1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 /*
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright 2016 Toomas Soome <tsoome@me.com>
29 * Copyright 2017 Joyent, Inc.
30 * Copyright (c) 2017, Intel Corporation.
31 * Copyright (c) 2019, Datto Inc. All rights reserved.
32 * Copyright (c) 2021, Klara Inc.
33 * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP.
34 */
35
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa.h>
39 #include <sys/spa_impl.h>
40 #include <sys/bpobj.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/vdev_rebuild.h>
46 #include <sys/vdev_draid.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/metaslab.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/space_map.h>
51 #include <sys/space_reftree.h>
52 #include <sys/zio.h>
53 #include <sys/zap.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/arc.h>
56 #include <sys/zil.h>
57 #include <sys/dsl_scan.h>
58 #include <sys/vdev_raidz.h>
59 #include <sys/abd.h>
60 #include <sys/vdev_initialize.h>
61 #include <sys/vdev_trim.h>
62 #include <sys/vdev_raidz.h>
63 #include <sys/zvol.h>
64 #include <sys/zfs_ratelimit.h>
65 #include "zfs_prop.h"
66
67 /*
68 * One metaslab from each (normal-class) vdev is used by the ZIL. These are
69 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
70 * part of the spa_embedded_log_class. The metaslab with the most free space
71 * in each vdev is selected for this purpose when the pool is opened (or a
72 * vdev is added). See vdev_metaslab_init().
73 *
74 * Log blocks can be allocated from the following locations. Each one is tried
75 * in order until the allocation succeeds:
76 * 1. dedicated log vdevs, aka "slog" (spa_log_class)
77 * 2. embedded slog metaslabs (spa_embedded_log_class)
78 * 3. other metaslabs in normal vdevs (spa_normal_class)
79 *
80 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
81 * than this number of metaslabs in the vdev. This ensures that we don't set
82 * aside an unreasonable amount of space for the ZIL. If set to less than
83 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
84 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
85 */
86 static uint_t zfs_embedded_slog_min_ms = 64;
87
88 /* default target for number of metaslabs per top-level vdev */
89 static uint_t zfs_vdev_default_ms_count = 200;
90
91 /* minimum number of metaslabs per top-level vdev */
92 static uint_t zfs_vdev_min_ms_count = 16;
93
94 /* practical upper limit of total metaslabs per top-level vdev */
95 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
96
97 /* lower limit for metaslab size (512M) */
98 static uint_t zfs_vdev_default_ms_shift = 29;
99
100 /* upper limit for metaslab size (16G) */
101 static uint_t zfs_vdev_max_ms_shift = 34;
102
103 int vdev_validate_skip = B_FALSE;
104
105 /*
106 * Since the DTL space map of a vdev is not expected to have a lot of
107 * entries, we default its block size to 4K.
108 */
109 int zfs_vdev_dtl_sm_blksz = (1 << 12);
110
111 /*
112 * Rate limit slow IO (delay) events to this many per second.
113 */
114 static unsigned int zfs_slow_io_events_per_second = 20;
115
116 /*
117 * Rate limit deadman "hung IO" events to this many per second.
118 */
119 static unsigned int zfs_deadman_events_per_second = 1;
120
121 /*
122 * Rate limit direct write IO verify failures to this many per scond.
123 */
124 static unsigned int zfs_dio_write_verify_events_per_second = 20;
125
126 /*
127 * Rate limit checksum events after this many checksum errors per second.
128 */
129 static unsigned int zfs_checksum_events_per_second = 20;
130
131 /*
132 * Ignore errors during scrub/resilver. Allows to work around resilver
133 * upon import when there are pool errors.
134 */
135 static int zfs_scan_ignore_errors = 0;
136
137 /*
138 * vdev-wide space maps that have lots of entries written to them at
139 * the end of each transaction can benefit from a higher I/O bandwidth
140 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
141 */
142 int zfs_vdev_standard_sm_blksz = (1 << 17);
143
144 /*
145 * Tunable parameter for debugging or performance analysis. Setting this
146 * will cause pool corruption on power loss if a volatile out-of-order
147 * write cache is enabled.
148 */
149 int zfs_nocacheflush = 0;
150
151 /*
152 * Maximum and minimum ashift values that can be automatically set based on
153 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX
154 * is higher than the maximum value, it is intentionally limited here to not
155 * excessively impact pool space efficiency. Higher ashift values may still
156 * be forced by vdev logical ashift or by user via ashift property, but won't
157 * be set automatically as a performance optimization.
158 */
159 uint_t zfs_vdev_max_auto_ashift = 14;
160 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
161
162 /*
163 * VDEV checksum verification for Direct I/O writes. This is neccessary for
164 * Linux, because anonymous pages can not be placed under write protection
165 * during Direct I/O writes.
166 */
167 #if !defined(__FreeBSD__)
168 uint_t zfs_vdev_direct_write_verify = 1;
169 #else
170 uint_t zfs_vdev_direct_write_verify = 0;
171 #endif
172
173 void
vdev_dbgmsg(vdev_t * vd,const char * fmt,...)174 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
175 {
176 va_list adx;
177 char buf[256];
178
179 va_start(adx, fmt);
180 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
181 va_end(adx);
182
183 if (vd->vdev_path != NULL) {
184 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
185 vd->vdev_path, buf);
186 } else {
187 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
188 vd->vdev_ops->vdev_op_type,
189 (u_longlong_t)vd->vdev_id,
190 (u_longlong_t)vd->vdev_guid, buf);
191 }
192 }
193
194 void
vdev_dbgmsg_print_tree(vdev_t * vd,int indent)195 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
196 {
197 char state[20];
198
199 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
200 zfs_dbgmsg("%*svdev %llu: %s", indent, "",
201 (u_longlong_t)vd->vdev_id,
202 vd->vdev_ops->vdev_op_type);
203 return;
204 }
205
206 switch (vd->vdev_state) {
207 case VDEV_STATE_UNKNOWN:
208 (void) snprintf(state, sizeof (state), "unknown");
209 break;
210 case VDEV_STATE_CLOSED:
211 (void) snprintf(state, sizeof (state), "closed");
212 break;
213 case VDEV_STATE_OFFLINE:
214 (void) snprintf(state, sizeof (state), "offline");
215 break;
216 case VDEV_STATE_REMOVED:
217 (void) snprintf(state, sizeof (state), "removed");
218 break;
219 case VDEV_STATE_CANT_OPEN:
220 (void) snprintf(state, sizeof (state), "can't open");
221 break;
222 case VDEV_STATE_FAULTED:
223 (void) snprintf(state, sizeof (state), "faulted");
224 break;
225 case VDEV_STATE_DEGRADED:
226 (void) snprintf(state, sizeof (state), "degraded");
227 break;
228 case VDEV_STATE_HEALTHY:
229 (void) snprintf(state, sizeof (state), "healthy");
230 break;
231 default:
232 (void) snprintf(state, sizeof (state), "<state %u>",
233 (uint_t)vd->vdev_state);
234 }
235
236 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
237 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
238 vd->vdev_islog ? " (log)" : "",
239 (u_longlong_t)vd->vdev_guid,
240 vd->vdev_path ? vd->vdev_path : "N/A", state);
241
242 for (uint64_t i = 0; i < vd->vdev_children; i++)
243 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
244 }
245
246 /*
247 * Virtual device management.
248 */
249
250 static vdev_ops_t *const vdev_ops_table[] = {
251 &vdev_root_ops,
252 &vdev_raidz_ops,
253 &vdev_draid_ops,
254 &vdev_draid_spare_ops,
255 &vdev_mirror_ops,
256 &vdev_replacing_ops,
257 &vdev_spare_ops,
258 &vdev_disk_ops,
259 &vdev_file_ops,
260 &vdev_missing_ops,
261 &vdev_hole_ops,
262 &vdev_indirect_ops,
263 NULL
264 };
265
266 /*
267 * Given a vdev type, return the appropriate ops vector.
268 */
269 static vdev_ops_t *
vdev_getops(const char * type)270 vdev_getops(const char *type)
271 {
272 vdev_ops_t *ops, *const *opspp;
273
274 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
275 if (strcmp(ops->vdev_op_type, type) == 0)
276 break;
277
278 return (ops);
279 }
280
281 /*
282 * Given a vdev and a metaslab class, find which metaslab group we're
283 * interested in. All vdevs may belong to two different metaslab classes.
284 * Dedicated slog devices use only the primary metaslab group, rather than a
285 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
286 */
287 metaslab_group_t *
vdev_get_mg(vdev_t * vd,metaslab_class_t * mc)288 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
289 {
290 if (mc == spa_embedded_log_class(vd->vdev_spa) &&
291 vd->vdev_log_mg != NULL)
292 return (vd->vdev_log_mg);
293 else
294 return (vd->vdev_mg);
295 }
296
297 void
vdev_default_xlate(vdev_t * vd,const zfs_range_seg64_t * logical_rs,zfs_range_seg64_t * physical_rs,zfs_range_seg64_t * remain_rs)298 vdev_default_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
299 zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
300 {
301 (void) vd, (void) remain_rs;
302
303 physical_rs->rs_start = logical_rs->rs_start;
304 physical_rs->rs_end = logical_rs->rs_end;
305 }
306
307 /*
308 * Derive the enumerated allocation bias from string input.
309 * String origin is either the per-vdev zap or zpool(8).
310 */
311 static vdev_alloc_bias_t
vdev_derive_alloc_bias(const char * bias)312 vdev_derive_alloc_bias(const char *bias)
313 {
314 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
315
316 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
317 alloc_bias = VDEV_BIAS_LOG;
318 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
319 alloc_bias = VDEV_BIAS_SPECIAL;
320 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
321 alloc_bias = VDEV_BIAS_DEDUP;
322
323 return (alloc_bias);
324 }
325
326 /*
327 * Default asize function: return the MAX of psize with the asize of
328 * all children. This is what's used by anything other than RAID-Z.
329 */
330 uint64_t
vdev_default_asize(vdev_t * vd,uint64_t psize,uint64_t txg)331 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
332 {
333 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
334 uint64_t csize;
335
336 for (int c = 0; c < vd->vdev_children; c++) {
337 csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg);
338 asize = MAX(asize, csize);
339 }
340
341 return (asize);
342 }
343
344 uint64_t
vdev_default_min_asize(vdev_t * vd)345 vdev_default_min_asize(vdev_t *vd)
346 {
347 return (vd->vdev_min_asize);
348 }
349
350 /*
351 * Get the minimum allocatable size. We define the allocatable size as
352 * the vdev's asize rounded to the nearest metaslab. This allows us to
353 * replace or attach devices which don't have the same physical size but
354 * can still satisfy the same number of allocations.
355 */
356 uint64_t
vdev_get_min_asize(vdev_t * vd)357 vdev_get_min_asize(vdev_t *vd)
358 {
359 vdev_t *pvd = vd->vdev_parent;
360
361 /*
362 * If our parent is NULL (inactive spare or cache) or is the root,
363 * just return our own asize.
364 */
365 if (pvd == NULL)
366 return (vd->vdev_asize);
367
368 /*
369 * The top-level vdev just returns the allocatable size rounded
370 * to the nearest metaslab.
371 */
372 if (vd == vd->vdev_top)
373 return (P2ALIGN_TYPED(vd->vdev_asize, 1ULL << vd->vdev_ms_shift,
374 uint64_t));
375
376 return (pvd->vdev_ops->vdev_op_min_asize(pvd));
377 }
378
379 void
vdev_set_min_asize(vdev_t * vd)380 vdev_set_min_asize(vdev_t *vd)
381 {
382 vd->vdev_min_asize = vdev_get_min_asize(vd);
383
384 for (int c = 0; c < vd->vdev_children; c++)
385 vdev_set_min_asize(vd->vdev_child[c]);
386 }
387
388 /*
389 * Get the minimal allocation size for the top-level vdev.
390 */
391 uint64_t
vdev_get_min_alloc(vdev_t * vd)392 vdev_get_min_alloc(vdev_t *vd)
393 {
394 uint64_t min_alloc = 1ULL << vd->vdev_ashift;
395
396 if (vd->vdev_ops->vdev_op_min_alloc != NULL)
397 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
398
399 return (min_alloc);
400 }
401
402 /*
403 * Get the parity level for a top-level vdev.
404 */
405 uint64_t
vdev_get_nparity(vdev_t * vd)406 vdev_get_nparity(vdev_t *vd)
407 {
408 uint64_t nparity = 0;
409
410 if (vd->vdev_ops->vdev_op_nparity != NULL)
411 nparity = vd->vdev_ops->vdev_op_nparity(vd);
412
413 return (nparity);
414 }
415
416 static int
vdev_prop_get_int(vdev_t * vd,vdev_prop_t prop,uint64_t * value)417 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value)
418 {
419 spa_t *spa = vd->vdev_spa;
420 objset_t *mos = spa->spa_meta_objset;
421 uint64_t objid;
422 int err;
423
424 if (vd->vdev_root_zap != 0) {
425 objid = vd->vdev_root_zap;
426 } else if (vd->vdev_top_zap != 0) {
427 objid = vd->vdev_top_zap;
428 } else if (vd->vdev_leaf_zap != 0) {
429 objid = vd->vdev_leaf_zap;
430 } else {
431 return (EINVAL);
432 }
433
434 err = zap_lookup(mos, objid, vdev_prop_to_name(prop),
435 sizeof (uint64_t), 1, value);
436
437 if (err == ENOENT)
438 *value = vdev_prop_default_numeric(prop);
439
440 return (err);
441 }
442
443 /*
444 * Get the number of data disks for a top-level vdev.
445 */
446 uint64_t
vdev_get_ndisks(vdev_t * vd)447 vdev_get_ndisks(vdev_t *vd)
448 {
449 uint64_t ndisks = 1;
450
451 if (vd->vdev_ops->vdev_op_ndisks != NULL)
452 ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
453
454 return (ndisks);
455 }
456
457 vdev_t *
vdev_lookup_top(spa_t * spa,uint64_t vdev)458 vdev_lookup_top(spa_t *spa, uint64_t vdev)
459 {
460 vdev_t *rvd = spa->spa_root_vdev;
461
462 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
463
464 if (vdev < rvd->vdev_children) {
465 ASSERT(rvd->vdev_child[vdev] != NULL);
466 return (rvd->vdev_child[vdev]);
467 }
468
469 return (NULL);
470 }
471
472 vdev_t *
vdev_lookup_by_guid(vdev_t * vd,uint64_t guid)473 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
474 {
475 vdev_t *mvd;
476
477 if (vd->vdev_guid == guid)
478 return (vd);
479
480 for (int c = 0; c < vd->vdev_children; c++)
481 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
482 NULL)
483 return (mvd);
484
485 return (NULL);
486 }
487
488 static int
vdev_count_leaves_impl(vdev_t * vd)489 vdev_count_leaves_impl(vdev_t *vd)
490 {
491 int n = 0;
492
493 if (vd->vdev_ops->vdev_op_leaf)
494 return (1);
495
496 for (int c = 0; c < vd->vdev_children; c++)
497 n += vdev_count_leaves_impl(vd->vdev_child[c]);
498
499 return (n);
500 }
501
502 int
vdev_count_leaves(spa_t * spa)503 vdev_count_leaves(spa_t *spa)
504 {
505 int rc;
506
507 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
508 rc = vdev_count_leaves_impl(spa->spa_root_vdev);
509 spa_config_exit(spa, SCL_VDEV, FTAG);
510
511 return (rc);
512 }
513
514 void
vdev_add_child(vdev_t * pvd,vdev_t * cvd)515 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
516 {
517 size_t oldsize, newsize;
518 uint64_t id = cvd->vdev_id;
519 vdev_t **newchild;
520
521 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
522 ASSERT(cvd->vdev_parent == NULL);
523
524 cvd->vdev_parent = pvd;
525
526 if (pvd == NULL)
527 return;
528
529 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
530
531 oldsize = pvd->vdev_children * sizeof (vdev_t *);
532 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
533 newsize = pvd->vdev_children * sizeof (vdev_t *);
534
535 newchild = kmem_alloc(newsize, KM_SLEEP);
536 if (pvd->vdev_child != NULL) {
537 memcpy(newchild, pvd->vdev_child, oldsize);
538 kmem_free(pvd->vdev_child, oldsize);
539 }
540
541 pvd->vdev_child = newchild;
542 pvd->vdev_child[id] = cvd;
543
544 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
545 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
546
547 /*
548 * Walk up all ancestors to update guid sum.
549 */
550 for (; pvd != NULL; pvd = pvd->vdev_parent)
551 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
552
553 if (cvd->vdev_ops->vdev_op_leaf) {
554 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
555 cvd->vdev_spa->spa_leaf_list_gen++;
556 }
557 }
558
559 void
vdev_remove_child(vdev_t * pvd,vdev_t * cvd)560 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
561 {
562 int c;
563 uint_t id = cvd->vdev_id;
564
565 ASSERT(cvd->vdev_parent == pvd);
566
567 if (pvd == NULL)
568 return;
569
570 ASSERT(id < pvd->vdev_children);
571 ASSERT(pvd->vdev_child[id] == cvd);
572
573 pvd->vdev_child[id] = NULL;
574 cvd->vdev_parent = NULL;
575
576 for (c = 0; c < pvd->vdev_children; c++)
577 if (pvd->vdev_child[c])
578 break;
579
580 if (c == pvd->vdev_children) {
581 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
582 pvd->vdev_child = NULL;
583 pvd->vdev_children = 0;
584 }
585
586 if (cvd->vdev_ops->vdev_op_leaf) {
587 spa_t *spa = cvd->vdev_spa;
588 list_remove(&spa->spa_leaf_list, cvd);
589 spa->spa_leaf_list_gen++;
590 }
591
592 /*
593 * Walk up all ancestors to update guid sum.
594 */
595 for (; pvd != NULL; pvd = pvd->vdev_parent)
596 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
597 }
598
599 /*
600 * Remove any holes in the child array.
601 */
602 void
vdev_compact_children(vdev_t * pvd)603 vdev_compact_children(vdev_t *pvd)
604 {
605 vdev_t **newchild, *cvd;
606 int oldc = pvd->vdev_children;
607 int newc;
608
609 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
610
611 if (oldc == 0)
612 return;
613
614 for (int c = newc = 0; c < oldc; c++)
615 if (pvd->vdev_child[c])
616 newc++;
617
618 if (newc > 0) {
619 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
620
621 for (int c = newc = 0; c < oldc; c++) {
622 if ((cvd = pvd->vdev_child[c]) != NULL) {
623 newchild[newc] = cvd;
624 cvd->vdev_id = newc++;
625 }
626 }
627 } else {
628 newchild = NULL;
629 }
630
631 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
632 pvd->vdev_child = newchild;
633 pvd->vdev_children = newc;
634 }
635
636 /*
637 * Allocate and minimally initialize a vdev_t.
638 */
639 vdev_t *
vdev_alloc_common(spa_t * spa,uint_t id,uint64_t guid,vdev_ops_t * ops)640 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
641 {
642 vdev_t *vd;
643 vdev_indirect_config_t *vic;
644
645 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
646 vic = &vd->vdev_indirect_config;
647
648 if (spa->spa_root_vdev == NULL) {
649 ASSERT(ops == &vdev_root_ops);
650 spa->spa_root_vdev = vd;
651 spa->spa_load_guid = spa_generate_load_guid();
652 }
653
654 if (guid == 0 && ops != &vdev_hole_ops) {
655 if (spa->spa_root_vdev == vd) {
656 /*
657 * The root vdev's guid will also be the pool guid,
658 * which must be unique among all pools.
659 */
660 guid = spa_generate_guid(NULL);
661 } else {
662 /*
663 * Any other vdev's guid must be unique within the pool.
664 */
665 guid = spa_generate_guid(spa);
666 }
667 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
668 }
669
670 vd->vdev_spa = spa;
671 vd->vdev_id = id;
672 vd->vdev_guid = guid;
673 vd->vdev_guid_sum = guid;
674 vd->vdev_ops = ops;
675 vd->vdev_state = VDEV_STATE_CLOSED;
676 vd->vdev_ishole = (ops == &vdev_hole_ops);
677 vic->vic_prev_indirect_vdev = UINT64_MAX;
678
679 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
680 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
681 vd->vdev_obsolete_segments = zfs_range_tree_create(NULL,
682 ZFS_RANGE_SEG64, NULL, 0, 0);
683
684 /*
685 * Initialize rate limit structs for events. We rate limit ZIO delay
686 * and checksum events so that we don't overwhelm ZED with thousands
687 * of events when a disk is acting up.
688 */
689 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
690 1);
691 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_deadman_events_per_second,
692 1);
693 zfs_ratelimit_init(&vd->vdev_dio_verify_rl,
694 &zfs_dio_write_verify_events_per_second, 1);
695 zfs_ratelimit_init(&vd->vdev_checksum_rl,
696 &zfs_checksum_events_per_second, 1);
697
698 /*
699 * Default Thresholds for tuning ZED
700 */
701 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N);
702 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T);
703 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N);
704 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T);
705 vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N);
706 vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T);
707
708 list_link_init(&vd->vdev_config_dirty_node);
709 list_link_init(&vd->vdev_state_dirty_node);
710 list_link_init(&vd->vdev_initialize_node);
711 list_link_init(&vd->vdev_leaf_node);
712 list_link_init(&vd->vdev_trim_node);
713
714 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
715 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
716 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
717 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
718
719 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
720 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
721 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
722 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
723
724 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
725 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
726 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
727 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
728 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
729 cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL);
730 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
731
732 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
733 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
734
735 for (int t = 0; t < DTL_TYPES; t++) {
736 vd->vdev_dtl[t] = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
737 NULL, 0, 0);
738 }
739
740 txg_list_create(&vd->vdev_ms_list, spa,
741 offsetof(struct metaslab, ms_txg_node));
742 txg_list_create(&vd->vdev_dtl_list, spa,
743 offsetof(struct vdev, vdev_dtl_node));
744 vd->vdev_stat.vs_timestamp = gethrtime();
745 vdev_queue_init(vd);
746
747 return (vd);
748 }
749
750 /*
751 * Allocate a new vdev. The 'alloctype' is used to control whether we are
752 * creating a new vdev or loading an existing one - the behavior is slightly
753 * different for each case.
754 */
755 int
vdev_alloc(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int alloctype)756 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
757 int alloctype)
758 {
759 vdev_ops_t *ops;
760 const char *type;
761 uint64_t guid = 0, islog;
762 vdev_t *vd;
763 vdev_indirect_config_t *vic;
764 const char *tmp = NULL;
765 int rc;
766 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
767 boolean_t top_level = (parent && !parent->vdev_parent);
768
769 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
770
771 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
772 return (SET_ERROR(EINVAL));
773
774 if ((ops = vdev_getops(type)) == NULL)
775 return (SET_ERROR(EINVAL));
776
777 /*
778 * If this is a load, get the vdev guid from the nvlist.
779 * Otherwise, vdev_alloc_common() will generate one for us.
780 */
781 if (alloctype == VDEV_ALLOC_LOAD) {
782 uint64_t label_id;
783
784 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
785 label_id != id)
786 return (SET_ERROR(EINVAL));
787
788 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
789 return (SET_ERROR(EINVAL));
790 } else if (alloctype == VDEV_ALLOC_SPARE) {
791 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
792 return (SET_ERROR(EINVAL));
793 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
794 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
795 return (SET_ERROR(EINVAL));
796 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
797 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
798 return (SET_ERROR(EINVAL));
799 }
800
801 /*
802 * The first allocated vdev must be of type 'root'.
803 */
804 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
805 return (SET_ERROR(EINVAL));
806
807 /*
808 * Determine whether we're a log vdev.
809 */
810 islog = 0;
811 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
812 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
813 return (SET_ERROR(ENOTSUP));
814
815 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
816 return (SET_ERROR(ENOTSUP));
817
818 if (top_level && alloctype == VDEV_ALLOC_ADD) {
819 const char *bias;
820
821 /*
822 * If creating a top-level vdev, check for allocation
823 * classes input.
824 */
825 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
826 &bias) == 0) {
827 alloc_bias = vdev_derive_alloc_bias(bias);
828
829 /* spa_vdev_add() expects feature to be enabled */
830 if (spa->spa_load_state != SPA_LOAD_CREATE &&
831 !spa_feature_is_enabled(spa,
832 SPA_FEATURE_ALLOCATION_CLASSES)) {
833 return (SET_ERROR(ENOTSUP));
834 }
835 }
836
837 /* spa_vdev_add() expects feature to be enabled */
838 if (ops == &vdev_draid_ops &&
839 spa->spa_load_state != SPA_LOAD_CREATE &&
840 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
841 return (SET_ERROR(ENOTSUP));
842 }
843 }
844
845 /*
846 * Initialize the vdev specific data. This is done before calling
847 * vdev_alloc_common() since it may fail and this simplifies the
848 * error reporting and cleanup code paths.
849 */
850 void *tsd = NULL;
851 if (ops->vdev_op_init != NULL) {
852 rc = ops->vdev_op_init(spa, nv, &tsd);
853 if (rc != 0) {
854 return (rc);
855 }
856 }
857
858 vd = vdev_alloc_common(spa, id, guid, ops);
859 vd->vdev_tsd = tsd;
860 vd->vdev_islog = islog;
861
862 if (top_level && alloc_bias != VDEV_BIAS_NONE)
863 vd->vdev_alloc_bias = alloc_bias;
864
865 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0)
866 vd->vdev_path = spa_strdup(tmp);
867
868 /*
869 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
870 * fault on a vdev and want it to persist across imports (like with
871 * zpool offline -f).
872 */
873 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
874 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
875 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
876 vd->vdev_faulted = 1;
877 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
878 }
879
880 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0)
881 vd->vdev_devid = spa_strdup(tmp);
882 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0)
883 vd->vdev_physpath = spa_strdup(tmp);
884
885 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
886 &tmp) == 0)
887 vd->vdev_enc_sysfs_path = spa_strdup(tmp);
888
889 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0)
890 vd->vdev_fru = spa_strdup(tmp);
891
892 /*
893 * Set the whole_disk property. If it's not specified, leave the value
894 * as -1.
895 */
896 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
897 &vd->vdev_wholedisk) != 0)
898 vd->vdev_wholedisk = -1ULL;
899
900 vic = &vd->vdev_indirect_config;
901
902 ASSERT0(vic->vic_mapping_object);
903 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
904 &vic->vic_mapping_object);
905 ASSERT0(vic->vic_births_object);
906 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
907 &vic->vic_births_object);
908 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
909 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
910 &vic->vic_prev_indirect_vdev);
911
912 /*
913 * Look for the 'not present' flag. This will only be set if the device
914 * was not present at the time of import.
915 */
916 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
917 &vd->vdev_not_present);
918
919 /*
920 * Get the alignment requirement. Ignore pool ashift for vdev
921 * attach case.
922 */
923 if (alloctype != VDEV_ALLOC_ATTACH) {
924 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT,
925 &vd->vdev_ashift);
926 } else {
927 vd->vdev_attaching = B_TRUE;
928 }
929
930 /*
931 * Retrieve the vdev creation time.
932 */
933 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
934 &vd->vdev_crtxg);
935
936 if (vd->vdev_ops == &vdev_root_ops &&
937 (alloctype == VDEV_ALLOC_LOAD ||
938 alloctype == VDEV_ALLOC_SPLIT ||
939 alloctype == VDEV_ALLOC_ROOTPOOL)) {
940 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
941 &vd->vdev_root_zap);
942 }
943
944 /*
945 * If we're a top-level vdev, try to load the allocation parameters.
946 */
947 if (top_level &&
948 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
949 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
950 &vd->vdev_ms_array);
951 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
952 &vd->vdev_ms_shift);
953 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
954 &vd->vdev_asize);
955 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
956 &vd->vdev_noalloc);
957 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
958 &vd->vdev_removing);
959 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
960 &vd->vdev_top_zap);
961 vd->vdev_rz_expanding = nvlist_exists(nv,
962 ZPOOL_CONFIG_RAIDZ_EXPANDING);
963 } else {
964 ASSERT0(vd->vdev_top_zap);
965 }
966
967 if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
968 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
969 alloctype == VDEV_ALLOC_ADD ||
970 alloctype == VDEV_ALLOC_SPLIT ||
971 alloctype == VDEV_ALLOC_ROOTPOOL);
972 /* Note: metaslab_group_create() is now deferred */
973 }
974
975 if (vd->vdev_ops->vdev_op_leaf &&
976 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
977 (void) nvlist_lookup_uint64(nv,
978 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
979 } else {
980 ASSERT0(vd->vdev_leaf_zap);
981 }
982
983 /*
984 * If we're a leaf vdev, try to load the DTL object and other state.
985 */
986
987 if (vd->vdev_ops->vdev_op_leaf &&
988 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
989 alloctype == VDEV_ALLOC_ROOTPOOL)) {
990 if (alloctype == VDEV_ALLOC_LOAD) {
991 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
992 &vd->vdev_dtl_object);
993 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
994 &vd->vdev_unspare);
995 }
996
997 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
998 uint64_t spare = 0;
999
1000 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
1001 &spare) == 0 && spare)
1002 spa_spare_add(vd);
1003 }
1004
1005 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
1006 &vd->vdev_offline);
1007
1008 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
1009 &vd->vdev_resilver_txg);
1010
1011 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
1012 &vd->vdev_rebuild_txg);
1013
1014 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
1015 vdev_defer_resilver(vd);
1016
1017 /*
1018 * In general, when importing a pool we want to ignore the
1019 * persistent fault state, as the diagnosis made on another
1020 * system may not be valid in the current context. The only
1021 * exception is if we forced a vdev to a persistently faulted
1022 * state with 'zpool offline -f'. The persistent fault will
1023 * remain across imports until cleared.
1024 *
1025 * Local vdevs will remain in the faulted state.
1026 */
1027 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
1028 spa_load_state(spa) == SPA_LOAD_IMPORT) {
1029 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
1030 &vd->vdev_faulted);
1031 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
1032 &vd->vdev_degraded);
1033 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
1034 &vd->vdev_removed);
1035
1036 if (vd->vdev_faulted || vd->vdev_degraded) {
1037 const char *aux;
1038
1039 vd->vdev_label_aux =
1040 VDEV_AUX_ERR_EXCEEDED;
1041 if (nvlist_lookup_string(nv,
1042 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
1043 strcmp(aux, "external") == 0)
1044 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
1045 else
1046 vd->vdev_faulted = 0ULL;
1047 }
1048 }
1049 }
1050
1051 /*
1052 * Add ourselves to the parent's list of children.
1053 */
1054 vdev_add_child(parent, vd);
1055
1056 *vdp = vd;
1057
1058 return (0);
1059 }
1060
1061 void
vdev_free(vdev_t * vd)1062 vdev_free(vdev_t *vd)
1063 {
1064 spa_t *spa = vd->vdev_spa;
1065
1066 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1067 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1068 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1069 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
1070
1071 /*
1072 * Scan queues are normally destroyed at the end of a scan. If the
1073 * queue exists here, that implies the vdev is being removed while
1074 * the scan is still running.
1075 */
1076 if (vd->vdev_scan_io_queue != NULL) {
1077 mutex_enter(&vd->vdev_scan_io_queue_lock);
1078 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
1079 vd->vdev_scan_io_queue = NULL;
1080 mutex_exit(&vd->vdev_scan_io_queue_lock);
1081 }
1082
1083 /*
1084 * vdev_free() implies closing the vdev first. This is simpler than
1085 * trying to ensure complicated semantics for all callers.
1086 */
1087 vdev_close(vd);
1088
1089 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1090 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1091
1092 /*
1093 * Free all children.
1094 */
1095 for (int c = 0; c < vd->vdev_children; c++)
1096 vdev_free(vd->vdev_child[c]);
1097
1098 ASSERT(vd->vdev_child == NULL);
1099 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1100
1101 if (vd->vdev_ops->vdev_op_fini != NULL)
1102 vd->vdev_ops->vdev_op_fini(vd);
1103
1104 /*
1105 * Discard allocation state.
1106 */
1107 if (vd->vdev_mg != NULL) {
1108 vdev_metaslab_fini(vd);
1109 metaslab_group_destroy(vd->vdev_mg);
1110 vd->vdev_mg = NULL;
1111 }
1112 if (vd->vdev_log_mg != NULL) {
1113 ASSERT0(vd->vdev_ms_count);
1114 metaslab_group_destroy(vd->vdev_log_mg);
1115 vd->vdev_log_mg = NULL;
1116 }
1117
1118 ASSERT0(vd->vdev_stat.vs_space);
1119 ASSERT0(vd->vdev_stat.vs_dspace);
1120 ASSERT0(vd->vdev_stat.vs_alloc);
1121
1122 /*
1123 * Remove this vdev from its parent's child list.
1124 */
1125 vdev_remove_child(vd->vdev_parent, vd);
1126
1127 ASSERT(vd->vdev_parent == NULL);
1128 ASSERT(!list_link_active(&vd->vdev_leaf_node));
1129
1130 /*
1131 * Clean up vdev structure.
1132 */
1133 vdev_queue_fini(vd);
1134
1135 if (vd->vdev_path)
1136 spa_strfree(vd->vdev_path);
1137 if (vd->vdev_devid)
1138 spa_strfree(vd->vdev_devid);
1139 if (vd->vdev_physpath)
1140 spa_strfree(vd->vdev_physpath);
1141
1142 if (vd->vdev_enc_sysfs_path)
1143 spa_strfree(vd->vdev_enc_sysfs_path);
1144
1145 if (vd->vdev_fru)
1146 spa_strfree(vd->vdev_fru);
1147
1148 if (vd->vdev_isspare)
1149 spa_spare_remove(vd);
1150 if (vd->vdev_isl2cache)
1151 spa_l2cache_remove(vd);
1152
1153 txg_list_destroy(&vd->vdev_ms_list);
1154 txg_list_destroy(&vd->vdev_dtl_list);
1155
1156 mutex_enter(&vd->vdev_dtl_lock);
1157 space_map_close(vd->vdev_dtl_sm);
1158 for (int t = 0; t < DTL_TYPES; t++) {
1159 zfs_range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1160 zfs_range_tree_destroy(vd->vdev_dtl[t]);
1161 }
1162 mutex_exit(&vd->vdev_dtl_lock);
1163
1164 EQUIV(vd->vdev_indirect_births != NULL,
1165 vd->vdev_indirect_mapping != NULL);
1166 if (vd->vdev_indirect_births != NULL) {
1167 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1168 vdev_indirect_births_close(vd->vdev_indirect_births);
1169 }
1170
1171 if (vd->vdev_obsolete_sm != NULL) {
1172 ASSERT(vd->vdev_removing ||
1173 vd->vdev_ops == &vdev_indirect_ops);
1174 space_map_close(vd->vdev_obsolete_sm);
1175 vd->vdev_obsolete_sm = NULL;
1176 }
1177 zfs_range_tree_destroy(vd->vdev_obsolete_segments);
1178 rw_destroy(&vd->vdev_indirect_rwlock);
1179 mutex_destroy(&vd->vdev_obsolete_lock);
1180
1181 mutex_destroy(&vd->vdev_dtl_lock);
1182 mutex_destroy(&vd->vdev_stat_lock);
1183 mutex_destroy(&vd->vdev_probe_lock);
1184 mutex_destroy(&vd->vdev_scan_io_queue_lock);
1185
1186 mutex_destroy(&vd->vdev_initialize_lock);
1187 mutex_destroy(&vd->vdev_initialize_io_lock);
1188 cv_destroy(&vd->vdev_initialize_io_cv);
1189 cv_destroy(&vd->vdev_initialize_cv);
1190
1191 mutex_destroy(&vd->vdev_trim_lock);
1192 mutex_destroy(&vd->vdev_autotrim_lock);
1193 mutex_destroy(&vd->vdev_trim_io_lock);
1194 cv_destroy(&vd->vdev_trim_cv);
1195 cv_destroy(&vd->vdev_autotrim_cv);
1196 cv_destroy(&vd->vdev_autotrim_kick_cv);
1197 cv_destroy(&vd->vdev_trim_io_cv);
1198
1199 mutex_destroy(&vd->vdev_rebuild_lock);
1200 cv_destroy(&vd->vdev_rebuild_cv);
1201
1202 zfs_ratelimit_fini(&vd->vdev_delay_rl);
1203 zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1204 zfs_ratelimit_fini(&vd->vdev_dio_verify_rl);
1205 zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1206
1207 if (vd == spa->spa_root_vdev)
1208 spa->spa_root_vdev = NULL;
1209
1210 kmem_free(vd, sizeof (vdev_t));
1211 }
1212
1213 /*
1214 * Transfer top-level vdev state from svd to tvd.
1215 */
1216 static void
vdev_top_transfer(vdev_t * svd,vdev_t * tvd)1217 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1218 {
1219 spa_t *spa = svd->vdev_spa;
1220 metaslab_t *msp;
1221 vdev_t *vd;
1222 int t;
1223
1224 ASSERT(tvd == tvd->vdev_top);
1225
1226 tvd->vdev_ms_array = svd->vdev_ms_array;
1227 tvd->vdev_ms_shift = svd->vdev_ms_shift;
1228 tvd->vdev_ms_count = svd->vdev_ms_count;
1229 tvd->vdev_top_zap = svd->vdev_top_zap;
1230
1231 svd->vdev_ms_array = 0;
1232 svd->vdev_ms_shift = 0;
1233 svd->vdev_ms_count = 0;
1234 svd->vdev_top_zap = 0;
1235
1236 if (tvd->vdev_mg)
1237 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1238 if (tvd->vdev_log_mg)
1239 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1240 tvd->vdev_mg = svd->vdev_mg;
1241 tvd->vdev_log_mg = svd->vdev_log_mg;
1242 tvd->vdev_ms = svd->vdev_ms;
1243
1244 svd->vdev_mg = NULL;
1245 svd->vdev_log_mg = NULL;
1246 svd->vdev_ms = NULL;
1247
1248 if (tvd->vdev_mg != NULL)
1249 tvd->vdev_mg->mg_vd = tvd;
1250 if (tvd->vdev_log_mg != NULL)
1251 tvd->vdev_log_mg->mg_vd = tvd;
1252
1253 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1254 svd->vdev_checkpoint_sm = NULL;
1255
1256 tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1257 svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1258
1259 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1260 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1261 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1262
1263 svd->vdev_stat.vs_alloc = 0;
1264 svd->vdev_stat.vs_space = 0;
1265 svd->vdev_stat.vs_dspace = 0;
1266
1267 /*
1268 * State which may be set on a top-level vdev that's in the
1269 * process of being removed.
1270 */
1271 ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1272 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1273 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1274 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1275 ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1276 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1277 ASSERT0(tvd->vdev_noalloc);
1278 ASSERT0(tvd->vdev_removing);
1279 ASSERT0(tvd->vdev_rebuilding);
1280 tvd->vdev_noalloc = svd->vdev_noalloc;
1281 tvd->vdev_removing = svd->vdev_removing;
1282 tvd->vdev_rebuilding = svd->vdev_rebuilding;
1283 tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1284 tvd->vdev_indirect_config = svd->vdev_indirect_config;
1285 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1286 tvd->vdev_indirect_births = svd->vdev_indirect_births;
1287 zfs_range_tree_swap(&svd->vdev_obsolete_segments,
1288 &tvd->vdev_obsolete_segments);
1289 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1290 svd->vdev_indirect_config.vic_mapping_object = 0;
1291 svd->vdev_indirect_config.vic_births_object = 0;
1292 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1293 svd->vdev_indirect_mapping = NULL;
1294 svd->vdev_indirect_births = NULL;
1295 svd->vdev_obsolete_sm = NULL;
1296 svd->vdev_noalloc = 0;
1297 svd->vdev_removing = 0;
1298 svd->vdev_rebuilding = 0;
1299
1300 for (t = 0; t < TXG_SIZE; t++) {
1301 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1302 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1303 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1304 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1305 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1306 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1307 }
1308
1309 if (list_link_active(&svd->vdev_config_dirty_node)) {
1310 vdev_config_clean(svd);
1311 vdev_config_dirty(tvd);
1312 }
1313
1314 if (list_link_active(&svd->vdev_state_dirty_node)) {
1315 vdev_state_clean(svd);
1316 vdev_state_dirty(tvd);
1317 }
1318
1319 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1320 svd->vdev_deflate_ratio = 0;
1321
1322 tvd->vdev_islog = svd->vdev_islog;
1323 svd->vdev_islog = 0;
1324
1325 dsl_scan_io_queue_vdev_xfer(svd, tvd);
1326 }
1327
1328 static void
vdev_top_update(vdev_t * tvd,vdev_t * vd)1329 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1330 {
1331 if (vd == NULL)
1332 return;
1333
1334 vd->vdev_top = tvd;
1335
1336 for (int c = 0; c < vd->vdev_children; c++)
1337 vdev_top_update(tvd, vd->vdev_child[c]);
1338 }
1339
1340 /*
1341 * Add a mirror/replacing vdev above an existing vdev. There is no need to
1342 * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1343 */
1344 vdev_t *
vdev_add_parent(vdev_t * cvd,vdev_ops_t * ops)1345 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1346 {
1347 spa_t *spa = cvd->vdev_spa;
1348 vdev_t *pvd = cvd->vdev_parent;
1349 vdev_t *mvd;
1350
1351 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1352
1353 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1354
1355 mvd->vdev_asize = cvd->vdev_asize;
1356 mvd->vdev_min_asize = cvd->vdev_min_asize;
1357 mvd->vdev_max_asize = cvd->vdev_max_asize;
1358 mvd->vdev_psize = cvd->vdev_psize;
1359 mvd->vdev_ashift = cvd->vdev_ashift;
1360 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1361 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1362 mvd->vdev_state = cvd->vdev_state;
1363 mvd->vdev_crtxg = cvd->vdev_crtxg;
1364
1365 vdev_remove_child(pvd, cvd);
1366 vdev_add_child(pvd, mvd);
1367 cvd->vdev_id = mvd->vdev_children;
1368 vdev_add_child(mvd, cvd);
1369 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1370
1371 if (mvd == mvd->vdev_top)
1372 vdev_top_transfer(cvd, mvd);
1373
1374 return (mvd);
1375 }
1376
1377 /*
1378 * Remove a 1-way mirror/replacing vdev from the tree.
1379 */
1380 void
vdev_remove_parent(vdev_t * cvd)1381 vdev_remove_parent(vdev_t *cvd)
1382 {
1383 vdev_t *mvd = cvd->vdev_parent;
1384 vdev_t *pvd = mvd->vdev_parent;
1385
1386 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1387
1388 ASSERT(mvd->vdev_children == 1);
1389 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1390 mvd->vdev_ops == &vdev_replacing_ops ||
1391 mvd->vdev_ops == &vdev_spare_ops);
1392 cvd->vdev_ashift = mvd->vdev_ashift;
1393 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1394 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1395 vdev_remove_child(mvd, cvd);
1396 vdev_remove_child(pvd, mvd);
1397
1398 /*
1399 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1400 * Otherwise, we could have detached an offline device, and when we
1401 * go to import the pool we'll think we have two top-level vdevs,
1402 * instead of a different version of the same top-level vdev.
1403 */
1404 if (mvd->vdev_top == mvd) {
1405 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1406 cvd->vdev_orig_guid = cvd->vdev_guid;
1407 cvd->vdev_guid += guid_delta;
1408 cvd->vdev_guid_sum += guid_delta;
1409
1410 /*
1411 * If pool not set for autoexpand, we need to also preserve
1412 * mvd's asize to prevent automatic expansion of cvd.
1413 * Otherwise if we are adjusting the mirror by attaching and
1414 * detaching children of non-uniform sizes, the mirror could
1415 * autoexpand, unexpectedly requiring larger devices to
1416 * re-establish the mirror.
1417 */
1418 if (!cvd->vdev_spa->spa_autoexpand)
1419 cvd->vdev_asize = mvd->vdev_asize;
1420 }
1421 cvd->vdev_id = mvd->vdev_id;
1422 vdev_add_child(pvd, cvd);
1423 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1424
1425 if (cvd == cvd->vdev_top)
1426 vdev_top_transfer(mvd, cvd);
1427
1428 ASSERT(mvd->vdev_children == 0);
1429 vdev_free(mvd);
1430 }
1431
1432 /*
1433 * Choose GCD for spa_gcd_alloc.
1434 */
1435 static uint64_t
vdev_gcd(uint64_t a,uint64_t b)1436 vdev_gcd(uint64_t a, uint64_t b)
1437 {
1438 while (b != 0) {
1439 uint64_t t = b;
1440 b = a % b;
1441 a = t;
1442 }
1443 return (a);
1444 }
1445
1446 /*
1447 * Set spa_min_alloc and spa_gcd_alloc.
1448 */
1449 static void
vdev_spa_set_alloc(spa_t * spa,uint64_t min_alloc)1450 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc)
1451 {
1452 if (min_alloc < spa->spa_min_alloc)
1453 spa->spa_min_alloc = min_alloc;
1454 if (spa->spa_gcd_alloc == INT_MAX) {
1455 spa->spa_gcd_alloc = min_alloc;
1456 } else {
1457 spa->spa_gcd_alloc = vdev_gcd(min_alloc,
1458 spa->spa_gcd_alloc);
1459 }
1460 }
1461
1462 void
vdev_metaslab_group_create(vdev_t * vd)1463 vdev_metaslab_group_create(vdev_t *vd)
1464 {
1465 spa_t *spa = vd->vdev_spa;
1466
1467 /*
1468 * metaslab_group_create was delayed until allocation bias was available
1469 */
1470 if (vd->vdev_mg == NULL) {
1471 metaslab_class_t *mc;
1472
1473 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1474 vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1475
1476 ASSERT3U(vd->vdev_islog, ==,
1477 (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1478
1479 switch (vd->vdev_alloc_bias) {
1480 case VDEV_BIAS_LOG:
1481 mc = spa_log_class(spa);
1482 break;
1483 case VDEV_BIAS_SPECIAL:
1484 mc = spa_special_class(spa);
1485 break;
1486 case VDEV_BIAS_DEDUP:
1487 mc = spa_dedup_class(spa);
1488 break;
1489 default:
1490 mc = spa_normal_class(spa);
1491 }
1492
1493 vd->vdev_mg = metaslab_group_create(mc, vd,
1494 spa->spa_alloc_count);
1495
1496 if (!vd->vdev_islog) {
1497 vd->vdev_log_mg = metaslab_group_create(
1498 spa_embedded_log_class(spa), vd, 1);
1499 }
1500
1501 /*
1502 * The spa ashift min/max only apply for the normal metaslab
1503 * class. Class destination is late binding so ashift boundary
1504 * setting had to wait until now.
1505 */
1506 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1507 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1508 if (vd->vdev_ashift > spa->spa_max_ashift)
1509 spa->spa_max_ashift = vd->vdev_ashift;
1510 if (vd->vdev_ashift < spa->spa_min_ashift)
1511 spa->spa_min_ashift = vd->vdev_ashift;
1512
1513 uint64_t min_alloc = vdev_get_min_alloc(vd);
1514 vdev_spa_set_alloc(spa, min_alloc);
1515 }
1516 }
1517 }
1518
1519 int
vdev_metaslab_init(vdev_t * vd,uint64_t txg)1520 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1521 {
1522 spa_t *spa = vd->vdev_spa;
1523 uint64_t oldc = vd->vdev_ms_count;
1524 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1525 metaslab_t **mspp;
1526 int error;
1527 boolean_t expanding = (oldc != 0);
1528
1529 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1530
1531 /*
1532 * This vdev is not being allocated from yet or is a hole.
1533 */
1534 if (vd->vdev_ms_shift == 0)
1535 return (0);
1536
1537 ASSERT(!vd->vdev_ishole);
1538
1539 ASSERT(oldc <= newc);
1540
1541 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1542
1543 if (expanding) {
1544 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
1545 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1546 }
1547
1548 vd->vdev_ms = mspp;
1549 vd->vdev_ms_count = newc;
1550
1551 for (uint64_t m = oldc; m < newc; m++) {
1552 uint64_t object = 0;
1553 /*
1554 * vdev_ms_array may be 0 if we are creating the "fake"
1555 * metaslabs for an indirect vdev for zdb's leak detection.
1556 * See zdb_leak_init().
1557 */
1558 if (txg == 0 && vd->vdev_ms_array != 0) {
1559 error = dmu_read(spa->spa_meta_objset,
1560 vd->vdev_ms_array,
1561 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1562 DMU_READ_PREFETCH);
1563 if (error != 0) {
1564 vdev_dbgmsg(vd, "unable to read the metaslab "
1565 "array [error=%d]", error);
1566 return (error);
1567 }
1568 }
1569
1570 error = metaslab_init(vd->vdev_mg, m, object, txg,
1571 &(vd->vdev_ms[m]));
1572 if (error != 0) {
1573 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1574 error);
1575 return (error);
1576 }
1577 }
1578
1579 /*
1580 * Find the emptiest metaslab on the vdev and mark it for use for
1581 * embedded slog by moving it from the regular to the log metaslab
1582 * group.
1583 */
1584 if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1585 vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1586 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1587 uint64_t slog_msid = 0;
1588 uint64_t smallest = UINT64_MAX;
1589
1590 /*
1591 * Note, we only search the new metaslabs, because the old
1592 * (pre-existing) ones may be active (e.g. have non-empty
1593 * range_tree's), and we don't move them to the new
1594 * metaslab_t.
1595 */
1596 for (uint64_t m = oldc; m < newc; m++) {
1597 uint64_t alloc =
1598 space_map_allocated(vd->vdev_ms[m]->ms_sm);
1599 if (alloc < smallest) {
1600 slog_msid = m;
1601 smallest = alloc;
1602 }
1603 }
1604 metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1605 /*
1606 * The metaslab was marked as dirty at the end of
1607 * metaslab_init(). Remove it from the dirty list so that we
1608 * can uninitialize and reinitialize it to the new class.
1609 */
1610 if (txg != 0) {
1611 (void) txg_list_remove_this(&vd->vdev_ms_list,
1612 slog_ms, txg);
1613 }
1614 uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1615 metaslab_fini(slog_ms);
1616 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1617 &vd->vdev_ms[slog_msid]));
1618 }
1619
1620 if (txg == 0)
1621 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1622
1623 /*
1624 * If the vdev is marked as non-allocating then don't
1625 * activate the metaslabs since we want to ensure that
1626 * no allocations are performed on this device.
1627 */
1628 if (vd->vdev_noalloc) {
1629 /* track non-allocating vdev space */
1630 spa->spa_nonallocating_dspace += spa_deflate(spa) ?
1631 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1632 } else if (!expanding) {
1633 metaslab_group_activate(vd->vdev_mg);
1634 if (vd->vdev_log_mg != NULL)
1635 metaslab_group_activate(vd->vdev_log_mg);
1636 }
1637
1638 if (txg == 0)
1639 spa_config_exit(spa, SCL_ALLOC, FTAG);
1640
1641 return (0);
1642 }
1643
1644 void
vdev_metaslab_fini(vdev_t * vd)1645 vdev_metaslab_fini(vdev_t *vd)
1646 {
1647 if (vd->vdev_checkpoint_sm != NULL) {
1648 ASSERT(spa_feature_is_active(vd->vdev_spa,
1649 SPA_FEATURE_POOL_CHECKPOINT));
1650 space_map_close(vd->vdev_checkpoint_sm);
1651 /*
1652 * Even though we close the space map, we need to set its
1653 * pointer to NULL. The reason is that vdev_metaslab_fini()
1654 * may be called multiple times for certain operations
1655 * (i.e. when destroying a pool) so we need to ensure that
1656 * this clause never executes twice. This logic is similar
1657 * to the one used for the vdev_ms clause below.
1658 */
1659 vd->vdev_checkpoint_sm = NULL;
1660 }
1661
1662 if (vd->vdev_ms != NULL) {
1663 metaslab_group_t *mg = vd->vdev_mg;
1664
1665 metaslab_group_passivate(mg);
1666 if (vd->vdev_log_mg != NULL) {
1667 ASSERT(!vd->vdev_islog);
1668 metaslab_group_passivate(vd->vdev_log_mg);
1669 }
1670
1671 uint64_t count = vd->vdev_ms_count;
1672 for (uint64_t m = 0; m < count; m++) {
1673 metaslab_t *msp = vd->vdev_ms[m];
1674 if (msp != NULL)
1675 metaslab_fini(msp);
1676 }
1677 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1678 vd->vdev_ms = NULL;
1679 vd->vdev_ms_count = 0;
1680
1681 for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) {
1682 ASSERT0(mg->mg_histogram[i]);
1683 if (vd->vdev_log_mg != NULL)
1684 ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1685 }
1686 }
1687 ASSERT0(vd->vdev_ms_count);
1688 }
1689
1690 typedef struct vdev_probe_stats {
1691 boolean_t vps_readable;
1692 boolean_t vps_writeable;
1693 boolean_t vps_zio_done_probe;
1694 int vps_flags;
1695 } vdev_probe_stats_t;
1696
1697 static void
vdev_probe_done(zio_t * zio)1698 vdev_probe_done(zio_t *zio)
1699 {
1700 spa_t *spa = zio->io_spa;
1701 vdev_t *vd = zio->io_vd;
1702 vdev_probe_stats_t *vps = zio->io_private;
1703
1704 ASSERT(vd->vdev_probe_zio != NULL);
1705
1706 if (zio->io_type == ZIO_TYPE_READ) {
1707 if (zio->io_error == 0)
1708 vps->vps_readable = 1;
1709 if (zio->io_error == 0 && spa_writeable(spa)) {
1710 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1711 zio->io_offset, zio->io_size, zio->io_abd,
1712 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1713 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1714 } else {
1715 abd_free(zio->io_abd);
1716 }
1717 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1718 if (zio->io_error == 0)
1719 vps->vps_writeable = 1;
1720 abd_free(zio->io_abd);
1721 } else if (zio->io_type == ZIO_TYPE_NULL) {
1722 zio_t *pio;
1723 zio_link_t *zl;
1724
1725 vd->vdev_cant_read |= !vps->vps_readable;
1726 vd->vdev_cant_write |= !vps->vps_writeable;
1727 vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u",
1728 vd->vdev_cant_read, vd->vdev_cant_write);
1729
1730 if (vdev_readable(vd) &&
1731 (vdev_writeable(vd) || !spa_writeable(spa))) {
1732 zio->io_error = 0;
1733 } else {
1734 ASSERT(zio->io_error != 0);
1735 vdev_dbgmsg(vd, "failed probe");
1736 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1737 spa, vd, NULL, NULL, 0);
1738 zio->io_error = SET_ERROR(ENXIO);
1739
1740 /*
1741 * If this probe was initiated from zio pipeline, then
1742 * change the state in a spa_async_request. Probes that
1743 * were initiated from a vdev_open can change the state
1744 * as part of the open call.
1745 */
1746 if (vps->vps_zio_done_probe) {
1747 vd->vdev_fault_wanted = B_TRUE;
1748 spa_async_request(spa, SPA_ASYNC_FAULT_VDEV);
1749 }
1750 }
1751
1752 mutex_enter(&vd->vdev_probe_lock);
1753 ASSERT(vd->vdev_probe_zio == zio);
1754 vd->vdev_probe_zio = NULL;
1755 mutex_exit(&vd->vdev_probe_lock);
1756
1757 zl = NULL;
1758 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1759 if (!vdev_accessible(vd, pio))
1760 pio->io_error = SET_ERROR(ENXIO);
1761
1762 kmem_free(vps, sizeof (*vps));
1763 }
1764 }
1765
1766 /*
1767 * Determine whether this device is accessible.
1768 *
1769 * Read and write to several known locations: the pad regions of each
1770 * vdev label but the first, which we leave alone in case it contains
1771 * a VTOC.
1772 */
1773 zio_t *
vdev_probe(vdev_t * vd,zio_t * zio)1774 vdev_probe(vdev_t *vd, zio_t *zio)
1775 {
1776 spa_t *spa = vd->vdev_spa;
1777 vdev_probe_stats_t *vps = NULL;
1778 zio_t *pio;
1779
1780 ASSERT(vd->vdev_ops->vdev_op_leaf);
1781
1782 /*
1783 * Don't probe the probe.
1784 */
1785 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1786 return (NULL);
1787
1788 /*
1789 * To prevent 'probe storms' when a device fails, we create
1790 * just one probe i/o at a time. All zios that want to probe
1791 * this vdev will become parents of the probe io.
1792 */
1793 mutex_enter(&vd->vdev_probe_lock);
1794
1795 if ((pio = vd->vdev_probe_zio) == NULL) {
1796 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1797
1798 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1799 ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD;
1800 vps->vps_zio_done_probe = (zio != NULL);
1801
1802 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1803 /*
1804 * vdev_cant_read and vdev_cant_write can only
1805 * transition from TRUE to FALSE when we have the
1806 * SCL_ZIO lock as writer; otherwise they can only
1807 * transition from FALSE to TRUE. This ensures that
1808 * any zio looking at these values can assume that
1809 * failures persist for the life of the I/O. That's
1810 * important because when a device has intermittent
1811 * connectivity problems, we want to ensure that
1812 * they're ascribed to the device (ENXIO) and not
1813 * the zio (EIO).
1814 *
1815 * Since we hold SCL_ZIO as writer here, clear both
1816 * values so the probe can reevaluate from first
1817 * principles.
1818 */
1819 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1820 vd->vdev_cant_read = B_FALSE;
1821 vd->vdev_cant_write = B_FALSE;
1822 }
1823
1824 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1825 vdev_probe_done, vps,
1826 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1827 }
1828
1829 if (zio != NULL)
1830 zio_add_child(zio, pio);
1831
1832 mutex_exit(&vd->vdev_probe_lock);
1833
1834 if (vps == NULL) {
1835 ASSERT(zio != NULL);
1836 return (NULL);
1837 }
1838
1839 for (int l = 1; l < VDEV_LABELS; l++) {
1840 zio_nowait(zio_read_phys(pio, vd,
1841 vdev_label_offset(vd->vdev_psize, l,
1842 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1843 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1844 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1845 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1846 }
1847
1848 if (zio == NULL)
1849 return (pio);
1850
1851 zio_nowait(pio);
1852 return (NULL);
1853 }
1854
1855 static void
vdev_load_child(void * arg)1856 vdev_load_child(void *arg)
1857 {
1858 vdev_t *vd = arg;
1859
1860 vd->vdev_load_error = vdev_load(vd);
1861 }
1862
1863 static void
vdev_open_child(void * arg)1864 vdev_open_child(void *arg)
1865 {
1866 vdev_t *vd = arg;
1867
1868 vd->vdev_open_thread = curthread;
1869 vd->vdev_open_error = vdev_open(vd);
1870 vd->vdev_open_thread = NULL;
1871 }
1872
1873 static boolean_t
vdev_uses_zvols(vdev_t * vd)1874 vdev_uses_zvols(vdev_t *vd)
1875 {
1876 #ifdef _KERNEL
1877 if (zvol_is_zvol(vd->vdev_path))
1878 return (B_TRUE);
1879 #endif
1880
1881 for (int c = 0; c < vd->vdev_children; c++)
1882 if (vdev_uses_zvols(vd->vdev_child[c]))
1883 return (B_TRUE);
1884
1885 return (B_FALSE);
1886 }
1887
1888 /*
1889 * Returns B_TRUE if the passed child should be opened.
1890 */
1891 static boolean_t
vdev_default_open_children_func(vdev_t * vd)1892 vdev_default_open_children_func(vdev_t *vd)
1893 {
1894 (void) vd;
1895 return (B_TRUE);
1896 }
1897
1898 /*
1899 * Open the requested child vdevs. If any of the leaf vdevs are using
1900 * a ZFS volume then do the opens in a single thread. This avoids a
1901 * deadlock when the current thread is holding the spa_namespace_lock.
1902 */
1903 static void
vdev_open_children_impl(vdev_t * vd,vdev_open_children_func_t * open_func)1904 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1905 {
1906 int children = vd->vdev_children;
1907
1908 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1909 children, children, TASKQ_PREPOPULATE);
1910 vd->vdev_nonrot = B_TRUE;
1911
1912 for (int c = 0; c < children; c++) {
1913 vdev_t *cvd = vd->vdev_child[c];
1914
1915 if (open_func(cvd) == B_FALSE)
1916 continue;
1917
1918 if (tq == NULL || vdev_uses_zvols(vd)) {
1919 cvd->vdev_open_error = vdev_open(cvd);
1920 } else {
1921 VERIFY(taskq_dispatch(tq, vdev_open_child,
1922 cvd, TQ_SLEEP) != TASKQID_INVALID);
1923 }
1924
1925 vd->vdev_nonrot &= cvd->vdev_nonrot;
1926 }
1927
1928 if (tq != NULL) {
1929 taskq_wait(tq);
1930 taskq_destroy(tq);
1931 }
1932 }
1933
1934 /*
1935 * Open all child vdevs.
1936 */
1937 void
vdev_open_children(vdev_t * vd)1938 vdev_open_children(vdev_t *vd)
1939 {
1940 vdev_open_children_impl(vd, vdev_default_open_children_func);
1941 }
1942
1943 /*
1944 * Conditionally open a subset of child vdevs.
1945 */
1946 void
vdev_open_children_subset(vdev_t * vd,vdev_open_children_func_t * open_func)1947 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
1948 {
1949 vdev_open_children_impl(vd, open_func);
1950 }
1951
1952 /*
1953 * Compute the raidz-deflation ratio. Note, we hard-code 128k (1 << 17)
1954 * because it is the "typical" blocksize. Even though SPA_MAXBLOCKSIZE
1955 * changed, this algorithm can not change, otherwise it would inconsistently
1956 * account for existing bp's. We also hard-code txg 0 for the same reason
1957 * since expanded RAIDZ vdevs can use a different asize for different birth
1958 * txg's.
1959 */
1960 static void
vdev_set_deflate_ratio(vdev_t * vd)1961 vdev_set_deflate_ratio(vdev_t *vd)
1962 {
1963 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1964 vd->vdev_deflate_ratio = (1 << 17) /
1965 (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >>
1966 SPA_MINBLOCKSHIFT);
1967 }
1968 }
1969
1970 /*
1971 * Choose the best of two ashifts, preferring one between logical ashift
1972 * (absolute minimum) and administrator defined maximum, otherwise take
1973 * the biggest of the two.
1974 */
1975 uint64_t
vdev_best_ashift(uint64_t logical,uint64_t a,uint64_t b)1976 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
1977 {
1978 if (a > logical && a <= zfs_vdev_max_auto_ashift) {
1979 if (b <= logical || b > zfs_vdev_max_auto_ashift)
1980 return (a);
1981 else
1982 return (MAX(a, b));
1983 } else if (b <= logical || b > zfs_vdev_max_auto_ashift)
1984 return (MAX(a, b));
1985 return (b);
1986 }
1987
1988 /*
1989 * Maximize performance by inflating the configured ashift for top level
1990 * vdevs to be as close to the physical ashift as possible while maintaining
1991 * administrator defined limits and ensuring it doesn't go below the
1992 * logical ashift.
1993 */
1994 static void
vdev_ashift_optimize(vdev_t * vd)1995 vdev_ashift_optimize(vdev_t *vd)
1996 {
1997 ASSERT(vd == vd->vdev_top);
1998
1999 if (vd->vdev_ashift < vd->vdev_physical_ashift &&
2000 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
2001 vd->vdev_ashift = MIN(
2002 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
2003 MAX(zfs_vdev_min_auto_ashift,
2004 vd->vdev_physical_ashift));
2005 } else {
2006 /*
2007 * If the logical and physical ashifts are the same, then
2008 * we ensure that the top-level vdev's ashift is not smaller
2009 * than our minimum ashift value. For the unusual case
2010 * where logical ashift > physical ashift, we can't cap
2011 * the calculated ashift based on max ashift as that
2012 * would cause failures.
2013 * We still check if we need to increase it to match
2014 * the min ashift.
2015 */
2016 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
2017 vd->vdev_ashift);
2018 }
2019 }
2020
2021 /*
2022 * Prepare a virtual device for access.
2023 */
2024 int
vdev_open(vdev_t * vd)2025 vdev_open(vdev_t *vd)
2026 {
2027 spa_t *spa = vd->vdev_spa;
2028 int error;
2029 uint64_t osize = 0;
2030 uint64_t max_osize = 0;
2031 uint64_t asize, max_asize, psize;
2032 uint64_t logical_ashift = 0;
2033 uint64_t physical_ashift = 0;
2034
2035 ASSERT(vd->vdev_open_thread == curthread ||
2036 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2037 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
2038 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
2039 vd->vdev_state == VDEV_STATE_OFFLINE);
2040
2041 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2042 vd->vdev_cant_read = B_FALSE;
2043 vd->vdev_cant_write = B_FALSE;
2044 vd->vdev_fault_wanted = B_FALSE;
2045 vd->vdev_remove_wanted = B_FALSE;
2046 vd->vdev_min_asize = vdev_get_min_asize(vd);
2047
2048 /*
2049 * If this vdev is not removed, check its fault status. If it's
2050 * faulted, bail out of the open.
2051 */
2052 if (!vd->vdev_removed && vd->vdev_faulted) {
2053 ASSERT(vd->vdev_children == 0);
2054 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2055 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2056 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2057 vd->vdev_label_aux);
2058 return (SET_ERROR(ENXIO));
2059 } else if (vd->vdev_offline) {
2060 ASSERT(vd->vdev_children == 0);
2061 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
2062 return (SET_ERROR(ENXIO));
2063 }
2064
2065 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
2066 &logical_ashift, &physical_ashift);
2067
2068 /* Keep the device in removed state if unplugged */
2069 if (error == ENOENT && vd->vdev_removed) {
2070 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
2071 VDEV_AUX_NONE);
2072 return (error);
2073 }
2074
2075 /*
2076 * Physical volume size should never be larger than its max size, unless
2077 * the disk has shrunk while we were reading it or the device is buggy
2078 * or damaged: either way it's not safe for use, bail out of the open.
2079 */
2080 if (osize > max_osize) {
2081 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2082 VDEV_AUX_OPEN_FAILED);
2083 return (SET_ERROR(ENXIO));
2084 }
2085
2086 /*
2087 * Reset the vdev_reopening flag so that we actually close
2088 * the vdev on error.
2089 */
2090 vd->vdev_reopening = B_FALSE;
2091 if (zio_injection_enabled && error == 0)
2092 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
2093
2094 if (error) {
2095 if (vd->vdev_removed &&
2096 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
2097 vd->vdev_removed = B_FALSE;
2098
2099 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
2100 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
2101 vd->vdev_stat.vs_aux);
2102 } else {
2103 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2104 vd->vdev_stat.vs_aux);
2105 }
2106 return (error);
2107 }
2108
2109 vd->vdev_removed = B_FALSE;
2110
2111 /*
2112 * Recheck the faulted flag now that we have confirmed that
2113 * the vdev is accessible. If we're faulted, bail.
2114 */
2115 if (vd->vdev_faulted) {
2116 ASSERT(vd->vdev_children == 0);
2117 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2118 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2119 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2120 vd->vdev_label_aux);
2121 return (SET_ERROR(ENXIO));
2122 }
2123
2124 if (vd->vdev_degraded) {
2125 ASSERT(vd->vdev_children == 0);
2126 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2127 VDEV_AUX_ERR_EXCEEDED);
2128 } else {
2129 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
2130 }
2131
2132 /*
2133 * For hole or missing vdevs we just return success.
2134 */
2135 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
2136 return (0);
2137
2138 for (int c = 0; c < vd->vdev_children; c++) {
2139 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
2140 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2141 VDEV_AUX_NONE);
2142 break;
2143 }
2144 }
2145
2146 osize = P2ALIGN_TYPED(osize, sizeof (vdev_label_t), uint64_t);
2147 max_osize = P2ALIGN_TYPED(max_osize, sizeof (vdev_label_t), uint64_t);
2148
2149 if (vd->vdev_children == 0) {
2150 if (osize < SPA_MINDEVSIZE) {
2151 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2152 VDEV_AUX_TOO_SMALL);
2153 return (SET_ERROR(EOVERFLOW));
2154 }
2155 psize = osize;
2156 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2157 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2158 VDEV_LABEL_END_SIZE);
2159 } else {
2160 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2161 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2162 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2163 VDEV_AUX_TOO_SMALL);
2164 return (SET_ERROR(EOVERFLOW));
2165 }
2166 psize = 0;
2167 asize = osize;
2168 max_asize = max_osize;
2169 }
2170
2171 /*
2172 * If the vdev was expanded, record this so that we can re-create the
2173 * uberblock rings in labels {2,3}, during the next sync.
2174 */
2175 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2176 vd->vdev_copy_uberblocks = B_TRUE;
2177
2178 vd->vdev_psize = psize;
2179
2180 /*
2181 * Make sure the allocatable size hasn't shrunk too much.
2182 */
2183 if (asize < vd->vdev_min_asize) {
2184 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2185 VDEV_AUX_BAD_LABEL);
2186 return (SET_ERROR(EINVAL));
2187 }
2188
2189 /*
2190 * We can always set the logical/physical ashift members since
2191 * their values are only used to calculate the vdev_ashift when
2192 * the device is first added to the config. These values should
2193 * not be used for anything else since they may change whenever
2194 * the device is reopened and we don't store them in the label.
2195 */
2196 vd->vdev_physical_ashift =
2197 MAX(physical_ashift, vd->vdev_physical_ashift);
2198 vd->vdev_logical_ashift = MAX(logical_ashift,
2199 vd->vdev_logical_ashift);
2200
2201 if (vd->vdev_asize == 0) {
2202 /*
2203 * This is the first-ever open, so use the computed values.
2204 * For compatibility, a different ashift can be requested.
2205 */
2206 vd->vdev_asize = asize;
2207 vd->vdev_max_asize = max_asize;
2208
2209 /*
2210 * If the vdev_ashift was not overridden at creation time
2211 * (0) or the override value is impossible for the device,
2212 * then set it the logical ashift and optimize the ashift.
2213 */
2214 if (vd->vdev_ashift < vd->vdev_logical_ashift) {
2215 vd->vdev_ashift = vd->vdev_logical_ashift;
2216
2217 if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2218 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2219 VDEV_AUX_ASHIFT_TOO_BIG);
2220 return (SET_ERROR(EDOM));
2221 }
2222
2223 if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE)
2224 vdev_ashift_optimize(vd);
2225 vd->vdev_attaching = B_FALSE;
2226 }
2227 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2228 vd->vdev_ashift > ASHIFT_MAX)) {
2229 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2230 VDEV_AUX_BAD_ASHIFT);
2231 return (SET_ERROR(EDOM));
2232 }
2233 } else {
2234 /*
2235 * Make sure the alignment required hasn't increased.
2236 */
2237 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2238 vd->vdev_ops->vdev_op_leaf) {
2239 (void) zfs_ereport_post(
2240 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2241 spa, vd, NULL, NULL, 0);
2242 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2243 VDEV_AUX_BAD_LABEL);
2244 return (SET_ERROR(EDOM));
2245 }
2246 vd->vdev_max_asize = max_asize;
2247 }
2248
2249 /*
2250 * If all children are healthy we update asize if either:
2251 * The asize has increased, due to a device expansion caused by dynamic
2252 * LUN growth or vdev replacement, and automatic expansion is enabled;
2253 * making the additional space available.
2254 *
2255 * The asize has decreased, due to a device shrink usually caused by a
2256 * vdev replace with a smaller device. This ensures that calculations
2257 * based of max_asize and asize e.g. esize are always valid. It's safe
2258 * to do this as we've already validated that asize is greater than
2259 * vdev_min_asize.
2260 */
2261 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2262 ((asize > vd->vdev_asize &&
2263 (vd->vdev_expanding || spa->spa_autoexpand)) ||
2264 (asize < vd->vdev_asize)))
2265 vd->vdev_asize = asize;
2266
2267 vdev_set_min_asize(vd);
2268
2269 /*
2270 * Ensure we can issue some IO before declaring the
2271 * vdev open for business.
2272 */
2273 if (vd->vdev_ops->vdev_op_leaf &&
2274 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2275 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2276 VDEV_AUX_ERR_EXCEEDED);
2277 return (error);
2278 }
2279
2280 /*
2281 * Track the minimum allocation size.
2282 */
2283 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2284 vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2285 uint64_t min_alloc = vdev_get_min_alloc(vd);
2286 vdev_spa_set_alloc(spa, min_alloc);
2287 }
2288
2289 /*
2290 * If this is a leaf vdev, assess whether a resilver is needed.
2291 * But don't do this if we are doing a reopen for a scrub, since
2292 * this would just restart the scrub we are already doing.
2293 */
2294 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2295 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2296
2297 return (0);
2298 }
2299
2300 static void
vdev_validate_child(void * arg)2301 vdev_validate_child(void *arg)
2302 {
2303 vdev_t *vd = arg;
2304
2305 vd->vdev_validate_thread = curthread;
2306 vd->vdev_validate_error = vdev_validate(vd);
2307 vd->vdev_validate_thread = NULL;
2308 }
2309
2310 /*
2311 * Called once the vdevs are all opened, this routine validates the label
2312 * contents. This needs to be done before vdev_load() so that we don't
2313 * inadvertently do repair I/Os to the wrong device.
2314 *
2315 * This function will only return failure if one of the vdevs indicates that it
2316 * has since been destroyed or exported. This is only possible if
2317 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
2318 * will be updated but the function will return 0.
2319 */
2320 int
vdev_validate(vdev_t * vd)2321 vdev_validate(vdev_t *vd)
2322 {
2323 spa_t *spa = vd->vdev_spa;
2324 taskq_t *tq = NULL;
2325 nvlist_t *label;
2326 uint64_t guid = 0, aux_guid = 0, top_guid;
2327 uint64_t state;
2328 nvlist_t *nvl;
2329 uint64_t txg;
2330 int children = vd->vdev_children;
2331
2332 if (vdev_validate_skip)
2333 return (0);
2334
2335 if (children > 0) {
2336 tq = taskq_create("vdev_validate", children, minclsyspri,
2337 children, children, TASKQ_PREPOPULATE);
2338 }
2339
2340 for (uint64_t c = 0; c < children; c++) {
2341 vdev_t *cvd = vd->vdev_child[c];
2342
2343 if (tq == NULL || vdev_uses_zvols(cvd)) {
2344 vdev_validate_child(cvd);
2345 } else {
2346 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2347 TQ_SLEEP) != TASKQID_INVALID);
2348 }
2349 }
2350 if (tq != NULL) {
2351 taskq_wait(tq);
2352 taskq_destroy(tq);
2353 }
2354 for (int c = 0; c < children; c++) {
2355 int error = vd->vdev_child[c]->vdev_validate_error;
2356
2357 if (error != 0)
2358 return (SET_ERROR(EBADF));
2359 }
2360
2361
2362 /*
2363 * If the device has already failed, or was marked offline, don't do
2364 * any further validation. Otherwise, label I/O will fail and we will
2365 * overwrite the previous state.
2366 */
2367 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2368 return (0);
2369
2370 /*
2371 * If we are performing an extreme rewind, we allow for a label that
2372 * was modified at a point after the current txg.
2373 * If config lock is not held do not check for the txg. spa_sync could
2374 * be updating the vdev's label before updating spa_last_synced_txg.
2375 */
2376 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2377 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2378 txg = UINT64_MAX;
2379 else
2380 txg = spa_last_synced_txg(spa);
2381
2382 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2383 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2384 VDEV_AUX_BAD_LABEL);
2385 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2386 "txg %llu", (u_longlong_t)txg);
2387 return (0);
2388 }
2389
2390 /*
2391 * Determine if this vdev has been split off into another
2392 * pool. If so, then refuse to open it.
2393 */
2394 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2395 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2396 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2397 VDEV_AUX_SPLIT_POOL);
2398 nvlist_free(label);
2399 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2400 return (0);
2401 }
2402
2403 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2404 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2405 VDEV_AUX_CORRUPT_DATA);
2406 nvlist_free(label);
2407 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2408 ZPOOL_CONFIG_POOL_GUID);
2409 return (0);
2410 }
2411
2412 /*
2413 * If config is not trusted then ignore the spa guid check. This is
2414 * necessary because if the machine crashed during a re-guid the new
2415 * guid might have been written to all of the vdev labels, but not the
2416 * cached config. The check will be performed again once we have the
2417 * trusted config from the MOS.
2418 */
2419 if (spa->spa_trust_config && guid != spa_guid(spa)) {
2420 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2421 VDEV_AUX_CORRUPT_DATA);
2422 nvlist_free(label);
2423 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2424 "match config (%llu != %llu)", (u_longlong_t)guid,
2425 (u_longlong_t)spa_guid(spa));
2426 return (0);
2427 }
2428
2429 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2430 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2431 &aux_guid) != 0)
2432 aux_guid = 0;
2433
2434 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2435 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2436 VDEV_AUX_CORRUPT_DATA);
2437 nvlist_free(label);
2438 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2439 ZPOOL_CONFIG_GUID);
2440 return (0);
2441 }
2442
2443 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2444 != 0) {
2445 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2446 VDEV_AUX_CORRUPT_DATA);
2447 nvlist_free(label);
2448 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2449 ZPOOL_CONFIG_TOP_GUID);
2450 return (0);
2451 }
2452
2453 /*
2454 * If this vdev just became a top-level vdev because its sibling was
2455 * detached, it will have adopted the parent's vdev guid -- but the
2456 * label may or may not be on disk yet. Fortunately, either version
2457 * of the label will have the same top guid, so if we're a top-level
2458 * vdev, we can safely compare to that instead.
2459 * However, if the config comes from a cachefile that failed to update
2460 * after the detach, a top-level vdev will appear as a non top-level
2461 * vdev in the config. Also relax the constraints if we perform an
2462 * extreme rewind.
2463 *
2464 * If we split this vdev off instead, then we also check the
2465 * original pool's guid. We don't want to consider the vdev
2466 * corrupt if it is partway through a split operation.
2467 */
2468 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2469 boolean_t mismatch = B_FALSE;
2470 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2471 if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2472 mismatch = B_TRUE;
2473 } else {
2474 if (vd->vdev_guid != top_guid &&
2475 vd->vdev_top->vdev_guid != guid)
2476 mismatch = B_TRUE;
2477 }
2478
2479 if (mismatch) {
2480 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2481 VDEV_AUX_CORRUPT_DATA);
2482 nvlist_free(label);
2483 vdev_dbgmsg(vd, "vdev_validate: config guid "
2484 "doesn't match label guid");
2485 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2486 (u_longlong_t)vd->vdev_guid,
2487 (u_longlong_t)vd->vdev_top->vdev_guid);
2488 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2489 "aux_guid %llu", (u_longlong_t)guid,
2490 (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2491 return (0);
2492 }
2493 }
2494
2495 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2496 &state) != 0) {
2497 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2498 VDEV_AUX_CORRUPT_DATA);
2499 nvlist_free(label);
2500 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2501 ZPOOL_CONFIG_POOL_STATE);
2502 return (0);
2503 }
2504
2505 nvlist_free(label);
2506
2507 /*
2508 * If this is a verbatim import, no need to check the
2509 * state of the pool.
2510 */
2511 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2512 spa_load_state(spa) == SPA_LOAD_OPEN &&
2513 state != POOL_STATE_ACTIVE) {
2514 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2515 "for spa %s", (u_longlong_t)state, spa->spa_name);
2516 return (SET_ERROR(EBADF));
2517 }
2518
2519 /*
2520 * If we were able to open and validate a vdev that was
2521 * previously marked permanently unavailable, clear that state
2522 * now.
2523 */
2524 if (vd->vdev_not_present)
2525 vd->vdev_not_present = 0;
2526
2527 return (0);
2528 }
2529
2530 static void
vdev_update_path(const char * prefix,char * svd,char ** dvd,uint64_t guid)2531 vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid)
2532 {
2533 if (svd != NULL && *dvd != NULL) {
2534 if (strcmp(svd, *dvd) != 0) {
2535 zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed "
2536 "from '%s' to '%s'", (u_longlong_t)guid, prefix,
2537 *dvd, svd);
2538 spa_strfree(*dvd);
2539 *dvd = spa_strdup(svd);
2540 }
2541 } else if (svd != NULL) {
2542 *dvd = spa_strdup(svd);
2543 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2544 (u_longlong_t)guid, *dvd);
2545 }
2546 }
2547
2548 static void
vdev_copy_path_impl(vdev_t * svd,vdev_t * dvd)2549 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2550 {
2551 char *old, *new;
2552
2553 vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path,
2554 dvd->vdev_guid);
2555
2556 vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid,
2557 dvd->vdev_guid);
2558
2559 vdev_update_path("vdev_physpath", svd->vdev_physpath,
2560 &dvd->vdev_physpath, dvd->vdev_guid);
2561
2562 /*
2563 * Our enclosure sysfs path may have changed between imports
2564 */
2565 old = dvd->vdev_enc_sysfs_path;
2566 new = svd->vdev_enc_sysfs_path;
2567 if ((old != NULL && new == NULL) ||
2568 (old == NULL && new != NULL) ||
2569 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2570 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2571 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2572 old, new);
2573
2574 if (dvd->vdev_enc_sysfs_path)
2575 spa_strfree(dvd->vdev_enc_sysfs_path);
2576
2577 if (svd->vdev_enc_sysfs_path) {
2578 dvd->vdev_enc_sysfs_path = spa_strdup(
2579 svd->vdev_enc_sysfs_path);
2580 } else {
2581 dvd->vdev_enc_sysfs_path = NULL;
2582 }
2583 }
2584 }
2585
2586 /*
2587 * Recursively copy vdev paths from one vdev to another. Source and destination
2588 * vdev trees must have same geometry otherwise return error. Intended to copy
2589 * paths from userland config into MOS config.
2590 */
2591 int
vdev_copy_path_strict(vdev_t * svd,vdev_t * dvd)2592 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2593 {
2594 if ((svd->vdev_ops == &vdev_missing_ops) ||
2595 (svd->vdev_ishole && dvd->vdev_ishole) ||
2596 (dvd->vdev_ops == &vdev_indirect_ops))
2597 return (0);
2598
2599 if (svd->vdev_ops != dvd->vdev_ops) {
2600 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2601 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2602 return (SET_ERROR(EINVAL));
2603 }
2604
2605 if (svd->vdev_guid != dvd->vdev_guid) {
2606 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2607 "%llu)", (u_longlong_t)svd->vdev_guid,
2608 (u_longlong_t)dvd->vdev_guid);
2609 return (SET_ERROR(EINVAL));
2610 }
2611
2612 if (svd->vdev_children != dvd->vdev_children) {
2613 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2614 "%llu != %llu", (u_longlong_t)svd->vdev_children,
2615 (u_longlong_t)dvd->vdev_children);
2616 return (SET_ERROR(EINVAL));
2617 }
2618
2619 for (uint64_t i = 0; i < svd->vdev_children; i++) {
2620 int error = vdev_copy_path_strict(svd->vdev_child[i],
2621 dvd->vdev_child[i]);
2622 if (error != 0)
2623 return (error);
2624 }
2625
2626 if (svd->vdev_ops->vdev_op_leaf)
2627 vdev_copy_path_impl(svd, dvd);
2628
2629 return (0);
2630 }
2631
2632 static void
vdev_copy_path_search(vdev_t * stvd,vdev_t * dvd)2633 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2634 {
2635 ASSERT(stvd->vdev_top == stvd);
2636 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2637
2638 for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2639 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2640 }
2641
2642 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2643 return;
2644
2645 /*
2646 * The idea here is that while a vdev can shift positions within
2647 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2648 * step outside of it.
2649 */
2650 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2651
2652 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2653 return;
2654
2655 ASSERT(vd->vdev_ops->vdev_op_leaf);
2656
2657 vdev_copy_path_impl(vd, dvd);
2658 }
2659
2660 /*
2661 * Recursively copy vdev paths from one root vdev to another. Source and
2662 * destination vdev trees may differ in geometry. For each destination leaf
2663 * vdev, search a vdev with the same guid and top vdev id in the source.
2664 * Intended to copy paths from userland config into MOS config.
2665 */
2666 void
vdev_copy_path_relaxed(vdev_t * srvd,vdev_t * drvd)2667 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2668 {
2669 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2670 ASSERT(srvd->vdev_ops == &vdev_root_ops);
2671 ASSERT(drvd->vdev_ops == &vdev_root_ops);
2672
2673 for (uint64_t i = 0; i < children; i++) {
2674 vdev_copy_path_search(srvd->vdev_child[i],
2675 drvd->vdev_child[i]);
2676 }
2677 }
2678
2679 /*
2680 * Close a virtual device.
2681 */
2682 void
vdev_close(vdev_t * vd)2683 vdev_close(vdev_t *vd)
2684 {
2685 vdev_t *pvd = vd->vdev_parent;
2686 spa_t *spa __maybe_unused = vd->vdev_spa;
2687
2688 ASSERT(vd != NULL);
2689 ASSERT(vd->vdev_open_thread == curthread ||
2690 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2691
2692 /*
2693 * If our parent is reopening, then we are as well, unless we are
2694 * going offline.
2695 */
2696 if (pvd != NULL && pvd->vdev_reopening)
2697 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2698
2699 vd->vdev_ops->vdev_op_close(vd);
2700
2701 /*
2702 * We record the previous state before we close it, so that if we are
2703 * doing a reopen(), we don't generate FMA ereports if we notice that
2704 * it's still faulted.
2705 */
2706 vd->vdev_prevstate = vd->vdev_state;
2707
2708 if (vd->vdev_offline)
2709 vd->vdev_state = VDEV_STATE_OFFLINE;
2710 else
2711 vd->vdev_state = VDEV_STATE_CLOSED;
2712 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2713 }
2714
2715 void
vdev_hold(vdev_t * vd)2716 vdev_hold(vdev_t *vd)
2717 {
2718 spa_t *spa = vd->vdev_spa;
2719
2720 ASSERT(spa_is_root(spa));
2721 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2722 return;
2723
2724 for (int c = 0; c < vd->vdev_children; c++)
2725 vdev_hold(vd->vdev_child[c]);
2726
2727 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2728 vd->vdev_ops->vdev_op_hold(vd);
2729 }
2730
2731 void
vdev_rele(vdev_t * vd)2732 vdev_rele(vdev_t *vd)
2733 {
2734 ASSERT(spa_is_root(vd->vdev_spa));
2735 for (int c = 0; c < vd->vdev_children; c++)
2736 vdev_rele(vd->vdev_child[c]);
2737
2738 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2739 vd->vdev_ops->vdev_op_rele(vd);
2740 }
2741
2742 /*
2743 * Reopen all interior vdevs and any unopened leaves. We don't actually
2744 * reopen leaf vdevs which had previously been opened as they might deadlock
2745 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
2746 * If the leaf has never been opened then open it, as usual.
2747 */
2748 void
vdev_reopen(vdev_t * vd)2749 vdev_reopen(vdev_t *vd)
2750 {
2751 spa_t *spa = vd->vdev_spa;
2752
2753 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2754
2755 /* set the reopening flag unless we're taking the vdev offline */
2756 vd->vdev_reopening = !vd->vdev_offline;
2757 vdev_close(vd);
2758 (void) vdev_open(vd);
2759
2760 /*
2761 * Call vdev_validate() here to make sure we have the same device.
2762 * Otherwise, a device with an invalid label could be successfully
2763 * opened in response to vdev_reopen().
2764 */
2765 if (vd->vdev_aux) {
2766 (void) vdev_validate_aux(vd);
2767 if (vdev_readable(vd) && vdev_writeable(vd) &&
2768 vd->vdev_aux == &spa->spa_l2cache) {
2769 /*
2770 * In case the vdev is present we should evict all ARC
2771 * buffers and pointers to log blocks and reclaim their
2772 * space before restoring its contents to L2ARC.
2773 */
2774 if (l2arc_vdev_present(vd)) {
2775 l2arc_rebuild_vdev(vd, B_TRUE);
2776 } else {
2777 l2arc_add_vdev(spa, vd);
2778 }
2779 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2780 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2781 }
2782 } else {
2783 (void) vdev_validate(vd);
2784 }
2785
2786 /*
2787 * Recheck if resilver is still needed and cancel any
2788 * scheduled resilver if resilver is unneeded.
2789 */
2790 if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) &&
2791 spa->spa_async_tasks & SPA_ASYNC_RESILVER) {
2792 mutex_enter(&spa->spa_async_lock);
2793 spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER;
2794 mutex_exit(&spa->spa_async_lock);
2795 }
2796
2797 /*
2798 * Reassess parent vdev's health.
2799 */
2800 vdev_propagate_state(vd);
2801 }
2802
2803 int
vdev_create(vdev_t * vd,uint64_t txg,boolean_t isreplacing)2804 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2805 {
2806 int error;
2807
2808 /*
2809 * Normally, partial opens (e.g. of a mirror) are allowed.
2810 * For a create, however, we want to fail the request if
2811 * there are any components we can't open.
2812 */
2813 error = vdev_open(vd);
2814
2815 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2816 vdev_close(vd);
2817 return (error ? error : SET_ERROR(ENXIO));
2818 }
2819
2820 /*
2821 * Recursively load DTLs and initialize all labels.
2822 */
2823 if ((error = vdev_dtl_load(vd)) != 0 ||
2824 (error = vdev_label_init(vd, txg, isreplacing ?
2825 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2826 vdev_close(vd);
2827 return (error);
2828 }
2829
2830 return (0);
2831 }
2832
2833 void
vdev_metaslab_set_size(vdev_t * vd)2834 vdev_metaslab_set_size(vdev_t *vd)
2835 {
2836 uint64_t asize = vd->vdev_asize;
2837 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2838 uint64_t ms_shift;
2839
2840 /*
2841 * There are two dimensions to the metaslab sizing calculation:
2842 * the size of the metaslab and the count of metaslabs per vdev.
2843 *
2844 * The default values used below are a good balance between memory
2845 * usage (larger metaslab size means more memory needed for loaded
2846 * metaslabs; more metaslabs means more memory needed for the
2847 * metaslab_t structs), metaslab load time (larger metaslabs take
2848 * longer to load), and metaslab sync time (more metaslabs means
2849 * more time spent syncing all of them).
2850 *
2851 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2852 * The range of the dimensions are as follows:
2853 *
2854 * 2^29 <= ms_size <= 2^34
2855 * 16 <= ms_count <= 131,072
2856 *
2857 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2858 * at least 512MB (2^29) to minimize fragmentation effects when
2859 * testing with smaller devices. However, the count constraint
2860 * of at least 16 metaslabs will override this minimum size goal.
2861 *
2862 * On the upper end of vdev sizes, we aim for a maximum metaslab
2863 * size of 16GB. However, we will cap the total count to 2^17
2864 * metaslabs to keep our memory footprint in check and let the
2865 * metaslab size grow from there if that limit is hit.
2866 *
2867 * The net effect of applying above constrains is summarized below.
2868 *
2869 * vdev size metaslab count
2870 * --------------|-----------------
2871 * < 8GB ~16
2872 * 8GB - 100GB one per 512MB
2873 * 100GB - 3TB ~200
2874 * 3TB - 2PB one per 16GB
2875 * > 2PB ~131,072
2876 * --------------------------------
2877 *
2878 * Finally, note that all of the above calculate the initial
2879 * number of metaslabs. Expanding a top-level vdev will result
2880 * in additional metaslabs being allocated making it possible
2881 * to exceed the zfs_vdev_ms_count_limit.
2882 */
2883
2884 if (ms_count < zfs_vdev_min_ms_count)
2885 ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2886 else if (ms_count > zfs_vdev_default_ms_count)
2887 ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2888 else
2889 ms_shift = zfs_vdev_default_ms_shift;
2890
2891 if (ms_shift < SPA_MAXBLOCKSHIFT) {
2892 ms_shift = SPA_MAXBLOCKSHIFT;
2893 } else if (ms_shift > zfs_vdev_max_ms_shift) {
2894 ms_shift = zfs_vdev_max_ms_shift;
2895 /* cap the total count to constrain memory footprint */
2896 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2897 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2898 }
2899
2900 vd->vdev_ms_shift = ms_shift;
2901 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2902 }
2903
2904 void
vdev_dirty(vdev_t * vd,int flags,void * arg,uint64_t txg)2905 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2906 {
2907 ASSERT(vd == vd->vdev_top);
2908 /* indirect vdevs don't have metaslabs or dtls */
2909 ASSERT(vdev_is_concrete(vd) || flags == 0);
2910 ASSERT(ISP2(flags));
2911 ASSERT(spa_writeable(vd->vdev_spa));
2912
2913 if (flags & VDD_METASLAB)
2914 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2915
2916 if (flags & VDD_DTL)
2917 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2918
2919 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2920 }
2921
2922 void
vdev_dirty_leaves(vdev_t * vd,int flags,uint64_t txg)2923 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2924 {
2925 for (int c = 0; c < vd->vdev_children; c++)
2926 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2927
2928 if (vd->vdev_ops->vdev_op_leaf)
2929 vdev_dirty(vd->vdev_top, flags, vd, txg);
2930 }
2931
2932 /*
2933 * DTLs.
2934 *
2935 * A vdev's DTL (dirty time log) is the set of transaction groups for which
2936 * the vdev has less than perfect replication. There are four kinds of DTL:
2937 *
2938 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2939 *
2940 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2941 *
2942 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2943 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2944 * txgs that was scrubbed.
2945 *
2946 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2947 * persistent errors or just some device being offline.
2948 * Unlike the other three, the DTL_OUTAGE map is not generally
2949 * maintained; it's only computed when needed, typically to
2950 * determine whether a device can be detached.
2951 *
2952 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2953 * either has the data or it doesn't.
2954 *
2955 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2956 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2957 * if any child is less than fully replicated, then so is its parent.
2958 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2959 * comprising only those txgs which appear in 'maxfaults' or more children;
2960 * those are the txgs we don't have enough replication to read. For example,
2961 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2962 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2963 * two child DTL_MISSING maps.
2964 *
2965 * It should be clear from the above that to compute the DTLs and outage maps
2966 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2967 * Therefore, that is all we keep on disk. When loading the pool, or after
2968 * a configuration change, we generate all other DTLs from first principles.
2969 */
2970 void
vdev_dtl_dirty(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)2971 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2972 {
2973 zfs_range_tree_t *rt = vd->vdev_dtl[t];
2974
2975 ASSERT(t < DTL_TYPES);
2976 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2977 ASSERT(spa_writeable(vd->vdev_spa));
2978
2979 mutex_enter(&vd->vdev_dtl_lock);
2980 if (!zfs_range_tree_contains(rt, txg, size))
2981 zfs_range_tree_add(rt, txg, size);
2982 mutex_exit(&vd->vdev_dtl_lock);
2983 }
2984
2985 boolean_t
vdev_dtl_contains(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)2986 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2987 {
2988 zfs_range_tree_t *rt = vd->vdev_dtl[t];
2989 boolean_t dirty = B_FALSE;
2990
2991 ASSERT(t < DTL_TYPES);
2992 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2993
2994 /*
2995 * While we are loading the pool, the DTLs have not been loaded yet.
2996 * This isn't a problem but it can result in devices being tried
2997 * which are known to not have the data. In which case, the import
2998 * is relying on the checksum to ensure that we get the right data.
2999 * Note that while importing we are only reading the MOS, which is
3000 * always checksummed.
3001 */
3002 mutex_enter(&vd->vdev_dtl_lock);
3003 if (!zfs_range_tree_is_empty(rt))
3004 dirty = zfs_range_tree_contains(rt, txg, size);
3005 mutex_exit(&vd->vdev_dtl_lock);
3006
3007 return (dirty);
3008 }
3009
3010 boolean_t
vdev_dtl_empty(vdev_t * vd,vdev_dtl_type_t t)3011 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
3012 {
3013 zfs_range_tree_t *rt = vd->vdev_dtl[t];
3014 boolean_t empty;
3015
3016 mutex_enter(&vd->vdev_dtl_lock);
3017 empty = zfs_range_tree_is_empty(rt);
3018 mutex_exit(&vd->vdev_dtl_lock);
3019
3020 return (empty);
3021 }
3022
3023 /*
3024 * Check if the txg falls within the range which must be
3025 * resilvered. DVAs outside this range can always be skipped.
3026 */
3027 boolean_t
vdev_default_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3028 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3029 uint64_t phys_birth)
3030 {
3031 (void) dva, (void) psize;
3032
3033 /* Set by sequential resilver. */
3034 if (phys_birth == TXG_UNKNOWN)
3035 return (B_TRUE);
3036
3037 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
3038 }
3039
3040 /*
3041 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
3042 */
3043 boolean_t
vdev_dtl_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3044 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3045 uint64_t phys_birth)
3046 {
3047 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3048
3049 if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
3050 vd->vdev_ops->vdev_op_leaf)
3051 return (B_TRUE);
3052
3053 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
3054 phys_birth));
3055 }
3056
3057 /*
3058 * Returns the lowest txg in the DTL range.
3059 */
3060 static uint64_t
vdev_dtl_min(vdev_t * vd)3061 vdev_dtl_min(vdev_t *vd)
3062 {
3063 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3064 ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3065 ASSERT0(vd->vdev_children);
3066
3067 return (zfs_range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
3068 }
3069
3070 /*
3071 * Returns the highest txg in the DTL.
3072 */
3073 static uint64_t
vdev_dtl_max(vdev_t * vd)3074 vdev_dtl_max(vdev_t *vd)
3075 {
3076 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3077 ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3078 ASSERT0(vd->vdev_children);
3079
3080 return (zfs_range_tree_max(vd->vdev_dtl[DTL_MISSING]));
3081 }
3082
3083 /*
3084 * Determine if a resilvering vdev should remove any DTL entries from
3085 * its range. If the vdev was resilvering for the entire duration of the
3086 * scan then it should excise that range from its DTLs. Otherwise, this
3087 * vdev is considered partially resilvered and should leave its DTL
3088 * entries intact. The comment in vdev_dtl_reassess() describes how we
3089 * excise the DTLs.
3090 */
3091 static boolean_t
vdev_dtl_should_excise(vdev_t * vd,boolean_t rebuild_done)3092 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
3093 {
3094 ASSERT0(vd->vdev_children);
3095
3096 if (vd->vdev_state < VDEV_STATE_DEGRADED)
3097 return (B_FALSE);
3098
3099 if (vd->vdev_resilver_deferred)
3100 return (B_FALSE);
3101
3102 if (zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
3103 return (B_TRUE);
3104
3105 if (rebuild_done) {
3106 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3107 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
3108
3109 /* Rebuild not initiated by attach */
3110 if (vd->vdev_rebuild_txg == 0)
3111 return (B_TRUE);
3112
3113 /*
3114 * When a rebuild completes without error then all missing data
3115 * up to the rebuild max txg has been reconstructed and the DTL
3116 * is eligible for excision.
3117 */
3118 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
3119 vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
3120 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
3121 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
3122 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
3123 return (B_TRUE);
3124 }
3125 } else {
3126 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3127 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
3128
3129 /* Resilver not initiated by attach */
3130 if (vd->vdev_resilver_txg == 0)
3131 return (B_TRUE);
3132
3133 /*
3134 * When a resilver is initiated the scan will assign the
3135 * scn_max_txg value to the highest txg value that exists
3136 * in all DTLs. If this device's max DTL is not part of this
3137 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
3138 * then it is not eligible for excision.
3139 */
3140 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
3141 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
3142 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
3143 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
3144 return (B_TRUE);
3145 }
3146 }
3147
3148 return (B_FALSE);
3149 }
3150
3151 /*
3152 * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3153 * write operations will be issued to the pool.
3154 */
3155 static void
vdev_dtl_reassess_impl(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,boolean_t scrub_done,boolean_t rebuild_done,boolean_t faulting)3156 vdev_dtl_reassess_impl(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3157 boolean_t scrub_done, boolean_t rebuild_done, boolean_t faulting)
3158 {
3159 spa_t *spa = vd->vdev_spa;
3160 avl_tree_t reftree;
3161 int minref;
3162
3163 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3164
3165 for (int c = 0; c < vd->vdev_children; c++)
3166 vdev_dtl_reassess_impl(vd->vdev_child[c], txg,
3167 scrub_txg, scrub_done, rebuild_done, faulting);
3168
3169 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
3170 return;
3171
3172 if (vd->vdev_ops->vdev_op_leaf) {
3173 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
3174 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3175 boolean_t check_excise = B_FALSE;
3176 boolean_t wasempty = B_TRUE;
3177
3178 mutex_enter(&vd->vdev_dtl_lock);
3179
3180 /*
3181 * If requested, pretend the scan or rebuild completed cleanly.
3182 */
3183 if (zfs_scan_ignore_errors) {
3184 if (scn != NULL)
3185 scn->scn_phys.scn_errors = 0;
3186 if (vr != NULL)
3187 vr->vr_rebuild_phys.vrp_errors = 0;
3188 }
3189
3190 if (scrub_txg != 0 &&
3191 !zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3192 wasempty = B_FALSE;
3193 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3194 "dtl:%llu/%llu errors:%llu",
3195 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3196 (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3197 (u_longlong_t)vdev_dtl_min(vd),
3198 (u_longlong_t)vdev_dtl_max(vd),
3199 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3200 }
3201
3202 /*
3203 * If we've completed a scrub/resilver or a rebuild cleanly
3204 * then determine if this vdev should remove any DTLs. We
3205 * only want to excise regions on vdevs that were available
3206 * during the entire duration of this scan.
3207 */
3208 if (rebuild_done &&
3209 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3210 check_excise = B_TRUE;
3211 } else {
3212 if (spa->spa_scrub_started ||
3213 (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3214 check_excise = B_TRUE;
3215 }
3216 }
3217
3218 if (scrub_txg && check_excise &&
3219 vdev_dtl_should_excise(vd, rebuild_done)) {
3220 /*
3221 * We completed a scrub, resilver or rebuild up to
3222 * scrub_txg. If we did it without rebooting, then
3223 * the scrub dtl will be valid, so excise the old
3224 * region and fold in the scrub dtl. Otherwise,
3225 * leave the dtl as-is if there was an error.
3226 *
3227 * There's little trick here: to excise the beginning
3228 * of the DTL_MISSING map, we put it into a reference
3229 * tree and then add a segment with refcnt -1 that
3230 * covers the range [0, scrub_txg). This means
3231 * that each txg in that range has refcnt -1 or 0.
3232 * We then add DTL_SCRUB with a refcnt of 2, so that
3233 * entries in the range [0, scrub_txg) will have a
3234 * positive refcnt -- either 1 or 2. We then convert
3235 * the reference tree into the new DTL_MISSING map.
3236 */
3237 space_reftree_create(&reftree);
3238 space_reftree_add_map(&reftree,
3239 vd->vdev_dtl[DTL_MISSING], 1);
3240 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3241 space_reftree_add_map(&reftree,
3242 vd->vdev_dtl[DTL_SCRUB], 2);
3243 space_reftree_generate_map(&reftree,
3244 vd->vdev_dtl[DTL_MISSING], 1);
3245 space_reftree_destroy(&reftree);
3246
3247 if (!zfs_range_tree_is_empty(
3248 vd->vdev_dtl[DTL_MISSING])) {
3249 zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3250 (u_longlong_t)vdev_dtl_min(vd),
3251 (u_longlong_t)vdev_dtl_max(vd));
3252 } else if (!wasempty) {
3253 zfs_dbgmsg("DTL_MISSING is now empty");
3254 }
3255 }
3256 zfs_range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3257 zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3258 zfs_range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3259 if (scrub_done)
3260 zfs_range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL,
3261 NULL);
3262 zfs_range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3263
3264 /*
3265 * For the faulting case, treat members of a replacing vdev
3266 * as if they are not available. It's more likely than not that
3267 * a vdev in a replacing vdev could encounter read errors so
3268 * treat it as not being able to contribute.
3269 */
3270 if (!vdev_readable(vd) ||
3271 (faulting && vd->vdev_parent != NULL &&
3272 vd->vdev_parent->vdev_ops == &vdev_replacing_ops)) {
3273 zfs_range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3274 } else {
3275 zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3276 zfs_range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3277 }
3278
3279 /*
3280 * If the vdev was resilvering or rebuilding and no longer
3281 * has any DTLs then reset the appropriate flag and dirty
3282 * the top level so that we persist the change.
3283 */
3284 if (txg != 0 &&
3285 zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3286 zfs_range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3287 if (vd->vdev_rebuild_txg != 0) {
3288 vd->vdev_rebuild_txg = 0;
3289 vdev_config_dirty(vd->vdev_top);
3290 } else if (vd->vdev_resilver_txg != 0) {
3291 vd->vdev_resilver_txg = 0;
3292 vdev_config_dirty(vd->vdev_top);
3293 }
3294 }
3295
3296 mutex_exit(&vd->vdev_dtl_lock);
3297
3298 if (txg != 0)
3299 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3300 } else {
3301 mutex_enter(&vd->vdev_dtl_lock);
3302 for (int t = 0; t < DTL_TYPES; t++) {
3303 /* account for child's outage in parent's missing map */
3304 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3305 if (t == DTL_SCRUB) {
3306 /* leaf vdevs only */
3307 continue;
3308 }
3309 if (t == DTL_PARTIAL) {
3310 /* i.e. non-zero */
3311 minref = 1;
3312 } else if (vdev_get_nparity(vd) != 0) {
3313 /* RAIDZ, DRAID */
3314 minref = vdev_get_nparity(vd) + 1;
3315 } else {
3316 /* any kind of mirror */
3317 minref = vd->vdev_children;
3318 }
3319 space_reftree_create(&reftree);
3320 for (int c = 0; c < vd->vdev_children; c++) {
3321 vdev_t *cvd = vd->vdev_child[c];
3322 mutex_enter(&cvd->vdev_dtl_lock);
3323 space_reftree_add_map(&reftree,
3324 cvd->vdev_dtl[s], 1);
3325 mutex_exit(&cvd->vdev_dtl_lock);
3326 }
3327 space_reftree_generate_map(&reftree,
3328 vd->vdev_dtl[t], minref);
3329 space_reftree_destroy(&reftree);
3330 }
3331 mutex_exit(&vd->vdev_dtl_lock);
3332 }
3333
3334 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) {
3335 raidz_dtl_reassessed(vd);
3336 }
3337 }
3338
3339 void
vdev_dtl_reassess(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,boolean_t scrub_done,boolean_t rebuild_done)3340 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3341 boolean_t scrub_done, boolean_t rebuild_done)
3342 {
3343 return (vdev_dtl_reassess_impl(vd, txg, scrub_txg, scrub_done,
3344 rebuild_done, B_FALSE));
3345 }
3346
3347 /*
3348 * Iterate over all the vdevs except spare, and post kobj events
3349 */
3350 void
vdev_post_kobj_evt(vdev_t * vd)3351 vdev_post_kobj_evt(vdev_t *vd)
3352 {
3353 if (vd->vdev_ops->vdev_op_kobj_evt_post &&
3354 vd->vdev_kobj_flag == B_FALSE) {
3355 vd->vdev_kobj_flag = B_TRUE;
3356 vd->vdev_ops->vdev_op_kobj_evt_post(vd);
3357 }
3358
3359 for (int c = 0; c < vd->vdev_children; c++)
3360 vdev_post_kobj_evt(vd->vdev_child[c]);
3361 }
3362
3363 /*
3364 * Iterate over all the vdevs except spare, and clear kobj events
3365 */
3366 void
vdev_clear_kobj_evt(vdev_t * vd)3367 vdev_clear_kobj_evt(vdev_t *vd)
3368 {
3369 vd->vdev_kobj_flag = B_FALSE;
3370
3371 for (int c = 0; c < vd->vdev_children; c++)
3372 vdev_clear_kobj_evt(vd->vdev_child[c]);
3373 }
3374
3375 int
vdev_dtl_load(vdev_t * vd)3376 vdev_dtl_load(vdev_t *vd)
3377 {
3378 spa_t *spa = vd->vdev_spa;
3379 objset_t *mos = spa->spa_meta_objset;
3380 zfs_range_tree_t *rt;
3381 int error = 0;
3382
3383 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3384 ASSERT(vdev_is_concrete(vd));
3385
3386 /*
3387 * If the dtl cannot be sync'd there is no need to open it.
3388 */
3389 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3390 return (0);
3391
3392 error = space_map_open(&vd->vdev_dtl_sm, mos,
3393 vd->vdev_dtl_object, 0, -1ULL, 0);
3394 if (error)
3395 return (error);
3396 ASSERT(vd->vdev_dtl_sm != NULL);
3397
3398 rt = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, NULL, 0, 0);
3399 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3400 if (error == 0) {
3401 mutex_enter(&vd->vdev_dtl_lock);
3402 zfs_range_tree_walk(rt, zfs_range_tree_add,
3403 vd->vdev_dtl[DTL_MISSING]);
3404 mutex_exit(&vd->vdev_dtl_lock);
3405 }
3406
3407 zfs_range_tree_vacate(rt, NULL, NULL);
3408 zfs_range_tree_destroy(rt);
3409
3410 return (error);
3411 }
3412
3413 for (int c = 0; c < vd->vdev_children; c++) {
3414 error = vdev_dtl_load(vd->vdev_child[c]);
3415 if (error != 0)
3416 break;
3417 }
3418
3419 return (error);
3420 }
3421
3422 static void
vdev_zap_allocation_data(vdev_t * vd,dmu_tx_t * tx)3423 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3424 {
3425 spa_t *spa = vd->vdev_spa;
3426 objset_t *mos = spa->spa_meta_objset;
3427 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3428 const char *string;
3429
3430 ASSERT(alloc_bias != VDEV_BIAS_NONE);
3431
3432 string =
3433 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3434 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3435 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3436
3437 ASSERT(string != NULL);
3438 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3439 1, strlen(string) + 1, string, tx));
3440
3441 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3442 spa_activate_allocation_classes(spa, tx);
3443 }
3444 }
3445
3446 void
vdev_destroy_unlink_zap(vdev_t * vd,uint64_t zapobj,dmu_tx_t * tx)3447 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3448 {
3449 spa_t *spa = vd->vdev_spa;
3450
3451 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3452 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3453 zapobj, tx));
3454 }
3455
3456 uint64_t
vdev_create_link_zap(vdev_t * vd,dmu_tx_t * tx)3457 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3458 {
3459 spa_t *spa = vd->vdev_spa;
3460 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3461 DMU_OT_NONE, 0, tx);
3462
3463 ASSERT(zap != 0);
3464 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3465 zap, tx));
3466
3467 return (zap);
3468 }
3469
3470 void
vdev_construct_zaps(vdev_t * vd,dmu_tx_t * tx)3471 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3472 {
3473 if (vd->vdev_ops != &vdev_hole_ops &&
3474 vd->vdev_ops != &vdev_missing_ops &&
3475 vd->vdev_ops != &vdev_root_ops &&
3476 !vd->vdev_top->vdev_removing) {
3477 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3478 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3479 }
3480 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3481 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3482 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3483 vdev_zap_allocation_data(vd, tx);
3484 }
3485 }
3486 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 &&
3487 spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
3488 if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2))
3489 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx);
3490 vd->vdev_root_zap = vdev_create_link_zap(vd, tx);
3491 }
3492
3493 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3494 vdev_construct_zaps(vd->vdev_child[i], tx);
3495 }
3496 }
3497
3498 static void
vdev_dtl_sync(vdev_t * vd,uint64_t txg)3499 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3500 {
3501 spa_t *spa = vd->vdev_spa;
3502 zfs_range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3503 objset_t *mos = spa->spa_meta_objset;
3504 zfs_range_tree_t *rtsync;
3505 dmu_tx_t *tx;
3506 uint64_t object = space_map_object(vd->vdev_dtl_sm);
3507
3508 ASSERT(vdev_is_concrete(vd));
3509 ASSERT(vd->vdev_ops->vdev_op_leaf);
3510
3511 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3512
3513 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3514 mutex_enter(&vd->vdev_dtl_lock);
3515 space_map_free(vd->vdev_dtl_sm, tx);
3516 space_map_close(vd->vdev_dtl_sm);
3517 vd->vdev_dtl_sm = NULL;
3518 mutex_exit(&vd->vdev_dtl_lock);
3519
3520 /*
3521 * We only destroy the leaf ZAP for detached leaves or for
3522 * removed log devices. Removed data devices handle leaf ZAP
3523 * cleanup later, once cancellation is no longer possible.
3524 */
3525 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3526 vd->vdev_top->vdev_islog)) {
3527 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3528 vd->vdev_leaf_zap = 0;
3529 }
3530
3531 dmu_tx_commit(tx);
3532 return;
3533 }
3534
3535 if (vd->vdev_dtl_sm == NULL) {
3536 uint64_t new_object;
3537
3538 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3539 VERIFY3U(new_object, !=, 0);
3540
3541 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3542 0, -1ULL, 0));
3543 ASSERT(vd->vdev_dtl_sm != NULL);
3544 }
3545
3546 rtsync = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, NULL, 0, 0);
3547
3548 mutex_enter(&vd->vdev_dtl_lock);
3549 zfs_range_tree_walk(rt, zfs_range_tree_add, rtsync);
3550 mutex_exit(&vd->vdev_dtl_lock);
3551
3552 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3553 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3554 zfs_range_tree_vacate(rtsync, NULL, NULL);
3555
3556 zfs_range_tree_destroy(rtsync);
3557
3558 /*
3559 * If the object for the space map has changed then dirty
3560 * the top level so that we update the config.
3561 */
3562 if (object != space_map_object(vd->vdev_dtl_sm)) {
3563 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3564 "new object %llu", (u_longlong_t)txg, spa_name(spa),
3565 (u_longlong_t)object,
3566 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3567 vdev_config_dirty(vd->vdev_top);
3568 }
3569
3570 dmu_tx_commit(tx);
3571 }
3572
3573 /*
3574 * Determine whether the specified vdev can be
3575 * - offlined
3576 * - detached
3577 * - removed
3578 * - faulted
3579 * without losing data.
3580 */
3581 boolean_t
vdev_dtl_required(vdev_t * vd)3582 vdev_dtl_required(vdev_t *vd)
3583 {
3584 spa_t *spa = vd->vdev_spa;
3585 vdev_t *tvd = vd->vdev_top;
3586 uint8_t cant_read = vd->vdev_cant_read;
3587 boolean_t required;
3588 boolean_t faulting = vd->vdev_state == VDEV_STATE_FAULTED;
3589
3590 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3591
3592 if (vd == spa->spa_root_vdev || vd == tvd)
3593 return (B_TRUE);
3594
3595 /*
3596 * Temporarily mark the device as unreadable, and then determine
3597 * whether this results in any DTL outages in the top-level vdev.
3598 * If not, we can safely offline/detach/remove the device.
3599 */
3600 vd->vdev_cant_read = B_TRUE;
3601 vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3602 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3603 vd->vdev_cant_read = cant_read;
3604 vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3605
3606 if (!required && zio_injection_enabled) {
3607 required = !!zio_handle_device_injection(vd, NULL,
3608 SET_ERROR(ECHILD));
3609 }
3610
3611 return (required);
3612 }
3613
3614 /*
3615 * Determine if resilver is needed, and if so the txg range.
3616 */
3617 boolean_t
vdev_resilver_needed(vdev_t * vd,uint64_t * minp,uint64_t * maxp)3618 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3619 {
3620 boolean_t needed = B_FALSE;
3621 uint64_t thismin = UINT64_MAX;
3622 uint64_t thismax = 0;
3623
3624 if (vd->vdev_children == 0) {
3625 mutex_enter(&vd->vdev_dtl_lock);
3626 if (!zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3627 vdev_writeable(vd)) {
3628
3629 thismin = vdev_dtl_min(vd);
3630 thismax = vdev_dtl_max(vd);
3631 needed = B_TRUE;
3632 }
3633 mutex_exit(&vd->vdev_dtl_lock);
3634 } else {
3635 for (int c = 0; c < vd->vdev_children; c++) {
3636 vdev_t *cvd = vd->vdev_child[c];
3637 uint64_t cmin, cmax;
3638
3639 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3640 thismin = MIN(thismin, cmin);
3641 thismax = MAX(thismax, cmax);
3642 needed = B_TRUE;
3643 }
3644 }
3645 }
3646
3647 if (needed && minp) {
3648 *minp = thismin;
3649 *maxp = thismax;
3650 }
3651 return (needed);
3652 }
3653
3654 /*
3655 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
3656 * will contain either the checkpoint spacemap object or zero if none exists.
3657 * All other errors are returned to the caller.
3658 */
3659 int
vdev_checkpoint_sm_object(vdev_t * vd,uint64_t * sm_obj)3660 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3661 {
3662 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3663
3664 if (vd->vdev_top_zap == 0) {
3665 *sm_obj = 0;
3666 return (0);
3667 }
3668
3669 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3670 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3671 if (error == ENOENT) {
3672 *sm_obj = 0;
3673 error = 0;
3674 }
3675
3676 return (error);
3677 }
3678
3679 int
vdev_load(vdev_t * vd)3680 vdev_load(vdev_t *vd)
3681 {
3682 int children = vd->vdev_children;
3683 int error = 0;
3684 taskq_t *tq = NULL;
3685
3686 /*
3687 * It's only worthwhile to use the taskq for the root vdev, because the
3688 * slow part is metaslab_init, and that only happens for top-level
3689 * vdevs.
3690 */
3691 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3692 tq = taskq_create("vdev_load", children, minclsyspri,
3693 children, children, TASKQ_PREPOPULATE);
3694 }
3695
3696 /*
3697 * Recursively load all children.
3698 */
3699 for (int c = 0; c < vd->vdev_children; c++) {
3700 vdev_t *cvd = vd->vdev_child[c];
3701
3702 if (tq == NULL || vdev_uses_zvols(cvd)) {
3703 cvd->vdev_load_error = vdev_load(cvd);
3704 } else {
3705 VERIFY(taskq_dispatch(tq, vdev_load_child,
3706 cvd, TQ_SLEEP) != TASKQID_INVALID);
3707 }
3708 }
3709
3710 if (tq != NULL) {
3711 taskq_wait(tq);
3712 taskq_destroy(tq);
3713 }
3714
3715 for (int c = 0; c < vd->vdev_children; c++) {
3716 int error = vd->vdev_child[c]->vdev_load_error;
3717
3718 if (error != 0)
3719 return (error);
3720 }
3721
3722 vdev_set_deflate_ratio(vd);
3723
3724 if (vd->vdev_ops == &vdev_raidz_ops) {
3725 error = vdev_raidz_load(vd);
3726 if (error != 0)
3727 return (error);
3728 }
3729
3730 /*
3731 * On spa_load path, grab the allocation bias from our zap
3732 */
3733 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3734 spa_t *spa = vd->vdev_spa;
3735 char bias_str[64];
3736
3737 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3738 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3739 bias_str);
3740 if (error == 0) {
3741 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3742 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3743 } else if (error != ENOENT) {
3744 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3745 VDEV_AUX_CORRUPT_DATA);
3746 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3747 "failed [error=%d]",
3748 (u_longlong_t)vd->vdev_top_zap, error);
3749 return (error);
3750 }
3751 }
3752
3753 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3754 spa_t *spa = vd->vdev_spa;
3755 uint64_t failfast;
3756
3757 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3758 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast),
3759 1, &failfast);
3760 if (error == 0) {
3761 vd->vdev_failfast = failfast & 1;
3762 } else if (error == ENOENT) {
3763 vd->vdev_failfast = vdev_prop_default_numeric(
3764 VDEV_PROP_FAILFAST);
3765 } else {
3766 vdev_dbgmsg(vd,
3767 "vdev_load: zap_lookup(top_zap=%llu) "
3768 "failed [error=%d]",
3769 (u_longlong_t)vd->vdev_top_zap, error);
3770 }
3771 }
3772
3773 /*
3774 * Load any rebuild state from the top-level vdev zap.
3775 */
3776 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3777 error = vdev_rebuild_load(vd);
3778 if (error && error != ENOTSUP) {
3779 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3780 VDEV_AUX_CORRUPT_DATA);
3781 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3782 "failed [error=%d]", error);
3783 return (error);
3784 }
3785 }
3786
3787 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) {
3788 uint64_t zapobj;
3789
3790 if (vd->vdev_top_zap != 0)
3791 zapobj = vd->vdev_top_zap;
3792 else
3793 zapobj = vd->vdev_leaf_zap;
3794
3795 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N,
3796 &vd->vdev_checksum_n);
3797 if (error && error != ENOENT)
3798 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3799 "failed [error=%d]", (u_longlong_t)zapobj, error);
3800
3801 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T,
3802 &vd->vdev_checksum_t);
3803 if (error && error != ENOENT)
3804 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3805 "failed [error=%d]", (u_longlong_t)zapobj, error);
3806
3807 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N,
3808 &vd->vdev_io_n);
3809 if (error && error != ENOENT)
3810 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3811 "failed [error=%d]", (u_longlong_t)zapobj, error);
3812
3813 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T,
3814 &vd->vdev_io_t);
3815 if (error && error != ENOENT)
3816 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3817 "failed [error=%d]", (u_longlong_t)zapobj, error);
3818
3819 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N,
3820 &vd->vdev_slow_io_n);
3821 if (error && error != ENOENT)
3822 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3823 "failed [error=%d]", (u_longlong_t)zapobj, error);
3824
3825 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T,
3826 &vd->vdev_slow_io_t);
3827 if (error && error != ENOENT)
3828 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3829 "failed [error=%d]", (u_longlong_t)zapobj, error);
3830 }
3831
3832 /*
3833 * If this is a top-level vdev, initialize its metaslabs.
3834 */
3835 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3836 vdev_metaslab_group_create(vd);
3837
3838 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3839 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3840 VDEV_AUX_CORRUPT_DATA);
3841 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3842 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3843 (u_longlong_t)vd->vdev_asize);
3844 return (SET_ERROR(ENXIO));
3845 }
3846
3847 error = vdev_metaslab_init(vd, 0);
3848 if (error != 0) {
3849 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3850 "[error=%d]", error);
3851 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3852 VDEV_AUX_CORRUPT_DATA);
3853 return (error);
3854 }
3855
3856 uint64_t checkpoint_sm_obj;
3857 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3858 if (error == 0 && checkpoint_sm_obj != 0) {
3859 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3860 ASSERT(vd->vdev_asize != 0);
3861 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3862
3863 error = space_map_open(&vd->vdev_checkpoint_sm,
3864 mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3865 vd->vdev_ashift);
3866 if (error != 0) {
3867 vdev_dbgmsg(vd, "vdev_load: space_map_open "
3868 "failed for checkpoint spacemap (obj %llu) "
3869 "[error=%d]",
3870 (u_longlong_t)checkpoint_sm_obj, error);
3871 return (error);
3872 }
3873 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3874
3875 /*
3876 * Since the checkpoint_sm contains free entries
3877 * exclusively we can use space_map_allocated() to
3878 * indicate the cumulative checkpointed space that
3879 * has been freed.
3880 */
3881 vd->vdev_stat.vs_checkpoint_space =
3882 -space_map_allocated(vd->vdev_checkpoint_sm);
3883 vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3884 vd->vdev_stat.vs_checkpoint_space;
3885 } else if (error != 0) {
3886 vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3887 "checkpoint space map object from vdev ZAP "
3888 "[error=%d]", error);
3889 return (error);
3890 }
3891 }
3892
3893 /*
3894 * If this is a leaf vdev, load its DTL.
3895 */
3896 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3897 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3898 VDEV_AUX_CORRUPT_DATA);
3899 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3900 "[error=%d]", error);
3901 return (error);
3902 }
3903
3904 uint64_t obsolete_sm_object;
3905 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3906 if (error == 0 && obsolete_sm_object != 0) {
3907 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3908 ASSERT(vd->vdev_asize != 0);
3909 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3910
3911 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3912 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3913 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3914 VDEV_AUX_CORRUPT_DATA);
3915 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3916 "obsolete spacemap (obj %llu) [error=%d]",
3917 (u_longlong_t)obsolete_sm_object, error);
3918 return (error);
3919 }
3920 } else if (error != 0) {
3921 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3922 "space map object from vdev ZAP [error=%d]", error);
3923 return (error);
3924 }
3925
3926 return (0);
3927 }
3928
3929 /*
3930 * The special vdev case is used for hot spares and l2cache devices. Its
3931 * sole purpose it to set the vdev state for the associated vdev. To do this,
3932 * we make sure that we can open the underlying device, then try to read the
3933 * label, and make sure that the label is sane and that it hasn't been
3934 * repurposed to another pool.
3935 */
3936 int
vdev_validate_aux(vdev_t * vd)3937 vdev_validate_aux(vdev_t *vd)
3938 {
3939 nvlist_t *label;
3940 uint64_t guid, version;
3941 uint64_t state;
3942
3943 if (!vdev_readable(vd))
3944 return (0);
3945
3946 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3947 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3948 VDEV_AUX_CORRUPT_DATA);
3949 return (-1);
3950 }
3951
3952 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3953 !SPA_VERSION_IS_SUPPORTED(version) ||
3954 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3955 guid != vd->vdev_guid ||
3956 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3957 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3958 VDEV_AUX_CORRUPT_DATA);
3959 nvlist_free(label);
3960 return (-1);
3961 }
3962
3963 /*
3964 * We don't actually check the pool state here. If it's in fact in
3965 * use by another pool, we update this fact on the fly when requested.
3966 */
3967 nvlist_free(label);
3968 return (0);
3969 }
3970
3971 static void
vdev_destroy_ms_flush_data(vdev_t * vd,dmu_tx_t * tx)3972 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3973 {
3974 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3975
3976 if (vd->vdev_top_zap == 0)
3977 return;
3978
3979 uint64_t object = 0;
3980 int err = zap_lookup(mos, vd->vdev_top_zap,
3981 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3982 if (err == ENOENT)
3983 return;
3984 VERIFY0(err);
3985
3986 VERIFY0(dmu_object_free(mos, object, tx));
3987 VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3988 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3989 }
3990
3991 /*
3992 * Free the objects used to store this vdev's spacemaps, and the array
3993 * that points to them.
3994 */
3995 void
vdev_destroy_spacemaps(vdev_t * vd,dmu_tx_t * tx)3996 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3997 {
3998 if (vd->vdev_ms_array == 0)
3999 return;
4000
4001 objset_t *mos = vd->vdev_spa->spa_meta_objset;
4002 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
4003 size_t array_bytes = array_count * sizeof (uint64_t);
4004 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
4005 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
4006 array_bytes, smobj_array, 0));
4007
4008 for (uint64_t i = 0; i < array_count; i++) {
4009 uint64_t smobj = smobj_array[i];
4010 if (smobj == 0)
4011 continue;
4012
4013 space_map_free_obj(mos, smobj, tx);
4014 }
4015
4016 kmem_free(smobj_array, array_bytes);
4017 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
4018 vdev_destroy_ms_flush_data(vd, tx);
4019 vd->vdev_ms_array = 0;
4020 }
4021
4022 static void
vdev_remove_empty_log(vdev_t * vd,uint64_t txg)4023 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
4024 {
4025 spa_t *spa = vd->vdev_spa;
4026
4027 ASSERT(vd->vdev_islog);
4028 ASSERT(vd == vd->vdev_top);
4029 ASSERT3U(txg, ==, spa_syncing_txg(spa));
4030
4031 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4032
4033 vdev_destroy_spacemaps(vd, tx);
4034 if (vd->vdev_top_zap != 0) {
4035 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
4036 vd->vdev_top_zap = 0;
4037 }
4038
4039 dmu_tx_commit(tx);
4040 }
4041
4042 void
vdev_sync_done(vdev_t * vd,uint64_t txg)4043 vdev_sync_done(vdev_t *vd, uint64_t txg)
4044 {
4045 metaslab_t *msp;
4046 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
4047
4048 ASSERT(vdev_is_concrete(vd));
4049
4050 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
4051 != NULL)
4052 metaslab_sync_done(msp, txg);
4053
4054 if (reassess) {
4055 metaslab_sync_reassess(vd->vdev_mg);
4056 if (vd->vdev_log_mg != NULL)
4057 metaslab_sync_reassess(vd->vdev_log_mg);
4058 }
4059 }
4060
4061 void
vdev_sync(vdev_t * vd,uint64_t txg)4062 vdev_sync(vdev_t *vd, uint64_t txg)
4063 {
4064 spa_t *spa = vd->vdev_spa;
4065 vdev_t *lvd;
4066 metaslab_t *msp;
4067
4068 ASSERT3U(txg, ==, spa->spa_syncing_txg);
4069 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
4070 if (zfs_range_tree_space(vd->vdev_obsolete_segments) > 0) {
4071 ASSERT(vd->vdev_removing ||
4072 vd->vdev_ops == &vdev_indirect_ops);
4073
4074 vdev_indirect_sync_obsolete(vd, tx);
4075
4076 /*
4077 * If the vdev is indirect, it can't have dirty
4078 * metaslabs or DTLs.
4079 */
4080 if (vd->vdev_ops == &vdev_indirect_ops) {
4081 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
4082 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
4083 dmu_tx_commit(tx);
4084 return;
4085 }
4086 }
4087
4088 ASSERT(vdev_is_concrete(vd));
4089
4090 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
4091 !vd->vdev_removing) {
4092 ASSERT(vd == vd->vdev_top);
4093 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
4094 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
4095 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
4096 ASSERT(vd->vdev_ms_array != 0);
4097 vdev_config_dirty(vd);
4098 }
4099
4100 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
4101 metaslab_sync(msp, txg);
4102 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
4103 }
4104
4105 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
4106 vdev_dtl_sync(lvd, txg);
4107
4108 /*
4109 * If this is an empty log device being removed, destroy the
4110 * metadata associated with it.
4111 */
4112 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
4113 vdev_remove_empty_log(vd, txg);
4114
4115 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
4116 dmu_tx_commit(tx);
4117 }
4118
4119 /*
4120 * Return the amount of space that should be (or was) allocated for the given
4121 * psize (compressed block size) in the given TXG. Note that for expanded
4122 * RAIDZ vdevs, the size allocated for older BP's may be larger. See
4123 * vdev_raidz_asize().
4124 */
4125 uint64_t
vdev_psize_to_asize_txg(vdev_t * vd,uint64_t psize,uint64_t txg)4126 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg)
4127 {
4128 return (vd->vdev_ops->vdev_op_asize(vd, psize, txg));
4129 }
4130
4131 uint64_t
vdev_psize_to_asize(vdev_t * vd,uint64_t psize)4132 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
4133 {
4134 return (vdev_psize_to_asize_txg(vd, psize, 0));
4135 }
4136
4137 /*
4138 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
4139 * not be opened, and no I/O is attempted.
4140 */
4141 int
vdev_fault(spa_t * spa,uint64_t guid,vdev_aux_t aux)4142 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4143 {
4144 vdev_t *vd, *tvd;
4145
4146 spa_vdev_state_enter(spa, SCL_NONE);
4147
4148 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4149 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4150
4151 if (!vd->vdev_ops->vdev_op_leaf)
4152 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4153
4154 tvd = vd->vdev_top;
4155
4156 /*
4157 * If user did a 'zpool offline -f' then make the fault persist across
4158 * reboots.
4159 */
4160 if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
4161 /*
4162 * There are two kinds of forced faults: temporary and
4163 * persistent. Temporary faults go away at pool import, while
4164 * persistent faults stay set. Both types of faults can be
4165 * cleared with a zpool clear.
4166 *
4167 * We tell if a vdev is persistently faulted by looking at the
4168 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
4169 * import then it's a persistent fault. Otherwise, it's
4170 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
4171 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
4172 * tells vdev_config_generate() (which gets run later) to set
4173 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
4174 */
4175 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
4176 vd->vdev_tmpoffline = B_FALSE;
4177 aux = VDEV_AUX_EXTERNAL;
4178 } else {
4179 vd->vdev_tmpoffline = B_TRUE;
4180 }
4181
4182 /*
4183 * We don't directly use the aux state here, but if we do a
4184 * vdev_reopen(), we need this value to be present to remember why we
4185 * were faulted.
4186 */
4187 vd->vdev_label_aux = aux;
4188
4189 /*
4190 * Faulted state takes precedence over degraded.
4191 */
4192 vd->vdev_delayed_close = B_FALSE;
4193 vd->vdev_faulted = 1ULL;
4194 vd->vdev_degraded = 0ULL;
4195 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
4196
4197 /*
4198 * If this device has the only valid copy of the data, then
4199 * back off and simply mark the vdev as degraded instead.
4200 */
4201 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
4202 vd->vdev_degraded = 1ULL;
4203 vd->vdev_faulted = 0ULL;
4204
4205 /*
4206 * If we reopen the device and it's not dead, only then do we
4207 * mark it degraded.
4208 */
4209 vdev_reopen(tvd);
4210
4211 if (vdev_readable(vd))
4212 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
4213 }
4214
4215 return (spa_vdev_state_exit(spa, vd, 0));
4216 }
4217
4218 /*
4219 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
4220 * user that something is wrong. The vdev continues to operate as normal as far
4221 * as I/O is concerned.
4222 */
4223 int
vdev_degrade(spa_t * spa,uint64_t guid,vdev_aux_t aux)4224 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4225 {
4226 vdev_t *vd;
4227
4228 spa_vdev_state_enter(spa, SCL_NONE);
4229
4230 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4231 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4232
4233 if (!vd->vdev_ops->vdev_op_leaf)
4234 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4235
4236 /*
4237 * If the vdev is already faulted, then don't do anything.
4238 */
4239 if (vd->vdev_faulted || vd->vdev_degraded)
4240 return (spa_vdev_state_exit(spa, NULL, 0));
4241
4242 vd->vdev_degraded = 1ULL;
4243 if (!vdev_is_dead(vd))
4244 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
4245 aux);
4246
4247 return (spa_vdev_state_exit(spa, vd, 0));
4248 }
4249
4250 int
vdev_remove_wanted(spa_t * spa,uint64_t guid)4251 vdev_remove_wanted(spa_t *spa, uint64_t guid)
4252 {
4253 vdev_t *vd;
4254
4255 spa_vdev_state_enter(spa, SCL_NONE);
4256
4257 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4258 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4259
4260 /*
4261 * If the vdev is already removed, or expanding which can trigger
4262 * repartition add/remove events, then don't do anything.
4263 */
4264 if (vd->vdev_removed || vd->vdev_expanding)
4265 return (spa_vdev_state_exit(spa, NULL, 0));
4266
4267 /*
4268 * Confirm the vdev has been removed, otherwise don't do anything.
4269 */
4270 if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL)))
4271 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST)));
4272
4273 vd->vdev_remove_wanted = B_TRUE;
4274 spa_async_request(spa, SPA_ASYNC_REMOVE);
4275
4276 return (spa_vdev_state_exit(spa, vd, 0));
4277 }
4278
4279
4280 /*
4281 * Online the given vdev.
4282 *
4283 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
4284 * spare device should be detached when the device finishes resilvering.
4285 * Second, the online should be treated like a 'test' online case, so no FMA
4286 * events are generated if the device fails to open.
4287 */
4288 int
vdev_online(spa_t * spa,uint64_t guid,uint64_t flags,vdev_state_t * newstate)4289 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
4290 {
4291 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
4292 boolean_t wasoffline;
4293 vdev_state_t oldstate;
4294
4295 spa_vdev_state_enter(spa, SCL_NONE);
4296
4297 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4298 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4299
4300 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
4301 oldstate = vd->vdev_state;
4302
4303 tvd = vd->vdev_top;
4304 vd->vdev_offline = B_FALSE;
4305 vd->vdev_tmpoffline = B_FALSE;
4306 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
4307 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
4308
4309 /* XXX - L2ARC 1.0 does not support expansion */
4310 if (!vd->vdev_aux) {
4311 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4312 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
4313 spa->spa_autoexpand);
4314 vd->vdev_expansion_time = gethrestime_sec();
4315 }
4316
4317 vdev_reopen(tvd);
4318 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
4319
4320 if (!vd->vdev_aux) {
4321 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4322 pvd->vdev_expanding = B_FALSE;
4323 }
4324
4325 if (newstate)
4326 *newstate = vd->vdev_state;
4327 if ((flags & ZFS_ONLINE_UNSPARE) &&
4328 !vdev_is_dead(vd) && vd->vdev_parent &&
4329 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4330 vd->vdev_parent->vdev_child[0] == vd)
4331 vd->vdev_unspare = B_TRUE;
4332
4333 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
4334
4335 /* XXX - L2ARC 1.0 does not support expansion */
4336 if (vd->vdev_aux)
4337 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
4338 spa->spa_ccw_fail_time = 0;
4339 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4340 }
4341
4342 /* Restart initializing if necessary */
4343 mutex_enter(&vd->vdev_initialize_lock);
4344 if (vdev_writeable(vd) &&
4345 vd->vdev_initialize_thread == NULL &&
4346 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
4347 (void) vdev_initialize(vd);
4348 }
4349 mutex_exit(&vd->vdev_initialize_lock);
4350
4351 /*
4352 * Restart trimming if necessary. We do not restart trimming for cache
4353 * devices here. This is triggered by l2arc_rebuild_vdev()
4354 * asynchronously for the whole device or in l2arc_evict() as it evicts
4355 * space for upcoming writes.
4356 */
4357 mutex_enter(&vd->vdev_trim_lock);
4358 if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
4359 vd->vdev_trim_thread == NULL &&
4360 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
4361 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
4362 vd->vdev_trim_secure);
4363 }
4364 mutex_exit(&vd->vdev_trim_lock);
4365
4366 if (wasoffline ||
4367 (oldstate < VDEV_STATE_DEGRADED &&
4368 vd->vdev_state >= VDEV_STATE_DEGRADED)) {
4369 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4370
4371 /*
4372 * Asynchronously detach spare vdev if resilver or
4373 * rebuild is not required
4374 */
4375 if (vd->vdev_unspare &&
4376 !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4377 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) &&
4378 !vdev_rebuild_active(tvd))
4379 spa_async_request(spa, SPA_ASYNC_DETACH_SPARE);
4380 }
4381 return (spa_vdev_state_exit(spa, vd, 0));
4382 }
4383
4384 static int
vdev_offline_locked(spa_t * spa,uint64_t guid,uint64_t flags)4385 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4386 {
4387 vdev_t *vd, *tvd;
4388 int error = 0;
4389 uint64_t generation;
4390 metaslab_group_t *mg;
4391
4392 top:
4393 spa_vdev_state_enter(spa, SCL_ALLOC);
4394
4395 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4396 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4397
4398 if (!vd->vdev_ops->vdev_op_leaf)
4399 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4400
4401 if (vd->vdev_ops == &vdev_draid_spare_ops)
4402 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4403
4404 tvd = vd->vdev_top;
4405 mg = tvd->vdev_mg;
4406 generation = spa->spa_config_generation + 1;
4407
4408 /*
4409 * If the device isn't already offline, try to offline it.
4410 */
4411 if (!vd->vdev_offline) {
4412 /*
4413 * If this device has the only valid copy of some data,
4414 * don't allow it to be offlined. Log devices are always
4415 * expendable.
4416 */
4417 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4418 vdev_dtl_required(vd))
4419 return (spa_vdev_state_exit(spa, NULL,
4420 SET_ERROR(EBUSY)));
4421
4422 /*
4423 * If the top-level is a slog and it has had allocations
4424 * then proceed. We check that the vdev's metaslab group
4425 * is not NULL since it's possible that we may have just
4426 * added this vdev but not yet initialized its metaslabs.
4427 */
4428 if (tvd->vdev_islog && mg != NULL) {
4429 /*
4430 * Prevent any future allocations.
4431 */
4432 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
4433 metaslab_group_passivate(mg);
4434 (void) spa_vdev_state_exit(spa, vd, 0);
4435
4436 error = spa_reset_logs(spa);
4437
4438 /*
4439 * If the log device was successfully reset but has
4440 * checkpointed data, do not offline it.
4441 */
4442 if (error == 0 &&
4443 tvd->vdev_checkpoint_sm != NULL) {
4444 ASSERT3U(space_map_allocated(
4445 tvd->vdev_checkpoint_sm), !=, 0);
4446 error = ZFS_ERR_CHECKPOINT_EXISTS;
4447 }
4448
4449 spa_vdev_state_enter(spa, SCL_ALLOC);
4450
4451 /*
4452 * Check to see if the config has changed.
4453 */
4454 if (error || generation != spa->spa_config_generation) {
4455 metaslab_group_activate(mg);
4456 if (error)
4457 return (spa_vdev_state_exit(spa,
4458 vd, error));
4459 (void) spa_vdev_state_exit(spa, vd, 0);
4460 goto top;
4461 }
4462 ASSERT0(tvd->vdev_stat.vs_alloc);
4463 }
4464
4465 /*
4466 * Offline this device and reopen its top-level vdev.
4467 * If the top-level vdev is a log device then just offline
4468 * it. Otherwise, if this action results in the top-level
4469 * vdev becoming unusable, undo it and fail the request.
4470 */
4471 vd->vdev_offline = B_TRUE;
4472 vdev_reopen(tvd);
4473
4474 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4475 vdev_is_dead(tvd)) {
4476 vd->vdev_offline = B_FALSE;
4477 vdev_reopen(tvd);
4478 return (spa_vdev_state_exit(spa, NULL,
4479 SET_ERROR(EBUSY)));
4480 }
4481
4482 /*
4483 * Add the device back into the metaslab rotor so that
4484 * once we online the device it's open for business.
4485 */
4486 if (tvd->vdev_islog && mg != NULL)
4487 metaslab_group_activate(mg);
4488 }
4489
4490 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4491
4492 return (spa_vdev_state_exit(spa, vd, 0));
4493 }
4494
4495 int
vdev_offline(spa_t * spa,uint64_t guid,uint64_t flags)4496 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4497 {
4498 int error;
4499
4500 mutex_enter(&spa->spa_vdev_top_lock);
4501 error = vdev_offline_locked(spa, guid, flags);
4502 mutex_exit(&spa->spa_vdev_top_lock);
4503
4504 return (error);
4505 }
4506
4507 /*
4508 * Clear the error counts associated with this vdev. Unlike vdev_online() and
4509 * vdev_offline(), we assume the spa config is locked. We also clear all
4510 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
4511 */
4512 void
vdev_clear(spa_t * spa,vdev_t * vd)4513 vdev_clear(spa_t *spa, vdev_t *vd)
4514 {
4515 vdev_t *rvd = spa->spa_root_vdev;
4516
4517 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4518
4519 if (vd == NULL)
4520 vd = rvd;
4521
4522 vd->vdev_stat.vs_read_errors = 0;
4523 vd->vdev_stat.vs_write_errors = 0;
4524 vd->vdev_stat.vs_checksum_errors = 0;
4525 vd->vdev_stat.vs_dio_verify_errors = 0;
4526 vd->vdev_stat.vs_slow_ios = 0;
4527
4528 for (int c = 0; c < vd->vdev_children; c++)
4529 vdev_clear(spa, vd->vdev_child[c]);
4530
4531 /*
4532 * It makes no sense to "clear" an indirect or removed vdev.
4533 */
4534 if (!vdev_is_concrete(vd) || vd->vdev_removed)
4535 return;
4536
4537 /*
4538 * If we're in the FAULTED state or have experienced failed I/O, then
4539 * clear the persistent state and attempt to reopen the device. We
4540 * also mark the vdev config dirty, so that the new faulted state is
4541 * written out to disk.
4542 */
4543 if (vd->vdev_faulted || vd->vdev_degraded ||
4544 !vdev_readable(vd) || !vdev_writeable(vd)) {
4545 /*
4546 * When reopening in response to a clear event, it may be due to
4547 * a fmadm repair request. In this case, if the device is
4548 * still broken, we want to still post the ereport again.
4549 */
4550 vd->vdev_forcefault = B_TRUE;
4551
4552 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4553 vd->vdev_cant_read = B_FALSE;
4554 vd->vdev_cant_write = B_FALSE;
4555 vd->vdev_stat.vs_aux = 0;
4556
4557 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4558
4559 vd->vdev_forcefault = B_FALSE;
4560
4561 if (vd != rvd && vdev_writeable(vd->vdev_top))
4562 vdev_state_dirty(vd->vdev_top);
4563
4564 /* If a resilver isn't required, check if vdevs can be culled */
4565 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4566 !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4567 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4568 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4569
4570 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4571 }
4572
4573 /*
4574 * When clearing a FMA-diagnosed fault, we always want to
4575 * unspare the device, as we assume that the original spare was
4576 * done in response to the FMA fault.
4577 */
4578 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4579 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4580 vd->vdev_parent->vdev_child[0] == vd)
4581 vd->vdev_unspare = B_TRUE;
4582
4583 /* Clear recent error events cache (i.e. duplicate events tracking) */
4584 zfs_ereport_clear(spa, vd);
4585 }
4586
4587 boolean_t
vdev_is_dead(vdev_t * vd)4588 vdev_is_dead(vdev_t *vd)
4589 {
4590 /*
4591 * Holes and missing devices are always considered "dead".
4592 * This simplifies the code since we don't have to check for
4593 * these types of devices in the various code paths.
4594 * Instead we rely on the fact that we skip over dead devices
4595 * before issuing I/O to them.
4596 */
4597 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4598 vd->vdev_ops == &vdev_hole_ops ||
4599 vd->vdev_ops == &vdev_missing_ops);
4600 }
4601
4602 boolean_t
vdev_readable(vdev_t * vd)4603 vdev_readable(vdev_t *vd)
4604 {
4605 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4606 }
4607
4608 boolean_t
vdev_writeable(vdev_t * vd)4609 vdev_writeable(vdev_t *vd)
4610 {
4611 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4612 vdev_is_concrete(vd));
4613 }
4614
4615 boolean_t
vdev_allocatable(vdev_t * vd)4616 vdev_allocatable(vdev_t *vd)
4617 {
4618 uint64_t state = vd->vdev_state;
4619
4620 /*
4621 * We currently allow allocations from vdevs which may be in the
4622 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4623 * fails to reopen then we'll catch it later when we're holding
4624 * the proper locks. Note that we have to get the vdev state
4625 * in a local variable because although it changes atomically,
4626 * we're asking two separate questions about it.
4627 */
4628 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4629 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4630 vd->vdev_mg->mg_initialized);
4631 }
4632
4633 boolean_t
vdev_accessible(vdev_t * vd,zio_t * zio)4634 vdev_accessible(vdev_t *vd, zio_t *zio)
4635 {
4636 ASSERT(zio->io_vd == vd);
4637
4638 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4639 return (B_FALSE);
4640
4641 if (zio->io_type == ZIO_TYPE_READ)
4642 return (!vd->vdev_cant_read);
4643
4644 if (zio->io_type == ZIO_TYPE_WRITE)
4645 return (!vd->vdev_cant_write);
4646
4647 return (B_TRUE);
4648 }
4649
4650 static void
vdev_get_child_stat(vdev_t * cvd,vdev_stat_t * vs,vdev_stat_t * cvs)4651 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4652 {
4653 /*
4654 * Exclude the dRAID spare when aggregating to avoid double counting
4655 * the ops and bytes. These IOs are counted by the physical leaves.
4656 */
4657 if (cvd->vdev_ops == &vdev_draid_spare_ops)
4658 return;
4659
4660 for (int t = 0; t < VS_ZIO_TYPES; t++) {
4661 vs->vs_ops[t] += cvs->vs_ops[t];
4662 vs->vs_bytes[t] += cvs->vs_bytes[t];
4663 }
4664
4665 cvs->vs_scan_removing = cvd->vdev_removing;
4666 }
4667
4668 /*
4669 * Get extended stats
4670 */
4671 static void
vdev_get_child_stat_ex(vdev_t * cvd,vdev_stat_ex_t * vsx,vdev_stat_ex_t * cvsx)4672 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4673 {
4674 (void) cvd;
4675
4676 int t, b;
4677 for (t = 0; t < ZIO_TYPES; t++) {
4678 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4679 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4680
4681 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4682 vsx->vsx_total_histo[t][b] +=
4683 cvsx->vsx_total_histo[t][b];
4684 }
4685 }
4686
4687 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4688 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4689 vsx->vsx_queue_histo[t][b] +=
4690 cvsx->vsx_queue_histo[t][b];
4691 }
4692 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4693 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4694
4695 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4696 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4697
4698 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4699 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4700 }
4701
4702 }
4703
4704 boolean_t
vdev_is_spacemap_addressable(vdev_t * vd)4705 vdev_is_spacemap_addressable(vdev_t *vd)
4706 {
4707 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4708 return (B_TRUE);
4709
4710 /*
4711 * If double-word space map entries are not enabled we assume
4712 * 47 bits of the space map entry are dedicated to the entry's
4713 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4714 * to calculate the maximum address that can be described by a
4715 * space map entry for the given device.
4716 */
4717 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4718
4719 if (shift >= 63) /* detect potential overflow */
4720 return (B_TRUE);
4721
4722 return (vd->vdev_asize < (1ULL << shift));
4723 }
4724
4725 /*
4726 * Get statistics for the given vdev.
4727 */
4728 static void
vdev_get_stats_ex_impl(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4729 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4730 {
4731 int t;
4732 /*
4733 * If we're getting stats on the root vdev, aggregate the I/O counts
4734 * over all top-level vdevs (i.e. the direct children of the root).
4735 */
4736 if (!vd->vdev_ops->vdev_op_leaf) {
4737 if (vs) {
4738 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4739 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4740 }
4741 if (vsx)
4742 memset(vsx, 0, sizeof (*vsx));
4743
4744 for (int c = 0; c < vd->vdev_children; c++) {
4745 vdev_t *cvd = vd->vdev_child[c];
4746 vdev_stat_t *cvs = &cvd->vdev_stat;
4747 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4748
4749 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4750 if (vs)
4751 vdev_get_child_stat(cvd, vs, cvs);
4752 if (vsx)
4753 vdev_get_child_stat_ex(cvd, vsx, cvsx);
4754 }
4755 } else {
4756 /*
4757 * We're a leaf. Just copy our ZIO active queue stats in. The
4758 * other leaf stats are updated in vdev_stat_update().
4759 */
4760 if (!vsx)
4761 return;
4762
4763 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4764
4765 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4766 vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t];
4767 vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t);
4768 }
4769 }
4770 }
4771
4772 void
vdev_get_stats_ex(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4773 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4774 {
4775 vdev_t *tvd = vd->vdev_top;
4776 mutex_enter(&vd->vdev_stat_lock);
4777 if (vs) {
4778 memcpy(vs, &vd->vdev_stat, sizeof (*vs));
4779 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4780 vs->vs_state = vd->vdev_state;
4781 vs->vs_rsize = vdev_get_min_asize(vd);
4782
4783 if (vd->vdev_ops->vdev_op_leaf) {
4784 vs->vs_pspace = vd->vdev_psize;
4785 vs->vs_rsize += VDEV_LABEL_START_SIZE +
4786 VDEV_LABEL_END_SIZE;
4787 /*
4788 * Report initializing progress. Since we don't
4789 * have the initializing locks held, this is only
4790 * an estimate (although a fairly accurate one).
4791 */
4792 vs->vs_initialize_bytes_done =
4793 vd->vdev_initialize_bytes_done;
4794 vs->vs_initialize_bytes_est =
4795 vd->vdev_initialize_bytes_est;
4796 vs->vs_initialize_state = vd->vdev_initialize_state;
4797 vs->vs_initialize_action_time =
4798 vd->vdev_initialize_action_time;
4799
4800 /*
4801 * Report manual TRIM progress. Since we don't have
4802 * the manual TRIM locks held, this is only an
4803 * estimate (although fairly accurate one).
4804 */
4805 vs->vs_trim_notsup = !vd->vdev_has_trim;
4806 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4807 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4808 vs->vs_trim_state = vd->vdev_trim_state;
4809 vs->vs_trim_action_time = vd->vdev_trim_action_time;
4810
4811 /* Set when there is a deferred resilver. */
4812 vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4813 }
4814
4815 /*
4816 * Report expandable space on top-level, non-auxiliary devices
4817 * only. The expandable space is reported in terms of metaslab
4818 * sized units since that determines how much space the pool
4819 * can expand.
4820 */
4821 if (vd->vdev_aux == NULL && tvd != NULL) {
4822 vs->vs_esize = P2ALIGN_TYPED(
4823 vd->vdev_max_asize - vd->vdev_asize,
4824 1ULL << tvd->vdev_ms_shift, uint64_t);
4825 }
4826
4827 vs->vs_configured_ashift = vd->vdev_top != NULL
4828 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4829 vs->vs_logical_ashift = vd->vdev_logical_ashift;
4830 if (vd->vdev_physical_ashift <= ASHIFT_MAX)
4831 vs->vs_physical_ashift = vd->vdev_physical_ashift;
4832 else
4833 vs->vs_physical_ashift = 0;
4834
4835 /*
4836 * Report fragmentation and rebuild progress for top-level,
4837 * non-auxiliary, concrete devices.
4838 */
4839 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4840 vdev_is_concrete(vd)) {
4841 /*
4842 * The vdev fragmentation rating doesn't take into
4843 * account the embedded slog metaslab (vdev_log_mg).
4844 * Since it's only one metaslab, it would have a tiny
4845 * impact on the overall fragmentation.
4846 */
4847 vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4848 vd->vdev_mg->mg_fragmentation : 0;
4849 }
4850 vs->vs_noalloc = MAX(vd->vdev_noalloc,
4851 tvd ? tvd->vdev_noalloc : 0);
4852 }
4853
4854 vdev_get_stats_ex_impl(vd, vs, vsx);
4855 mutex_exit(&vd->vdev_stat_lock);
4856 }
4857
4858 void
vdev_get_stats(vdev_t * vd,vdev_stat_t * vs)4859 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4860 {
4861 return (vdev_get_stats_ex(vd, vs, NULL));
4862 }
4863
4864 void
vdev_clear_stats(vdev_t * vd)4865 vdev_clear_stats(vdev_t *vd)
4866 {
4867 mutex_enter(&vd->vdev_stat_lock);
4868 vd->vdev_stat.vs_space = 0;
4869 vd->vdev_stat.vs_dspace = 0;
4870 vd->vdev_stat.vs_alloc = 0;
4871 mutex_exit(&vd->vdev_stat_lock);
4872 }
4873
4874 void
vdev_scan_stat_init(vdev_t * vd)4875 vdev_scan_stat_init(vdev_t *vd)
4876 {
4877 vdev_stat_t *vs = &vd->vdev_stat;
4878
4879 for (int c = 0; c < vd->vdev_children; c++)
4880 vdev_scan_stat_init(vd->vdev_child[c]);
4881
4882 mutex_enter(&vd->vdev_stat_lock);
4883 vs->vs_scan_processed = 0;
4884 mutex_exit(&vd->vdev_stat_lock);
4885 }
4886
4887 void
vdev_stat_update(zio_t * zio,uint64_t psize)4888 vdev_stat_update(zio_t *zio, uint64_t psize)
4889 {
4890 spa_t *spa = zio->io_spa;
4891 vdev_t *rvd = spa->spa_root_vdev;
4892 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4893 vdev_t *pvd;
4894 uint64_t txg = zio->io_txg;
4895 /* Suppress ASAN false positive */
4896 #ifdef __SANITIZE_ADDRESS__
4897 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
4898 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
4899 #else
4900 vdev_stat_t *vs = &vd->vdev_stat;
4901 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4902 #endif
4903 zio_type_t type = zio->io_type;
4904 int flags = zio->io_flags;
4905
4906 /*
4907 * If this i/o is a gang leader, it didn't do any actual work.
4908 */
4909 if (zio->io_gang_tree)
4910 return;
4911
4912 if (zio->io_error == 0) {
4913 /*
4914 * If this is a root i/o, don't count it -- we've already
4915 * counted the top-level vdevs, and vdev_get_stats() will
4916 * aggregate them when asked. This reduces contention on
4917 * the root vdev_stat_lock and implicitly handles blocks
4918 * that compress away to holes, for which there is no i/o.
4919 * (Holes never create vdev children, so all the counters
4920 * remain zero, which is what we want.)
4921 *
4922 * Note: this only applies to successful i/o (io_error == 0)
4923 * because unlike i/o counts, errors are not additive.
4924 * When reading a ditto block, for example, failure of
4925 * one top-level vdev does not imply a root-level error.
4926 */
4927 if (vd == rvd)
4928 return;
4929
4930 ASSERT(vd == zio->io_vd);
4931
4932 if (flags & ZIO_FLAG_IO_BYPASS)
4933 return;
4934
4935 mutex_enter(&vd->vdev_stat_lock);
4936
4937 if (flags & ZIO_FLAG_IO_REPAIR) {
4938 /*
4939 * Repair is the result of a resilver issued by the
4940 * scan thread (spa_sync).
4941 */
4942 if (flags & ZIO_FLAG_SCAN_THREAD) {
4943 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4944 dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4945 uint64_t *processed = &scn_phys->scn_processed;
4946
4947 if (vd->vdev_ops->vdev_op_leaf)
4948 atomic_add_64(processed, psize);
4949 vs->vs_scan_processed += psize;
4950 }
4951
4952 /*
4953 * Repair is the result of a rebuild issued by the
4954 * rebuild thread (vdev_rebuild_thread). To avoid
4955 * double counting repaired bytes the virtual dRAID
4956 * spare vdev is excluded from the processed bytes.
4957 */
4958 if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4959 vdev_t *tvd = vd->vdev_top;
4960 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4961 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4962 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4963
4964 if (vd->vdev_ops->vdev_op_leaf &&
4965 vd->vdev_ops != &vdev_draid_spare_ops) {
4966 atomic_add_64(rebuilt, psize);
4967 }
4968 vs->vs_rebuild_processed += psize;
4969 }
4970
4971 if (flags & ZIO_FLAG_SELF_HEAL)
4972 vs->vs_self_healed += psize;
4973 }
4974
4975 /*
4976 * The bytes/ops/histograms are recorded at the leaf level and
4977 * aggregated into the higher level vdevs in vdev_get_stats().
4978 */
4979 if (vd->vdev_ops->vdev_op_leaf &&
4980 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4981 zio_type_t vs_type = type;
4982 zio_priority_t priority = zio->io_priority;
4983
4984 /*
4985 * TRIM ops and bytes are reported to user space as
4986 * ZIO_TYPE_FLUSH. This is done to preserve the
4987 * vdev_stat_t structure layout for user space.
4988 */
4989 if (type == ZIO_TYPE_TRIM)
4990 vs_type = ZIO_TYPE_FLUSH;
4991
4992 /*
4993 * Solely for the purposes of 'zpool iostat -lqrw'
4994 * reporting use the priority to categorize the IO.
4995 * Only the following are reported to user space:
4996 *
4997 * ZIO_PRIORITY_SYNC_READ,
4998 * ZIO_PRIORITY_SYNC_WRITE,
4999 * ZIO_PRIORITY_ASYNC_READ,
5000 * ZIO_PRIORITY_ASYNC_WRITE,
5001 * ZIO_PRIORITY_SCRUB,
5002 * ZIO_PRIORITY_TRIM,
5003 * ZIO_PRIORITY_REBUILD.
5004 */
5005 if (priority == ZIO_PRIORITY_INITIALIZING) {
5006 ASSERT3U(type, ==, ZIO_TYPE_WRITE);
5007 priority = ZIO_PRIORITY_ASYNC_WRITE;
5008 } else if (priority == ZIO_PRIORITY_REMOVAL) {
5009 priority = ((type == ZIO_TYPE_WRITE) ?
5010 ZIO_PRIORITY_ASYNC_WRITE :
5011 ZIO_PRIORITY_ASYNC_READ);
5012 }
5013
5014 vs->vs_ops[vs_type]++;
5015 vs->vs_bytes[vs_type] += psize;
5016
5017 if (flags & ZIO_FLAG_DELEGATED) {
5018 vsx->vsx_agg_histo[priority]
5019 [RQ_HISTO(zio->io_size)]++;
5020 } else {
5021 vsx->vsx_ind_histo[priority]
5022 [RQ_HISTO(zio->io_size)]++;
5023 }
5024
5025 if (zio->io_delta && zio->io_delay) {
5026 vsx->vsx_queue_histo[priority]
5027 [L_HISTO(zio->io_delta - zio->io_delay)]++;
5028 vsx->vsx_disk_histo[type]
5029 [L_HISTO(zio->io_delay)]++;
5030 vsx->vsx_total_histo[type]
5031 [L_HISTO(zio->io_delta)]++;
5032 }
5033 }
5034
5035 mutex_exit(&vd->vdev_stat_lock);
5036 return;
5037 }
5038
5039 if (flags & ZIO_FLAG_SPECULATIVE)
5040 return;
5041
5042 /*
5043 * If this is an I/O error that is going to be retried, then ignore the
5044 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
5045 * hard errors, when in reality they can happen for any number of
5046 * innocuous reasons (bus resets, MPxIO link failure, etc).
5047 */
5048 if (zio->io_error == EIO &&
5049 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
5050 return;
5051
5052 /*
5053 * Intent logs writes won't propagate their error to the root
5054 * I/O so don't mark these types of failures as pool-level
5055 * errors.
5056 */
5057 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
5058 return;
5059
5060 if (type == ZIO_TYPE_WRITE && txg != 0 &&
5061 (!(flags & ZIO_FLAG_IO_REPAIR) ||
5062 (flags & ZIO_FLAG_SCAN_THREAD) ||
5063 spa->spa_claiming)) {
5064 /*
5065 * This is either a normal write (not a repair), or it's
5066 * a repair induced by the scrub thread, or it's a repair
5067 * made by zil_claim() during spa_load() in the first txg.
5068 * In the normal case, we commit the DTL change in the same
5069 * txg as the block was born. In the scrub-induced repair
5070 * case, we know that scrubs run in first-pass syncing context,
5071 * so we commit the DTL change in spa_syncing_txg(spa).
5072 * In the zil_claim() case, we commit in spa_first_txg(spa).
5073 *
5074 * We currently do not make DTL entries for failed spontaneous
5075 * self-healing writes triggered by normal (non-scrubbing)
5076 * reads, because we have no transactional context in which to
5077 * do so -- and it's not clear that it'd be desirable anyway.
5078 */
5079 if (vd->vdev_ops->vdev_op_leaf) {
5080 uint64_t commit_txg = txg;
5081 if (flags & ZIO_FLAG_SCAN_THREAD) {
5082 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5083 ASSERT(spa_sync_pass(spa) == 1);
5084 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
5085 commit_txg = spa_syncing_txg(spa);
5086 } else if (spa->spa_claiming) {
5087 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5088 commit_txg = spa_first_txg(spa);
5089 }
5090 ASSERT(commit_txg >= spa_syncing_txg(spa));
5091 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
5092 return;
5093 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
5094 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
5095 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
5096 }
5097 if (vd != rvd)
5098 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
5099 }
5100 }
5101
5102 int64_t
vdev_deflated_space(vdev_t * vd,int64_t space)5103 vdev_deflated_space(vdev_t *vd, int64_t space)
5104 {
5105 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
5106 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
5107
5108 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
5109 }
5110
5111 /*
5112 * Update the in-core space usage stats for this vdev, its metaslab class,
5113 * and the root vdev.
5114 */
5115 void
vdev_space_update(vdev_t * vd,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta)5116 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
5117 int64_t space_delta)
5118 {
5119 (void) defer_delta;
5120 int64_t dspace_delta;
5121 spa_t *spa = vd->vdev_spa;
5122 vdev_t *rvd = spa->spa_root_vdev;
5123
5124 ASSERT(vd == vd->vdev_top);
5125
5126 /*
5127 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
5128 * factor. We must calculate this here and not at the root vdev
5129 * because the root vdev's psize-to-asize is simply the max of its
5130 * children's, thus not accurate enough for us.
5131 */
5132 dspace_delta = vdev_deflated_space(vd, space_delta);
5133
5134 mutex_enter(&vd->vdev_stat_lock);
5135 /* ensure we won't underflow */
5136 if (alloc_delta < 0) {
5137 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
5138 }
5139
5140 vd->vdev_stat.vs_alloc += alloc_delta;
5141 vd->vdev_stat.vs_space += space_delta;
5142 vd->vdev_stat.vs_dspace += dspace_delta;
5143 mutex_exit(&vd->vdev_stat_lock);
5144
5145 /* every class but log contributes to root space stats */
5146 if (vd->vdev_mg != NULL && !vd->vdev_islog) {
5147 ASSERT(!vd->vdev_isl2cache);
5148 mutex_enter(&rvd->vdev_stat_lock);
5149 rvd->vdev_stat.vs_alloc += alloc_delta;
5150 rvd->vdev_stat.vs_space += space_delta;
5151 rvd->vdev_stat.vs_dspace += dspace_delta;
5152 mutex_exit(&rvd->vdev_stat_lock);
5153 }
5154 /* Note: metaslab_class_space_update moved to metaslab_space_update */
5155 }
5156
5157 /*
5158 * Mark a top-level vdev's config as dirty, placing it on the dirty list
5159 * so that it will be written out next time the vdev configuration is synced.
5160 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
5161 */
5162 void
vdev_config_dirty(vdev_t * vd)5163 vdev_config_dirty(vdev_t *vd)
5164 {
5165 spa_t *spa = vd->vdev_spa;
5166 vdev_t *rvd = spa->spa_root_vdev;
5167 int c;
5168
5169 ASSERT(spa_writeable(spa));
5170
5171 /*
5172 * If this is an aux vdev (as with l2cache and spare devices), then we
5173 * update the vdev config manually and set the sync flag.
5174 */
5175 if (vd->vdev_aux != NULL) {
5176 spa_aux_vdev_t *sav = vd->vdev_aux;
5177 nvlist_t **aux;
5178 uint_t naux;
5179
5180 for (c = 0; c < sav->sav_count; c++) {
5181 if (sav->sav_vdevs[c] == vd)
5182 break;
5183 }
5184
5185 if (c == sav->sav_count) {
5186 /*
5187 * We're being removed. There's nothing more to do.
5188 */
5189 ASSERT(sav->sav_sync == B_TRUE);
5190 return;
5191 }
5192
5193 sav->sav_sync = B_TRUE;
5194
5195 if (nvlist_lookup_nvlist_array(sav->sav_config,
5196 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
5197 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
5198 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
5199 }
5200
5201 ASSERT(c < naux);
5202
5203 /*
5204 * Setting the nvlist in the middle if the array is a little
5205 * sketchy, but it will work.
5206 */
5207 nvlist_free(aux[c]);
5208 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
5209
5210 return;
5211 }
5212
5213 /*
5214 * The dirty list is protected by the SCL_CONFIG lock. The caller
5215 * must either hold SCL_CONFIG as writer, or must be the sync thread
5216 * (which holds SCL_CONFIG as reader). There's only one sync thread,
5217 * so this is sufficient to ensure mutual exclusion.
5218 */
5219 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5220 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5221 spa_config_held(spa, SCL_CONFIG, RW_READER)));
5222
5223 if (vd == rvd) {
5224 for (c = 0; c < rvd->vdev_children; c++)
5225 vdev_config_dirty(rvd->vdev_child[c]);
5226 } else {
5227 ASSERT(vd == vd->vdev_top);
5228
5229 if (!list_link_active(&vd->vdev_config_dirty_node) &&
5230 vdev_is_concrete(vd)) {
5231 list_insert_head(&spa->spa_config_dirty_list, vd);
5232 }
5233 }
5234 }
5235
5236 void
vdev_config_clean(vdev_t * vd)5237 vdev_config_clean(vdev_t *vd)
5238 {
5239 spa_t *spa = vd->vdev_spa;
5240
5241 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5242 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5243 spa_config_held(spa, SCL_CONFIG, RW_READER)));
5244
5245 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
5246 list_remove(&spa->spa_config_dirty_list, vd);
5247 }
5248
5249 /*
5250 * Mark a top-level vdev's state as dirty, so that the next pass of
5251 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
5252 * the state changes from larger config changes because they require
5253 * much less locking, and are often needed for administrative actions.
5254 */
5255 void
vdev_state_dirty(vdev_t * vd)5256 vdev_state_dirty(vdev_t *vd)
5257 {
5258 spa_t *spa = vd->vdev_spa;
5259
5260 ASSERT(spa_writeable(spa));
5261 ASSERT(vd == vd->vdev_top);
5262
5263 /*
5264 * The state list is protected by the SCL_STATE lock. The caller
5265 * must either hold SCL_STATE as writer, or must be the sync thread
5266 * (which holds SCL_STATE as reader). There's only one sync thread,
5267 * so this is sufficient to ensure mutual exclusion.
5268 */
5269 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5270 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5271 spa_config_held(spa, SCL_STATE, RW_READER)));
5272
5273 if (!list_link_active(&vd->vdev_state_dirty_node) &&
5274 vdev_is_concrete(vd))
5275 list_insert_head(&spa->spa_state_dirty_list, vd);
5276 }
5277
5278 void
vdev_state_clean(vdev_t * vd)5279 vdev_state_clean(vdev_t *vd)
5280 {
5281 spa_t *spa = vd->vdev_spa;
5282
5283 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5284 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5285 spa_config_held(spa, SCL_STATE, RW_READER)));
5286
5287 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
5288 list_remove(&spa->spa_state_dirty_list, vd);
5289 }
5290
5291 /*
5292 * Propagate vdev state up from children to parent.
5293 */
5294 void
vdev_propagate_state(vdev_t * vd)5295 vdev_propagate_state(vdev_t *vd)
5296 {
5297 spa_t *spa = vd->vdev_spa;
5298 vdev_t *rvd = spa->spa_root_vdev;
5299 int degraded = 0, faulted = 0;
5300 int corrupted = 0;
5301 vdev_t *child;
5302
5303 if (vd->vdev_children > 0) {
5304 for (int c = 0; c < vd->vdev_children; c++) {
5305 child = vd->vdev_child[c];
5306
5307 /*
5308 * Don't factor holes or indirect vdevs into the
5309 * decision.
5310 */
5311 if (!vdev_is_concrete(child))
5312 continue;
5313
5314 if (!vdev_readable(child) ||
5315 (!vdev_writeable(child) && spa_writeable(spa))) {
5316 /*
5317 * Root special: if there is a top-level log
5318 * device, treat the root vdev as if it were
5319 * degraded.
5320 */
5321 if (child->vdev_islog && vd == rvd)
5322 degraded++;
5323 else
5324 faulted++;
5325 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
5326 degraded++;
5327 }
5328
5329 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
5330 corrupted++;
5331 }
5332
5333 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
5334
5335 /*
5336 * Root special: if there is a top-level vdev that cannot be
5337 * opened due to corrupted metadata, then propagate the root
5338 * vdev's aux state as 'corrupt' rather than 'insufficient
5339 * replicas'.
5340 */
5341 if (corrupted && vd == rvd &&
5342 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
5343 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
5344 VDEV_AUX_CORRUPT_DATA);
5345 }
5346
5347 if (vd->vdev_parent)
5348 vdev_propagate_state(vd->vdev_parent);
5349 }
5350
5351 /*
5352 * Set a vdev's state. If this is during an open, we don't update the parent
5353 * state, because we're in the process of opening children depth-first.
5354 * Otherwise, we propagate the change to the parent.
5355 *
5356 * If this routine places a device in a faulted state, an appropriate ereport is
5357 * generated.
5358 */
5359 void
vdev_set_state(vdev_t * vd,boolean_t isopen,vdev_state_t state,vdev_aux_t aux)5360 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
5361 {
5362 uint64_t save_state;
5363 spa_t *spa = vd->vdev_spa;
5364
5365 if (state == vd->vdev_state) {
5366 /*
5367 * Since vdev_offline() code path is already in an offline
5368 * state we can miss a statechange event to OFFLINE. Check
5369 * the previous state to catch this condition.
5370 */
5371 if (vd->vdev_ops->vdev_op_leaf &&
5372 (state == VDEV_STATE_OFFLINE) &&
5373 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
5374 /* post an offline state change */
5375 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
5376 }
5377 vd->vdev_stat.vs_aux = aux;
5378 return;
5379 }
5380
5381 save_state = vd->vdev_state;
5382
5383 vd->vdev_state = state;
5384 vd->vdev_stat.vs_aux = aux;
5385
5386 /*
5387 * If we are setting the vdev state to anything but an open state, then
5388 * always close the underlying device unless the device has requested
5389 * a delayed close (i.e. we're about to remove or fault the device).
5390 * Otherwise, we keep accessible but invalid devices open forever.
5391 * We don't call vdev_close() itself, because that implies some extra
5392 * checks (offline, etc) that we don't want here. This is limited to
5393 * leaf devices, because otherwise closing the device will affect other
5394 * children.
5395 */
5396 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5397 vd->vdev_ops->vdev_op_leaf)
5398 vd->vdev_ops->vdev_op_close(vd);
5399
5400 if (vd->vdev_removed &&
5401 state == VDEV_STATE_CANT_OPEN &&
5402 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5403 /*
5404 * If the previous state is set to VDEV_STATE_REMOVED, then this
5405 * device was previously marked removed and someone attempted to
5406 * reopen it. If this failed due to a nonexistent device, then
5407 * keep the device in the REMOVED state. We also let this be if
5408 * it is one of our special test online cases, which is only
5409 * attempting to online the device and shouldn't generate an FMA
5410 * fault.
5411 */
5412 vd->vdev_state = VDEV_STATE_REMOVED;
5413 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5414 } else if (state == VDEV_STATE_REMOVED) {
5415 vd->vdev_removed = B_TRUE;
5416 } else if (state == VDEV_STATE_CANT_OPEN) {
5417 /*
5418 * If we fail to open a vdev during an import or recovery, we
5419 * mark it as "not available", which signifies that it was
5420 * never there to begin with. Failure to open such a device
5421 * is not considered an error.
5422 */
5423 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5424 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5425 vd->vdev_ops->vdev_op_leaf)
5426 vd->vdev_not_present = 1;
5427
5428 /*
5429 * Post the appropriate ereport. If the 'prevstate' field is
5430 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5431 * that this is part of a vdev_reopen(). In this case, we don't
5432 * want to post the ereport if the device was already in the
5433 * CANT_OPEN state beforehand.
5434 *
5435 * If the 'checkremove' flag is set, then this is an attempt to
5436 * online the device in response to an insertion event. If we
5437 * hit this case, then we have detected an insertion event for a
5438 * faulted or offline device that wasn't in the removed state.
5439 * In this scenario, we don't post an ereport because we are
5440 * about to replace the device, or attempt an online with
5441 * vdev_forcefault, which will generate the fault for us.
5442 */
5443 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5444 !vd->vdev_not_present && !vd->vdev_checkremove &&
5445 vd != spa->spa_root_vdev) {
5446 const char *class;
5447
5448 switch (aux) {
5449 case VDEV_AUX_OPEN_FAILED:
5450 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5451 break;
5452 case VDEV_AUX_CORRUPT_DATA:
5453 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5454 break;
5455 case VDEV_AUX_NO_REPLICAS:
5456 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5457 break;
5458 case VDEV_AUX_BAD_GUID_SUM:
5459 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5460 break;
5461 case VDEV_AUX_TOO_SMALL:
5462 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5463 break;
5464 case VDEV_AUX_BAD_LABEL:
5465 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5466 break;
5467 case VDEV_AUX_BAD_ASHIFT:
5468 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5469 break;
5470 default:
5471 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5472 }
5473
5474 (void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5475 save_state);
5476 }
5477
5478 /* Erase any notion of persistent removed state */
5479 vd->vdev_removed = B_FALSE;
5480 } else {
5481 vd->vdev_removed = B_FALSE;
5482 }
5483
5484 /*
5485 * Notify ZED of any significant state-change on a leaf vdev.
5486 *
5487 */
5488 if (vd->vdev_ops->vdev_op_leaf) {
5489 /* preserve original state from a vdev_reopen() */
5490 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5491 (vd->vdev_prevstate != vd->vdev_state) &&
5492 (save_state <= VDEV_STATE_CLOSED))
5493 save_state = vd->vdev_prevstate;
5494
5495 /* filter out state change due to initial vdev_open */
5496 if (save_state > VDEV_STATE_CLOSED)
5497 zfs_post_state_change(spa, vd, save_state);
5498 }
5499
5500 if (!isopen && vd->vdev_parent)
5501 vdev_propagate_state(vd->vdev_parent);
5502 }
5503
5504 boolean_t
vdev_children_are_offline(vdev_t * vd)5505 vdev_children_are_offline(vdev_t *vd)
5506 {
5507 ASSERT(!vd->vdev_ops->vdev_op_leaf);
5508
5509 for (uint64_t i = 0; i < vd->vdev_children; i++) {
5510 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5511 return (B_FALSE);
5512 }
5513
5514 return (B_TRUE);
5515 }
5516
5517 /*
5518 * Check the vdev configuration to ensure that it's capable of supporting
5519 * a root pool. We do not support partial configuration.
5520 */
5521 boolean_t
vdev_is_bootable(vdev_t * vd)5522 vdev_is_bootable(vdev_t *vd)
5523 {
5524 if (!vd->vdev_ops->vdev_op_leaf) {
5525 const char *vdev_type = vd->vdev_ops->vdev_op_type;
5526
5527 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5528 return (B_FALSE);
5529 }
5530
5531 for (int c = 0; c < vd->vdev_children; c++) {
5532 if (!vdev_is_bootable(vd->vdev_child[c]))
5533 return (B_FALSE);
5534 }
5535 return (B_TRUE);
5536 }
5537
5538 boolean_t
vdev_is_concrete(vdev_t * vd)5539 vdev_is_concrete(vdev_t *vd)
5540 {
5541 vdev_ops_t *ops = vd->vdev_ops;
5542 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5543 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5544 return (B_FALSE);
5545 } else {
5546 return (B_TRUE);
5547 }
5548 }
5549
5550 /*
5551 * Determine if a log device has valid content. If the vdev was
5552 * removed or faulted in the MOS config then we know that
5553 * the content on the log device has already been written to the pool.
5554 */
5555 boolean_t
vdev_log_state_valid(vdev_t * vd)5556 vdev_log_state_valid(vdev_t *vd)
5557 {
5558 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5559 !vd->vdev_removed)
5560 return (B_TRUE);
5561
5562 for (int c = 0; c < vd->vdev_children; c++)
5563 if (vdev_log_state_valid(vd->vdev_child[c]))
5564 return (B_TRUE);
5565
5566 return (B_FALSE);
5567 }
5568
5569 /*
5570 * Expand a vdev if possible.
5571 */
5572 void
vdev_expand(vdev_t * vd,uint64_t txg)5573 vdev_expand(vdev_t *vd, uint64_t txg)
5574 {
5575 ASSERT(vd->vdev_top == vd);
5576 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5577 ASSERT(vdev_is_concrete(vd));
5578
5579 vdev_set_deflate_ratio(vd);
5580
5581 if ((vd->vdev_spa->spa_raidz_expand == NULL ||
5582 vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) &&
5583 (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5584 vdev_is_concrete(vd)) {
5585 vdev_metaslab_group_create(vd);
5586 VERIFY(vdev_metaslab_init(vd, txg) == 0);
5587 vdev_config_dirty(vd);
5588 }
5589 }
5590
5591 /*
5592 * Split a vdev.
5593 */
5594 void
vdev_split(vdev_t * vd)5595 vdev_split(vdev_t *vd)
5596 {
5597 vdev_t *cvd, *pvd = vd->vdev_parent;
5598
5599 VERIFY3U(pvd->vdev_children, >, 1);
5600
5601 vdev_remove_child(pvd, vd);
5602 vdev_compact_children(pvd);
5603
5604 ASSERT3P(pvd->vdev_child, !=, NULL);
5605
5606 cvd = pvd->vdev_child[0];
5607 if (pvd->vdev_children == 1) {
5608 vdev_remove_parent(cvd);
5609 cvd->vdev_splitting = B_TRUE;
5610 }
5611 vdev_propagate_state(cvd);
5612 }
5613
5614 void
vdev_deadman(vdev_t * vd,const char * tag)5615 vdev_deadman(vdev_t *vd, const char *tag)
5616 {
5617 for (int c = 0; c < vd->vdev_children; c++) {
5618 vdev_t *cvd = vd->vdev_child[c];
5619
5620 vdev_deadman(cvd, tag);
5621 }
5622
5623 if (vd->vdev_ops->vdev_op_leaf) {
5624 vdev_queue_t *vq = &vd->vdev_queue;
5625
5626 mutex_enter(&vq->vq_lock);
5627 if (vq->vq_active > 0) {
5628 spa_t *spa = vd->vdev_spa;
5629 zio_t *fio;
5630 uint64_t delta;
5631
5632 zfs_dbgmsg("slow vdev: %s has %u active IOs",
5633 vd->vdev_path, vq->vq_active);
5634
5635 /*
5636 * Look at the head of all the pending queues,
5637 * if any I/O has been outstanding for longer than
5638 * the spa_deadman_synctime invoke the deadman logic.
5639 */
5640 fio = list_head(&vq->vq_active_list);
5641 delta = gethrtime() - fio->io_timestamp;
5642 if (delta > spa_deadman_synctime(spa))
5643 zio_deadman(fio, tag);
5644 }
5645 mutex_exit(&vq->vq_lock);
5646 }
5647 }
5648
5649 void
vdev_defer_resilver(vdev_t * vd)5650 vdev_defer_resilver(vdev_t *vd)
5651 {
5652 ASSERT(vd->vdev_ops->vdev_op_leaf);
5653
5654 vd->vdev_resilver_deferred = B_TRUE;
5655 vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5656 }
5657
5658 /*
5659 * Clears the resilver deferred flag on all leaf devs under vd. Returns
5660 * B_TRUE if we have devices that need to be resilvered and are available to
5661 * accept resilver I/Os.
5662 */
5663 boolean_t
vdev_clear_resilver_deferred(vdev_t * vd,dmu_tx_t * tx)5664 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5665 {
5666 boolean_t resilver_needed = B_FALSE;
5667 spa_t *spa = vd->vdev_spa;
5668
5669 for (int c = 0; c < vd->vdev_children; c++) {
5670 vdev_t *cvd = vd->vdev_child[c];
5671 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5672 }
5673
5674 if (vd == spa->spa_root_vdev &&
5675 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5676 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5677 vdev_config_dirty(vd);
5678 spa->spa_resilver_deferred = B_FALSE;
5679 return (resilver_needed);
5680 }
5681
5682 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5683 !vd->vdev_ops->vdev_op_leaf)
5684 return (resilver_needed);
5685
5686 vd->vdev_resilver_deferred = B_FALSE;
5687
5688 return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5689 vdev_resilver_needed(vd, NULL, NULL));
5690 }
5691
5692 boolean_t
vdev_xlate_is_empty(zfs_range_seg64_t * rs)5693 vdev_xlate_is_empty(zfs_range_seg64_t *rs)
5694 {
5695 return (rs->rs_start == rs->rs_end);
5696 }
5697
5698 /*
5699 * Translate a logical range to the first contiguous physical range for the
5700 * specified vdev_t. This function is initially called with a leaf vdev and
5701 * will walk each parent vdev until it reaches a top-level vdev. Once the
5702 * top-level is reached the physical range is initialized and the recursive
5703 * function begins to unwind. As it unwinds it calls the parent's vdev
5704 * specific translation function to do the real conversion.
5705 */
5706 void
vdev_xlate(vdev_t * vd,const zfs_range_seg64_t * logical_rs,zfs_range_seg64_t * physical_rs,zfs_range_seg64_t * remain_rs)5707 vdev_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
5708 zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
5709 {
5710 /*
5711 * Walk up the vdev tree
5712 */
5713 if (vd != vd->vdev_top) {
5714 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5715 remain_rs);
5716 } else {
5717 /*
5718 * We've reached the top-level vdev, initialize the physical
5719 * range to the logical range and set an empty remaining
5720 * range then start to unwind.
5721 */
5722 physical_rs->rs_start = logical_rs->rs_start;
5723 physical_rs->rs_end = logical_rs->rs_end;
5724
5725 remain_rs->rs_start = logical_rs->rs_start;
5726 remain_rs->rs_end = logical_rs->rs_start;
5727
5728 return;
5729 }
5730
5731 vdev_t *pvd = vd->vdev_parent;
5732 ASSERT3P(pvd, !=, NULL);
5733 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5734
5735 /*
5736 * As this recursive function unwinds, translate the logical
5737 * range into its physical and any remaining components by calling
5738 * the vdev specific translate function.
5739 */
5740 zfs_range_seg64_t intermediate = { 0 };
5741 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5742
5743 physical_rs->rs_start = intermediate.rs_start;
5744 physical_rs->rs_end = intermediate.rs_end;
5745 }
5746
5747 void
vdev_xlate_walk(vdev_t * vd,const zfs_range_seg64_t * logical_rs,vdev_xlate_func_t * func,void * arg)5748 vdev_xlate_walk(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
5749 vdev_xlate_func_t *func, void *arg)
5750 {
5751 zfs_range_seg64_t iter_rs = *logical_rs;
5752 zfs_range_seg64_t physical_rs;
5753 zfs_range_seg64_t remain_rs;
5754
5755 while (!vdev_xlate_is_empty(&iter_rs)) {
5756
5757 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5758
5759 /*
5760 * With raidz and dRAID, it's possible that the logical range
5761 * does not live on this leaf vdev. Only when there is a non-
5762 * zero physical size call the provided function.
5763 */
5764 if (!vdev_xlate_is_empty(&physical_rs))
5765 func(arg, &physical_rs);
5766
5767 iter_rs = remain_rs;
5768 }
5769 }
5770
5771 static char *
vdev_name(vdev_t * vd,char * buf,int buflen)5772 vdev_name(vdev_t *vd, char *buf, int buflen)
5773 {
5774 if (vd->vdev_path == NULL) {
5775 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
5776 strlcpy(buf, vd->vdev_spa->spa_name, buflen);
5777 } else if (!vd->vdev_ops->vdev_op_leaf) {
5778 snprintf(buf, buflen, "%s-%llu",
5779 vd->vdev_ops->vdev_op_type,
5780 (u_longlong_t)vd->vdev_id);
5781 }
5782 } else {
5783 strlcpy(buf, vd->vdev_path, buflen);
5784 }
5785 return (buf);
5786 }
5787
5788 /*
5789 * Look at the vdev tree and determine whether any devices are currently being
5790 * replaced.
5791 */
5792 boolean_t
vdev_replace_in_progress(vdev_t * vdev)5793 vdev_replace_in_progress(vdev_t *vdev)
5794 {
5795 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5796
5797 if (vdev->vdev_ops == &vdev_replacing_ops)
5798 return (B_TRUE);
5799
5800 /*
5801 * A 'spare' vdev indicates that we have a replace in progress, unless
5802 * it has exactly two children, and the second, the hot spare, has
5803 * finished being resilvered.
5804 */
5805 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5806 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5807 return (B_TRUE);
5808
5809 for (int i = 0; i < vdev->vdev_children; i++) {
5810 if (vdev_replace_in_progress(vdev->vdev_child[i]))
5811 return (B_TRUE);
5812 }
5813
5814 return (B_FALSE);
5815 }
5816
5817 /*
5818 * Add a (source=src, propname=propval) list to an nvlist.
5819 */
5820 static void
vdev_prop_add_list(nvlist_t * nvl,const char * propname,const char * strval,uint64_t intval,zprop_source_t src)5821 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval,
5822 uint64_t intval, zprop_source_t src)
5823 {
5824 nvlist_t *propval;
5825
5826 propval = fnvlist_alloc();
5827 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
5828
5829 if (strval != NULL)
5830 fnvlist_add_string(propval, ZPROP_VALUE, strval);
5831 else
5832 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
5833
5834 fnvlist_add_nvlist(nvl, propname, propval);
5835 nvlist_free(propval);
5836 }
5837
5838 static void
vdev_props_set_sync(void * arg,dmu_tx_t * tx)5839 vdev_props_set_sync(void *arg, dmu_tx_t *tx)
5840 {
5841 vdev_t *vd;
5842 nvlist_t *nvp = arg;
5843 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5844 objset_t *mos = spa->spa_meta_objset;
5845 nvpair_t *elem = NULL;
5846 uint64_t vdev_guid;
5847 uint64_t objid;
5848 nvlist_t *nvprops;
5849
5850 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
5851 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
5852 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
5853
5854 /* this vdev could get removed while waiting for this sync task */
5855 if (vd == NULL)
5856 return;
5857
5858 /*
5859 * Set vdev property values in the vdev props mos object.
5860 */
5861 if (vd->vdev_root_zap != 0) {
5862 objid = vd->vdev_root_zap;
5863 } else if (vd->vdev_top_zap != 0) {
5864 objid = vd->vdev_top_zap;
5865 } else if (vd->vdev_leaf_zap != 0) {
5866 objid = vd->vdev_leaf_zap;
5867 } else {
5868 panic("unexpected vdev type");
5869 }
5870
5871 mutex_enter(&spa->spa_props_lock);
5872
5873 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5874 uint64_t intval;
5875 const char *strval;
5876 vdev_prop_t prop;
5877 const char *propname = nvpair_name(elem);
5878 zprop_type_t proptype;
5879
5880 switch (prop = vdev_name_to_prop(propname)) {
5881 case VDEV_PROP_USERPROP:
5882 if (vdev_prop_user(propname)) {
5883 strval = fnvpair_value_string(elem);
5884 if (strlen(strval) == 0) {
5885 /* remove the property if value == "" */
5886 (void) zap_remove(mos, objid, propname,
5887 tx);
5888 } else {
5889 VERIFY0(zap_update(mos, objid, propname,
5890 1, strlen(strval) + 1, strval, tx));
5891 }
5892 spa_history_log_internal(spa, "vdev set", tx,
5893 "vdev_guid=%llu: %s=%s",
5894 (u_longlong_t)vdev_guid, nvpair_name(elem),
5895 strval);
5896 }
5897 break;
5898 default:
5899 /* normalize the property name */
5900 propname = vdev_prop_to_name(prop);
5901 proptype = vdev_prop_get_type(prop);
5902
5903 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5904 ASSERT(proptype == PROP_TYPE_STRING);
5905 strval = fnvpair_value_string(elem);
5906 VERIFY0(zap_update(mos, objid, propname,
5907 1, strlen(strval) + 1, strval, tx));
5908 spa_history_log_internal(spa, "vdev set", tx,
5909 "vdev_guid=%llu: %s=%s",
5910 (u_longlong_t)vdev_guid, nvpair_name(elem),
5911 strval);
5912 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5913 intval = fnvpair_value_uint64(elem);
5914
5915 if (proptype == PROP_TYPE_INDEX) {
5916 const char *unused;
5917 VERIFY0(vdev_prop_index_to_string(
5918 prop, intval, &unused));
5919 }
5920 VERIFY0(zap_update(mos, objid, propname,
5921 sizeof (uint64_t), 1, &intval, tx));
5922 spa_history_log_internal(spa, "vdev set", tx,
5923 "vdev_guid=%llu: %s=%lld",
5924 (u_longlong_t)vdev_guid,
5925 nvpair_name(elem), (longlong_t)intval);
5926 } else {
5927 panic("invalid vdev property type %u",
5928 nvpair_type(elem));
5929 }
5930 }
5931
5932 }
5933
5934 mutex_exit(&spa->spa_props_lock);
5935 }
5936
5937 int
vdev_prop_set(vdev_t * vd,nvlist_t * innvl,nvlist_t * outnvl)5938 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5939 {
5940 spa_t *spa = vd->vdev_spa;
5941 nvpair_t *elem = NULL;
5942 uint64_t vdev_guid;
5943 nvlist_t *nvprops;
5944 int error = 0;
5945
5946 ASSERT(vd != NULL);
5947
5948 /* Check that vdev has a zap we can use */
5949 if (vd->vdev_root_zap == 0 &&
5950 vd->vdev_top_zap == 0 &&
5951 vd->vdev_leaf_zap == 0)
5952 return (SET_ERROR(EINVAL));
5953
5954 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
5955 &vdev_guid) != 0)
5956 return (SET_ERROR(EINVAL));
5957
5958 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
5959 &nvprops) != 0)
5960 return (SET_ERROR(EINVAL));
5961
5962 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
5963 return (SET_ERROR(EINVAL));
5964
5965 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5966 const char *propname = nvpair_name(elem);
5967 vdev_prop_t prop = vdev_name_to_prop(propname);
5968 uint64_t intval = 0;
5969 const char *strval = NULL;
5970
5971 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
5972 error = EINVAL;
5973 goto end;
5974 }
5975
5976 if (prop != VDEV_PROP_USERPROP && vdev_prop_readonly(prop)) {
5977 error = EROFS;
5978 goto end;
5979 }
5980
5981 /* Special Processing */
5982 switch (prop) {
5983 case VDEV_PROP_PATH:
5984 if (vd->vdev_path == NULL) {
5985 error = EROFS;
5986 break;
5987 }
5988 if (nvpair_value_string(elem, &strval) != 0) {
5989 error = EINVAL;
5990 break;
5991 }
5992 /* New path must start with /dev/ */
5993 if (strncmp(strval, "/dev/", 5)) {
5994 error = EINVAL;
5995 break;
5996 }
5997 error = spa_vdev_setpath(spa, vdev_guid, strval);
5998 break;
5999 case VDEV_PROP_ALLOCATING:
6000 if (nvpair_value_uint64(elem, &intval) != 0) {
6001 error = EINVAL;
6002 break;
6003 }
6004 if (intval != vd->vdev_noalloc)
6005 break;
6006 if (intval == 0)
6007 error = spa_vdev_noalloc(spa, vdev_guid);
6008 else
6009 error = spa_vdev_alloc(spa, vdev_guid);
6010 break;
6011 case VDEV_PROP_FAILFAST:
6012 if (nvpair_value_uint64(elem, &intval) != 0) {
6013 error = EINVAL;
6014 break;
6015 }
6016 vd->vdev_failfast = intval & 1;
6017 break;
6018 case VDEV_PROP_CHECKSUM_N:
6019 if (nvpair_value_uint64(elem, &intval) != 0) {
6020 error = EINVAL;
6021 break;
6022 }
6023 vd->vdev_checksum_n = intval;
6024 break;
6025 case VDEV_PROP_CHECKSUM_T:
6026 if (nvpair_value_uint64(elem, &intval) != 0) {
6027 error = EINVAL;
6028 break;
6029 }
6030 vd->vdev_checksum_t = intval;
6031 break;
6032 case VDEV_PROP_IO_N:
6033 if (nvpair_value_uint64(elem, &intval) != 0) {
6034 error = EINVAL;
6035 break;
6036 }
6037 vd->vdev_io_n = intval;
6038 break;
6039 case VDEV_PROP_IO_T:
6040 if (nvpair_value_uint64(elem, &intval) != 0) {
6041 error = EINVAL;
6042 break;
6043 }
6044 vd->vdev_io_t = intval;
6045 break;
6046 case VDEV_PROP_SLOW_IO_N:
6047 if (nvpair_value_uint64(elem, &intval) != 0) {
6048 error = EINVAL;
6049 break;
6050 }
6051 vd->vdev_slow_io_n = intval;
6052 break;
6053 case VDEV_PROP_SLOW_IO_T:
6054 if (nvpair_value_uint64(elem, &intval) != 0) {
6055 error = EINVAL;
6056 break;
6057 }
6058 vd->vdev_slow_io_t = intval;
6059 break;
6060 default:
6061 /* Most processing is done in vdev_props_set_sync */
6062 break;
6063 }
6064 end:
6065 if (error != 0) {
6066 intval = error;
6067 vdev_prop_add_list(outnvl, propname, strval, intval, 0);
6068 return (error);
6069 }
6070 }
6071
6072 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
6073 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
6074 }
6075
6076 int
vdev_prop_get(vdev_t * vd,nvlist_t * innvl,nvlist_t * outnvl)6077 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
6078 {
6079 spa_t *spa = vd->vdev_spa;
6080 objset_t *mos = spa->spa_meta_objset;
6081 int err = 0;
6082 uint64_t objid;
6083 uint64_t vdev_guid;
6084 nvpair_t *elem = NULL;
6085 nvlist_t *nvprops = NULL;
6086 uint64_t intval = 0;
6087 char *strval = NULL;
6088 const char *propname = NULL;
6089 vdev_prop_t prop;
6090
6091 ASSERT(vd != NULL);
6092 ASSERT(mos != NULL);
6093
6094 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
6095 &vdev_guid) != 0)
6096 return (SET_ERROR(EINVAL));
6097
6098 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
6099
6100 if (vd->vdev_root_zap != 0) {
6101 objid = vd->vdev_root_zap;
6102 } else if (vd->vdev_top_zap != 0) {
6103 objid = vd->vdev_top_zap;
6104 } else if (vd->vdev_leaf_zap != 0) {
6105 objid = vd->vdev_leaf_zap;
6106 } else {
6107 return (SET_ERROR(EINVAL));
6108 }
6109 ASSERT(objid != 0);
6110
6111 mutex_enter(&spa->spa_props_lock);
6112
6113 if (nvprops != NULL) {
6114 char namebuf[64] = { 0 };
6115
6116 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6117 intval = 0;
6118 strval = NULL;
6119 propname = nvpair_name(elem);
6120 prop = vdev_name_to_prop(propname);
6121 zprop_source_t src = ZPROP_SRC_DEFAULT;
6122 uint64_t integer_size, num_integers;
6123
6124 switch (prop) {
6125 /* Special Read-only Properties */
6126 case VDEV_PROP_NAME:
6127 strval = vdev_name(vd, namebuf,
6128 sizeof (namebuf));
6129 if (strval == NULL)
6130 continue;
6131 vdev_prop_add_list(outnvl, propname, strval, 0,
6132 ZPROP_SRC_NONE);
6133 continue;
6134 case VDEV_PROP_CAPACITY:
6135 /* percent used */
6136 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
6137 (vd->vdev_stat.vs_alloc * 100 /
6138 vd->vdev_stat.vs_dspace);
6139 vdev_prop_add_list(outnvl, propname, NULL,
6140 intval, ZPROP_SRC_NONE);
6141 continue;
6142 case VDEV_PROP_STATE:
6143 vdev_prop_add_list(outnvl, propname, NULL,
6144 vd->vdev_state, ZPROP_SRC_NONE);
6145 continue;
6146 case VDEV_PROP_GUID:
6147 vdev_prop_add_list(outnvl, propname, NULL,
6148 vd->vdev_guid, ZPROP_SRC_NONE);
6149 continue;
6150 case VDEV_PROP_ASIZE:
6151 vdev_prop_add_list(outnvl, propname, NULL,
6152 vd->vdev_asize, ZPROP_SRC_NONE);
6153 continue;
6154 case VDEV_PROP_PSIZE:
6155 vdev_prop_add_list(outnvl, propname, NULL,
6156 vd->vdev_psize, ZPROP_SRC_NONE);
6157 continue;
6158 case VDEV_PROP_ASHIFT:
6159 vdev_prop_add_list(outnvl, propname, NULL,
6160 vd->vdev_ashift, ZPROP_SRC_NONE);
6161 continue;
6162 case VDEV_PROP_SIZE:
6163 vdev_prop_add_list(outnvl, propname, NULL,
6164 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
6165 continue;
6166 case VDEV_PROP_FREE:
6167 vdev_prop_add_list(outnvl, propname, NULL,
6168 vd->vdev_stat.vs_dspace -
6169 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6170 continue;
6171 case VDEV_PROP_ALLOCATED:
6172 vdev_prop_add_list(outnvl, propname, NULL,
6173 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6174 continue;
6175 case VDEV_PROP_EXPANDSZ:
6176 vdev_prop_add_list(outnvl, propname, NULL,
6177 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
6178 continue;
6179 case VDEV_PROP_FRAGMENTATION:
6180 vdev_prop_add_list(outnvl, propname, NULL,
6181 vd->vdev_stat.vs_fragmentation,
6182 ZPROP_SRC_NONE);
6183 continue;
6184 case VDEV_PROP_PARITY:
6185 vdev_prop_add_list(outnvl, propname, NULL,
6186 vdev_get_nparity(vd), ZPROP_SRC_NONE);
6187 continue;
6188 case VDEV_PROP_PATH:
6189 if (vd->vdev_path == NULL)
6190 continue;
6191 vdev_prop_add_list(outnvl, propname,
6192 vd->vdev_path, 0, ZPROP_SRC_NONE);
6193 continue;
6194 case VDEV_PROP_DEVID:
6195 if (vd->vdev_devid == NULL)
6196 continue;
6197 vdev_prop_add_list(outnvl, propname,
6198 vd->vdev_devid, 0, ZPROP_SRC_NONE);
6199 continue;
6200 case VDEV_PROP_PHYS_PATH:
6201 if (vd->vdev_physpath == NULL)
6202 continue;
6203 vdev_prop_add_list(outnvl, propname,
6204 vd->vdev_physpath, 0, ZPROP_SRC_NONE);
6205 continue;
6206 case VDEV_PROP_ENC_PATH:
6207 if (vd->vdev_enc_sysfs_path == NULL)
6208 continue;
6209 vdev_prop_add_list(outnvl, propname,
6210 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
6211 continue;
6212 case VDEV_PROP_FRU:
6213 if (vd->vdev_fru == NULL)
6214 continue;
6215 vdev_prop_add_list(outnvl, propname,
6216 vd->vdev_fru, 0, ZPROP_SRC_NONE);
6217 continue;
6218 case VDEV_PROP_PARENT:
6219 if (vd->vdev_parent != NULL) {
6220 strval = vdev_name(vd->vdev_parent,
6221 namebuf, sizeof (namebuf));
6222 vdev_prop_add_list(outnvl, propname,
6223 strval, 0, ZPROP_SRC_NONE);
6224 }
6225 continue;
6226 case VDEV_PROP_CHILDREN:
6227 if (vd->vdev_children > 0)
6228 strval = kmem_zalloc(ZAP_MAXVALUELEN,
6229 KM_SLEEP);
6230 for (uint64_t i = 0; i < vd->vdev_children;
6231 i++) {
6232 const char *vname;
6233
6234 vname = vdev_name(vd->vdev_child[i],
6235 namebuf, sizeof (namebuf));
6236 if (vname == NULL)
6237 vname = "(unknown)";
6238 if (strlen(strval) > 0)
6239 strlcat(strval, ",",
6240 ZAP_MAXVALUELEN);
6241 strlcat(strval, vname, ZAP_MAXVALUELEN);
6242 }
6243 if (strval != NULL) {
6244 vdev_prop_add_list(outnvl, propname,
6245 strval, 0, ZPROP_SRC_NONE);
6246 kmem_free(strval, ZAP_MAXVALUELEN);
6247 }
6248 continue;
6249 case VDEV_PROP_NUMCHILDREN:
6250 vdev_prop_add_list(outnvl, propname, NULL,
6251 vd->vdev_children, ZPROP_SRC_NONE);
6252 continue;
6253 case VDEV_PROP_READ_ERRORS:
6254 vdev_prop_add_list(outnvl, propname, NULL,
6255 vd->vdev_stat.vs_read_errors,
6256 ZPROP_SRC_NONE);
6257 continue;
6258 case VDEV_PROP_WRITE_ERRORS:
6259 vdev_prop_add_list(outnvl, propname, NULL,
6260 vd->vdev_stat.vs_write_errors,
6261 ZPROP_SRC_NONE);
6262 continue;
6263 case VDEV_PROP_CHECKSUM_ERRORS:
6264 vdev_prop_add_list(outnvl, propname, NULL,
6265 vd->vdev_stat.vs_checksum_errors,
6266 ZPROP_SRC_NONE);
6267 continue;
6268 case VDEV_PROP_INITIALIZE_ERRORS:
6269 vdev_prop_add_list(outnvl, propname, NULL,
6270 vd->vdev_stat.vs_initialize_errors,
6271 ZPROP_SRC_NONE);
6272 continue;
6273 case VDEV_PROP_TRIM_ERRORS:
6274 vdev_prop_add_list(outnvl, propname, NULL,
6275 vd->vdev_stat.vs_trim_errors,
6276 ZPROP_SRC_NONE);
6277 continue;
6278 case VDEV_PROP_SLOW_IOS:
6279 vdev_prop_add_list(outnvl, propname, NULL,
6280 vd->vdev_stat.vs_slow_ios,
6281 ZPROP_SRC_NONE);
6282 continue;
6283 case VDEV_PROP_OPS_NULL:
6284 vdev_prop_add_list(outnvl, propname, NULL,
6285 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
6286 ZPROP_SRC_NONE);
6287 continue;
6288 case VDEV_PROP_OPS_READ:
6289 vdev_prop_add_list(outnvl, propname, NULL,
6290 vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
6291 ZPROP_SRC_NONE);
6292 continue;
6293 case VDEV_PROP_OPS_WRITE:
6294 vdev_prop_add_list(outnvl, propname, NULL,
6295 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
6296 ZPROP_SRC_NONE);
6297 continue;
6298 case VDEV_PROP_OPS_FREE:
6299 vdev_prop_add_list(outnvl, propname, NULL,
6300 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
6301 ZPROP_SRC_NONE);
6302 continue;
6303 case VDEV_PROP_OPS_CLAIM:
6304 vdev_prop_add_list(outnvl, propname, NULL,
6305 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
6306 ZPROP_SRC_NONE);
6307 continue;
6308 case VDEV_PROP_OPS_TRIM:
6309 /*
6310 * TRIM ops and bytes are reported to user
6311 * space as ZIO_TYPE_FLUSH. This is done to
6312 * preserve the vdev_stat_t structure layout
6313 * for user space.
6314 */
6315 vdev_prop_add_list(outnvl, propname, NULL,
6316 vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH],
6317 ZPROP_SRC_NONE);
6318 continue;
6319 case VDEV_PROP_BYTES_NULL:
6320 vdev_prop_add_list(outnvl, propname, NULL,
6321 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
6322 ZPROP_SRC_NONE);
6323 continue;
6324 case VDEV_PROP_BYTES_READ:
6325 vdev_prop_add_list(outnvl, propname, NULL,
6326 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
6327 ZPROP_SRC_NONE);
6328 continue;
6329 case VDEV_PROP_BYTES_WRITE:
6330 vdev_prop_add_list(outnvl, propname, NULL,
6331 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
6332 ZPROP_SRC_NONE);
6333 continue;
6334 case VDEV_PROP_BYTES_FREE:
6335 vdev_prop_add_list(outnvl, propname, NULL,
6336 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
6337 ZPROP_SRC_NONE);
6338 continue;
6339 case VDEV_PROP_BYTES_CLAIM:
6340 vdev_prop_add_list(outnvl, propname, NULL,
6341 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
6342 ZPROP_SRC_NONE);
6343 continue;
6344 case VDEV_PROP_BYTES_TRIM:
6345 /*
6346 * TRIM ops and bytes are reported to user
6347 * space as ZIO_TYPE_FLUSH. This is done to
6348 * preserve the vdev_stat_t structure layout
6349 * for user space.
6350 */
6351 vdev_prop_add_list(outnvl, propname, NULL,
6352 vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH],
6353 ZPROP_SRC_NONE);
6354 continue;
6355 case VDEV_PROP_REMOVING:
6356 vdev_prop_add_list(outnvl, propname, NULL,
6357 vd->vdev_removing, ZPROP_SRC_NONE);
6358 continue;
6359 case VDEV_PROP_RAIDZ_EXPANDING:
6360 /* Only expose this for raidz */
6361 if (vd->vdev_ops == &vdev_raidz_ops) {
6362 vdev_prop_add_list(outnvl, propname,
6363 NULL, vd->vdev_rz_expanding,
6364 ZPROP_SRC_NONE);
6365 }
6366 continue;
6367 case VDEV_PROP_TRIM_SUPPORT:
6368 /* only valid for leaf vdevs */
6369 if (vd->vdev_ops->vdev_op_leaf) {
6370 vdev_prop_add_list(outnvl, propname,
6371 NULL, vd->vdev_has_trim,
6372 ZPROP_SRC_NONE);
6373 }
6374 continue;
6375 /* Numeric Properites */
6376 case VDEV_PROP_ALLOCATING:
6377 /* Leaf vdevs cannot have this property */
6378 if (vd->vdev_mg == NULL &&
6379 vd->vdev_top != NULL) {
6380 src = ZPROP_SRC_NONE;
6381 intval = ZPROP_BOOLEAN_NA;
6382 } else {
6383 err = vdev_prop_get_int(vd, prop,
6384 &intval);
6385 if (err && err != ENOENT)
6386 break;
6387
6388 if (intval ==
6389 vdev_prop_default_numeric(prop))
6390 src = ZPROP_SRC_DEFAULT;
6391 else
6392 src = ZPROP_SRC_LOCAL;
6393 }
6394
6395 vdev_prop_add_list(outnvl, propname, NULL,
6396 intval, src);
6397 break;
6398 case VDEV_PROP_FAILFAST:
6399 src = ZPROP_SRC_LOCAL;
6400 strval = NULL;
6401
6402 err = zap_lookup(mos, objid, nvpair_name(elem),
6403 sizeof (uint64_t), 1, &intval);
6404 if (err == ENOENT) {
6405 intval = vdev_prop_default_numeric(
6406 prop);
6407 err = 0;
6408 } else if (err) {
6409 break;
6410 }
6411 if (intval == vdev_prop_default_numeric(prop))
6412 src = ZPROP_SRC_DEFAULT;
6413
6414 vdev_prop_add_list(outnvl, propname, strval,
6415 intval, src);
6416 break;
6417 case VDEV_PROP_CHECKSUM_N:
6418 case VDEV_PROP_CHECKSUM_T:
6419 case VDEV_PROP_IO_N:
6420 case VDEV_PROP_IO_T:
6421 case VDEV_PROP_SLOW_IO_N:
6422 case VDEV_PROP_SLOW_IO_T:
6423 err = vdev_prop_get_int(vd, prop, &intval);
6424 if (err && err != ENOENT)
6425 break;
6426
6427 if (intval == vdev_prop_default_numeric(prop))
6428 src = ZPROP_SRC_DEFAULT;
6429 else
6430 src = ZPROP_SRC_LOCAL;
6431
6432 vdev_prop_add_list(outnvl, propname, NULL,
6433 intval, src);
6434 break;
6435 /* Text Properties */
6436 case VDEV_PROP_COMMENT:
6437 /* Exists in the ZAP below */
6438 /* FALLTHRU */
6439 case VDEV_PROP_USERPROP:
6440 /* User Properites */
6441 src = ZPROP_SRC_LOCAL;
6442
6443 err = zap_length(mos, objid, nvpair_name(elem),
6444 &integer_size, &num_integers);
6445 if (err)
6446 break;
6447
6448 switch (integer_size) {
6449 case 8:
6450 /* User properties cannot be integers */
6451 err = EINVAL;
6452 break;
6453 case 1:
6454 /* string property */
6455 strval = kmem_alloc(num_integers,
6456 KM_SLEEP);
6457 err = zap_lookup(mos, objid,
6458 nvpair_name(elem), 1,
6459 num_integers, strval);
6460 if (err) {
6461 kmem_free(strval,
6462 num_integers);
6463 break;
6464 }
6465 vdev_prop_add_list(outnvl, propname,
6466 strval, 0, src);
6467 kmem_free(strval, num_integers);
6468 break;
6469 }
6470 break;
6471 default:
6472 err = ENOENT;
6473 break;
6474 }
6475 if (err)
6476 break;
6477 }
6478 } else {
6479 /*
6480 * Get all properties from the MOS vdev property object.
6481 */
6482 zap_cursor_t zc;
6483 zap_attribute_t *za = zap_attribute_alloc();
6484 for (zap_cursor_init(&zc, mos, objid);
6485 (err = zap_cursor_retrieve(&zc, za)) == 0;
6486 zap_cursor_advance(&zc)) {
6487 intval = 0;
6488 strval = NULL;
6489 zprop_source_t src = ZPROP_SRC_DEFAULT;
6490 propname = za->za_name;
6491
6492 switch (za->za_integer_length) {
6493 case 8:
6494 /* We do not allow integer user properties */
6495 /* This is likely an internal value */
6496 break;
6497 case 1:
6498 /* string property */
6499 strval = kmem_alloc(za->za_num_integers,
6500 KM_SLEEP);
6501 err = zap_lookup(mos, objid, za->za_name, 1,
6502 za->za_num_integers, strval);
6503 if (err) {
6504 kmem_free(strval, za->za_num_integers);
6505 break;
6506 }
6507 vdev_prop_add_list(outnvl, propname, strval, 0,
6508 src);
6509 kmem_free(strval, za->za_num_integers);
6510 break;
6511
6512 default:
6513 break;
6514 }
6515 }
6516 zap_cursor_fini(&zc);
6517 zap_attribute_free(za);
6518 }
6519
6520 mutex_exit(&spa->spa_props_lock);
6521 if (err && err != ENOENT) {
6522 return (err);
6523 }
6524
6525 return (0);
6526 }
6527
6528 EXPORT_SYMBOL(vdev_fault);
6529 EXPORT_SYMBOL(vdev_degrade);
6530 EXPORT_SYMBOL(vdev_online);
6531 EXPORT_SYMBOL(vdev_offline);
6532 EXPORT_SYMBOL(vdev_clear);
6533
6534 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
6535 "Target number of metaslabs per top-level vdev");
6536
6537 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
6538 "Default lower limit for metaslab size");
6539
6540 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW,
6541 "Default upper limit for metaslab size");
6542
6543 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
6544 "Minimum number of metaslabs per top-level vdev");
6545
6546 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
6547 "Practical upper limit of total metaslabs per top-level vdev");
6548
6549 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
6550 "Rate limit slow IO (delay) events to this many per second");
6551
6552 ZFS_MODULE_PARAM(zfs, zfs_, deadman_events_per_second, UINT, ZMOD_RW,
6553 "Rate limit hung IO (deadman) events to this many per second");
6554
6555 ZFS_MODULE_PARAM(zfs, zfs_, dio_write_verify_events_per_second, UINT, ZMOD_RW,
6556 "Rate Direct I/O write verify events to this many per second");
6557
6558 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, direct_write_verify, UINT, ZMOD_RW,
6559 "Direct I/O writes will perform for checksum verification before "
6560 "commiting write");
6561
6562 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
6563 "Rate limit checksum events to this many checksum errors per second "
6564 "(do not set below ZED threshold).");
6565
6566 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
6567 "Ignore errors during resilver/scrub");
6568
6569 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
6570 "Bypass vdev_validate()");
6571
6572 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
6573 "Disable cache flushes");
6574
6575 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
6576 "Minimum number of metaslabs required to dedicate one for log blocks");
6577
6578 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
6579 param_set_min_auto_ashift, param_get_uint, ZMOD_RW,
6580 "Minimum ashift used when creating new top-level vdevs");
6581
6582 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
6583 param_set_max_auto_ashift, param_get_uint, ZMOD_RW,
6584 "Maximum ashift used when optimizing for logical -> physical sector "
6585 "size on new top-level vdevs");
6586
6587 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, raidz_impl,
6588 param_set_raidz_impl, param_get_raidz_impl, ZMOD_RW,
6589 "RAIDZ implementation");
6590