1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-only
2 /*
3 * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
4 * All rights reserved.
5 *
6 * This source code is licensed under both the BSD-style license (found in the
7 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
8 * in the COPYING file in the root directory of this source tree).
9 * You may select, at your option, one of the above-listed licenses.
10 */
11
12 /*-*************************************
13 * Dependencies
14 ***************************************/
15 #include "zstd_compress_sequences.h"
16
17 /**
18 * -log2(x / 256) lookup table for x in [0, 256).
19 * If x == 0: Return 0
20 * Else: Return floor(-log2(x / 256) * 256)
21 */
22 static unsigned const kInverseProbabilityLog256[256] = {
23 0, 2048, 1792, 1642, 1536, 1453, 1386, 1329, 1280, 1236, 1197, 1162,
24 1130, 1100, 1073, 1047, 1024, 1001, 980, 960, 941, 923, 906, 889,
25 874, 859, 844, 830, 817, 804, 791, 779, 768, 756, 745, 734,
26 724, 714, 704, 694, 685, 676, 667, 658, 650, 642, 633, 626,
27 618, 610, 603, 595, 588, 581, 574, 567, 561, 554, 548, 542,
28 535, 529, 523, 517, 512, 506, 500, 495, 489, 484, 478, 473,
29 468, 463, 458, 453, 448, 443, 438, 434, 429, 424, 420, 415,
30 411, 407, 402, 398, 394, 390, 386, 382, 377, 373, 370, 366,
31 362, 358, 354, 350, 347, 343, 339, 336, 332, 329, 325, 322,
32 318, 315, 311, 308, 305, 302, 298, 295, 292, 289, 286, 282,
33 279, 276, 273, 270, 267, 264, 261, 258, 256, 253, 250, 247,
34 244, 241, 239, 236, 233, 230, 228, 225, 222, 220, 217, 215,
35 212, 209, 207, 204, 202, 199, 197, 194, 192, 190, 187, 185,
36 182, 180, 178, 175, 173, 171, 168, 166, 164, 162, 159, 157,
37 155, 153, 151, 149, 146, 144, 142, 140, 138, 136, 134, 132,
38 130, 128, 126, 123, 121, 119, 117, 115, 114, 112, 110, 108,
39 106, 104, 102, 100, 98, 96, 94, 93, 91, 89, 87, 85,
40 83, 82, 80, 78, 76, 74, 73, 71, 69, 67, 66, 64,
41 62, 61, 59, 57, 55, 54, 52, 50, 49, 47, 46, 44,
42 42, 41, 39, 37, 36, 34, 33, 31, 30, 28, 26, 25,
43 23, 22, 20, 19, 17, 16, 14, 13, 11, 10, 8, 7,
44 5, 4, 2, 1,
45 };
46
ZSTD_getFSEMaxSymbolValue(FSE_CTable const * ctable)47 static unsigned ZSTD_getFSEMaxSymbolValue(FSE_CTable const* ctable) {
48 void const* ptr = ctable;
49 U16 const* u16ptr = (U16 const*)ptr;
50 U32 const maxSymbolValue = MEM_read16(u16ptr + 1);
51 return maxSymbolValue;
52 }
53
54 /**
55 * Returns the cost in bytes of encoding the normalized count header.
56 * Returns an error if any of the helper functions return an error.
57 */
ZSTD_NCountCost(unsigned const * count,unsigned const max,size_t const nbSeq,unsigned const FSELog)58 static size_t ZSTD_NCountCost(unsigned const* count, unsigned const max,
59 size_t const nbSeq, unsigned const FSELog)
60 {
61 BYTE wksp[FSE_NCOUNTBOUND];
62 S16 norm[MaxSeq + 1];
63 const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
64 FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq, max), "");
65 return FSE_writeNCount(wksp, sizeof(wksp), norm, max, tableLog);
66 }
67
68 /**
69 * Returns the cost in bits of encoding the distribution described by count
70 * using the entropy bound.
71 */
ZSTD_entropyCost(unsigned const * count,unsigned const max,size_t const total)72 static size_t ZSTD_entropyCost(unsigned const* count, unsigned const max, size_t const total)
73 {
74 unsigned cost = 0;
75 unsigned s;
76 for (s = 0; s <= max; ++s) {
77 unsigned norm = (unsigned)((256 * count[s]) / total);
78 if (count[s] != 0 && norm == 0)
79 norm = 1;
80 assert(count[s] < total);
81 cost += count[s] * kInverseProbabilityLog256[norm];
82 }
83 return cost >> 8;
84 }
85
86 /**
87 * Returns the cost in bits of encoding the distribution in count using ctable.
88 * Returns an error if ctable cannot represent all the symbols in count.
89 */
ZSTD_fseBitCost(FSE_CTable const * ctable,unsigned const * count,unsigned const max)90 size_t ZSTD_fseBitCost(
91 FSE_CTable const* ctable,
92 unsigned const* count,
93 unsigned const max)
94 {
95 unsigned const kAccuracyLog = 8;
96 size_t cost = 0;
97 unsigned s;
98 FSE_CState_t cstate;
99 FSE_initCState(&cstate, ctable);
100 if (ZSTD_getFSEMaxSymbolValue(ctable) < max) {
101 DEBUGLOG(5, "Repeat FSE_CTable has maxSymbolValue %u < %u",
102 ZSTD_getFSEMaxSymbolValue(ctable), max);
103 return ERROR(GENERIC);
104 }
105 for (s = 0; s <= max; ++s) {
106 unsigned const tableLog = cstate.stateLog;
107 unsigned const badCost = (tableLog + 1) << kAccuracyLog;
108 unsigned const bitCost = FSE_bitCost(cstate.symbolTT, tableLog, s, kAccuracyLog);
109 if (count[s] == 0)
110 continue;
111 if (bitCost >= badCost) {
112 DEBUGLOG(5, "Repeat FSE_CTable has Prob[%u] == 0", s);
113 return ERROR(GENERIC);
114 }
115 cost += (size_t)count[s] * bitCost;
116 }
117 return cost >> kAccuracyLog;
118 }
119
120 /**
121 * Returns the cost in bits of encoding the distribution in count using the
122 * table described by norm. The max symbol support by norm is assumed >= max.
123 * norm must be valid for every symbol with non-zero probability in count.
124 */
ZSTD_crossEntropyCost(short const * norm,unsigned accuracyLog,unsigned const * count,unsigned const max)125 size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog,
126 unsigned const* count, unsigned const max)
127 {
128 unsigned const shift = 8 - accuracyLog;
129 size_t cost = 0;
130 unsigned s;
131 assert(accuracyLog <= 8);
132 for (s = 0; s <= max; ++s) {
133 unsigned const normAcc = (norm[s] != -1) ? (unsigned)norm[s] : 1;
134 unsigned const norm256 = normAcc << shift;
135 assert(norm256 > 0);
136 assert(norm256 < 256);
137 cost += count[s] * kInverseProbabilityLog256[norm256];
138 }
139 return cost >> 8;
140 }
141
142 symbolEncodingType_e
ZSTD_selectEncodingType(FSE_repeat * repeatMode,unsigned const * count,unsigned const max,size_t const mostFrequent,size_t nbSeq,unsigned const FSELog,FSE_CTable const * prevCTable,short const * defaultNorm,U32 defaultNormLog,ZSTD_defaultPolicy_e const isDefaultAllowed,ZSTD_strategy const strategy)143 ZSTD_selectEncodingType(
144 FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
145 size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
146 FSE_CTable const* prevCTable,
147 short const* defaultNorm, U32 defaultNormLog,
148 ZSTD_defaultPolicy_e const isDefaultAllowed,
149 ZSTD_strategy const strategy)
150 {
151 ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0);
152 if (mostFrequent == nbSeq) {
153 *repeatMode = FSE_repeat_none;
154 if (isDefaultAllowed && nbSeq <= 2) {
155 /* Prefer set_basic over set_rle when there are 2 or less symbols,
156 * since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol.
157 * If basic encoding isn't possible, always choose RLE.
158 */
159 DEBUGLOG(5, "Selected set_basic");
160 return set_basic;
161 }
162 DEBUGLOG(5, "Selected set_rle");
163 return set_rle;
164 }
165 if (strategy < ZSTD_lazy) {
166 if (isDefaultAllowed) {
167 size_t const staticFse_nbSeq_max = 1000;
168 size_t const mult = 10 - strategy;
169 size_t const baseLog = 3;
170 size_t const dynamicFse_nbSeq_min = (((size_t)1 << defaultNormLog) * mult) >> baseLog; /* 28-36 for offset, 56-72 for lengths */
171 assert(defaultNormLog >= 5 && defaultNormLog <= 6); /* xx_DEFAULTNORMLOG */
172 assert(mult <= 9 && mult >= 7);
173 if ( (*repeatMode == FSE_repeat_valid)
174 && (nbSeq < staticFse_nbSeq_max) ) {
175 DEBUGLOG(5, "Selected set_repeat");
176 return set_repeat;
177 }
178 if ( (nbSeq < dynamicFse_nbSeq_min)
179 || (mostFrequent < (nbSeq >> (defaultNormLog-1))) ) {
180 DEBUGLOG(5, "Selected set_basic");
181 /* The format allows default tables to be repeated, but it isn't useful.
182 * When using simple heuristics to select encoding type, we don't want
183 * to confuse these tables with dictionaries. When running more careful
184 * analysis, we don't need to waste time checking both repeating tables
185 * and default tables.
186 */
187 *repeatMode = FSE_repeat_none;
188 return set_basic;
189 }
190 }
191 } else {
192 size_t const basicCost = isDefaultAllowed ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, count, max) : ERROR(GENERIC);
193 size_t const repeatCost = *repeatMode != FSE_repeat_none ? ZSTD_fseBitCost(prevCTable, count, max) : ERROR(GENERIC);
194 size_t const NCountCost = ZSTD_NCountCost(count, max, nbSeq, FSELog);
195 size_t const compressedCost = (NCountCost << 3) + ZSTD_entropyCost(count, max, nbSeq);
196
197 if (isDefaultAllowed) {
198 assert(!ZSTD_isError(basicCost));
199 assert(!(*repeatMode == FSE_repeat_valid && ZSTD_isError(repeatCost)));
200 }
201 assert(!ZSTD_isError(NCountCost));
202 assert(compressedCost < ERROR(maxCode));
203 DEBUGLOG(5, "Estimated bit costs: basic=%u\trepeat=%u\tcompressed=%u",
204 (unsigned)basicCost, (unsigned)repeatCost, (unsigned)compressedCost);
205 if (basicCost <= repeatCost && basicCost <= compressedCost) {
206 DEBUGLOG(5, "Selected set_basic");
207 assert(isDefaultAllowed);
208 *repeatMode = FSE_repeat_none;
209 return set_basic;
210 }
211 if (repeatCost <= compressedCost) {
212 DEBUGLOG(5, "Selected set_repeat");
213 assert(!ZSTD_isError(repeatCost));
214 return set_repeat;
215 }
216 assert(compressedCost < basicCost && compressedCost < repeatCost);
217 }
218 DEBUGLOG(5, "Selected set_compressed");
219 *repeatMode = FSE_repeat_check;
220 return set_compressed;
221 }
222
223 size_t
ZSTD_buildCTable(void * dst,size_t dstCapacity,FSE_CTable * nextCTable,U32 FSELog,symbolEncodingType_e type,unsigned * count,U32 max,const BYTE * codeTable,size_t nbSeq,const S16 * defaultNorm,U32 defaultNormLog,U32 defaultMax,const FSE_CTable * prevCTable,size_t prevCTableSize,void * entropyWorkspace,size_t entropyWorkspaceSize)224 ZSTD_buildCTable(void* dst, size_t dstCapacity,
225 FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
226 unsigned* count, U32 max,
227 const BYTE* codeTable, size_t nbSeq,
228 const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
229 const FSE_CTable* prevCTable, size_t prevCTableSize,
230 void* entropyWorkspace, size_t entropyWorkspaceSize)
231 {
232 BYTE* op = (BYTE*)dst;
233 const BYTE* const oend = op + dstCapacity;
234 DEBUGLOG(6, "ZSTD_buildCTable (dstCapacity=%u)", (unsigned)dstCapacity);
235
236 switch (type) {
237 case set_rle:
238 FORWARD_IF_ERROR(FSE_buildCTable_rle(nextCTable, (BYTE)max), "");
239 RETURN_ERROR_IF(dstCapacity==0, dstSize_tooSmall, "not enough space");
240 *op = codeTable[0];
241 return 1;
242 case set_repeat:
243 memcpy(nextCTable, prevCTable, prevCTableSize);
244 return 0;
245 case set_basic:
246 FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, entropyWorkspace, entropyWorkspaceSize), ""); /* note : could be pre-calculated */
247 return 0;
248 case set_compressed: {
249 S16 norm[MaxSeq + 1];
250 size_t nbSeq_1 = nbSeq;
251 const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
252 if (count[codeTable[nbSeq-1]] > 1) {
253 count[codeTable[nbSeq-1]]--;
254 nbSeq_1--;
255 }
256 assert(nbSeq_1 > 1);
257 FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max), "");
258 { size_t const NCountSize = FSE_writeNCount(op, oend - op, norm, max, tableLog); /* overflow protected */
259 FORWARD_IF_ERROR(NCountSize, "FSE_writeNCount failed");
260 FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, norm, max, tableLog, entropyWorkspace, entropyWorkspaceSize), "");
261 return NCountSize;
262 }
263 }
264 default: assert(0); RETURN_ERROR(GENERIC, "impossible to reach");
265 }
266 }
267
268 FORCE_INLINE_TEMPLATE size_t
ZSTD_encodeSequences_body(void * dst,size_t dstCapacity,FSE_CTable const * CTable_MatchLength,BYTE const * mlCodeTable,FSE_CTable const * CTable_OffsetBits,BYTE const * ofCodeTable,FSE_CTable const * CTable_LitLength,BYTE const * llCodeTable,seqDef const * sequences,size_t nbSeq,int longOffsets)269 ZSTD_encodeSequences_body(
270 void* dst, size_t dstCapacity,
271 FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
272 FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
273 FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
274 seqDef const* sequences, size_t nbSeq, int longOffsets)
275 {
276 BIT_CStream_t blockStream;
277 FSE_CState_t stateMatchLength;
278 FSE_CState_t stateOffsetBits;
279 FSE_CState_t stateLitLength;
280
281 RETURN_ERROR_IF(
282 ERR_isError(BIT_initCStream(&blockStream, dst, dstCapacity)),
283 dstSize_tooSmall, "not enough space remaining");
284 DEBUGLOG(6, "available space for bitstream : %i (dstCapacity=%u)",
285 (int)(blockStream.endPtr - blockStream.startPtr),
286 (unsigned)dstCapacity);
287
288 /* first symbols */
289 FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]);
290 FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]);
291 FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]);
292 BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
293 if (MEM_32bits()) BIT_flushBits(&blockStream);
294 BIT_addBits(&blockStream, sequences[nbSeq-1].matchLength, ML_bits[mlCodeTable[nbSeq-1]]);
295 if (MEM_32bits()) BIT_flushBits(&blockStream);
296 if (longOffsets) {
297 U32 const ofBits = ofCodeTable[nbSeq-1];
298 unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
299 if (extraBits) {
300 BIT_addBits(&blockStream, sequences[nbSeq-1].offset, extraBits);
301 BIT_flushBits(&blockStream);
302 }
303 BIT_addBits(&blockStream, sequences[nbSeq-1].offset >> extraBits,
304 ofBits - extraBits);
305 } else {
306 BIT_addBits(&blockStream, sequences[nbSeq-1].offset, ofCodeTable[nbSeq-1]);
307 }
308 BIT_flushBits(&blockStream);
309
310 { size_t n;
311 for (n=nbSeq-2 ; n<nbSeq ; n--) { /* intentional underflow */
312 BYTE const llCode = llCodeTable[n];
313 BYTE const ofCode = ofCodeTable[n];
314 BYTE const mlCode = mlCodeTable[n];
315 U32 const llBits = LL_bits[llCode];
316 U32 const ofBits = ofCode;
317 U32 const mlBits = ML_bits[mlCode];
318 DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u",
319 (unsigned)sequences[n].litLength,
320 (unsigned)sequences[n].matchLength + MINMATCH,
321 (unsigned)sequences[n].offset);
322 /* 32b*/ /* 64b*/
323 /* (7)*/ /* (7)*/
324 FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */
325 FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode); /* 24 */ /* 24 */
326 if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/
327 FSE_encodeSymbol(&blockStream, &stateLitLength, llCode); /* 16 */ /* 33 */
328 if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog)))
329 BIT_flushBits(&blockStream); /* (7)*/
330 BIT_addBits(&blockStream, sequences[n].litLength, llBits);
331 if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
332 BIT_addBits(&blockStream, sequences[n].matchLength, mlBits);
333 if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream);
334 if (longOffsets) {
335 unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
336 if (extraBits) {
337 BIT_addBits(&blockStream, sequences[n].offset, extraBits);
338 BIT_flushBits(&blockStream); /* (7)*/
339 }
340 BIT_addBits(&blockStream, sequences[n].offset >> extraBits,
341 ofBits - extraBits); /* 31 */
342 } else {
343 BIT_addBits(&blockStream, sequences[n].offset, ofBits); /* 31 */
344 }
345 BIT_flushBits(&blockStream); /* (7)*/
346 DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr));
347 } }
348
349 DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits", stateMatchLength.stateLog);
350 FSE_flushCState(&blockStream, &stateMatchLength);
351 DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits", stateOffsetBits.stateLog);
352 FSE_flushCState(&blockStream, &stateOffsetBits);
353 DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits", stateLitLength.stateLog);
354 FSE_flushCState(&blockStream, &stateLitLength);
355
356 { size_t const streamSize = BIT_closeCStream(&blockStream);
357 RETURN_ERROR_IF(streamSize==0, dstSize_tooSmall, "not enough space");
358 return streamSize;
359 }
360 }
361
362 static size_t
ZSTD_encodeSequences_default(void * dst,size_t dstCapacity,FSE_CTable const * CTable_MatchLength,BYTE const * mlCodeTable,FSE_CTable const * CTable_OffsetBits,BYTE const * ofCodeTable,FSE_CTable const * CTable_LitLength,BYTE const * llCodeTable,seqDef const * sequences,size_t nbSeq,int longOffsets)363 ZSTD_encodeSequences_default(
364 void* dst, size_t dstCapacity,
365 FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
366 FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
367 FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
368 seqDef const* sequences, size_t nbSeq, int longOffsets)
369 {
370 return ZSTD_encodeSequences_body(dst, dstCapacity,
371 CTable_MatchLength, mlCodeTable,
372 CTable_OffsetBits, ofCodeTable,
373 CTable_LitLength, llCodeTable,
374 sequences, nbSeq, longOffsets);
375 }
376
377
378 #if DYNAMIC_BMI2
379
380 static TARGET_ATTRIBUTE("bmi2") size_t
ZSTD_encodeSequences_bmi2(void * dst,size_t dstCapacity,FSE_CTable const * CTable_MatchLength,BYTE const * mlCodeTable,FSE_CTable const * CTable_OffsetBits,BYTE const * ofCodeTable,FSE_CTable const * CTable_LitLength,BYTE const * llCodeTable,seqDef const * sequences,size_t nbSeq,int longOffsets)381 ZSTD_encodeSequences_bmi2(
382 void* dst, size_t dstCapacity,
383 FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
384 FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
385 FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
386 seqDef const* sequences, size_t nbSeq, int longOffsets)
387 {
388 return ZSTD_encodeSequences_body(dst, dstCapacity,
389 CTable_MatchLength, mlCodeTable,
390 CTable_OffsetBits, ofCodeTable,
391 CTable_LitLength, llCodeTable,
392 sequences, nbSeq, longOffsets);
393 }
394
395 #endif
396
ZSTD_encodeSequences(void * dst,size_t dstCapacity,FSE_CTable const * CTable_MatchLength,BYTE const * mlCodeTable,FSE_CTable const * CTable_OffsetBits,BYTE const * ofCodeTable,FSE_CTable const * CTable_LitLength,BYTE const * llCodeTable,seqDef const * sequences,size_t nbSeq,int longOffsets,int bmi2)397 size_t ZSTD_encodeSequences(
398 void* dst, size_t dstCapacity,
399 FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
400 FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
401 FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
402 seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2)
403 {
404 DEBUGLOG(5, "ZSTD_encodeSequences: dstCapacity = %u", (unsigned)dstCapacity);
405 #if DYNAMIC_BMI2
406 if (bmi2) {
407 return ZSTD_encodeSequences_bmi2(dst, dstCapacity,
408 CTable_MatchLength, mlCodeTable,
409 CTable_OffsetBits, ofCodeTable,
410 CTable_LitLength, llCodeTable,
411 sequences, nbSeq, longOffsets);
412 }
413 #endif
414 (void)bmi2;
415 return ZSTD_encodeSequences_default(dst, dstCapacity,
416 CTable_MatchLength, mlCodeTable,
417 CTable_OffsetBits, ofCodeTable,
418 CTable_LitLength, llCodeTable,
419 sequences, nbSeq, longOffsets);
420 }
421