1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Hardware monitoring driver for PMBus devices
4 *
5 * Copyright (c) 2010, 2011 Ericsson AB.
6 * Copyright (c) 2012 Guenter Roeck
7 */
8
9 #include <linux/debugfs.h>
10 #include <linux/delay.h>
11 #include <linux/kernel.h>
12 #include <linux/math64.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/i2c.h>
18 #include <linux/hwmon.h>
19 #include <linux/hwmon-sysfs.h>
20 #include <linux/pmbus.h>
21 #include <linux/regulator/driver.h>
22 #include <linux/regulator/machine.h>
23 #include <linux/of.h>
24 #include <linux/thermal.h>
25 #include "pmbus.h"
26
27 /*
28 * Number of additional attribute pointers to allocate
29 * with each call to krealloc
30 */
31 #define PMBUS_ATTR_ALLOC_SIZE 32
32 #define PMBUS_NAME_SIZE 24
33
34 static int wp = -1;
35 module_param(wp, int, 0444);
36
37 struct pmbus_sensor {
38 struct pmbus_sensor *next;
39 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */
40 struct device_attribute attribute;
41 u8 page; /* page number */
42 u8 phase; /* phase number, 0xff for all phases */
43 u16 reg; /* register */
44 enum pmbus_sensor_classes class; /* sensor class */
45 bool update; /* runtime sensor update needed */
46 bool convert; /* Whether or not to apply linear/vid/direct */
47 int data; /* Sensor data.
48 Negative if there was a read error */
49 };
50 #define to_pmbus_sensor(_attr) \
51 container_of(_attr, struct pmbus_sensor, attribute)
52
53 struct pmbus_boolean {
54 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */
55 struct sensor_device_attribute attribute;
56 struct pmbus_sensor *s1;
57 struct pmbus_sensor *s2;
58 };
59 #define to_pmbus_boolean(_attr) \
60 container_of(_attr, struct pmbus_boolean, attribute)
61
62 struct pmbus_label {
63 char name[PMBUS_NAME_SIZE]; /* sysfs label name */
64 struct device_attribute attribute;
65 char label[PMBUS_NAME_SIZE]; /* label */
66 };
67 #define to_pmbus_label(_attr) \
68 container_of(_attr, struct pmbus_label, attribute)
69
70 /* Macros for converting between sensor index and register/page/status mask */
71
72 #define PB_STATUS_MASK 0xffff
73 #define PB_REG_SHIFT 16
74 #define PB_REG_MASK 0x3ff
75 #define PB_PAGE_SHIFT 26
76 #define PB_PAGE_MASK 0x3f
77
78 #define pb_reg_to_index(page, reg, mask) (((page) << PB_PAGE_SHIFT) | \
79 ((reg) << PB_REG_SHIFT) | (mask))
80
81 #define pb_index_to_page(index) (((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
82 #define pb_index_to_reg(index) (((index) >> PB_REG_SHIFT) & PB_REG_MASK)
83 #define pb_index_to_mask(index) ((index) & PB_STATUS_MASK)
84
85 struct pmbus_data {
86 struct device *dev;
87 struct device *hwmon_dev;
88 struct regulator_dev **rdevs;
89
90 u32 flags; /* from platform data */
91
92 u8 revision; /* The PMBus revision the device is compliant with */
93
94 int exponent[PMBUS_PAGES];
95 /* linear mode: exponent for output voltages */
96
97 const struct pmbus_driver_info *info;
98
99 int max_attributes;
100 int num_attributes;
101 struct attribute_group group;
102 const struct attribute_group **groups;
103 struct dentry *debugfs; /* debugfs device directory */
104
105 struct pmbus_sensor *sensors;
106
107 struct mutex update_lock;
108
109 bool has_status_word; /* device uses STATUS_WORD register */
110 int (*read_status)(struct i2c_client *client, int page);
111
112 s16 currpage; /* current page, -1 for unknown/unset */
113 s16 currphase; /* current phase, 0xff for all, -1 for unknown/unset */
114
115 int vout_low[PMBUS_PAGES]; /* voltage low margin */
116 int vout_high[PMBUS_PAGES]; /* voltage high margin */
117 ktime_t write_time; /* Last SMBUS write timestamp */
118 ktime_t access_time; /* Last SMBUS access timestamp */
119 };
120
121 struct pmbus_debugfs_entry {
122 struct i2c_client *client;
123 u8 page;
124 u8 reg;
125 };
126
127 static const int pmbus_fan_rpm_mask[] = {
128 PB_FAN_1_RPM,
129 PB_FAN_2_RPM,
130 PB_FAN_1_RPM,
131 PB_FAN_2_RPM,
132 };
133
134 static const int pmbus_fan_config_registers[] = {
135 PMBUS_FAN_CONFIG_12,
136 PMBUS_FAN_CONFIG_12,
137 PMBUS_FAN_CONFIG_34,
138 PMBUS_FAN_CONFIG_34
139 };
140
141 static const int pmbus_fan_command_registers[] = {
142 PMBUS_FAN_COMMAND_1,
143 PMBUS_FAN_COMMAND_2,
144 PMBUS_FAN_COMMAND_3,
145 PMBUS_FAN_COMMAND_4,
146 };
147
pmbus_clear_cache(struct i2c_client * client)148 void pmbus_clear_cache(struct i2c_client *client)
149 {
150 struct pmbus_data *data = i2c_get_clientdata(client);
151 struct pmbus_sensor *sensor;
152
153 for (sensor = data->sensors; sensor; sensor = sensor->next)
154 sensor->data = -ENODATA;
155 }
156 EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, "PMBUS");
157
pmbus_set_update(struct i2c_client * client,u8 reg,bool update)158 void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
159 {
160 struct pmbus_data *data = i2c_get_clientdata(client);
161 struct pmbus_sensor *sensor;
162
163 for (sensor = data->sensors; sensor; sensor = sensor->next)
164 if (sensor->reg == reg)
165 sensor->update = update;
166 }
167 EXPORT_SYMBOL_NS_GPL(pmbus_set_update, "PMBUS");
168
169 /* Some chips need a delay between accesses. */
pmbus_wait(struct i2c_client * client)170 static void pmbus_wait(struct i2c_client *client)
171 {
172 struct pmbus_data *data = i2c_get_clientdata(client);
173 const struct pmbus_driver_info *info = data->info;
174 s64 delta;
175
176 if (info->access_delay) {
177 delta = ktime_us_delta(ktime_get(), data->access_time);
178
179 if (delta < info->access_delay)
180 fsleep(info->access_delay - delta);
181 } else if (info->write_delay) {
182 delta = ktime_us_delta(ktime_get(), data->write_time);
183
184 if (delta < info->write_delay)
185 fsleep(info->write_delay - delta);
186 }
187 }
188
189 /* Sets the last accessed timestamp for pmbus_wait */
pmbus_update_ts(struct i2c_client * client,bool write_op)190 static void pmbus_update_ts(struct i2c_client *client, bool write_op)
191 {
192 struct pmbus_data *data = i2c_get_clientdata(client);
193 const struct pmbus_driver_info *info = data->info;
194
195 if (info->access_delay) {
196 data->access_time = ktime_get();
197 } else if (info->write_delay && write_op) {
198 data->write_time = ktime_get();
199 }
200 }
201
pmbus_set_page(struct i2c_client * client,int page,int phase)202 int pmbus_set_page(struct i2c_client *client, int page, int phase)
203 {
204 struct pmbus_data *data = i2c_get_clientdata(client);
205 int rv;
206
207 if (page < 0)
208 return 0;
209
210 if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
211 data->info->pages > 1 && page != data->currpage) {
212 pmbus_wait(client);
213 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
214 pmbus_update_ts(client, true);
215 if (rv < 0)
216 return rv;
217
218 pmbus_wait(client);
219 rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
220 pmbus_update_ts(client, false);
221 if (rv < 0)
222 return rv;
223
224 if (rv != page)
225 return -EIO;
226 }
227 data->currpage = page;
228
229 if (data->info->phases[page] && data->currphase != phase &&
230 !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
231 pmbus_wait(client);
232 rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
233 phase);
234 pmbus_update_ts(client, true);
235 if (rv)
236 return rv;
237 }
238 data->currphase = phase;
239
240 return 0;
241 }
242 EXPORT_SYMBOL_NS_GPL(pmbus_set_page, "PMBUS");
243
pmbus_write_byte(struct i2c_client * client,int page,u8 value)244 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
245 {
246 int rv;
247
248 rv = pmbus_set_page(client, page, 0xff);
249 if (rv < 0)
250 return rv;
251
252 pmbus_wait(client);
253 rv = i2c_smbus_write_byte(client, value);
254 pmbus_update_ts(client, true);
255
256 return rv;
257 }
258 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, "PMBUS");
259
260 /*
261 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
262 * a device specific mapping function exists and calls it if necessary.
263 */
_pmbus_write_byte(struct i2c_client * client,int page,u8 value)264 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
265 {
266 struct pmbus_data *data = i2c_get_clientdata(client);
267 const struct pmbus_driver_info *info = data->info;
268 int status;
269
270 if (info->write_byte) {
271 status = info->write_byte(client, page, value);
272 if (status != -ENODATA)
273 return status;
274 }
275 return pmbus_write_byte(client, page, value);
276 }
277
pmbus_write_word_data(struct i2c_client * client,int page,u8 reg,u16 word)278 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
279 u16 word)
280 {
281 int rv;
282
283 rv = pmbus_set_page(client, page, 0xff);
284 if (rv < 0)
285 return rv;
286
287 pmbus_wait(client);
288 rv = i2c_smbus_write_word_data(client, reg, word);
289 pmbus_update_ts(client, true);
290
291 return rv;
292 }
293 EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, "PMBUS");
294
295
pmbus_write_virt_reg(struct i2c_client * client,int page,int reg,u16 word)296 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
297 u16 word)
298 {
299 int bit;
300 int id;
301 int rv;
302
303 switch (reg) {
304 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
305 id = reg - PMBUS_VIRT_FAN_TARGET_1;
306 bit = pmbus_fan_rpm_mask[id];
307 rv = pmbus_update_fan(client, page, id, bit, bit, word);
308 break;
309 default:
310 rv = -ENXIO;
311 break;
312 }
313
314 return rv;
315 }
316
317 /*
318 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
319 * a device specific mapping function exists and calls it if necessary.
320 */
_pmbus_write_word_data(struct i2c_client * client,int page,int reg,u16 word)321 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
322 u16 word)
323 {
324 struct pmbus_data *data = i2c_get_clientdata(client);
325 const struct pmbus_driver_info *info = data->info;
326 int status;
327
328 if (info->write_word_data) {
329 status = info->write_word_data(client, page, reg, word);
330 if (status != -ENODATA)
331 return status;
332 }
333
334 if (reg >= PMBUS_VIRT_BASE)
335 return pmbus_write_virt_reg(client, page, reg, word);
336
337 return pmbus_write_word_data(client, page, reg, word);
338 }
339
340 /*
341 * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if
342 * a device specific mapping function exists and calls it if necessary.
343 */
_pmbus_write_byte_data(struct i2c_client * client,int page,int reg,u8 value)344 static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value)
345 {
346 struct pmbus_data *data = i2c_get_clientdata(client);
347 const struct pmbus_driver_info *info = data->info;
348 int status;
349
350 if (info->write_byte_data) {
351 status = info->write_byte_data(client, page, reg, value);
352 if (status != -ENODATA)
353 return status;
354 }
355 return pmbus_write_byte_data(client, page, reg, value);
356 }
357
358 /*
359 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
360 * a device specific mapping function exists and calls it if necessary.
361 */
_pmbus_read_byte_data(struct i2c_client * client,int page,int reg)362 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
363 {
364 struct pmbus_data *data = i2c_get_clientdata(client);
365 const struct pmbus_driver_info *info = data->info;
366 int status;
367
368 if (info->read_byte_data) {
369 status = info->read_byte_data(client, page, reg);
370 if (status != -ENODATA)
371 return status;
372 }
373 return pmbus_read_byte_data(client, page, reg);
374 }
375
pmbus_update_fan(struct i2c_client * client,int page,int id,u8 config,u8 mask,u16 command)376 int pmbus_update_fan(struct i2c_client *client, int page, int id,
377 u8 config, u8 mask, u16 command)
378 {
379 int from;
380 int rv;
381 u8 to;
382
383 from = _pmbus_read_byte_data(client, page,
384 pmbus_fan_config_registers[id]);
385 if (from < 0)
386 return from;
387
388 to = (from & ~mask) | (config & mask);
389 if (to != from) {
390 rv = _pmbus_write_byte_data(client, page,
391 pmbus_fan_config_registers[id], to);
392 if (rv < 0)
393 return rv;
394 }
395
396 return _pmbus_write_word_data(client, page,
397 pmbus_fan_command_registers[id], command);
398 }
399 EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, "PMBUS");
400
pmbus_read_word_data(struct i2c_client * client,int page,int phase,u8 reg)401 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
402 {
403 int rv;
404
405 rv = pmbus_set_page(client, page, phase);
406 if (rv < 0)
407 return rv;
408
409 pmbus_wait(client);
410 rv = i2c_smbus_read_word_data(client, reg);
411 pmbus_update_ts(client, false);
412
413 return rv;
414 }
415 EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, "PMBUS");
416
pmbus_read_virt_reg(struct i2c_client * client,int page,int reg)417 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
418 {
419 int rv;
420 int id;
421
422 switch (reg) {
423 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
424 id = reg - PMBUS_VIRT_FAN_TARGET_1;
425 rv = pmbus_get_fan_rate_device(client, page, id, rpm);
426 break;
427 default:
428 rv = -ENXIO;
429 break;
430 }
431
432 return rv;
433 }
434
435 /*
436 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
437 * a device specific mapping function exists and calls it if necessary.
438 */
_pmbus_read_word_data(struct i2c_client * client,int page,int phase,int reg)439 static int _pmbus_read_word_data(struct i2c_client *client, int page,
440 int phase, int reg)
441 {
442 struct pmbus_data *data = i2c_get_clientdata(client);
443 const struct pmbus_driver_info *info = data->info;
444 int status;
445
446 if (info->read_word_data) {
447 status = info->read_word_data(client, page, phase, reg);
448 if (status != -ENODATA)
449 return status;
450 }
451
452 if (reg >= PMBUS_VIRT_BASE)
453 return pmbus_read_virt_reg(client, page, reg);
454
455 return pmbus_read_word_data(client, page, phase, reg);
456 }
457
458 /* Same as above, but without phase parameter, for use in check functions */
__pmbus_read_word_data(struct i2c_client * client,int page,int reg)459 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
460 {
461 return _pmbus_read_word_data(client, page, 0xff, reg);
462 }
463
pmbus_read_byte_data(struct i2c_client * client,int page,u8 reg)464 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
465 {
466 int rv;
467
468 rv = pmbus_set_page(client, page, 0xff);
469 if (rv < 0)
470 return rv;
471
472 pmbus_wait(client);
473 rv = i2c_smbus_read_byte_data(client, reg);
474 pmbus_update_ts(client, false);
475
476 return rv;
477 }
478 EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, "PMBUS");
479
pmbus_write_byte_data(struct i2c_client * client,int page,u8 reg,u8 value)480 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
481 {
482 int rv;
483
484 rv = pmbus_set_page(client, page, 0xff);
485 if (rv < 0)
486 return rv;
487
488 pmbus_wait(client);
489 rv = i2c_smbus_write_byte_data(client, reg, value);
490 pmbus_update_ts(client, true);
491
492 return rv;
493 }
494 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, "PMBUS");
495
pmbus_update_byte_data(struct i2c_client * client,int page,u8 reg,u8 mask,u8 value)496 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
497 u8 mask, u8 value)
498 {
499 unsigned int tmp;
500 int rv;
501
502 rv = _pmbus_read_byte_data(client, page, reg);
503 if (rv < 0)
504 return rv;
505
506 tmp = (rv & ~mask) | (value & mask);
507
508 if (tmp != rv)
509 rv = _pmbus_write_byte_data(client, page, reg, tmp);
510
511 return rv;
512 }
513 EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, "PMBUS");
514
pmbus_read_block_data(struct i2c_client * client,int page,u8 reg,char * data_buf)515 static int pmbus_read_block_data(struct i2c_client *client, int page, u8 reg,
516 char *data_buf)
517 {
518 int rv;
519
520 rv = pmbus_set_page(client, page, 0xff);
521 if (rv < 0)
522 return rv;
523
524 pmbus_wait(client);
525 rv = i2c_smbus_read_block_data(client, reg, data_buf);
526 pmbus_update_ts(client, false);
527
528 return rv;
529 }
530
pmbus_find_sensor(struct pmbus_data * data,int page,int reg)531 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
532 int reg)
533 {
534 struct pmbus_sensor *sensor;
535
536 for (sensor = data->sensors; sensor; sensor = sensor->next) {
537 if (sensor->page == page && sensor->reg == reg)
538 return sensor;
539 }
540
541 return ERR_PTR(-EINVAL);
542 }
543
pmbus_get_fan_rate(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode,bool from_cache)544 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
545 enum pmbus_fan_mode mode,
546 bool from_cache)
547 {
548 struct pmbus_data *data = i2c_get_clientdata(client);
549 bool want_rpm, have_rpm;
550 struct pmbus_sensor *s;
551 int config;
552 int reg;
553
554 want_rpm = (mode == rpm);
555
556 if (from_cache) {
557 reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
558 s = pmbus_find_sensor(data, page, reg + id);
559 if (IS_ERR(s))
560 return PTR_ERR(s);
561
562 return s->data;
563 }
564
565 config = _pmbus_read_byte_data(client, page,
566 pmbus_fan_config_registers[id]);
567 if (config < 0)
568 return config;
569
570 have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
571 if (want_rpm == have_rpm)
572 return pmbus_read_word_data(client, page, 0xff,
573 pmbus_fan_command_registers[id]);
574
575 /* Can't sensibly map between RPM and PWM, just return zero */
576 return 0;
577 }
578
pmbus_get_fan_rate_device(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)579 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
580 enum pmbus_fan_mode mode)
581 {
582 return pmbus_get_fan_rate(client, page, id, mode, false);
583 }
584 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, "PMBUS");
585
pmbus_get_fan_rate_cached(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)586 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
587 enum pmbus_fan_mode mode)
588 {
589 return pmbus_get_fan_rate(client, page, id, mode, true);
590 }
591 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, "PMBUS");
592
pmbus_clear_fault_page(struct i2c_client * client,int page)593 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
594 {
595 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
596 }
597
pmbus_clear_faults(struct i2c_client * client)598 void pmbus_clear_faults(struct i2c_client *client)
599 {
600 struct pmbus_data *data = i2c_get_clientdata(client);
601 int i;
602
603 for (i = 0; i < data->info->pages; i++)
604 pmbus_clear_fault_page(client, i);
605 }
606 EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, "PMBUS");
607
pmbus_check_status_cml(struct i2c_client * client)608 static int pmbus_check_status_cml(struct i2c_client *client)
609 {
610 struct pmbus_data *data = i2c_get_clientdata(client);
611 int status, status2;
612
613 status = data->read_status(client, -1);
614 if (status < 0 || (status & PB_STATUS_CML)) {
615 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
616 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
617 return -EIO;
618 }
619 return 0;
620 }
621
pmbus_check_register(struct i2c_client * client,int (* func)(struct i2c_client * client,int page,int reg),int page,int reg)622 static bool pmbus_check_register(struct i2c_client *client,
623 int (*func)(struct i2c_client *client,
624 int page, int reg),
625 int page, int reg)
626 {
627 int rv;
628 struct pmbus_data *data = i2c_get_clientdata(client);
629
630 rv = func(client, page, reg);
631 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
632 rv = pmbus_check_status_cml(client);
633 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
634 data->read_status(client, -1);
635 if (reg < PMBUS_VIRT_BASE)
636 pmbus_clear_fault_page(client, -1);
637 return rv >= 0;
638 }
639
pmbus_check_status_register(struct i2c_client * client,int page)640 static bool pmbus_check_status_register(struct i2c_client *client, int page)
641 {
642 int status;
643 struct pmbus_data *data = i2c_get_clientdata(client);
644
645 status = data->read_status(client, page);
646 if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
647 (status & PB_STATUS_CML)) {
648 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
649 if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
650 status = -EIO;
651 }
652
653 pmbus_clear_fault_page(client, -1);
654 return status >= 0;
655 }
656
pmbus_check_byte_register(struct i2c_client * client,int page,int reg)657 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
658 {
659 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
660 }
661 EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, "PMBUS");
662
pmbus_check_word_register(struct i2c_client * client,int page,int reg)663 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
664 {
665 return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
666 }
667 EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, "PMBUS");
668
pmbus_check_block_register(struct i2c_client * client,int page,int reg)669 static bool __maybe_unused pmbus_check_block_register(struct i2c_client *client,
670 int page, int reg)
671 {
672 int rv;
673 struct pmbus_data *data = i2c_get_clientdata(client);
674 char data_buf[I2C_SMBUS_BLOCK_MAX + 2];
675
676 rv = pmbus_read_block_data(client, page, reg, data_buf);
677 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
678 rv = pmbus_check_status_cml(client);
679 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
680 data->read_status(client, -1);
681 pmbus_clear_fault_page(client, -1);
682 return rv >= 0;
683 }
684
pmbus_get_driver_info(struct i2c_client * client)685 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
686 {
687 struct pmbus_data *data = i2c_get_clientdata(client);
688
689 return data->info;
690 }
691 EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, "PMBUS");
692
pmbus_get_status(struct i2c_client * client,int page,int reg)693 static int pmbus_get_status(struct i2c_client *client, int page, int reg)
694 {
695 struct pmbus_data *data = i2c_get_clientdata(client);
696 int status;
697
698 switch (reg) {
699 case PMBUS_STATUS_WORD:
700 status = data->read_status(client, page);
701 break;
702 default:
703 status = _pmbus_read_byte_data(client, page, reg);
704 break;
705 }
706 if (status < 0)
707 pmbus_clear_faults(client);
708 return status;
709 }
710
pmbus_update_sensor_data(struct i2c_client * client,struct pmbus_sensor * sensor)711 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
712 {
713 if (sensor->data < 0 || sensor->update)
714 sensor->data = _pmbus_read_word_data(client, sensor->page,
715 sensor->phase, sensor->reg);
716 }
717
718 /*
719 * Convert ieee754 sensor values to milli- or micro-units
720 * depending on sensor type.
721 *
722 * ieee754 data format:
723 * bit 15: sign
724 * bit 10..14: exponent
725 * bit 0..9: mantissa
726 * exponent=0:
727 * v=(−1)^signbit * 2^(−14) * 0.significantbits
728 * exponent=1..30:
729 * v=(−1)^signbit * 2^(exponent - 15) * 1.significantbits
730 * exponent=31:
731 * v=NaN
732 *
733 * Add the number mantissa bits into the calculations for simplicity.
734 * To do that, add '10' to the exponent. By doing that, we can just add
735 * 0x400 to normal values and get the expected result.
736 */
pmbus_reg2data_ieee754(struct pmbus_data * data,struct pmbus_sensor * sensor)737 static long pmbus_reg2data_ieee754(struct pmbus_data *data,
738 struct pmbus_sensor *sensor)
739 {
740 int exponent;
741 bool sign;
742 long val;
743
744 /* only support half precision for now */
745 sign = sensor->data & 0x8000;
746 exponent = (sensor->data >> 10) & 0x1f;
747 val = sensor->data & 0x3ff;
748
749 if (exponent == 0) { /* subnormal */
750 exponent = -(14 + 10);
751 } else if (exponent == 0x1f) { /* NaN, convert to min/max */
752 exponent = 0;
753 val = 65504;
754 } else {
755 exponent -= (15 + 10); /* normal */
756 val |= 0x400;
757 }
758
759 /* scale result to milli-units for all sensors except fans */
760 if (sensor->class != PSC_FAN)
761 val = val * 1000L;
762
763 /* scale result to micro-units for power sensors */
764 if (sensor->class == PSC_POWER)
765 val = val * 1000L;
766
767 if (exponent >= 0)
768 val <<= exponent;
769 else
770 val >>= -exponent;
771
772 if (sign)
773 val = -val;
774
775 return val;
776 }
777
778 /*
779 * Convert linear sensor values to milli- or micro-units
780 * depending on sensor type.
781 */
pmbus_reg2data_linear(struct pmbus_data * data,struct pmbus_sensor * sensor)782 static s64 pmbus_reg2data_linear(struct pmbus_data *data,
783 struct pmbus_sensor *sensor)
784 {
785 s16 exponent;
786 s32 mantissa;
787 s64 val;
788
789 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
790 exponent = data->exponent[sensor->page];
791 mantissa = (u16) sensor->data;
792 } else { /* LINEAR11 */
793 exponent = ((s16)sensor->data) >> 11;
794 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
795 }
796
797 val = mantissa;
798
799 /* scale result to milli-units for all sensors except fans */
800 if (sensor->class != PSC_FAN)
801 val = val * 1000LL;
802
803 /* scale result to micro-units for power sensors */
804 if (sensor->class == PSC_POWER)
805 val = val * 1000LL;
806
807 if (exponent >= 0)
808 val <<= exponent;
809 else
810 val >>= -exponent;
811
812 return val;
813 }
814
815 /*
816 * Convert direct sensor values to milli- or micro-units
817 * depending on sensor type.
818 */
pmbus_reg2data_direct(struct pmbus_data * data,struct pmbus_sensor * sensor)819 static s64 pmbus_reg2data_direct(struct pmbus_data *data,
820 struct pmbus_sensor *sensor)
821 {
822 s64 b, val = (s16)sensor->data;
823 s32 m, R;
824
825 m = data->info->m[sensor->class];
826 b = data->info->b[sensor->class];
827 R = data->info->R[sensor->class];
828
829 if (m == 0)
830 return 0;
831
832 /* X = 1/m * (Y * 10^-R - b) */
833 R = -R;
834 /* scale result to milli-units for everything but fans */
835 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
836 R += 3;
837 b *= 1000;
838 }
839
840 /* scale result to micro-units for power sensors */
841 if (sensor->class == PSC_POWER) {
842 R += 3;
843 b *= 1000;
844 }
845
846 while (R > 0) {
847 val *= 10;
848 R--;
849 }
850 while (R < 0) {
851 val = div_s64(val + 5LL, 10L); /* round closest */
852 R++;
853 }
854
855 val = div_s64(val - b, m);
856 return val;
857 }
858
859 /*
860 * Convert VID sensor values to milli- or micro-units
861 * depending on sensor type.
862 */
pmbus_reg2data_vid(struct pmbus_data * data,struct pmbus_sensor * sensor)863 static s64 pmbus_reg2data_vid(struct pmbus_data *data,
864 struct pmbus_sensor *sensor)
865 {
866 long val = sensor->data;
867 long rv = 0;
868
869 switch (data->info->vrm_version[sensor->page]) {
870 case vr11:
871 if (val >= 0x02 && val <= 0xb2)
872 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
873 break;
874 case vr12:
875 if (val >= 0x01)
876 rv = 250 + (val - 1) * 5;
877 break;
878 case vr13:
879 if (val >= 0x01)
880 rv = 500 + (val - 1) * 10;
881 break;
882 case imvp9:
883 if (val >= 0x01)
884 rv = 200 + (val - 1) * 10;
885 break;
886 case amd625mv:
887 if (val >= 0x0 && val <= 0xd8)
888 rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
889 break;
890 }
891 return rv;
892 }
893
pmbus_reg2data(struct pmbus_data * data,struct pmbus_sensor * sensor)894 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
895 {
896 s64 val;
897
898 if (!sensor->convert)
899 return sensor->data;
900
901 switch (data->info->format[sensor->class]) {
902 case direct:
903 val = pmbus_reg2data_direct(data, sensor);
904 break;
905 case vid:
906 val = pmbus_reg2data_vid(data, sensor);
907 break;
908 case ieee754:
909 val = pmbus_reg2data_ieee754(data, sensor);
910 break;
911 case linear:
912 default:
913 val = pmbus_reg2data_linear(data, sensor);
914 break;
915 }
916 return val;
917 }
918
919 #define MAX_IEEE_MANTISSA (0x7ff * 1000)
920 #define MIN_IEEE_MANTISSA (0x400 * 1000)
921
pmbus_data2reg_ieee754(struct pmbus_data * data,struct pmbus_sensor * sensor,long val)922 static u16 pmbus_data2reg_ieee754(struct pmbus_data *data,
923 struct pmbus_sensor *sensor, long val)
924 {
925 u16 exponent = (15 + 10);
926 long mantissa;
927 u16 sign = 0;
928
929 /* simple case */
930 if (val == 0)
931 return 0;
932
933 if (val < 0) {
934 sign = 0x8000;
935 val = -val;
936 }
937
938 /* Power is in uW. Convert to mW before converting. */
939 if (sensor->class == PSC_POWER)
940 val = DIV_ROUND_CLOSEST(val, 1000L);
941
942 /*
943 * For simplicity, convert fan data to milli-units
944 * before calculating the exponent.
945 */
946 if (sensor->class == PSC_FAN)
947 val = val * 1000;
948
949 /* Reduce large mantissa until it fits into 10 bit */
950 while (val > MAX_IEEE_MANTISSA && exponent < 30) {
951 exponent++;
952 val >>= 1;
953 }
954 /*
955 * Increase small mantissa to generate valid 'normal'
956 * number
957 */
958 while (val < MIN_IEEE_MANTISSA && exponent > 1) {
959 exponent--;
960 val <<= 1;
961 }
962
963 /* Convert mantissa from milli-units to units */
964 mantissa = DIV_ROUND_CLOSEST(val, 1000);
965
966 /*
967 * Ensure that the resulting number is within range.
968 * Valid range is 0x400..0x7ff, where bit 10 reflects
969 * the implied high bit in normalized ieee754 numbers.
970 * Set the range to 0x400..0x7ff to reflect this.
971 * The upper bit is then removed by the mask against
972 * 0x3ff in the final assignment.
973 */
974 if (mantissa > 0x7ff)
975 mantissa = 0x7ff;
976 else if (mantissa < 0x400)
977 mantissa = 0x400;
978
979 /* Convert to sign, 5 bit exponent, 10 bit mantissa */
980 return sign | (mantissa & 0x3ff) | ((exponent << 10) & 0x7c00);
981 }
982
983 #define MAX_LIN_MANTISSA (1023 * 1000)
984 #define MIN_LIN_MANTISSA (511 * 1000)
985
pmbus_data2reg_linear(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)986 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
987 struct pmbus_sensor *sensor, s64 val)
988 {
989 s16 exponent = 0, mantissa;
990 bool negative = false;
991
992 /* simple case */
993 if (val == 0)
994 return 0;
995
996 if (sensor->class == PSC_VOLTAGE_OUT) {
997 /* LINEAR16 does not support negative voltages */
998 if (val < 0)
999 return 0;
1000
1001 /*
1002 * For a static exponents, we don't have a choice
1003 * but to adjust the value to it.
1004 */
1005 if (data->exponent[sensor->page] < 0)
1006 val <<= -data->exponent[sensor->page];
1007 else
1008 val >>= data->exponent[sensor->page];
1009 val = DIV_ROUND_CLOSEST_ULL(val, 1000);
1010 return clamp_val(val, 0, 0xffff);
1011 }
1012
1013 if (val < 0) {
1014 negative = true;
1015 val = -val;
1016 }
1017
1018 /* Power is in uW. Convert to mW before converting. */
1019 if (sensor->class == PSC_POWER)
1020 val = DIV_ROUND_CLOSEST_ULL(val, 1000);
1021
1022 /*
1023 * For simplicity, convert fan data to milli-units
1024 * before calculating the exponent.
1025 */
1026 if (sensor->class == PSC_FAN)
1027 val = val * 1000LL;
1028
1029 /* Reduce large mantissa until it fits into 10 bit */
1030 while (val >= MAX_LIN_MANTISSA && exponent < 15) {
1031 exponent++;
1032 val >>= 1;
1033 }
1034 /* Increase small mantissa to improve precision */
1035 while (val < MIN_LIN_MANTISSA && exponent > -15) {
1036 exponent--;
1037 val <<= 1;
1038 }
1039
1040 /* Convert mantissa from milli-units to units */
1041 mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
1042
1043 /* restore sign */
1044 if (negative)
1045 mantissa = -mantissa;
1046
1047 /* Convert to 5 bit exponent, 11 bit mantissa */
1048 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
1049 }
1050
pmbus_data2reg_direct(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)1051 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
1052 struct pmbus_sensor *sensor, s64 val)
1053 {
1054 s64 b;
1055 s32 m, R;
1056
1057 m = data->info->m[sensor->class];
1058 b = data->info->b[sensor->class];
1059 R = data->info->R[sensor->class];
1060
1061 /* Power is in uW. Adjust R and b. */
1062 if (sensor->class == PSC_POWER) {
1063 R -= 3;
1064 b *= 1000;
1065 }
1066
1067 /* Calculate Y = (m * X + b) * 10^R */
1068 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
1069 R -= 3; /* Adjust R and b for data in milli-units */
1070 b *= 1000;
1071 }
1072 val = val * m + b;
1073
1074 while (R > 0) {
1075 val *= 10;
1076 R--;
1077 }
1078 while (R < 0) {
1079 val = div_s64(val + 5LL, 10L); /* round closest */
1080 R++;
1081 }
1082
1083 return (u16)clamp_val(val, S16_MIN, S16_MAX);
1084 }
1085
pmbus_data2reg_vid(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)1086 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
1087 struct pmbus_sensor *sensor, s64 val)
1088 {
1089 val = clamp_val(val, 500, 1600);
1090
1091 return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
1092 }
1093
pmbus_data2reg(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)1094 static u16 pmbus_data2reg(struct pmbus_data *data,
1095 struct pmbus_sensor *sensor, s64 val)
1096 {
1097 u16 regval;
1098
1099 if (!sensor->convert)
1100 return val;
1101
1102 switch (data->info->format[sensor->class]) {
1103 case direct:
1104 regval = pmbus_data2reg_direct(data, sensor, val);
1105 break;
1106 case vid:
1107 regval = pmbus_data2reg_vid(data, sensor, val);
1108 break;
1109 case ieee754:
1110 regval = pmbus_data2reg_ieee754(data, sensor, val);
1111 break;
1112 case linear:
1113 default:
1114 regval = pmbus_data2reg_linear(data, sensor, val);
1115 break;
1116 }
1117 return regval;
1118 }
1119
1120 /*
1121 * Return boolean calculated from converted data.
1122 * <index> defines a status register index and mask.
1123 * The mask is in the lower 8 bits, the register index is in bits 8..23.
1124 *
1125 * The associated pmbus_boolean structure contains optional pointers to two
1126 * sensor attributes. If specified, those attributes are compared against each
1127 * other to determine if a limit has been exceeded.
1128 *
1129 * If the sensor attribute pointers are NULL, the function returns true if
1130 * (status[reg] & mask) is true.
1131 *
1132 * If sensor attribute pointers are provided, a comparison against a specified
1133 * limit has to be performed to determine the boolean result.
1134 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
1135 * sensor values referenced by sensor attribute pointers s1 and s2).
1136 *
1137 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
1138 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
1139 *
1140 * If a negative value is stored in any of the referenced registers, this value
1141 * reflects an error code which will be returned.
1142 */
pmbus_get_boolean(struct i2c_client * client,struct pmbus_boolean * b,int index)1143 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
1144 int index)
1145 {
1146 struct pmbus_data *data = i2c_get_clientdata(client);
1147 struct pmbus_sensor *s1 = b->s1;
1148 struct pmbus_sensor *s2 = b->s2;
1149 u16 mask = pb_index_to_mask(index);
1150 u8 page = pb_index_to_page(index);
1151 u16 reg = pb_index_to_reg(index);
1152 int ret, status;
1153 u16 regval;
1154
1155 mutex_lock(&data->update_lock);
1156 status = pmbus_get_status(client, page, reg);
1157 if (status < 0) {
1158 ret = status;
1159 goto unlock;
1160 }
1161
1162 if (s1)
1163 pmbus_update_sensor_data(client, s1);
1164 if (s2)
1165 pmbus_update_sensor_data(client, s2);
1166
1167 regval = status & mask;
1168 if (regval) {
1169 if (data->revision >= PMBUS_REV_12) {
1170 ret = _pmbus_write_byte_data(client, page, reg, regval);
1171 if (ret)
1172 goto unlock;
1173 } else {
1174 pmbus_clear_fault_page(client, page);
1175 }
1176
1177 }
1178 if (s1 && s2) {
1179 s64 v1, v2;
1180
1181 if (s1->data < 0) {
1182 ret = s1->data;
1183 goto unlock;
1184 }
1185 if (s2->data < 0) {
1186 ret = s2->data;
1187 goto unlock;
1188 }
1189
1190 v1 = pmbus_reg2data(data, s1);
1191 v2 = pmbus_reg2data(data, s2);
1192 ret = !!(regval && v1 >= v2);
1193 } else {
1194 ret = !!regval;
1195 }
1196 unlock:
1197 mutex_unlock(&data->update_lock);
1198 return ret;
1199 }
1200
pmbus_show_boolean(struct device * dev,struct device_attribute * da,char * buf)1201 static ssize_t pmbus_show_boolean(struct device *dev,
1202 struct device_attribute *da, char *buf)
1203 {
1204 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
1205 struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
1206 struct i2c_client *client = to_i2c_client(dev->parent);
1207 int val;
1208
1209 val = pmbus_get_boolean(client, boolean, attr->index);
1210 if (val < 0)
1211 return val;
1212 return sysfs_emit(buf, "%d\n", val);
1213 }
1214
pmbus_show_sensor(struct device * dev,struct device_attribute * devattr,char * buf)1215 static ssize_t pmbus_show_sensor(struct device *dev,
1216 struct device_attribute *devattr, char *buf)
1217 {
1218 struct i2c_client *client = to_i2c_client(dev->parent);
1219 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1220 struct pmbus_data *data = i2c_get_clientdata(client);
1221 ssize_t ret;
1222
1223 mutex_lock(&data->update_lock);
1224 pmbus_update_sensor_data(client, sensor);
1225 if (sensor->data < 0)
1226 ret = sensor->data;
1227 else
1228 ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor));
1229 mutex_unlock(&data->update_lock);
1230 return ret;
1231 }
1232
pmbus_set_sensor(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)1233 static ssize_t pmbus_set_sensor(struct device *dev,
1234 struct device_attribute *devattr,
1235 const char *buf, size_t count)
1236 {
1237 struct i2c_client *client = to_i2c_client(dev->parent);
1238 struct pmbus_data *data = i2c_get_clientdata(client);
1239 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1240 ssize_t rv = count;
1241 s64 val;
1242 int ret;
1243 u16 regval;
1244
1245 if (kstrtos64(buf, 10, &val) < 0)
1246 return -EINVAL;
1247
1248 mutex_lock(&data->update_lock);
1249 regval = pmbus_data2reg(data, sensor, val);
1250 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
1251 if (ret < 0)
1252 rv = ret;
1253 else
1254 sensor->data = -ENODATA;
1255 mutex_unlock(&data->update_lock);
1256 return rv;
1257 }
1258
pmbus_show_label(struct device * dev,struct device_attribute * da,char * buf)1259 static ssize_t pmbus_show_label(struct device *dev,
1260 struct device_attribute *da, char *buf)
1261 {
1262 struct pmbus_label *label = to_pmbus_label(da);
1263
1264 return sysfs_emit(buf, "%s\n", label->label);
1265 }
1266
pmbus_add_attribute(struct pmbus_data * data,struct attribute * attr)1267 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1268 {
1269 if (data->num_attributes >= data->max_attributes - 1) {
1270 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1271 void *new_attrs = devm_krealloc_array(data->dev, data->group.attrs,
1272 new_max_attrs, sizeof(void *),
1273 GFP_KERNEL);
1274 if (!new_attrs)
1275 return -ENOMEM;
1276 data->group.attrs = new_attrs;
1277 data->max_attributes = new_max_attrs;
1278 }
1279
1280 data->group.attrs[data->num_attributes++] = attr;
1281 data->group.attrs[data->num_attributes] = NULL;
1282 return 0;
1283 }
1284
pmbus_dev_attr_init(struct device_attribute * dev_attr,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count))1285 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1286 const char *name,
1287 umode_t mode,
1288 ssize_t (*show)(struct device *dev,
1289 struct device_attribute *attr,
1290 char *buf),
1291 ssize_t (*store)(struct device *dev,
1292 struct device_attribute *attr,
1293 const char *buf, size_t count))
1294 {
1295 sysfs_attr_init(&dev_attr->attr);
1296 dev_attr->attr.name = name;
1297 dev_attr->attr.mode = mode;
1298 dev_attr->show = show;
1299 dev_attr->store = store;
1300 }
1301
pmbus_attr_init(struct sensor_device_attribute * a,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count),int idx)1302 static void pmbus_attr_init(struct sensor_device_attribute *a,
1303 const char *name,
1304 umode_t mode,
1305 ssize_t (*show)(struct device *dev,
1306 struct device_attribute *attr,
1307 char *buf),
1308 ssize_t (*store)(struct device *dev,
1309 struct device_attribute *attr,
1310 const char *buf, size_t count),
1311 int idx)
1312 {
1313 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1314 a->index = idx;
1315 }
1316
pmbus_add_boolean(struct pmbus_data * data,const char * name,const char * type,int seq,struct pmbus_sensor * s1,struct pmbus_sensor * s2,u8 page,u16 reg,u16 mask)1317 static int pmbus_add_boolean(struct pmbus_data *data,
1318 const char *name, const char *type, int seq,
1319 struct pmbus_sensor *s1,
1320 struct pmbus_sensor *s2,
1321 u8 page, u16 reg, u16 mask)
1322 {
1323 struct pmbus_boolean *boolean;
1324 struct sensor_device_attribute *a;
1325
1326 if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1327 return -EINVAL;
1328
1329 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1330 if (!boolean)
1331 return -ENOMEM;
1332
1333 a = &boolean->attribute;
1334
1335 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1336 name, seq, type);
1337 boolean->s1 = s1;
1338 boolean->s2 = s2;
1339 pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1340 pb_reg_to_index(page, reg, mask));
1341
1342 return pmbus_add_attribute(data, &a->dev_attr.attr);
1343 }
1344
1345 /* of thermal for pmbus temperature sensors */
1346 struct pmbus_thermal_data {
1347 struct pmbus_data *pmbus_data;
1348 struct pmbus_sensor *sensor;
1349 };
1350
pmbus_thermal_get_temp(struct thermal_zone_device * tz,int * temp)1351 static int pmbus_thermal_get_temp(struct thermal_zone_device *tz, int *temp)
1352 {
1353 struct pmbus_thermal_data *tdata = thermal_zone_device_priv(tz);
1354 struct pmbus_sensor *sensor = tdata->sensor;
1355 struct pmbus_data *pmbus_data = tdata->pmbus_data;
1356 struct i2c_client *client = to_i2c_client(pmbus_data->dev);
1357 struct device *dev = pmbus_data->hwmon_dev;
1358 int ret = 0;
1359
1360 if (!dev) {
1361 /* May not even get to hwmon yet */
1362 *temp = 0;
1363 return 0;
1364 }
1365
1366 mutex_lock(&pmbus_data->update_lock);
1367 pmbus_update_sensor_data(client, sensor);
1368 if (sensor->data < 0)
1369 ret = sensor->data;
1370 else
1371 *temp = (int)pmbus_reg2data(pmbus_data, sensor);
1372 mutex_unlock(&pmbus_data->update_lock);
1373
1374 return ret;
1375 }
1376
1377 static const struct thermal_zone_device_ops pmbus_thermal_ops = {
1378 .get_temp = pmbus_thermal_get_temp,
1379 };
1380
pmbus_thermal_add_sensor(struct pmbus_data * pmbus_data,struct pmbus_sensor * sensor,int index)1381 static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data,
1382 struct pmbus_sensor *sensor, int index)
1383 {
1384 struct device *dev = pmbus_data->dev;
1385 struct pmbus_thermal_data *tdata;
1386 struct thermal_zone_device *tzd;
1387
1388 tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL);
1389 if (!tdata)
1390 return -ENOMEM;
1391
1392 tdata->sensor = sensor;
1393 tdata->pmbus_data = pmbus_data;
1394
1395 tzd = devm_thermal_of_zone_register(dev, index, tdata,
1396 &pmbus_thermal_ops);
1397 /*
1398 * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV,
1399 * so ignore that error but forward any other error.
1400 */
1401 if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV))
1402 return PTR_ERR(tzd);
1403
1404 return 0;
1405 }
1406
pmbus_add_sensor(struct pmbus_data * data,const char * name,const char * type,int seq,int page,int phase,int reg,enum pmbus_sensor_classes class,bool update,bool readonly,bool convert)1407 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1408 const char *name, const char *type,
1409 int seq, int page, int phase,
1410 int reg,
1411 enum pmbus_sensor_classes class,
1412 bool update, bool readonly,
1413 bool convert)
1414 {
1415 struct pmbus_sensor *sensor;
1416 struct device_attribute *a;
1417
1418 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1419 if (!sensor)
1420 return NULL;
1421 a = &sensor->attribute;
1422
1423 if (type)
1424 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1425 name, seq, type);
1426 else
1427 snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1428 name, seq);
1429
1430 if (data->flags & PMBUS_WRITE_PROTECTED)
1431 readonly = true;
1432
1433 sensor->page = page;
1434 sensor->phase = phase;
1435 sensor->reg = reg;
1436 sensor->class = class;
1437 sensor->update = update;
1438 sensor->convert = convert;
1439 sensor->data = -ENODATA;
1440 pmbus_dev_attr_init(a, sensor->name,
1441 readonly ? 0444 : 0644,
1442 pmbus_show_sensor, pmbus_set_sensor);
1443
1444 if (pmbus_add_attribute(data, &a->attr))
1445 return NULL;
1446
1447 sensor->next = data->sensors;
1448 data->sensors = sensor;
1449
1450 /* temperature sensors with _input values are registered with thermal */
1451 if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0)
1452 pmbus_thermal_add_sensor(data, sensor, seq);
1453
1454 return sensor;
1455 }
1456
pmbus_add_label(struct pmbus_data * data,const char * name,int seq,const char * lstring,int index,int phase)1457 static int pmbus_add_label(struct pmbus_data *data,
1458 const char *name, int seq,
1459 const char *lstring, int index, int phase)
1460 {
1461 struct pmbus_label *label;
1462 struct device_attribute *a;
1463
1464 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1465 if (!label)
1466 return -ENOMEM;
1467
1468 a = &label->attribute;
1469
1470 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1471 if (!index) {
1472 if (phase == 0xff)
1473 strncpy(label->label, lstring,
1474 sizeof(label->label) - 1);
1475 else
1476 snprintf(label->label, sizeof(label->label), "%s.%d",
1477 lstring, phase);
1478 } else {
1479 if (phase == 0xff)
1480 snprintf(label->label, sizeof(label->label), "%s%d",
1481 lstring, index);
1482 else
1483 snprintf(label->label, sizeof(label->label), "%s%d.%d",
1484 lstring, index, phase);
1485 }
1486
1487 pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1488 return pmbus_add_attribute(data, &a->attr);
1489 }
1490
1491 /*
1492 * Search for attributes. Allocate sensors, booleans, and labels as needed.
1493 */
1494
1495 /*
1496 * The pmbus_limit_attr structure describes a single limit attribute
1497 * and its associated alarm attribute.
1498 */
1499 struct pmbus_limit_attr {
1500 u16 reg; /* Limit register */
1501 u16 sbit; /* Alarm attribute status bit */
1502 bool update; /* True if register needs updates */
1503 bool low; /* True if low limit; for limits with compare
1504 functions only */
1505 const char *attr; /* Attribute name */
1506 const char *alarm; /* Alarm attribute name */
1507 };
1508
1509 /*
1510 * The pmbus_sensor_attr structure describes one sensor attribute. This
1511 * description includes a reference to the associated limit attributes.
1512 */
1513 struct pmbus_sensor_attr {
1514 u16 reg; /* sensor register */
1515 u16 gbit; /* generic status bit */
1516 u8 nlimit; /* # of limit registers */
1517 enum pmbus_sensor_classes class;/* sensor class */
1518 const char *label; /* sensor label */
1519 bool paged; /* true if paged sensor */
1520 bool update; /* true if update needed */
1521 bool compare; /* true if compare function needed */
1522 u32 func; /* sensor mask */
1523 u32 sfunc; /* sensor status mask */
1524 int sreg; /* status register */
1525 const struct pmbus_limit_attr *limit;/* limit registers */
1526 };
1527
1528 /*
1529 * Add a set of limit attributes and, if supported, the associated
1530 * alarm attributes.
1531 * returns 0 if no alarm register found, 1 if an alarm register was found,
1532 * < 0 on errors.
1533 */
pmbus_add_limit_attrs(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,struct pmbus_sensor * base,const struct pmbus_sensor_attr * attr)1534 static int pmbus_add_limit_attrs(struct i2c_client *client,
1535 struct pmbus_data *data,
1536 const struct pmbus_driver_info *info,
1537 const char *name, int index, int page,
1538 struct pmbus_sensor *base,
1539 const struct pmbus_sensor_attr *attr)
1540 {
1541 const struct pmbus_limit_attr *l = attr->limit;
1542 int nlimit = attr->nlimit;
1543 int have_alarm = 0;
1544 int i, ret;
1545 struct pmbus_sensor *curr;
1546
1547 for (i = 0; i < nlimit; i++) {
1548 if (pmbus_check_word_register(client, page, l->reg)) {
1549 curr = pmbus_add_sensor(data, name, l->attr, index,
1550 page, 0xff, l->reg, attr->class,
1551 attr->update || l->update,
1552 false, true);
1553 if (!curr)
1554 return -ENOMEM;
1555 if (l->sbit && (info->func[page] & attr->sfunc)) {
1556 ret = pmbus_add_boolean(data, name,
1557 l->alarm, index,
1558 attr->compare ? l->low ? curr : base
1559 : NULL,
1560 attr->compare ? l->low ? base : curr
1561 : NULL,
1562 page, attr->sreg, l->sbit);
1563 if (ret)
1564 return ret;
1565 have_alarm = 1;
1566 }
1567 }
1568 l++;
1569 }
1570 return have_alarm;
1571 }
1572
pmbus_add_sensor_attrs_one(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,int phase,const struct pmbus_sensor_attr * attr,bool paged)1573 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1574 struct pmbus_data *data,
1575 const struct pmbus_driver_info *info,
1576 const char *name,
1577 int index, int page, int phase,
1578 const struct pmbus_sensor_attr *attr,
1579 bool paged)
1580 {
1581 struct pmbus_sensor *base;
1582 bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */
1583 int ret;
1584
1585 if (attr->label) {
1586 ret = pmbus_add_label(data, name, index, attr->label,
1587 paged ? page + 1 : 0, phase);
1588 if (ret)
1589 return ret;
1590 }
1591 base = pmbus_add_sensor(data, name, "input", index, page, phase,
1592 attr->reg, attr->class, true, true, true);
1593 if (!base)
1594 return -ENOMEM;
1595 /* No limit and alarm attributes for phase specific sensors */
1596 if (attr->sfunc && phase == 0xff) {
1597 ret = pmbus_add_limit_attrs(client, data, info, name,
1598 index, page, base, attr);
1599 if (ret < 0)
1600 return ret;
1601 /*
1602 * Add generic alarm attribute only if there are no individual
1603 * alarm attributes, if there is a global alarm bit, and if
1604 * the generic status register (word or byte, depending on
1605 * which global bit is set) for this page is accessible.
1606 */
1607 if (!ret && attr->gbit &&
1608 (!upper || data->has_status_word) &&
1609 pmbus_check_status_register(client, page)) {
1610 ret = pmbus_add_boolean(data, name, "alarm", index,
1611 NULL, NULL,
1612 page, PMBUS_STATUS_WORD,
1613 attr->gbit);
1614 if (ret)
1615 return ret;
1616 }
1617 }
1618 return 0;
1619 }
1620
pmbus_sensor_is_paged(const struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)1621 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1622 const struct pmbus_sensor_attr *attr)
1623 {
1624 int p;
1625
1626 if (attr->paged)
1627 return true;
1628
1629 /*
1630 * Some attributes may be present on more than one page despite
1631 * not being marked with the paged attribute. If that is the case,
1632 * then treat the sensor as being paged and add the page suffix to the
1633 * attribute name.
1634 * We don't just add the paged attribute to all such attributes, in
1635 * order to maintain the un-suffixed labels in the case where the
1636 * attribute is only on page 0.
1637 */
1638 for (p = 1; p < info->pages; p++) {
1639 if (info->func[p] & attr->func)
1640 return true;
1641 }
1642 return false;
1643 }
1644
pmbus_add_sensor_attrs(struct i2c_client * client,struct pmbus_data * data,const char * name,const struct pmbus_sensor_attr * attrs,int nattrs)1645 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1646 struct pmbus_data *data,
1647 const char *name,
1648 const struct pmbus_sensor_attr *attrs,
1649 int nattrs)
1650 {
1651 const struct pmbus_driver_info *info = data->info;
1652 int index, i;
1653 int ret;
1654
1655 index = 1;
1656 for (i = 0; i < nattrs; i++) {
1657 int page, pages;
1658 bool paged = pmbus_sensor_is_paged(info, attrs);
1659
1660 pages = paged ? info->pages : 1;
1661 for (page = 0; page < pages; page++) {
1662 if (info->func[page] & attrs->func) {
1663 ret = pmbus_add_sensor_attrs_one(client, data, info,
1664 name, index, page,
1665 0xff, attrs, paged);
1666 if (ret)
1667 return ret;
1668 index++;
1669 }
1670 if (info->phases[page]) {
1671 int phase;
1672
1673 for (phase = 0; phase < info->phases[page];
1674 phase++) {
1675 if (!(info->pfunc[phase] & attrs->func))
1676 continue;
1677 ret = pmbus_add_sensor_attrs_one(client,
1678 data, info, name, index, page,
1679 phase, attrs, paged);
1680 if (ret)
1681 return ret;
1682 index++;
1683 }
1684 }
1685 }
1686 attrs++;
1687 }
1688 return 0;
1689 }
1690
1691 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1692 {
1693 .reg = PMBUS_VIN_UV_WARN_LIMIT,
1694 .attr = "min",
1695 .alarm = "min_alarm",
1696 .sbit = PB_VOLTAGE_UV_WARNING,
1697 }, {
1698 .reg = PMBUS_VIN_UV_FAULT_LIMIT,
1699 .attr = "lcrit",
1700 .alarm = "lcrit_alarm",
1701 .sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF,
1702 }, {
1703 .reg = PMBUS_VIN_OV_WARN_LIMIT,
1704 .attr = "max",
1705 .alarm = "max_alarm",
1706 .sbit = PB_VOLTAGE_OV_WARNING,
1707 }, {
1708 .reg = PMBUS_VIN_OV_FAULT_LIMIT,
1709 .attr = "crit",
1710 .alarm = "crit_alarm",
1711 .sbit = PB_VOLTAGE_OV_FAULT,
1712 }, {
1713 .reg = PMBUS_VIRT_READ_VIN_AVG,
1714 .update = true,
1715 .attr = "average",
1716 }, {
1717 .reg = PMBUS_VIRT_READ_VIN_MIN,
1718 .update = true,
1719 .attr = "lowest",
1720 }, {
1721 .reg = PMBUS_VIRT_READ_VIN_MAX,
1722 .update = true,
1723 .attr = "highest",
1724 }, {
1725 .reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1726 .attr = "reset_history",
1727 }, {
1728 .reg = PMBUS_MFR_VIN_MIN,
1729 .attr = "rated_min",
1730 }, {
1731 .reg = PMBUS_MFR_VIN_MAX,
1732 .attr = "rated_max",
1733 },
1734 };
1735
1736 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1737 {
1738 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1739 .attr = "min",
1740 .alarm = "min_alarm",
1741 .sbit = PB_VOLTAGE_UV_WARNING,
1742 }, {
1743 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1744 .attr = "lcrit",
1745 .alarm = "lcrit_alarm",
1746 .sbit = PB_VOLTAGE_UV_FAULT,
1747 }, {
1748 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1749 .attr = "max",
1750 .alarm = "max_alarm",
1751 .sbit = PB_VOLTAGE_OV_WARNING,
1752 }, {
1753 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1754 .attr = "crit",
1755 .alarm = "crit_alarm",
1756 .sbit = PB_VOLTAGE_OV_FAULT,
1757 }
1758 };
1759
1760 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1761 {
1762 .reg = PMBUS_VOUT_UV_WARN_LIMIT,
1763 .attr = "min",
1764 .alarm = "min_alarm",
1765 .sbit = PB_VOLTAGE_UV_WARNING,
1766 }, {
1767 .reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1768 .attr = "lcrit",
1769 .alarm = "lcrit_alarm",
1770 .sbit = PB_VOLTAGE_UV_FAULT,
1771 }, {
1772 .reg = PMBUS_VOUT_OV_WARN_LIMIT,
1773 .attr = "max",
1774 .alarm = "max_alarm",
1775 .sbit = PB_VOLTAGE_OV_WARNING,
1776 }, {
1777 .reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1778 .attr = "crit",
1779 .alarm = "crit_alarm",
1780 .sbit = PB_VOLTAGE_OV_FAULT,
1781 }, {
1782 .reg = PMBUS_VIRT_READ_VOUT_AVG,
1783 .update = true,
1784 .attr = "average",
1785 }, {
1786 .reg = PMBUS_VIRT_READ_VOUT_MIN,
1787 .update = true,
1788 .attr = "lowest",
1789 }, {
1790 .reg = PMBUS_VIRT_READ_VOUT_MAX,
1791 .update = true,
1792 .attr = "highest",
1793 }, {
1794 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1795 .attr = "reset_history",
1796 }, {
1797 .reg = PMBUS_MFR_VOUT_MIN,
1798 .attr = "rated_min",
1799 }, {
1800 .reg = PMBUS_MFR_VOUT_MAX,
1801 .attr = "rated_max",
1802 },
1803 };
1804
1805 static const struct pmbus_sensor_attr voltage_attributes[] = {
1806 {
1807 .reg = PMBUS_READ_VIN,
1808 .class = PSC_VOLTAGE_IN,
1809 .label = "vin",
1810 .func = PMBUS_HAVE_VIN,
1811 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1812 .sreg = PMBUS_STATUS_INPUT,
1813 .gbit = PB_STATUS_VIN_UV,
1814 .limit = vin_limit_attrs,
1815 .nlimit = ARRAY_SIZE(vin_limit_attrs),
1816 }, {
1817 .reg = PMBUS_VIRT_READ_VMON,
1818 .class = PSC_VOLTAGE_IN,
1819 .label = "vmon",
1820 .func = PMBUS_HAVE_VMON,
1821 .sfunc = PMBUS_HAVE_STATUS_VMON,
1822 .sreg = PMBUS_VIRT_STATUS_VMON,
1823 .limit = vmon_limit_attrs,
1824 .nlimit = ARRAY_SIZE(vmon_limit_attrs),
1825 }, {
1826 .reg = PMBUS_READ_VCAP,
1827 .class = PSC_VOLTAGE_IN,
1828 .label = "vcap",
1829 .func = PMBUS_HAVE_VCAP,
1830 }, {
1831 .reg = PMBUS_READ_VOUT,
1832 .class = PSC_VOLTAGE_OUT,
1833 .label = "vout",
1834 .paged = true,
1835 .func = PMBUS_HAVE_VOUT,
1836 .sfunc = PMBUS_HAVE_STATUS_VOUT,
1837 .sreg = PMBUS_STATUS_VOUT,
1838 .gbit = PB_STATUS_VOUT_OV,
1839 .limit = vout_limit_attrs,
1840 .nlimit = ARRAY_SIZE(vout_limit_attrs),
1841 }
1842 };
1843
1844 /* Current attributes */
1845
1846 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1847 {
1848 .reg = PMBUS_IIN_OC_WARN_LIMIT,
1849 .attr = "max",
1850 .alarm = "max_alarm",
1851 .sbit = PB_IIN_OC_WARNING,
1852 }, {
1853 .reg = PMBUS_IIN_OC_FAULT_LIMIT,
1854 .attr = "crit",
1855 .alarm = "crit_alarm",
1856 .sbit = PB_IIN_OC_FAULT,
1857 }, {
1858 .reg = PMBUS_VIRT_READ_IIN_AVG,
1859 .update = true,
1860 .attr = "average",
1861 }, {
1862 .reg = PMBUS_VIRT_READ_IIN_MIN,
1863 .update = true,
1864 .attr = "lowest",
1865 }, {
1866 .reg = PMBUS_VIRT_READ_IIN_MAX,
1867 .update = true,
1868 .attr = "highest",
1869 }, {
1870 .reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1871 .attr = "reset_history",
1872 }, {
1873 .reg = PMBUS_MFR_IIN_MAX,
1874 .attr = "rated_max",
1875 },
1876 };
1877
1878 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1879 {
1880 .reg = PMBUS_IOUT_OC_WARN_LIMIT,
1881 .attr = "max",
1882 .alarm = "max_alarm",
1883 .sbit = PB_IOUT_OC_WARNING,
1884 }, {
1885 .reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1886 .attr = "lcrit",
1887 .alarm = "lcrit_alarm",
1888 .sbit = PB_IOUT_UC_FAULT,
1889 }, {
1890 .reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1891 .attr = "crit",
1892 .alarm = "crit_alarm",
1893 .sbit = PB_IOUT_OC_FAULT,
1894 }, {
1895 .reg = PMBUS_VIRT_READ_IOUT_AVG,
1896 .update = true,
1897 .attr = "average",
1898 }, {
1899 .reg = PMBUS_VIRT_READ_IOUT_MIN,
1900 .update = true,
1901 .attr = "lowest",
1902 }, {
1903 .reg = PMBUS_VIRT_READ_IOUT_MAX,
1904 .update = true,
1905 .attr = "highest",
1906 }, {
1907 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1908 .attr = "reset_history",
1909 }, {
1910 .reg = PMBUS_MFR_IOUT_MAX,
1911 .attr = "rated_max",
1912 },
1913 };
1914
1915 static const struct pmbus_sensor_attr current_attributes[] = {
1916 {
1917 .reg = PMBUS_READ_IIN,
1918 .class = PSC_CURRENT_IN,
1919 .label = "iin",
1920 .func = PMBUS_HAVE_IIN,
1921 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1922 .sreg = PMBUS_STATUS_INPUT,
1923 .gbit = PB_STATUS_INPUT,
1924 .limit = iin_limit_attrs,
1925 .nlimit = ARRAY_SIZE(iin_limit_attrs),
1926 }, {
1927 .reg = PMBUS_READ_IOUT,
1928 .class = PSC_CURRENT_OUT,
1929 .label = "iout",
1930 .paged = true,
1931 .func = PMBUS_HAVE_IOUT,
1932 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1933 .sreg = PMBUS_STATUS_IOUT,
1934 .gbit = PB_STATUS_IOUT_OC,
1935 .limit = iout_limit_attrs,
1936 .nlimit = ARRAY_SIZE(iout_limit_attrs),
1937 }
1938 };
1939
1940 /* Power attributes */
1941
1942 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1943 {
1944 .reg = PMBUS_PIN_OP_WARN_LIMIT,
1945 .attr = "max",
1946 .alarm = "alarm",
1947 .sbit = PB_PIN_OP_WARNING,
1948 }, {
1949 .reg = PMBUS_VIRT_READ_PIN_AVG,
1950 .update = true,
1951 .attr = "average",
1952 }, {
1953 .reg = PMBUS_VIRT_READ_PIN_MIN,
1954 .update = true,
1955 .attr = "input_lowest",
1956 }, {
1957 .reg = PMBUS_VIRT_READ_PIN_MAX,
1958 .update = true,
1959 .attr = "input_highest",
1960 }, {
1961 .reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1962 .attr = "reset_history",
1963 }, {
1964 .reg = PMBUS_MFR_PIN_MAX,
1965 .attr = "rated_max",
1966 },
1967 };
1968
1969 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1970 {
1971 .reg = PMBUS_POUT_MAX,
1972 .attr = "cap",
1973 .alarm = "cap_alarm",
1974 .sbit = PB_POWER_LIMITING,
1975 }, {
1976 .reg = PMBUS_POUT_OP_WARN_LIMIT,
1977 .attr = "max",
1978 .alarm = "max_alarm",
1979 .sbit = PB_POUT_OP_WARNING,
1980 }, {
1981 .reg = PMBUS_POUT_OP_FAULT_LIMIT,
1982 .attr = "crit",
1983 .alarm = "crit_alarm",
1984 .sbit = PB_POUT_OP_FAULT,
1985 }, {
1986 .reg = PMBUS_VIRT_READ_POUT_AVG,
1987 .update = true,
1988 .attr = "average",
1989 }, {
1990 .reg = PMBUS_VIRT_READ_POUT_MIN,
1991 .update = true,
1992 .attr = "input_lowest",
1993 }, {
1994 .reg = PMBUS_VIRT_READ_POUT_MAX,
1995 .update = true,
1996 .attr = "input_highest",
1997 }, {
1998 .reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1999 .attr = "reset_history",
2000 }, {
2001 .reg = PMBUS_MFR_POUT_MAX,
2002 .attr = "rated_max",
2003 },
2004 };
2005
2006 static const struct pmbus_sensor_attr power_attributes[] = {
2007 {
2008 .reg = PMBUS_READ_PIN,
2009 .class = PSC_POWER,
2010 .label = "pin",
2011 .func = PMBUS_HAVE_PIN,
2012 .sfunc = PMBUS_HAVE_STATUS_INPUT,
2013 .sreg = PMBUS_STATUS_INPUT,
2014 .gbit = PB_STATUS_INPUT,
2015 .limit = pin_limit_attrs,
2016 .nlimit = ARRAY_SIZE(pin_limit_attrs),
2017 }, {
2018 .reg = PMBUS_READ_POUT,
2019 .class = PSC_POWER,
2020 .label = "pout",
2021 .paged = true,
2022 .func = PMBUS_HAVE_POUT,
2023 .sfunc = PMBUS_HAVE_STATUS_IOUT,
2024 .sreg = PMBUS_STATUS_IOUT,
2025 .limit = pout_limit_attrs,
2026 .nlimit = ARRAY_SIZE(pout_limit_attrs),
2027 }
2028 };
2029
2030 /* Temperature atributes */
2031
2032 static const struct pmbus_limit_attr temp_limit_attrs[] = {
2033 {
2034 .reg = PMBUS_UT_WARN_LIMIT,
2035 .low = true,
2036 .attr = "min",
2037 .alarm = "min_alarm",
2038 .sbit = PB_TEMP_UT_WARNING,
2039 }, {
2040 .reg = PMBUS_UT_FAULT_LIMIT,
2041 .low = true,
2042 .attr = "lcrit",
2043 .alarm = "lcrit_alarm",
2044 .sbit = PB_TEMP_UT_FAULT,
2045 }, {
2046 .reg = PMBUS_OT_WARN_LIMIT,
2047 .attr = "max",
2048 .alarm = "max_alarm",
2049 .sbit = PB_TEMP_OT_WARNING,
2050 }, {
2051 .reg = PMBUS_OT_FAULT_LIMIT,
2052 .attr = "crit",
2053 .alarm = "crit_alarm",
2054 .sbit = PB_TEMP_OT_FAULT,
2055 }, {
2056 .reg = PMBUS_VIRT_READ_TEMP_MIN,
2057 .attr = "lowest",
2058 }, {
2059 .reg = PMBUS_VIRT_READ_TEMP_AVG,
2060 .attr = "average",
2061 }, {
2062 .reg = PMBUS_VIRT_READ_TEMP_MAX,
2063 .attr = "highest",
2064 }, {
2065 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
2066 .attr = "reset_history",
2067 }, {
2068 .reg = PMBUS_MFR_MAX_TEMP_1,
2069 .attr = "rated_max",
2070 },
2071 };
2072
2073 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
2074 {
2075 .reg = PMBUS_UT_WARN_LIMIT,
2076 .low = true,
2077 .attr = "min",
2078 .alarm = "min_alarm",
2079 .sbit = PB_TEMP_UT_WARNING,
2080 }, {
2081 .reg = PMBUS_UT_FAULT_LIMIT,
2082 .low = true,
2083 .attr = "lcrit",
2084 .alarm = "lcrit_alarm",
2085 .sbit = PB_TEMP_UT_FAULT,
2086 }, {
2087 .reg = PMBUS_OT_WARN_LIMIT,
2088 .attr = "max",
2089 .alarm = "max_alarm",
2090 .sbit = PB_TEMP_OT_WARNING,
2091 }, {
2092 .reg = PMBUS_OT_FAULT_LIMIT,
2093 .attr = "crit",
2094 .alarm = "crit_alarm",
2095 .sbit = PB_TEMP_OT_FAULT,
2096 }, {
2097 .reg = PMBUS_VIRT_READ_TEMP2_MIN,
2098 .attr = "lowest",
2099 }, {
2100 .reg = PMBUS_VIRT_READ_TEMP2_AVG,
2101 .attr = "average",
2102 }, {
2103 .reg = PMBUS_VIRT_READ_TEMP2_MAX,
2104 .attr = "highest",
2105 }, {
2106 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
2107 .attr = "reset_history",
2108 }, {
2109 .reg = PMBUS_MFR_MAX_TEMP_2,
2110 .attr = "rated_max",
2111 },
2112 };
2113
2114 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
2115 {
2116 .reg = PMBUS_UT_WARN_LIMIT,
2117 .low = true,
2118 .attr = "min",
2119 .alarm = "min_alarm",
2120 .sbit = PB_TEMP_UT_WARNING,
2121 }, {
2122 .reg = PMBUS_UT_FAULT_LIMIT,
2123 .low = true,
2124 .attr = "lcrit",
2125 .alarm = "lcrit_alarm",
2126 .sbit = PB_TEMP_UT_FAULT,
2127 }, {
2128 .reg = PMBUS_OT_WARN_LIMIT,
2129 .attr = "max",
2130 .alarm = "max_alarm",
2131 .sbit = PB_TEMP_OT_WARNING,
2132 }, {
2133 .reg = PMBUS_OT_FAULT_LIMIT,
2134 .attr = "crit",
2135 .alarm = "crit_alarm",
2136 .sbit = PB_TEMP_OT_FAULT,
2137 }, {
2138 .reg = PMBUS_MFR_MAX_TEMP_3,
2139 .attr = "rated_max",
2140 },
2141 };
2142
2143 static const struct pmbus_sensor_attr temp_attributes[] = {
2144 {
2145 .reg = PMBUS_READ_TEMPERATURE_1,
2146 .class = PSC_TEMPERATURE,
2147 .paged = true,
2148 .update = true,
2149 .compare = true,
2150 .func = PMBUS_HAVE_TEMP,
2151 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2152 .sreg = PMBUS_STATUS_TEMPERATURE,
2153 .gbit = PB_STATUS_TEMPERATURE,
2154 .limit = temp_limit_attrs,
2155 .nlimit = ARRAY_SIZE(temp_limit_attrs),
2156 }, {
2157 .reg = PMBUS_READ_TEMPERATURE_2,
2158 .class = PSC_TEMPERATURE,
2159 .paged = true,
2160 .update = true,
2161 .compare = true,
2162 .func = PMBUS_HAVE_TEMP2,
2163 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2164 .sreg = PMBUS_STATUS_TEMPERATURE,
2165 .gbit = PB_STATUS_TEMPERATURE,
2166 .limit = temp_limit_attrs2,
2167 .nlimit = ARRAY_SIZE(temp_limit_attrs2),
2168 }, {
2169 .reg = PMBUS_READ_TEMPERATURE_3,
2170 .class = PSC_TEMPERATURE,
2171 .paged = true,
2172 .update = true,
2173 .compare = true,
2174 .func = PMBUS_HAVE_TEMP3,
2175 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2176 .sreg = PMBUS_STATUS_TEMPERATURE,
2177 .gbit = PB_STATUS_TEMPERATURE,
2178 .limit = temp_limit_attrs3,
2179 .nlimit = ARRAY_SIZE(temp_limit_attrs3),
2180 }
2181 };
2182
2183 static const int pmbus_fan_registers[] = {
2184 PMBUS_READ_FAN_SPEED_1,
2185 PMBUS_READ_FAN_SPEED_2,
2186 PMBUS_READ_FAN_SPEED_3,
2187 PMBUS_READ_FAN_SPEED_4
2188 };
2189
2190 static const int pmbus_fan_status_registers[] = {
2191 PMBUS_STATUS_FAN_12,
2192 PMBUS_STATUS_FAN_12,
2193 PMBUS_STATUS_FAN_34,
2194 PMBUS_STATUS_FAN_34
2195 };
2196
2197 static const u32 pmbus_fan_flags[] = {
2198 PMBUS_HAVE_FAN12,
2199 PMBUS_HAVE_FAN12,
2200 PMBUS_HAVE_FAN34,
2201 PMBUS_HAVE_FAN34
2202 };
2203
2204 static const u32 pmbus_fan_status_flags[] = {
2205 PMBUS_HAVE_STATUS_FAN12,
2206 PMBUS_HAVE_STATUS_FAN12,
2207 PMBUS_HAVE_STATUS_FAN34,
2208 PMBUS_HAVE_STATUS_FAN34
2209 };
2210
2211 /* Fans */
2212
2213 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
pmbus_add_fan_ctrl(struct i2c_client * client,struct pmbus_data * data,int index,int page,int id,u8 config)2214 static int pmbus_add_fan_ctrl(struct i2c_client *client,
2215 struct pmbus_data *data, int index, int page, int id,
2216 u8 config)
2217 {
2218 struct pmbus_sensor *sensor;
2219
2220 sensor = pmbus_add_sensor(data, "fan", "target", index, page,
2221 0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
2222 false, false, true);
2223
2224 if (!sensor)
2225 return -ENOMEM;
2226
2227 if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
2228 (data->info->func[page] & PMBUS_HAVE_PWM34)))
2229 return 0;
2230
2231 sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
2232 0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
2233 false, false, true);
2234
2235 if (!sensor)
2236 return -ENOMEM;
2237
2238 sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
2239 0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
2240 true, false, false);
2241
2242 if (!sensor)
2243 return -ENOMEM;
2244
2245 return 0;
2246 }
2247
pmbus_add_fan_attributes(struct i2c_client * client,struct pmbus_data * data)2248 static int pmbus_add_fan_attributes(struct i2c_client *client,
2249 struct pmbus_data *data)
2250 {
2251 const struct pmbus_driver_info *info = data->info;
2252 int index = 1;
2253 int page;
2254 int ret;
2255
2256 for (page = 0; page < info->pages; page++) {
2257 int f;
2258
2259 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
2260 int regval;
2261
2262 if (!(info->func[page] & pmbus_fan_flags[f]))
2263 break;
2264
2265 if (!pmbus_check_word_register(client, page,
2266 pmbus_fan_registers[f]))
2267 break;
2268
2269 /*
2270 * Skip fan if not installed.
2271 * Each fan configuration register covers multiple fans,
2272 * so we have to do some magic.
2273 */
2274 regval = _pmbus_read_byte_data(client, page,
2275 pmbus_fan_config_registers[f]);
2276 if (regval < 0 ||
2277 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
2278 continue;
2279
2280 if (pmbus_add_sensor(data, "fan", "input", index,
2281 page, 0xff, pmbus_fan_registers[f],
2282 PSC_FAN, true, true, true) == NULL)
2283 return -ENOMEM;
2284
2285 /* Fan control */
2286 if (pmbus_check_word_register(client, page,
2287 pmbus_fan_command_registers[f])) {
2288 ret = pmbus_add_fan_ctrl(client, data, index,
2289 page, f, regval);
2290 if (ret < 0)
2291 return ret;
2292 }
2293
2294 /*
2295 * Each fan status register covers multiple fans,
2296 * so we have to do some magic.
2297 */
2298 if ((info->func[page] & pmbus_fan_status_flags[f]) &&
2299 pmbus_check_byte_register(client,
2300 page, pmbus_fan_status_registers[f])) {
2301 int reg;
2302
2303 if (f > 1) /* fan 3, 4 */
2304 reg = PMBUS_STATUS_FAN_34;
2305 else
2306 reg = PMBUS_STATUS_FAN_12;
2307 ret = pmbus_add_boolean(data, "fan",
2308 "alarm", index, NULL, NULL, page, reg,
2309 PB_FAN_FAN1_WARNING >> (f & 1));
2310 if (ret)
2311 return ret;
2312 ret = pmbus_add_boolean(data, "fan",
2313 "fault", index, NULL, NULL, page, reg,
2314 PB_FAN_FAN1_FAULT >> (f & 1));
2315 if (ret)
2316 return ret;
2317 }
2318 index++;
2319 }
2320 }
2321 return 0;
2322 }
2323
2324 struct pmbus_samples_attr {
2325 int reg;
2326 char *name;
2327 };
2328
2329 struct pmbus_samples_reg {
2330 int page;
2331 struct pmbus_samples_attr *attr;
2332 struct device_attribute dev_attr;
2333 };
2334
2335 static struct pmbus_samples_attr pmbus_samples_registers[] = {
2336 {
2337 .reg = PMBUS_VIRT_SAMPLES,
2338 .name = "samples",
2339 }, {
2340 .reg = PMBUS_VIRT_IN_SAMPLES,
2341 .name = "in_samples",
2342 }, {
2343 .reg = PMBUS_VIRT_CURR_SAMPLES,
2344 .name = "curr_samples",
2345 }, {
2346 .reg = PMBUS_VIRT_POWER_SAMPLES,
2347 .name = "power_samples",
2348 }, {
2349 .reg = PMBUS_VIRT_TEMP_SAMPLES,
2350 .name = "temp_samples",
2351 }
2352 };
2353
2354 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2355
pmbus_show_samples(struct device * dev,struct device_attribute * devattr,char * buf)2356 static ssize_t pmbus_show_samples(struct device *dev,
2357 struct device_attribute *devattr, char *buf)
2358 {
2359 int val;
2360 struct i2c_client *client = to_i2c_client(dev->parent);
2361 struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2362 struct pmbus_data *data = i2c_get_clientdata(client);
2363
2364 mutex_lock(&data->update_lock);
2365 val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2366 mutex_unlock(&data->update_lock);
2367 if (val < 0)
2368 return val;
2369
2370 return sysfs_emit(buf, "%d\n", val);
2371 }
2372
pmbus_set_samples(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)2373 static ssize_t pmbus_set_samples(struct device *dev,
2374 struct device_attribute *devattr,
2375 const char *buf, size_t count)
2376 {
2377 int ret;
2378 long val;
2379 struct i2c_client *client = to_i2c_client(dev->parent);
2380 struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2381 struct pmbus_data *data = i2c_get_clientdata(client);
2382
2383 if (kstrtol(buf, 0, &val) < 0)
2384 return -EINVAL;
2385
2386 mutex_lock(&data->update_lock);
2387 ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2388 mutex_unlock(&data->update_lock);
2389
2390 return ret ? : count;
2391 }
2392
pmbus_add_samples_attr(struct pmbus_data * data,int page,struct pmbus_samples_attr * attr)2393 static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2394 struct pmbus_samples_attr *attr)
2395 {
2396 struct pmbus_samples_reg *reg;
2397
2398 reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2399 if (!reg)
2400 return -ENOMEM;
2401
2402 reg->attr = attr;
2403 reg->page = page;
2404
2405 pmbus_dev_attr_init(®->dev_attr, attr->name, 0644,
2406 pmbus_show_samples, pmbus_set_samples);
2407
2408 return pmbus_add_attribute(data, ®->dev_attr.attr);
2409 }
2410
pmbus_add_samples_attributes(struct i2c_client * client,struct pmbus_data * data)2411 static int pmbus_add_samples_attributes(struct i2c_client *client,
2412 struct pmbus_data *data)
2413 {
2414 const struct pmbus_driver_info *info = data->info;
2415 int s;
2416
2417 if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2418 return 0;
2419
2420 for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2421 struct pmbus_samples_attr *attr;
2422 int ret;
2423
2424 attr = &pmbus_samples_registers[s];
2425 if (!pmbus_check_word_register(client, 0, attr->reg))
2426 continue;
2427
2428 ret = pmbus_add_samples_attr(data, 0, attr);
2429 if (ret)
2430 return ret;
2431 }
2432
2433 return 0;
2434 }
2435
pmbus_find_attributes(struct i2c_client * client,struct pmbus_data * data)2436 static int pmbus_find_attributes(struct i2c_client *client,
2437 struct pmbus_data *data)
2438 {
2439 int ret;
2440
2441 /* Voltage sensors */
2442 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2443 ARRAY_SIZE(voltage_attributes));
2444 if (ret)
2445 return ret;
2446
2447 /* Current sensors */
2448 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2449 ARRAY_SIZE(current_attributes));
2450 if (ret)
2451 return ret;
2452
2453 /* Power sensors */
2454 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2455 ARRAY_SIZE(power_attributes));
2456 if (ret)
2457 return ret;
2458
2459 /* Temperature sensors */
2460 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2461 ARRAY_SIZE(temp_attributes));
2462 if (ret)
2463 return ret;
2464
2465 /* Fans */
2466 ret = pmbus_add_fan_attributes(client, data);
2467 if (ret)
2468 return ret;
2469
2470 ret = pmbus_add_samples_attributes(client, data);
2471 return ret;
2472 }
2473
2474 /*
2475 * The pmbus_class_attr_map structure maps one sensor class to
2476 * it's corresponding sensor attributes array.
2477 */
2478 struct pmbus_class_attr_map {
2479 enum pmbus_sensor_classes class;
2480 int nattr;
2481 const struct pmbus_sensor_attr *attr;
2482 };
2483
2484 static const struct pmbus_class_attr_map class_attr_map[] = {
2485 {
2486 .class = PSC_VOLTAGE_IN,
2487 .attr = voltage_attributes,
2488 .nattr = ARRAY_SIZE(voltage_attributes),
2489 }, {
2490 .class = PSC_VOLTAGE_OUT,
2491 .attr = voltage_attributes,
2492 .nattr = ARRAY_SIZE(voltage_attributes),
2493 }, {
2494 .class = PSC_CURRENT_IN,
2495 .attr = current_attributes,
2496 .nattr = ARRAY_SIZE(current_attributes),
2497 }, {
2498 .class = PSC_CURRENT_OUT,
2499 .attr = current_attributes,
2500 .nattr = ARRAY_SIZE(current_attributes),
2501 }, {
2502 .class = PSC_POWER,
2503 .attr = power_attributes,
2504 .nattr = ARRAY_SIZE(power_attributes),
2505 }, {
2506 .class = PSC_TEMPERATURE,
2507 .attr = temp_attributes,
2508 .nattr = ARRAY_SIZE(temp_attributes),
2509 }
2510 };
2511
2512 /*
2513 * Read the coefficients for direct mode.
2514 */
pmbus_read_coefficients(struct i2c_client * client,struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)2515 static int pmbus_read_coefficients(struct i2c_client *client,
2516 struct pmbus_driver_info *info,
2517 const struct pmbus_sensor_attr *attr)
2518 {
2519 int rv;
2520 union i2c_smbus_data data;
2521 enum pmbus_sensor_classes class = attr->class;
2522 s8 R;
2523 s16 m, b;
2524
2525 data.block[0] = 2;
2526 data.block[1] = attr->reg;
2527 data.block[2] = 0x01;
2528
2529 pmbus_wait(client);
2530 rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2531 I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS,
2532 I2C_SMBUS_BLOCK_PROC_CALL, &data);
2533 pmbus_update_ts(client, true);
2534
2535 if (rv < 0)
2536 return rv;
2537
2538 if (data.block[0] != 5)
2539 return -EIO;
2540
2541 m = data.block[1] | (data.block[2] << 8);
2542 b = data.block[3] | (data.block[4] << 8);
2543 R = data.block[5];
2544 info->m[class] = m;
2545 info->b[class] = b;
2546 info->R[class] = R;
2547
2548 return rv;
2549 }
2550
pmbus_init_coefficients(struct i2c_client * client,struct pmbus_driver_info * info)2551 static int pmbus_init_coefficients(struct i2c_client *client,
2552 struct pmbus_driver_info *info)
2553 {
2554 int i, n, ret = -EINVAL;
2555 const struct pmbus_class_attr_map *map;
2556 const struct pmbus_sensor_attr *attr;
2557
2558 for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
2559 map = &class_attr_map[i];
2560 if (info->format[map->class] != direct)
2561 continue;
2562 for (n = 0; n < map->nattr; n++) {
2563 attr = &map->attr[n];
2564 if (map->class != attr->class)
2565 continue;
2566 ret = pmbus_read_coefficients(client, info, attr);
2567 if (ret >= 0)
2568 break;
2569 }
2570 if (ret < 0) {
2571 dev_err(&client->dev,
2572 "No coefficients found for sensor class %d\n",
2573 map->class);
2574 return -EINVAL;
2575 }
2576 }
2577
2578 return 0;
2579 }
2580
2581 /*
2582 * Identify chip parameters.
2583 * This function is called for all chips.
2584 */
pmbus_identify_common(struct i2c_client * client,struct pmbus_data * data,int page)2585 static int pmbus_identify_common(struct i2c_client *client,
2586 struct pmbus_data *data, int page)
2587 {
2588 int vout_mode = -1;
2589
2590 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2591 vout_mode = _pmbus_read_byte_data(client, page,
2592 PMBUS_VOUT_MODE);
2593 if (vout_mode >= 0 && vout_mode != 0xff) {
2594 /*
2595 * Not all chips support the VOUT_MODE command,
2596 * so a failure to read it is not an error.
2597 */
2598 switch (vout_mode >> 5) {
2599 case 0: /* linear mode */
2600 if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2601 return -ENODEV;
2602
2603 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
2604 break;
2605 case 1: /* VID mode */
2606 if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2607 return -ENODEV;
2608 break;
2609 case 2: /* direct mode */
2610 if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2611 return -ENODEV;
2612 break;
2613 case 3: /* ieee 754 half precision */
2614 if (data->info->format[PSC_VOLTAGE_OUT] != ieee754)
2615 return -ENODEV;
2616 break;
2617 default:
2618 return -ENODEV;
2619 }
2620 }
2621
2622 return 0;
2623 }
2624
pmbus_read_status_byte(struct i2c_client * client,int page)2625 static int pmbus_read_status_byte(struct i2c_client *client, int page)
2626 {
2627 return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2628 }
2629
pmbus_read_status_word(struct i2c_client * client,int page)2630 static int pmbus_read_status_word(struct i2c_client *client, int page)
2631 {
2632 return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2633 }
2634
2635 /* PEC attribute support */
2636
pec_show(struct device * dev,struct device_attribute * dummy,char * buf)2637 static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
2638 char *buf)
2639 {
2640 struct i2c_client *client = to_i2c_client(dev);
2641
2642 return sysfs_emit(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
2643 }
2644
pec_store(struct device * dev,struct device_attribute * dummy,const char * buf,size_t count)2645 static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
2646 const char *buf, size_t count)
2647 {
2648 struct i2c_client *client = to_i2c_client(dev);
2649 bool enable;
2650 int err;
2651
2652 err = kstrtobool(buf, &enable);
2653 if (err < 0)
2654 return err;
2655
2656 if (enable)
2657 client->flags |= I2C_CLIENT_PEC;
2658 else
2659 client->flags &= ~I2C_CLIENT_PEC;
2660
2661 return count;
2662 }
2663
2664 static DEVICE_ATTR_RW(pec);
2665
pmbus_remove_pec(void * dev)2666 static void pmbus_remove_pec(void *dev)
2667 {
2668 device_remove_file(dev, &dev_attr_pec);
2669 }
2670
pmbus_init_wp(struct i2c_client * client,struct pmbus_data * data)2671 static void pmbus_init_wp(struct i2c_client *client, struct pmbus_data *data)
2672 {
2673 int ret;
2674
2675 switch (wp) {
2676 case 0:
2677 _pmbus_write_byte_data(client, -1,
2678 PMBUS_WRITE_PROTECT, 0);
2679 break;
2680
2681 case 1:
2682 _pmbus_write_byte_data(client, -1,
2683 PMBUS_WRITE_PROTECT, PB_WP_VOUT);
2684 break;
2685
2686 case 2:
2687 _pmbus_write_byte_data(client, -1,
2688 PMBUS_WRITE_PROTECT, PB_WP_OP);
2689 break;
2690
2691 case 3:
2692 _pmbus_write_byte_data(client, -1,
2693 PMBUS_WRITE_PROTECT, PB_WP_ALL);
2694 break;
2695
2696 default:
2697 /* Ignore the other values */
2698 break;
2699 }
2700
2701 ret = _pmbus_read_byte_data(client, -1, PMBUS_WRITE_PROTECT);
2702 if (ret < 0)
2703 return;
2704
2705 switch (ret & PB_WP_ANY) {
2706 case PB_WP_ALL:
2707 data->flags |= PMBUS_OP_PROTECTED;
2708 fallthrough;
2709 case PB_WP_OP:
2710 data->flags |= PMBUS_VOUT_PROTECTED;
2711 fallthrough;
2712 case PB_WP_VOUT:
2713 data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2714 break;
2715
2716 default:
2717 break;
2718 }
2719 }
2720
pmbus_init_common(struct i2c_client * client,struct pmbus_data * data,struct pmbus_driver_info * info)2721 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2722 struct pmbus_driver_info *info)
2723 {
2724 struct device *dev = &client->dev;
2725 int page, ret;
2726
2727 /*
2728 * Figure out if PEC is enabled before accessing any other register.
2729 * Make sure PEC is disabled, will be enabled later if needed.
2730 */
2731 client->flags &= ~I2C_CLIENT_PEC;
2732
2733 /* Enable PEC if the controller and bus supports it */
2734 if (!(data->flags & PMBUS_NO_CAPABILITY)) {
2735 pmbus_wait(client);
2736 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2737 pmbus_update_ts(client, false);
2738
2739 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
2740 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC))
2741 client->flags |= I2C_CLIENT_PEC;
2742 }
2743 }
2744
2745 /*
2746 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2747 * to use PMBUS_STATUS_BYTE instead if that is the case.
2748 * Bail out if both registers are not supported.
2749 */
2750 data->read_status = pmbus_read_status_word;
2751 pmbus_wait(client);
2752 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2753 pmbus_update_ts(client, false);
2754
2755 if (ret < 0 || ret == 0xffff) {
2756 data->read_status = pmbus_read_status_byte;
2757 pmbus_wait(client);
2758 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2759 pmbus_update_ts(client, false);
2760
2761 if (ret < 0 || ret == 0xff) {
2762 dev_err(dev, "PMBus status register not found\n");
2763 return -ENODEV;
2764 }
2765 } else {
2766 data->has_status_word = true;
2767 }
2768
2769 /*
2770 * Check if the chip is write protected. If it is, we can not clear
2771 * faults, and we should not try it. Also, in that case, writes into
2772 * limit registers need to be disabled.
2773 */
2774 if (!(data->flags & PMBUS_NO_WRITE_PROTECT))
2775 pmbus_init_wp(client, data);
2776
2777 ret = i2c_smbus_read_byte_data(client, PMBUS_REVISION);
2778 if (ret >= 0)
2779 data->revision = ret;
2780
2781 if (data->info->pages)
2782 pmbus_clear_faults(client);
2783 else
2784 pmbus_clear_fault_page(client, -1);
2785
2786 if (info->identify) {
2787 ret = (*info->identify)(client, info);
2788 if (ret < 0) {
2789 dev_err(dev, "Chip identification failed\n");
2790 return ret;
2791 }
2792 }
2793
2794 if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2795 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2796 return -ENODEV;
2797 }
2798
2799 for (page = 0; page < info->pages; page++) {
2800 ret = pmbus_identify_common(client, data, page);
2801 if (ret < 0) {
2802 dev_err(dev, "Failed to identify chip capabilities\n");
2803 return ret;
2804 }
2805 }
2806
2807 if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
2808 if (!i2c_check_functionality(client->adapter,
2809 I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
2810 return -ENODEV;
2811
2812 ret = pmbus_init_coefficients(client, info);
2813 if (ret < 0)
2814 return ret;
2815 }
2816
2817 if (client->flags & I2C_CLIENT_PEC) {
2818 /*
2819 * If I2C_CLIENT_PEC is set here, both the I2C adapter and the
2820 * chip support PEC. Add 'pec' attribute to client device to let
2821 * the user control it.
2822 */
2823 ret = device_create_file(dev, &dev_attr_pec);
2824 if (ret)
2825 return ret;
2826 ret = devm_add_action_or_reset(dev, pmbus_remove_pec, dev);
2827 if (ret)
2828 return ret;
2829 }
2830
2831 return 0;
2832 }
2833
2834 /* A PMBus status flag and the corresponding REGULATOR_ERROR_* and REGULATOR_EVENTS_* flag */
2835 struct pmbus_status_assoc {
2836 int pflag, rflag, eflag;
2837 };
2838
2839 /* PMBus->regulator bit mappings for a PMBus status register */
2840 struct pmbus_status_category {
2841 int func;
2842 int reg;
2843 const struct pmbus_status_assoc *bits; /* zero-terminated */
2844 };
2845
2846 static const struct pmbus_status_category __maybe_unused pmbus_status_flag_map[] = {
2847 {
2848 .func = PMBUS_HAVE_STATUS_VOUT,
2849 .reg = PMBUS_STATUS_VOUT,
2850 .bits = (const struct pmbus_status_assoc[]) {
2851 { PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN,
2852 REGULATOR_EVENT_UNDER_VOLTAGE_WARN },
2853 { PB_VOLTAGE_UV_FAULT, REGULATOR_ERROR_UNDER_VOLTAGE,
2854 REGULATOR_EVENT_UNDER_VOLTAGE },
2855 { PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN,
2856 REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2857 { PB_VOLTAGE_OV_FAULT, REGULATOR_ERROR_REGULATION_OUT,
2858 REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2859 { },
2860 },
2861 }, {
2862 .func = PMBUS_HAVE_STATUS_IOUT,
2863 .reg = PMBUS_STATUS_IOUT,
2864 .bits = (const struct pmbus_status_assoc[]) {
2865 { PB_IOUT_OC_WARNING, REGULATOR_ERROR_OVER_CURRENT_WARN,
2866 REGULATOR_EVENT_OVER_CURRENT_WARN },
2867 { PB_IOUT_OC_FAULT, REGULATOR_ERROR_OVER_CURRENT,
2868 REGULATOR_EVENT_OVER_CURRENT },
2869 { PB_IOUT_OC_LV_FAULT, REGULATOR_ERROR_OVER_CURRENT,
2870 REGULATOR_EVENT_OVER_CURRENT },
2871 { },
2872 },
2873 }, {
2874 .func = PMBUS_HAVE_STATUS_TEMP,
2875 .reg = PMBUS_STATUS_TEMPERATURE,
2876 .bits = (const struct pmbus_status_assoc[]) {
2877 { PB_TEMP_OT_WARNING, REGULATOR_ERROR_OVER_TEMP_WARN,
2878 REGULATOR_EVENT_OVER_TEMP_WARN },
2879 { PB_TEMP_OT_FAULT, REGULATOR_ERROR_OVER_TEMP,
2880 REGULATOR_EVENT_OVER_TEMP },
2881 { },
2882 },
2883 },
2884 };
2885
_pmbus_is_enabled(struct i2c_client * client,u8 page)2886 static int _pmbus_is_enabled(struct i2c_client *client, u8 page)
2887 {
2888 int ret;
2889
2890 ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2891
2892 if (ret < 0)
2893 return ret;
2894
2895 return !!(ret & PB_OPERATION_CONTROL_ON);
2896 }
2897
pmbus_is_enabled(struct i2c_client * client,u8 page)2898 static int __maybe_unused pmbus_is_enabled(struct i2c_client *client, u8 page)
2899 {
2900 struct pmbus_data *data = i2c_get_clientdata(client);
2901 int ret;
2902
2903 mutex_lock(&data->update_lock);
2904 ret = _pmbus_is_enabled(client, page);
2905 mutex_unlock(&data->update_lock);
2906
2907 return ret;
2908 }
2909
2910 #define to_dev_attr(_dev_attr) \
2911 container_of(_dev_attr, struct device_attribute, attr)
2912
pmbus_notify(struct pmbus_data * data,int page,int reg,int flags)2913 static void pmbus_notify(struct pmbus_data *data, int page, int reg, int flags)
2914 {
2915 int i;
2916
2917 for (i = 0; i < data->num_attributes; i++) {
2918 struct device_attribute *da = to_dev_attr(data->group.attrs[i]);
2919 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
2920 int index = attr->index;
2921 u16 smask = pb_index_to_mask(index);
2922 u8 spage = pb_index_to_page(index);
2923 u16 sreg = pb_index_to_reg(index);
2924
2925 if (reg == sreg && page == spage && (smask & flags)) {
2926 dev_dbg(data->dev, "sysfs notify: %s", da->attr.name);
2927 sysfs_notify(&data->dev->kobj, NULL, da->attr.name);
2928 kobject_uevent(&data->dev->kobj, KOBJ_CHANGE);
2929 flags &= ~smask;
2930 }
2931
2932 if (!flags)
2933 break;
2934 }
2935 }
2936
_pmbus_get_flags(struct pmbus_data * data,u8 page,unsigned int * flags,unsigned int * event,bool notify)2937 static int _pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2938 unsigned int *event, bool notify)
2939 {
2940 int i, status;
2941 const struct pmbus_status_category *cat;
2942 const struct pmbus_status_assoc *bit;
2943 struct device *dev = data->dev;
2944 struct i2c_client *client = to_i2c_client(dev);
2945 int func = data->info->func[page];
2946
2947 *flags = 0;
2948 *event = 0;
2949
2950 for (i = 0; i < ARRAY_SIZE(pmbus_status_flag_map); i++) {
2951 cat = &pmbus_status_flag_map[i];
2952 if (!(func & cat->func))
2953 continue;
2954
2955 status = _pmbus_read_byte_data(client, page, cat->reg);
2956 if (status < 0)
2957 return status;
2958
2959 for (bit = cat->bits; bit->pflag; bit++)
2960 if (status & bit->pflag) {
2961 *flags |= bit->rflag;
2962 *event |= bit->eflag;
2963 }
2964
2965 if (notify && status)
2966 pmbus_notify(data, page, cat->reg, status);
2967
2968 }
2969
2970 /*
2971 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_*
2972 * bits. Some of the other bits are tempting (especially for cases
2973 * where we don't have the relevant PMBUS_HAVE_STATUS_*
2974 * functionality), but there's an unfortunate ambiguity in that
2975 * they're defined as indicating a fault *or* a warning, so we can't
2976 * easily determine whether to report REGULATOR_ERROR_<foo> or
2977 * REGULATOR_ERROR_<foo>_WARN.
2978 */
2979 status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2980 if (status < 0)
2981 return status;
2982
2983 if (_pmbus_is_enabled(client, page)) {
2984 if (status & PB_STATUS_OFF) {
2985 *flags |= REGULATOR_ERROR_FAIL;
2986 *event |= REGULATOR_EVENT_FAIL;
2987 }
2988
2989 if (status & PB_STATUS_POWER_GOOD_N) {
2990 *flags |= REGULATOR_ERROR_REGULATION_OUT;
2991 *event |= REGULATOR_EVENT_REGULATION_OUT;
2992 }
2993 }
2994 /*
2995 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are
2996 * defined strictly as fault indicators (not warnings).
2997 */
2998 if (status & PB_STATUS_IOUT_OC) {
2999 *flags |= REGULATOR_ERROR_OVER_CURRENT;
3000 *event |= REGULATOR_EVENT_OVER_CURRENT;
3001 }
3002 if (status & PB_STATUS_VOUT_OV) {
3003 *flags |= REGULATOR_ERROR_REGULATION_OUT;
3004 *event |= REGULATOR_EVENT_FAIL;
3005 }
3006
3007 /*
3008 * If we haven't discovered any thermal faults or warnings via
3009 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as
3010 * a (conservative) best-effort interpretation.
3011 */
3012 if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) &&
3013 (status & PB_STATUS_TEMPERATURE)) {
3014 *flags |= REGULATOR_ERROR_OVER_TEMP_WARN;
3015 *event |= REGULATOR_EVENT_OVER_TEMP_WARN;
3016 }
3017
3018
3019 return 0;
3020 }
3021
pmbus_get_flags(struct pmbus_data * data,u8 page,unsigned int * flags,unsigned int * event,bool notify)3022 static int __maybe_unused pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
3023 unsigned int *event, bool notify)
3024 {
3025 int ret;
3026
3027 mutex_lock(&data->update_lock);
3028 ret = _pmbus_get_flags(data, page, flags, event, notify);
3029 mutex_unlock(&data->update_lock);
3030
3031 return ret;
3032 }
3033
3034 #if IS_ENABLED(CONFIG_REGULATOR)
pmbus_regulator_is_enabled(struct regulator_dev * rdev)3035 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
3036 {
3037 struct device *dev = rdev_get_dev(rdev);
3038 struct i2c_client *client = to_i2c_client(dev->parent);
3039
3040 return pmbus_is_enabled(client, rdev_get_id(rdev));
3041 }
3042
_pmbus_regulator_on_off(struct regulator_dev * rdev,bool enable)3043 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
3044 {
3045 struct device *dev = rdev_get_dev(rdev);
3046 struct i2c_client *client = to_i2c_client(dev->parent);
3047 struct pmbus_data *data = i2c_get_clientdata(client);
3048 u8 page = rdev_get_id(rdev);
3049 int ret;
3050
3051 mutex_lock(&data->update_lock);
3052 ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION,
3053 PB_OPERATION_CONTROL_ON,
3054 enable ? PB_OPERATION_CONTROL_ON : 0);
3055 mutex_unlock(&data->update_lock);
3056
3057 return ret;
3058 }
3059
pmbus_regulator_enable(struct regulator_dev * rdev)3060 static int pmbus_regulator_enable(struct regulator_dev *rdev)
3061 {
3062 return _pmbus_regulator_on_off(rdev, 1);
3063 }
3064
pmbus_regulator_disable(struct regulator_dev * rdev)3065 static int pmbus_regulator_disable(struct regulator_dev *rdev)
3066 {
3067 return _pmbus_regulator_on_off(rdev, 0);
3068 }
3069
pmbus_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)3070 static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags)
3071 {
3072 struct device *dev = rdev_get_dev(rdev);
3073 struct i2c_client *client = to_i2c_client(dev->parent);
3074 struct pmbus_data *data = i2c_get_clientdata(client);
3075 int event;
3076
3077 return pmbus_get_flags(data, rdev_get_id(rdev), flags, &event, false);
3078 }
3079
pmbus_regulator_get_status(struct regulator_dev * rdev)3080 static int pmbus_regulator_get_status(struct regulator_dev *rdev)
3081 {
3082 struct device *dev = rdev_get_dev(rdev);
3083 struct i2c_client *client = to_i2c_client(dev->parent);
3084 struct pmbus_data *data = i2c_get_clientdata(client);
3085 u8 page = rdev_get_id(rdev);
3086 int status, ret;
3087 int event;
3088
3089 mutex_lock(&data->update_lock);
3090 status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
3091 if (status < 0) {
3092 ret = status;
3093 goto unlock;
3094 }
3095
3096 if (status & PB_STATUS_OFF) {
3097 ret = REGULATOR_STATUS_OFF;
3098 goto unlock;
3099 }
3100
3101 /* If regulator is ON & reports power good then return ON */
3102 if (!(status & PB_STATUS_POWER_GOOD_N)) {
3103 ret = REGULATOR_STATUS_ON;
3104 goto unlock;
3105 }
3106
3107 ret = _pmbus_get_flags(data, rdev_get_id(rdev), &status, &event, false);
3108 if (ret)
3109 goto unlock;
3110
3111 if (status & (REGULATOR_ERROR_UNDER_VOLTAGE | REGULATOR_ERROR_OVER_CURRENT |
3112 REGULATOR_ERROR_REGULATION_OUT | REGULATOR_ERROR_FAIL | REGULATOR_ERROR_OVER_TEMP)) {
3113 ret = REGULATOR_STATUS_ERROR;
3114 goto unlock;
3115 }
3116
3117 ret = REGULATOR_STATUS_UNDEFINED;
3118
3119 unlock:
3120 mutex_unlock(&data->update_lock);
3121 return ret;
3122 }
3123
pmbus_regulator_get_low_margin(struct i2c_client * client,int page)3124 static int pmbus_regulator_get_low_margin(struct i2c_client *client, int page)
3125 {
3126 struct pmbus_data *data = i2c_get_clientdata(client);
3127 struct pmbus_sensor s = {
3128 .page = page,
3129 .class = PSC_VOLTAGE_OUT,
3130 .convert = true,
3131 .data = -1,
3132 };
3133
3134 if (data->vout_low[page] < 0) {
3135 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MIN))
3136 s.data = _pmbus_read_word_data(client, page, 0xff,
3137 PMBUS_MFR_VOUT_MIN);
3138 if (s.data < 0) {
3139 s.data = _pmbus_read_word_data(client, page, 0xff,
3140 PMBUS_VOUT_MARGIN_LOW);
3141 if (s.data < 0)
3142 return s.data;
3143 }
3144 data->vout_low[page] = pmbus_reg2data(data, &s);
3145 }
3146
3147 return data->vout_low[page];
3148 }
3149
pmbus_regulator_get_high_margin(struct i2c_client * client,int page)3150 static int pmbus_regulator_get_high_margin(struct i2c_client *client, int page)
3151 {
3152 struct pmbus_data *data = i2c_get_clientdata(client);
3153 struct pmbus_sensor s = {
3154 .page = page,
3155 .class = PSC_VOLTAGE_OUT,
3156 .convert = true,
3157 .data = -1,
3158 };
3159
3160 if (data->vout_high[page] < 0) {
3161 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MAX))
3162 s.data = _pmbus_read_word_data(client, page, 0xff,
3163 PMBUS_MFR_VOUT_MAX);
3164 if (s.data < 0) {
3165 s.data = _pmbus_read_word_data(client, page, 0xff,
3166 PMBUS_VOUT_MARGIN_HIGH);
3167 if (s.data < 0)
3168 return s.data;
3169 }
3170 data->vout_high[page] = pmbus_reg2data(data, &s);
3171 }
3172
3173 return data->vout_high[page];
3174 }
3175
pmbus_regulator_get_voltage(struct regulator_dev * rdev)3176 static int pmbus_regulator_get_voltage(struct regulator_dev *rdev)
3177 {
3178 struct device *dev = rdev_get_dev(rdev);
3179 struct i2c_client *client = to_i2c_client(dev->parent);
3180 struct pmbus_data *data = i2c_get_clientdata(client);
3181 struct pmbus_sensor s = {
3182 .page = rdev_get_id(rdev),
3183 .class = PSC_VOLTAGE_OUT,
3184 .convert = true,
3185 };
3186
3187 s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT);
3188 if (s.data < 0)
3189 return s.data;
3190
3191 return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */
3192 }
3193
pmbus_regulator_set_voltage(struct regulator_dev * rdev,int min_uv,int max_uv,unsigned int * selector)3194 static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv,
3195 int max_uv, unsigned int *selector)
3196 {
3197 struct device *dev = rdev_get_dev(rdev);
3198 struct i2c_client *client = to_i2c_client(dev->parent);
3199 struct pmbus_data *data = i2c_get_clientdata(client);
3200 struct pmbus_sensor s = {
3201 .page = rdev_get_id(rdev),
3202 .class = PSC_VOLTAGE_OUT,
3203 .convert = true,
3204 .data = -1,
3205 };
3206 int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */
3207 int low, high;
3208
3209 *selector = 0;
3210
3211 low = pmbus_regulator_get_low_margin(client, s.page);
3212 if (low < 0)
3213 return low;
3214
3215 high = pmbus_regulator_get_high_margin(client, s.page);
3216 if (high < 0)
3217 return high;
3218
3219 /* Make sure we are within margins */
3220 if (low > val)
3221 val = low;
3222 if (high < val)
3223 val = high;
3224
3225 val = pmbus_data2reg(data, &s, val);
3226
3227 return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val);
3228 }
3229
pmbus_regulator_list_voltage(struct regulator_dev * rdev,unsigned int selector)3230 static int pmbus_regulator_list_voltage(struct regulator_dev *rdev,
3231 unsigned int selector)
3232 {
3233 struct device *dev = rdev_get_dev(rdev);
3234 struct i2c_client *client = to_i2c_client(dev->parent);
3235 struct pmbus_data *data = i2c_get_clientdata(client);
3236 int val, low, high;
3237
3238 if (data->flags & PMBUS_VOUT_PROTECTED)
3239 return 0;
3240
3241 if (selector >= rdev->desc->n_voltages ||
3242 selector < rdev->desc->linear_min_sel)
3243 return -EINVAL;
3244
3245 selector -= rdev->desc->linear_min_sel;
3246 val = DIV_ROUND_CLOSEST(rdev->desc->min_uV +
3247 (rdev->desc->uV_step * selector), 1000); /* convert to mV */
3248
3249 low = pmbus_regulator_get_low_margin(client, rdev_get_id(rdev));
3250 if (low < 0)
3251 return low;
3252
3253 high = pmbus_regulator_get_high_margin(client, rdev_get_id(rdev));
3254 if (high < 0)
3255 return high;
3256
3257 if (val >= low && val <= high)
3258 return val * 1000; /* unit is uV */
3259
3260 return 0;
3261 }
3262
3263 const struct regulator_ops pmbus_regulator_ops = {
3264 .enable = pmbus_regulator_enable,
3265 .disable = pmbus_regulator_disable,
3266 .is_enabled = pmbus_regulator_is_enabled,
3267 .get_error_flags = pmbus_regulator_get_error_flags,
3268 .get_status = pmbus_regulator_get_status,
3269 .get_voltage = pmbus_regulator_get_voltage,
3270 .set_voltage = pmbus_regulator_set_voltage,
3271 .list_voltage = pmbus_regulator_list_voltage,
3272 };
3273 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, "PMBUS");
3274
pmbus_regulator_init_cb(struct regulator_dev * rdev,struct regulator_config * config)3275 int pmbus_regulator_init_cb(struct regulator_dev *rdev,
3276 struct regulator_config *config)
3277 {
3278 struct pmbus_data *data = config->driver_data;
3279 struct regulation_constraints *constraints = rdev->constraints;
3280
3281 if (data->flags & PMBUS_OP_PROTECTED)
3282 constraints->valid_ops_mask &= ~REGULATOR_CHANGE_STATUS;
3283
3284 if (data->flags & PMBUS_VOUT_PROTECTED)
3285 constraints->valid_ops_mask &= ~REGULATOR_CHANGE_VOLTAGE;
3286
3287 return 0;
3288 }
3289 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_init_cb, "PMBUS");
3290
pmbus_regulator_register(struct pmbus_data * data)3291 static int pmbus_regulator_register(struct pmbus_data *data)
3292 {
3293 struct device *dev = data->dev;
3294 const struct pmbus_driver_info *info = data->info;
3295 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3296 int i;
3297
3298 data->rdevs = devm_kzalloc(dev, sizeof(struct regulator_dev *) * info->num_regulators,
3299 GFP_KERNEL);
3300 if (!data->rdevs)
3301 return -ENOMEM;
3302
3303 for (i = 0; i < info->num_regulators; i++) {
3304 struct regulator_config config = { };
3305
3306 config.dev = dev;
3307 config.driver_data = data;
3308
3309 if (pdata && pdata->reg_init_data)
3310 config.init_data = &pdata->reg_init_data[i];
3311
3312 data->rdevs[i] = devm_regulator_register(dev, &info->reg_desc[i],
3313 &config);
3314 if (IS_ERR(data->rdevs[i]))
3315 return dev_err_probe(dev, PTR_ERR(data->rdevs[i]),
3316 "Failed to register %s regulator\n",
3317 info->reg_desc[i].name);
3318 }
3319
3320 return 0;
3321 }
3322
pmbus_regulator_notify(struct pmbus_data * data,int page,int event)3323 static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3324 {
3325 int j;
3326
3327 for (j = 0; j < data->info->num_regulators; j++) {
3328 if (page == rdev_get_id(data->rdevs[j])) {
3329 regulator_notifier_call_chain(data->rdevs[j], event, NULL);
3330 break;
3331 }
3332 }
3333 return 0;
3334 }
3335 #else
pmbus_regulator_register(struct pmbus_data * data)3336 static int pmbus_regulator_register(struct pmbus_data *data)
3337 {
3338 return 0;
3339 }
3340
pmbus_regulator_notify(struct pmbus_data * data,int page,int event)3341 static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3342 {
3343 return 0;
3344 }
3345 #endif
3346
pmbus_write_smbalert_mask(struct i2c_client * client,u8 page,u8 reg,u8 val)3347 static int pmbus_write_smbalert_mask(struct i2c_client *client, u8 page, u8 reg, u8 val)
3348 {
3349 int ret;
3350
3351 ret = _pmbus_write_word_data(client, page, PMBUS_SMBALERT_MASK, reg | (val << 8));
3352
3353 /*
3354 * Clear fault systematically in case writing PMBUS_SMBALERT_MASK
3355 * is not supported by the chip.
3356 */
3357 pmbus_clear_fault_page(client, page);
3358
3359 return ret;
3360 }
3361
pmbus_fault_handler(int irq,void * pdata)3362 static irqreturn_t pmbus_fault_handler(int irq, void *pdata)
3363 {
3364 struct pmbus_data *data = pdata;
3365 struct i2c_client *client = to_i2c_client(data->dev);
3366
3367 int i, status, event;
3368 mutex_lock(&data->update_lock);
3369 for (i = 0; i < data->info->pages; i++) {
3370 _pmbus_get_flags(data, i, &status, &event, true);
3371
3372 if (event)
3373 pmbus_regulator_notify(data, i, event);
3374 }
3375
3376 pmbus_clear_faults(client);
3377 mutex_unlock(&data->update_lock);
3378
3379 return IRQ_HANDLED;
3380 }
3381
pmbus_irq_setup(struct i2c_client * client,struct pmbus_data * data)3382 static int pmbus_irq_setup(struct i2c_client *client, struct pmbus_data *data)
3383 {
3384 struct device *dev = &client->dev;
3385 const struct pmbus_status_category *cat;
3386 const struct pmbus_status_assoc *bit;
3387 int i, j, err, func;
3388 u8 mask;
3389
3390 static const u8 misc_status[] = {PMBUS_STATUS_CML, PMBUS_STATUS_OTHER,
3391 PMBUS_STATUS_MFR_SPECIFIC, PMBUS_STATUS_FAN_12,
3392 PMBUS_STATUS_FAN_34};
3393
3394 if (!client->irq)
3395 return 0;
3396
3397 for (i = 0; i < data->info->pages; i++) {
3398 func = data->info->func[i];
3399
3400 for (j = 0; j < ARRAY_SIZE(pmbus_status_flag_map); j++) {
3401 cat = &pmbus_status_flag_map[j];
3402 if (!(func & cat->func))
3403 continue;
3404 mask = 0;
3405 for (bit = cat->bits; bit->pflag; bit++)
3406 mask |= bit->pflag;
3407
3408 err = pmbus_write_smbalert_mask(client, i, cat->reg, ~mask);
3409 if (err)
3410 dev_dbg_once(dev, "Failed to set smbalert for reg 0x%02x\n",
3411 cat->reg);
3412 }
3413
3414 for (j = 0; j < ARRAY_SIZE(misc_status); j++)
3415 pmbus_write_smbalert_mask(client, i, misc_status[j], 0xff);
3416 }
3417
3418 /* Register notifiers */
3419 err = devm_request_threaded_irq(dev, client->irq, NULL, pmbus_fault_handler,
3420 IRQF_ONESHOT, "pmbus-irq", data);
3421 if (err) {
3422 dev_err(dev, "failed to request an irq %d\n", err);
3423 return err;
3424 }
3425
3426 return 0;
3427 }
3428
3429 static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */
3430
3431 #if IS_ENABLED(CONFIG_DEBUG_FS)
pmbus_debugfs_get(void * data,u64 * val)3432 static int pmbus_debugfs_get(void *data, u64 *val)
3433 {
3434 int rc;
3435 struct pmbus_debugfs_entry *entry = data;
3436 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3437
3438 rc = mutex_lock_interruptible(&pdata->update_lock);
3439 if (rc)
3440 return rc;
3441 rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
3442 mutex_unlock(&pdata->update_lock);
3443 if (rc < 0)
3444 return rc;
3445
3446 *val = rc;
3447
3448 return 0;
3449 }
3450 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
3451 "0x%02llx\n");
3452
pmbus_debugfs_get_status(void * data,u64 * val)3453 static int pmbus_debugfs_get_status(void *data, u64 *val)
3454 {
3455 int rc;
3456 struct pmbus_debugfs_entry *entry = data;
3457 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3458
3459 rc = mutex_lock_interruptible(&pdata->update_lock);
3460 if (rc)
3461 return rc;
3462 rc = pdata->read_status(entry->client, entry->page);
3463 mutex_unlock(&pdata->update_lock);
3464 if (rc < 0)
3465 return rc;
3466
3467 *val = rc;
3468
3469 return 0;
3470 }
3471 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
3472 NULL, "0x%04llx\n");
3473
pmbus_debugfs_mfr_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)3474 static ssize_t pmbus_debugfs_mfr_read(struct file *file, char __user *buf,
3475 size_t count, loff_t *ppos)
3476 {
3477 int rc;
3478 struct pmbus_debugfs_entry *entry = file->private_data;
3479 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3480 char data[I2C_SMBUS_BLOCK_MAX + 2] = { 0 };
3481
3482 rc = mutex_lock_interruptible(&pdata->update_lock);
3483 if (rc)
3484 return rc;
3485 rc = pmbus_read_block_data(entry->client, entry->page, entry->reg,
3486 data);
3487 mutex_unlock(&pdata->update_lock);
3488 if (rc < 0)
3489 return rc;
3490
3491 /* Add newline at the end of a read data */
3492 data[rc] = '\n';
3493
3494 /* Include newline into the length */
3495 rc += 1;
3496
3497 return simple_read_from_buffer(buf, count, ppos, data, rc);
3498 }
3499
3500 static const struct file_operations pmbus_debugfs_ops_mfr = {
3501 .llseek = noop_llseek,
3502 .read = pmbus_debugfs_mfr_read,
3503 .write = NULL,
3504 .open = simple_open,
3505 };
3506
pmbus_remove_debugfs(void * data)3507 static void pmbus_remove_debugfs(void *data)
3508 {
3509 struct dentry *entry = data;
3510
3511 debugfs_remove_recursive(entry);
3512 }
3513
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)3514 static int pmbus_init_debugfs(struct i2c_client *client,
3515 struct pmbus_data *data)
3516 {
3517 int i, idx = 0;
3518 char name[PMBUS_NAME_SIZE];
3519 struct pmbus_debugfs_entry *entries;
3520
3521 if (!pmbus_debugfs_dir)
3522 return -ENODEV;
3523
3524 /*
3525 * Create the debugfs directory for this device. Use the hwmon device
3526 * name to avoid conflicts (hwmon numbers are globally unique).
3527 */
3528 data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
3529 pmbus_debugfs_dir);
3530 if (IS_ERR_OR_NULL(data->debugfs)) {
3531 data->debugfs = NULL;
3532 return -ENODEV;
3533 }
3534
3535 /*
3536 * Allocate the max possible entries we need.
3537 * 7 entries device-specific
3538 * 10 entries page-specific
3539 */
3540 entries = devm_kcalloc(data->dev,
3541 7 + data->info->pages * 10, sizeof(*entries),
3542 GFP_KERNEL);
3543 if (!entries)
3544 return -ENOMEM;
3545
3546 /*
3547 * Add device-specific entries.
3548 * Please note that the PMBUS standard allows all registers to be
3549 * page-specific.
3550 * To reduce the number of debugfs entries for devices with many pages
3551 * assume that values of the following registers are the same for all
3552 * pages and report values only for page 0.
3553 */
3554 if (pmbus_check_byte_register(client, 0, PMBUS_REVISION)) {
3555 entries[idx].client = client;
3556 entries[idx].page = 0;
3557 entries[idx].reg = PMBUS_REVISION;
3558 debugfs_create_file("revision", 0444, data->debugfs,
3559 &entries[idx++],
3560 &pmbus_debugfs_ops);
3561 }
3562
3563 if (pmbus_check_block_register(client, 0, PMBUS_MFR_ID)) {
3564 entries[idx].client = client;
3565 entries[idx].page = 0;
3566 entries[idx].reg = PMBUS_MFR_ID;
3567 debugfs_create_file("mfr_id", 0444, data->debugfs,
3568 &entries[idx++],
3569 &pmbus_debugfs_ops_mfr);
3570 }
3571
3572 if (pmbus_check_block_register(client, 0, PMBUS_MFR_MODEL)) {
3573 entries[idx].client = client;
3574 entries[idx].page = 0;
3575 entries[idx].reg = PMBUS_MFR_MODEL;
3576 debugfs_create_file("mfr_model", 0444, data->debugfs,
3577 &entries[idx++],
3578 &pmbus_debugfs_ops_mfr);
3579 }
3580
3581 if (pmbus_check_block_register(client, 0, PMBUS_MFR_REVISION)) {
3582 entries[idx].client = client;
3583 entries[idx].page = 0;
3584 entries[idx].reg = PMBUS_MFR_REVISION;
3585 debugfs_create_file("mfr_revision", 0444, data->debugfs,
3586 &entries[idx++],
3587 &pmbus_debugfs_ops_mfr);
3588 }
3589
3590 if (pmbus_check_block_register(client, 0, PMBUS_MFR_LOCATION)) {
3591 entries[idx].client = client;
3592 entries[idx].page = 0;
3593 entries[idx].reg = PMBUS_MFR_LOCATION;
3594 debugfs_create_file("mfr_location", 0444, data->debugfs,
3595 &entries[idx++],
3596 &pmbus_debugfs_ops_mfr);
3597 }
3598
3599 if (pmbus_check_block_register(client, 0, PMBUS_MFR_DATE)) {
3600 entries[idx].client = client;
3601 entries[idx].page = 0;
3602 entries[idx].reg = PMBUS_MFR_DATE;
3603 debugfs_create_file("mfr_date", 0444, data->debugfs,
3604 &entries[idx++],
3605 &pmbus_debugfs_ops_mfr);
3606 }
3607
3608 if (pmbus_check_block_register(client, 0, PMBUS_MFR_SERIAL)) {
3609 entries[idx].client = client;
3610 entries[idx].page = 0;
3611 entries[idx].reg = PMBUS_MFR_SERIAL;
3612 debugfs_create_file("mfr_serial", 0444, data->debugfs,
3613 &entries[idx++],
3614 &pmbus_debugfs_ops_mfr);
3615 }
3616
3617 /* Add page specific entries */
3618 for (i = 0; i < data->info->pages; ++i) {
3619 /* Check accessibility of status register if it's not page 0 */
3620 if (!i || pmbus_check_status_register(client, i)) {
3621 /* No need to set reg as we have special read op. */
3622 entries[idx].client = client;
3623 entries[idx].page = i;
3624 scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
3625 debugfs_create_file(name, 0444, data->debugfs,
3626 &entries[idx++],
3627 &pmbus_debugfs_ops_status);
3628 }
3629
3630 if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
3631 entries[idx].client = client;
3632 entries[idx].page = i;
3633 entries[idx].reg = PMBUS_STATUS_VOUT;
3634 scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
3635 debugfs_create_file(name, 0444, data->debugfs,
3636 &entries[idx++],
3637 &pmbus_debugfs_ops);
3638 }
3639
3640 if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
3641 entries[idx].client = client;
3642 entries[idx].page = i;
3643 entries[idx].reg = PMBUS_STATUS_IOUT;
3644 scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
3645 debugfs_create_file(name, 0444, data->debugfs,
3646 &entries[idx++],
3647 &pmbus_debugfs_ops);
3648 }
3649
3650 if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
3651 entries[idx].client = client;
3652 entries[idx].page = i;
3653 entries[idx].reg = PMBUS_STATUS_INPUT;
3654 scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
3655 debugfs_create_file(name, 0444, data->debugfs,
3656 &entries[idx++],
3657 &pmbus_debugfs_ops);
3658 }
3659
3660 if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
3661 entries[idx].client = client;
3662 entries[idx].page = i;
3663 entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
3664 scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
3665 debugfs_create_file(name, 0444, data->debugfs,
3666 &entries[idx++],
3667 &pmbus_debugfs_ops);
3668 }
3669
3670 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
3671 entries[idx].client = client;
3672 entries[idx].page = i;
3673 entries[idx].reg = PMBUS_STATUS_CML;
3674 scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
3675 debugfs_create_file(name, 0444, data->debugfs,
3676 &entries[idx++],
3677 &pmbus_debugfs_ops);
3678 }
3679
3680 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
3681 entries[idx].client = client;
3682 entries[idx].page = i;
3683 entries[idx].reg = PMBUS_STATUS_OTHER;
3684 scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
3685 debugfs_create_file(name, 0444, data->debugfs,
3686 &entries[idx++],
3687 &pmbus_debugfs_ops);
3688 }
3689
3690 if (pmbus_check_byte_register(client, i,
3691 PMBUS_STATUS_MFR_SPECIFIC)) {
3692 entries[idx].client = client;
3693 entries[idx].page = i;
3694 entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
3695 scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
3696 debugfs_create_file(name, 0444, data->debugfs,
3697 &entries[idx++],
3698 &pmbus_debugfs_ops);
3699 }
3700
3701 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
3702 entries[idx].client = client;
3703 entries[idx].page = i;
3704 entries[idx].reg = PMBUS_STATUS_FAN_12;
3705 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
3706 debugfs_create_file(name, 0444, data->debugfs,
3707 &entries[idx++],
3708 &pmbus_debugfs_ops);
3709 }
3710
3711 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
3712 entries[idx].client = client;
3713 entries[idx].page = i;
3714 entries[idx].reg = PMBUS_STATUS_FAN_34;
3715 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
3716 debugfs_create_file(name, 0444, data->debugfs,
3717 &entries[idx++],
3718 &pmbus_debugfs_ops);
3719 }
3720 }
3721
3722 return devm_add_action_or_reset(data->dev,
3723 pmbus_remove_debugfs, data->debugfs);
3724 }
3725 #else
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)3726 static int pmbus_init_debugfs(struct i2c_client *client,
3727 struct pmbus_data *data)
3728 {
3729 return 0;
3730 }
3731 #endif /* IS_ENABLED(CONFIG_DEBUG_FS) */
3732
pmbus_do_probe(struct i2c_client * client,struct pmbus_driver_info * info)3733 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
3734 {
3735 struct device *dev = &client->dev;
3736 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3737 struct pmbus_data *data;
3738 size_t groups_num = 0;
3739 int ret;
3740 int i;
3741 char *name;
3742
3743 if (!info)
3744 return -ENODEV;
3745
3746 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
3747 | I2C_FUNC_SMBUS_BYTE_DATA
3748 | I2C_FUNC_SMBUS_WORD_DATA))
3749 return -ENODEV;
3750
3751 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
3752 if (!data)
3753 return -ENOMEM;
3754
3755 if (info->groups)
3756 while (info->groups[groups_num])
3757 groups_num++;
3758
3759 data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
3760 GFP_KERNEL);
3761 if (!data->groups)
3762 return -ENOMEM;
3763
3764 i2c_set_clientdata(client, data);
3765 mutex_init(&data->update_lock);
3766 data->dev = dev;
3767
3768 if (pdata)
3769 data->flags = pdata->flags;
3770 data->info = info;
3771 data->currpage = -1;
3772 data->currphase = -1;
3773
3774 for (i = 0; i < ARRAY_SIZE(data->vout_low); i++) {
3775 data->vout_low[i] = -1;
3776 data->vout_high[i] = -1;
3777 }
3778
3779 ret = pmbus_init_common(client, data, info);
3780 if (ret < 0)
3781 return ret;
3782
3783 ret = pmbus_find_attributes(client, data);
3784 if (ret)
3785 return ret;
3786
3787 /*
3788 * If there are no attributes, something is wrong.
3789 * Bail out instead of trying to register nothing.
3790 */
3791 if (!data->num_attributes) {
3792 dev_err(dev, "No attributes found\n");
3793 return -ENODEV;
3794 }
3795
3796 name = devm_kstrdup(dev, client->name, GFP_KERNEL);
3797 if (!name)
3798 return -ENOMEM;
3799 strreplace(name, '-', '_');
3800
3801 data->groups[0] = &data->group;
3802 memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
3803 data->hwmon_dev = devm_hwmon_device_register_with_groups(dev,
3804 name, data, data->groups);
3805 if (IS_ERR(data->hwmon_dev)) {
3806 dev_err(dev, "Failed to register hwmon device\n");
3807 return PTR_ERR(data->hwmon_dev);
3808 }
3809
3810 ret = pmbus_regulator_register(data);
3811 if (ret)
3812 return ret;
3813
3814 ret = pmbus_irq_setup(client, data);
3815 if (ret)
3816 return ret;
3817
3818 ret = pmbus_init_debugfs(client, data);
3819 if (ret)
3820 dev_warn(dev, "Failed to register debugfs\n");
3821
3822 return 0;
3823 }
3824 EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, "PMBUS");
3825
pmbus_get_debugfs_dir(struct i2c_client * client)3826 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
3827 {
3828 struct pmbus_data *data = i2c_get_clientdata(client);
3829
3830 return data->debugfs;
3831 }
3832 EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, "PMBUS");
3833
pmbus_lock_interruptible(struct i2c_client * client)3834 int pmbus_lock_interruptible(struct i2c_client *client)
3835 {
3836 struct pmbus_data *data = i2c_get_clientdata(client);
3837
3838 return mutex_lock_interruptible(&data->update_lock);
3839 }
3840 EXPORT_SYMBOL_NS_GPL(pmbus_lock_interruptible, "PMBUS");
3841
pmbus_unlock(struct i2c_client * client)3842 void pmbus_unlock(struct i2c_client *client)
3843 {
3844 struct pmbus_data *data = i2c_get_clientdata(client);
3845
3846 mutex_unlock(&data->update_lock);
3847 }
3848 EXPORT_SYMBOL_NS_GPL(pmbus_unlock, "PMBUS");
3849
pmbus_core_init(void)3850 static int __init pmbus_core_init(void)
3851 {
3852 pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
3853 if (IS_ERR(pmbus_debugfs_dir))
3854 pmbus_debugfs_dir = NULL;
3855
3856 return 0;
3857 }
3858
pmbus_core_exit(void)3859 static void __exit pmbus_core_exit(void)
3860 {
3861 debugfs_remove_recursive(pmbus_debugfs_dir);
3862 }
3863
3864 module_init(pmbus_core_init);
3865 module_exit(pmbus_core_exit);
3866
3867 MODULE_AUTHOR("Guenter Roeck");
3868 MODULE_DESCRIPTION("PMBus core driver");
3869 MODULE_LICENSE("GPL");
3870