] = -1;
3776 		data->vout_high[i] = -1;
3777 	}
3778 
3779 	ret = pmbus_init_common(client, data, info);
3780 	if (ret < 0)
3781 		return ret;
3782 
3783 	ret = pmbus_find_attributes(client, data);
3784 	if (ret)
3785 		return ret;
3786 
3787 	/*
3788 	 * If there are no attributes, something is wrong.
3789 	 * Bail out instead of trying to register nothing.
3790 	 */
3791 	if (!data->num_attributes) {
3792 		dev_err(dev, "No attributes found\n");
3793 		return -ENODEV;
3794 	}
3795 
3796 	name = devm_kstrdup(dev, client->name, GFP_KERNEL);
3797 	if (!name)
3798 		return -ENOMEM;
3799 	strreplace(name, '-', '_');
3800 
3801 	data->groups[0] = &data->group;
3802 	memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
3803 	data->hwmon_dev = devm_hwmon_device_register_with_groups(dev,
3804 					name, data, data->groups);
3805 	if (IS_ERR(data->hwmon_dev)) {
3806 		dev_err(dev, "Failed to register hwmon device\n");
3807 		return PTR_ERR(data->hwmon_dev);
3808 	}
3809 
3810 	ret = pmbus_regulator_register(data);
3811 	if (ret)
3812 		return ret;
3813 
3814 	ret = pmbus_irq_setup(client, data);
3815 	if (ret)
3816 		return ret;
3817 
3818 	ret = pmbus_init_debugfs(client, data);
3819 	if (ret)
3820 		dev_warn(dev, "Failed to register debugfs\n");
3821 
3822 	return 0;
3823 }
3824 EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, "PMBUS");
3825 
pmbus_get_debugfs_dir(struct i2c_client * client)3826 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
3827 {
3828 	struct pmbus_data *data = i2c_get_clientdata(client);
3829 
3830 	return data->debugfs;
3831 }
3832 EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, "PMBUS");
3833 
pmbus_lock_interruptible(struct i2c_client * client)3834 int pmbus_lock_interruptible(struct i2c_client *client)
3835 {
3836 	struct pmbus_data *data = i2c_get_clientdata(client);
3837 
3838 	return mutex_lock_interruptible(&data->update_lock);
3839 }
3840 EXPORT_SYMBOL_NS_GPL(pmbus_lock_interruptible, "PMBUS");
3841 
pmbus_unlock(struct i2c_client * client)3842 void pmbus_unlock(struct i2c_client *client)
3843 {
3844 	struct pmbus_data *data = i2c_get_clientdata(client);
3845 
3846 	mutex_unlock(&data->update_lock);
3847 }
3848 EXPORT_SYMBOL_NS_GPL(pmbus_unlock, "PMBUS");
3849 
pmbus_core_init(void)3850 static int __init pmbus_core_init(void)
3851 {
3852 	pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
3853 	if (IS_ERR(pmbus_debugfs_dir))
3854 		pmbus_debugfs_dir = NULL;
3855 
3856 	return 0;
3857 }
3858 
pmbus_core_exit(void)3859 static void __exit pmbus_core_exit(void)
3860 {
3861 	debugfs_remove_recursive(pmbus_debugfs_dir);
3862 }
3863 
3864 module_init(pmbus_core_init);
3865 module_exit(pmbus_core_exit);
3866 
3867 MODULE_AUTHOR("Guenter Roeck");
3868 MODULE_DESCRIPTION("PMBus core driver");
3869 MODULE_LICENSE("GPL");
3870