xref: /titanic_41/usr/src/uts/i86pc/io/mp_platform_common.c (revision 288387a9ac4e9c60fba9357425bc0b447b9aabcc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2016 Nexenta Systems, Inc.
24  * Copyright (c) 2017 by Delphix. All rights reserved.
25  */
26 /*
27  * Copyright (c) 2010, Intel Corporation.
28  * All rights reserved.
29  */
30 
31 /*
32  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
33  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
34  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
35  * PSMI 1.5 extensions are supported in Solaris Nevada.
36  * PSMI 1.6 extensions are supported in Solaris Nevada.
37  * PSMI 1.7 extensions are supported in Solaris Nevada.
38  */
39 #define	PSMI_1_7
40 
41 #include <sys/processor.h>
42 #include <sys/time.h>
43 #include <sys/psm.h>
44 #include <sys/smp_impldefs.h>
45 #include <sys/cram.h>
46 #include <sys/acpi/acpi.h>
47 #include <sys/acpica.h>
48 #include <sys/psm_common.h>
49 #include <sys/apic.h>
50 #include <sys/apic_timer.h>
51 #include <sys/pit.h>
52 #include <sys/ddi.h>
53 #include <sys/sunddi.h>
54 #include <sys/ddi_impldefs.h>
55 #include <sys/pci.h>
56 #include <sys/promif.h>
57 #include <sys/x86_archext.h>
58 #include <sys/cpc_impl.h>
59 #include <sys/uadmin.h>
60 #include <sys/panic.h>
61 #include <sys/debug.h>
62 #include <sys/archsystm.h>
63 #include <sys/trap.h>
64 #include <sys/machsystm.h>
65 #include <sys/cpuvar.h>
66 #include <sys/rm_platter.h>
67 #include <sys/privregs.h>
68 #include <sys/cyclic.h>
69 #include <sys/note.h>
70 #include <sys/pci_intr_lib.h>
71 #include <sys/sunndi.h>
72 #if !defined(__xpv)
73 #include <sys/hpet.h>
74 #include <sys/clock.h>
75 #endif
76 
77 /*
78  *	Local Function Prototypes
79  */
80 static int apic_handle_defconf();
81 static int apic_parse_mpct(caddr_t mpct, int bypass);
82 static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size);
83 static int apic_checksum(caddr_t bptr, int len);
84 static int apic_find_bus_type(char *bus);
85 static int apic_find_bus(int busid);
86 static struct apic_io_intr *apic_find_io_intr(int irqno);
87 static int apic_find_free_irq(int start, int end);
88 struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid);
89 static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp);
90 static void apic_free_apic_cpus(void);
91 static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr);
92 static int apic_acpi_enter_apicmode(void);
93 
94 int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno,
95     int child_ipin, struct apic_io_intr **intrp);
96 int apic_find_bus_id(int bustype);
97 int apic_find_intin(uchar_t ioapic, uchar_t intin);
98 void apic_record_rdt_entry(apic_irq_t *irqptr, int irq);
99 
100 int apic_debug_mps_id = 0;	/* 1 - print MPS ID strings */
101 
102 /* ACPI SCI interrupt configuration; -1 if SCI not used */
103 int apic_sci_vect = -1;
104 iflag_t apic_sci_flags;
105 
106 #if !defined(__xpv)
107 /* ACPI HPET interrupt configuration; -1 if HPET not used */
108 int apic_hpet_vect = -1;
109 iflag_t apic_hpet_flags;
110 #endif
111 
112 /*
113  * psm name pointer
114  */
115 char *psm_name;
116 
117 /* ACPI support routines */
118 static int acpi_probe(char *);
119 static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
120     int *pci_irqp, iflag_t *intr_flagp);
121 
122 int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
123     int ipin, int *pci_irqp, iflag_t *intr_flagp);
124 uchar_t acpi_find_ioapic(int irq);
125 static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2);
126 
127 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */
128 int apic_max_reps_clear_pending = 1000;
129 
130 int	apic_intr_policy = INTR_ROUND_ROBIN;
131 
132 int	apic_next_bind_cpu = 1; /* For round robin assignment */
133 				/* start with cpu 1 */
134 
135 /*
136  * If enabled, the distribution works as follows:
137  * On every interrupt entry, the current ipl for the CPU is set in cpu_info
138  * and the irq corresponding to the ipl is also set in the aci_current array.
139  * interrupt exit and setspl (due to soft interrupts) will cause the current
140  * ipl to be be changed. This is cache friendly as these frequently used
141  * paths write into a per cpu structure.
142  *
143  * Sampling is done by checking the structures for all CPUs and incrementing
144  * the busy field of the irq (if any) executing on each CPU and the busy field
145  * of the corresponding CPU.
146  * In periodic mode this is done on every clock interrupt.
147  * In one-shot mode, this is done thru a cyclic with an interval of
148  * apic_redistribute_sample_interval (default 10 milli sec).
149  *
150  * Every apic_sample_factor_redistribution times we sample, we do computations
151  * to decide which interrupt needs to be migrated (see comments
152  * before apic_intr_redistribute().
153  */
154 
155 /*
156  * Following 3 variables start as % and can be patched or set using an
157  * API to be defined in future. They will be scaled to
158  * sample_factor_redistribution which is in turn set to hertz+1 (in periodic
159  * mode), or 101 in one-shot mode to stagger it away from one sec processing
160  */
161 
162 int	apic_int_busy_mark = 60;
163 int	apic_int_free_mark = 20;
164 int	apic_diff_for_redistribution = 10;
165 
166 /* sampling interval for interrupt redistribution for dynamic migration */
167 int	apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */
168 
169 /*
170  * number of times we sample before deciding to redistribute interrupts
171  * for dynamic migration
172  */
173 int	apic_sample_factor_redistribution = 101;
174 
175 int	apic_redist_cpu_skip = 0;
176 int	apic_num_imbalance = 0;
177 int	apic_num_rebind = 0;
178 
179 /*
180  * Maximum number of APIC CPUs in the system, -1 indicates that dynamic
181  * allocation of CPU ids is disabled.
182  */
183 int 	apic_max_nproc = -1;
184 int	apic_nproc = 0;
185 size_t	apic_cpus_size = 0;
186 int	apic_defconf = 0;
187 int	apic_irq_translate = 0;
188 int	apic_spec_rev = 0;
189 int	apic_imcrp = 0;
190 
191 int	apic_use_acpi = 1;	/* 1 = use ACPI, 0 = don't use ACPI */
192 int	apic_use_acpi_madt_only = 0;	/* 1=ONLY use MADT from ACPI */
193 
194 /*
195  * For interrupt link devices, if apic_unconditional_srs is set, an irq resource
196  * will be assigned (via _SRS). If it is not set, use the current
197  * irq setting (via _CRS), but only if that irq is in the set of possible
198  * irqs (returned by _PRS) for the device.
199  */
200 int	apic_unconditional_srs = 1;
201 
202 /*
203  * For interrupt link devices, if apic_prefer_crs is set when we are
204  * assigning an IRQ resource to a device, prefer the current IRQ setting
205  * over other possible irq settings under same conditions.
206  */
207 
208 int	apic_prefer_crs = 1;
209 
210 uchar_t apic_io_id[MAX_IO_APIC];
211 volatile uint32_t *apicioadr[MAX_IO_APIC];
212 uchar_t	apic_io_ver[MAX_IO_APIC];
213 uchar_t	apic_io_vectbase[MAX_IO_APIC];
214 uchar_t	apic_io_vectend[MAX_IO_APIC];
215 uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1];
216 uint32_t apic_physaddr[MAX_IO_APIC];
217 
218 boolean_t ioapic_mask_workaround[MAX_IO_APIC];
219 
220 /*
221  * First available slot to be used as IRQ index into the apic_irq_table
222  * for those interrupts (like MSI/X) that don't have a physical IRQ.
223  */
224 int apic_first_avail_irq  = APIC_FIRST_FREE_IRQ;
225 
226 /*
227  * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound
228  * and bound elements of cpus_info and the temp_cpu element of irq_struct
229  */
230 lock_t	apic_ioapic_lock;
231 
232 int	apic_io_max = 0;	/* no. of i/o apics enabled */
233 
234 struct apic_io_intr *apic_io_intrp = NULL;
235 static	struct apic_bus	*apic_busp;
236 
237 uchar_t	apic_resv_vector[MAXIPL+1];
238 
239 char	apic_level_intr[APIC_MAX_VECTOR+1];
240 
241 uint32_t	eisa_level_intr_mask = 0;
242 	/* At least MSB will be set if EISA bus */
243 
244 int	apic_pci_bus_total = 0;
245 uchar_t	apic_single_pci_busid = 0;
246 
247 /*
248  * airq_mutex protects additions to the apic_irq_table - the first
249  * pointer and any airq_nexts off of that one. It also protects
250  * apic_max_device_irq & apic_min_device_irq. It also guarantees
251  * that share_id is unique as new ids are generated only when new
252  * irq_t structs are linked in. Once linked in the structs are never
253  * deleted. temp_cpu & mps_intr_index field indicate if it is programmed
254  * or allocated. Note that there is a slight gap between allocating in
255  * apic_introp_xlate and programming in addspl.
256  */
257 kmutex_t	airq_mutex;
258 apic_irq_t	*apic_irq_table[APIC_MAX_VECTOR+1];
259 int		apic_max_device_irq = 0;
260 int		apic_min_device_irq = APIC_MAX_VECTOR;
261 
262 typedef struct prs_irq_list_ent {
263 	int			list_prio;
264 	int32_t			irq;
265 	iflag_t			intrflags;
266 	acpi_prs_private_t	prsprv;
267 	struct prs_irq_list_ent	*next;
268 } prs_irq_list_t;
269 
270 
271 /*
272  * ACPI variables
273  */
274 /* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */
275 int apic_enable_acpi = 0;
276 
277 /* ACPI Multiple APIC Description Table ptr */
278 static	ACPI_TABLE_MADT *acpi_mapic_dtp = NULL;
279 
280 /* ACPI Interrupt Source Override Structure ptr */
281 ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL;
282 int acpi_iso_cnt = 0;
283 
284 /* ACPI Non-maskable Interrupt Sources ptr */
285 static	ACPI_MADT_NMI_SOURCE *acpi_nmi_sp = NULL;
286 static	int acpi_nmi_scnt = 0;
287 static	ACPI_MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL;
288 static	int acpi_nmi_ccnt = 0;
289 
290 static	boolean_t acpi_found_smp_config = B_FALSE;
291 
292 /*
293  * The following added to identify a software poweroff method if available.
294  */
295 
296 static struct {
297 	int	poweroff_method;
298 	char	oem_id[APIC_MPS_OEM_ID_LEN + 1];	/* MAX + 1 for NULL */
299 	char	prod_id[APIC_MPS_PROD_ID_LEN + 1];	/* MAX + 1 for NULL */
300 } apic_mps_ids[] = {
301 	{ APIC_POWEROFF_VIA_RTC,	"INTEL",	"ALDER" },   /* 4300 */
302 	{ APIC_POWEROFF_VIA_RTC,	"NCR",		"AMC" },    /* 4300 */
303 	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"A450NX" },  /* 4400? */
304 	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"AD450NX" }, /* 4400 */
305 	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"AC450NX" }, /* 4400R */
306 	{ APIC_POWEROFF_VIA_SITKA_BMC,	"INTEL",	"S450NX" },  /* S50  */
307 	{ APIC_POWEROFF_VIA_SITKA_BMC,	"INTEL",	"SC450NX" }  /* S50? */
308 };
309 
310 int	apic_poweroff_method = APIC_POWEROFF_NONE;
311 
312 /*
313  * Auto-configuration routines
314  */
315 
316 /*
317  * Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here
318  * May work with 1.1 - but not guaranteed.
319  * According to the MP Spec, the MP floating pointer structure
320  * will be searched in the order described below:
321  * 1. In the first kilobyte of Extended BIOS Data Area (EBDA)
322  * 2. Within the last kilobyte of system base memory
323  * 3. In the BIOS ROM address space between 0F0000h and 0FFFFh
324  * Once we find the right signature with proper checksum, we call
325  * either handle_defconf or parse_mpct to get all info necessary for
326  * subsequent operations.
327  */
328 int
apic_probe_common(char * modname)329 apic_probe_common(char *modname)
330 {
331 	uint32_t mpct_addr, ebda_start = 0, base_mem_end;
332 	caddr_t	biosdatap;
333 	caddr_t	mpct = 0;
334 	caddr_t	fptr;
335 	int	i, mpct_size, mapsize, retval = PSM_FAILURE;
336 	ushort_t	ebda_seg, base_mem_size;
337 	struct	apic_mpfps_hdr	*fpsp;
338 	struct	apic_mp_cnf_hdr	*hdrp;
339 	int bypass_cpu_and_ioapics_in_mptables;
340 	int acpi_user_options;
341 
342 	if (apic_forceload < 0)
343 		return (retval);
344 
345 	/*
346 	 * Remember who we are
347 	 */
348 	psm_name = modname;
349 
350 	/* Allow override for MADT-only mode */
351 	acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0,
352 	    "acpi-user-options", 0);
353 	apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0);
354 
355 	/* Allow apic_use_acpi to override MADT-only mode */
356 	if (!apic_use_acpi)
357 		apic_use_acpi_madt_only = 0;
358 
359 	retval = acpi_probe(modname);
360 
361 	/*
362 	 * mapin the bios data area 40:0
363 	 * 40:13h - two-byte location reports the base memory size
364 	 * 40:0Eh - two-byte location for the exact starting address of
365 	 *	    the EBDA segment for EISA
366 	 */
367 	biosdatap = psm_map_phys(0x400, 0x20, PROT_READ);
368 	if (!biosdatap)
369 		goto apic_ret;
370 	fpsp = (struct apic_mpfps_hdr *)NULL;
371 	mapsize = MPFPS_RAM_WIN_LEN;
372 	/*LINTED: pointer cast may result in improper alignment */
373 	ebda_seg = *((ushort_t *)(biosdatap+0xe));
374 	/* check the 1k of EBDA */
375 	if (ebda_seg) {
376 		ebda_start = ((uint32_t)ebda_seg) << 4;
377 		fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ);
378 		if (fptr) {
379 			if (!(fpsp =
380 			    apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN)))
381 				psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
382 		}
383 	}
384 	/* If not in EBDA, check the last k of system base memory */
385 	if (!fpsp) {
386 		/*LINTED: pointer cast may result in improper alignment */
387 		base_mem_size = *((ushort_t *)(biosdatap + 0x13));
388 
389 		if (base_mem_size > 512)
390 			base_mem_end = 639 * 1024;
391 		else
392 			base_mem_end = 511 * 1024;
393 		/* if ebda == last k of base mem, skip to check BIOS ROM */
394 		if (base_mem_end != ebda_start) {
395 
396 			fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN,
397 			    PROT_READ);
398 
399 			if (fptr) {
400 				if (!(fpsp = apic_find_fps_sig(fptr,
401 				    MPFPS_RAM_WIN_LEN)))
402 					psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
403 			}
404 		}
405 	}
406 	psm_unmap_phys(biosdatap, 0x20);
407 
408 	/* If still cannot find it, check the BIOS ROM space */
409 	if (!fpsp) {
410 		mapsize = MPFPS_ROM_WIN_LEN;
411 		fptr = psm_map_phys(MPFPS_ROM_WIN_START,
412 		    MPFPS_ROM_WIN_LEN, PROT_READ);
413 		if (fptr) {
414 			if (!(fpsp =
415 			    apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) {
416 				psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
417 				goto apic_ret;
418 			}
419 		}
420 	}
421 
422 	if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) {
423 		psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
424 		goto apic_ret;
425 	}
426 
427 	apic_spec_rev = fpsp->mpfps_spec_rev;
428 	if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) {
429 		psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
430 		goto apic_ret;
431 	}
432 
433 	/* check IMCR is present or not */
434 	apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP;
435 
436 	/* check default configuration (dual CPUs) */
437 	if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) {
438 		psm_unmap_phys(fptr, mapsize);
439 		if ((retval = apic_handle_defconf()) != PSM_SUCCESS)
440 			return (retval);
441 
442 		goto apic_ret;
443 	}
444 
445 	/* MP Configuration Table */
446 	mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr);
447 
448 	psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */
449 
450 	/*
451 	 * Map in enough memory for the MP Configuration Table Header.
452 	 * Use this table to read the total length of the BIOS data and
453 	 * map in all the info
454 	 */
455 	/*LINTED: pointer cast may result in improper alignment */
456 	hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr,
457 	    sizeof (struct apic_mp_cnf_hdr), PROT_READ);
458 	if (!hdrp)
459 		goto apic_ret;
460 
461 	/* check mp configuration table signature PCMP */
462 	if (hdrp->mpcnf_sig != 0x504d4350) {
463 		psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
464 		goto apic_ret;
465 	}
466 	mpct_size = (int)hdrp->mpcnf_tbl_length;
467 
468 	apic_set_pwroff_method_from_mpcnfhdr(hdrp);
469 
470 	psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
471 
472 	if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) {
473 		/* This is an ACPI machine No need for further checks */
474 		goto apic_ret;
475 	}
476 
477 	/*
478 	 * Map in the entries for this machine, ie. Processor
479 	 * Entry Tables, Bus Entry Tables, etc.
480 	 * They are in fixed order following one another
481 	 */
482 	mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ);
483 	if (!mpct)
484 		goto apic_ret;
485 
486 	if (apic_checksum(mpct, mpct_size) != 0)
487 		goto apic_fail1;
488 
489 	/*LINTED: pointer cast may result in improper alignment */
490 	hdrp = (struct apic_mp_cnf_hdr *)mpct;
491 	apicadr = (uint32_t *)mapin_apic((uint32_t)hdrp->mpcnf_local_apic,
492 	    APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
493 	if (!apicadr)
494 		goto apic_fail1;
495 
496 	/* Parse all information in the tables */
497 	bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS);
498 	if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) ==
499 	    PSM_SUCCESS) {
500 		retval = PSM_SUCCESS;
501 		goto apic_ret;
502 	}
503 
504 apic_fail1:
505 	psm_unmap_phys(mpct, mpct_size);
506 	mpct = NULL;
507 
508 apic_ret:
509 	if (retval == PSM_SUCCESS) {
510 		extern int apic_ioapic_method_probe();
511 
512 		if ((retval = apic_ioapic_method_probe()) == PSM_SUCCESS)
513 			return (PSM_SUCCESS);
514 	}
515 
516 	for (i = 0; i < apic_io_max; i++)
517 		mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
518 	if (apic_cpus) {
519 		kmem_free(apic_cpus, apic_cpus_size);
520 		apic_cpus = NULL;
521 	}
522 	if (apicadr) {
523 		mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
524 		apicadr = NULL;
525 	}
526 	if (mpct)
527 		psm_unmap_phys(mpct, mpct_size);
528 
529 	return (retval);
530 }
531 
532 static void
apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr * hdrp)533 apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp)
534 {
535 	int	i;
536 
537 	for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0]));
538 	    i++) {
539 		if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id,
540 		    strlen(apic_mps_ids[i].oem_id)) == 0) &&
541 		    (strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id,
542 		    strlen(apic_mps_ids[i].prod_id)) == 0)) {
543 
544 			apic_poweroff_method = apic_mps_ids[i].poweroff_method;
545 			break;
546 		}
547 	}
548 
549 	if (apic_debug_mps_id != 0) {
550 		cmn_err(CE_CONT, "%s: MPS OEM ID = '%c%c%c%c%c%c%c%c'"
551 		    "Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n",
552 		    psm_name,
553 		    hdrp->mpcnf_oem_str[0],
554 		    hdrp->mpcnf_oem_str[1],
555 		    hdrp->mpcnf_oem_str[2],
556 		    hdrp->mpcnf_oem_str[3],
557 		    hdrp->mpcnf_oem_str[4],
558 		    hdrp->mpcnf_oem_str[5],
559 		    hdrp->mpcnf_oem_str[6],
560 		    hdrp->mpcnf_oem_str[7],
561 		    hdrp->mpcnf_prod_str[0],
562 		    hdrp->mpcnf_prod_str[1],
563 		    hdrp->mpcnf_prod_str[2],
564 		    hdrp->mpcnf_prod_str[3],
565 		    hdrp->mpcnf_prod_str[4],
566 		    hdrp->mpcnf_prod_str[5],
567 		    hdrp->mpcnf_prod_str[6],
568 		    hdrp->mpcnf_prod_str[7],
569 		    hdrp->mpcnf_prod_str[8],
570 		    hdrp->mpcnf_prod_str[9],
571 		    hdrp->mpcnf_prod_str[10],
572 		    hdrp->mpcnf_prod_str[11]);
573 	}
574 }
575 
576 static void
apic_free_apic_cpus(void)577 apic_free_apic_cpus(void)
578 {
579 	if (apic_cpus != NULL) {
580 		kmem_free(apic_cpus, apic_cpus_size);
581 		apic_cpus = NULL;
582 		apic_cpus_size = 0;
583 	}
584 }
585 
586 static int
acpi_probe(char * modname)587 acpi_probe(char *modname)
588 {
589 	int			i, intmax, index;
590 	uint32_t		id, ver;
591 	int			acpi_verboseflags = 0;
592 	int			madt_seen, madt_size;
593 	ACPI_SUBTABLE_HEADER		*ap;
594 	ACPI_MADT_LOCAL_APIC	*mpa;
595 	ACPI_MADT_LOCAL_X2APIC	*mpx2a;
596 	ACPI_MADT_IO_APIC		*mia;
597 	ACPI_MADT_IO_SAPIC		*misa;
598 	ACPI_MADT_INTERRUPT_OVERRIDE	*mio;
599 	ACPI_MADT_NMI_SOURCE		*mns;
600 	ACPI_MADT_INTERRUPT_SOURCE	*mis;
601 	ACPI_MADT_LOCAL_APIC_NMI	*mlan;
602 	ACPI_MADT_LOCAL_X2APIC_NMI	*mx2alan;
603 	ACPI_MADT_LOCAL_APIC_OVERRIDE	*mao;
604 	int			sci;
605 	iflag_t			sci_flags;
606 	volatile uint32_t	*ioapic;
607 	int			ioapic_ix;
608 	uint32_t		*local_ids;
609 	uint32_t		*proc_ids;
610 	uchar_t			hid;
611 	int			warned = 0;
612 
613 	if (!apic_use_acpi)
614 		return (PSM_FAILURE);
615 
616 	if (AcpiGetTable(ACPI_SIG_MADT, 1,
617 	    (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK) {
618 		cmn_err(CE_WARN, "!acpi_probe: No MADT found!");
619 		return (PSM_FAILURE);
620 	}
621 
622 	apicadr = mapin_apic((uint32_t)acpi_mapic_dtp->Address,
623 	    APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
624 	if (!apicadr)
625 		return (PSM_FAILURE);
626 
627 	if ((local_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t),
628 	    KM_NOSLEEP)) == NULL)
629 		return (PSM_FAILURE);
630 
631 	if ((proc_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t),
632 	    KM_NOSLEEP)) == NULL) {
633 		kmem_free(local_ids, NCPU * sizeof (uint32_t));
634 		return (PSM_FAILURE);
635 	}
636 
637 	id = apic_reg_ops->apic_read(APIC_LID_REG);
638 	local_ids[0] = (uchar_t)(id >> 24);
639 	apic_nproc = index = 1;
640 	apic_io_max = 0;
641 
642 	ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1);
643 	madt_size = acpi_mapic_dtp->Header.Length;
644 	madt_seen = sizeof (*acpi_mapic_dtp);
645 
646 	while (madt_seen < madt_size) {
647 		switch (ap->Type) {
648 		case ACPI_MADT_TYPE_LOCAL_APIC:
649 			mpa = (ACPI_MADT_LOCAL_APIC *) ap;
650 			if (mpa->LapicFlags & ACPI_MADT_ENABLED) {
651 				if (mpa->Id == 255) {
652 					cmn_err(CE_WARN, "!%s: encountered "
653 					    "invalid entry in MADT: CPU %d "
654 					    "has Local APIC Id equal to 255 ",
655 					    psm_name, mpa->ProcessorId);
656 				}
657 				if (mpa->Id == local_ids[0]) {
658 					ASSERT(index == 1);
659 					proc_ids[0] = mpa->ProcessorId;
660 				} else if (apic_nproc < NCPU && use_mp &&
661 				    apic_nproc < boot_ncpus) {
662 					local_ids[index] = mpa->Id;
663 					proc_ids[index] = mpa->ProcessorId;
664 					index++;
665 					apic_nproc++;
666 				} else if (apic_nproc == NCPU && !warned) {
667 					cmn_err(CE_WARN, "%s: CPU limit "
668 					    "exceeded"
669 #if !defined(__amd64)
670 					    " for 32-bit mode"
671 #endif
672 					    "; Solaris will use %d CPUs.",
673 					    psm_name,  NCPU);
674 					warned = 1;
675 				}
676 			}
677 			break;
678 
679 		case ACPI_MADT_TYPE_IO_APIC:
680 			mia = (ACPI_MADT_IO_APIC *) ap;
681 			if (apic_io_max < MAX_IO_APIC) {
682 				ioapic_ix = apic_io_max;
683 				apic_io_id[apic_io_max] = mia->Id;
684 				apic_io_vectbase[apic_io_max] =
685 				    mia->GlobalIrqBase;
686 				apic_physaddr[apic_io_max] =
687 				    (uint32_t)mia->Address;
688 				ioapic = apicioadr[apic_io_max] =
689 				    mapin_ioapic((uint32_t)mia->Address,
690 				    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
691 				if (!ioapic)
692 					goto cleanup;
693 				ioapic_mask_workaround[apic_io_max] =
694 				    apic_is_ioapic_AMD_813x(mia->Address);
695 				apic_io_max++;
696 			}
697 			break;
698 
699 		case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE:
700 			mio = (ACPI_MADT_INTERRUPT_OVERRIDE *) ap;
701 			if (acpi_isop == NULL)
702 				acpi_isop = mio;
703 			acpi_iso_cnt++;
704 			break;
705 
706 		case ACPI_MADT_TYPE_NMI_SOURCE:
707 			/* UNIMPLEMENTED */
708 			mns = (ACPI_MADT_NMI_SOURCE *) ap;
709 			if (acpi_nmi_sp == NULL)
710 				acpi_nmi_sp = mns;
711 			acpi_nmi_scnt++;
712 
713 			cmn_err(CE_NOTE, "!apic: nmi source: %d 0x%x\n",
714 			    mns->GlobalIrq, mns->IntiFlags);
715 			break;
716 
717 		case ACPI_MADT_TYPE_LOCAL_APIC_NMI:
718 			/* UNIMPLEMENTED */
719 			mlan = (ACPI_MADT_LOCAL_APIC_NMI *) ap;
720 			if (acpi_nmi_cp == NULL)
721 				acpi_nmi_cp = mlan;
722 			acpi_nmi_ccnt++;
723 
724 			cmn_err(CE_NOTE, "!apic: local nmi: %d 0x%x %d\n",
725 			    mlan->ProcessorId, mlan->IntiFlags,
726 			    mlan->Lint);
727 			break;
728 
729 		case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE:
730 			/* UNIMPLEMENTED */
731 			mao = (ACPI_MADT_LOCAL_APIC_OVERRIDE *) ap;
732 			cmn_err(CE_NOTE, "!apic: address override: %lx\n",
733 			    (long)mao->Address);
734 			break;
735 
736 		case ACPI_MADT_TYPE_IO_SAPIC:
737 			/* UNIMPLEMENTED */
738 			misa = (ACPI_MADT_IO_SAPIC *) ap;
739 
740 			cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n",
741 			    misa->Id, misa->GlobalIrqBase,
742 			    (long)misa->Address);
743 			break;
744 
745 		case ACPI_MADT_TYPE_INTERRUPT_SOURCE:
746 			/* UNIMPLEMENTED */
747 			mis = (ACPI_MADT_INTERRUPT_SOURCE *) ap;
748 
749 			cmn_err(CE_NOTE,
750 			    "!apic: irq source: %d %d %d 0x%x %d %d\n",
751 			    mis->Id, mis->Eid, mis->GlobalIrq,
752 			    mis->IntiFlags, mis->Type,
753 			    mis->IoSapicVector);
754 			break;
755 
756 		case ACPI_MADT_TYPE_LOCAL_X2APIC:
757 			mpx2a = (ACPI_MADT_LOCAL_X2APIC *) ap;
758 
759 			if (mpx2a->LapicFlags & ACPI_MADT_ENABLED) {
760 				if (mpx2a->LocalApicId == local_ids[0]) {
761 					ASSERT(index == 1);
762 					proc_ids[0] = mpx2a->Uid;
763 				} else if (apic_nproc < NCPU && use_mp &&
764 				    apic_nproc < boot_ncpus) {
765 					local_ids[index] = mpx2a->LocalApicId;
766 					proc_ids[index] = mpx2a->Uid;
767 					index++;
768 					apic_nproc++;
769 				} else if (apic_nproc == NCPU && !warned) {
770 					cmn_err(CE_WARN, "%s: CPU limit "
771 					    "exceeded"
772 #if !defined(__amd64)
773 					    " for 32-bit mode"
774 #endif
775 					    "; Solaris will use %d CPUs.",
776 					    psm_name,  NCPU);
777 					warned = 1;
778 				}
779 			}
780 
781 			break;
782 
783 		case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI:
784 			/* UNIMPLEMENTED */
785 			mx2alan = (ACPI_MADT_LOCAL_X2APIC_NMI *) ap;
786 			if (mx2alan->Uid >> 8)
787 				acpi_nmi_ccnt++;
788 
789 #ifdef	DEBUG
790 			cmn_err(CE_NOTE,
791 			    "!apic: local x2apic nmi: %d 0x%x %d\n",
792 			    mx2alan->Uid, mx2alan->IntiFlags, mx2alan->Lint);
793 #endif
794 
795 			break;
796 
797 		case ACPI_MADT_TYPE_RESERVED:
798 		default:
799 			break;
800 		}
801 
802 		/* advance to next entry */
803 		madt_seen += ap->Length;
804 		ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length);
805 	}
806 
807 	/* We found multiple enabled cpus via MADT */
808 	if ((apic_nproc > 1) && (apic_io_max > 0)) {
809 		acpi_found_smp_config = B_TRUE;
810 		cmn_err(CE_NOTE,
811 		    "!apic: Using ACPI (MADT) for SMP configuration");
812 	}
813 
814 	/*
815 	 * allocate enough space for possible hot-adding of CPUs.
816 	 * max_ncpus may be less than apic_nproc if it's set by user.
817 	 */
818 	if (plat_dr_support_cpu()) {
819 		apic_max_nproc = max_ncpus;
820 	}
821 	apic_cpus_size = max(apic_nproc, max_ncpus) * sizeof (*apic_cpus);
822 	if ((apic_cpus = kmem_zalloc(apic_cpus_size, KM_NOSLEEP)) == NULL)
823 		goto cleanup;
824 
825 	/*
826 	 * ACPI doesn't provide the local apic ver, get it directly from the
827 	 * local apic
828 	 */
829 	ver = apic_reg_ops->apic_read(APIC_VERS_REG);
830 	for (i = 0; i < apic_nproc; i++) {
831 		apic_cpus[i].aci_local_id = local_ids[i];
832 		apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF);
833 		apic_cpus[i].aci_processor_id = proc_ids[i];
834 		/* Only build mapping info for CPUs present at boot. */
835 		if (i < boot_ncpus)
836 			(void) acpica_map_cpu(i, proc_ids[i]);
837 	}
838 
839 	/*
840 	 * To support CPU dynamic reconfiguration, the apic CPU info structure
841 	 * for each possible CPU will be pre-allocated at boot time.
842 	 * The state for each apic CPU info structure will be assigned according
843 	 * to the following rules:
844 	 * Rule 1:
845 	 * 	Slot index range: [0, min(apic_nproc, boot_ncpus))
846 	 *	State flags: 0
847 	 *	Note: cpu exists and will be configured/enabled at boot time
848 	 * Rule 2:
849 	 * 	Slot index range: [boot_ncpus, apic_nproc)
850 	 *	State flags: APIC_CPU_FREE | APIC_CPU_DIRTY
851 	 *	Note: cpu exists but won't be configured/enabled at boot time
852 	 * Rule 3:
853 	 * 	Slot index range: [apic_nproc, boot_ncpus)
854 	 *	State flags: APIC_CPU_FREE
855 	 *	Note: cpu doesn't exist at boot time
856 	 * Rule 4:
857 	 * 	Slot index range: [max(apic_nproc, boot_ncpus), max_ncpus)
858 	 *	State flags: APIC_CPU_FREE
859 	 *	Note: cpu doesn't exist at boot time
860 	 */
861 	CPUSET_ZERO(apic_cpumask);
862 	for (i = 0; i < min(boot_ncpus, apic_nproc); i++) {
863 		CPUSET_ADD(apic_cpumask, i);
864 		apic_cpus[i].aci_status = 0;
865 	}
866 	for (i = boot_ncpus; i < apic_nproc; i++) {
867 		apic_cpus[i].aci_status = APIC_CPU_FREE | APIC_CPU_DIRTY;
868 	}
869 	for (i = apic_nproc; i < boot_ncpus; i++) {
870 		apic_cpus[i].aci_status = APIC_CPU_FREE;
871 	}
872 	for (i = max(boot_ncpus, apic_nproc); i < max_ncpus; i++) {
873 		apic_cpus[i].aci_status = APIC_CPU_FREE;
874 	}
875 
876 	for (i = 0; i < apic_io_max; i++) {
877 		ioapic_ix = i;
878 
879 		/*
880 		 * need to check Sitka on the following acpi problem
881 		 * On the Sitka, the ioapic's apic_id field isn't reporting
882 		 * the actual io apic id. We have reported this problem
883 		 * to Intel. Until they fix the problem, we will get the
884 		 * actual id directly from the ioapic.
885 		 */
886 		id = ioapic_read(ioapic_ix, APIC_ID_CMD);
887 		hid = (uchar_t)(id >> 24);
888 
889 		if (hid != apic_io_id[i]) {
890 			if (apic_io_id[i] == 0)
891 				apic_io_id[i] = hid;
892 			else { /* set ioapic id to whatever reported by ACPI */
893 				id = ((uint32_t)apic_io_id[i]) << 24;
894 				ioapic_write(ioapic_ix, APIC_ID_CMD, id);
895 			}
896 		}
897 		ver = ioapic_read(ioapic_ix, APIC_VERS_CMD);
898 		apic_io_ver[i] = (uchar_t)(ver & 0xff);
899 		intmax = (ver >> 16) & 0xff;
900 		apic_io_vectend[i] = apic_io_vectbase[i] + intmax;
901 		if (apic_first_avail_irq <= apic_io_vectend[i])
902 			apic_first_avail_irq = apic_io_vectend[i] + 1;
903 	}
904 
905 
906 	/*
907 	 * Process SCI configuration here
908 	 * An error may be returned here if
909 	 * acpi-user-options specifies legacy mode
910 	 * (no SCI, no ACPI mode)
911 	 */
912 	if (acpica_get_sci(&sci, &sci_flags) != AE_OK)
913 		sci = -1;
914 
915 	/*
916 	 * Now call acpi_init() to generate namespaces
917 	 * If this fails, we don't attempt to use ACPI
918 	 * even if we were able to get a MADT above
919 	 */
920 	if (acpica_init() != AE_OK) {
921 		cmn_err(CE_WARN, "!apic: Failed to initialize acpica!");
922 		goto cleanup;
923 	}
924 
925 	/*
926 	 * Call acpica_build_processor_map() now that we have
927 	 * ACPI namesspace access
928 	 */
929 	(void) acpica_build_processor_map();
930 
931 	/*
932 	 * Squirrel away the SCI and flags for later on
933 	 * in apic_picinit() when we're ready
934 	 */
935 	apic_sci_vect = sci;
936 	apic_sci_flags = sci_flags;
937 
938 	if (apic_verbose & APIC_VERBOSE_IRQ_FLAG)
939 		acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG;
940 
941 	if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG)
942 		acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG;
943 
944 	if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG)
945 		acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG;
946 
947 	if (acpi_psm_init(modname, acpi_verboseflags) == ACPI_PSM_FAILURE)
948 		goto cleanup;
949 
950 	/* Enable ACPI APIC interrupt routing */
951 	if (apic_acpi_enter_apicmode() != PSM_FAILURE) {
952 		cmn_err(CE_NOTE, "!apic: Using APIC interrupt routing mode");
953 		build_reserved_irqlist((uchar_t *)apic_reserved_irqlist);
954 		apic_enable_acpi = 1;
955 		if (apic_sci_vect > 0) {
956 			acpica_set_core_feature(ACPI_FEATURE_SCI_EVENT);
957 		}
958 		if (apic_use_acpi_madt_only) {
959 			cmn_err(CE_CONT,
960 			    "?Using ACPI for CPU/IOAPIC information ONLY\n");
961 		}
962 
963 #if !defined(__xpv)
964 		/*
965 		 * probe ACPI for hpet information here which is used later
966 		 * in apic_picinit().
967 		 */
968 		if (hpet_acpi_init(&apic_hpet_vect, &apic_hpet_flags) < 0) {
969 			cmn_err(CE_NOTE, "!ACPI HPET table query failed\n");
970 		}
971 #endif
972 
973 		kmem_free(local_ids, NCPU * sizeof (uint32_t));
974 		kmem_free(proc_ids, NCPU * sizeof (uint32_t));
975 		return (PSM_SUCCESS);
976 	}
977 	/* if setting APIC mode failed above, we fall through to cleanup */
978 
979 cleanup:
980 	cmn_err(CE_WARN, "!apic: Failed acpi_probe, SMP config was %s",
981 	    acpi_found_smp_config ? "found" : "not found");
982 	apic_free_apic_cpus();
983 	if (apicadr != NULL) {
984 		mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
985 		apicadr = NULL;
986 	}
987 	apic_max_nproc = -1;
988 	apic_nproc = 0;
989 	for (i = 0; i < apic_io_max; i++) {
990 		mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
991 		apicioadr[i] = NULL;
992 	}
993 	apic_io_max = 0;
994 	acpi_isop = NULL;
995 	acpi_iso_cnt = 0;
996 	acpi_nmi_sp = NULL;
997 	acpi_nmi_scnt = 0;
998 	acpi_nmi_cp = NULL;
999 	acpi_nmi_ccnt = 0;
1000 	acpi_found_smp_config = B_FALSE;
1001 	kmem_free(local_ids, NCPU * sizeof (uint32_t));
1002 	kmem_free(proc_ids, NCPU * sizeof (uint32_t));
1003 	return (PSM_FAILURE);
1004 }
1005 
1006 /*
1007  * Handle default configuration. Fill in reqd global variables & tables
1008  * Fill all details as MP table does not give any more info
1009  */
1010 static int
apic_handle_defconf()1011 apic_handle_defconf()
1012 {
1013 	uint_t	lid;
1014 
1015 	/* Failed to probe ACPI MADT tables, disable CPU DR. */
1016 	apic_max_nproc = -1;
1017 	apic_free_apic_cpus();
1018 	plat_dr_disable_cpu();
1019 
1020 	apicioadr[0] = (void *)mapin_ioapic(APIC_IO_ADDR,
1021 	    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
1022 	apicadr = (void *)psm_map_phys(APIC_LOCAL_ADDR,
1023 	    APIC_LOCAL_MEMLEN, PROT_READ);
1024 	apic_cpus_size = 2 * sizeof (*apic_cpus);
1025 	apic_cpus = (apic_cpus_info_t *)
1026 	    kmem_zalloc(apic_cpus_size, KM_NOSLEEP);
1027 	if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus))
1028 		goto apic_handle_defconf_fail;
1029 	CPUSET_ONLY(apic_cpumask, 0);
1030 	CPUSET_ADD(apic_cpumask, 1);
1031 	apic_nproc = 2;
1032 	lid = apic_reg_ops->apic_read(APIC_LID_REG);
1033 	apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET);
1034 	/*
1035 	 * According to the PC+MP spec 1.1, the local ids
1036 	 * for the default configuration has to be 0 or 1
1037 	 */
1038 	if (apic_cpus[0].aci_local_id == 1)
1039 		apic_cpus[1].aci_local_id = 0;
1040 	else if (apic_cpus[0].aci_local_id == 0)
1041 		apic_cpus[1].aci_local_id = 1;
1042 	else
1043 		goto apic_handle_defconf_fail;
1044 
1045 	apic_io_id[0] = 2;
1046 	apic_io_max = 1;
1047 	if (apic_defconf >= 5) {
1048 		apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS;
1049 		apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS;
1050 		apic_io_ver[0] = APIC_INTEGRATED_VERS;
1051 	} else {
1052 		apic_cpus[0].aci_local_ver = 0;		/* 82489 DX */
1053 		apic_cpus[1].aci_local_ver = 0;
1054 		apic_io_ver[0] = 0;
1055 	}
1056 	if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6)
1057 		eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
1058 		    inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
1059 	return (PSM_SUCCESS);
1060 
1061 apic_handle_defconf_fail:
1062 	if (apicadr)
1063 		mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
1064 	if (apicioadr[0])
1065 		mapout_ioapic((caddr_t)apicioadr[0], APIC_IO_MEMLEN);
1066 	return (PSM_FAILURE);
1067 }
1068 
1069 /* Parse the entries in MP configuration table and collect info that we need */
1070 static int
apic_parse_mpct(caddr_t mpct,int bypass_cpus_and_ioapics)1071 apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics)
1072 {
1073 	struct	apic_procent	*procp;
1074 	struct	apic_bus	*busp;
1075 	struct	apic_io_entry	*ioapicp;
1076 	struct	apic_io_intr	*intrp;
1077 	int			ioapic_ix;
1078 	uint_t	lid;
1079 	uint32_t	id;
1080 	uchar_t hid;
1081 	int	warned = 0;
1082 
1083 	/*LINTED: pointer cast may result in improper alignment */
1084 	procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
1085 
1086 	/* No need to count cpu entries if we won't use them */
1087 	if (!bypass_cpus_and_ioapics) {
1088 
1089 		/* Find max # of CPUS and allocate structure accordingly */
1090 		apic_nproc = 0;
1091 		CPUSET_ZERO(apic_cpumask);
1092 		while (procp->proc_entry == APIC_CPU_ENTRY) {
1093 			if (procp->proc_cpuflags & CPUFLAGS_EN) {
1094 				if (apic_nproc < NCPU && use_mp &&
1095 				    apic_nproc < boot_ncpus) {
1096 					CPUSET_ADD(apic_cpumask, apic_nproc);
1097 					apic_nproc++;
1098 				} else if (apic_nproc == NCPU && !warned) {
1099 					cmn_err(CE_WARN, "%s: CPU limit "
1100 					    "exceeded"
1101 #if !defined(__amd64)
1102 					    " for 32-bit mode"
1103 #endif
1104 					    "; Solaris will use %d CPUs.",
1105 					    psm_name,  NCPU);
1106 					warned = 1;
1107 				}
1108 
1109 			}
1110 			procp++;
1111 		}
1112 		apic_cpus_size = apic_nproc * sizeof (*apic_cpus);
1113 		if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *)
1114 		    kmem_zalloc(apic_cpus_size, KM_NOSLEEP)))
1115 			return (PSM_FAILURE);
1116 	}
1117 
1118 	/*LINTED: pointer cast may result in improper alignment */
1119 	procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
1120 
1121 	/*
1122 	 * start with index 1 as 0 needs to be filled in with Boot CPU, but
1123 	 * if we're bypassing this information, it has already been filled
1124 	 * in by acpi_probe(), so don't overwrite it.
1125 	 */
1126 	if (!bypass_cpus_and_ioapics)
1127 		apic_nproc = 1;
1128 
1129 	while (procp->proc_entry == APIC_CPU_ENTRY) {
1130 		/* check whether the cpu exists or not */
1131 		if (!bypass_cpus_and_ioapics &&
1132 		    procp->proc_cpuflags & CPUFLAGS_EN) {
1133 			if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */
1134 				lid = apic_reg_ops->apic_read(APIC_LID_REG);
1135 				apic_cpus[0].aci_local_id = procp->proc_apicid;
1136 				if (apic_cpus[0].aci_local_id !=
1137 				    (uchar_t)(lid >> APIC_ID_BIT_OFFSET)) {
1138 					return (PSM_FAILURE);
1139 				}
1140 				apic_cpus[0].aci_local_ver =
1141 				    procp->proc_version;
1142 			} else if (apic_nproc < NCPU && use_mp &&
1143 			    apic_nproc < boot_ncpus) {
1144 				apic_cpus[apic_nproc].aci_local_id =
1145 				    procp->proc_apicid;
1146 
1147 				apic_cpus[apic_nproc].aci_local_ver =
1148 				    procp->proc_version;
1149 				apic_nproc++;
1150 
1151 			}
1152 		}
1153 		procp++;
1154 	}
1155 
1156 	/*
1157 	 * Save start of bus entries for later use.
1158 	 * Get EISA level cntrl if EISA bus is present.
1159 	 * Also get the CPI bus id for single CPI bus case
1160 	 */
1161 	apic_busp = busp = (struct apic_bus *)procp;
1162 	while (busp->bus_entry == APIC_BUS_ENTRY) {
1163 		lid = apic_find_bus_type((char *)&busp->bus_str1);
1164 		if (lid	== BUS_EISA) {
1165 			eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
1166 			    inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
1167 		} else if (lid == BUS_PCI) {
1168 			/*
1169 			 * apic_single_pci_busid will be used only if
1170 			 * apic_pic_bus_total is equal to 1
1171 			 */
1172 			apic_pci_bus_total++;
1173 			apic_single_pci_busid = busp->bus_id;
1174 		}
1175 		busp++;
1176 	}
1177 
1178 	ioapicp = (struct apic_io_entry *)busp;
1179 
1180 	if (!bypass_cpus_and_ioapics)
1181 		apic_io_max = 0;
1182 	do {
1183 		if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) {
1184 			if (ioapicp->io_flags & IOAPIC_FLAGS_EN) {
1185 				apic_io_id[apic_io_max] = ioapicp->io_apicid;
1186 				apic_io_ver[apic_io_max] = ioapicp->io_version;
1187 				apicioadr[apic_io_max] =
1188 				    (void *)mapin_ioapic(
1189 				    (uint32_t)ioapicp->io_apic_addr,
1190 				    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
1191 
1192 				if (!apicioadr[apic_io_max])
1193 					return (PSM_FAILURE);
1194 
1195 				ioapic_mask_workaround[apic_io_max] =
1196 				    apic_is_ioapic_AMD_813x(
1197 				    ioapicp->io_apic_addr);
1198 
1199 				ioapic_ix = apic_io_max;
1200 				id = ioapic_read(ioapic_ix, APIC_ID_CMD);
1201 				hid = (uchar_t)(id >> 24);
1202 
1203 				if (hid != apic_io_id[apic_io_max]) {
1204 					if (apic_io_id[apic_io_max] == 0)
1205 						apic_io_id[apic_io_max] = hid;
1206 					else {
1207 						/*
1208 						 * set ioapic id to whatever
1209 						 * reported by MPS
1210 						 *
1211 						 * may not need to set index
1212 						 * again ???
1213 						 * take it out and try
1214 						 */
1215 
1216 						id = ((uint32_t)
1217 						    apic_io_id[apic_io_max]) <<
1218 						    24;
1219 
1220 						ioapic_write(ioapic_ix,
1221 						    APIC_ID_CMD, id);
1222 					}
1223 				}
1224 				apic_io_max++;
1225 			}
1226 		}
1227 		ioapicp++;
1228 	} while (ioapicp->io_entry == APIC_IO_ENTRY);
1229 
1230 	apic_io_intrp = (struct apic_io_intr *)ioapicp;
1231 
1232 	intrp = apic_io_intrp;
1233 	while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1234 		if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) ||
1235 		    (apic_find_bus(intrp->intr_busid) == BUS_PCI)) {
1236 			apic_irq_translate = 1;
1237 			break;
1238 		}
1239 		intrp++;
1240 	}
1241 
1242 	return (PSM_SUCCESS);
1243 }
1244 
1245 boolean_t
apic_cpu_in_range(int cpu)1246 apic_cpu_in_range(int cpu)
1247 {
1248 	cpu &= ~IRQ_USER_BOUND;
1249 	/* Check whether cpu id is in valid range. */
1250 	if (cpu < 0 || cpu >= apic_nproc) {
1251 		return (B_FALSE);
1252 	} else if (apic_max_nproc != -1 && cpu >= apic_max_nproc) {
1253 		/*
1254 		 * Check whether cpuid is in valid range if CPU DR is enabled.
1255 		 */
1256 		return (B_FALSE);
1257 	} else if (!CPU_IN_SET(apic_cpumask, cpu)) {
1258 		return (B_FALSE);
1259 	}
1260 
1261 	return (B_TRUE);
1262 }
1263 
1264 processorid_t
apic_get_next_bind_cpu(void)1265 apic_get_next_bind_cpu(void)
1266 {
1267 	int i, count;
1268 	processorid_t cpuid = 0;
1269 
1270 	for (count = 0; count < apic_nproc; count++) {
1271 		if (apic_next_bind_cpu >= apic_nproc) {
1272 			apic_next_bind_cpu = 0;
1273 		}
1274 		i = apic_next_bind_cpu++;
1275 		if (apic_cpu_in_range(i)) {
1276 			cpuid = i;
1277 			break;
1278 		}
1279 	}
1280 
1281 	return (cpuid);
1282 }
1283 
1284 uint16_t
apic_get_apic_version()1285 apic_get_apic_version()
1286 {
1287 	int i;
1288 	uchar_t min_io_apic_ver = 0;
1289 	static uint16_t version;		/* Cache as value is constant */
1290 	static boolean_t found = B_FALSE;	/* Accomodate zero version */
1291 
1292 	if (found == B_FALSE) {
1293 		found = B_TRUE;
1294 
1295 		/*
1296 		 * Don't assume all IO APICs in the system are the same.
1297 		 *
1298 		 * Set to the minimum version.
1299 		 */
1300 		for (i = 0; i < apic_io_max; i++) {
1301 			if ((apic_io_ver[i] != 0) &&
1302 			    ((min_io_apic_ver == 0) ||
1303 			    (min_io_apic_ver >= apic_io_ver[i])))
1304 				min_io_apic_ver = apic_io_ver[i];
1305 		}
1306 
1307 		/* Assume all local APICs are of the same version. */
1308 		version = (min_io_apic_ver << 8) | apic_cpus[0].aci_local_ver;
1309 	}
1310 	return (version);
1311 }
1312 
1313 static struct apic_mpfps_hdr *
apic_find_fps_sig(caddr_t cptr,int len)1314 apic_find_fps_sig(caddr_t cptr, int len)
1315 {
1316 	int	i;
1317 
1318 	/* Look for the pattern "_MP_" */
1319 	for (i = 0; i < len; i += 16) {
1320 		if ((*(cptr+i) == '_') &&
1321 		    (*(cptr+i+1) == 'M') &&
1322 		    (*(cptr+i+2) == 'P') &&
1323 		    (*(cptr+i+3) == '_'))
1324 		    /*LINTED: pointer cast may result in improper alignment */
1325 			return ((struct apic_mpfps_hdr *)(cptr + i));
1326 	}
1327 	return (NULL);
1328 }
1329 
1330 static int
apic_checksum(caddr_t bptr,int len)1331 apic_checksum(caddr_t bptr, int len)
1332 {
1333 	int	i;
1334 	uchar_t	cksum;
1335 
1336 	cksum = 0;
1337 	for (i = 0; i < len; i++)
1338 		cksum += *bptr++;
1339 	return ((int)cksum);
1340 }
1341 
1342 /*
1343  * On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge
1344  * needs special handling.  We may need to chase up the device tree,
1345  * using the PCI-PCI Bridge specification's "rotating IPIN assumptions",
1346  * to find the IPIN at the root bus that relates to the IPIN on the
1347  * subsidiary bus (for ACPI or MP).  We may, however, have an entry
1348  * in the MP table or the ACPI namespace for this device itself.
1349  * We handle both cases in the search below.
1350  */
1351 /* this is the non-acpi version */
1352 int
apic_handle_pci_pci_bridge(dev_info_t * idip,int child_devno,int child_ipin,struct apic_io_intr ** intrp)1353 apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin,
1354     struct apic_io_intr **intrp)
1355 {
1356 	dev_info_t *dipp, *dip;
1357 	int pci_irq;
1358 	ddi_acc_handle_t cfg_handle;
1359 	int bridge_devno, bridge_bus;
1360 	int ipin;
1361 
1362 	dip = idip;
1363 
1364 	/*CONSTCOND*/
1365 	while (1) {
1366 		if (((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) ||
1367 		    (pci_config_setup(dipp, &cfg_handle) != DDI_SUCCESS))
1368 			return (-1);
1369 		if ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) ==
1370 		    PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle,
1371 		    PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) {
1372 			pci_config_teardown(&cfg_handle);
1373 			if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno,
1374 			    NULL) != 0)
1375 				return (-1);
1376 			/*
1377 			 * This is the rotating scheme documented in the
1378 			 * PCI-to-PCI spec.  If the PCI-to-PCI bridge is
1379 			 * behind another PCI-to-PCI bridge, then it needs
1380 			 * to keep ascending until an interrupt entry is
1381 			 * found or the root is reached.
1382 			 */
1383 			ipin = (child_devno + child_ipin) % PCI_INTD;
1384 				if (bridge_bus == 0 && apic_pci_bus_total == 1)
1385 					bridge_bus = (int)apic_single_pci_busid;
1386 				pci_irq = ((bridge_devno & 0x1f) << 2) |
1387 				    (ipin & 0x3);
1388 				if ((*intrp = apic_find_io_intr_w_busid(pci_irq,
1389 				    bridge_bus)) != NULL) {
1390 					return (pci_irq);
1391 				}
1392 			dip = dipp;
1393 			child_devno = bridge_devno;
1394 			child_ipin = ipin;
1395 		} else {
1396 			pci_config_teardown(&cfg_handle);
1397 			return (-1);
1398 		}
1399 	}
1400 	/*LINTED: function will not fall off the bottom */
1401 }
1402 
1403 uchar_t
acpi_find_ioapic(int irq)1404 acpi_find_ioapic(int irq)
1405 {
1406 	int i;
1407 
1408 	for (i = 0; i < apic_io_max; i++) {
1409 		if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i])
1410 			return ((uchar_t)i);
1411 	}
1412 	return (0xFF);	/* shouldn't happen */
1413 }
1414 
1415 /*
1416  * See if two irqs are compatible for sharing a vector.
1417  * Currently we only support sharing of PCI devices.
1418  */
1419 static int
acpi_intr_compatible(iflag_t iflag1,iflag_t iflag2)1420 acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2)
1421 {
1422 	uint_t	level1, po1;
1423 	uint_t	level2, po2;
1424 
1425 	/* Assume active high by default */
1426 	po1 = 0;
1427 	po2 = 0;
1428 
1429 	if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI)
1430 		return (0);
1431 
1432 	if (iflag1.intr_el == INTR_EL_CONFORM)
1433 		level1 = AV_LEVEL;
1434 	else
1435 		level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
1436 
1437 	if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) ||
1438 	    (iflag1.intr_po == INTR_PO_CONFORM)))
1439 		po1 = AV_ACTIVE_LOW;
1440 
1441 	if (iflag2.intr_el == INTR_EL_CONFORM)
1442 		level2 = AV_LEVEL;
1443 	else
1444 		level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
1445 
1446 	if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) ||
1447 	    (iflag2.intr_po == INTR_PO_CONFORM)))
1448 		po2 = AV_ACTIVE_LOW;
1449 
1450 	if ((level1 == level2) && (po1 == po2))
1451 		return (1);
1452 
1453 	return (0);
1454 }
1455 
1456 struct apic_io_intr *
apic_find_io_intr_w_busid(int irqno,int busid)1457 apic_find_io_intr_w_busid(int irqno, int busid)
1458 {
1459 	struct	apic_io_intr	*intrp;
1460 
1461 	/*
1462 	 * It can have more than 1 entry with same source bus IRQ,
1463 	 * but unique with the source bus id
1464 	 */
1465 	intrp = apic_io_intrp;
1466 	if (intrp != NULL) {
1467 		while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1468 			if (intrp->intr_irq == irqno &&
1469 			    intrp->intr_busid == busid &&
1470 			    intrp->intr_type == IO_INTR_INT)
1471 				return (intrp);
1472 			intrp++;
1473 		}
1474 	}
1475 	APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:"
1476 	    "busid %x:%x\n", irqno, busid));
1477 	return ((struct apic_io_intr *)NULL);
1478 }
1479 
1480 
1481 struct mps_bus_info {
1482 	char	*bus_name;
1483 	int	bus_id;
1484 } bus_info_array[] = {
1485 	"ISA ", BUS_ISA,
1486 	"PCI ", BUS_PCI,
1487 	"EISA ", BUS_EISA,
1488 	"XPRESS", BUS_XPRESS,
1489 	"PCMCIA", BUS_PCMCIA,
1490 	"VL ", BUS_VL,
1491 	"CBUS ", BUS_CBUS,
1492 	"CBUSII", BUS_CBUSII,
1493 	"FUTURE", BUS_FUTURE,
1494 	"INTERN", BUS_INTERN,
1495 	"MBI ", BUS_MBI,
1496 	"MBII ", BUS_MBII,
1497 	"MPI ", BUS_MPI,
1498 	"MPSA ", BUS_MPSA,
1499 	"NUBUS ", BUS_NUBUS,
1500 	"TC ", BUS_TC,
1501 	"VME ", BUS_VME,
1502 	"PCI-E ", BUS_PCIE
1503 };
1504 
1505 static int
apic_find_bus_type(char * bus)1506 apic_find_bus_type(char *bus)
1507 {
1508 	int	i = 0;
1509 
1510 	for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++)
1511 		if (strncmp(bus, bus_info_array[i].bus_name,
1512 		    strlen(bus_info_array[i].bus_name)) == 0)
1513 			return (bus_info_array[i].bus_id);
1514 	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus));
1515 	return (0);
1516 }
1517 
1518 static int
apic_find_bus(int busid)1519 apic_find_bus(int busid)
1520 {
1521 	struct	apic_bus	*busp;
1522 
1523 	busp = apic_busp;
1524 	while (busp->bus_entry == APIC_BUS_ENTRY) {
1525 		if (busp->bus_id == busid)
1526 			return (apic_find_bus_type((char *)&busp->bus_str1));
1527 		busp++;
1528 	}
1529 	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid));
1530 	return (0);
1531 }
1532 
1533 int
apic_find_bus_id(int bustype)1534 apic_find_bus_id(int bustype)
1535 {
1536 	struct	apic_bus	*busp;
1537 
1538 	busp = apic_busp;
1539 	while (busp->bus_entry == APIC_BUS_ENTRY) {
1540 		if (apic_find_bus_type((char *)&busp->bus_str1) == bustype)
1541 			return (busp->bus_id);
1542 		busp++;
1543 	}
1544 	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x",
1545 	    bustype));
1546 	return (-1);
1547 }
1548 
1549 /*
1550  * Check if a particular irq need to be reserved for any io_intr
1551  */
1552 static struct apic_io_intr *
apic_find_io_intr(int irqno)1553 apic_find_io_intr(int irqno)
1554 {
1555 	struct	apic_io_intr	*intrp;
1556 
1557 	intrp = apic_io_intrp;
1558 	if (intrp != NULL) {
1559 		while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1560 			if (intrp->intr_irq == irqno &&
1561 			    intrp->intr_type == IO_INTR_INT)
1562 				return (intrp);
1563 			intrp++;
1564 		}
1565 	}
1566 	return ((struct apic_io_intr *)NULL);
1567 }
1568 
1569 /*
1570  * Check if the given ioapicindex intin combination has already been assigned
1571  * an irq. If so return irqno. Else -1
1572  */
1573 int
apic_find_intin(uchar_t ioapic,uchar_t intin)1574 apic_find_intin(uchar_t ioapic, uchar_t intin)
1575 {
1576 	apic_irq_t *irqptr;
1577 	int	i;
1578 
1579 	/* find ioapic and intin in the apic_irq_table[] and return the index */
1580 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
1581 		irqptr = apic_irq_table[i];
1582 		while (irqptr) {
1583 			if ((irqptr->airq_mps_intr_index >= 0) &&
1584 			    (irqptr->airq_intin_no == intin) &&
1585 			    (irqptr->airq_ioapicindex == ioapic)) {
1586 				APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq "
1587 				    "entry for ioapic:intin %x:%x "
1588 				    "shared interrupts ?", ioapic, intin));
1589 				return (i);
1590 			}
1591 			irqptr = irqptr->airq_next;
1592 		}
1593 	}
1594 	return (-1);
1595 }
1596 
1597 int
apic_allocate_irq(int irq)1598 apic_allocate_irq(int irq)
1599 {
1600 	int	freeirq, i;
1601 
1602 	if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1)
1603 		if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ,
1604 		    (irq - 1))) == -1) {
1605 			/*
1606 			 * if BIOS really defines every single irq in the mps
1607 			 * table, then don't worry about conflicting with
1608 			 * them, just use any free slot in apic_irq_table
1609 			 */
1610 			for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
1611 				if ((apic_irq_table[i] == NULL) ||
1612 				    apic_irq_table[i]->airq_mps_intr_index ==
1613 				    FREE_INDEX) {
1614 				freeirq = i;
1615 				break;
1616 			}
1617 		}
1618 		if (freeirq == -1) {
1619 			/* This shouldn't happen, but just in case */
1620 			cmn_err(CE_WARN, "%s: NO available IRQ", psm_name);
1621 			return (-1);
1622 		}
1623 	}
1624 	if (apic_irq_table[freeirq] == NULL) {
1625 		apic_irq_table[freeirq] =
1626 		    kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP);
1627 		if (apic_irq_table[freeirq] == NULL) {
1628 			cmn_err(CE_WARN, "%s: NO memory to allocate IRQ",
1629 			    psm_name);
1630 			return (-1);
1631 		}
1632 		apic_irq_table[freeirq]->airq_temp_cpu = IRQ_UNINIT;
1633 		apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX;
1634 	}
1635 	return (freeirq);
1636 }
1637 
1638 static int
apic_find_free_irq(int start,int end)1639 apic_find_free_irq(int start, int end)
1640 {
1641 	int	i;
1642 
1643 	for (i = start; i <= end; i++)
1644 		/* Check if any I/O entry needs this IRQ */
1645 		if (apic_find_io_intr(i) == NULL) {
1646 			/* Then see if it is free */
1647 			if ((apic_irq_table[i] == NULL) ||
1648 			    (apic_irq_table[i]->airq_mps_intr_index ==
1649 			    FREE_INDEX)) {
1650 				return (i);
1651 			}
1652 		}
1653 	return (-1);
1654 }
1655 
1656 /*
1657  * compute the polarity, trigger mode and vector for programming into
1658  * the I/O apic and record in airq_rdt_entry.
1659  */
1660 void
apic_record_rdt_entry(apic_irq_t * irqptr,int irq)1661 apic_record_rdt_entry(apic_irq_t *irqptr, int irq)
1662 {
1663 	int	ioapicindex, bus_type, vector;
1664 	short	intr_index;
1665 	uint_t	level, po, io_po;
1666 	struct apic_io_intr *iointrp;
1667 
1668 	intr_index = irqptr->airq_mps_intr_index;
1669 	DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d "
1670 	    "irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq,
1671 	    (void *)irqptr->airq_dip, irqptr->airq_vector));
1672 
1673 	if (intr_index == RESERVE_INDEX) {
1674 		apic_error |= APIC_ERR_INVALID_INDEX;
1675 		return;
1676 	} else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) {
1677 		return;
1678 	}
1679 
1680 	vector = irqptr->airq_vector;
1681 	ioapicindex = irqptr->airq_ioapicindex;
1682 	/* Assume edge triggered by default */
1683 	level = 0;
1684 	/* Assume active high by default */
1685 	po = 0;
1686 
1687 	if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) {
1688 		ASSERT(irq < 16);
1689 		if (eisa_level_intr_mask & (1 << irq))
1690 			level = AV_LEVEL;
1691 		if (intr_index == FREE_INDEX && apic_defconf == 0)
1692 			apic_error |= APIC_ERR_INVALID_INDEX;
1693 	} else if (intr_index == ACPI_INDEX) {
1694 		bus_type = irqptr->airq_iflag.bustype;
1695 		if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) {
1696 			if (bus_type == BUS_PCI)
1697 				level = AV_LEVEL;
1698 		} else
1699 			level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ?
1700 			    AV_LEVEL : 0;
1701 		if (level &&
1702 		    ((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) ||
1703 		    (irqptr->airq_iflag.intr_po == INTR_PO_CONFORM &&
1704 		    bus_type == BUS_PCI)))
1705 			po = AV_ACTIVE_LOW;
1706 	} else {
1707 		iointrp = apic_io_intrp + intr_index;
1708 		bus_type = apic_find_bus(iointrp->intr_busid);
1709 		if (iointrp->intr_el == INTR_EL_CONFORM) {
1710 			if ((irq < 16) && (eisa_level_intr_mask & (1 << irq)))
1711 				level = AV_LEVEL;
1712 			else if (bus_type == BUS_PCI)
1713 				level = AV_LEVEL;
1714 		} else
1715 			level = (iointrp->intr_el == INTR_EL_LEVEL) ?
1716 			    AV_LEVEL : 0;
1717 		if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) ||
1718 		    (iointrp->intr_po == INTR_PO_CONFORM &&
1719 		    bus_type == BUS_PCI)))
1720 			po = AV_ACTIVE_LOW;
1721 	}
1722 	if (level)
1723 		apic_level_intr[irq] = 1;
1724 	/*
1725 	 * The 82489DX External APIC cannot do active low polarity interrupts.
1726 	 */
1727 	if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX))
1728 		io_po = po;
1729 	else
1730 		io_po = 0;
1731 
1732 	if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG)
1733 		prom_printf("setio: ioapic=0x%x intin=0x%x level=0x%x po=0x%x "
1734 		    "vector=0x%x cpu=0x%x\n\n", ioapicindex,
1735 		    irqptr->airq_intin_no, level, io_po, vector,
1736 		    irqptr->airq_cpu);
1737 
1738 	irqptr->airq_rdt_entry = level|io_po|vector;
1739 }
1740 
1741 int
apic_acpi_translate_pci_irq(dev_info_t * dip,int busid,int devid,int ipin,int * pci_irqp,iflag_t * intr_flagp)1742 apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
1743     int ipin, int *pci_irqp, iflag_t *intr_flagp)
1744 {
1745 
1746 	int status;
1747 	acpi_psm_lnk_t acpipsmlnk;
1748 
1749 	if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp,
1750 	    intr_flagp)) == ACPI_PSM_SUCCESS) {
1751 		APIC_VERBOSE_IRQ((CE_CONT, "!%s: Found irqno %d "
1752 		    "from cache for device %s, instance #%d\n", psm_name,
1753 		    *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
1754 		return (status);
1755 	}
1756 
1757 	bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t));
1758 
1759 	if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp,
1760 	    &acpipsmlnk)) == ACPI_PSM_FAILURE) {
1761 		APIC_VERBOSE_IRQ((CE_WARN, "%s: "
1762 		    " acpi_translate_pci_irq failed for device %s, instance"
1763 		    " #%d", psm_name, ddi_get_name(dip),
1764 		    ddi_get_instance(dip)));
1765 		return (status);
1766 	}
1767 
1768 	if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) {
1769 		status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp,
1770 		    intr_flagp);
1771 		if (status != ACPI_PSM_SUCCESS) {
1772 			status = acpi_get_current_irq_resource(&acpipsmlnk,
1773 			    pci_irqp, intr_flagp);
1774 		}
1775 	}
1776 
1777 	if (status == ACPI_PSM_SUCCESS) {
1778 		acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp,
1779 		    intr_flagp, &acpipsmlnk);
1780 
1781 		APIC_VERBOSE_IRQ((CE_CONT, "%s: [ACPI] "
1782 		    "new irq %d for device %s, instance #%d\n", psm_name,
1783 		    *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
1784 	}
1785 
1786 	return (status);
1787 }
1788 
1789 /*
1790  * Adds an entry to the irq list passed in, and returns the new list.
1791  * Entries are added in priority order (lower numerical priorities are
1792  * placed closer to the head of the list)
1793  */
1794 static prs_irq_list_t *
acpi_insert_prs_irq_ent(prs_irq_list_t * listp,int priority,int irq,iflag_t * iflagp,acpi_prs_private_t * prsprvp)1795 acpi_insert_prs_irq_ent(prs_irq_list_t *listp, int priority, int irq,
1796     iflag_t *iflagp, acpi_prs_private_t *prsprvp)
1797 {
1798 	struct prs_irq_list_ent *newent, *prevp = NULL, *origlistp;
1799 
1800 	newent = kmem_zalloc(sizeof (struct prs_irq_list_ent), KM_SLEEP);
1801 
1802 	newent->list_prio = priority;
1803 	newent->irq = irq;
1804 	newent->intrflags = *iflagp;
1805 	newent->prsprv = *prsprvp;
1806 	/* ->next is NULL from kmem_zalloc */
1807 
1808 	/*
1809 	 * New list -- return the new entry as the list.
1810 	 */
1811 	if (listp == NULL)
1812 		return (newent);
1813 
1814 	/*
1815 	 * Save original list pointer for return (since we're not modifying
1816 	 * the head)
1817 	 */
1818 	origlistp = listp;
1819 
1820 	/*
1821 	 * Insertion sort, with entries with identical keys stored AFTER
1822 	 * existing entries (the less-than-or-equal test of priority does
1823 	 * this for us).
1824 	 */
1825 	while (listp != NULL && listp->list_prio <= priority) {
1826 		prevp = listp;
1827 		listp = listp->next;
1828 	}
1829 
1830 	newent->next = listp;
1831 
1832 	if (prevp == NULL) { /* Add at head of list (newent is the new head) */
1833 		return (newent);
1834 	} else {
1835 		prevp->next = newent;
1836 		return (origlistp);
1837 	}
1838 }
1839 
1840 /*
1841  * Frees the list passed in, deallocating all memory and leaving *listpp
1842  * set to NULL.
1843  */
1844 static void
acpi_destroy_prs_irq_list(prs_irq_list_t ** listpp)1845 acpi_destroy_prs_irq_list(prs_irq_list_t **listpp)
1846 {
1847 	struct prs_irq_list_ent *nextp;
1848 
1849 	ASSERT(listpp != NULL);
1850 
1851 	while (*listpp != NULL) {
1852 		nextp = (*listpp)->next;
1853 		kmem_free(*listpp, sizeof (struct prs_irq_list_ent));
1854 		*listpp = nextp;
1855 	}
1856 }
1857 
1858 /*
1859  * apic_choose_irqs_from_prs returns a list of irqs selected from the list of
1860  * irqs returned by the link device's _PRS method.  The irqs are chosen
1861  * to minimize contention in situations where the interrupt link device
1862  * can be programmed to steer interrupts to different interrupt controller
1863  * inputs (some of which may already be in use).  The list is sorted in order
1864  * of irqs to use, with the highest priority given to interrupt controller
1865  * inputs that are not shared.   When an interrupt controller input
1866  * must be shared, apic_choose_irqs_from_prs adds the possible irqs to the
1867  * returned list in the order that minimizes sharing (thereby ensuring lowest
1868  * possible latency from interrupt trigger time to ISR execution time).
1869  */
1870 static prs_irq_list_t *
apic_choose_irqs_from_prs(acpi_irqlist_t * irqlistent,dev_info_t * dip,int crs_irq)1871 apic_choose_irqs_from_prs(acpi_irqlist_t *irqlistent, dev_info_t *dip,
1872     int crs_irq)
1873 {
1874 	int32_t irq;
1875 	int i;
1876 	prs_irq_list_t *prsirqlistp = NULL;
1877 	iflag_t iflags;
1878 
1879 	while (irqlistent != NULL) {
1880 		irqlistent->intr_flags.bustype = BUS_PCI;
1881 
1882 		for (i = 0; i < irqlistent->num_irqs; i++) {
1883 
1884 			irq = irqlistent->irqs[i];
1885 
1886 			if (irq <= 0) {
1887 				/* invalid irq number */
1888 				continue;
1889 			}
1890 
1891 			if ((irq < 16) && (apic_reserved_irqlist[irq]))
1892 				continue;
1893 
1894 			if ((apic_irq_table[irq] == NULL) ||
1895 			    (apic_irq_table[irq]->airq_dip == dip)) {
1896 
1897 				prsirqlistp = acpi_insert_prs_irq_ent(
1898 				    prsirqlistp, 0 /* Highest priority */, irq,
1899 				    &irqlistent->intr_flags,
1900 				    &irqlistent->acpi_prs_prv);
1901 
1902 				/*
1903 				 * If we do not prefer the current irq from _CRS
1904 				 * or if we do and this irq is the same as the
1905 				 * current irq from _CRS, this is the one
1906 				 * to pick.
1907 				 */
1908 				if (!(apic_prefer_crs) || (irq == crs_irq)) {
1909 					return (prsirqlistp);
1910 				}
1911 				continue;
1912 			}
1913 
1914 			/*
1915 			 * Edge-triggered interrupts cannot be shared
1916 			 */
1917 			if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE)
1918 				continue;
1919 
1920 			/*
1921 			 * To work around BIOSes that contain incorrect
1922 			 * interrupt polarity information in interrupt
1923 			 * descriptors returned by _PRS, we assume that
1924 			 * the polarity of the other device sharing this
1925 			 * interrupt controller input is compatible.
1926 			 * If it's not, the caller will catch it when
1927 			 * the caller invokes the link device's _CRS method
1928 			 * (after invoking its _SRS method).
1929 			 */
1930 			iflags = irqlistent->intr_flags;
1931 			iflags.intr_po =
1932 			    apic_irq_table[irq]->airq_iflag.intr_po;
1933 
1934 			if (!acpi_intr_compatible(iflags,
1935 			    apic_irq_table[irq]->airq_iflag)) {
1936 				APIC_VERBOSE_IRQ((CE_CONT, "!%s: irq %d "
1937 				    "not compatible [%x:%x:%x !~ %x:%x:%x]",
1938 				    psm_name, irq,
1939 				    iflags.intr_po,
1940 				    iflags.intr_el,
1941 				    iflags.bustype,
1942 				    apic_irq_table[irq]->airq_iflag.intr_po,
1943 				    apic_irq_table[irq]->airq_iflag.intr_el,
1944 				    apic_irq_table[irq]->airq_iflag.bustype));
1945 				continue;
1946 			}
1947 
1948 			/*
1949 			 * If we prefer the irq from _CRS, no need
1950 			 * to search any further (and make sure
1951 			 * to add this irq with the highest priority
1952 			 * so it's tried first).
1953 			 */
1954 			if (crs_irq == irq && apic_prefer_crs) {
1955 
1956 				return (acpi_insert_prs_irq_ent(
1957 				    prsirqlistp,
1958 				    0 /* Highest priority */,
1959 				    irq, &iflags,
1960 				    &irqlistent->acpi_prs_prv));
1961 			}
1962 
1963 			/*
1964 			 * Priority is equal to the share count (lower
1965 			 * share count is higher priority). Note that
1966 			 * the intr flags passed in here are the ones we
1967 			 * changed above -- if incorrect, it will be
1968 			 * caught by the caller's _CRS flags comparison.
1969 			 */
1970 			prsirqlistp = acpi_insert_prs_irq_ent(
1971 			    prsirqlistp,
1972 			    apic_irq_table[irq]->airq_share, irq,
1973 			    &iflags, &irqlistent->acpi_prs_prv);
1974 		}
1975 
1976 		/* Go to the next irqlist entry */
1977 		irqlistent = irqlistent->next;
1978 	}
1979 
1980 	return (prsirqlistp);
1981 }
1982 
1983 /*
1984  * Configures the irq for the interrupt link device identified by
1985  * acpipsmlnkp.
1986  *
1987  * Gets the current and the list of possible irq settings for the
1988  * device. If apic_unconditional_srs is not set, and the current
1989  * resource setting is in the list of possible irq settings,
1990  * current irq resource setting is passed to the caller.
1991  *
1992  * Otherwise, picks an irq number from the list of possible irq
1993  * settings, and sets the irq of the device to this value.
1994  * If prefer_crs is set, among a set of irq numbers in the list that have
1995  * the least number of devices sharing the interrupt, we pick current irq
1996  * resource setting if it is a member of this set.
1997  *
1998  * Passes the irq number in the value pointed to by pci_irqp, and
1999  * polarity and sensitivity in the structure pointed to by dipintrflagp
2000  * to the caller.
2001  *
2002  * Note that if setting the irq resource failed, but successfuly obtained
2003  * the current irq resource settings, passes the current irq resources
2004  * and considers it a success.
2005  *
2006  * Returns:
2007  * ACPI_PSM_SUCCESS on success.
2008  *
2009  * ACPI_PSM_FAILURE if an error occured during the configuration or
2010  * if a suitable irq was not found for this device, or if setting the
2011  * irq resource and obtaining the current resource fails.
2012  *
2013  */
2014 static int
apic_acpi_irq_configure(acpi_psm_lnk_t * acpipsmlnkp,dev_info_t * dip,int * pci_irqp,iflag_t * dipintr_flagp)2015 apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
2016     int *pci_irqp, iflag_t *dipintr_flagp)
2017 {
2018 	int32_t irq;
2019 	int cur_irq = -1;
2020 	acpi_irqlist_t *irqlistp;
2021 	prs_irq_list_t *prs_irq_listp, *prs_irq_entp;
2022 	boolean_t found_irq = B_FALSE;
2023 
2024 	dipintr_flagp->bustype = BUS_PCI;
2025 
2026 	if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp))
2027 	    == ACPI_PSM_FAILURE) {
2028 		APIC_VERBOSE_IRQ((CE_WARN, "!%s: Unable to determine "
2029 		    "or assign IRQ for device %s, instance #%d: The system was "
2030 		    "unable to get the list of potential IRQs from ACPI.",
2031 		    psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
2032 
2033 		return (ACPI_PSM_FAILURE);
2034 	}
2035 
2036 	if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
2037 	    dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) &&
2038 	    (cur_irq > 0)) {
2039 		/*
2040 		 * If an IRQ is set in CRS and that IRQ exists in the set
2041 		 * returned from _PRS, return that IRQ, otherwise print
2042 		 * a warning
2043 		 */
2044 
2045 		if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL)
2046 		    == ACPI_PSM_SUCCESS) {
2047 
2048 			ASSERT(pci_irqp != NULL);
2049 			*pci_irqp = cur_irq;
2050 			acpi_free_irqlist(irqlistp);
2051 			return (ACPI_PSM_SUCCESS);
2052 		}
2053 
2054 		APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find the "
2055 		    "current irq %d for device %s, instance #%d in ACPI's "
2056 		    "list of possible irqs for this device. Picking one from "
2057 		    " the latter list.", psm_name, cur_irq, ddi_get_name(dip),
2058 		    ddi_get_instance(dip)));
2059 	}
2060 
2061 	if ((prs_irq_listp = apic_choose_irqs_from_prs(irqlistp, dip,
2062 	    cur_irq)) == NULL) {
2063 
2064 		APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find a "
2065 		    "suitable irq from the list of possible irqs for device "
2066 		    "%s, instance #%d in ACPI's list of possible irqs",
2067 		    psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
2068 
2069 		acpi_free_irqlist(irqlistp);
2070 		return (ACPI_PSM_FAILURE);
2071 	}
2072 
2073 	acpi_free_irqlist(irqlistp);
2074 
2075 	for (prs_irq_entp = prs_irq_listp;
2076 	    prs_irq_entp != NULL && found_irq == B_FALSE;
2077 	    prs_irq_entp = prs_irq_entp->next) {
2078 
2079 		acpipsmlnkp->acpi_prs_prv = prs_irq_entp->prsprv;
2080 		irq = prs_irq_entp->irq;
2081 
2082 		APIC_VERBOSE_IRQ((CE_CONT, "!%s: Setting irq %d for "
2083 		    "device %s instance #%d\n", psm_name, irq,
2084 		    ddi_get_name(dip), ddi_get_instance(dip)));
2085 
2086 		if ((acpi_set_irq_resource(acpipsmlnkp, irq))
2087 		    == ACPI_PSM_SUCCESS) {
2088 			/*
2089 			 * setting irq was successful, check to make sure CRS
2090 			 * reflects that. If CRS does not agree with what we
2091 			 * set, return the irq that was set.
2092 			 */
2093 
2094 			if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
2095 			    dipintr_flagp) == ACPI_PSM_SUCCESS) {
2096 
2097 				if (cur_irq != irq)
2098 					APIC_VERBOSE_IRQ((CE_WARN,
2099 					    "!%s: IRQ resource set "
2100 					    "(irqno %d) for device %s "
2101 					    "instance #%d, differs from "
2102 					    "current setting irqno %d",
2103 					    psm_name, irq, ddi_get_name(dip),
2104 					    ddi_get_instance(dip), cur_irq));
2105 			} else {
2106 				/*
2107 				 * On at least one system, there was a bug in
2108 				 * a DSDT method called by _STA, causing _STA to
2109 				 * indicate that the link device was disabled
2110 				 * (when, in fact, it was enabled).  Since _SRS
2111 				 * succeeded, assume that _CRS is lying and use
2112 				 * the iflags from this _PRS interrupt choice.
2113 				 * If we're wrong about the flags, the polarity
2114 				 * will be incorrect and we may get an interrupt
2115 				 * storm, but there's not much else we can do
2116 				 * at this point.
2117 				 */
2118 				*dipintr_flagp = prs_irq_entp->intrflags;
2119 			}
2120 
2121 			/*
2122 			 * Return the irq that was set, and not what _CRS
2123 			 * reports, since _CRS has been seen to return
2124 			 * different IRQs than what was passed to _SRS on some
2125 			 * systems (and just not return successfully on others).
2126 			 */
2127 			cur_irq = irq;
2128 			found_irq = B_TRUE;
2129 		} else {
2130 			APIC_VERBOSE_IRQ((CE_WARN, "!%s: set resource "
2131 			    "irq %d failed for device %s instance #%d",
2132 			    psm_name, irq, ddi_get_name(dip),
2133 			    ddi_get_instance(dip)));
2134 
2135 			if (cur_irq == -1) {
2136 				acpi_destroy_prs_irq_list(&prs_irq_listp);
2137 				return (ACPI_PSM_FAILURE);
2138 			}
2139 		}
2140 	}
2141 
2142 	acpi_destroy_prs_irq_list(&prs_irq_listp);
2143 
2144 	if (!found_irq)
2145 		return (ACPI_PSM_FAILURE);
2146 
2147 	ASSERT(pci_irqp != NULL);
2148 	*pci_irqp = cur_irq;
2149 	return (ACPI_PSM_SUCCESS);
2150 }
2151 
2152 void
ioapic_disable_redirection()2153 ioapic_disable_redirection()
2154 {
2155 	int ioapic_ix;
2156 	int intin_max;
2157 	int intin_ix;
2158 
2159 	/* Disable the I/O APIC redirection entries */
2160 	for (ioapic_ix = 0; ioapic_ix < apic_io_max; ioapic_ix++) {
2161 
2162 		/* Bits 23-16 define the maximum redirection entries */
2163 		intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16)
2164 		    & 0xff;
2165 
2166 		for (intin_ix = 0; intin_ix <= intin_max; intin_ix++) {
2167 			/*
2168 			 * The assumption here is that this is safe, even for
2169 			 * systems with IOAPICs that suffer from the hardware
2170 			 * erratum because all devices have been quiesced before
2171 			 * this function is called from apic_shutdown()
2172 			 * (or equivalent). If that assumption turns out to be
2173 			 * false, this mask operation can induce the same
2174 			 * erratum result we're trying to avoid.
2175 			 */
2176 			ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin_ix,
2177 			    AV_MASK);
2178 		}
2179 	}
2180 }
2181 
2182 /*
2183  * Looks for an IOAPIC with the specified physical address in the /ioapics
2184  * node in the device tree (created by the PCI enumerator).
2185  */
2186 static boolean_t
apic_is_ioapic_AMD_813x(uint32_t physaddr)2187 apic_is_ioapic_AMD_813x(uint32_t physaddr)
2188 {
2189 	/*
2190 	 * Look in /ioapics, for the ioapic with
2191 	 * the physical address given
2192 	 */
2193 	dev_info_t *ioapicsnode = ddi_find_devinfo(IOAPICS_NODE_NAME, -1, 0);
2194 	dev_info_t *ioapic_child;
2195 	boolean_t rv = B_FALSE;
2196 	int vid, did;
2197 	uint64_t ioapic_paddr;
2198 	boolean_t done = B_FALSE;
2199 
2200 	if (ioapicsnode == NULL)
2201 		return (B_FALSE);
2202 
2203 	/* Load first child: */
2204 	ioapic_child = ddi_get_child(ioapicsnode);
2205 	while (!done && ioapic_child != 0) { /* Iterate over children */
2206 
2207 		if ((ioapic_paddr = (uint64_t)ddi_prop_get_int64(DDI_DEV_T_ANY,
2208 		    ioapic_child, DDI_PROP_DONTPASS, "reg", 0))
2209 		    != 0 && physaddr == ioapic_paddr) {
2210 
2211 			vid = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child,
2212 			    DDI_PROP_DONTPASS, IOAPICS_PROP_VENID, 0);
2213 
2214 			if (vid == VENID_AMD) {
2215 
2216 				did = ddi_prop_get_int(DDI_DEV_T_ANY,
2217 				    ioapic_child, DDI_PROP_DONTPASS,
2218 				    IOAPICS_PROP_DEVID, 0);
2219 
2220 				if (did == DEVID_8131_IOAPIC ||
2221 				    did == DEVID_8132_IOAPIC) {
2222 					rv = B_TRUE;
2223 					done = B_TRUE;
2224 				}
2225 			}
2226 		}
2227 
2228 		if (!done)
2229 			ioapic_child = ddi_get_next_sibling(ioapic_child);
2230 	}
2231 
2232 	/* The ioapics node was held by ddi_find_devinfo, so release it */
2233 	ndi_rele_devi(ioapicsnode);
2234 	return (rv);
2235 }
2236 
2237 struct apic_state {
2238 	int32_t as_task_reg;
2239 	int32_t as_dest_reg;
2240 	int32_t as_format_reg;
2241 	int32_t as_local_timer;
2242 	int32_t as_pcint_vect;
2243 	int32_t as_int_vect0;
2244 	int32_t as_int_vect1;
2245 	int32_t as_err_vect;
2246 	int32_t as_init_count;
2247 	int32_t as_divide_reg;
2248 	int32_t as_spur_int_reg;
2249 	uint32_t as_ioapic_ids[MAX_IO_APIC];
2250 };
2251 
2252 
2253 static int
apic_acpi_enter_apicmode(void)2254 apic_acpi_enter_apicmode(void)
2255 {
2256 	ACPI_OBJECT_LIST	arglist;
2257 	ACPI_OBJECT		arg;
2258 	ACPI_STATUS		status;
2259 
2260 	/* Setup parameter object */
2261 	arglist.Count = 1;
2262 	arglist.Pointer = &arg;
2263 	arg.Type = ACPI_TYPE_INTEGER;
2264 	arg.Integer.Value = ACPI_APIC_MODE;
2265 
2266 	status = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL);
2267 	/*
2268 	 * Per ACPI spec - section 5.8.1 _PIC Method
2269 	 * calling the \_PIC control method is optional for the OS
2270 	 * and might not be found. It's ok to not fail in such cases.
2271 	 * This is the case on linux KVM and qemu (status AE_NOT_FOUND)
2272 	 */
2273 	if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
2274 		cmn_err(CE_NOTE,
2275 		    "!apic: Reporting APIC mode failed (via _PIC), err: 0x%x",
2276 		    ACPI_FAILURE(status));
2277 		return (PSM_FAILURE);
2278 	} else {
2279 		return (PSM_SUCCESS);
2280 	}
2281 }
2282 
2283 
2284 static void
apic_save_state(struct apic_state * sp)2285 apic_save_state(struct apic_state *sp)
2286 {
2287 	int	i, cpuid;
2288 	ulong_t	iflag;
2289 
2290 	PMD(PMD_SX, ("apic_save_state %p\n", (void *)sp))
2291 	/*
2292 	 * First the local APIC.
2293 	 */
2294 	sp->as_task_reg = apic_reg_ops->apic_get_pri();
2295 	sp->as_dest_reg =  apic_reg_ops->apic_read(APIC_DEST_REG);
2296 	if (apic_mode == LOCAL_APIC)
2297 		sp->as_format_reg = apic_reg_ops->apic_read(APIC_FORMAT_REG);
2298 	sp->as_local_timer = apic_reg_ops->apic_read(APIC_LOCAL_TIMER);
2299 	sp->as_pcint_vect = apic_reg_ops->apic_read(APIC_PCINT_VECT);
2300 	sp->as_int_vect0 = apic_reg_ops->apic_read(APIC_INT_VECT0);
2301 	sp->as_int_vect1 = apic_reg_ops->apic_read(APIC_INT_VECT1);
2302 	sp->as_err_vect = apic_reg_ops->apic_read(APIC_ERR_VECT);
2303 	sp->as_init_count = apic_reg_ops->apic_read(APIC_INIT_COUNT);
2304 	sp->as_divide_reg = apic_reg_ops->apic_read(APIC_DIVIDE_REG);
2305 	sp->as_spur_int_reg = apic_reg_ops->apic_read(APIC_SPUR_INT_REG);
2306 
2307 	/*
2308 	 * If on the boot processor then save the IOAPICs' IDs
2309 	 */
2310 	if ((cpuid = psm_get_cpu_id()) == 0) {
2311 
2312 		iflag = intr_clear();
2313 		lock_set(&apic_ioapic_lock);
2314 
2315 		for (i = 0; i < apic_io_max; i++)
2316 			sp->as_ioapic_ids[i] = ioapic_read(i, APIC_ID_CMD);
2317 
2318 		lock_clear(&apic_ioapic_lock);
2319 		intr_restore(iflag);
2320 	}
2321 
2322 	/* apic_state() is currently invoked only in Suspend/Resume */
2323 	apic_cpus[cpuid].aci_status |= APIC_CPU_SUSPEND;
2324 }
2325 
2326 static void
apic_restore_state(struct apic_state * sp)2327 apic_restore_state(struct apic_state *sp)
2328 {
2329 	int	i;
2330 	ulong_t	iflag;
2331 
2332 	/*
2333 	 * First the local APIC.
2334 	 */
2335 	apic_reg_ops->apic_write_task_reg(sp->as_task_reg);
2336 	if (apic_mode == LOCAL_APIC) {
2337 		apic_reg_ops->apic_write(APIC_DEST_REG, sp->as_dest_reg);
2338 		apic_reg_ops->apic_write(APIC_FORMAT_REG, sp->as_format_reg);
2339 	}
2340 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER, sp->as_local_timer);
2341 	apic_reg_ops->apic_write(APIC_PCINT_VECT, sp->as_pcint_vect);
2342 	apic_reg_ops->apic_write(APIC_INT_VECT0, sp->as_int_vect0);
2343 	apic_reg_ops->apic_write(APIC_INT_VECT1, sp->as_int_vect1);
2344 	apic_reg_ops->apic_write(APIC_ERR_VECT, sp->as_err_vect);
2345 	apic_reg_ops->apic_write(APIC_INIT_COUNT, sp->as_init_count);
2346 	apic_reg_ops->apic_write(APIC_DIVIDE_REG, sp->as_divide_reg);
2347 	apic_reg_ops->apic_write(APIC_SPUR_INT_REG, sp->as_spur_int_reg);
2348 
2349 	/*
2350 	 * the following only needs to be done once, so we do it on the
2351 	 * boot processor, since we know that we only have one of those
2352 	 */
2353 	if (psm_get_cpu_id() == 0) {
2354 
2355 		iflag = intr_clear();
2356 		lock_set(&apic_ioapic_lock);
2357 
2358 		/* Restore IOAPICs' APIC IDs */
2359 		for (i = 0; i < apic_io_max; i++) {
2360 			ioapic_write(i, APIC_ID_CMD, sp->as_ioapic_ids[i]);
2361 		}
2362 
2363 		lock_clear(&apic_ioapic_lock);
2364 		intr_restore(iflag);
2365 
2366 		/*
2367 		 * Reenter APIC mode before restoring LNK devices
2368 		 */
2369 		(void) apic_acpi_enter_apicmode();
2370 
2371 		/*
2372 		 * restore acpi link device mappings
2373 		 */
2374 		acpi_restore_link_devices();
2375 	}
2376 }
2377 
2378 /*
2379  * Returns 0 on success
2380  */
2381 int
apic_state(psm_state_request_t * rp)2382 apic_state(psm_state_request_t *rp)
2383 {
2384 	PMD(PMD_SX, ("apic_state "))
2385 	switch (rp->psr_cmd) {
2386 	case PSM_STATE_ALLOC:
2387 		rp->req.psm_state_req.psr_state =
2388 		    kmem_zalloc(sizeof (struct apic_state), KM_NOSLEEP);
2389 		if (rp->req.psm_state_req.psr_state == NULL)
2390 			return (ENOMEM);
2391 		rp->req.psm_state_req.psr_state_size =
2392 		    sizeof (struct apic_state);
2393 		PMD(PMD_SX, (":STATE_ALLOC: state %p, size %lx\n",
2394 		    rp->req.psm_state_req.psr_state,
2395 		    rp->req.psm_state_req.psr_state_size))
2396 		return (0);
2397 
2398 	case PSM_STATE_FREE:
2399 		kmem_free(rp->req.psm_state_req.psr_state,
2400 		    rp->req.psm_state_req.psr_state_size);
2401 		PMD(PMD_SX, (" STATE_FREE: state %p, size %lx\n",
2402 		    rp->req.psm_state_req.psr_state,
2403 		    rp->req.psm_state_req.psr_state_size))
2404 		return (0);
2405 
2406 	case PSM_STATE_SAVE:
2407 		PMD(PMD_SX, (" STATE_SAVE: state %p, size %lx\n",
2408 		    rp->req.psm_state_req.psr_state,
2409 		    rp->req.psm_state_req.psr_state_size))
2410 		apic_save_state(rp->req.psm_state_req.psr_state);
2411 		return (0);
2412 
2413 	case PSM_STATE_RESTORE:
2414 		apic_restore_state(rp->req.psm_state_req.psr_state);
2415 		PMD(PMD_SX, (" STATE_RESTORE: state %p, size %lx\n",
2416 		    rp->req.psm_state_req.psr_state,
2417 		    rp->req.psm_state_req.psr_state_size))
2418 		return (0);
2419 
2420 	default:
2421 		return (EINVAL);
2422 	}
2423 }
2424