xref: /freebsd/sys/contrib/openzfs/module/zfs/zio_checksum.c (revision 718519f4efc71096422fc71dab90b2a3369871ff)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
24  * Copyright 2013 Saso Kiselkov. All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/zio.h>
31 #include <sys/zio_checksum.h>
32 #include <sys/zil.h>
33 #include <sys/abd.h>
34 #include <zfs_fletcher.h>
35 
36 /*
37  * Checksum vectors.
38  *
39  * In the SPA, everything is checksummed.  We support checksum vectors
40  * for three distinct reasons:
41  *
42  *   1. Different kinds of data need different levels of protection.
43  *	For SPA metadata, we always want a very strong checksum.
44  *	For user data, we let users make the trade-off between speed
45  *	and checksum strength.
46  *
47  *   2. Cryptographic hash and MAC algorithms are an area of active research.
48  *	It is likely that in future hash functions will be at least as strong
49  *	as current best-of-breed, and may be substantially faster as well.
50  *	We want the ability to take advantage of these new hashes as soon as
51  *	they become available.
52  *
53  *   3. If someone develops hardware that can compute a strong hash quickly,
54  *	we want the ability to take advantage of that hardware.
55  *
56  * Of course, we don't want a checksum upgrade to invalidate existing
57  * data, so we store the checksum *function* in eight bits of the bp.
58  * This gives us room for up to 256 different checksum functions.
59  *
60  * When writing a block, we always checksum it with the latest-and-greatest
61  * checksum function of the appropriate strength.  When reading a block,
62  * we compare the expected checksum against the actual checksum, which we
63  * compute via the checksum function specified by BP_GET_CHECKSUM(bp).
64  *
65  * SALTED CHECKSUMS
66  *
67  * To enable the use of less secure hash algorithms with dedup, we
68  * introduce the notion of salted checksums (MACs, really).  A salted
69  * checksum is fed both a random 256-bit value (the salt) and the data
70  * to be checksummed.  This salt is kept secret (stored on the pool, but
71  * never shown to the user).  Thus even if an attacker knew of collision
72  * weaknesses in the hash algorithm, they won't be able to mount a known
73  * plaintext attack on the DDT, since the actual hash value cannot be
74  * known ahead of time.  How the salt is used is algorithm-specific
75  * (some might simply prefix it to the data block, others might need to
76  * utilize a full-blown HMAC).  On disk the salt is stored in a ZAP
77  * object in the MOS (DMU_POOL_CHECKSUM_SALT).
78  *
79  * CONTEXT TEMPLATES
80  *
81  * Some hashing algorithms need to perform a substantial amount of
82  * initialization work (e.g. salted checksums above may need to pre-hash
83  * the salt) before being able to process data.  Performing this
84  * redundant work for each block would be wasteful, so we instead allow
85  * a checksum algorithm to do the work once (the first time it's used)
86  * and then keep this pre-initialized context as a template inside the
87  * spa_t (spa_cksum_tmpls).  If the zio_checksum_info_t contains
88  * non-NULL ci_tmpl_init and ci_tmpl_free callbacks, they are used to
89  * construct and destruct the pre-initialized checksum context.  The
90  * pre-initialized context is then reused during each checksum
91  * invocation and passed to the checksum function.
92  */
93 
94 static void
abd_checksum_off(abd_t * abd,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)95 abd_checksum_off(abd_t *abd, uint64_t size,
96     const void *ctx_template, zio_cksum_t *zcp)
97 {
98 	(void) abd, (void) size, (void) ctx_template;
99 	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
100 }
101 
102 static void
abd_fletcher_2_native(abd_t * abd,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)103 abd_fletcher_2_native(abd_t *abd, uint64_t size,
104     const void *ctx_template, zio_cksum_t *zcp)
105 {
106 	(void) ctx_template;
107 	fletcher_init(zcp);
108 	(void) abd_iterate_func(abd, 0, size,
109 	    fletcher_2_incremental_native, zcp);
110 }
111 
112 static void
abd_fletcher_2_byteswap(abd_t * abd,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)113 abd_fletcher_2_byteswap(abd_t *abd, uint64_t size,
114     const void *ctx_template, zio_cksum_t *zcp)
115 {
116 	(void) ctx_template;
117 	fletcher_init(zcp);
118 	(void) abd_iterate_func(abd, 0, size,
119 	    fletcher_2_incremental_byteswap, zcp);
120 }
121 
122 static inline void
abd_fletcher_4_impl(abd_t * abd,uint64_t size,zio_abd_checksum_data_t * acdp)123 abd_fletcher_4_impl(abd_t *abd, uint64_t size, zio_abd_checksum_data_t *acdp)
124 {
125 	fletcher_4_abd_ops.acf_init(acdp);
126 	abd_iterate_func(abd, 0, size, fletcher_4_abd_ops.acf_iter, acdp);
127 	fletcher_4_abd_ops.acf_fini(acdp);
128 }
129 
130 void
abd_fletcher_4_native(abd_t * abd,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)131 abd_fletcher_4_native(abd_t *abd, uint64_t size,
132     const void *ctx_template, zio_cksum_t *zcp)
133 {
134 	(void) ctx_template;
135 	fletcher_4_ctx_t ctx;
136 
137 	zio_abd_checksum_data_t acd = {
138 		.acd_byteorder	= ZIO_CHECKSUM_NATIVE,
139 		.acd_zcp 	= zcp,
140 		.acd_ctx	= &ctx
141 	};
142 
143 	abd_fletcher_4_impl(abd, size, &acd);
144 
145 }
146 
147 void
abd_fletcher_4_byteswap(abd_t * abd,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)148 abd_fletcher_4_byteswap(abd_t *abd, uint64_t size,
149     const void *ctx_template, zio_cksum_t *zcp)
150 {
151 	(void) ctx_template;
152 	fletcher_4_ctx_t ctx;
153 
154 	zio_abd_checksum_data_t acd = {
155 		.acd_byteorder	= ZIO_CHECKSUM_BYTESWAP,
156 		.acd_zcp 	= zcp,
157 		.acd_ctx	= &ctx
158 	};
159 
160 	abd_fletcher_4_impl(abd, size, &acd);
161 }
162 
163 /*
164  * Checksum vectors.
165  *
166  * Note: you cannot change the name string for these functions, as they are
167  * embedded in on-disk data in some places (eg dedup table names).
168  */
169 zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
170 	{{NULL, NULL}, NULL, NULL, 0, "inherit"},
171 	{{NULL, NULL}, NULL, NULL, 0, "on"},
172 	{{abd_checksum_off,		abd_checksum_off},
173 	    NULL, NULL, 0, "off"},
174 	{{abd_checksum_sha256,		abd_checksum_sha256},
175 	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED,
176 	    "label"},
177 	{{abd_checksum_sha256,		abd_checksum_sha256},
178 	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED,
179 	    "gang_header"},
180 	{{abd_fletcher_2_native,	abd_fletcher_2_byteswap},
181 	    NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog"},
182 	{{abd_fletcher_2_native,	abd_fletcher_2_byteswap},
183 	    NULL, NULL, 0, "fletcher2"},
184 	{{abd_fletcher_4_native,	abd_fletcher_4_byteswap},
185 	    NULL, NULL, ZCHECKSUM_FLAG_METADATA, "fletcher4"},
186 	{{abd_checksum_sha256,		abd_checksum_sha256},
187 	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
188 	    ZCHECKSUM_FLAG_NOPWRITE, "sha256"},
189 	{{abd_fletcher_4_native,	abd_fletcher_4_byteswap},
190 	    NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog2"},
191 	{{abd_checksum_off,		abd_checksum_off},
192 	    NULL, NULL, 0, "noparity"},
193 	{{abd_checksum_sha512_native,	abd_checksum_sha512_byteswap},
194 	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
195 	    ZCHECKSUM_FLAG_NOPWRITE, "sha512"},
196 	{{abd_checksum_skein_native,	abd_checksum_skein_byteswap},
197 	    abd_checksum_skein_tmpl_init, abd_checksum_skein_tmpl_free,
198 	    ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
199 	    ZCHECKSUM_FLAG_SALTED | ZCHECKSUM_FLAG_NOPWRITE, "skein"},
200 	{{abd_checksum_edonr_native,	abd_checksum_edonr_byteswap},
201 	    abd_checksum_edonr_tmpl_init, abd_checksum_edonr_tmpl_free,
202 	    ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_SALTED |
203 	    ZCHECKSUM_FLAG_NOPWRITE, "edonr"},
204 	{{abd_checksum_blake3_native,	abd_checksum_blake3_byteswap},
205 	    abd_checksum_blake3_tmpl_init, abd_checksum_blake3_tmpl_free,
206 	    ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
207 	    ZCHECKSUM_FLAG_SALTED | ZCHECKSUM_FLAG_NOPWRITE, "blake3"},
208 };
209 
210 /*
211  * The flag corresponding to the "verify" in dedup=[checksum,]verify
212  * must be cleared first, so callers should use ZIO_CHECKSUM_MASK.
213  */
214 spa_feature_t
zio_checksum_to_feature(enum zio_checksum cksum)215 zio_checksum_to_feature(enum zio_checksum cksum)
216 {
217 	VERIFY((cksum & ~ZIO_CHECKSUM_MASK) == 0);
218 
219 	switch (cksum) {
220 	case ZIO_CHECKSUM_BLAKE3:
221 		return (SPA_FEATURE_BLAKE3);
222 	case ZIO_CHECKSUM_SHA512:
223 		return (SPA_FEATURE_SHA512);
224 	case ZIO_CHECKSUM_SKEIN:
225 		return (SPA_FEATURE_SKEIN);
226 	case ZIO_CHECKSUM_EDONR:
227 		return (SPA_FEATURE_EDONR);
228 	default:
229 		return (SPA_FEATURE_NONE);
230 	}
231 }
232 
233 enum zio_checksum
zio_checksum_select(enum zio_checksum child,enum zio_checksum parent)234 zio_checksum_select(enum zio_checksum child, enum zio_checksum parent)
235 {
236 	ASSERT(child < ZIO_CHECKSUM_FUNCTIONS);
237 	ASSERT(parent < ZIO_CHECKSUM_FUNCTIONS);
238 	ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);
239 
240 	if (child == ZIO_CHECKSUM_INHERIT)
241 		return (parent);
242 
243 	if (child == ZIO_CHECKSUM_ON)
244 		return (ZIO_CHECKSUM_ON_VALUE);
245 
246 	return (child);
247 }
248 
249 enum zio_checksum
zio_checksum_dedup_select(spa_t * spa,enum zio_checksum child,enum zio_checksum parent)250 zio_checksum_dedup_select(spa_t *spa, enum zio_checksum child,
251     enum zio_checksum parent)
252 {
253 	ASSERT((child & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
254 	ASSERT((parent & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
255 	ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);
256 
257 	if (child == ZIO_CHECKSUM_INHERIT)
258 		return (parent);
259 
260 	if (child == ZIO_CHECKSUM_ON)
261 		return (spa_dedup_checksum(spa));
262 
263 	if (child == (ZIO_CHECKSUM_ON | ZIO_CHECKSUM_VERIFY))
264 		return (spa_dedup_checksum(spa) | ZIO_CHECKSUM_VERIFY);
265 
266 	ASSERT((zio_checksum_table[child & ZIO_CHECKSUM_MASK].ci_flags &
267 	    ZCHECKSUM_FLAG_DEDUP) ||
268 	    (child & ZIO_CHECKSUM_VERIFY) || child == ZIO_CHECKSUM_OFF);
269 
270 	return (child);
271 }
272 
273 /*
274  * Set the external verifier for a gang block based on <vdev, offset, txg>,
275  * a tuple which is guaranteed to be unique for the life of the pool.
276  */
277 static void
zio_checksum_gang_verifier(zio_cksum_t * zcp,const blkptr_t * bp)278 zio_checksum_gang_verifier(zio_cksum_t *zcp, const blkptr_t *bp)
279 {
280 	const dva_t *dva = BP_IDENTITY(bp);
281 	uint64_t txg = BP_GET_BIRTH(bp);
282 
283 	ASSERT(BP_IS_GANG(bp));
284 
285 	ZIO_SET_CHECKSUM(zcp, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), txg, 0);
286 }
287 
288 /*
289  * Set the external verifier for a label block based on its offset.
290  * The vdev is implicit, and the txg is unknowable at pool open time --
291  * hence the logic in vdev_uberblock_load() to find the most recent copy.
292  */
293 static void
zio_checksum_label_verifier(zio_cksum_t * zcp,uint64_t offset)294 zio_checksum_label_verifier(zio_cksum_t *zcp, uint64_t offset)
295 {
296 	ZIO_SET_CHECKSUM(zcp, offset, 0, 0, 0);
297 }
298 
299 /*
300  * Calls the template init function of a checksum which supports context
301  * templates and installs the template into the spa_t.
302  */
303 static void
zio_checksum_template_init(enum zio_checksum checksum,spa_t * spa)304 zio_checksum_template_init(enum zio_checksum checksum, spa_t *spa)
305 {
306 	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
307 
308 	if (ci->ci_tmpl_init == NULL)
309 		return;
310 	if (spa->spa_cksum_tmpls[checksum] != NULL)
311 		return;
312 
313 	VERIFY(ci->ci_tmpl_free != NULL);
314 	mutex_enter(&spa->spa_cksum_tmpls_lock);
315 	if (spa->spa_cksum_tmpls[checksum] == NULL) {
316 		spa->spa_cksum_tmpls[checksum] =
317 		    ci->ci_tmpl_init(&spa->spa_cksum_salt);
318 		VERIFY(spa->spa_cksum_tmpls[checksum] != NULL);
319 	}
320 	mutex_exit(&spa->spa_cksum_tmpls_lock);
321 }
322 
323 /* convenience function to update a checksum to accommodate an encryption MAC */
324 static void
zio_checksum_handle_crypt(zio_cksum_t * cksum,zio_cksum_t * saved,boolean_t xor)325 zio_checksum_handle_crypt(zio_cksum_t *cksum, zio_cksum_t *saved, boolean_t xor)
326 {
327 	/*
328 	 * Weak checksums do not have their entropy spread evenly
329 	 * across the bits of the checksum. Therefore, when truncating
330 	 * a weak checksum we XOR the first 2 words with the last 2 so
331 	 * that we don't "lose" any entropy unnecessarily.
332 	 */
333 	if (xor) {
334 		cksum->zc_word[0] ^= cksum->zc_word[2];
335 		cksum->zc_word[1] ^= cksum->zc_word[3];
336 	}
337 
338 	cksum->zc_word[2] = saved->zc_word[2];
339 	cksum->zc_word[3] = saved->zc_word[3];
340 }
341 
342 /*
343  * Generate the checksum.
344  */
345 void
zio_checksum_compute(zio_t * zio,enum zio_checksum checksum,abd_t * abd,uint64_t size)346 zio_checksum_compute(zio_t *zio, enum zio_checksum checksum,
347     abd_t *abd, uint64_t size)
348 {
349 	static const uint64_t zec_magic = ZEC_MAGIC;
350 	blkptr_t *bp = zio->io_bp;
351 	uint64_t offset = zio->io_offset;
352 	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
353 	zio_cksum_t cksum, saved;
354 	spa_t *spa = zio->io_spa;
355 	boolean_t insecure = (ci->ci_flags & ZCHECKSUM_FLAG_DEDUP) == 0;
356 
357 	ASSERT((uint_t)checksum < ZIO_CHECKSUM_FUNCTIONS);
358 	ASSERT(ci->ci_func[0] != NULL);
359 
360 	zio_checksum_template_init(checksum, spa);
361 
362 	if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
363 		zio_eck_t eck;
364 		size_t eck_offset;
365 
366 		memset(&saved, 0, sizeof (zio_cksum_t));
367 
368 		if (checksum == ZIO_CHECKSUM_ZILOG2) {
369 			zil_chain_t zilc;
370 			abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t));
371 
372 			uint64_t nused = P2ROUNDUP_TYPED(zilc.zc_nused,
373 			    ZIL_MIN_BLKSZ, uint64_t);
374 			ASSERT3U(size, >=, nused);
375 			size = nused;
376 			eck = zilc.zc_eck;
377 			eck_offset = offsetof(zil_chain_t, zc_eck);
378 		} else {
379 			ASSERT3U(size, >=, sizeof (zio_eck_t));
380 			eck_offset = size - sizeof (zio_eck_t);
381 			abd_copy_to_buf_off(&eck, abd, eck_offset,
382 			    sizeof (zio_eck_t));
383 		}
384 
385 		if (checksum == ZIO_CHECKSUM_GANG_HEADER) {
386 			zio_checksum_gang_verifier(&eck.zec_cksum, bp);
387 		} else if (checksum == ZIO_CHECKSUM_LABEL) {
388 			zio_checksum_label_verifier(&eck.zec_cksum, offset);
389 		} else {
390 			saved = eck.zec_cksum;
391 			eck.zec_cksum = bp->blk_cksum;
392 		}
393 
394 		abd_copy_from_buf_off(abd, &zec_magic,
395 		    eck_offset + offsetof(zio_eck_t, zec_magic),
396 		    sizeof (zec_magic));
397 		abd_copy_from_buf_off(abd, &eck.zec_cksum,
398 		    eck_offset + offsetof(zio_eck_t, zec_cksum),
399 		    sizeof (zio_cksum_t));
400 
401 		ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum],
402 		    &cksum);
403 		if (bp != NULL && BP_USES_CRYPT(bp) &&
404 		    BP_GET_TYPE(bp) != DMU_OT_OBJSET)
405 			zio_checksum_handle_crypt(&cksum, &saved, insecure);
406 
407 		abd_copy_from_buf_off(abd, &cksum,
408 		    eck_offset + offsetof(zio_eck_t, zec_cksum),
409 		    sizeof (zio_cksum_t));
410 	} else {
411 		saved = bp->blk_cksum;
412 		ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum],
413 		    &cksum);
414 		if (BP_USES_CRYPT(bp) && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
415 			zio_checksum_handle_crypt(&cksum, &saved, insecure);
416 		bp->blk_cksum = cksum;
417 	}
418 }
419 
420 int
zio_checksum_error_impl(spa_t * spa,const blkptr_t * bp,enum zio_checksum checksum,abd_t * abd,uint64_t size,uint64_t offset,zio_bad_cksum_t * info)421 zio_checksum_error_impl(spa_t *spa, const blkptr_t *bp,
422     enum zio_checksum checksum, abd_t *abd, uint64_t size, uint64_t offset,
423     zio_bad_cksum_t *info)
424 {
425 	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
426 	zio_cksum_t actual_cksum, expected_cksum;
427 	zio_eck_t eck;
428 	int byteswap;
429 
430 	if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func[0] == NULL)
431 		return (SET_ERROR(EINVAL));
432 
433 	zio_checksum_template_init(checksum, spa);
434 
435 	IMPLY(bp == NULL, ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED);
436 	IMPLY(bp == NULL, checksum == ZIO_CHECKSUM_LABEL);
437 
438 	if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
439 		zio_cksum_t verifier;
440 		size_t eck_offset;
441 
442 		if (checksum == ZIO_CHECKSUM_ZILOG2) {
443 			zil_chain_t zilc;
444 			uint64_t nused;
445 
446 			abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t));
447 
448 			eck = zilc.zc_eck;
449 			eck_offset = offsetof(zil_chain_t, zc_eck) +
450 			    offsetof(zio_eck_t, zec_cksum);
451 
452 			if (eck.zec_magic == ZEC_MAGIC) {
453 				nused = zilc.zc_nused;
454 			} else if (eck.zec_magic == BSWAP_64(ZEC_MAGIC)) {
455 				nused = BSWAP_64(zilc.zc_nused);
456 			} else {
457 				return (SET_ERROR(ECKSUM));
458 			}
459 
460 			nused = P2ROUNDUP_TYPED(nused, ZIL_MIN_BLKSZ, uint64_t);
461 			if (size < nused)
462 				return (SET_ERROR(ECKSUM));
463 			size = nused;
464 		} else {
465 			if (size < sizeof (zio_eck_t))
466 				return (SET_ERROR(ECKSUM));
467 			eck_offset = size - sizeof (zio_eck_t);
468 			abd_copy_to_buf_off(&eck, abd, eck_offset,
469 			    sizeof (zio_eck_t));
470 			eck_offset += offsetof(zio_eck_t, zec_cksum);
471 		}
472 
473 		if (checksum == ZIO_CHECKSUM_GANG_HEADER)
474 			zio_checksum_gang_verifier(&verifier, bp);
475 		else if (checksum == ZIO_CHECKSUM_LABEL)
476 			zio_checksum_label_verifier(&verifier, offset);
477 		else
478 			verifier = bp->blk_cksum;
479 
480 		byteswap = (eck.zec_magic == BSWAP_64(ZEC_MAGIC));
481 
482 		if (byteswap)
483 			byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
484 
485 		expected_cksum = eck.zec_cksum;
486 
487 		abd_copy_from_buf_off(abd, &verifier, eck_offset,
488 		    sizeof (zio_cksum_t));
489 
490 		ci->ci_func[byteswap](abd, size,
491 		    spa->spa_cksum_tmpls[checksum], &actual_cksum);
492 
493 		abd_copy_from_buf_off(abd, &expected_cksum, eck_offset,
494 		    sizeof (zio_cksum_t));
495 
496 		if (byteswap) {
497 			byteswap_uint64_array(&expected_cksum,
498 			    sizeof (zio_cksum_t));
499 		}
500 	} else {
501 		byteswap = BP_SHOULD_BYTESWAP(bp);
502 		expected_cksum = bp->blk_cksum;
503 		ci->ci_func[byteswap](abd, size,
504 		    spa->spa_cksum_tmpls[checksum], &actual_cksum);
505 	}
506 
507 	/*
508 	 * MAC checksums are a special case since half of this checksum will
509 	 * actually be the encryption MAC. This will be verified by the
510 	 * decryption process, so we just check the truncated checksum now.
511 	 * Objset blocks use embedded MACs so we don't truncate the checksum
512 	 * for them.
513 	 */
514 	if (bp != NULL && BP_USES_CRYPT(bp) &&
515 	    BP_GET_TYPE(bp) != DMU_OT_OBJSET) {
516 		if (!(ci->ci_flags & ZCHECKSUM_FLAG_DEDUP)) {
517 			actual_cksum.zc_word[0] ^= actual_cksum.zc_word[2];
518 			actual_cksum.zc_word[1] ^= actual_cksum.zc_word[3];
519 		}
520 
521 		actual_cksum.zc_word[2] = 0;
522 		actual_cksum.zc_word[3] = 0;
523 		expected_cksum.zc_word[2] = 0;
524 		expected_cksum.zc_word[3] = 0;
525 	}
526 
527 	if (info != NULL) {
528 		info->zbc_checksum_name = ci->ci_name;
529 		info->zbc_byteswapped = byteswap;
530 		info->zbc_injected = 0;
531 		info->zbc_has_cksum = 1;
532 	}
533 
534 	if (!ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
535 		return (SET_ERROR(ECKSUM));
536 
537 	return (0);
538 }
539 
540 int
zio_checksum_error(zio_t * zio,zio_bad_cksum_t * info)541 zio_checksum_error(zio_t *zio, zio_bad_cksum_t *info)
542 {
543 	blkptr_t *bp = zio->io_bp;
544 	uint_t checksum = (bp == NULL ? zio->io_prop.zp_checksum :
545 	    (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp)));
546 	int error;
547 	uint64_t size = (bp == NULL ? zio->io_size :
548 	    (BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp)));
549 	uint64_t offset = zio->io_offset;
550 	abd_t *data = zio->io_abd;
551 	spa_t *spa = zio->io_spa;
552 
553 	error = zio_checksum_error_impl(spa, bp, checksum, data, size,
554 	    offset, info);
555 
556 	if (zio_injection_enabled && error == 0 && zio->io_error == 0) {
557 		error = zio_handle_fault_injection(zio, ECKSUM);
558 		if (error != 0)
559 			info->zbc_injected = 1;
560 	}
561 
562 	return (error);
563 }
564 
565 /*
566  * Called by a spa_t that's about to be deallocated. This steps through
567  * all of the checksum context templates and deallocates any that were
568  * initialized using the algorithm-specific template init function.
569  */
570 void
zio_checksum_templates_free(spa_t * spa)571 zio_checksum_templates_free(spa_t *spa)
572 {
573 	for (enum zio_checksum checksum = 0;
574 	    checksum < ZIO_CHECKSUM_FUNCTIONS; checksum++) {
575 		if (spa->spa_cksum_tmpls[checksum] != NULL) {
576 			zio_checksum_info_t *ci = &zio_checksum_table[checksum];
577 
578 			VERIFY(ci->ci_tmpl_free != NULL);
579 			ci->ci_tmpl_free(spa->spa_cksum_tmpls[checksum]);
580 			spa->spa_cksum_tmpls[checksum] = NULL;
581 		}
582 	}
583 }
584