xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev.c (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright 2016 Toomas Soome <tsoome@me.com>
29  * Copyright 2017 Joyent, Inc.
30  * Copyright (c) 2017, Intel Corporation.
31  * Copyright (c) 2019, Datto Inc. All rights reserved.
32  * Copyright (c) 2021, Klara Inc.
33  * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP.
34  */
35 
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa.h>
39 #include <sys/spa_impl.h>
40 #include <sys/bpobj.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/vdev_rebuild.h>
46 #include <sys/vdev_draid.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/metaslab.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/space_map.h>
51 #include <sys/space_reftree.h>
52 #include <sys/zio.h>
53 #include <sys/zap.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/arc.h>
56 #include <sys/zil.h>
57 #include <sys/dsl_scan.h>
58 #include <sys/vdev_raidz.h>
59 #include <sys/abd.h>
60 #include <sys/vdev_initialize.h>
61 #include <sys/vdev_trim.h>
62 #include <sys/vdev_raidz.h>
63 #include <sys/zvol.h>
64 #include <sys/zfs_ratelimit.h>
65 #include "zfs_prop.h"
66 
67 /*
68  * One metaslab from each (normal-class) vdev is used by the ZIL.  These are
69  * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
70  * part of the spa_embedded_log_class.  The metaslab with the most free space
71  * in each vdev is selected for this purpose when the pool is opened (or a
72  * vdev is added).  See vdev_metaslab_init().
73  *
74  * Log blocks can be allocated from the following locations.  Each one is tried
75  * in order until the allocation succeeds:
76  * 1. dedicated log vdevs, aka "slog" (spa_log_class)
77  * 2. embedded slog metaslabs (spa_embedded_log_class)
78  * 3. other metaslabs in normal vdevs (spa_normal_class)
79  *
80  * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
81  * than this number of metaslabs in the vdev.  This ensures that we don't set
82  * aside an unreasonable amount of space for the ZIL.  If set to less than
83  * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
84  * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
85  */
86 static uint_t zfs_embedded_slog_min_ms = 64;
87 
88 /* default target for number of metaslabs per top-level vdev */
89 static uint_t zfs_vdev_default_ms_count = 200;
90 
91 /* minimum number of metaslabs per top-level vdev */
92 static uint_t zfs_vdev_min_ms_count = 16;
93 
94 /* practical upper limit of total metaslabs per top-level vdev */
95 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
96 
97 /* lower limit for metaslab size (512M) */
98 static uint_t zfs_vdev_default_ms_shift = 29;
99 
100 /* upper limit for metaslab size (16G) */
101 static uint_t zfs_vdev_max_ms_shift = 34;
102 
103 int vdev_validate_skip = B_FALSE;
104 
105 /*
106  * Since the DTL space map of a vdev is not expected to have a lot of
107  * entries, we default its block size to 4K.
108  */
109 int zfs_vdev_dtl_sm_blksz = (1 << 12);
110 
111 /*
112  * Rate limit slow IO (delay) events to this many per second.
113  */
114 static unsigned int zfs_slow_io_events_per_second = 20;
115 
116 /*
117  * Rate limit deadman "hung IO" events to this many per second.
118  */
119 static unsigned int zfs_deadman_events_per_second = 1;
120 
121 /*
122  * Rate limit direct write IO verify failures to this many per scond.
123  */
124 static unsigned int zfs_dio_write_verify_events_per_second = 20;
125 
126 /*
127  * Rate limit checksum events after this many checksum errors per second.
128  */
129 static unsigned int zfs_checksum_events_per_second = 20;
130 
131 /*
132  * Ignore errors during scrub/resilver.  Allows to work around resilver
133  * upon import when there are pool errors.
134  */
135 static int zfs_scan_ignore_errors = 0;
136 
137 /*
138  * vdev-wide space maps that have lots of entries written to them at
139  * the end of each transaction can benefit from a higher I/O bandwidth
140  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
141  */
142 int zfs_vdev_standard_sm_blksz = (1 << 17);
143 
144 /*
145  * Tunable parameter for debugging or performance analysis. Setting this
146  * will cause pool corruption on power loss if a volatile out-of-order
147  * write cache is enabled.
148  */
149 int zfs_nocacheflush = 0;
150 
151 /*
152  * Maximum and minimum ashift values that can be automatically set based on
153  * vdev's physical ashift (disk's physical sector size).  While ASHIFT_MAX
154  * is higher than the maximum value, it is intentionally limited here to not
155  * excessively impact pool space efficiency.  Higher ashift values may still
156  * be forced by vdev logical ashift or by user via ashift property, but won't
157  * be set automatically as a performance optimization.
158  */
159 uint_t zfs_vdev_max_auto_ashift = 14;
160 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
161 
162 /*
163  * VDEV checksum verification for Direct I/O writes. This is neccessary for
164  * Linux, because anonymous pages can not be placed under write protection
165  * during Direct I/O writes.
166  */
167 #if !defined(__FreeBSD__)
168 uint_t zfs_vdev_direct_write_verify = 1;
169 #else
170 uint_t zfs_vdev_direct_write_verify = 0;
171 #endif
172 
173 void
vdev_dbgmsg(vdev_t * vd,const char * fmt,...)174 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
175 {
176 	va_list adx;
177 	char buf[256];
178 
179 	va_start(adx, fmt);
180 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
181 	va_end(adx);
182 
183 	if (vd->vdev_path != NULL) {
184 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
185 		    vd->vdev_path, buf);
186 	} else {
187 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
188 		    vd->vdev_ops->vdev_op_type,
189 		    (u_longlong_t)vd->vdev_id,
190 		    (u_longlong_t)vd->vdev_guid, buf);
191 	}
192 }
193 
194 void
vdev_dbgmsg_print_tree(vdev_t * vd,int indent)195 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
196 {
197 	char state[20];
198 
199 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
200 		zfs_dbgmsg("%*svdev %llu: %s", indent, "",
201 		    (u_longlong_t)vd->vdev_id,
202 		    vd->vdev_ops->vdev_op_type);
203 		return;
204 	}
205 
206 	switch (vd->vdev_state) {
207 	case VDEV_STATE_UNKNOWN:
208 		(void) snprintf(state, sizeof (state), "unknown");
209 		break;
210 	case VDEV_STATE_CLOSED:
211 		(void) snprintf(state, sizeof (state), "closed");
212 		break;
213 	case VDEV_STATE_OFFLINE:
214 		(void) snprintf(state, sizeof (state), "offline");
215 		break;
216 	case VDEV_STATE_REMOVED:
217 		(void) snprintf(state, sizeof (state), "removed");
218 		break;
219 	case VDEV_STATE_CANT_OPEN:
220 		(void) snprintf(state, sizeof (state), "can't open");
221 		break;
222 	case VDEV_STATE_FAULTED:
223 		(void) snprintf(state, sizeof (state), "faulted");
224 		break;
225 	case VDEV_STATE_DEGRADED:
226 		(void) snprintf(state, sizeof (state), "degraded");
227 		break;
228 	case VDEV_STATE_HEALTHY:
229 		(void) snprintf(state, sizeof (state), "healthy");
230 		break;
231 	default:
232 		(void) snprintf(state, sizeof (state), "<state %u>",
233 		    (uint_t)vd->vdev_state);
234 	}
235 
236 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
237 	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
238 	    vd->vdev_islog ? " (log)" : "",
239 	    (u_longlong_t)vd->vdev_guid,
240 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
241 
242 	for (uint64_t i = 0; i < vd->vdev_children; i++)
243 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
244 }
245 
246 /*
247  * Virtual device management.
248  */
249 
250 static vdev_ops_t *const vdev_ops_table[] = {
251 	&vdev_root_ops,
252 	&vdev_raidz_ops,
253 	&vdev_draid_ops,
254 	&vdev_draid_spare_ops,
255 	&vdev_mirror_ops,
256 	&vdev_replacing_ops,
257 	&vdev_spare_ops,
258 	&vdev_disk_ops,
259 	&vdev_file_ops,
260 	&vdev_missing_ops,
261 	&vdev_hole_ops,
262 	&vdev_indirect_ops,
263 	NULL
264 };
265 
266 /*
267  * Given a vdev type, return the appropriate ops vector.
268  */
269 static vdev_ops_t *
vdev_getops(const char * type)270 vdev_getops(const char *type)
271 {
272 	vdev_ops_t *ops, *const *opspp;
273 
274 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
275 		if (strcmp(ops->vdev_op_type, type) == 0)
276 			break;
277 
278 	return (ops);
279 }
280 
281 /*
282  * Given a vdev and a metaslab class, find which metaslab group we're
283  * interested in. All vdevs may belong to two different metaslab classes.
284  * Dedicated slog devices use only the primary metaslab group, rather than a
285  * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
286  */
287 metaslab_group_t *
vdev_get_mg(vdev_t * vd,metaslab_class_t * mc)288 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
289 {
290 	if (mc == spa_embedded_log_class(vd->vdev_spa) &&
291 	    vd->vdev_log_mg != NULL)
292 		return (vd->vdev_log_mg);
293 	else
294 		return (vd->vdev_mg);
295 }
296 
297 void
vdev_default_xlate(vdev_t * vd,const zfs_range_seg64_t * logical_rs,zfs_range_seg64_t * physical_rs,zfs_range_seg64_t * remain_rs)298 vdev_default_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
299     zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
300 {
301 	(void) vd, (void) remain_rs;
302 
303 	physical_rs->rs_start = logical_rs->rs_start;
304 	physical_rs->rs_end = logical_rs->rs_end;
305 }
306 
307 /*
308  * Derive the enumerated allocation bias from string input.
309  * String origin is either the per-vdev zap or zpool(8).
310  */
311 static vdev_alloc_bias_t
vdev_derive_alloc_bias(const char * bias)312 vdev_derive_alloc_bias(const char *bias)
313 {
314 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
315 
316 	if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
317 		alloc_bias = VDEV_BIAS_LOG;
318 	else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
319 		alloc_bias = VDEV_BIAS_SPECIAL;
320 	else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
321 		alloc_bias = VDEV_BIAS_DEDUP;
322 
323 	return (alloc_bias);
324 }
325 
326 /*
327  * Default asize function: return the MAX of psize with the asize of
328  * all children.  This is what's used by anything other than RAID-Z.
329  */
330 uint64_t
vdev_default_asize(vdev_t * vd,uint64_t psize,uint64_t txg)331 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
332 {
333 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
334 	uint64_t csize;
335 
336 	for (int c = 0; c < vd->vdev_children; c++) {
337 		csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg);
338 		asize = MAX(asize, csize);
339 	}
340 
341 	return (asize);
342 }
343 
344 uint64_t
vdev_default_min_asize(vdev_t * vd)345 vdev_default_min_asize(vdev_t *vd)
346 {
347 	return (vd->vdev_min_asize);
348 }
349 
350 /*
351  * Get the minimum allocatable size. We define the allocatable size as
352  * the vdev's asize rounded to the nearest metaslab. This allows us to
353  * replace or attach devices which don't have the same physical size but
354  * can still satisfy the same number of allocations.
355  */
356 uint64_t
vdev_get_min_asize(vdev_t * vd)357 vdev_get_min_asize(vdev_t *vd)
358 {
359 	vdev_t *pvd = vd->vdev_parent;
360 
361 	/*
362 	 * If our parent is NULL (inactive spare or cache) or is the root,
363 	 * just return our own asize.
364 	 */
365 	if (pvd == NULL)
366 		return (vd->vdev_asize);
367 
368 	/*
369 	 * The top-level vdev just returns the allocatable size rounded
370 	 * to the nearest metaslab.
371 	 */
372 	if (vd == vd->vdev_top)
373 		return (P2ALIGN_TYPED(vd->vdev_asize, 1ULL << vd->vdev_ms_shift,
374 		    uint64_t));
375 
376 	return (pvd->vdev_ops->vdev_op_min_asize(pvd));
377 }
378 
379 void
vdev_set_min_asize(vdev_t * vd)380 vdev_set_min_asize(vdev_t *vd)
381 {
382 	vd->vdev_min_asize = vdev_get_min_asize(vd);
383 
384 	for (int c = 0; c < vd->vdev_children; c++)
385 		vdev_set_min_asize(vd->vdev_child[c]);
386 }
387 
388 /*
389  * Get the minimal allocation size for the top-level vdev.
390  */
391 uint64_t
vdev_get_min_alloc(vdev_t * vd)392 vdev_get_min_alloc(vdev_t *vd)
393 {
394 	uint64_t min_alloc = 1ULL << vd->vdev_ashift;
395 
396 	if (vd->vdev_ops->vdev_op_min_alloc != NULL)
397 		min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
398 
399 	return (min_alloc);
400 }
401 
402 /*
403  * Get the parity level for a top-level vdev.
404  */
405 uint64_t
vdev_get_nparity(vdev_t * vd)406 vdev_get_nparity(vdev_t *vd)
407 {
408 	uint64_t nparity = 0;
409 
410 	if (vd->vdev_ops->vdev_op_nparity != NULL)
411 		nparity = vd->vdev_ops->vdev_op_nparity(vd);
412 
413 	return (nparity);
414 }
415 
416 static int
vdev_prop_get_int(vdev_t * vd,vdev_prop_t prop,uint64_t * value)417 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value)
418 {
419 	spa_t *spa = vd->vdev_spa;
420 	objset_t *mos = spa->spa_meta_objset;
421 	uint64_t objid;
422 	int err;
423 
424 	if (vd->vdev_root_zap != 0) {
425 		objid = vd->vdev_root_zap;
426 	} else if (vd->vdev_top_zap != 0) {
427 		objid = vd->vdev_top_zap;
428 	} else if (vd->vdev_leaf_zap != 0) {
429 		objid = vd->vdev_leaf_zap;
430 	} else {
431 		return (EINVAL);
432 	}
433 
434 	err = zap_lookup(mos, objid, vdev_prop_to_name(prop),
435 	    sizeof (uint64_t), 1, value);
436 
437 	if (err == ENOENT)
438 		*value = vdev_prop_default_numeric(prop);
439 
440 	return (err);
441 }
442 
443 /*
444  * Get the number of data disks for a top-level vdev.
445  */
446 uint64_t
vdev_get_ndisks(vdev_t * vd)447 vdev_get_ndisks(vdev_t *vd)
448 {
449 	uint64_t ndisks = 1;
450 
451 	if (vd->vdev_ops->vdev_op_ndisks != NULL)
452 		ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
453 
454 	return (ndisks);
455 }
456 
457 vdev_t *
vdev_lookup_top(spa_t * spa,uint64_t vdev)458 vdev_lookup_top(spa_t *spa, uint64_t vdev)
459 {
460 	vdev_t *rvd = spa->spa_root_vdev;
461 
462 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
463 
464 	if (vdev < rvd->vdev_children) {
465 		ASSERT(rvd->vdev_child[vdev] != NULL);
466 		return (rvd->vdev_child[vdev]);
467 	}
468 
469 	return (NULL);
470 }
471 
472 vdev_t *
vdev_lookup_by_guid(vdev_t * vd,uint64_t guid)473 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
474 {
475 	vdev_t *mvd;
476 
477 	if (vd->vdev_guid == guid)
478 		return (vd);
479 
480 	for (int c = 0; c < vd->vdev_children; c++)
481 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
482 		    NULL)
483 			return (mvd);
484 
485 	return (NULL);
486 }
487 
488 static int
vdev_count_leaves_impl(vdev_t * vd)489 vdev_count_leaves_impl(vdev_t *vd)
490 {
491 	int n = 0;
492 
493 	if (vd->vdev_ops->vdev_op_leaf)
494 		return (1);
495 
496 	for (int c = 0; c < vd->vdev_children; c++)
497 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
498 
499 	return (n);
500 }
501 
502 int
vdev_count_leaves(spa_t * spa)503 vdev_count_leaves(spa_t *spa)
504 {
505 	int rc;
506 
507 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
508 	rc = vdev_count_leaves_impl(spa->spa_root_vdev);
509 	spa_config_exit(spa, SCL_VDEV, FTAG);
510 
511 	return (rc);
512 }
513 
514 void
vdev_add_child(vdev_t * pvd,vdev_t * cvd)515 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
516 {
517 	size_t oldsize, newsize;
518 	uint64_t id = cvd->vdev_id;
519 	vdev_t **newchild;
520 
521 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
522 	ASSERT(cvd->vdev_parent == NULL);
523 
524 	cvd->vdev_parent = pvd;
525 
526 	if (pvd == NULL)
527 		return;
528 
529 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
530 
531 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
532 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
533 	newsize = pvd->vdev_children * sizeof (vdev_t *);
534 
535 	newchild = kmem_alloc(newsize, KM_SLEEP);
536 	if (pvd->vdev_child != NULL) {
537 		memcpy(newchild, pvd->vdev_child, oldsize);
538 		kmem_free(pvd->vdev_child, oldsize);
539 	}
540 
541 	pvd->vdev_child = newchild;
542 	pvd->vdev_child[id] = cvd;
543 
544 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
545 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
546 
547 	/*
548 	 * Walk up all ancestors to update guid sum.
549 	 */
550 	for (; pvd != NULL; pvd = pvd->vdev_parent)
551 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
552 
553 	if (cvd->vdev_ops->vdev_op_leaf) {
554 		list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
555 		cvd->vdev_spa->spa_leaf_list_gen++;
556 	}
557 }
558 
559 void
vdev_remove_child(vdev_t * pvd,vdev_t * cvd)560 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
561 {
562 	int c;
563 	uint_t id = cvd->vdev_id;
564 
565 	ASSERT(cvd->vdev_parent == pvd);
566 
567 	if (pvd == NULL)
568 		return;
569 
570 	ASSERT(id < pvd->vdev_children);
571 	ASSERT(pvd->vdev_child[id] == cvd);
572 
573 	pvd->vdev_child[id] = NULL;
574 	cvd->vdev_parent = NULL;
575 
576 	for (c = 0; c < pvd->vdev_children; c++)
577 		if (pvd->vdev_child[c])
578 			break;
579 
580 	if (c == pvd->vdev_children) {
581 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
582 		pvd->vdev_child = NULL;
583 		pvd->vdev_children = 0;
584 	}
585 
586 	if (cvd->vdev_ops->vdev_op_leaf) {
587 		spa_t *spa = cvd->vdev_spa;
588 		list_remove(&spa->spa_leaf_list, cvd);
589 		spa->spa_leaf_list_gen++;
590 	}
591 
592 	/*
593 	 * Walk up all ancestors to update guid sum.
594 	 */
595 	for (; pvd != NULL; pvd = pvd->vdev_parent)
596 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
597 }
598 
599 /*
600  * Remove any holes in the child array.
601  */
602 void
vdev_compact_children(vdev_t * pvd)603 vdev_compact_children(vdev_t *pvd)
604 {
605 	vdev_t **newchild, *cvd;
606 	int oldc = pvd->vdev_children;
607 	int newc;
608 
609 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
610 
611 	if (oldc == 0)
612 		return;
613 
614 	for (int c = newc = 0; c < oldc; c++)
615 		if (pvd->vdev_child[c])
616 			newc++;
617 
618 	if (newc > 0) {
619 		newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
620 
621 		for (int c = newc = 0; c < oldc; c++) {
622 			if ((cvd = pvd->vdev_child[c]) != NULL) {
623 				newchild[newc] = cvd;
624 				cvd->vdev_id = newc++;
625 			}
626 		}
627 	} else {
628 		newchild = NULL;
629 	}
630 
631 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
632 	pvd->vdev_child = newchild;
633 	pvd->vdev_children = newc;
634 }
635 
636 /*
637  * Allocate and minimally initialize a vdev_t.
638  */
639 vdev_t *
vdev_alloc_common(spa_t * spa,uint_t id,uint64_t guid,vdev_ops_t * ops)640 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
641 {
642 	vdev_t *vd;
643 	vdev_indirect_config_t *vic;
644 
645 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
646 	vic = &vd->vdev_indirect_config;
647 
648 	if (spa->spa_root_vdev == NULL) {
649 		ASSERT(ops == &vdev_root_ops);
650 		spa->spa_root_vdev = vd;
651 		spa->spa_load_guid = spa_generate_load_guid();
652 	}
653 
654 	if (guid == 0 && ops != &vdev_hole_ops) {
655 		if (spa->spa_root_vdev == vd) {
656 			/*
657 			 * The root vdev's guid will also be the pool guid,
658 			 * which must be unique among all pools.
659 			 */
660 			guid = spa_generate_guid(NULL);
661 		} else {
662 			/*
663 			 * Any other vdev's guid must be unique within the pool.
664 			 */
665 			guid = spa_generate_guid(spa);
666 		}
667 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
668 	}
669 
670 	vd->vdev_spa = spa;
671 	vd->vdev_id = id;
672 	vd->vdev_guid = guid;
673 	vd->vdev_guid_sum = guid;
674 	vd->vdev_ops = ops;
675 	vd->vdev_state = VDEV_STATE_CLOSED;
676 	vd->vdev_ishole = (ops == &vdev_hole_ops);
677 	vic->vic_prev_indirect_vdev = UINT64_MAX;
678 
679 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
680 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
681 	vd->vdev_obsolete_segments = zfs_range_tree_create(NULL,
682 	    ZFS_RANGE_SEG64, NULL, 0, 0);
683 
684 	/*
685 	 * Initialize rate limit structs for events.  We rate limit ZIO delay
686 	 * and checksum events so that we don't overwhelm ZED with thousands
687 	 * of events when a disk is acting up.
688 	 */
689 	zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
690 	    1);
691 	zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_deadman_events_per_second,
692 	    1);
693 	zfs_ratelimit_init(&vd->vdev_dio_verify_rl,
694 	    &zfs_dio_write_verify_events_per_second, 1);
695 	zfs_ratelimit_init(&vd->vdev_checksum_rl,
696 	    &zfs_checksum_events_per_second, 1);
697 
698 	/*
699 	 * Default Thresholds for tuning ZED
700 	 */
701 	vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N);
702 	vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T);
703 	vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N);
704 	vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T);
705 	vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N);
706 	vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T);
707 
708 	list_link_init(&vd->vdev_config_dirty_node);
709 	list_link_init(&vd->vdev_state_dirty_node);
710 	list_link_init(&vd->vdev_initialize_node);
711 	list_link_init(&vd->vdev_leaf_node);
712 	list_link_init(&vd->vdev_trim_node);
713 
714 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
715 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
716 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
717 	mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
718 
719 	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
720 	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
721 	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
722 	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
723 
724 	mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
725 	mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
726 	mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
727 	cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
728 	cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
729 	cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL);
730 	cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
731 
732 	mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
733 	cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
734 
735 	for (int t = 0; t < DTL_TYPES; t++) {
736 		vd->vdev_dtl[t] = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
737 		    NULL, 0, 0);
738 	}
739 
740 	txg_list_create(&vd->vdev_ms_list, spa,
741 	    offsetof(struct metaslab, ms_txg_node));
742 	txg_list_create(&vd->vdev_dtl_list, spa,
743 	    offsetof(struct vdev, vdev_dtl_node));
744 	vd->vdev_stat.vs_timestamp = gethrtime();
745 	vdev_queue_init(vd);
746 
747 	return (vd);
748 }
749 
750 /*
751  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
752  * creating a new vdev or loading an existing one - the behavior is slightly
753  * different for each case.
754  */
755 int
vdev_alloc(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int alloctype)756 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
757     int alloctype)
758 {
759 	vdev_ops_t *ops;
760 	const char *type;
761 	uint64_t guid = 0, islog;
762 	vdev_t *vd;
763 	vdev_indirect_config_t *vic;
764 	const char *tmp = NULL;
765 	int rc;
766 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
767 	boolean_t top_level = (parent && !parent->vdev_parent);
768 
769 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
770 
771 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
772 		return (SET_ERROR(EINVAL));
773 
774 	if ((ops = vdev_getops(type)) == NULL)
775 		return (SET_ERROR(EINVAL));
776 
777 	/*
778 	 * If this is a load, get the vdev guid from the nvlist.
779 	 * Otherwise, vdev_alloc_common() will generate one for us.
780 	 */
781 	if (alloctype == VDEV_ALLOC_LOAD) {
782 		uint64_t label_id;
783 
784 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
785 		    label_id != id)
786 			return (SET_ERROR(EINVAL));
787 
788 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
789 			return (SET_ERROR(EINVAL));
790 	} else if (alloctype == VDEV_ALLOC_SPARE) {
791 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
792 			return (SET_ERROR(EINVAL));
793 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
794 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
795 			return (SET_ERROR(EINVAL));
796 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
797 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
798 			return (SET_ERROR(EINVAL));
799 	}
800 
801 	/*
802 	 * The first allocated vdev must be of type 'root'.
803 	 */
804 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
805 		return (SET_ERROR(EINVAL));
806 
807 	/*
808 	 * Determine whether we're a log vdev.
809 	 */
810 	islog = 0;
811 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
812 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
813 		return (SET_ERROR(ENOTSUP));
814 
815 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
816 		return (SET_ERROR(ENOTSUP));
817 
818 	if (top_level && alloctype == VDEV_ALLOC_ADD) {
819 		const char *bias;
820 
821 		/*
822 		 * If creating a top-level vdev, check for allocation
823 		 * classes input.
824 		 */
825 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
826 		    &bias) == 0) {
827 			alloc_bias = vdev_derive_alloc_bias(bias);
828 
829 			/* spa_vdev_add() expects feature to be enabled */
830 			if (spa->spa_load_state != SPA_LOAD_CREATE &&
831 			    !spa_feature_is_enabled(spa,
832 			    SPA_FEATURE_ALLOCATION_CLASSES)) {
833 				return (SET_ERROR(ENOTSUP));
834 			}
835 		}
836 
837 		/* spa_vdev_add() expects feature to be enabled */
838 		if (ops == &vdev_draid_ops &&
839 		    spa->spa_load_state != SPA_LOAD_CREATE &&
840 		    !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
841 			return (SET_ERROR(ENOTSUP));
842 		}
843 	}
844 
845 	/*
846 	 * Initialize the vdev specific data.  This is done before calling
847 	 * vdev_alloc_common() since it may fail and this simplifies the
848 	 * error reporting and cleanup code paths.
849 	 */
850 	void *tsd = NULL;
851 	if (ops->vdev_op_init != NULL) {
852 		rc = ops->vdev_op_init(spa, nv, &tsd);
853 		if (rc != 0) {
854 			return (rc);
855 		}
856 	}
857 
858 	vd = vdev_alloc_common(spa, id, guid, ops);
859 	vd->vdev_tsd = tsd;
860 	vd->vdev_islog = islog;
861 
862 	if (top_level && alloc_bias != VDEV_BIAS_NONE)
863 		vd->vdev_alloc_bias = alloc_bias;
864 
865 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0)
866 		vd->vdev_path = spa_strdup(tmp);
867 
868 	/*
869 	 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
870 	 * fault on a vdev and want it to persist across imports (like with
871 	 * zpool offline -f).
872 	 */
873 	rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
874 	if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
875 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
876 		vd->vdev_faulted = 1;
877 		vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
878 	}
879 
880 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0)
881 		vd->vdev_devid = spa_strdup(tmp);
882 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0)
883 		vd->vdev_physpath = spa_strdup(tmp);
884 
885 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
886 	    &tmp) == 0)
887 		vd->vdev_enc_sysfs_path = spa_strdup(tmp);
888 
889 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0)
890 		vd->vdev_fru = spa_strdup(tmp);
891 
892 	/*
893 	 * Set the whole_disk property.  If it's not specified, leave the value
894 	 * as -1.
895 	 */
896 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
897 	    &vd->vdev_wholedisk) != 0)
898 		vd->vdev_wholedisk = -1ULL;
899 
900 	vic = &vd->vdev_indirect_config;
901 
902 	ASSERT0(vic->vic_mapping_object);
903 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
904 	    &vic->vic_mapping_object);
905 	ASSERT0(vic->vic_births_object);
906 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
907 	    &vic->vic_births_object);
908 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
909 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
910 	    &vic->vic_prev_indirect_vdev);
911 
912 	/*
913 	 * Look for the 'not present' flag.  This will only be set if the device
914 	 * was not present at the time of import.
915 	 */
916 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
917 	    &vd->vdev_not_present);
918 
919 	/*
920 	 * Get the alignment requirement. Ignore pool ashift for vdev
921 	 * attach case.
922 	 */
923 	if (alloctype != VDEV_ALLOC_ATTACH) {
924 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT,
925 		    &vd->vdev_ashift);
926 	} else {
927 		vd->vdev_attaching = B_TRUE;
928 	}
929 
930 	/*
931 	 * Retrieve the vdev creation time.
932 	 */
933 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
934 	    &vd->vdev_crtxg);
935 
936 	if (vd->vdev_ops == &vdev_root_ops &&
937 	    (alloctype == VDEV_ALLOC_LOAD ||
938 	    alloctype == VDEV_ALLOC_SPLIT ||
939 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
940 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
941 		    &vd->vdev_root_zap);
942 	}
943 
944 	/*
945 	 * If we're a top-level vdev, try to load the allocation parameters.
946 	 */
947 	if (top_level &&
948 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
949 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
950 		    &vd->vdev_ms_array);
951 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
952 		    &vd->vdev_ms_shift);
953 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
954 		    &vd->vdev_asize);
955 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
956 		    &vd->vdev_noalloc);
957 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
958 		    &vd->vdev_removing);
959 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
960 		    &vd->vdev_top_zap);
961 		vd->vdev_rz_expanding = nvlist_exists(nv,
962 		    ZPOOL_CONFIG_RAIDZ_EXPANDING);
963 	} else {
964 		ASSERT0(vd->vdev_top_zap);
965 	}
966 
967 	if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
968 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
969 		    alloctype == VDEV_ALLOC_ADD ||
970 		    alloctype == VDEV_ALLOC_SPLIT ||
971 		    alloctype == VDEV_ALLOC_ROOTPOOL);
972 		/* Note: metaslab_group_create() is now deferred */
973 	}
974 
975 	if (vd->vdev_ops->vdev_op_leaf &&
976 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
977 		(void) nvlist_lookup_uint64(nv,
978 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
979 	} else {
980 		ASSERT0(vd->vdev_leaf_zap);
981 	}
982 
983 	/*
984 	 * If we're a leaf vdev, try to load the DTL object and other state.
985 	 */
986 
987 	if (vd->vdev_ops->vdev_op_leaf &&
988 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
989 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
990 		if (alloctype == VDEV_ALLOC_LOAD) {
991 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
992 			    &vd->vdev_dtl_object);
993 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
994 			    &vd->vdev_unspare);
995 		}
996 
997 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
998 			uint64_t spare = 0;
999 
1000 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
1001 			    &spare) == 0 && spare)
1002 				spa_spare_add(vd);
1003 		}
1004 
1005 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
1006 		    &vd->vdev_offline);
1007 
1008 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
1009 		    &vd->vdev_resilver_txg);
1010 
1011 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
1012 		    &vd->vdev_rebuild_txg);
1013 
1014 		if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
1015 			vdev_defer_resilver(vd);
1016 
1017 		/*
1018 		 * In general, when importing a pool we want to ignore the
1019 		 * persistent fault state, as the diagnosis made on another
1020 		 * system may not be valid in the current context.  The only
1021 		 * exception is if we forced a vdev to a persistently faulted
1022 		 * state with 'zpool offline -f'.  The persistent fault will
1023 		 * remain across imports until cleared.
1024 		 *
1025 		 * Local vdevs will remain in the faulted state.
1026 		 */
1027 		if (spa_load_state(spa) == SPA_LOAD_OPEN ||
1028 		    spa_load_state(spa) == SPA_LOAD_IMPORT) {
1029 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
1030 			    &vd->vdev_faulted);
1031 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
1032 			    &vd->vdev_degraded);
1033 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
1034 			    &vd->vdev_removed);
1035 
1036 			if (vd->vdev_faulted || vd->vdev_degraded) {
1037 				const char *aux;
1038 
1039 				vd->vdev_label_aux =
1040 				    VDEV_AUX_ERR_EXCEEDED;
1041 				if (nvlist_lookup_string(nv,
1042 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
1043 				    strcmp(aux, "external") == 0)
1044 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
1045 				else
1046 					vd->vdev_faulted = 0ULL;
1047 			}
1048 		}
1049 	}
1050 
1051 	/*
1052 	 * Add ourselves to the parent's list of children.
1053 	 */
1054 	vdev_add_child(parent, vd);
1055 
1056 	*vdp = vd;
1057 
1058 	return (0);
1059 }
1060 
1061 void
vdev_free(vdev_t * vd)1062 vdev_free(vdev_t *vd)
1063 {
1064 	spa_t *spa = vd->vdev_spa;
1065 
1066 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1067 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1068 	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1069 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
1070 
1071 	/*
1072 	 * Scan queues are normally destroyed at the end of a scan. If the
1073 	 * queue exists here, that implies the vdev is being removed while
1074 	 * the scan is still running.
1075 	 */
1076 	if (vd->vdev_scan_io_queue != NULL) {
1077 		mutex_enter(&vd->vdev_scan_io_queue_lock);
1078 		dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
1079 		vd->vdev_scan_io_queue = NULL;
1080 		mutex_exit(&vd->vdev_scan_io_queue_lock);
1081 	}
1082 
1083 	/*
1084 	 * vdev_free() implies closing the vdev first.  This is simpler than
1085 	 * trying to ensure complicated semantics for all callers.
1086 	 */
1087 	vdev_close(vd);
1088 
1089 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1090 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1091 
1092 	/*
1093 	 * Free all children.
1094 	 */
1095 	for (int c = 0; c < vd->vdev_children; c++)
1096 		vdev_free(vd->vdev_child[c]);
1097 
1098 	ASSERT(vd->vdev_child == NULL);
1099 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1100 
1101 	if (vd->vdev_ops->vdev_op_fini != NULL)
1102 		vd->vdev_ops->vdev_op_fini(vd);
1103 
1104 	/*
1105 	 * Discard allocation state.
1106 	 */
1107 	if (vd->vdev_mg != NULL) {
1108 		vdev_metaslab_fini(vd);
1109 		metaslab_group_destroy(vd->vdev_mg);
1110 		vd->vdev_mg = NULL;
1111 	}
1112 	if (vd->vdev_log_mg != NULL) {
1113 		ASSERT0(vd->vdev_ms_count);
1114 		metaslab_group_destroy(vd->vdev_log_mg);
1115 		vd->vdev_log_mg = NULL;
1116 	}
1117 
1118 	ASSERT0(vd->vdev_stat.vs_space);
1119 	ASSERT0(vd->vdev_stat.vs_dspace);
1120 	ASSERT0(vd->vdev_stat.vs_alloc);
1121 
1122 	/*
1123 	 * Remove this vdev from its parent's child list.
1124 	 */
1125 	vdev_remove_child(vd->vdev_parent, vd);
1126 
1127 	ASSERT(vd->vdev_parent == NULL);
1128 	ASSERT(!list_link_active(&vd->vdev_leaf_node));
1129 
1130 	/*
1131 	 * Clean up vdev structure.
1132 	 */
1133 	vdev_queue_fini(vd);
1134 
1135 	if (vd->vdev_path)
1136 		spa_strfree(vd->vdev_path);
1137 	if (vd->vdev_devid)
1138 		spa_strfree(vd->vdev_devid);
1139 	if (vd->vdev_physpath)
1140 		spa_strfree(vd->vdev_physpath);
1141 
1142 	if (vd->vdev_enc_sysfs_path)
1143 		spa_strfree(vd->vdev_enc_sysfs_path);
1144 
1145 	if (vd->vdev_fru)
1146 		spa_strfree(vd->vdev_fru);
1147 
1148 	if (vd->vdev_isspare)
1149 		spa_spare_remove(vd);
1150 	if (vd->vdev_isl2cache)
1151 		spa_l2cache_remove(vd);
1152 
1153 	txg_list_destroy(&vd->vdev_ms_list);
1154 	txg_list_destroy(&vd->vdev_dtl_list);
1155 
1156 	mutex_enter(&vd->vdev_dtl_lock);
1157 	space_map_close(vd->vdev_dtl_sm);
1158 	for (int t = 0; t < DTL_TYPES; t++) {
1159 		zfs_range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1160 		zfs_range_tree_destroy(vd->vdev_dtl[t]);
1161 	}
1162 	mutex_exit(&vd->vdev_dtl_lock);
1163 
1164 	EQUIV(vd->vdev_indirect_births != NULL,
1165 	    vd->vdev_indirect_mapping != NULL);
1166 	if (vd->vdev_indirect_births != NULL) {
1167 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1168 		vdev_indirect_births_close(vd->vdev_indirect_births);
1169 	}
1170 
1171 	if (vd->vdev_obsolete_sm != NULL) {
1172 		ASSERT(vd->vdev_removing ||
1173 		    vd->vdev_ops == &vdev_indirect_ops);
1174 		space_map_close(vd->vdev_obsolete_sm);
1175 		vd->vdev_obsolete_sm = NULL;
1176 	}
1177 	zfs_range_tree_destroy(vd->vdev_obsolete_segments);
1178 	rw_destroy(&vd->vdev_indirect_rwlock);
1179 	mutex_destroy(&vd->vdev_obsolete_lock);
1180 
1181 	mutex_destroy(&vd->vdev_dtl_lock);
1182 	mutex_destroy(&vd->vdev_stat_lock);
1183 	mutex_destroy(&vd->vdev_probe_lock);
1184 	mutex_destroy(&vd->vdev_scan_io_queue_lock);
1185 
1186 	mutex_destroy(&vd->vdev_initialize_lock);
1187 	mutex_destroy(&vd->vdev_initialize_io_lock);
1188 	cv_destroy(&vd->vdev_initialize_io_cv);
1189 	cv_destroy(&vd->vdev_initialize_cv);
1190 
1191 	mutex_destroy(&vd->vdev_trim_lock);
1192 	mutex_destroy(&vd->vdev_autotrim_lock);
1193 	mutex_destroy(&vd->vdev_trim_io_lock);
1194 	cv_destroy(&vd->vdev_trim_cv);
1195 	cv_destroy(&vd->vdev_autotrim_cv);
1196 	cv_destroy(&vd->vdev_autotrim_kick_cv);
1197 	cv_destroy(&vd->vdev_trim_io_cv);
1198 
1199 	mutex_destroy(&vd->vdev_rebuild_lock);
1200 	cv_destroy(&vd->vdev_rebuild_cv);
1201 
1202 	zfs_ratelimit_fini(&vd->vdev_delay_rl);
1203 	zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1204 	zfs_ratelimit_fini(&vd->vdev_dio_verify_rl);
1205 	zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1206 
1207 	if (vd == spa->spa_root_vdev)
1208 		spa->spa_root_vdev = NULL;
1209 
1210 	kmem_free(vd, sizeof (vdev_t));
1211 }
1212 
1213 /*
1214  * Transfer top-level vdev state from svd to tvd.
1215  */
1216 static void
vdev_top_transfer(vdev_t * svd,vdev_t * tvd)1217 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1218 {
1219 	spa_t *spa = svd->vdev_spa;
1220 	metaslab_t *msp;
1221 	vdev_t *vd;
1222 	int t;
1223 
1224 	ASSERT(tvd == tvd->vdev_top);
1225 
1226 	tvd->vdev_ms_array = svd->vdev_ms_array;
1227 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
1228 	tvd->vdev_ms_count = svd->vdev_ms_count;
1229 	tvd->vdev_top_zap = svd->vdev_top_zap;
1230 
1231 	svd->vdev_ms_array = 0;
1232 	svd->vdev_ms_shift = 0;
1233 	svd->vdev_ms_count = 0;
1234 	svd->vdev_top_zap = 0;
1235 
1236 	if (tvd->vdev_mg)
1237 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1238 	if (tvd->vdev_log_mg)
1239 		ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1240 	tvd->vdev_mg = svd->vdev_mg;
1241 	tvd->vdev_log_mg = svd->vdev_log_mg;
1242 	tvd->vdev_ms = svd->vdev_ms;
1243 
1244 	svd->vdev_mg = NULL;
1245 	svd->vdev_log_mg = NULL;
1246 	svd->vdev_ms = NULL;
1247 
1248 	if (tvd->vdev_mg != NULL)
1249 		tvd->vdev_mg->mg_vd = tvd;
1250 	if (tvd->vdev_log_mg != NULL)
1251 		tvd->vdev_log_mg->mg_vd = tvd;
1252 
1253 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1254 	svd->vdev_checkpoint_sm = NULL;
1255 
1256 	tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1257 	svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1258 
1259 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1260 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1261 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1262 
1263 	svd->vdev_stat.vs_alloc = 0;
1264 	svd->vdev_stat.vs_space = 0;
1265 	svd->vdev_stat.vs_dspace = 0;
1266 
1267 	/*
1268 	 * State which may be set on a top-level vdev that's in the
1269 	 * process of being removed.
1270 	 */
1271 	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1272 	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1273 	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1274 	ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1275 	ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1276 	ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1277 	ASSERT0(tvd->vdev_noalloc);
1278 	ASSERT0(tvd->vdev_removing);
1279 	ASSERT0(tvd->vdev_rebuilding);
1280 	tvd->vdev_noalloc = svd->vdev_noalloc;
1281 	tvd->vdev_removing = svd->vdev_removing;
1282 	tvd->vdev_rebuilding = svd->vdev_rebuilding;
1283 	tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1284 	tvd->vdev_indirect_config = svd->vdev_indirect_config;
1285 	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1286 	tvd->vdev_indirect_births = svd->vdev_indirect_births;
1287 	zfs_range_tree_swap(&svd->vdev_obsolete_segments,
1288 	    &tvd->vdev_obsolete_segments);
1289 	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1290 	svd->vdev_indirect_config.vic_mapping_object = 0;
1291 	svd->vdev_indirect_config.vic_births_object = 0;
1292 	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1293 	svd->vdev_indirect_mapping = NULL;
1294 	svd->vdev_indirect_births = NULL;
1295 	svd->vdev_obsolete_sm = NULL;
1296 	svd->vdev_noalloc = 0;
1297 	svd->vdev_removing = 0;
1298 	svd->vdev_rebuilding = 0;
1299 
1300 	for (t = 0; t < TXG_SIZE; t++) {
1301 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1302 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1303 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1304 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1305 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1306 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1307 	}
1308 
1309 	if (list_link_active(&svd->vdev_config_dirty_node)) {
1310 		vdev_config_clean(svd);
1311 		vdev_config_dirty(tvd);
1312 	}
1313 
1314 	if (list_link_active(&svd->vdev_state_dirty_node)) {
1315 		vdev_state_clean(svd);
1316 		vdev_state_dirty(tvd);
1317 	}
1318 
1319 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1320 	svd->vdev_deflate_ratio = 0;
1321 
1322 	tvd->vdev_islog = svd->vdev_islog;
1323 	svd->vdev_islog = 0;
1324 
1325 	dsl_scan_io_queue_vdev_xfer(svd, tvd);
1326 }
1327 
1328 static void
vdev_top_update(vdev_t * tvd,vdev_t * vd)1329 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1330 {
1331 	if (vd == NULL)
1332 		return;
1333 
1334 	vd->vdev_top = tvd;
1335 
1336 	for (int c = 0; c < vd->vdev_children; c++)
1337 		vdev_top_update(tvd, vd->vdev_child[c]);
1338 }
1339 
1340 /*
1341  * Add a mirror/replacing vdev above an existing vdev.  There is no need to
1342  * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1343  */
1344 vdev_t *
vdev_add_parent(vdev_t * cvd,vdev_ops_t * ops)1345 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1346 {
1347 	spa_t *spa = cvd->vdev_spa;
1348 	vdev_t *pvd = cvd->vdev_parent;
1349 	vdev_t *mvd;
1350 
1351 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1352 
1353 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1354 
1355 	mvd->vdev_asize = cvd->vdev_asize;
1356 	mvd->vdev_min_asize = cvd->vdev_min_asize;
1357 	mvd->vdev_max_asize = cvd->vdev_max_asize;
1358 	mvd->vdev_psize = cvd->vdev_psize;
1359 	mvd->vdev_ashift = cvd->vdev_ashift;
1360 	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1361 	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1362 	mvd->vdev_state = cvd->vdev_state;
1363 	mvd->vdev_crtxg = cvd->vdev_crtxg;
1364 
1365 	vdev_remove_child(pvd, cvd);
1366 	vdev_add_child(pvd, mvd);
1367 	cvd->vdev_id = mvd->vdev_children;
1368 	vdev_add_child(mvd, cvd);
1369 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1370 
1371 	if (mvd == mvd->vdev_top)
1372 		vdev_top_transfer(cvd, mvd);
1373 
1374 	return (mvd);
1375 }
1376 
1377 /*
1378  * Remove a 1-way mirror/replacing vdev from the tree.
1379  */
1380 void
vdev_remove_parent(vdev_t * cvd)1381 vdev_remove_parent(vdev_t *cvd)
1382 {
1383 	vdev_t *mvd = cvd->vdev_parent;
1384 	vdev_t *pvd = mvd->vdev_parent;
1385 
1386 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1387 
1388 	ASSERT(mvd->vdev_children == 1);
1389 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1390 	    mvd->vdev_ops == &vdev_replacing_ops ||
1391 	    mvd->vdev_ops == &vdev_spare_ops);
1392 	cvd->vdev_ashift = mvd->vdev_ashift;
1393 	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1394 	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1395 	vdev_remove_child(mvd, cvd);
1396 	vdev_remove_child(pvd, mvd);
1397 
1398 	/*
1399 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1400 	 * Otherwise, we could have detached an offline device, and when we
1401 	 * go to import the pool we'll think we have two top-level vdevs,
1402 	 * instead of a different version of the same top-level vdev.
1403 	 */
1404 	if (mvd->vdev_top == mvd) {
1405 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1406 		cvd->vdev_orig_guid = cvd->vdev_guid;
1407 		cvd->vdev_guid += guid_delta;
1408 		cvd->vdev_guid_sum += guid_delta;
1409 
1410 		/*
1411 		 * If pool not set for autoexpand, we need to also preserve
1412 		 * mvd's asize to prevent automatic expansion of cvd.
1413 		 * Otherwise if we are adjusting the mirror by attaching and
1414 		 * detaching children of non-uniform sizes, the mirror could
1415 		 * autoexpand, unexpectedly requiring larger devices to
1416 		 * re-establish the mirror.
1417 		 */
1418 		if (!cvd->vdev_spa->spa_autoexpand)
1419 			cvd->vdev_asize = mvd->vdev_asize;
1420 	}
1421 	cvd->vdev_id = mvd->vdev_id;
1422 	vdev_add_child(pvd, cvd);
1423 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1424 
1425 	if (cvd == cvd->vdev_top)
1426 		vdev_top_transfer(mvd, cvd);
1427 
1428 	ASSERT(mvd->vdev_children == 0);
1429 	vdev_free(mvd);
1430 }
1431 
1432 /*
1433  * Choose GCD for spa_gcd_alloc.
1434  */
1435 static uint64_t
vdev_gcd(uint64_t a,uint64_t b)1436 vdev_gcd(uint64_t a, uint64_t b)
1437 {
1438 	while (b != 0) {
1439 		uint64_t t = b;
1440 		b = a % b;
1441 		a = t;
1442 	}
1443 	return (a);
1444 }
1445 
1446 /*
1447  * Set spa_min_alloc and spa_gcd_alloc.
1448  */
1449 static void
vdev_spa_set_alloc(spa_t * spa,uint64_t min_alloc)1450 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc)
1451 {
1452 	if (min_alloc < spa->spa_min_alloc)
1453 		spa->spa_min_alloc = min_alloc;
1454 	if (spa->spa_gcd_alloc == INT_MAX) {
1455 		spa->spa_gcd_alloc = min_alloc;
1456 	} else {
1457 		spa->spa_gcd_alloc = vdev_gcd(min_alloc,
1458 		    spa->spa_gcd_alloc);
1459 	}
1460 }
1461 
1462 void
vdev_metaslab_group_create(vdev_t * vd)1463 vdev_metaslab_group_create(vdev_t *vd)
1464 {
1465 	spa_t *spa = vd->vdev_spa;
1466 
1467 	/*
1468 	 * metaslab_group_create was delayed until allocation bias was available
1469 	 */
1470 	if (vd->vdev_mg == NULL) {
1471 		metaslab_class_t *mc;
1472 
1473 		if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1474 			vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1475 
1476 		ASSERT3U(vd->vdev_islog, ==,
1477 		    (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1478 
1479 		switch (vd->vdev_alloc_bias) {
1480 		case VDEV_BIAS_LOG:
1481 			mc = spa_log_class(spa);
1482 			break;
1483 		case VDEV_BIAS_SPECIAL:
1484 			mc = spa_special_class(spa);
1485 			break;
1486 		case VDEV_BIAS_DEDUP:
1487 			mc = spa_dedup_class(spa);
1488 			break;
1489 		default:
1490 			mc = spa_normal_class(spa);
1491 		}
1492 
1493 		vd->vdev_mg = metaslab_group_create(mc, vd,
1494 		    spa->spa_alloc_count);
1495 
1496 		if (!vd->vdev_islog) {
1497 			vd->vdev_log_mg = metaslab_group_create(
1498 			    spa_embedded_log_class(spa), vd, 1);
1499 		}
1500 
1501 		/*
1502 		 * The spa ashift min/max only apply for the normal metaslab
1503 		 * class. Class destination is late binding so ashift boundary
1504 		 * setting had to wait until now.
1505 		 */
1506 		if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1507 		    mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1508 			if (vd->vdev_ashift > spa->spa_max_ashift)
1509 				spa->spa_max_ashift = vd->vdev_ashift;
1510 			if (vd->vdev_ashift < spa->spa_min_ashift)
1511 				spa->spa_min_ashift = vd->vdev_ashift;
1512 
1513 			uint64_t min_alloc = vdev_get_min_alloc(vd);
1514 			vdev_spa_set_alloc(spa, min_alloc);
1515 		}
1516 	}
1517 }
1518 
1519 int
vdev_metaslab_init(vdev_t * vd,uint64_t txg)1520 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1521 {
1522 	spa_t *spa = vd->vdev_spa;
1523 	uint64_t oldc = vd->vdev_ms_count;
1524 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1525 	metaslab_t **mspp;
1526 	int error;
1527 	boolean_t expanding = (oldc != 0);
1528 
1529 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1530 
1531 	/*
1532 	 * This vdev is not being allocated from yet or is a hole.
1533 	 */
1534 	if (vd->vdev_ms_shift == 0)
1535 		return (0);
1536 
1537 	ASSERT(!vd->vdev_ishole);
1538 
1539 	ASSERT(oldc <= newc);
1540 
1541 	mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1542 
1543 	if (expanding) {
1544 		memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
1545 		vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1546 	}
1547 
1548 	vd->vdev_ms = mspp;
1549 	vd->vdev_ms_count = newc;
1550 
1551 	for (uint64_t m = oldc; m < newc; m++) {
1552 		uint64_t object = 0;
1553 		/*
1554 		 * vdev_ms_array may be 0 if we are creating the "fake"
1555 		 * metaslabs for an indirect vdev for zdb's leak detection.
1556 		 * See zdb_leak_init().
1557 		 */
1558 		if (txg == 0 && vd->vdev_ms_array != 0) {
1559 			error = dmu_read(spa->spa_meta_objset,
1560 			    vd->vdev_ms_array,
1561 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1562 			    DMU_READ_PREFETCH);
1563 			if (error != 0) {
1564 				vdev_dbgmsg(vd, "unable to read the metaslab "
1565 				    "array [error=%d]", error);
1566 				return (error);
1567 			}
1568 		}
1569 
1570 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1571 		    &(vd->vdev_ms[m]));
1572 		if (error != 0) {
1573 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1574 			    error);
1575 			return (error);
1576 		}
1577 	}
1578 
1579 	/*
1580 	 * Find the emptiest metaslab on the vdev and mark it for use for
1581 	 * embedded slog by moving it from the regular to the log metaslab
1582 	 * group.
1583 	 */
1584 	if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1585 	    vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1586 	    avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1587 		uint64_t slog_msid = 0;
1588 		uint64_t smallest = UINT64_MAX;
1589 
1590 		/*
1591 		 * Note, we only search the new metaslabs, because the old
1592 		 * (pre-existing) ones may be active (e.g. have non-empty
1593 		 * range_tree's), and we don't move them to the new
1594 		 * metaslab_t.
1595 		 */
1596 		for (uint64_t m = oldc; m < newc; m++) {
1597 			uint64_t alloc =
1598 			    space_map_allocated(vd->vdev_ms[m]->ms_sm);
1599 			if (alloc < smallest) {
1600 				slog_msid = m;
1601 				smallest = alloc;
1602 			}
1603 		}
1604 		metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1605 		/*
1606 		 * The metaslab was marked as dirty at the end of
1607 		 * metaslab_init(). Remove it from the dirty list so that we
1608 		 * can uninitialize and reinitialize it to the new class.
1609 		 */
1610 		if (txg != 0) {
1611 			(void) txg_list_remove_this(&vd->vdev_ms_list,
1612 			    slog_ms, txg);
1613 		}
1614 		uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1615 		metaslab_fini(slog_ms);
1616 		VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1617 		    &vd->vdev_ms[slog_msid]));
1618 	}
1619 
1620 	if (txg == 0)
1621 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1622 
1623 	/*
1624 	 * If the vdev is marked as non-allocating then don't
1625 	 * activate the metaslabs since we want to ensure that
1626 	 * no allocations are performed on this device.
1627 	 */
1628 	if (vd->vdev_noalloc) {
1629 		/* track non-allocating vdev space */
1630 		spa->spa_nonallocating_dspace += spa_deflate(spa) ?
1631 		    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1632 	} else if (!expanding) {
1633 		metaslab_group_activate(vd->vdev_mg);
1634 		if (vd->vdev_log_mg != NULL)
1635 			metaslab_group_activate(vd->vdev_log_mg);
1636 	}
1637 
1638 	if (txg == 0)
1639 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1640 
1641 	return (0);
1642 }
1643 
1644 void
vdev_metaslab_fini(vdev_t * vd)1645 vdev_metaslab_fini(vdev_t *vd)
1646 {
1647 	if (vd->vdev_checkpoint_sm != NULL) {
1648 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1649 		    SPA_FEATURE_POOL_CHECKPOINT));
1650 		space_map_close(vd->vdev_checkpoint_sm);
1651 		/*
1652 		 * Even though we close the space map, we need to set its
1653 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1654 		 * may be called multiple times for certain operations
1655 		 * (i.e. when destroying a pool) so we need to ensure that
1656 		 * this clause never executes twice. This logic is similar
1657 		 * to the one used for the vdev_ms clause below.
1658 		 */
1659 		vd->vdev_checkpoint_sm = NULL;
1660 	}
1661 
1662 	if (vd->vdev_ms != NULL) {
1663 		metaslab_group_t *mg = vd->vdev_mg;
1664 
1665 		metaslab_group_passivate(mg);
1666 		if (vd->vdev_log_mg != NULL) {
1667 			ASSERT(!vd->vdev_islog);
1668 			metaslab_group_passivate(vd->vdev_log_mg);
1669 		}
1670 
1671 		uint64_t count = vd->vdev_ms_count;
1672 		for (uint64_t m = 0; m < count; m++) {
1673 			metaslab_t *msp = vd->vdev_ms[m];
1674 			if (msp != NULL)
1675 				metaslab_fini(msp);
1676 		}
1677 		vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1678 		vd->vdev_ms = NULL;
1679 		vd->vdev_ms_count = 0;
1680 
1681 		for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) {
1682 			ASSERT0(mg->mg_histogram[i]);
1683 			if (vd->vdev_log_mg != NULL)
1684 				ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1685 		}
1686 	}
1687 	ASSERT0(vd->vdev_ms_count);
1688 }
1689 
1690 typedef struct vdev_probe_stats {
1691 	boolean_t	vps_readable;
1692 	boolean_t	vps_writeable;
1693 	boolean_t	vps_zio_done_probe;
1694 	int		vps_flags;
1695 } vdev_probe_stats_t;
1696 
1697 static void
vdev_probe_done(zio_t * zio)1698 vdev_probe_done(zio_t *zio)
1699 {
1700 	spa_t *spa = zio->io_spa;
1701 	vdev_t *vd = zio->io_vd;
1702 	vdev_probe_stats_t *vps = zio->io_private;
1703 
1704 	ASSERT(vd->vdev_probe_zio != NULL);
1705 
1706 	if (zio->io_type == ZIO_TYPE_READ) {
1707 		if (zio->io_error == 0)
1708 			vps->vps_readable = 1;
1709 		if (zio->io_error == 0 && spa_writeable(spa)) {
1710 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1711 			    zio->io_offset, zio->io_size, zio->io_abd,
1712 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1713 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1714 		} else {
1715 			abd_free(zio->io_abd);
1716 		}
1717 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1718 		if (zio->io_error == 0)
1719 			vps->vps_writeable = 1;
1720 		abd_free(zio->io_abd);
1721 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1722 		zio_t *pio;
1723 		zio_link_t *zl;
1724 
1725 		vd->vdev_cant_read |= !vps->vps_readable;
1726 		vd->vdev_cant_write |= !vps->vps_writeable;
1727 		vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u",
1728 		    vd->vdev_cant_read, vd->vdev_cant_write);
1729 
1730 		if (vdev_readable(vd) &&
1731 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1732 			zio->io_error = 0;
1733 		} else {
1734 			ASSERT(zio->io_error != 0);
1735 			vdev_dbgmsg(vd, "failed probe");
1736 			(void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1737 			    spa, vd, NULL, NULL, 0);
1738 			zio->io_error = SET_ERROR(ENXIO);
1739 
1740 			/*
1741 			 * If this probe was initiated from zio pipeline, then
1742 			 * change the state in a spa_async_request. Probes that
1743 			 * were initiated from a vdev_open can change the state
1744 			 * as part of the open call.
1745 			 */
1746 			if (vps->vps_zio_done_probe) {
1747 				vd->vdev_fault_wanted = B_TRUE;
1748 				spa_async_request(spa, SPA_ASYNC_FAULT_VDEV);
1749 			}
1750 		}
1751 
1752 		mutex_enter(&vd->vdev_probe_lock);
1753 		ASSERT(vd->vdev_probe_zio == zio);
1754 		vd->vdev_probe_zio = NULL;
1755 		mutex_exit(&vd->vdev_probe_lock);
1756 
1757 		zl = NULL;
1758 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1759 			if (!vdev_accessible(vd, pio))
1760 				pio->io_error = SET_ERROR(ENXIO);
1761 
1762 		kmem_free(vps, sizeof (*vps));
1763 	}
1764 }
1765 
1766 /*
1767  * Determine whether this device is accessible.
1768  *
1769  * Read and write to several known locations: the pad regions of each
1770  * vdev label but the first, which we leave alone in case it contains
1771  * a VTOC.
1772  */
1773 zio_t *
vdev_probe(vdev_t * vd,zio_t * zio)1774 vdev_probe(vdev_t *vd, zio_t *zio)
1775 {
1776 	spa_t *spa = vd->vdev_spa;
1777 	vdev_probe_stats_t *vps = NULL;
1778 	zio_t *pio;
1779 
1780 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1781 
1782 	/*
1783 	 * Don't probe the probe.
1784 	 */
1785 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1786 		return (NULL);
1787 
1788 	/*
1789 	 * To prevent 'probe storms' when a device fails, we create
1790 	 * just one probe i/o at a time.  All zios that want to probe
1791 	 * this vdev will become parents of the probe io.
1792 	 */
1793 	mutex_enter(&vd->vdev_probe_lock);
1794 
1795 	if ((pio = vd->vdev_probe_zio) == NULL) {
1796 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1797 
1798 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1799 		    ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD;
1800 		vps->vps_zio_done_probe = (zio != NULL);
1801 
1802 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1803 			/*
1804 			 * vdev_cant_read and vdev_cant_write can only
1805 			 * transition from TRUE to FALSE when we have the
1806 			 * SCL_ZIO lock as writer; otherwise they can only
1807 			 * transition from FALSE to TRUE.  This ensures that
1808 			 * any zio looking at these values can assume that
1809 			 * failures persist for the life of the I/O.  That's
1810 			 * important because when a device has intermittent
1811 			 * connectivity problems, we want to ensure that
1812 			 * they're ascribed to the device (ENXIO) and not
1813 			 * the zio (EIO).
1814 			 *
1815 			 * Since we hold SCL_ZIO as writer here, clear both
1816 			 * values so the probe can reevaluate from first
1817 			 * principles.
1818 			 */
1819 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1820 			vd->vdev_cant_read = B_FALSE;
1821 			vd->vdev_cant_write = B_FALSE;
1822 		}
1823 
1824 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1825 		    vdev_probe_done, vps,
1826 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1827 	}
1828 
1829 	if (zio != NULL)
1830 		zio_add_child(zio, pio);
1831 
1832 	mutex_exit(&vd->vdev_probe_lock);
1833 
1834 	if (vps == NULL) {
1835 		ASSERT(zio != NULL);
1836 		return (NULL);
1837 	}
1838 
1839 	for (int l = 1; l < VDEV_LABELS; l++) {
1840 		zio_nowait(zio_read_phys(pio, vd,
1841 		    vdev_label_offset(vd->vdev_psize, l,
1842 		    offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1843 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1844 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1845 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1846 	}
1847 
1848 	if (zio == NULL)
1849 		return (pio);
1850 
1851 	zio_nowait(pio);
1852 	return (NULL);
1853 }
1854 
1855 static void
vdev_load_child(void * arg)1856 vdev_load_child(void *arg)
1857 {
1858 	vdev_t *vd = arg;
1859 
1860 	vd->vdev_load_error = vdev_load(vd);
1861 }
1862 
1863 static void
vdev_open_child(void * arg)1864 vdev_open_child(void *arg)
1865 {
1866 	vdev_t *vd = arg;
1867 
1868 	vd->vdev_open_thread = curthread;
1869 	vd->vdev_open_error = vdev_open(vd);
1870 	vd->vdev_open_thread = NULL;
1871 }
1872 
1873 static boolean_t
vdev_uses_zvols(vdev_t * vd)1874 vdev_uses_zvols(vdev_t *vd)
1875 {
1876 #ifdef _KERNEL
1877 	if (zvol_is_zvol(vd->vdev_path))
1878 		return (B_TRUE);
1879 #endif
1880 
1881 	for (int c = 0; c < vd->vdev_children; c++)
1882 		if (vdev_uses_zvols(vd->vdev_child[c]))
1883 			return (B_TRUE);
1884 
1885 	return (B_FALSE);
1886 }
1887 
1888 /*
1889  * Returns B_TRUE if the passed child should be opened.
1890  */
1891 static boolean_t
vdev_default_open_children_func(vdev_t * vd)1892 vdev_default_open_children_func(vdev_t *vd)
1893 {
1894 	(void) vd;
1895 	return (B_TRUE);
1896 }
1897 
1898 /*
1899  * Open the requested child vdevs.  If any of the leaf vdevs are using
1900  * a ZFS volume then do the opens in a single thread.  This avoids a
1901  * deadlock when the current thread is holding the spa_namespace_lock.
1902  */
1903 static void
vdev_open_children_impl(vdev_t * vd,vdev_open_children_func_t * open_func)1904 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1905 {
1906 	int children = vd->vdev_children;
1907 
1908 	taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1909 	    children, children, TASKQ_PREPOPULATE);
1910 	vd->vdev_nonrot = B_TRUE;
1911 
1912 	for (int c = 0; c < children; c++) {
1913 		vdev_t *cvd = vd->vdev_child[c];
1914 
1915 		if (open_func(cvd) == B_FALSE)
1916 			continue;
1917 
1918 		if (tq == NULL || vdev_uses_zvols(vd)) {
1919 			cvd->vdev_open_error = vdev_open(cvd);
1920 		} else {
1921 			VERIFY(taskq_dispatch(tq, vdev_open_child,
1922 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
1923 		}
1924 
1925 		vd->vdev_nonrot &= cvd->vdev_nonrot;
1926 	}
1927 
1928 	if (tq != NULL) {
1929 		taskq_wait(tq);
1930 		taskq_destroy(tq);
1931 	}
1932 }
1933 
1934 /*
1935  * Open all child vdevs.
1936  */
1937 void
vdev_open_children(vdev_t * vd)1938 vdev_open_children(vdev_t *vd)
1939 {
1940 	vdev_open_children_impl(vd, vdev_default_open_children_func);
1941 }
1942 
1943 /*
1944  * Conditionally open a subset of child vdevs.
1945  */
1946 void
vdev_open_children_subset(vdev_t * vd,vdev_open_children_func_t * open_func)1947 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
1948 {
1949 	vdev_open_children_impl(vd, open_func);
1950 }
1951 
1952 /*
1953  * Compute the raidz-deflation ratio.  Note, we hard-code 128k (1 << 17)
1954  * because it is the "typical" blocksize.  Even though SPA_MAXBLOCKSIZE
1955  * changed, this algorithm can not change, otherwise it would inconsistently
1956  * account for existing bp's.  We also hard-code txg 0 for the same reason
1957  * since expanded RAIDZ vdevs can use a different asize for different birth
1958  * txg's.
1959  */
1960 static void
vdev_set_deflate_ratio(vdev_t * vd)1961 vdev_set_deflate_ratio(vdev_t *vd)
1962 {
1963 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1964 		vd->vdev_deflate_ratio = (1 << 17) /
1965 		    (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >>
1966 		    SPA_MINBLOCKSHIFT);
1967 	}
1968 }
1969 
1970 /*
1971  * Choose the best of two ashifts, preferring one between logical ashift
1972  * (absolute minimum) and administrator defined maximum, otherwise take
1973  * the biggest of the two.
1974  */
1975 uint64_t
vdev_best_ashift(uint64_t logical,uint64_t a,uint64_t b)1976 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
1977 {
1978 	if (a > logical && a <= zfs_vdev_max_auto_ashift) {
1979 		if (b <= logical || b > zfs_vdev_max_auto_ashift)
1980 			return (a);
1981 		else
1982 			return (MAX(a, b));
1983 	} else if (b <= logical || b > zfs_vdev_max_auto_ashift)
1984 		return (MAX(a, b));
1985 	return (b);
1986 }
1987 
1988 /*
1989  * Maximize performance by inflating the configured ashift for top level
1990  * vdevs to be as close to the physical ashift as possible while maintaining
1991  * administrator defined limits and ensuring it doesn't go below the
1992  * logical ashift.
1993  */
1994 static void
vdev_ashift_optimize(vdev_t * vd)1995 vdev_ashift_optimize(vdev_t *vd)
1996 {
1997 	ASSERT(vd == vd->vdev_top);
1998 
1999 	if (vd->vdev_ashift < vd->vdev_physical_ashift &&
2000 	    vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
2001 		vd->vdev_ashift = MIN(
2002 		    MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
2003 		    MAX(zfs_vdev_min_auto_ashift,
2004 		    vd->vdev_physical_ashift));
2005 	} else {
2006 		/*
2007 		 * If the logical and physical ashifts are the same, then
2008 		 * we ensure that the top-level vdev's ashift is not smaller
2009 		 * than our minimum ashift value. For the unusual case
2010 		 * where logical ashift > physical ashift, we can't cap
2011 		 * the calculated ashift based on max ashift as that
2012 		 * would cause failures.
2013 		 * We still check if we need to increase it to match
2014 		 * the min ashift.
2015 		 */
2016 		vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
2017 		    vd->vdev_ashift);
2018 	}
2019 }
2020 
2021 /*
2022  * Prepare a virtual device for access.
2023  */
2024 int
vdev_open(vdev_t * vd)2025 vdev_open(vdev_t *vd)
2026 {
2027 	spa_t *spa = vd->vdev_spa;
2028 	int error;
2029 	uint64_t osize = 0;
2030 	uint64_t max_osize = 0;
2031 	uint64_t asize, max_asize, psize;
2032 	uint64_t logical_ashift = 0;
2033 	uint64_t physical_ashift = 0;
2034 
2035 	ASSERT(vd->vdev_open_thread == curthread ||
2036 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2037 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
2038 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
2039 	    vd->vdev_state == VDEV_STATE_OFFLINE);
2040 
2041 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2042 	vd->vdev_cant_read = B_FALSE;
2043 	vd->vdev_cant_write = B_FALSE;
2044 	vd->vdev_fault_wanted = B_FALSE;
2045 	vd->vdev_remove_wanted = B_FALSE;
2046 	vd->vdev_min_asize = vdev_get_min_asize(vd);
2047 
2048 	/*
2049 	 * If this vdev is not removed, check its fault status.  If it's
2050 	 * faulted, bail out of the open.
2051 	 */
2052 	if (!vd->vdev_removed && vd->vdev_faulted) {
2053 		ASSERT(vd->vdev_children == 0);
2054 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2055 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2056 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2057 		    vd->vdev_label_aux);
2058 		return (SET_ERROR(ENXIO));
2059 	} else if (vd->vdev_offline) {
2060 		ASSERT(vd->vdev_children == 0);
2061 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
2062 		return (SET_ERROR(ENXIO));
2063 	}
2064 
2065 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
2066 	    &logical_ashift, &physical_ashift);
2067 
2068 	/* Keep the device in removed state if unplugged */
2069 	if (error == ENOENT && vd->vdev_removed) {
2070 		vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
2071 		    VDEV_AUX_NONE);
2072 		return (error);
2073 	}
2074 
2075 	/*
2076 	 * Physical volume size should never be larger than its max size, unless
2077 	 * the disk has shrunk while we were reading it or the device is buggy
2078 	 * or damaged: either way it's not safe for use, bail out of the open.
2079 	 */
2080 	if (osize > max_osize) {
2081 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2082 		    VDEV_AUX_OPEN_FAILED);
2083 		return (SET_ERROR(ENXIO));
2084 	}
2085 
2086 	/*
2087 	 * Reset the vdev_reopening flag so that we actually close
2088 	 * the vdev on error.
2089 	 */
2090 	vd->vdev_reopening = B_FALSE;
2091 	if (zio_injection_enabled && error == 0)
2092 		error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
2093 
2094 	if (error) {
2095 		if (vd->vdev_removed &&
2096 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
2097 			vd->vdev_removed = B_FALSE;
2098 
2099 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
2100 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
2101 			    vd->vdev_stat.vs_aux);
2102 		} else {
2103 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2104 			    vd->vdev_stat.vs_aux);
2105 		}
2106 		return (error);
2107 	}
2108 
2109 	vd->vdev_removed = B_FALSE;
2110 
2111 	/*
2112 	 * Recheck the faulted flag now that we have confirmed that
2113 	 * the vdev is accessible.  If we're faulted, bail.
2114 	 */
2115 	if (vd->vdev_faulted) {
2116 		ASSERT(vd->vdev_children == 0);
2117 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2118 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2119 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2120 		    vd->vdev_label_aux);
2121 		return (SET_ERROR(ENXIO));
2122 	}
2123 
2124 	if (vd->vdev_degraded) {
2125 		ASSERT(vd->vdev_children == 0);
2126 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2127 		    VDEV_AUX_ERR_EXCEEDED);
2128 	} else {
2129 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
2130 	}
2131 
2132 	/*
2133 	 * For hole or missing vdevs we just return success.
2134 	 */
2135 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
2136 		return (0);
2137 
2138 	for (int c = 0; c < vd->vdev_children; c++) {
2139 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
2140 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2141 			    VDEV_AUX_NONE);
2142 			break;
2143 		}
2144 	}
2145 
2146 	osize = P2ALIGN_TYPED(osize, sizeof (vdev_label_t), uint64_t);
2147 	max_osize = P2ALIGN_TYPED(max_osize, sizeof (vdev_label_t), uint64_t);
2148 
2149 	if (vd->vdev_children == 0) {
2150 		if (osize < SPA_MINDEVSIZE) {
2151 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2152 			    VDEV_AUX_TOO_SMALL);
2153 			return (SET_ERROR(EOVERFLOW));
2154 		}
2155 		psize = osize;
2156 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2157 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2158 		    VDEV_LABEL_END_SIZE);
2159 	} else {
2160 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2161 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2162 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2163 			    VDEV_AUX_TOO_SMALL);
2164 			return (SET_ERROR(EOVERFLOW));
2165 		}
2166 		psize = 0;
2167 		asize = osize;
2168 		max_asize = max_osize;
2169 	}
2170 
2171 	/*
2172 	 * If the vdev was expanded, record this so that we can re-create the
2173 	 * uberblock rings in labels {2,3}, during the next sync.
2174 	 */
2175 	if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2176 		vd->vdev_copy_uberblocks = B_TRUE;
2177 
2178 	vd->vdev_psize = psize;
2179 
2180 	/*
2181 	 * Make sure the allocatable size hasn't shrunk too much.
2182 	 */
2183 	if (asize < vd->vdev_min_asize) {
2184 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2185 		    VDEV_AUX_BAD_LABEL);
2186 		return (SET_ERROR(EINVAL));
2187 	}
2188 
2189 	/*
2190 	 * We can always set the logical/physical ashift members since
2191 	 * their values are only used to calculate the vdev_ashift when
2192 	 * the device is first added to the config. These values should
2193 	 * not be used for anything else since they may change whenever
2194 	 * the device is reopened and we don't store them in the label.
2195 	 */
2196 	vd->vdev_physical_ashift =
2197 	    MAX(physical_ashift, vd->vdev_physical_ashift);
2198 	vd->vdev_logical_ashift = MAX(logical_ashift,
2199 	    vd->vdev_logical_ashift);
2200 
2201 	if (vd->vdev_asize == 0) {
2202 		/*
2203 		 * This is the first-ever open, so use the computed values.
2204 		 * For compatibility, a different ashift can be requested.
2205 		 */
2206 		vd->vdev_asize = asize;
2207 		vd->vdev_max_asize = max_asize;
2208 
2209 		/*
2210 		 * If the vdev_ashift was not overridden at creation time
2211 		 * (0) or the override value is impossible for the device,
2212 		 * then set it the logical ashift and optimize the ashift.
2213 		 */
2214 		if (vd->vdev_ashift < vd->vdev_logical_ashift) {
2215 			vd->vdev_ashift = vd->vdev_logical_ashift;
2216 
2217 			if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2218 				vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2219 				    VDEV_AUX_ASHIFT_TOO_BIG);
2220 				return (SET_ERROR(EDOM));
2221 			}
2222 
2223 			if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE)
2224 				vdev_ashift_optimize(vd);
2225 			vd->vdev_attaching = B_FALSE;
2226 		}
2227 		if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2228 		    vd->vdev_ashift > ASHIFT_MAX)) {
2229 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2230 			    VDEV_AUX_BAD_ASHIFT);
2231 			return (SET_ERROR(EDOM));
2232 		}
2233 	} else {
2234 		/*
2235 		 * Make sure the alignment required hasn't increased.
2236 		 */
2237 		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2238 		    vd->vdev_ops->vdev_op_leaf) {
2239 			(void) zfs_ereport_post(
2240 			    FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2241 			    spa, vd, NULL, NULL, 0);
2242 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2243 			    VDEV_AUX_BAD_LABEL);
2244 			return (SET_ERROR(EDOM));
2245 		}
2246 		vd->vdev_max_asize = max_asize;
2247 	}
2248 
2249 	/*
2250 	 * If all children are healthy we update asize if either:
2251 	 * The asize has increased, due to a device expansion caused by dynamic
2252 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
2253 	 * making the additional space available.
2254 	 *
2255 	 * The asize has decreased, due to a device shrink usually caused by a
2256 	 * vdev replace with a smaller device. This ensures that calculations
2257 	 * based of max_asize and asize e.g. esize are always valid. It's safe
2258 	 * to do this as we've already validated that asize is greater than
2259 	 * vdev_min_asize.
2260 	 */
2261 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2262 	    ((asize > vd->vdev_asize &&
2263 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
2264 	    (asize < vd->vdev_asize)))
2265 		vd->vdev_asize = asize;
2266 
2267 	vdev_set_min_asize(vd);
2268 
2269 	/*
2270 	 * Ensure we can issue some IO before declaring the
2271 	 * vdev open for business.
2272 	 */
2273 	if (vd->vdev_ops->vdev_op_leaf &&
2274 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2275 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2276 		    VDEV_AUX_ERR_EXCEEDED);
2277 		return (error);
2278 	}
2279 
2280 	/*
2281 	 * Track the minimum allocation size.
2282 	 */
2283 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2284 	    vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2285 		uint64_t min_alloc = vdev_get_min_alloc(vd);
2286 		vdev_spa_set_alloc(spa, min_alloc);
2287 	}
2288 
2289 	/*
2290 	 * If this is a leaf vdev, assess whether a resilver is needed.
2291 	 * But don't do this if we are doing a reopen for a scrub, since
2292 	 * this would just restart the scrub we are already doing.
2293 	 */
2294 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2295 		dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2296 
2297 	return (0);
2298 }
2299 
2300 static void
vdev_validate_child(void * arg)2301 vdev_validate_child(void *arg)
2302 {
2303 	vdev_t *vd = arg;
2304 
2305 	vd->vdev_validate_thread = curthread;
2306 	vd->vdev_validate_error = vdev_validate(vd);
2307 	vd->vdev_validate_thread = NULL;
2308 }
2309 
2310 /*
2311  * Called once the vdevs are all opened, this routine validates the label
2312  * contents. This needs to be done before vdev_load() so that we don't
2313  * inadvertently do repair I/Os to the wrong device.
2314  *
2315  * This function will only return failure if one of the vdevs indicates that it
2316  * has since been destroyed or exported.  This is only possible if
2317  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
2318  * will be updated but the function will return 0.
2319  */
2320 int
vdev_validate(vdev_t * vd)2321 vdev_validate(vdev_t *vd)
2322 {
2323 	spa_t *spa = vd->vdev_spa;
2324 	taskq_t *tq = NULL;
2325 	nvlist_t *label;
2326 	uint64_t guid = 0, aux_guid = 0, top_guid;
2327 	uint64_t state;
2328 	nvlist_t *nvl;
2329 	uint64_t txg;
2330 	int children = vd->vdev_children;
2331 
2332 	if (vdev_validate_skip)
2333 		return (0);
2334 
2335 	if (children > 0) {
2336 		tq = taskq_create("vdev_validate", children, minclsyspri,
2337 		    children, children, TASKQ_PREPOPULATE);
2338 	}
2339 
2340 	for (uint64_t c = 0; c < children; c++) {
2341 		vdev_t *cvd = vd->vdev_child[c];
2342 
2343 		if (tq == NULL || vdev_uses_zvols(cvd)) {
2344 			vdev_validate_child(cvd);
2345 		} else {
2346 			VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2347 			    TQ_SLEEP) != TASKQID_INVALID);
2348 		}
2349 	}
2350 	if (tq != NULL) {
2351 		taskq_wait(tq);
2352 		taskq_destroy(tq);
2353 	}
2354 	for (int c = 0; c < children; c++) {
2355 		int error = vd->vdev_child[c]->vdev_validate_error;
2356 
2357 		if (error != 0)
2358 			return (SET_ERROR(EBADF));
2359 	}
2360 
2361 
2362 	/*
2363 	 * If the device has already failed, or was marked offline, don't do
2364 	 * any further validation.  Otherwise, label I/O will fail and we will
2365 	 * overwrite the previous state.
2366 	 */
2367 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2368 		return (0);
2369 
2370 	/*
2371 	 * If we are performing an extreme rewind, we allow for a label that
2372 	 * was modified at a point after the current txg.
2373 	 * If config lock is not held do not check for the txg. spa_sync could
2374 	 * be updating the vdev's label before updating spa_last_synced_txg.
2375 	 */
2376 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2377 	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2378 		txg = UINT64_MAX;
2379 	else
2380 		txg = spa_last_synced_txg(spa);
2381 
2382 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2383 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2384 		    VDEV_AUX_BAD_LABEL);
2385 		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2386 		    "txg %llu", (u_longlong_t)txg);
2387 		return (0);
2388 	}
2389 
2390 	/*
2391 	 * Determine if this vdev has been split off into another
2392 	 * pool.  If so, then refuse to open it.
2393 	 */
2394 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2395 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2396 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2397 		    VDEV_AUX_SPLIT_POOL);
2398 		nvlist_free(label);
2399 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2400 		return (0);
2401 	}
2402 
2403 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2404 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2405 		    VDEV_AUX_CORRUPT_DATA);
2406 		nvlist_free(label);
2407 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2408 		    ZPOOL_CONFIG_POOL_GUID);
2409 		return (0);
2410 	}
2411 
2412 	/*
2413 	 * If config is not trusted then ignore the spa guid check. This is
2414 	 * necessary because if the machine crashed during a re-guid the new
2415 	 * guid might have been written to all of the vdev labels, but not the
2416 	 * cached config. The check will be performed again once we have the
2417 	 * trusted config from the MOS.
2418 	 */
2419 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
2420 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2421 		    VDEV_AUX_CORRUPT_DATA);
2422 		nvlist_free(label);
2423 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2424 		    "match config (%llu != %llu)", (u_longlong_t)guid,
2425 		    (u_longlong_t)spa_guid(spa));
2426 		return (0);
2427 	}
2428 
2429 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2430 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2431 	    &aux_guid) != 0)
2432 		aux_guid = 0;
2433 
2434 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2435 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2436 		    VDEV_AUX_CORRUPT_DATA);
2437 		nvlist_free(label);
2438 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2439 		    ZPOOL_CONFIG_GUID);
2440 		return (0);
2441 	}
2442 
2443 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2444 	    != 0) {
2445 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2446 		    VDEV_AUX_CORRUPT_DATA);
2447 		nvlist_free(label);
2448 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2449 		    ZPOOL_CONFIG_TOP_GUID);
2450 		return (0);
2451 	}
2452 
2453 	/*
2454 	 * If this vdev just became a top-level vdev because its sibling was
2455 	 * detached, it will have adopted the parent's vdev guid -- but the
2456 	 * label may or may not be on disk yet. Fortunately, either version
2457 	 * of the label will have the same top guid, so if we're a top-level
2458 	 * vdev, we can safely compare to that instead.
2459 	 * However, if the config comes from a cachefile that failed to update
2460 	 * after the detach, a top-level vdev will appear as a non top-level
2461 	 * vdev in the config. Also relax the constraints if we perform an
2462 	 * extreme rewind.
2463 	 *
2464 	 * If we split this vdev off instead, then we also check the
2465 	 * original pool's guid. We don't want to consider the vdev
2466 	 * corrupt if it is partway through a split operation.
2467 	 */
2468 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2469 		boolean_t mismatch = B_FALSE;
2470 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2471 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2472 				mismatch = B_TRUE;
2473 		} else {
2474 			if (vd->vdev_guid != top_guid &&
2475 			    vd->vdev_top->vdev_guid != guid)
2476 				mismatch = B_TRUE;
2477 		}
2478 
2479 		if (mismatch) {
2480 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2481 			    VDEV_AUX_CORRUPT_DATA);
2482 			nvlist_free(label);
2483 			vdev_dbgmsg(vd, "vdev_validate: config guid "
2484 			    "doesn't match label guid");
2485 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2486 			    (u_longlong_t)vd->vdev_guid,
2487 			    (u_longlong_t)vd->vdev_top->vdev_guid);
2488 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2489 			    "aux_guid %llu", (u_longlong_t)guid,
2490 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2491 			return (0);
2492 		}
2493 	}
2494 
2495 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2496 	    &state) != 0) {
2497 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2498 		    VDEV_AUX_CORRUPT_DATA);
2499 		nvlist_free(label);
2500 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2501 		    ZPOOL_CONFIG_POOL_STATE);
2502 		return (0);
2503 	}
2504 
2505 	nvlist_free(label);
2506 
2507 	/*
2508 	 * If this is a verbatim import, no need to check the
2509 	 * state of the pool.
2510 	 */
2511 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2512 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
2513 	    state != POOL_STATE_ACTIVE) {
2514 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2515 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
2516 		return (SET_ERROR(EBADF));
2517 	}
2518 
2519 	/*
2520 	 * If we were able to open and validate a vdev that was
2521 	 * previously marked permanently unavailable, clear that state
2522 	 * now.
2523 	 */
2524 	if (vd->vdev_not_present)
2525 		vd->vdev_not_present = 0;
2526 
2527 	return (0);
2528 }
2529 
2530 static void
vdev_update_path(const char * prefix,char * svd,char ** dvd,uint64_t guid)2531 vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid)
2532 {
2533 	if (svd != NULL && *dvd != NULL) {
2534 		if (strcmp(svd, *dvd) != 0) {
2535 			zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed "
2536 			    "from '%s' to '%s'", (u_longlong_t)guid, prefix,
2537 			    *dvd, svd);
2538 			spa_strfree(*dvd);
2539 			*dvd = spa_strdup(svd);
2540 		}
2541 	} else if (svd != NULL) {
2542 		*dvd = spa_strdup(svd);
2543 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2544 		    (u_longlong_t)guid, *dvd);
2545 	}
2546 }
2547 
2548 static void
vdev_copy_path_impl(vdev_t * svd,vdev_t * dvd)2549 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2550 {
2551 	char *old, *new;
2552 
2553 	vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path,
2554 	    dvd->vdev_guid);
2555 
2556 	vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid,
2557 	    dvd->vdev_guid);
2558 
2559 	vdev_update_path("vdev_physpath", svd->vdev_physpath,
2560 	    &dvd->vdev_physpath, dvd->vdev_guid);
2561 
2562 	/*
2563 	 * Our enclosure sysfs path may have changed between imports
2564 	 */
2565 	old = dvd->vdev_enc_sysfs_path;
2566 	new = svd->vdev_enc_sysfs_path;
2567 	if ((old != NULL && new == NULL) ||
2568 	    (old == NULL && new != NULL) ||
2569 	    ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2570 		zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2571 		    "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2572 		    old, new);
2573 
2574 		if (dvd->vdev_enc_sysfs_path)
2575 			spa_strfree(dvd->vdev_enc_sysfs_path);
2576 
2577 		if (svd->vdev_enc_sysfs_path) {
2578 			dvd->vdev_enc_sysfs_path = spa_strdup(
2579 			    svd->vdev_enc_sysfs_path);
2580 		} else {
2581 			dvd->vdev_enc_sysfs_path = NULL;
2582 		}
2583 	}
2584 }
2585 
2586 /*
2587  * Recursively copy vdev paths from one vdev to another. Source and destination
2588  * vdev trees must have same geometry otherwise return error. Intended to copy
2589  * paths from userland config into MOS config.
2590  */
2591 int
vdev_copy_path_strict(vdev_t * svd,vdev_t * dvd)2592 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2593 {
2594 	if ((svd->vdev_ops == &vdev_missing_ops) ||
2595 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
2596 	    (dvd->vdev_ops == &vdev_indirect_ops))
2597 		return (0);
2598 
2599 	if (svd->vdev_ops != dvd->vdev_ops) {
2600 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2601 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2602 		return (SET_ERROR(EINVAL));
2603 	}
2604 
2605 	if (svd->vdev_guid != dvd->vdev_guid) {
2606 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2607 		    "%llu)", (u_longlong_t)svd->vdev_guid,
2608 		    (u_longlong_t)dvd->vdev_guid);
2609 		return (SET_ERROR(EINVAL));
2610 	}
2611 
2612 	if (svd->vdev_children != dvd->vdev_children) {
2613 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2614 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
2615 		    (u_longlong_t)dvd->vdev_children);
2616 		return (SET_ERROR(EINVAL));
2617 	}
2618 
2619 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
2620 		int error = vdev_copy_path_strict(svd->vdev_child[i],
2621 		    dvd->vdev_child[i]);
2622 		if (error != 0)
2623 			return (error);
2624 	}
2625 
2626 	if (svd->vdev_ops->vdev_op_leaf)
2627 		vdev_copy_path_impl(svd, dvd);
2628 
2629 	return (0);
2630 }
2631 
2632 static void
vdev_copy_path_search(vdev_t * stvd,vdev_t * dvd)2633 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2634 {
2635 	ASSERT(stvd->vdev_top == stvd);
2636 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2637 
2638 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2639 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2640 	}
2641 
2642 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2643 		return;
2644 
2645 	/*
2646 	 * The idea here is that while a vdev can shift positions within
2647 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2648 	 * step outside of it.
2649 	 */
2650 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2651 
2652 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2653 		return;
2654 
2655 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2656 
2657 	vdev_copy_path_impl(vd, dvd);
2658 }
2659 
2660 /*
2661  * Recursively copy vdev paths from one root vdev to another. Source and
2662  * destination vdev trees may differ in geometry. For each destination leaf
2663  * vdev, search a vdev with the same guid and top vdev id in the source.
2664  * Intended to copy paths from userland config into MOS config.
2665  */
2666 void
vdev_copy_path_relaxed(vdev_t * srvd,vdev_t * drvd)2667 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2668 {
2669 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2670 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2671 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2672 
2673 	for (uint64_t i = 0; i < children; i++) {
2674 		vdev_copy_path_search(srvd->vdev_child[i],
2675 		    drvd->vdev_child[i]);
2676 	}
2677 }
2678 
2679 /*
2680  * Close a virtual device.
2681  */
2682 void
vdev_close(vdev_t * vd)2683 vdev_close(vdev_t *vd)
2684 {
2685 	vdev_t *pvd = vd->vdev_parent;
2686 	spa_t *spa __maybe_unused = vd->vdev_spa;
2687 
2688 	ASSERT(vd != NULL);
2689 	ASSERT(vd->vdev_open_thread == curthread ||
2690 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2691 
2692 	/*
2693 	 * If our parent is reopening, then we are as well, unless we are
2694 	 * going offline.
2695 	 */
2696 	if (pvd != NULL && pvd->vdev_reopening)
2697 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2698 
2699 	vd->vdev_ops->vdev_op_close(vd);
2700 
2701 	/*
2702 	 * We record the previous state before we close it, so that if we are
2703 	 * doing a reopen(), we don't generate FMA ereports if we notice that
2704 	 * it's still faulted.
2705 	 */
2706 	vd->vdev_prevstate = vd->vdev_state;
2707 
2708 	if (vd->vdev_offline)
2709 		vd->vdev_state = VDEV_STATE_OFFLINE;
2710 	else
2711 		vd->vdev_state = VDEV_STATE_CLOSED;
2712 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2713 }
2714 
2715 void
vdev_hold(vdev_t * vd)2716 vdev_hold(vdev_t *vd)
2717 {
2718 	spa_t *spa = vd->vdev_spa;
2719 
2720 	ASSERT(spa_is_root(spa));
2721 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2722 		return;
2723 
2724 	for (int c = 0; c < vd->vdev_children; c++)
2725 		vdev_hold(vd->vdev_child[c]);
2726 
2727 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2728 		vd->vdev_ops->vdev_op_hold(vd);
2729 }
2730 
2731 void
vdev_rele(vdev_t * vd)2732 vdev_rele(vdev_t *vd)
2733 {
2734 	ASSERT(spa_is_root(vd->vdev_spa));
2735 	for (int c = 0; c < vd->vdev_children; c++)
2736 		vdev_rele(vd->vdev_child[c]);
2737 
2738 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2739 		vd->vdev_ops->vdev_op_rele(vd);
2740 }
2741 
2742 /*
2743  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2744  * reopen leaf vdevs which had previously been opened as they might deadlock
2745  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2746  * If the leaf has never been opened then open it, as usual.
2747  */
2748 void
vdev_reopen(vdev_t * vd)2749 vdev_reopen(vdev_t *vd)
2750 {
2751 	spa_t *spa = vd->vdev_spa;
2752 
2753 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2754 
2755 	/* set the reopening flag unless we're taking the vdev offline */
2756 	vd->vdev_reopening = !vd->vdev_offline;
2757 	vdev_close(vd);
2758 	(void) vdev_open(vd);
2759 
2760 	/*
2761 	 * Call vdev_validate() here to make sure we have the same device.
2762 	 * Otherwise, a device with an invalid label could be successfully
2763 	 * opened in response to vdev_reopen().
2764 	 */
2765 	if (vd->vdev_aux) {
2766 		(void) vdev_validate_aux(vd);
2767 		if (vdev_readable(vd) && vdev_writeable(vd) &&
2768 		    vd->vdev_aux == &spa->spa_l2cache) {
2769 			/*
2770 			 * In case the vdev is present we should evict all ARC
2771 			 * buffers and pointers to log blocks and reclaim their
2772 			 * space before restoring its contents to L2ARC.
2773 			 */
2774 			if (l2arc_vdev_present(vd)) {
2775 				l2arc_rebuild_vdev(vd, B_TRUE);
2776 			} else {
2777 				l2arc_add_vdev(spa, vd);
2778 			}
2779 			spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2780 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2781 		}
2782 	} else {
2783 		(void) vdev_validate(vd);
2784 	}
2785 
2786 	/*
2787 	 * Recheck if resilver is still needed and cancel any
2788 	 * scheduled resilver if resilver is unneeded.
2789 	 */
2790 	if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) &&
2791 	    spa->spa_async_tasks & SPA_ASYNC_RESILVER) {
2792 		mutex_enter(&spa->spa_async_lock);
2793 		spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER;
2794 		mutex_exit(&spa->spa_async_lock);
2795 	}
2796 
2797 	/*
2798 	 * Reassess parent vdev's health.
2799 	 */
2800 	vdev_propagate_state(vd);
2801 }
2802 
2803 int
vdev_create(vdev_t * vd,uint64_t txg,boolean_t isreplacing)2804 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2805 {
2806 	int error;
2807 
2808 	/*
2809 	 * Normally, partial opens (e.g. of a mirror) are allowed.
2810 	 * For a create, however, we want to fail the request if
2811 	 * there are any components we can't open.
2812 	 */
2813 	error = vdev_open(vd);
2814 
2815 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2816 		vdev_close(vd);
2817 		return (error ? error : SET_ERROR(ENXIO));
2818 	}
2819 
2820 	/*
2821 	 * Recursively load DTLs and initialize all labels.
2822 	 */
2823 	if ((error = vdev_dtl_load(vd)) != 0 ||
2824 	    (error = vdev_label_init(vd, txg, isreplacing ?
2825 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2826 		vdev_close(vd);
2827 		return (error);
2828 	}
2829 
2830 	return (0);
2831 }
2832 
2833 void
vdev_metaslab_set_size(vdev_t * vd)2834 vdev_metaslab_set_size(vdev_t *vd)
2835 {
2836 	uint64_t asize = vd->vdev_asize;
2837 	uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2838 	uint64_t ms_shift;
2839 
2840 	/*
2841 	 * There are two dimensions to the metaslab sizing calculation:
2842 	 * the size of the metaslab and the count of metaslabs per vdev.
2843 	 *
2844 	 * The default values used below are a good balance between memory
2845 	 * usage (larger metaslab size means more memory needed for loaded
2846 	 * metaslabs; more metaslabs means more memory needed for the
2847 	 * metaslab_t structs), metaslab load time (larger metaslabs take
2848 	 * longer to load), and metaslab sync time (more metaslabs means
2849 	 * more time spent syncing all of them).
2850 	 *
2851 	 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2852 	 * The range of the dimensions are as follows:
2853 	 *
2854 	 *	2^29 <= ms_size  <= 2^34
2855 	 *	  16 <= ms_count <= 131,072
2856 	 *
2857 	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2858 	 * at least 512MB (2^29) to minimize fragmentation effects when
2859 	 * testing with smaller devices.  However, the count constraint
2860 	 * of at least 16 metaslabs will override this minimum size goal.
2861 	 *
2862 	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2863 	 * size of 16GB.  However, we will cap the total count to 2^17
2864 	 * metaslabs to keep our memory footprint in check and let the
2865 	 * metaslab size grow from there if that limit is hit.
2866 	 *
2867 	 * The net effect of applying above constrains is summarized below.
2868 	 *
2869 	 *   vdev size       metaslab count
2870 	 *  --------------|-----------------
2871 	 *      < 8GB        ~16
2872 	 *  8GB   - 100GB   one per 512MB
2873 	 *  100GB - 3TB     ~200
2874 	 *  3TB   - 2PB     one per 16GB
2875 	 *      > 2PB       ~131,072
2876 	 *  --------------------------------
2877 	 *
2878 	 *  Finally, note that all of the above calculate the initial
2879 	 *  number of metaslabs. Expanding a top-level vdev will result
2880 	 *  in additional metaslabs being allocated making it possible
2881 	 *  to exceed the zfs_vdev_ms_count_limit.
2882 	 */
2883 
2884 	if (ms_count < zfs_vdev_min_ms_count)
2885 		ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2886 	else if (ms_count > zfs_vdev_default_ms_count)
2887 		ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2888 	else
2889 		ms_shift = zfs_vdev_default_ms_shift;
2890 
2891 	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2892 		ms_shift = SPA_MAXBLOCKSHIFT;
2893 	} else if (ms_shift > zfs_vdev_max_ms_shift) {
2894 		ms_shift = zfs_vdev_max_ms_shift;
2895 		/* cap the total count to constrain memory footprint */
2896 		if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2897 			ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2898 	}
2899 
2900 	vd->vdev_ms_shift = ms_shift;
2901 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2902 }
2903 
2904 void
vdev_dirty(vdev_t * vd,int flags,void * arg,uint64_t txg)2905 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2906 {
2907 	ASSERT(vd == vd->vdev_top);
2908 	/* indirect vdevs don't have metaslabs or dtls */
2909 	ASSERT(vdev_is_concrete(vd) || flags == 0);
2910 	ASSERT(ISP2(flags));
2911 	ASSERT(spa_writeable(vd->vdev_spa));
2912 
2913 	if (flags & VDD_METASLAB)
2914 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2915 
2916 	if (flags & VDD_DTL)
2917 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2918 
2919 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2920 }
2921 
2922 void
vdev_dirty_leaves(vdev_t * vd,int flags,uint64_t txg)2923 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2924 {
2925 	for (int c = 0; c < vd->vdev_children; c++)
2926 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2927 
2928 	if (vd->vdev_ops->vdev_op_leaf)
2929 		vdev_dirty(vd->vdev_top, flags, vd, txg);
2930 }
2931 
2932 /*
2933  * DTLs.
2934  *
2935  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2936  * the vdev has less than perfect replication.  There are four kinds of DTL:
2937  *
2938  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2939  *
2940  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2941  *
2942  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2943  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2944  *	txgs that was scrubbed.
2945  *
2946  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2947  *	persistent errors or just some device being offline.
2948  *	Unlike the other three, the DTL_OUTAGE map is not generally
2949  *	maintained; it's only computed when needed, typically to
2950  *	determine whether a device can be detached.
2951  *
2952  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2953  * either has the data or it doesn't.
2954  *
2955  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2956  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2957  * if any child is less than fully replicated, then so is its parent.
2958  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2959  * comprising only those txgs which appear in 'maxfaults' or more children;
2960  * those are the txgs we don't have enough replication to read.  For example,
2961  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2962  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2963  * two child DTL_MISSING maps.
2964  *
2965  * It should be clear from the above that to compute the DTLs and outage maps
2966  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2967  * Therefore, that is all we keep on disk.  When loading the pool, or after
2968  * a configuration change, we generate all other DTLs from first principles.
2969  */
2970 void
vdev_dtl_dirty(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)2971 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2972 {
2973 	zfs_range_tree_t *rt = vd->vdev_dtl[t];
2974 
2975 	ASSERT(t < DTL_TYPES);
2976 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2977 	ASSERT(spa_writeable(vd->vdev_spa));
2978 
2979 	mutex_enter(&vd->vdev_dtl_lock);
2980 	if (!zfs_range_tree_contains(rt, txg, size))
2981 		zfs_range_tree_add(rt, txg, size);
2982 	mutex_exit(&vd->vdev_dtl_lock);
2983 }
2984 
2985 boolean_t
vdev_dtl_contains(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)2986 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2987 {
2988 	zfs_range_tree_t *rt = vd->vdev_dtl[t];
2989 	boolean_t dirty = B_FALSE;
2990 
2991 	ASSERT(t < DTL_TYPES);
2992 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2993 
2994 	/*
2995 	 * While we are loading the pool, the DTLs have not been loaded yet.
2996 	 * This isn't a problem but it can result in devices being tried
2997 	 * which are known to not have the data.  In which case, the import
2998 	 * is relying on the checksum to ensure that we get the right data.
2999 	 * Note that while importing we are only reading the MOS, which is
3000 	 * always checksummed.
3001 	 */
3002 	mutex_enter(&vd->vdev_dtl_lock);
3003 	if (!zfs_range_tree_is_empty(rt))
3004 		dirty = zfs_range_tree_contains(rt, txg, size);
3005 	mutex_exit(&vd->vdev_dtl_lock);
3006 
3007 	return (dirty);
3008 }
3009 
3010 boolean_t
vdev_dtl_empty(vdev_t * vd,vdev_dtl_type_t t)3011 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
3012 {
3013 	zfs_range_tree_t *rt = vd->vdev_dtl[t];
3014 	boolean_t empty;
3015 
3016 	mutex_enter(&vd->vdev_dtl_lock);
3017 	empty = zfs_range_tree_is_empty(rt);
3018 	mutex_exit(&vd->vdev_dtl_lock);
3019 
3020 	return (empty);
3021 }
3022 
3023 /*
3024  * Check if the txg falls within the range which must be
3025  * resilvered.  DVAs outside this range can always be skipped.
3026  */
3027 boolean_t
vdev_default_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3028 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3029     uint64_t phys_birth)
3030 {
3031 	(void) dva, (void) psize;
3032 
3033 	/* Set by sequential resilver. */
3034 	if (phys_birth == TXG_UNKNOWN)
3035 		return (B_TRUE);
3036 
3037 	return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
3038 }
3039 
3040 /*
3041  * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
3042  */
3043 boolean_t
vdev_dtl_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3044 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3045     uint64_t phys_birth)
3046 {
3047 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3048 
3049 	if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
3050 	    vd->vdev_ops->vdev_op_leaf)
3051 		return (B_TRUE);
3052 
3053 	return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
3054 	    phys_birth));
3055 }
3056 
3057 /*
3058  * Returns the lowest txg in the DTL range.
3059  */
3060 static uint64_t
vdev_dtl_min(vdev_t * vd)3061 vdev_dtl_min(vdev_t *vd)
3062 {
3063 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3064 	ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3065 	ASSERT0(vd->vdev_children);
3066 
3067 	return (zfs_range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
3068 }
3069 
3070 /*
3071  * Returns the highest txg in the DTL.
3072  */
3073 static uint64_t
vdev_dtl_max(vdev_t * vd)3074 vdev_dtl_max(vdev_t *vd)
3075 {
3076 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3077 	ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3078 	ASSERT0(vd->vdev_children);
3079 
3080 	return (zfs_range_tree_max(vd->vdev_dtl[DTL_MISSING]));
3081 }
3082 
3083 /*
3084  * Determine if a resilvering vdev should remove any DTL entries from
3085  * its range. If the vdev was resilvering for the entire duration of the
3086  * scan then it should excise that range from its DTLs. Otherwise, this
3087  * vdev is considered partially resilvered and should leave its DTL
3088  * entries intact. The comment in vdev_dtl_reassess() describes how we
3089  * excise the DTLs.
3090  */
3091 static boolean_t
vdev_dtl_should_excise(vdev_t * vd,boolean_t rebuild_done)3092 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
3093 {
3094 	ASSERT0(vd->vdev_children);
3095 
3096 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
3097 		return (B_FALSE);
3098 
3099 	if (vd->vdev_resilver_deferred)
3100 		return (B_FALSE);
3101 
3102 	if (zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
3103 		return (B_TRUE);
3104 
3105 	if (rebuild_done) {
3106 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3107 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
3108 
3109 		/* Rebuild not initiated by attach */
3110 		if (vd->vdev_rebuild_txg == 0)
3111 			return (B_TRUE);
3112 
3113 		/*
3114 		 * When a rebuild completes without error then all missing data
3115 		 * up to the rebuild max txg has been reconstructed and the DTL
3116 		 * is eligible for excision.
3117 		 */
3118 		if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
3119 		    vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
3120 			ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
3121 			ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
3122 			ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
3123 			return (B_TRUE);
3124 		}
3125 	} else {
3126 		dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3127 		dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
3128 
3129 		/* Resilver not initiated by attach */
3130 		if (vd->vdev_resilver_txg == 0)
3131 			return (B_TRUE);
3132 
3133 		/*
3134 		 * When a resilver is initiated the scan will assign the
3135 		 * scn_max_txg value to the highest txg value that exists
3136 		 * in all DTLs. If this device's max DTL is not part of this
3137 		 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
3138 		 * then it is not eligible for excision.
3139 		 */
3140 		if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
3141 			ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
3142 			ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
3143 			ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
3144 			return (B_TRUE);
3145 		}
3146 	}
3147 
3148 	return (B_FALSE);
3149 }
3150 
3151 /*
3152  * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3153  * write operations will be issued to the pool.
3154  */
3155 static void
vdev_dtl_reassess_impl(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,boolean_t scrub_done,boolean_t rebuild_done,boolean_t faulting)3156 vdev_dtl_reassess_impl(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3157     boolean_t scrub_done, boolean_t rebuild_done, boolean_t faulting)
3158 {
3159 	spa_t *spa = vd->vdev_spa;
3160 	avl_tree_t reftree;
3161 	int minref;
3162 
3163 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3164 
3165 	for (int c = 0; c < vd->vdev_children; c++)
3166 		vdev_dtl_reassess_impl(vd->vdev_child[c], txg,
3167 		    scrub_txg, scrub_done, rebuild_done, faulting);
3168 
3169 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
3170 		return;
3171 
3172 	if (vd->vdev_ops->vdev_op_leaf) {
3173 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
3174 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3175 		boolean_t check_excise = B_FALSE;
3176 		boolean_t wasempty = B_TRUE;
3177 
3178 		mutex_enter(&vd->vdev_dtl_lock);
3179 
3180 		/*
3181 		 * If requested, pretend the scan or rebuild completed cleanly.
3182 		 */
3183 		if (zfs_scan_ignore_errors) {
3184 			if (scn != NULL)
3185 				scn->scn_phys.scn_errors = 0;
3186 			if (vr != NULL)
3187 				vr->vr_rebuild_phys.vrp_errors = 0;
3188 		}
3189 
3190 		if (scrub_txg != 0 &&
3191 		    !zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3192 			wasempty = B_FALSE;
3193 			zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3194 			    "dtl:%llu/%llu errors:%llu",
3195 			    (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3196 			    (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3197 			    (u_longlong_t)vdev_dtl_min(vd),
3198 			    (u_longlong_t)vdev_dtl_max(vd),
3199 			    (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3200 		}
3201 
3202 		/*
3203 		 * If we've completed a scrub/resilver or a rebuild cleanly
3204 		 * then determine if this vdev should remove any DTLs. We
3205 		 * only want to excise regions on vdevs that were available
3206 		 * during the entire duration of this scan.
3207 		 */
3208 		if (rebuild_done &&
3209 		    vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3210 			check_excise = B_TRUE;
3211 		} else {
3212 			if (spa->spa_scrub_started ||
3213 			    (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3214 				check_excise = B_TRUE;
3215 			}
3216 		}
3217 
3218 		if (scrub_txg && check_excise &&
3219 		    vdev_dtl_should_excise(vd, rebuild_done)) {
3220 			/*
3221 			 * We completed a scrub, resilver or rebuild up to
3222 			 * scrub_txg.  If we did it without rebooting, then
3223 			 * the scrub dtl will be valid, so excise the old
3224 			 * region and fold in the scrub dtl.  Otherwise,
3225 			 * leave the dtl as-is if there was an error.
3226 			 *
3227 			 * There's little trick here: to excise the beginning
3228 			 * of the DTL_MISSING map, we put it into a reference
3229 			 * tree and then add a segment with refcnt -1 that
3230 			 * covers the range [0, scrub_txg).  This means
3231 			 * that each txg in that range has refcnt -1 or 0.
3232 			 * We then add DTL_SCRUB with a refcnt of 2, so that
3233 			 * entries in the range [0, scrub_txg) will have a
3234 			 * positive refcnt -- either 1 or 2.  We then convert
3235 			 * the reference tree into the new DTL_MISSING map.
3236 			 */
3237 			space_reftree_create(&reftree);
3238 			space_reftree_add_map(&reftree,
3239 			    vd->vdev_dtl[DTL_MISSING], 1);
3240 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3241 			space_reftree_add_map(&reftree,
3242 			    vd->vdev_dtl[DTL_SCRUB], 2);
3243 			space_reftree_generate_map(&reftree,
3244 			    vd->vdev_dtl[DTL_MISSING], 1);
3245 			space_reftree_destroy(&reftree);
3246 
3247 			if (!zfs_range_tree_is_empty(
3248 			    vd->vdev_dtl[DTL_MISSING])) {
3249 				zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3250 				    (u_longlong_t)vdev_dtl_min(vd),
3251 				    (u_longlong_t)vdev_dtl_max(vd));
3252 			} else if (!wasempty) {
3253 				zfs_dbgmsg("DTL_MISSING is now empty");
3254 			}
3255 		}
3256 		zfs_range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3257 		zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3258 		    zfs_range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3259 		if (scrub_done)
3260 			zfs_range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL,
3261 			    NULL);
3262 		zfs_range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3263 
3264 		/*
3265 		 * For the faulting case, treat members of a replacing vdev
3266 		 * as if they are not available. It's more likely than not that
3267 		 * a vdev in a replacing vdev could encounter read errors so
3268 		 * treat it as not being able to contribute.
3269 		 */
3270 		if (!vdev_readable(vd) ||
3271 		    (faulting && vd->vdev_parent != NULL &&
3272 		    vd->vdev_parent->vdev_ops == &vdev_replacing_ops)) {
3273 			zfs_range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3274 		} else {
3275 			zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3276 			    zfs_range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3277 		}
3278 
3279 		/*
3280 		 * If the vdev was resilvering or rebuilding and no longer
3281 		 * has any DTLs then reset the appropriate flag and dirty
3282 		 * the top level so that we persist the change.
3283 		 */
3284 		if (txg != 0 &&
3285 		    zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3286 		    zfs_range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3287 			if (vd->vdev_rebuild_txg != 0) {
3288 				vd->vdev_rebuild_txg = 0;
3289 				vdev_config_dirty(vd->vdev_top);
3290 			} else if (vd->vdev_resilver_txg != 0) {
3291 				vd->vdev_resilver_txg = 0;
3292 				vdev_config_dirty(vd->vdev_top);
3293 			}
3294 		}
3295 
3296 		mutex_exit(&vd->vdev_dtl_lock);
3297 
3298 		if (txg != 0)
3299 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3300 	} else {
3301 		mutex_enter(&vd->vdev_dtl_lock);
3302 		for (int t = 0; t < DTL_TYPES; t++) {
3303 			/* account for child's outage in parent's missing map */
3304 			int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3305 			if (t == DTL_SCRUB) {
3306 				/* leaf vdevs only */
3307 				continue;
3308 			}
3309 			if (t == DTL_PARTIAL) {
3310 				/* i.e. non-zero */
3311 				minref = 1;
3312 			} else if (vdev_get_nparity(vd) != 0) {
3313 				/* RAIDZ, DRAID */
3314 				minref = vdev_get_nparity(vd) + 1;
3315 			} else {
3316 				/* any kind of mirror */
3317 				minref = vd->vdev_children;
3318 			}
3319 			space_reftree_create(&reftree);
3320 			for (int c = 0; c < vd->vdev_children; c++) {
3321 				vdev_t *cvd = vd->vdev_child[c];
3322 				mutex_enter(&cvd->vdev_dtl_lock);
3323 				space_reftree_add_map(&reftree,
3324 				    cvd->vdev_dtl[s], 1);
3325 				mutex_exit(&cvd->vdev_dtl_lock);
3326 			}
3327 			space_reftree_generate_map(&reftree,
3328 			    vd->vdev_dtl[t], minref);
3329 			space_reftree_destroy(&reftree);
3330 		}
3331 		mutex_exit(&vd->vdev_dtl_lock);
3332 	}
3333 
3334 	if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) {
3335 		raidz_dtl_reassessed(vd);
3336 	}
3337 }
3338 
3339 void
vdev_dtl_reassess(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,boolean_t scrub_done,boolean_t rebuild_done)3340 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3341     boolean_t scrub_done, boolean_t rebuild_done)
3342 {
3343 	return (vdev_dtl_reassess_impl(vd, txg, scrub_txg, scrub_done,
3344 	    rebuild_done, B_FALSE));
3345 }
3346 
3347 /*
3348  * Iterate over all the vdevs except spare, and post kobj events
3349  */
3350 void
vdev_post_kobj_evt(vdev_t * vd)3351 vdev_post_kobj_evt(vdev_t *vd)
3352 {
3353 	if (vd->vdev_ops->vdev_op_kobj_evt_post &&
3354 	    vd->vdev_kobj_flag == B_FALSE) {
3355 		vd->vdev_kobj_flag = B_TRUE;
3356 		vd->vdev_ops->vdev_op_kobj_evt_post(vd);
3357 	}
3358 
3359 	for (int c = 0; c < vd->vdev_children; c++)
3360 		vdev_post_kobj_evt(vd->vdev_child[c]);
3361 }
3362 
3363 /*
3364  * Iterate over all the vdevs except spare, and clear kobj events
3365  */
3366 void
vdev_clear_kobj_evt(vdev_t * vd)3367 vdev_clear_kobj_evt(vdev_t *vd)
3368 {
3369 	vd->vdev_kobj_flag = B_FALSE;
3370 
3371 	for (int c = 0; c < vd->vdev_children; c++)
3372 		vdev_clear_kobj_evt(vd->vdev_child[c]);
3373 }
3374 
3375 int
vdev_dtl_load(vdev_t * vd)3376 vdev_dtl_load(vdev_t *vd)
3377 {
3378 	spa_t *spa = vd->vdev_spa;
3379 	objset_t *mos = spa->spa_meta_objset;
3380 	zfs_range_tree_t *rt;
3381 	int error = 0;
3382 
3383 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3384 		ASSERT(vdev_is_concrete(vd));
3385 
3386 		/*
3387 		 * If the dtl cannot be sync'd there is no need to open it.
3388 		 */
3389 		if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3390 			return (0);
3391 
3392 		error = space_map_open(&vd->vdev_dtl_sm, mos,
3393 		    vd->vdev_dtl_object, 0, -1ULL, 0);
3394 		if (error)
3395 			return (error);
3396 		ASSERT(vd->vdev_dtl_sm != NULL);
3397 
3398 		rt = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, NULL, 0, 0);
3399 		error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3400 		if (error == 0) {
3401 			mutex_enter(&vd->vdev_dtl_lock);
3402 			zfs_range_tree_walk(rt, zfs_range_tree_add,
3403 			    vd->vdev_dtl[DTL_MISSING]);
3404 			mutex_exit(&vd->vdev_dtl_lock);
3405 		}
3406 
3407 		zfs_range_tree_vacate(rt, NULL, NULL);
3408 		zfs_range_tree_destroy(rt);
3409 
3410 		return (error);
3411 	}
3412 
3413 	for (int c = 0; c < vd->vdev_children; c++) {
3414 		error = vdev_dtl_load(vd->vdev_child[c]);
3415 		if (error != 0)
3416 			break;
3417 	}
3418 
3419 	return (error);
3420 }
3421 
3422 static void
vdev_zap_allocation_data(vdev_t * vd,dmu_tx_t * tx)3423 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3424 {
3425 	spa_t *spa = vd->vdev_spa;
3426 	objset_t *mos = spa->spa_meta_objset;
3427 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3428 	const char *string;
3429 
3430 	ASSERT(alloc_bias != VDEV_BIAS_NONE);
3431 
3432 	string =
3433 	    (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3434 	    (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3435 	    (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3436 
3437 	ASSERT(string != NULL);
3438 	VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3439 	    1, strlen(string) + 1, string, tx));
3440 
3441 	if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3442 		spa_activate_allocation_classes(spa, tx);
3443 	}
3444 }
3445 
3446 void
vdev_destroy_unlink_zap(vdev_t * vd,uint64_t zapobj,dmu_tx_t * tx)3447 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3448 {
3449 	spa_t *spa = vd->vdev_spa;
3450 
3451 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3452 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3453 	    zapobj, tx));
3454 }
3455 
3456 uint64_t
vdev_create_link_zap(vdev_t * vd,dmu_tx_t * tx)3457 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3458 {
3459 	spa_t *spa = vd->vdev_spa;
3460 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3461 	    DMU_OT_NONE, 0, tx);
3462 
3463 	ASSERT(zap != 0);
3464 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3465 	    zap, tx));
3466 
3467 	return (zap);
3468 }
3469 
3470 void
vdev_construct_zaps(vdev_t * vd,dmu_tx_t * tx)3471 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3472 {
3473 	if (vd->vdev_ops != &vdev_hole_ops &&
3474 	    vd->vdev_ops != &vdev_missing_ops &&
3475 	    vd->vdev_ops != &vdev_root_ops &&
3476 	    !vd->vdev_top->vdev_removing) {
3477 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3478 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3479 		}
3480 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3481 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3482 			if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3483 				vdev_zap_allocation_data(vd, tx);
3484 		}
3485 	}
3486 	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 &&
3487 	    spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
3488 		if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2))
3489 			spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx);
3490 		vd->vdev_root_zap = vdev_create_link_zap(vd, tx);
3491 	}
3492 
3493 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3494 		vdev_construct_zaps(vd->vdev_child[i], tx);
3495 	}
3496 }
3497 
3498 static void
vdev_dtl_sync(vdev_t * vd,uint64_t txg)3499 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3500 {
3501 	spa_t *spa = vd->vdev_spa;
3502 	zfs_range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3503 	objset_t *mos = spa->spa_meta_objset;
3504 	zfs_range_tree_t *rtsync;
3505 	dmu_tx_t *tx;
3506 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
3507 
3508 	ASSERT(vdev_is_concrete(vd));
3509 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3510 
3511 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3512 
3513 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3514 		mutex_enter(&vd->vdev_dtl_lock);
3515 		space_map_free(vd->vdev_dtl_sm, tx);
3516 		space_map_close(vd->vdev_dtl_sm);
3517 		vd->vdev_dtl_sm = NULL;
3518 		mutex_exit(&vd->vdev_dtl_lock);
3519 
3520 		/*
3521 		 * We only destroy the leaf ZAP for detached leaves or for
3522 		 * removed log devices. Removed data devices handle leaf ZAP
3523 		 * cleanup later, once cancellation is no longer possible.
3524 		 */
3525 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3526 		    vd->vdev_top->vdev_islog)) {
3527 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3528 			vd->vdev_leaf_zap = 0;
3529 		}
3530 
3531 		dmu_tx_commit(tx);
3532 		return;
3533 	}
3534 
3535 	if (vd->vdev_dtl_sm == NULL) {
3536 		uint64_t new_object;
3537 
3538 		new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3539 		VERIFY3U(new_object, !=, 0);
3540 
3541 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3542 		    0, -1ULL, 0));
3543 		ASSERT(vd->vdev_dtl_sm != NULL);
3544 	}
3545 
3546 	rtsync = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, NULL, 0, 0);
3547 
3548 	mutex_enter(&vd->vdev_dtl_lock);
3549 	zfs_range_tree_walk(rt, zfs_range_tree_add, rtsync);
3550 	mutex_exit(&vd->vdev_dtl_lock);
3551 
3552 	space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3553 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3554 	zfs_range_tree_vacate(rtsync, NULL, NULL);
3555 
3556 	zfs_range_tree_destroy(rtsync);
3557 
3558 	/*
3559 	 * If the object for the space map has changed then dirty
3560 	 * the top level so that we update the config.
3561 	 */
3562 	if (object != space_map_object(vd->vdev_dtl_sm)) {
3563 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3564 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
3565 		    (u_longlong_t)object,
3566 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3567 		vdev_config_dirty(vd->vdev_top);
3568 	}
3569 
3570 	dmu_tx_commit(tx);
3571 }
3572 
3573 /*
3574  * Determine whether the specified vdev can be
3575  * - offlined
3576  * - detached
3577  * - removed
3578  * - faulted
3579  * without losing data.
3580  */
3581 boolean_t
vdev_dtl_required(vdev_t * vd)3582 vdev_dtl_required(vdev_t *vd)
3583 {
3584 	spa_t *spa = vd->vdev_spa;
3585 	vdev_t *tvd = vd->vdev_top;
3586 	uint8_t cant_read = vd->vdev_cant_read;
3587 	boolean_t required;
3588 	boolean_t faulting = vd->vdev_state == VDEV_STATE_FAULTED;
3589 
3590 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3591 
3592 	if (vd == spa->spa_root_vdev || vd == tvd)
3593 		return (B_TRUE);
3594 
3595 	/*
3596 	 * Temporarily mark the device as unreadable, and then determine
3597 	 * whether this results in any DTL outages in the top-level vdev.
3598 	 * If not, we can safely offline/detach/remove the device.
3599 	 */
3600 	vd->vdev_cant_read = B_TRUE;
3601 	vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3602 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3603 	vd->vdev_cant_read = cant_read;
3604 	vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3605 
3606 	if (!required && zio_injection_enabled) {
3607 		required = !!zio_handle_device_injection(vd, NULL,
3608 		    SET_ERROR(ECHILD));
3609 	}
3610 
3611 	return (required);
3612 }
3613 
3614 /*
3615  * Determine if resilver is needed, and if so the txg range.
3616  */
3617 boolean_t
vdev_resilver_needed(vdev_t * vd,uint64_t * minp,uint64_t * maxp)3618 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3619 {
3620 	boolean_t needed = B_FALSE;
3621 	uint64_t thismin = UINT64_MAX;
3622 	uint64_t thismax = 0;
3623 
3624 	if (vd->vdev_children == 0) {
3625 		mutex_enter(&vd->vdev_dtl_lock);
3626 		if (!zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3627 		    vdev_writeable(vd)) {
3628 
3629 			thismin = vdev_dtl_min(vd);
3630 			thismax = vdev_dtl_max(vd);
3631 			needed = B_TRUE;
3632 		}
3633 		mutex_exit(&vd->vdev_dtl_lock);
3634 	} else {
3635 		for (int c = 0; c < vd->vdev_children; c++) {
3636 			vdev_t *cvd = vd->vdev_child[c];
3637 			uint64_t cmin, cmax;
3638 
3639 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3640 				thismin = MIN(thismin, cmin);
3641 				thismax = MAX(thismax, cmax);
3642 				needed = B_TRUE;
3643 			}
3644 		}
3645 	}
3646 
3647 	if (needed && minp) {
3648 		*minp = thismin;
3649 		*maxp = thismax;
3650 	}
3651 	return (needed);
3652 }
3653 
3654 /*
3655  * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
3656  * will contain either the checkpoint spacemap object or zero if none exists.
3657  * All other errors are returned to the caller.
3658  */
3659 int
vdev_checkpoint_sm_object(vdev_t * vd,uint64_t * sm_obj)3660 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3661 {
3662 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3663 
3664 	if (vd->vdev_top_zap == 0) {
3665 		*sm_obj = 0;
3666 		return (0);
3667 	}
3668 
3669 	int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3670 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3671 	if (error == ENOENT) {
3672 		*sm_obj = 0;
3673 		error = 0;
3674 	}
3675 
3676 	return (error);
3677 }
3678 
3679 int
vdev_load(vdev_t * vd)3680 vdev_load(vdev_t *vd)
3681 {
3682 	int children = vd->vdev_children;
3683 	int error = 0;
3684 	taskq_t *tq = NULL;
3685 
3686 	/*
3687 	 * It's only worthwhile to use the taskq for the root vdev, because the
3688 	 * slow part is metaslab_init, and that only happens for top-level
3689 	 * vdevs.
3690 	 */
3691 	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3692 		tq = taskq_create("vdev_load", children, minclsyspri,
3693 		    children, children, TASKQ_PREPOPULATE);
3694 	}
3695 
3696 	/*
3697 	 * Recursively load all children.
3698 	 */
3699 	for (int c = 0; c < vd->vdev_children; c++) {
3700 		vdev_t *cvd = vd->vdev_child[c];
3701 
3702 		if (tq == NULL || vdev_uses_zvols(cvd)) {
3703 			cvd->vdev_load_error = vdev_load(cvd);
3704 		} else {
3705 			VERIFY(taskq_dispatch(tq, vdev_load_child,
3706 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
3707 		}
3708 	}
3709 
3710 	if (tq != NULL) {
3711 		taskq_wait(tq);
3712 		taskq_destroy(tq);
3713 	}
3714 
3715 	for (int c = 0; c < vd->vdev_children; c++) {
3716 		int error = vd->vdev_child[c]->vdev_load_error;
3717 
3718 		if (error != 0)
3719 			return (error);
3720 	}
3721 
3722 	vdev_set_deflate_ratio(vd);
3723 
3724 	if (vd->vdev_ops == &vdev_raidz_ops) {
3725 		error = vdev_raidz_load(vd);
3726 		if (error != 0)
3727 			return (error);
3728 	}
3729 
3730 	/*
3731 	 * On spa_load path, grab the allocation bias from our zap
3732 	 */
3733 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3734 		spa_t *spa = vd->vdev_spa;
3735 		char bias_str[64];
3736 
3737 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3738 		    VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3739 		    bias_str);
3740 		if (error == 0) {
3741 			ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3742 			vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3743 		} else if (error != ENOENT) {
3744 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3745 			    VDEV_AUX_CORRUPT_DATA);
3746 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3747 			    "failed [error=%d]",
3748 			    (u_longlong_t)vd->vdev_top_zap, error);
3749 			return (error);
3750 		}
3751 	}
3752 
3753 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3754 		spa_t *spa = vd->vdev_spa;
3755 		uint64_t failfast;
3756 
3757 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3758 		    vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast),
3759 		    1, &failfast);
3760 		if (error == 0) {
3761 			vd->vdev_failfast = failfast & 1;
3762 		} else if (error == ENOENT) {
3763 			vd->vdev_failfast = vdev_prop_default_numeric(
3764 			    VDEV_PROP_FAILFAST);
3765 		} else {
3766 			vdev_dbgmsg(vd,
3767 			    "vdev_load: zap_lookup(top_zap=%llu) "
3768 			    "failed [error=%d]",
3769 			    (u_longlong_t)vd->vdev_top_zap, error);
3770 		}
3771 	}
3772 
3773 	/*
3774 	 * Load any rebuild state from the top-level vdev zap.
3775 	 */
3776 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3777 		error = vdev_rebuild_load(vd);
3778 		if (error && error != ENOTSUP) {
3779 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3780 			    VDEV_AUX_CORRUPT_DATA);
3781 			vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3782 			    "failed [error=%d]", error);
3783 			return (error);
3784 		}
3785 	}
3786 
3787 	if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) {
3788 		uint64_t zapobj;
3789 
3790 		if (vd->vdev_top_zap != 0)
3791 			zapobj = vd->vdev_top_zap;
3792 		else
3793 			zapobj = vd->vdev_leaf_zap;
3794 
3795 		error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N,
3796 		    &vd->vdev_checksum_n);
3797 		if (error && error != ENOENT)
3798 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3799 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3800 
3801 		error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T,
3802 		    &vd->vdev_checksum_t);
3803 		if (error && error != ENOENT)
3804 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3805 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3806 
3807 		error = vdev_prop_get_int(vd, VDEV_PROP_IO_N,
3808 		    &vd->vdev_io_n);
3809 		if (error && error != ENOENT)
3810 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3811 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3812 
3813 		error = vdev_prop_get_int(vd, VDEV_PROP_IO_T,
3814 		    &vd->vdev_io_t);
3815 		if (error && error != ENOENT)
3816 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3817 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3818 
3819 		error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N,
3820 		    &vd->vdev_slow_io_n);
3821 		if (error && error != ENOENT)
3822 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3823 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3824 
3825 		error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T,
3826 		    &vd->vdev_slow_io_t);
3827 		if (error && error != ENOENT)
3828 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3829 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3830 	}
3831 
3832 	/*
3833 	 * If this is a top-level vdev, initialize its metaslabs.
3834 	 */
3835 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3836 		vdev_metaslab_group_create(vd);
3837 
3838 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3839 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3840 			    VDEV_AUX_CORRUPT_DATA);
3841 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3842 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3843 			    (u_longlong_t)vd->vdev_asize);
3844 			return (SET_ERROR(ENXIO));
3845 		}
3846 
3847 		error = vdev_metaslab_init(vd, 0);
3848 		if (error != 0) {
3849 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3850 			    "[error=%d]", error);
3851 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3852 			    VDEV_AUX_CORRUPT_DATA);
3853 			return (error);
3854 		}
3855 
3856 		uint64_t checkpoint_sm_obj;
3857 		error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3858 		if (error == 0 && checkpoint_sm_obj != 0) {
3859 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
3860 			ASSERT(vd->vdev_asize != 0);
3861 			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3862 
3863 			error = space_map_open(&vd->vdev_checkpoint_sm,
3864 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3865 			    vd->vdev_ashift);
3866 			if (error != 0) {
3867 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
3868 				    "failed for checkpoint spacemap (obj %llu) "
3869 				    "[error=%d]",
3870 				    (u_longlong_t)checkpoint_sm_obj, error);
3871 				return (error);
3872 			}
3873 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3874 
3875 			/*
3876 			 * Since the checkpoint_sm contains free entries
3877 			 * exclusively we can use space_map_allocated() to
3878 			 * indicate the cumulative checkpointed space that
3879 			 * has been freed.
3880 			 */
3881 			vd->vdev_stat.vs_checkpoint_space =
3882 			    -space_map_allocated(vd->vdev_checkpoint_sm);
3883 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3884 			    vd->vdev_stat.vs_checkpoint_space;
3885 		} else if (error != 0) {
3886 			vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3887 			    "checkpoint space map object from vdev ZAP "
3888 			    "[error=%d]", error);
3889 			return (error);
3890 		}
3891 	}
3892 
3893 	/*
3894 	 * If this is a leaf vdev, load its DTL.
3895 	 */
3896 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3897 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3898 		    VDEV_AUX_CORRUPT_DATA);
3899 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3900 		    "[error=%d]", error);
3901 		return (error);
3902 	}
3903 
3904 	uint64_t obsolete_sm_object;
3905 	error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3906 	if (error == 0 && obsolete_sm_object != 0) {
3907 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
3908 		ASSERT(vd->vdev_asize != 0);
3909 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3910 
3911 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3912 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3913 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3914 			    VDEV_AUX_CORRUPT_DATA);
3915 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3916 			    "obsolete spacemap (obj %llu) [error=%d]",
3917 			    (u_longlong_t)obsolete_sm_object, error);
3918 			return (error);
3919 		}
3920 	} else if (error != 0) {
3921 		vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3922 		    "space map object from vdev ZAP [error=%d]", error);
3923 		return (error);
3924 	}
3925 
3926 	return (0);
3927 }
3928 
3929 /*
3930  * The special vdev case is used for hot spares and l2cache devices.  Its
3931  * sole purpose it to set the vdev state for the associated vdev.  To do this,
3932  * we make sure that we can open the underlying device, then try to read the
3933  * label, and make sure that the label is sane and that it hasn't been
3934  * repurposed to another pool.
3935  */
3936 int
vdev_validate_aux(vdev_t * vd)3937 vdev_validate_aux(vdev_t *vd)
3938 {
3939 	nvlist_t *label;
3940 	uint64_t guid, version;
3941 	uint64_t state;
3942 
3943 	if (!vdev_readable(vd))
3944 		return (0);
3945 
3946 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3947 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3948 		    VDEV_AUX_CORRUPT_DATA);
3949 		return (-1);
3950 	}
3951 
3952 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3953 	    !SPA_VERSION_IS_SUPPORTED(version) ||
3954 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3955 	    guid != vd->vdev_guid ||
3956 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3957 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3958 		    VDEV_AUX_CORRUPT_DATA);
3959 		nvlist_free(label);
3960 		return (-1);
3961 	}
3962 
3963 	/*
3964 	 * We don't actually check the pool state here.  If it's in fact in
3965 	 * use by another pool, we update this fact on the fly when requested.
3966 	 */
3967 	nvlist_free(label);
3968 	return (0);
3969 }
3970 
3971 static void
vdev_destroy_ms_flush_data(vdev_t * vd,dmu_tx_t * tx)3972 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3973 {
3974 	objset_t *mos = spa_meta_objset(vd->vdev_spa);
3975 
3976 	if (vd->vdev_top_zap == 0)
3977 		return;
3978 
3979 	uint64_t object = 0;
3980 	int err = zap_lookup(mos, vd->vdev_top_zap,
3981 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3982 	if (err == ENOENT)
3983 		return;
3984 	VERIFY0(err);
3985 
3986 	VERIFY0(dmu_object_free(mos, object, tx));
3987 	VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3988 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3989 }
3990 
3991 /*
3992  * Free the objects used to store this vdev's spacemaps, and the array
3993  * that points to them.
3994  */
3995 void
vdev_destroy_spacemaps(vdev_t * vd,dmu_tx_t * tx)3996 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3997 {
3998 	if (vd->vdev_ms_array == 0)
3999 		return;
4000 
4001 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
4002 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
4003 	size_t array_bytes = array_count * sizeof (uint64_t);
4004 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
4005 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
4006 	    array_bytes, smobj_array, 0));
4007 
4008 	for (uint64_t i = 0; i < array_count; i++) {
4009 		uint64_t smobj = smobj_array[i];
4010 		if (smobj == 0)
4011 			continue;
4012 
4013 		space_map_free_obj(mos, smobj, tx);
4014 	}
4015 
4016 	kmem_free(smobj_array, array_bytes);
4017 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
4018 	vdev_destroy_ms_flush_data(vd, tx);
4019 	vd->vdev_ms_array = 0;
4020 }
4021 
4022 static void
vdev_remove_empty_log(vdev_t * vd,uint64_t txg)4023 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
4024 {
4025 	spa_t *spa = vd->vdev_spa;
4026 
4027 	ASSERT(vd->vdev_islog);
4028 	ASSERT(vd == vd->vdev_top);
4029 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
4030 
4031 	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4032 
4033 	vdev_destroy_spacemaps(vd, tx);
4034 	if (vd->vdev_top_zap != 0) {
4035 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
4036 		vd->vdev_top_zap = 0;
4037 	}
4038 
4039 	dmu_tx_commit(tx);
4040 }
4041 
4042 void
vdev_sync_done(vdev_t * vd,uint64_t txg)4043 vdev_sync_done(vdev_t *vd, uint64_t txg)
4044 {
4045 	metaslab_t *msp;
4046 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
4047 
4048 	ASSERT(vdev_is_concrete(vd));
4049 
4050 	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
4051 	    != NULL)
4052 		metaslab_sync_done(msp, txg);
4053 
4054 	if (reassess) {
4055 		metaslab_sync_reassess(vd->vdev_mg);
4056 		if (vd->vdev_log_mg != NULL)
4057 			metaslab_sync_reassess(vd->vdev_log_mg);
4058 	}
4059 }
4060 
4061 void
vdev_sync(vdev_t * vd,uint64_t txg)4062 vdev_sync(vdev_t *vd, uint64_t txg)
4063 {
4064 	spa_t *spa = vd->vdev_spa;
4065 	vdev_t *lvd;
4066 	metaslab_t *msp;
4067 
4068 	ASSERT3U(txg, ==, spa->spa_syncing_txg);
4069 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
4070 	if (zfs_range_tree_space(vd->vdev_obsolete_segments) > 0) {
4071 		ASSERT(vd->vdev_removing ||
4072 		    vd->vdev_ops == &vdev_indirect_ops);
4073 
4074 		vdev_indirect_sync_obsolete(vd, tx);
4075 
4076 		/*
4077 		 * If the vdev is indirect, it can't have dirty
4078 		 * metaslabs or DTLs.
4079 		 */
4080 		if (vd->vdev_ops == &vdev_indirect_ops) {
4081 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
4082 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
4083 			dmu_tx_commit(tx);
4084 			return;
4085 		}
4086 	}
4087 
4088 	ASSERT(vdev_is_concrete(vd));
4089 
4090 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
4091 	    !vd->vdev_removing) {
4092 		ASSERT(vd == vd->vdev_top);
4093 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
4094 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
4095 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
4096 		ASSERT(vd->vdev_ms_array != 0);
4097 		vdev_config_dirty(vd);
4098 	}
4099 
4100 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
4101 		metaslab_sync(msp, txg);
4102 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
4103 	}
4104 
4105 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
4106 		vdev_dtl_sync(lvd, txg);
4107 
4108 	/*
4109 	 * If this is an empty log device being removed, destroy the
4110 	 * metadata associated with it.
4111 	 */
4112 	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
4113 		vdev_remove_empty_log(vd, txg);
4114 
4115 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
4116 	dmu_tx_commit(tx);
4117 }
4118 
4119 /*
4120  * Return the amount of space that should be (or was) allocated for the given
4121  * psize (compressed block size) in the given TXG. Note that for expanded
4122  * RAIDZ vdevs, the size allocated for older BP's may be larger. See
4123  * vdev_raidz_asize().
4124  */
4125 uint64_t
vdev_psize_to_asize_txg(vdev_t * vd,uint64_t psize,uint64_t txg)4126 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg)
4127 {
4128 	return (vd->vdev_ops->vdev_op_asize(vd, psize, txg));
4129 }
4130 
4131 uint64_t
vdev_psize_to_asize(vdev_t * vd,uint64_t psize)4132 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
4133 {
4134 	return (vdev_psize_to_asize_txg(vd, psize, 0));
4135 }
4136 
4137 /*
4138  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
4139  * not be opened, and no I/O is attempted.
4140  */
4141 int
vdev_fault(spa_t * spa,uint64_t guid,vdev_aux_t aux)4142 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4143 {
4144 	vdev_t *vd, *tvd;
4145 
4146 	spa_vdev_state_enter(spa, SCL_NONE);
4147 
4148 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4149 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4150 
4151 	if (!vd->vdev_ops->vdev_op_leaf)
4152 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4153 
4154 	tvd = vd->vdev_top;
4155 
4156 	/*
4157 	 * If user did a 'zpool offline -f' then make the fault persist across
4158 	 * reboots.
4159 	 */
4160 	if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
4161 		/*
4162 		 * There are two kinds of forced faults: temporary and
4163 		 * persistent.  Temporary faults go away at pool import, while
4164 		 * persistent faults stay set.  Both types of faults can be
4165 		 * cleared with a zpool clear.
4166 		 *
4167 		 * We tell if a vdev is persistently faulted by looking at the
4168 		 * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
4169 		 * import then it's a persistent fault.  Otherwise, it's
4170 		 * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
4171 		 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
4172 		 * tells vdev_config_generate() (which gets run later) to set
4173 		 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
4174 		 */
4175 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
4176 		vd->vdev_tmpoffline = B_FALSE;
4177 		aux = VDEV_AUX_EXTERNAL;
4178 	} else {
4179 		vd->vdev_tmpoffline = B_TRUE;
4180 	}
4181 
4182 	/*
4183 	 * We don't directly use the aux state here, but if we do a
4184 	 * vdev_reopen(), we need this value to be present to remember why we
4185 	 * were faulted.
4186 	 */
4187 	vd->vdev_label_aux = aux;
4188 
4189 	/*
4190 	 * Faulted state takes precedence over degraded.
4191 	 */
4192 	vd->vdev_delayed_close = B_FALSE;
4193 	vd->vdev_faulted = 1ULL;
4194 	vd->vdev_degraded = 0ULL;
4195 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
4196 
4197 	/*
4198 	 * If this device has the only valid copy of the data, then
4199 	 * back off and simply mark the vdev as degraded instead.
4200 	 */
4201 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
4202 		vd->vdev_degraded = 1ULL;
4203 		vd->vdev_faulted = 0ULL;
4204 
4205 		/*
4206 		 * If we reopen the device and it's not dead, only then do we
4207 		 * mark it degraded.
4208 		 */
4209 		vdev_reopen(tvd);
4210 
4211 		if (vdev_readable(vd))
4212 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
4213 	}
4214 
4215 	return (spa_vdev_state_exit(spa, vd, 0));
4216 }
4217 
4218 /*
4219  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
4220  * user that something is wrong.  The vdev continues to operate as normal as far
4221  * as I/O is concerned.
4222  */
4223 int
vdev_degrade(spa_t * spa,uint64_t guid,vdev_aux_t aux)4224 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4225 {
4226 	vdev_t *vd;
4227 
4228 	spa_vdev_state_enter(spa, SCL_NONE);
4229 
4230 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4231 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4232 
4233 	if (!vd->vdev_ops->vdev_op_leaf)
4234 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4235 
4236 	/*
4237 	 * If the vdev is already faulted, then don't do anything.
4238 	 */
4239 	if (vd->vdev_faulted || vd->vdev_degraded)
4240 		return (spa_vdev_state_exit(spa, NULL, 0));
4241 
4242 	vd->vdev_degraded = 1ULL;
4243 	if (!vdev_is_dead(vd))
4244 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
4245 		    aux);
4246 
4247 	return (spa_vdev_state_exit(spa, vd, 0));
4248 }
4249 
4250 int
vdev_remove_wanted(spa_t * spa,uint64_t guid)4251 vdev_remove_wanted(spa_t *spa, uint64_t guid)
4252 {
4253 	vdev_t *vd;
4254 
4255 	spa_vdev_state_enter(spa, SCL_NONE);
4256 
4257 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4258 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4259 
4260 	/*
4261 	 * If the vdev is already removed, or expanding which can trigger
4262 	 * repartition add/remove events, then don't do anything.
4263 	 */
4264 	if (vd->vdev_removed || vd->vdev_expanding)
4265 		return (spa_vdev_state_exit(spa, NULL, 0));
4266 
4267 	/*
4268 	 * Confirm the vdev has been removed, otherwise don't do anything.
4269 	 */
4270 	if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL)))
4271 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST)));
4272 
4273 	vd->vdev_remove_wanted = B_TRUE;
4274 	spa_async_request(spa, SPA_ASYNC_REMOVE);
4275 
4276 	return (spa_vdev_state_exit(spa, vd, 0));
4277 }
4278 
4279 
4280 /*
4281  * Online the given vdev.
4282  *
4283  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
4284  * spare device should be detached when the device finishes resilvering.
4285  * Second, the online should be treated like a 'test' online case, so no FMA
4286  * events are generated if the device fails to open.
4287  */
4288 int
vdev_online(spa_t * spa,uint64_t guid,uint64_t flags,vdev_state_t * newstate)4289 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
4290 {
4291 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
4292 	boolean_t wasoffline;
4293 	vdev_state_t oldstate;
4294 
4295 	spa_vdev_state_enter(spa, SCL_NONE);
4296 
4297 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4298 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4299 
4300 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
4301 	oldstate = vd->vdev_state;
4302 
4303 	tvd = vd->vdev_top;
4304 	vd->vdev_offline = B_FALSE;
4305 	vd->vdev_tmpoffline = B_FALSE;
4306 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
4307 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
4308 
4309 	/* XXX - L2ARC 1.0 does not support expansion */
4310 	if (!vd->vdev_aux) {
4311 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4312 			pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
4313 			    spa->spa_autoexpand);
4314 		vd->vdev_expansion_time = gethrestime_sec();
4315 	}
4316 
4317 	vdev_reopen(tvd);
4318 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
4319 
4320 	if (!vd->vdev_aux) {
4321 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4322 			pvd->vdev_expanding = B_FALSE;
4323 	}
4324 
4325 	if (newstate)
4326 		*newstate = vd->vdev_state;
4327 	if ((flags & ZFS_ONLINE_UNSPARE) &&
4328 	    !vdev_is_dead(vd) && vd->vdev_parent &&
4329 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4330 	    vd->vdev_parent->vdev_child[0] == vd)
4331 		vd->vdev_unspare = B_TRUE;
4332 
4333 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
4334 
4335 		/* XXX - L2ARC 1.0 does not support expansion */
4336 		if (vd->vdev_aux)
4337 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
4338 		spa->spa_ccw_fail_time = 0;
4339 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4340 	}
4341 
4342 	/* Restart initializing if necessary */
4343 	mutex_enter(&vd->vdev_initialize_lock);
4344 	if (vdev_writeable(vd) &&
4345 	    vd->vdev_initialize_thread == NULL &&
4346 	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
4347 		(void) vdev_initialize(vd);
4348 	}
4349 	mutex_exit(&vd->vdev_initialize_lock);
4350 
4351 	/*
4352 	 * Restart trimming if necessary. We do not restart trimming for cache
4353 	 * devices here. This is triggered by l2arc_rebuild_vdev()
4354 	 * asynchronously for the whole device or in l2arc_evict() as it evicts
4355 	 * space for upcoming writes.
4356 	 */
4357 	mutex_enter(&vd->vdev_trim_lock);
4358 	if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
4359 	    vd->vdev_trim_thread == NULL &&
4360 	    vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
4361 		(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
4362 		    vd->vdev_trim_secure);
4363 	}
4364 	mutex_exit(&vd->vdev_trim_lock);
4365 
4366 	if (wasoffline ||
4367 	    (oldstate < VDEV_STATE_DEGRADED &&
4368 	    vd->vdev_state >= VDEV_STATE_DEGRADED)) {
4369 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4370 
4371 		/*
4372 		 * Asynchronously detach spare vdev if resilver or
4373 		 * rebuild is not required
4374 		 */
4375 		if (vd->vdev_unspare &&
4376 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4377 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) &&
4378 		    !vdev_rebuild_active(tvd))
4379 			spa_async_request(spa, SPA_ASYNC_DETACH_SPARE);
4380 	}
4381 	return (spa_vdev_state_exit(spa, vd, 0));
4382 }
4383 
4384 static int
vdev_offline_locked(spa_t * spa,uint64_t guid,uint64_t flags)4385 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4386 {
4387 	vdev_t *vd, *tvd;
4388 	int error = 0;
4389 	uint64_t generation;
4390 	metaslab_group_t *mg;
4391 
4392 top:
4393 	spa_vdev_state_enter(spa, SCL_ALLOC);
4394 
4395 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4396 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4397 
4398 	if (!vd->vdev_ops->vdev_op_leaf)
4399 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4400 
4401 	if (vd->vdev_ops == &vdev_draid_spare_ops)
4402 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4403 
4404 	tvd = vd->vdev_top;
4405 	mg = tvd->vdev_mg;
4406 	generation = spa->spa_config_generation + 1;
4407 
4408 	/*
4409 	 * If the device isn't already offline, try to offline it.
4410 	 */
4411 	if (!vd->vdev_offline) {
4412 		/*
4413 		 * If this device has the only valid copy of some data,
4414 		 * don't allow it to be offlined. Log devices are always
4415 		 * expendable.
4416 		 */
4417 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4418 		    vdev_dtl_required(vd))
4419 			return (spa_vdev_state_exit(spa, NULL,
4420 			    SET_ERROR(EBUSY)));
4421 
4422 		/*
4423 		 * If the top-level is a slog and it has had allocations
4424 		 * then proceed.  We check that the vdev's metaslab group
4425 		 * is not NULL since it's possible that we may have just
4426 		 * added this vdev but not yet initialized its metaslabs.
4427 		 */
4428 		if (tvd->vdev_islog && mg != NULL) {
4429 			/*
4430 			 * Prevent any future allocations.
4431 			 */
4432 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
4433 			metaslab_group_passivate(mg);
4434 			(void) spa_vdev_state_exit(spa, vd, 0);
4435 
4436 			error = spa_reset_logs(spa);
4437 
4438 			/*
4439 			 * If the log device was successfully reset but has
4440 			 * checkpointed data, do not offline it.
4441 			 */
4442 			if (error == 0 &&
4443 			    tvd->vdev_checkpoint_sm != NULL) {
4444 				ASSERT3U(space_map_allocated(
4445 				    tvd->vdev_checkpoint_sm), !=, 0);
4446 				error = ZFS_ERR_CHECKPOINT_EXISTS;
4447 			}
4448 
4449 			spa_vdev_state_enter(spa, SCL_ALLOC);
4450 
4451 			/*
4452 			 * Check to see if the config has changed.
4453 			 */
4454 			if (error || generation != spa->spa_config_generation) {
4455 				metaslab_group_activate(mg);
4456 				if (error)
4457 					return (spa_vdev_state_exit(spa,
4458 					    vd, error));
4459 				(void) spa_vdev_state_exit(spa, vd, 0);
4460 				goto top;
4461 			}
4462 			ASSERT0(tvd->vdev_stat.vs_alloc);
4463 		}
4464 
4465 		/*
4466 		 * Offline this device and reopen its top-level vdev.
4467 		 * If the top-level vdev is a log device then just offline
4468 		 * it. Otherwise, if this action results in the top-level
4469 		 * vdev becoming unusable, undo it and fail the request.
4470 		 */
4471 		vd->vdev_offline = B_TRUE;
4472 		vdev_reopen(tvd);
4473 
4474 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4475 		    vdev_is_dead(tvd)) {
4476 			vd->vdev_offline = B_FALSE;
4477 			vdev_reopen(tvd);
4478 			return (spa_vdev_state_exit(spa, NULL,
4479 			    SET_ERROR(EBUSY)));
4480 		}
4481 
4482 		/*
4483 		 * Add the device back into the metaslab rotor so that
4484 		 * once we online the device it's open for business.
4485 		 */
4486 		if (tvd->vdev_islog && mg != NULL)
4487 			metaslab_group_activate(mg);
4488 	}
4489 
4490 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4491 
4492 	return (spa_vdev_state_exit(spa, vd, 0));
4493 }
4494 
4495 int
vdev_offline(spa_t * spa,uint64_t guid,uint64_t flags)4496 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4497 {
4498 	int error;
4499 
4500 	mutex_enter(&spa->spa_vdev_top_lock);
4501 	error = vdev_offline_locked(spa, guid, flags);
4502 	mutex_exit(&spa->spa_vdev_top_lock);
4503 
4504 	return (error);
4505 }
4506 
4507 /*
4508  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
4509  * vdev_offline(), we assume the spa config is locked.  We also clear all
4510  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
4511  */
4512 void
vdev_clear(spa_t * spa,vdev_t * vd)4513 vdev_clear(spa_t *spa, vdev_t *vd)
4514 {
4515 	vdev_t *rvd = spa->spa_root_vdev;
4516 
4517 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4518 
4519 	if (vd == NULL)
4520 		vd = rvd;
4521 
4522 	vd->vdev_stat.vs_read_errors = 0;
4523 	vd->vdev_stat.vs_write_errors = 0;
4524 	vd->vdev_stat.vs_checksum_errors = 0;
4525 	vd->vdev_stat.vs_dio_verify_errors = 0;
4526 	vd->vdev_stat.vs_slow_ios = 0;
4527 
4528 	for (int c = 0; c < vd->vdev_children; c++)
4529 		vdev_clear(spa, vd->vdev_child[c]);
4530 
4531 	/*
4532 	 * It makes no sense to "clear" an indirect  or removed vdev.
4533 	 */
4534 	if (!vdev_is_concrete(vd) || vd->vdev_removed)
4535 		return;
4536 
4537 	/*
4538 	 * If we're in the FAULTED state or have experienced failed I/O, then
4539 	 * clear the persistent state and attempt to reopen the device.  We
4540 	 * also mark the vdev config dirty, so that the new faulted state is
4541 	 * written out to disk.
4542 	 */
4543 	if (vd->vdev_faulted || vd->vdev_degraded ||
4544 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
4545 		/*
4546 		 * When reopening in response to a clear event, it may be due to
4547 		 * a fmadm repair request.  In this case, if the device is
4548 		 * still broken, we want to still post the ereport again.
4549 		 */
4550 		vd->vdev_forcefault = B_TRUE;
4551 
4552 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4553 		vd->vdev_cant_read = B_FALSE;
4554 		vd->vdev_cant_write = B_FALSE;
4555 		vd->vdev_stat.vs_aux = 0;
4556 
4557 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4558 
4559 		vd->vdev_forcefault = B_FALSE;
4560 
4561 		if (vd != rvd && vdev_writeable(vd->vdev_top))
4562 			vdev_state_dirty(vd->vdev_top);
4563 
4564 		/* If a resilver isn't required, check if vdevs can be culled */
4565 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4566 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4567 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4568 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4569 
4570 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4571 	}
4572 
4573 	/*
4574 	 * When clearing a FMA-diagnosed fault, we always want to
4575 	 * unspare the device, as we assume that the original spare was
4576 	 * done in response to the FMA fault.
4577 	 */
4578 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4579 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4580 	    vd->vdev_parent->vdev_child[0] == vd)
4581 		vd->vdev_unspare = B_TRUE;
4582 
4583 	/* Clear recent error events cache (i.e. duplicate events tracking) */
4584 	zfs_ereport_clear(spa, vd);
4585 }
4586 
4587 boolean_t
vdev_is_dead(vdev_t * vd)4588 vdev_is_dead(vdev_t *vd)
4589 {
4590 	/*
4591 	 * Holes and missing devices are always considered "dead".
4592 	 * This simplifies the code since we don't have to check for
4593 	 * these types of devices in the various code paths.
4594 	 * Instead we rely on the fact that we skip over dead devices
4595 	 * before issuing I/O to them.
4596 	 */
4597 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4598 	    vd->vdev_ops == &vdev_hole_ops ||
4599 	    vd->vdev_ops == &vdev_missing_ops);
4600 }
4601 
4602 boolean_t
vdev_readable(vdev_t * vd)4603 vdev_readable(vdev_t *vd)
4604 {
4605 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4606 }
4607 
4608 boolean_t
vdev_writeable(vdev_t * vd)4609 vdev_writeable(vdev_t *vd)
4610 {
4611 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4612 	    vdev_is_concrete(vd));
4613 }
4614 
4615 boolean_t
vdev_allocatable(vdev_t * vd)4616 vdev_allocatable(vdev_t *vd)
4617 {
4618 	uint64_t state = vd->vdev_state;
4619 
4620 	/*
4621 	 * We currently allow allocations from vdevs which may be in the
4622 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4623 	 * fails to reopen then we'll catch it later when we're holding
4624 	 * the proper locks.  Note that we have to get the vdev state
4625 	 * in a local variable because although it changes atomically,
4626 	 * we're asking two separate questions about it.
4627 	 */
4628 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4629 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4630 	    vd->vdev_mg->mg_initialized);
4631 }
4632 
4633 boolean_t
vdev_accessible(vdev_t * vd,zio_t * zio)4634 vdev_accessible(vdev_t *vd, zio_t *zio)
4635 {
4636 	ASSERT(zio->io_vd == vd);
4637 
4638 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4639 		return (B_FALSE);
4640 
4641 	if (zio->io_type == ZIO_TYPE_READ)
4642 		return (!vd->vdev_cant_read);
4643 
4644 	if (zio->io_type == ZIO_TYPE_WRITE)
4645 		return (!vd->vdev_cant_write);
4646 
4647 	return (B_TRUE);
4648 }
4649 
4650 static void
vdev_get_child_stat(vdev_t * cvd,vdev_stat_t * vs,vdev_stat_t * cvs)4651 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4652 {
4653 	/*
4654 	 * Exclude the dRAID spare when aggregating to avoid double counting
4655 	 * the ops and bytes.  These IOs are counted by the physical leaves.
4656 	 */
4657 	if (cvd->vdev_ops == &vdev_draid_spare_ops)
4658 		return;
4659 
4660 	for (int t = 0; t < VS_ZIO_TYPES; t++) {
4661 		vs->vs_ops[t] += cvs->vs_ops[t];
4662 		vs->vs_bytes[t] += cvs->vs_bytes[t];
4663 	}
4664 
4665 	cvs->vs_scan_removing = cvd->vdev_removing;
4666 }
4667 
4668 /*
4669  * Get extended stats
4670  */
4671 static void
vdev_get_child_stat_ex(vdev_t * cvd,vdev_stat_ex_t * vsx,vdev_stat_ex_t * cvsx)4672 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4673 {
4674 	(void) cvd;
4675 
4676 	int t, b;
4677 	for (t = 0; t < ZIO_TYPES; t++) {
4678 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4679 			vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4680 
4681 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4682 			vsx->vsx_total_histo[t][b] +=
4683 			    cvsx->vsx_total_histo[t][b];
4684 		}
4685 	}
4686 
4687 	for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4688 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4689 			vsx->vsx_queue_histo[t][b] +=
4690 			    cvsx->vsx_queue_histo[t][b];
4691 		}
4692 		vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4693 		vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4694 
4695 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4696 			vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4697 
4698 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4699 			vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4700 	}
4701 
4702 }
4703 
4704 boolean_t
vdev_is_spacemap_addressable(vdev_t * vd)4705 vdev_is_spacemap_addressable(vdev_t *vd)
4706 {
4707 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4708 		return (B_TRUE);
4709 
4710 	/*
4711 	 * If double-word space map entries are not enabled we assume
4712 	 * 47 bits of the space map entry are dedicated to the entry's
4713 	 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4714 	 * to calculate the maximum address that can be described by a
4715 	 * space map entry for the given device.
4716 	 */
4717 	uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4718 
4719 	if (shift >= 63) /* detect potential overflow */
4720 		return (B_TRUE);
4721 
4722 	return (vd->vdev_asize < (1ULL << shift));
4723 }
4724 
4725 /*
4726  * Get statistics for the given vdev.
4727  */
4728 static void
vdev_get_stats_ex_impl(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4729 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4730 {
4731 	int t;
4732 	/*
4733 	 * If we're getting stats on the root vdev, aggregate the I/O counts
4734 	 * over all top-level vdevs (i.e. the direct children of the root).
4735 	 */
4736 	if (!vd->vdev_ops->vdev_op_leaf) {
4737 		if (vs) {
4738 			memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4739 			memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4740 		}
4741 		if (vsx)
4742 			memset(vsx, 0, sizeof (*vsx));
4743 
4744 		for (int c = 0; c < vd->vdev_children; c++) {
4745 			vdev_t *cvd = vd->vdev_child[c];
4746 			vdev_stat_t *cvs = &cvd->vdev_stat;
4747 			vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4748 
4749 			vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4750 			if (vs)
4751 				vdev_get_child_stat(cvd, vs, cvs);
4752 			if (vsx)
4753 				vdev_get_child_stat_ex(cvd, vsx, cvsx);
4754 		}
4755 	} else {
4756 		/*
4757 		 * We're a leaf.  Just copy our ZIO active queue stats in.  The
4758 		 * other leaf stats are updated in vdev_stat_update().
4759 		 */
4760 		if (!vsx)
4761 			return;
4762 
4763 		memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4764 
4765 		for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4766 			vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t];
4767 			vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t);
4768 		}
4769 	}
4770 }
4771 
4772 void
vdev_get_stats_ex(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4773 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4774 {
4775 	vdev_t *tvd = vd->vdev_top;
4776 	mutex_enter(&vd->vdev_stat_lock);
4777 	if (vs) {
4778 		memcpy(vs, &vd->vdev_stat, sizeof (*vs));
4779 		vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4780 		vs->vs_state = vd->vdev_state;
4781 		vs->vs_rsize = vdev_get_min_asize(vd);
4782 
4783 		if (vd->vdev_ops->vdev_op_leaf) {
4784 			vs->vs_pspace = vd->vdev_psize;
4785 			vs->vs_rsize += VDEV_LABEL_START_SIZE +
4786 			    VDEV_LABEL_END_SIZE;
4787 			/*
4788 			 * Report initializing progress. Since we don't
4789 			 * have the initializing locks held, this is only
4790 			 * an estimate (although a fairly accurate one).
4791 			 */
4792 			vs->vs_initialize_bytes_done =
4793 			    vd->vdev_initialize_bytes_done;
4794 			vs->vs_initialize_bytes_est =
4795 			    vd->vdev_initialize_bytes_est;
4796 			vs->vs_initialize_state = vd->vdev_initialize_state;
4797 			vs->vs_initialize_action_time =
4798 			    vd->vdev_initialize_action_time;
4799 
4800 			/*
4801 			 * Report manual TRIM progress. Since we don't have
4802 			 * the manual TRIM locks held, this is only an
4803 			 * estimate (although fairly accurate one).
4804 			 */
4805 			vs->vs_trim_notsup = !vd->vdev_has_trim;
4806 			vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4807 			vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4808 			vs->vs_trim_state = vd->vdev_trim_state;
4809 			vs->vs_trim_action_time = vd->vdev_trim_action_time;
4810 
4811 			/* Set when there is a deferred resilver. */
4812 			vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4813 		}
4814 
4815 		/*
4816 		 * Report expandable space on top-level, non-auxiliary devices
4817 		 * only. The expandable space is reported in terms of metaslab
4818 		 * sized units since that determines how much space the pool
4819 		 * can expand.
4820 		 */
4821 		if (vd->vdev_aux == NULL && tvd != NULL) {
4822 			vs->vs_esize = P2ALIGN_TYPED(
4823 			    vd->vdev_max_asize - vd->vdev_asize,
4824 			    1ULL << tvd->vdev_ms_shift, uint64_t);
4825 		}
4826 
4827 		vs->vs_configured_ashift = vd->vdev_top != NULL
4828 		    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4829 		vs->vs_logical_ashift = vd->vdev_logical_ashift;
4830 		if (vd->vdev_physical_ashift <= ASHIFT_MAX)
4831 			vs->vs_physical_ashift = vd->vdev_physical_ashift;
4832 		else
4833 			vs->vs_physical_ashift = 0;
4834 
4835 		/*
4836 		 * Report fragmentation and rebuild progress for top-level,
4837 		 * non-auxiliary, concrete devices.
4838 		 */
4839 		if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4840 		    vdev_is_concrete(vd)) {
4841 			/*
4842 			 * The vdev fragmentation rating doesn't take into
4843 			 * account the embedded slog metaslab (vdev_log_mg).
4844 			 * Since it's only one metaslab, it would have a tiny
4845 			 * impact on the overall fragmentation.
4846 			 */
4847 			vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4848 			    vd->vdev_mg->mg_fragmentation : 0;
4849 		}
4850 		vs->vs_noalloc = MAX(vd->vdev_noalloc,
4851 		    tvd ? tvd->vdev_noalloc : 0);
4852 	}
4853 
4854 	vdev_get_stats_ex_impl(vd, vs, vsx);
4855 	mutex_exit(&vd->vdev_stat_lock);
4856 }
4857 
4858 void
vdev_get_stats(vdev_t * vd,vdev_stat_t * vs)4859 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4860 {
4861 	return (vdev_get_stats_ex(vd, vs, NULL));
4862 }
4863 
4864 void
vdev_clear_stats(vdev_t * vd)4865 vdev_clear_stats(vdev_t *vd)
4866 {
4867 	mutex_enter(&vd->vdev_stat_lock);
4868 	vd->vdev_stat.vs_space = 0;
4869 	vd->vdev_stat.vs_dspace = 0;
4870 	vd->vdev_stat.vs_alloc = 0;
4871 	mutex_exit(&vd->vdev_stat_lock);
4872 }
4873 
4874 void
vdev_scan_stat_init(vdev_t * vd)4875 vdev_scan_stat_init(vdev_t *vd)
4876 {
4877 	vdev_stat_t *vs = &vd->vdev_stat;
4878 
4879 	for (int c = 0; c < vd->vdev_children; c++)
4880 		vdev_scan_stat_init(vd->vdev_child[c]);
4881 
4882 	mutex_enter(&vd->vdev_stat_lock);
4883 	vs->vs_scan_processed = 0;
4884 	mutex_exit(&vd->vdev_stat_lock);
4885 }
4886 
4887 void
vdev_stat_update(zio_t * zio,uint64_t psize)4888 vdev_stat_update(zio_t *zio, uint64_t psize)
4889 {
4890 	spa_t *spa = zio->io_spa;
4891 	vdev_t *rvd = spa->spa_root_vdev;
4892 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4893 	vdev_t *pvd;
4894 	uint64_t txg = zio->io_txg;
4895 /* Suppress ASAN false positive */
4896 #ifdef __SANITIZE_ADDRESS__
4897 	vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
4898 	vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
4899 #else
4900 	vdev_stat_t *vs = &vd->vdev_stat;
4901 	vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4902 #endif
4903 	zio_type_t type = zio->io_type;
4904 	int flags = zio->io_flags;
4905 
4906 	/*
4907 	 * If this i/o is a gang leader, it didn't do any actual work.
4908 	 */
4909 	if (zio->io_gang_tree)
4910 		return;
4911 
4912 	if (zio->io_error == 0) {
4913 		/*
4914 		 * If this is a root i/o, don't count it -- we've already
4915 		 * counted the top-level vdevs, and vdev_get_stats() will
4916 		 * aggregate them when asked.  This reduces contention on
4917 		 * the root vdev_stat_lock and implicitly handles blocks
4918 		 * that compress away to holes, for which there is no i/o.
4919 		 * (Holes never create vdev children, so all the counters
4920 		 * remain zero, which is what we want.)
4921 		 *
4922 		 * Note: this only applies to successful i/o (io_error == 0)
4923 		 * because unlike i/o counts, errors are not additive.
4924 		 * When reading a ditto block, for example, failure of
4925 		 * one top-level vdev does not imply a root-level error.
4926 		 */
4927 		if (vd == rvd)
4928 			return;
4929 
4930 		ASSERT(vd == zio->io_vd);
4931 
4932 		if (flags & ZIO_FLAG_IO_BYPASS)
4933 			return;
4934 
4935 		mutex_enter(&vd->vdev_stat_lock);
4936 
4937 		if (flags & ZIO_FLAG_IO_REPAIR) {
4938 			/*
4939 			 * Repair is the result of a resilver issued by the
4940 			 * scan thread (spa_sync).
4941 			 */
4942 			if (flags & ZIO_FLAG_SCAN_THREAD) {
4943 				dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4944 				dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4945 				uint64_t *processed = &scn_phys->scn_processed;
4946 
4947 				if (vd->vdev_ops->vdev_op_leaf)
4948 					atomic_add_64(processed, psize);
4949 				vs->vs_scan_processed += psize;
4950 			}
4951 
4952 			/*
4953 			 * Repair is the result of a rebuild issued by the
4954 			 * rebuild thread (vdev_rebuild_thread).  To avoid
4955 			 * double counting repaired bytes the virtual dRAID
4956 			 * spare vdev is excluded from the processed bytes.
4957 			 */
4958 			if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4959 				vdev_t *tvd = vd->vdev_top;
4960 				vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4961 				vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4962 				uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4963 
4964 				if (vd->vdev_ops->vdev_op_leaf &&
4965 				    vd->vdev_ops != &vdev_draid_spare_ops) {
4966 					atomic_add_64(rebuilt, psize);
4967 				}
4968 				vs->vs_rebuild_processed += psize;
4969 			}
4970 
4971 			if (flags & ZIO_FLAG_SELF_HEAL)
4972 				vs->vs_self_healed += psize;
4973 		}
4974 
4975 		/*
4976 		 * The bytes/ops/histograms are recorded at the leaf level and
4977 		 * aggregated into the higher level vdevs in vdev_get_stats().
4978 		 */
4979 		if (vd->vdev_ops->vdev_op_leaf &&
4980 		    (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4981 			zio_type_t vs_type = type;
4982 			zio_priority_t priority = zio->io_priority;
4983 
4984 			/*
4985 			 * TRIM ops and bytes are reported to user space as
4986 			 * ZIO_TYPE_FLUSH.  This is done to preserve the
4987 			 * vdev_stat_t structure layout for user space.
4988 			 */
4989 			if (type == ZIO_TYPE_TRIM)
4990 				vs_type = ZIO_TYPE_FLUSH;
4991 
4992 			/*
4993 			 * Solely for the purposes of 'zpool iostat -lqrw'
4994 			 * reporting use the priority to categorize the IO.
4995 			 * Only the following are reported to user space:
4996 			 *
4997 			 *   ZIO_PRIORITY_SYNC_READ,
4998 			 *   ZIO_PRIORITY_SYNC_WRITE,
4999 			 *   ZIO_PRIORITY_ASYNC_READ,
5000 			 *   ZIO_PRIORITY_ASYNC_WRITE,
5001 			 *   ZIO_PRIORITY_SCRUB,
5002 			 *   ZIO_PRIORITY_TRIM,
5003 			 *   ZIO_PRIORITY_REBUILD.
5004 			 */
5005 			if (priority == ZIO_PRIORITY_INITIALIZING) {
5006 				ASSERT3U(type, ==, ZIO_TYPE_WRITE);
5007 				priority = ZIO_PRIORITY_ASYNC_WRITE;
5008 			} else if (priority == ZIO_PRIORITY_REMOVAL) {
5009 				priority = ((type == ZIO_TYPE_WRITE) ?
5010 				    ZIO_PRIORITY_ASYNC_WRITE :
5011 				    ZIO_PRIORITY_ASYNC_READ);
5012 			}
5013 
5014 			vs->vs_ops[vs_type]++;
5015 			vs->vs_bytes[vs_type] += psize;
5016 
5017 			if (flags & ZIO_FLAG_DELEGATED) {
5018 				vsx->vsx_agg_histo[priority]
5019 				    [RQ_HISTO(zio->io_size)]++;
5020 			} else {
5021 				vsx->vsx_ind_histo[priority]
5022 				    [RQ_HISTO(zio->io_size)]++;
5023 			}
5024 
5025 			if (zio->io_delta && zio->io_delay) {
5026 				vsx->vsx_queue_histo[priority]
5027 				    [L_HISTO(zio->io_delta - zio->io_delay)]++;
5028 				vsx->vsx_disk_histo[type]
5029 				    [L_HISTO(zio->io_delay)]++;
5030 				vsx->vsx_total_histo[type]
5031 				    [L_HISTO(zio->io_delta)]++;
5032 			}
5033 		}
5034 
5035 		mutex_exit(&vd->vdev_stat_lock);
5036 		return;
5037 	}
5038 
5039 	if (flags & ZIO_FLAG_SPECULATIVE)
5040 		return;
5041 
5042 	/*
5043 	 * If this is an I/O error that is going to be retried, then ignore the
5044 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
5045 	 * hard errors, when in reality they can happen for any number of
5046 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
5047 	 */
5048 	if (zio->io_error == EIO &&
5049 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
5050 		return;
5051 
5052 	/*
5053 	 * Intent logs writes won't propagate their error to the root
5054 	 * I/O so don't mark these types of failures as pool-level
5055 	 * errors.
5056 	 */
5057 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
5058 		return;
5059 
5060 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
5061 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
5062 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
5063 	    spa->spa_claiming)) {
5064 		/*
5065 		 * This is either a normal write (not a repair), or it's
5066 		 * a repair induced by the scrub thread, or it's a repair
5067 		 * made by zil_claim() during spa_load() in the first txg.
5068 		 * In the normal case, we commit the DTL change in the same
5069 		 * txg as the block was born.  In the scrub-induced repair
5070 		 * case, we know that scrubs run in first-pass syncing context,
5071 		 * so we commit the DTL change in spa_syncing_txg(spa).
5072 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
5073 		 *
5074 		 * We currently do not make DTL entries for failed spontaneous
5075 		 * self-healing writes triggered by normal (non-scrubbing)
5076 		 * reads, because we have no transactional context in which to
5077 		 * do so -- and it's not clear that it'd be desirable anyway.
5078 		 */
5079 		if (vd->vdev_ops->vdev_op_leaf) {
5080 			uint64_t commit_txg = txg;
5081 			if (flags & ZIO_FLAG_SCAN_THREAD) {
5082 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5083 				ASSERT(spa_sync_pass(spa) == 1);
5084 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
5085 				commit_txg = spa_syncing_txg(spa);
5086 			} else if (spa->spa_claiming) {
5087 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5088 				commit_txg = spa_first_txg(spa);
5089 			}
5090 			ASSERT(commit_txg >= spa_syncing_txg(spa));
5091 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
5092 				return;
5093 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
5094 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
5095 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
5096 		}
5097 		if (vd != rvd)
5098 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
5099 	}
5100 }
5101 
5102 int64_t
vdev_deflated_space(vdev_t * vd,int64_t space)5103 vdev_deflated_space(vdev_t *vd, int64_t space)
5104 {
5105 	ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
5106 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
5107 
5108 	return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
5109 }
5110 
5111 /*
5112  * Update the in-core space usage stats for this vdev, its metaslab class,
5113  * and the root vdev.
5114  */
5115 void
vdev_space_update(vdev_t * vd,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta)5116 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
5117     int64_t space_delta)
5118 {
5119 	(void) defer_delta;
5120 	int64_t dspace_delta;
5121 	spa_t *spa = vd->vdev_spa;
5122 	vdev_t *rvd = spa->spa_root_vdev;
5123 
5124 	ASSERT(vd == vd->vdev_top);
5125 
5126 	/*
5127 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
5128 	 * factor.  We must calculate this here and not at the root vdev
5129 	 * because the root vdev's psize-to-asize is simply the max of its
5130 	 * children's, thus not accurate enough for us.
5131 	 */
5132 	dspace_delta = vdev_deflated_space(vd, space_delta);
5133 
5134 	mutex_enter(&vd->vdev_stat_lock);
5135 	/* ensure we won't underflow */
5136 	if (alloc_delta < 0) {
5137 		ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
5138 	}
5139 
5140 	vd->vdev_stat.vs_alloc += alloc_delta;
5141 	vd->vdev_stat.vs_space += space_delta;
5142 	vd->vdev_stat.vs_dspace += dspace_delta;
5143 	mutex_exit(&vd->vdev_stat_lock);
5144 
5145 	/* every class but log contributes to root space stats */
5146 	if (vd->vdev_mg != NULL && !vd->vdev_islog) {
5147 		ASSERT(!vd->vdev_isl2cache);
5148 		mutex_enter(&rvd->vdev_stat_lock);
5149 		rvd->vdev_stat.vs_alloc += alloc_delta;
5150 		rvd->vdev_stat.vs_space += space_delta;
5151 		rvd->vdev_stat.vs_dspace += dspace_delta;
5152 		mutex_exit(&rvd->vdev_stat_lock);
5153 	}
5154 	/* Note: metaslab_class_space_update moved to metaslab_space_update */
5155 }
5156 
5157 /*
5158  * Mark a top-level vdev's config as dirty, placing it on the dirty list
5159  * so that it will be written out next time the vdev configuration is synced.
5160  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
5161  */
5162 void
vdev_config_dirty(vdev_t * vd)5163 vdev_config_dirty(vdev_t *vd)
5164 {
5165 	spa_t *spa = vd->vdev_spa;
5166 	vdev_t *rvd = spa->spa_root_vdev;
5167 	int c;
5168 
5169 	ASSERT(spa_writeable(spa));
5170 
5171 	/*
5172 	 * If this is an aux vdev (as with l2cache and spare devices), then we
5173 	 * update the vdev config manually and set the sync flag.
5174 	 */
5175 	if (vd->vdev_aux != NULL) {
5176 		spa_aux_vdev_t *sav = vd->vdev_aux;
5177 		nvlist_t **aux;
5178 		uint_t naux;
5179 
5180 		for (c = 0; c < sav->sav_count; c++) {
5181 			if (sav->sav_vdevs[c] == vd)
5182 				break;
5183 		}
5184 
5185 		if (c == sav->sav_count) {
5186 			/*
5187 			 * We're being removed.  There's nothing more to do.
5188 			 */
5189 			ASSERT(sav->sav_sync == B_TRUE);
5190 			return;
5191 		}
5192 
5193 		sav->sav_sync = B_TRUE;
5194 
5195 		if (nvlist_lookup_nvlist_array(sav->sav_config,
5196 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
5197 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
5198 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
5199 		}
5200 
5201 		ASSERT(c < naux);
5202 
5203 		/*
5204 		 * Setting the nvlist in the middle if the array is a little
5205 		 * sketchy, but it will work.
5206 		 */
5207 		nvlist_free(aux[c]);
5208 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
5209 
5210 		return;
5211 	}
5212 
5213 	/*
5214 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
5215 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
5216 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
5217 	 * so this is sufficient to ensure mutual exclusion.
5218 	 */
5219 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5220 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5221 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
5222 
5223 	if (vd == rvd) {
5224 		for (c = 0; c < rvd->vdev_children; c++)
5225 			vdev_config_dirty(rvd->vdev_child[c]);
5226 	} else {
5227 		ASSERT(vd == vd->vdev_top);
5228 
5229 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
5230 		    vdev_is_concrete(vd)) {
5231 			list_insert_head(&spa->spa_config_dirty_list, vd);
5232 		}
5233 	}
5234 }
5235 
5236 void
vdev_config_clean(vdev_t * vd)5237 vdev_config_clean(vdev_t *vd)
5238 {
5239 	spa_t *spa = vd->vdev_spa;
5240 
5241 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5242 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5243 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
5244 
5245 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
5246 	list_remove(&spa->spa_config_dirty_list, vd);
5247 }
5248 
5249 /*
5250  * Mark a top-level vdev's state as dirty, so that the next pass of
5251  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
5252  * the state changes from larger config changes because they require
5253  * much less locking, and are often needed for administrative actions.
5254  */
5255 void
vdev_state_dirty(vdev_t * vd)5256 vdev_state_dirty(vdev_t *vd)
5257 {
5258 	spa_t *spa = vd->vdev_spa;
5259 
5260 	ASSERT(spa_writeable(spa));
5261 	ASSERT(vd == vd->vdev_top);
5262 
5263 	/*
5264 	 * The state list is protected by the SCL_STATE lock.  The caller
5265 	 * must either hold SCL_STATE as writer, or must be the sync thread
5266 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
5267 	 * so this is sufficient to ensure mutual exclusion.
5268 	 */
5269 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5270 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5271 	    spa_config_held(spa, SCL_STATE, RW_READER)));
5272 
5273 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
5274 	    vdev_is_concrete(vd))
5275 		list_insert_head(&spa->spa_state_dirty_list, vd);
5276 }
5277 
5278 void
vdev_state_clean(vdev_t * vd)5279 vdev_state_clean(vdev_t *vd)
5280 {
5281 	spa_t *spa = vd->vdev_spa;
5282 
5283 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5284 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5285 	    spa_config_held(spa, SCL_STATE, RW_READER)));
5286 
5287 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
5288 	list_remove(&spa->spa_state_dirty_list, vd);
5289 }
5290 
5291 /*
5292  * Propagate vdev state up from children to parent.
5293  */
5294 void
vdev_propagate_state(vdev_t * vd)5295 vdev_propagate_state(vdev_t *vd)
5296 {
5297 	spa_t *spa = vd->vdev_spa;
5298 	vdev_t *rvd = spa->spa_root_vdev;
5299 	int degraded = 0, faulted = 0;
5300 	int corrupted = 0;
5301 	vdev_t *child;
5302 
5303 	if (vd->vdev_children > 0) {
5304 		for (int c = 0; c < vd->vdev_children; c++) {
5305 			child = vd->vdev_child[c];
5306 
5307 			/*
5308 			 * Don't factor holes or indirect vdevs into the
5309 			 * decision.
5310 			 */
5311 			if (!vdev_is_concrete(child))
5312 				continue;
5313 
5314 			if (!vdev_readable(child) ||
5315 			    (!vdev_writeable(child) && spa_writeable(spa))) {
5316 				/*
5317 				 * Root special: if there is a top-level log
5318 				 * device, treat the root vdev as if it were
5319 				 * degraded.
5320 				 */
5321 				if (child->vdev_islog && vd == rvd)
5322 					degraded++;
5323 				else
5324 					faulted++;
5325 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
5326 				degraded++;
5327 			}
5328 
5329 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
5330 				corrupted++;
5331 		}
5332 
5333 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
5334 
5335 		/*
5336 		 * Root special: if there is a top-level vdev that cannot be
5337 		 * opened due to corrupted metadata, then propagate the root
5338 		 * vdev's aux state as 'corrupt' rather than 'insufficient
5339 		 * replicas'.
5340 		 */
5341 		if (corrupted && vd == rvd &&
5342 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
5343 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
5344 			    VDEV_AUX_CORRUPT_DATA);
5345 	}
5346 
5347 	if (vd->vdev_parent)
5348 		vdev_propagate_state(vd->vdev_parent);
5349 }
5350 
5351 /*
5352  * Set a vdev's state.  If this is during an open, we don't update the parent
5353  * state, because we're in the process of opening children depth-first.
5354  * Otherwise, we propagate the change to the parent.
5355  *
5356  * If this routine places a device in a faulted state, an appropriate ereport is
5357  * generated.
5358  */
5359 void
vdev_set_state(vdev_t * vd,boolean_t isopen,vdev_state_t state,vdev_aux_t aux)5360 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
5361 {
5362 	uint64_t save_state;
5363 	spa_t *spa = vd->vdev_spa;
5364 
5365 	if (state == vd->vdev_state) {
5366 		/*
5367 		 * Since vdev_offline() code path is already in an offline
5368 		 * state we can miss a statechange event to OFFLINE. Check
5369 		 * the previous state to catch this condition.
5370 		 */
5371 		if (vd->vdev_ops->vdev_op_leaf &&
5372 		    (state == VDEV_STATE_OFFLINE) &&
5373 		    (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
5374 			/* post an offline state change */
5375 			zfs_post_state_change(spa, vd, vd->vdev_prevstate);
5376 		}
5377 		vd->vdev_stat.vs_aux = aux;
5378 		return;
5379 	}
5380 
5381 	save_state = vd->vdev_state;
5382 
5383 	vd->vdev_state = state;
5384 	vd->vdev_stat.vs_aux = aux;
5385 
5386 	/*
5387 	 * If we are setting the vdev state to anything but an open state, then
5388 	 * always close the underlying device unless the device has requested
5389 	 * a delayed close (i.e. we're about to remove or fault the device).
5390 	 * Otherwise, we keep accessible but invalid devices open forever.
5391 	 * We don't call vdev_close() itself, because that implies some extra
5392 	 * checks (offline, etc) that we don't want here.  This is limited to
5393 	 * leaf devices, because otherwise closing the device will affect other
5394 	 * children.
5395 	 */
5396 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5397 	    vd->vdev_ops->vdev_op_leaf)
5398 		vd->vdev_ops->vdev_op_close(vd);
5399 
5400 	if (vd->vdev_removed &&
5401 	    state == VDEV_STATE_CANT_OPEN &&
5402 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5403 		/*
5404 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
5405 		 * device was previously marked removed and someone attempted to
5406 		 * reopen it.  If this failed due to a nonexistent device, then
5407 		 * keep the device in the REMOVED state.  We also let this be if
5408 		 * it is one of our special test online cases, which is only
5409 		 * attempting to online the device and shouldn't generate an FMA
5410 		 * fault.
5411 		 */
5412 		vd->vdev_state = VDEV_STATE_REMOVED;
5413 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5414 	} else if (state == VDEV_STATE_REMOVED) {
5415 		vd->vdev_removed = B_TRUE;
5416 	} else if (state == VDEV_STATE_CANT_OPEN) {
5417 		/*
5418 		 * If we fail to open a vdev during an import or recovery, we
5419 		 * mark it as "not available", which signifies that it was
5420 		 * never there to begin with.  Failure to open such a device
5421 		 * is not considered an error.
5422 		 */
5423 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5424 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5425 		    vd->vdev_ops->vdev_op_leaf)
5426 			vd->vdev_not_present = 1;
5427 
5428 		/*
5429 		 * Post the appropriate ereport.  If the 'prevstate' field is
5430 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5431 		 * that this is part of a vdev_reopen().  In this case, we don't
5432 		 * want to post the ereport if the device was already in the
5433 		 * CANT_OPEN state beforehand.
5434 		 *
5435 		 * If the 'checkremove' flag is set, then this is an attempt to
5436 		 * online the device in response to an insertion event.  If we
5437 		 * hit this case, then we have detected an insertion event for a
5438 		 * faulted or offline device that wasn't in the removed state.
5439 		 * In this scenario, we don't post an ereport because we are
5440 		 * about to replace the device, or attempt an online with
5441 		 * vdev_forcefault, which will generate the fault for us.
5442 		 */
5443 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5444 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
5445 		    vd != spa->spa_root_vdev) {
5446 			const char *class;
5447 
5448 			switch (aux) {
5449 			case VDEV_AUX_OPEN_FAILED:
5450 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5451 				break;
5452 			case VDEV_AUX_CORRUPT_DATA:
5453 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5454 				break;
5455 			case VDEV_AUX_NO_REPLICAS:
5456 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5457 				break;
5458 			case VDEV_AUX_BAD_GUID_SUM:
5459 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5460 				break;
5461 			case VDEV_AUX_TOO_SMALL:
5462 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5463 				break;
5464 			case VDEV_AUX_BAD_LABEL:
5465 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5466 				break;
5467 			case VDEV_AUX_BAD_ASHIFT:
5468 				class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5469 				break;
5470 			default:
5471 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5472 			}
5473 
5474 			(void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5475 			    save_state);
5476 		}
5477 
5478 		/* Erase any notion of persistent removed state */
5479 		vd->vdev_removed = B_FALSE;
5480 	} else {
5481 		vd->vdev_removed = B_FALSE;
5482 	}
5483 
5484 	/*
5485 	 * Notify ZED of any significant state-change on a leaf vdev.
5486 	 *
5487 	 */
5488 	if (vd->vdev_ops->vdev_op_leaf) {
5489 		/* preserve original state from a vdev_reopen() */
5490 		if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5491 		    (vd->vdev_prevstate != vd->vdev_state) &&
5492 		    (save_state <= VDEV_STATE_CLOSED))
5493 			save_state = vd->vdev_prevstate;
5494 
5495 		/* filter out state change due to initial vdev_open */
5496 		if (save_state > VDEV_STATE_CLOSED)
5497 			zfs_post_state_change(spa, vd, save_state);
5498 	}
5499 
5500 	if (!isopen && vd->vdev_parent)
5501 		vdev_propagate_state(vd->vdev_parent);
5502 }
5503 
5504 boolean_t
vdev_children_are_offline(vdev_t * vd)5505 vdev_children_are_offline(vdev_t *vd)
5506 {
5507 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
5508 
5509 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
5510 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5511 			return (B_FALSE);
5512 	}
5513 
5514 	return (B_TRUE);
5515 }
5516 
5517 /*
5518  * Check the vdev configuration to ensure that it's capable of supporting
5519  * a root pool. We do not support partial configuration.
5520  */
5521 boolean_t
vdev_is_bootable(vdev_t * vd)5522 vdev_is_bootable(vdev_t *vd)
5523 {
5524 	if (!vd->vdev_ops->vdev_op_leaf) {
5525 		const char *vdev_type = vd->vdev_ops->vdev_op_type;
5526 
5527 		if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5528 			return (B_FALSE);
5529 	}
5530 
5531 	for (int c = 0; c < vd->vdev_children; c++) {
5532 		if (!vdev_is_bootable(vd->vdev_child[c]))
5533 			return (B_FALSE);
5534 	}
5535 	return (B_TRUE);
5536 }
5537 
5538 boolean_t
vdev_is_concrete(vdev_t * vd)5539 vdev_is_concrete(vdev_t *vd)
5540 {
5541 	vdev_ops_t *ops = vd->vdev_ops;
5542 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5543 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5544 		return (B_FALSE);
5545 	} else {
5546 		return (B_TRUE);
5547 	}
5548 }
5549 
5550 /*
5551  * Determine if a log device has valid content.  If the vdev was
5552  * removed or faulted in the MOS config then we know that
5553  * the content on the log device has already been written to the pool.
5554  */
5555 boolean_t
vdev_log_state_valid(vdev_t * vd)5556 vdev_log_state_valid(vdev_t *vd)
5557 {
5558 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5559 	    !vd->vdev_removed)
5560 		return (B_TRUE);
5561 
5562 	for (int c = 0; c < vd->vdev_children; c++)
5563 		if (vdev_log_state_valid(vd->vdev_child[c]))
5564 			return (B_TRUE);
5565 
5566 	return (B_FALSE);
5567 }
5568 
5569 /*
5570  * Expand a vdev if possible.
5571  */
5572 void
vdev_expand(vdev_t * vd,uint64_t txg)5573 vdev_expand(vdev_t *vd, uint64_t txg)
5574 {
5575 	ASSERT(vd->vdev_top == vd);
5576 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5577 	ASSERT(vdev_is_concrete(vd));
5578 
5579 	vdev_set_deflate_ratio(vd);
5580 
5581 	if ((vd->vdev_spa->spa_raidz_expand == NULL ||
5582 	    vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) &&
5583 	    (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5584 	    vdev_is_concrete(vd)) {
5585 		vdev_metaslab_group_create(vd);
5586 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
5587 		vdev_config_dirty(vd);
5588 	}
5589 }
5590 
5591 /*
5592  * Split a vdev.
5593  */
5594 void
vdev_split(vdev_t * vd)5595 vdev_split(vdev_t *vd)
5596 {
5597 	vdev_t *cvd, *pvd = vd->vdev_parent;
5598 
5599 	VERIFY3U(pvd->vdev_children, >, 1);
5600 
5601 	vdev_remove_child(pvd, vd);
5602 	vdev_compact_children(pvd);
5603 
5604 	ASSERT3P(pvd->vdev_child, !=, NULL);
5605 
5606 	cvd = pvd->vdev_child[0];
5607 	if (pvd->vdev_children == 1) {
5608 		vdev_remove_parent(cvd);
5609 		cvd->vdev_splitting = B_TRUE;
5610 	}
5611 	vdev_propagate_state(cvd);
5612 }
5613 
5614 void
vdev_deadman(vdev_t * vd,const char * tag)5615 vdev_deadman(vdev_t *vd, const char *tag)
5616 {
5617 	for (int c = 0; c < vd->vdev_children; c++) {
5618 		vdev_t *cvd = vd->vdev_child[c];
5619 
5620 		vdev_deadman(cvd, tag);
5621 	}
5622 
5623 	if (vd->vdev_ops->vdev_op_leaf) {
5624 		vdev_queue_t *vq = &vd->vdev_queue;
5625 
5626 		mutex_enter(&vq->vq_lock);
5627 		if (vq->vq_active > 0) {
5628 			spa_t *spa = vd->vdev_spa;
5629 			zio_t *fio;
5630 			uint64_t delta;
5631 
5632 			zfs_dbgmsg("slow vdev: %s has %u active IOs",
5633 			    vd->vdev_path, vq->vq_active);
5634 
5635 			/*
5636 			 * Look at the head of all the pending queues,
5637 			 * if any I/O has been outstanding for longer than
5638 			 * the spa_deadman_synctime invoke the deadman logic.
5639 			 */
5640 			fio = list_head(&vq->vq_active_list);
5641 			delta = gethrtime() - fio->io_timestamp;
5642 			if (delta > spa_deadman_synctime(spa))
5643 				zio_deadman(fio, tag);
5644 		}
5645 		mutex_exit(&vq->vq_lock);
5646 	}
5647 }
5648 
5649 void
vdev_defer_resilver(vdev_t * vd)5650 vdev_defer_resilver(vdev_t *vd)
5651 {
5652 	ASSERT(vd->vdev_ops->vdev_op_leaf);
5653 
5654 	vd->vdev_resilver_deferred = B_TRUE;
5655 	vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5656 }
5657 
5658 /*
5659  * Clears the resilver deferred flag on all leaf devs under vd. Returns
5660  * B_TRUE if we have devices that need to be resilvered and are available to
5661  * accept resilver I/Os.
5662  */
5663 boolean_t
vdev_clear_resilver_deferred(vdev_t * vd,dmu_tx_t * tx)5664 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5665 {
5666 	boolean_t resilver_needed = B_FALSE;
5667 	spa_t *spa = vd->vdev_spa;
5668 
5669 	for (int c = 0; c < vd->vdev_children; c++) {
5670 		vdev_t *cvd = vd->vdev_child[c];
5671 		resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5672 	}
5673 
5674 	if (vd == spa->spa_root_vdev &&
5675 	    spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5676 		spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5677 		vdev_config_dirty(vd);
5678 		spa->spa_resilver_deferred = B_FALSE;
5679 		return (resilver_needed);
5680 	}
5681 
5682 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5683 	    !vd->vdev_ops->vdev_op_leaf)
5684 		return (resilver_needed);
5685 
5686 	vd->vdev_resilver_deferred = B_FALSE;
5687 
5688 	return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5689 	    vdev_resilver_needed(vd, NULL, NULL));
5690 }
5691 
5692 boolean_t
vdev_xlate_is_empty(zfs_range_seg64_t * rs)5693 vdev_xlate_is_empty(zfs_range_seg64_t *rs)
5694 {
5695 	return (rs->rs_start == rs->rs_end);
5696 }
5697 
5698 /*
5699  * Translate a logical range to the first contiguous physical range for the
5700  * specified vdev_t.  This function is initially called with a leaf vdev and
5701  * will walk each parent vdev until it reaches a top-level vdev. Once the
5702  * top-level is reached the physical range is initialized and the recursive
5703  * function begins to unwind. As it unwinds it calls the parent's vdev
5704  * specific translation function to do the real conversion.
5705  */
5706 void
vdev_xlate(vdev_t * vd,const zfs_range_seg64_t * logical_rs,zfs_range_seg64_t * physical_rs,zfs_range_seg64_t * remain_rs)5707 vdev_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
5708     zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
5709 {
5710 	/*
5711 	 * Walk up the vdev tree
5712 	 */
5713 	if (vd != vd->vdev_top) {
5714 		vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5715 		    remain_rs);
5716 	} else {
5717 		/*
5718 		 * We've reached the top-level vdev, initialize the physical
5719 		 * range to the logical range and set an empty remaining
5720 		 * range then start to unwind.
5721 		 */
5722 		physical_rs->rs_start = logical_rs->rs_start;
5723 		physical_rs->rs_end = logical_rs->rs_end;
5724 
5725 		remain_rs->rs_start = logical_rs->rs_start;
5726 		remain_rs->rs_end = logical_rs->rs_start;
5727 
5728 		return;
5729 	}
5730 
5731 	vdev_t *pvd = vd->vdev_parent;
5732 	ASSERT3P(pvd, !=, NULL);
5733 	ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5734 
5735 	/*
5736 	 * As this recursive function unwinds, translate the logical
5737 	 * range into its physical and any remaining components by calling
5738 	 * the vdev specific translate function.
5739 	 */
5740 	zfs_range_seg64_t intermediate = { 0 };
5741 	pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5742 
5743 	physical_rs->rs_start = intermediate.rs_start;
5744 	physical_rs->rs_end = intermediate.rs_end;
5745 }
5746 
5747 void
vdev_xlate_walk(vdev_t * vd,const zfs_range_seg64_t * logical_rs,vdev_xlate_func_t * func,void * arg)5748 vdev_xlate_walk(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
5749     vdev_xlate_func_t *func, void *arg)
5750 {
5751 	zfs_range_seg64_t iter_rs = *logical_rs;
5752 	zfs_range_seg64_t physical_rs;
5753 	zfs_range_seg64_t remain_rs;
5754 
5755 	while (!vdev_xlate_is_empty(&iter_rs)) {
5756 
5757 		vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5758 
5759 		/*
5760 		 * With raidz and dRAID, it's possible that the logical range
5761 		 * does not live on this leaf vdev. Only when there is a non-
5762 		 * zero physical size call the provided function.
5763 		 */
5764 		if (!vdev_xlate_is_empty(&physical_rs))
5765 			func(arg, &physical_rs);
5766 
5767 		iter_rs = remain_rs;
5768 	}
5769 }
5770 
5771 static char *
vdev_name(vdev_t * vd,char * buf,int buflen)5772 vdev_name(vdev_t *vd, char *buf, int buflen)
5773 {
5774 	if (vd->vdev_path == NULL) {
5775 		if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
5776 			strlcpy(buf, vd->vdev_spa->spa_name, buflen);
5777 		} else if (!vd->vdev_ops->vdev_op_leaf) {
5778 			snprintf(buf, buflen, "%s-%llu",
5779 			    vd->vdev_ops->vdev_op_type,
5780 			    (u_longlong_t)vd->vdev_id);
5781 		}
5782 	} else {
5783 		strlcpy(buf, vd->vdev_path, buflen);
5784 	}
5785 	return (buf);
5786 }
5787 
5788 /*
5789  * Look at the vdev tree and determine whether any devices are currently being
5790  * replaced.
5791  */
5792 boolean_t
vdev_replace_in_progress(vdev_t * vdev)5793 vdev_replace_in_progress(vdev_t *vdev)
5794 {
5795 	ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5796 
5797 	if (vdev->vdev_ops == &vdev_replacing_ops)
5798 		return (B_TRUE);
5799 
5800 	/*
5801 	 * A 'spare' vdev indicates that we have a replace in progress, unless
5802 	 * it has exactly two children, and the second, the hot spare, has
5803 	 * finished being resilvered.
5804 	 */
5805 	if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5806 	    !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5807 		return (B_TRUE);
5808 
5809 	for (int i = 0; i < vdev->vdev_children; i++) {
5810 		if (vdev_replace_in_progress(vdev->vdev_child[i]))
5811 			return (B_TRUE);
5812 	}
5813 
5814 	return (B_FALSE);
5815 }
5816 
5817 /*
5818  * Add a (source=src, propname=propval) list to an nvlist.
5819  */
5820 static void
vdev_prop_add_list(nvlist_t * nvl,const char * propname,const char * strval,uint64_t intval,zprop_source_t src)5821 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval,
5822     uint64_t intval, zprop_source_t src)
5823 {
5824 	nvlist_t *propval;
5825 
5826 	propval = fnvlist_alloc();
5827 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
5828 
5829 	if (strval != NULL)
5830 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
5831 	else
5832 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
5833 
5834 	fnvlist_add_nvlist(nvl, propname, propval);
5835 	nvlist_free(propval);
5836 }
5837 
5838 static void
vdev_props_set_sync(void * arg,dmu_tx_t * tx)5839 vdev_props_set_sync(void *arg, dmu_tx_t *tx)
5840 {
5841 	vdev_t *vd;
5842 	nvlist_t *nvp = arg;
5843 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5844 	objset_t *mos = spa->spa_meta_objset;
5845 	nvpair_t *elem = NULL;
5846 	uint64_t vdev_guid;
5847 	uint64_t objid;
5848 	nvlist_t *nvprops;
5849 
5850 	vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
5851 	nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
5852 	vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
5853 
5854 	/* this vdev could get removed while waiting for this sync task */
5855 	if (vd == NULL)
5856 		return;
5857 
5858 	/*
5859 	 * Set vdev property values in the vdev props mos object.
5860 	 */
5861 	if (vd->vdev_root_zap != 0) {
5862 		objid = vd->vdev_root_zap;
5863 	} else if (vd->vdev_top_zap != 0) {
5864 		objid = vd->vdev_top_zap;
5865 	} else if (vd->vdev_leaf_zap != 0) {
5866 		objid = vd->vdev_leaf_zap;
5867 	} else {
5868 		panic("unexpected vdev type");
5869 	}
5870 
5871 	mutex_enter(&spa->spa_props_lock);
5872 
5873 	while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5874 		uint64_t intval;
5875 		const char *strval;
5876 		vdev_prop_t prop;
5877 		const char *propname = nvpair_name(elem);
5878 		zprop_type_t proptype;
5879 
5880 		switch (prop = vdev_name_to_prop(propname)) {
5881 		case VDEV_PROP_USERPROP:
5882 			if (vdev_prop_user(propname)) {
5883 				strval = fnvpair_value_string(elem);
5884 				if (strlen(strval) == 0) {
5885 					/* remove the property if value == "" */
5886 					(void) zap_remove(mos, objid, propname,
5887 					    tx);
5888 				} else {
5889 					VERIFY0(zap_update(mos, objid, propname,
5890 					    1, strlen(strval) + 1, strval, tx));
5891 				}
5892 				spa_history_log_internal(spa, "vdev set", tx,
5893 				    "vdev_guid=%llu: %s=%s",
5894 				    (u_longlong_t)vdev_guid, nvpair_name(elem),
5895 				    strval);
5896 			}
5897 			break;
5898 		default:
5899 			/* normalize the property name */
5900 			propname = vdev_prop_to_name(prop);
5901 			proptype = vdev_prop_get_type(prop);
5902 
5903 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5904 				ASSERT(proptype == PROP_TYPE_STRING);
5905 				strval = fnvpair_value_string(elem);
5906 				VERIFY0(zap_update(mos, objid, propname,
5907 				    1, strlen(strval) + 1, strval, tx));
5908 				spa_history_log_internal(spa, "vdev set", tx,
5909 				    "vdev_guid=%llu: %s=%s",
5910 				    (u_longlong_t)vdev_guid, nvpair_name(elem),
5911 				    strval);
5912 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5913 				intval = fnvpair_value_uint64(elem);
5914 
5915 				if (proptype == PROP_TYPE_INDEX) {
5916 					const char *unused;
5917 					VERIFY0(vdev_prop_index_to_string(
5918 					    prop, intval, &unused));
5919 				}
5920 				VERIFY0(zap_update(mos, objid, propname,
5921 				    sizeof (uint64_t), 1, &intval, tx));
5922 				spa_history_log_internal(spa, "vdev set", tx,
5923 				    "vdev_guid=%llu: %s=%lld",
5924 				    (u_longlong_t)vdev_guid,
5925 				    nvpair_name(elem), (longlong_t)intval);
5926 			} else {
5927 				panic("invalid vdev property type %u",
5928 				    nvpair_type(elem));
5929 			}
5930 		}
5931 
5932 	}
5933 
5934 	mutex_exit(&spa->spa_props_lock);
5935 }
5936 
5937 int
vdev_prop_set(vdev_t * vd,nvlist_t * innvl,nvlist_t * outnvl)5938 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5939 {
5940 	spa_t *spa = vd->vdev_spa;
5941 	nvpair_t *elem = NULL;
5942 	uint64_t vdev_guid;
5943 	nvlist_t *nvprops;
5944 	int error = 0;
5945 
5946 	ASSERT(vd != NULL);
5947 
5948 	/* Check that vdev has a zap we can use */
5949 	if (vd->vdev_root_zap == 0 &&
5950 	    vd->vdev_top_zap == 0 &&
5951 	    vd->vdev_leaf_zap == 0)
5952 		return (SET_ERROR(EINVAL));
5953 
5954 	if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
5955 	    &vdev_guid) != 0)
5956 		return (SET_ERROR(EINVAL));
5957 
5958 	if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
5959 	    &nvprops) != 0)
5960 		return (SET_ERROR(EINVAL));
5961 
5962 	if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
5963 		return (SET_ERROR(EINVAL));
5964 
5965 	while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5966 		const char *propname = nvpair_name(elem);
5967 		vdev_prop_t prop = vdev_name_to_prop(propname);
5968 		uint64_t intval = 0;
5969 		const char *strval = NULL;
5970 
5971 		if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
5972 			error = EINVAL;
5973 			goto end;
5974 		}
5975 
5976 		if (prop != VDEV_PROP_USERPROP && vdev_prop_readonly(prop)) {
5977 			error = EROFS;
5978 			goto end;
5979 		}
5980 
5981 		/* Special Processing */
5982 		switch (prop) {
5983 		case VDEV_PROP_PATH:
5984 			if (vd->vdev_path == NULL) {
5985 				error = EROFS;
5986 				break;
5987 			}
5988 			if (nvpair_value_string(elem, &strval) != 0) {
5989 				error = EINVAL;
5990 				break;
5991 			}
5992 			/* New path must start with /dev/ */
5993 			if (strncmp(strval, "/dev/", 5)) {
5994 				error = EINVAL;
5995 				break;
5996 			}
5997 			error = spa_vdev_setpath(spa, vdev_guid, strval);
5998 			break;
5999 		case VDEV_PROP_ALLOCATING:
6000 			if (nvpair_value_uint64(elem, &intval) != 0) {
6001 				error = EINVAL;
6002 				break;
6003 			}
6004 			if (intval != vd->vdev_noalloc)
6005 				break;
6006 			if (intval == 0)
6007 				error = spa_vdev_noalloc(spa, vdev_guid);
6008 			else
6009 				error = spa_vdev_alloc(spa, vdev_guid);
6010 			break;
6011 		case VDEV_PROP_FAILFAST:
6012 			if (nvpair_value_uint64(elem, &intval) != 0) {
6013 				error = EINVAL;
6014 				break;
6015 			}
6016 			vd->vdev_failfast = intval & 1;
6017 			break;
6018 		case VDEV_PROP_CHECKSUM_N:
6019 			if (nvpair_value_uint64(elem, &intval) != 0) {
6020 				error = EINVAL;
6021 				break;
6022 			}
6023 			vd->vdev_checksum_n = intval;
6024 			break;
6025 		case VDEV_PROP_CHECKSUM_T:
6026 			if (nvpair_value_uint64(elem, &intval) != 0) {
6027 				error = EINVAL;
6028 				break;
6029 			}
6030 			vd->vdev_checksum_t = intval;
6031 			break;
6032 		case VDEV_PROP_IO_N:
6033 			if (nvpair_value_uint64(elem, &intval) != 0) {
6034 				error = EINVAL;
6035 				break;
6036 			}
6037 			vd->vdev_io_n = intval;
6038 			break;
6039 		case VDEV_PROP_IO_T:
6040 			if (nvpair_value_uint64(elem, &intval) != 0) {
6041 				error = EINVAL;
6042 				break;
6043 			}
6044 			vd->vdev_io_t = intval;
6045 			break;
6046 		case VDEV_PROP_SLOW_IO_N:
6047 			if (nvpair_value_uint64(elem, &intval) != 0) {
6048 				error = EINVAL;
6049 				break;
6050 			}
6051 			vd->vdev_slow_io_n = intval;
6052 			break;
6053 		case VDEV_PROP_SLOW_IO_T:
6054 			if (nvpair_value_uint64(elem, &intval) != 0) {
6055 				error = EINVAL;
6056 				break;
6057 			}
6058 			vd->vdev_slow_io_t = intval;
6059 			break;
6060 		default:
6061 			/* Most processing is done in vdev_props_set_sync */
6062 			break;
6063 		}
6064 end:
6065 		if (error != 0) {
6066 			intval = error;
6067 			vdev_prop_add_list(outnvl, propname, strval, intval, 0);
6068 			return (error);
6069 		}
6070 	}
6071 
6072 	return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
6073 	    innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
6074 }
6075 
6076 int
vdev_prop_get(vdev_t * vd,nvlist_t * innvl,nvlist_t * outnvl)6077 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
6078 {
6079 	spa_t *spa = vd->vdev_spa;
6080 	objset_t *mos = spa->spa_meta_objset;
6081 	int err = 0;
6082 	uint64_t objid;
6083 	uint64_t vdev_guid;
6084 	nvpair_t *elem = NULL;
6085 	nvlist_t *nvprops = NULL;
6086 	uint64_t intval = 0;
6087 	char *strval = NULL;
6088 	const char *propname = NULL;
6089 	vdev_prop_t prop;
6090 
6091 	ASSERT(vd != NULL);
6092 	ASSERT(mos != NULL);
6093 
6094 	if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
6095 	    &vdev_guid) != 0)
6096 		return (SET_ERROR(EINVAL));
6097 
6098 	nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
6099 
6100 	if (vd->vdev_root_zap != 0) {
6101 		objid = vd->vdev_root_zap;
6102 	} else if (vd->vdev_top_zap != 0) {
6103 		objid = vd->vdev_top_zap;
6104 	} else if (vd->vdev_leaf_zap != 0) {
6105 		objid = vd->vdev_leaf_zap;
6106 	} else {
6107 		return (SET_ERROR(EINVAL));
6108 	}
6109 	ASSERT(objid != 0);
6110 
6111 	mutex_enter(&spa->spa_props_lock);
6112 
6113 	if (nvprops != NULL) {
6114 		char namebuf[64] = { 0 };
6115 
6116 		while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6117 			intval = 0;
6118 			strval = NULL;
6119 			propname = nvpair_name(elem);
6120 			prop = vdev_name_to_prop(propname);
6121 			zprop_source_t src = ZPROP_SRC_DEFAULT;
6122 			uint64_t integer_size, num_integers;
6123 
6124 			switch (prop) {
6125 			/* Special Read-only Properties */
6126 			case VDEV_PROP_NAME:
6127 				strval = vdev_name(vd, namebuf,
6128 				    sizeof (namebuf));
6129 				if (strval == NULL)
6130 					continue;
6131 				vdev_prop_add_list(outnvl, propname, strval, 0,
6132 				    ZPROP_SRC_NONE);
6133 				continue;
6134 			case VDEV_PROP_CAPACITY:
6135 				/* percent used */
6136 				intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
6137 				    (vd->vdev_stat.vs_alloc * 100 /
6138 				    vd->vdev_stat.vs_dspace);
6139 				vdev_prop_add_list(outnvl, propname, NULL,
6140 				    intval, ZPROP_SRC_NONE);
6141 				continue;
6142 			case VDEV_PROP_STATE:
6143 				vdev_prop_add_list(outnvl, propname, NULL,
6144 				    vd->vdev_state, ZPROP_SRC_NONE);
6145 				continue;
6146 			case VDEV_PROP_GUID:
6147 				vdev_prop_add_list(outnvl, propname, NULL,
6148 				    vd->vdev_guid, ZPROP_SRC_NONE);
6149 				continue;
6150 			case VDEV_PROP_ASIZE:
6151 				vdev_prop_add_list(outnvl, propname, NULL,
6152 				    vd->vdev_asize, ZPROP_SRC_NONE);
6153 				continue;
6154 			case VDEV_PROP_PSIZE:
6155 				vdev_prop_add_list(outnvl, propname, NULL,
6156 				    vd->vdev_psize, ZPROP_SRC_NONE);
6157 				continue;
6158 			case VDEV_PROP_ASHIFT:
6159 				vdev_prop_add_list(outnvl, propname, NULL,
6160 				    vd->vdev_ashift, ZPROP_SRC_NONE);
6161 				continue;
6162 			case VDEV_PROP_SIZE:
6163 				vdev_prop_add_list(outnvl, propname, NULL,
6164 				    vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
6165 				continue;
6166 			case VDEV_PROP_FREE:
6167 				vdev_prop_add_list(outnvl, propname, NULL,
6168 				    vd->vdev_stat.vs_dspace -
6169 				    vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6170 				continue;
6171 			case VDEV_PROP_ALLOCATED:
6172 				vdev_prop_add_list(outnvl, propname, NULL,
6173 				    vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6174 				continue;
6175 			case VDEV_PROP_EXPANDSZ:
6176 				vdev_prop_add_list(outnvl, propname, NULL,
6177 				    vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
6178 				continue;
6179 			case VDEV_PROP_FRAGMENTATION:
6180 				vdev_prop_add_list(outnvl, propname, NULL,
6181 				    vd->vdev_stat.vs_fragmentation,
6182 				    ZPROP_SRC_NONE);
6183 				continue;
6184 			case VDEV_PROP_PARITY:
6185 				vdev_prop_add_list(outnvl, propname, NULL,
6186 				    vdev_get_nparity(vd), ZPROP_SRC_NONE);
6187 				continue;
6188 			case VDEV_PROP_PATH:
6189 				if (vd->vdev_path == NULL)
6190 					continue;
6191 				vdev_prop_add_list(outnvl, propname,
6192 				    vd->vdev_path, 0, ZPROP_SRC_NONE);
6193 				continue;
6194 			case VDEV_PROP_DEVID:
6195 				if (vd->vdev_devid == NULL)
6196 					continue;
6197 				vdev_prop_add_list(outnvl, propname,
6198 				    vd->vdev_devid, 0, ZPROP_SRC_NONE);
6199 				continue;
6200 			case VDEV_PROP_PHYS_PATH:
6201 				if (vd->vdev_physpath == NULL)
6202 					continue;
6203 				vdev_prop_add_list(outnvl, propname,
6204 				    vd->vdev_physpath, 0, ZPROP_SRC_NONE);
6205 				continue;
6206 			case VDEV_PROP_ENC_PATH:
6207 				if (vd->vdev_enc_sysfs_path == NULL)
6208 					continue;
6209 				vdev_prop_add_list(outnvl, propname,
6210 				    vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
6211 				continue;
6212 			case VDEV_PROP_FRU:
6213 				if (vd->vdev_fru == NULL)
6214 					continue;
6215 				vdev_prop_add_list(outnvl, propname,
6216 				    vd->vdev_fru, 0, ZPROP_SRC_NONE);
6217 				continue;
6218 			case VDEV_PROP_PARENT:
6219 				if (vd->vdev_parent != NULL) {
6220 					strval = vdev_name(vd->vdev_parent,
6221 					    namebuf, sizeof (namebuf));
6222 					vdev_prop_add_list(outnvl, propname,
6223 					    strval, 0, ZPROP_SRC_NONE);
6224 				}
6225 				continue;
6226 			case VDEV_PROP_CHILDREN:
6227 				if (vd->vdev_children > 0)
6228 					strval = kmem_zalloc(ZAP_MAXVALUELEN,
6229 					    KM_SLEEP);
6230 				for (uint64_t i = 0; i < vd->vdev_children;
6231 				    i++) {
6232 					const char *vname;
6233 
6234 					vname = vdev_name(vd->vdev_child[i],
6235 					    namebuf, sizeof (namebuf));
6236 					if (vname == NULL)
6237 						vname = "(unknown)";
6238 					if (strlen(strval) > 0)
6239 						strlcat(strval, ",",
6240 						    ZAP_MAXVALUELEN);
6241 					strlcat(strval, vname, ZAP_MAXVALUELEN);
6242 				}
6243 				if (strval != NULL) {
6244 					vdev_prop_add_list(outnvl, propname,
6245 					    strval, 0, ZPROP_SRC_NONE);
6246 					kmem_free(strval, ZAP_MAXVALUELEN);
6247 				}
6248 				continue;
6249 			case VDEV_PROP_NUMCHILDREN:
6250 				vdev_prop_add_list(outnvl, propname, NULL,
6251 				    vd->vdev_children, ZPROP_SRC_NONE);
6252 				continue;
6253 			case VDEV_PROP_READ_ERRORS:
6254 				vdev_prop_add_list(outnvl, propname, NULL,
6255 				    vd->vdev_stat.vs_read_errors,
6256 				    ZPROP_SRC_NONE);
6257 				continue;
6258 			case VDEV_PROP_WRITE_ERRORS:
6259 				vdev_prop_add_list(outnvl, propname, NULL,
6260 				    vd->vdev_stat.vs_write_errors,
6261 				    ZPROP_SRC_NONE);
6262 				continue;
6263 			case VDEV_PROP_CHECKSUM_ERRORS:
6264 				vdev_prop_add_list(outnvl, propname, NULL,
6265 				    vd->vdev_stat.vs_checksum_errors,
6266 				    ZPROP_SRC_NONE);
6267 				continue;
6268 			case VDEV_PROP_INITIALIZE_ERRORS:
6269 				vdev_prop_add_list(outnvl, propname, NULL,
6270 				    vd->vdev_stat.vs_initialize_errors,
6271 				    ZPROP_SRC_NONE);
6272 				continue;
6273 			case VDEV_PROP_TRIM_ERRORS:
6274 				vdev_prop_add_list(outnvl, propname, NULL,
6275 				    vd->vdev_stat.vs_trim_errors,
6276 				    ZPROP_SRC_NONE);
6277 				continue;
6278 			case VDEV_PROP_SLOW_IOS:
6279 				vdev_prop_add_list(outnvl, propname, NULL,
6280 				    vd->vdev_stat.vs_slow_ios,
6281 				    ZPROP_SRC_NONE);
6282 				continue;
6283 			case VDEV_PROP_OPS_NULL:
6284 				vdev_prop_add_list(outnvl, propname, NULL,
6285 				    vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
6286 				    ZPROP_SRC_NONE);
6287 				continue;
6288 			case VDEV_PROP_OPS_READ:
6289 				vdev_prop_add_list(outnvl, propname, NULL,
6290 				    vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
6291 				    ZPROP_SRC_NONE);
6292 				continue;
6293 			case VDEV_PROP_OPS_WRITE:
6294 				vdev_prop_add_list(outnvl, propname, NULL,
6295 				    vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
6296 				    ZPROP_SRC_NONE);
6297 				continue;
6298 			case VDEV_PROP_OPS_FREE:
6299 				vdev_prop_add_list(outnvl, propname, NULL,
6300 				    vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
6301 				    ZPROP_SRC_NONE);
6302 				continue;
6303 			case VDEV_PROP_OPS_CLAIM:
6304 				vdev_prop_add_list(outnvl, propname, NULL,
6305 				    vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
6306 				    ZPROP_SRC_NONE);
6307 				continue;
6308 			case VDEV_PROP_OPS_TRIM:
6309 				/*
6310 				 * TRIM ops and bytes are reported to user
6311 				 * space as ZIO_TYPE_FLUSH.  This is done to
6312 				 * preserve the vdev_stat_t structure layout
6313 				 * for user space.
6314 				 */
6315 				vdev_prop_add_list(outnvl, propname, NULL,
6316 				    vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH],
6317 				    ZPROP_SRC_NONE);
6318 				continue;
6319 			case VDEV_PROP_BYTES_NULL:
6320 				vdev_prop_add_list(outnvl, propname, NULL,
6321 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
6322 				    ZPROP_SRC_NONE);
6323 				continue;
6324 			case VDEV_PROP_BYTES_READ:
6325 				vdev_prop_add_list(outnvl, propname, NULL,
6326 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
6327 				    ZPROP_SRC_NONE);
6328 				continue;
6329 			case VDEV_PROP_BYTES_WRITE:
6330 				vdev_prop_add_list(outnvl, propname, NULL,
6331 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
6332 				    ZPROP_SRC_NONE);
6333 				continue;
6334 			case VDEV_PROP_BYTES_FREE:
6335 				vdev_prop_add_list(outnvl, propname, NULL,
6336 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
6337 				    ZPROP_SRC_NONE);
6338 				continue;
6339 			case VDEV_PROP_BYTES_CLAIM:
6340 				vdev_prop_add_list(outnvl, propname, NULL,
6341 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
6342 				    ZPROP_SRC_NONE);
6343 				continue;
6344 			case VDEV_PROP_BYTES_TRIM:
6345 				/*
6346 				 * TRIM ops and bytes are reported to user
6347 				 * space as ZIO_TYPE_FLUSH.  This is done to
6348 				 * preserve the vdev_stat_t structure layout
6349 				 * for user space.
6350 				 */
6351 				vdev_prop_add_list(outnvl, propname, NULL,
6352 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH],
6353 				    ZPROP_SRC_NONE);
6354 				continue;
6355 			case VDEV_PROP_REMOVING:
6356 				vdev_prop_add_list(outnvl, propname, NULL,
6357 				    vd->vdev_removing, ZPROP_SRC_NONE);
6358 				continue;
6359 			case VDEV_PROP_RAIDZ_EXPANDING:
6360 				/* Only expose this for raidz */
6361 				if (vd->vdev_ops == &vdev_raidz_ops) {
6362 					vdev_prop_add_list(outnvl, propname,
6363 					    NULL, vd->vdev_rz_expanding,
6364 					    ZPROP_SRC_NONE);
6365 				}
6366 				continue;
6367 			case VDEV_PROP_TRIM_SUPPORT:
6368 				/* only valid for leaf vdevs */
6369 				if (vd->vdev_ops->vdev_op_leaf) {
6370 					vdev_prop_add_list(outnvl, propname,
6371 					    NULL, vd->vdev_has_trim,
6372 					    ZPROP_SRC_NONE);
6373 				}
6374 				continue;
6375 			/* Numeric Properites */
6376 			case VDEV_PROP_ALLOCATING:
6377 				/* Leaf vdevs cannot have this property */
6378 				if (vd->vdev_mg == NULL &&
6379 				    vd->vdev_top != NULL) {
6380 					src = ZPROP_SRC_NONE;
6381 					intval = ZPROP_BOOLEAN_NA;
6382 				} else {
6383 					err = vdev_prop_get_int(vd, prop,
6384 					    &intval);
6385 					if (err && err != ENOENT)
6386 						break;
6387 
6388 					if (intval ==
6389 					    vdev_prop_default_numeric(prop))
6390 						src = ZPROP_SRC_DEFAULT;
6391 					else
6392 						src = ZPROP_SRC_LOCAL;
6393 				}
6394 
6395 				vdev_prop_add_list(outnvl, propname, NULL,
6396 				    intval, src);
6397 				break;
6398 			case VDEV_PROP_FAILFAST:
6399 				src = ZPROP_SRC_LOCAL;
6400 				strval = NULL;
6401 
6402 				err = zap_lookup(mos, objid, nvpair_name(elem),
6403 				    sizeof (uint64_t), 1, &intval);
6404 				if (err == ENOENT) {
6405 					intval = vdev_prop_default_numeric(
6406 					    prop);
6407 					err = 0;
6408 				} else if (err) {
6409 					break;
6410 				}
6411 				if (intval == vdev_prop_default_numeric(prop))
6412 					src = ZPROP_SRC_DEFAULT;
6413 
6414 				vdev_prop_add_list(outnvl, propname, strval,
6415 				    intval, src);
6416 				break;
6417 			case VDEV_PROP_CHECKSUM_N:
6418 			case VDEV_PROP_CHECKSUM_T:
6419 			case VDEV_PROP_IO_N:
6420 			case VDEV_PROP_IO_T:
6421 			case VDEV_PROP_SLOW_IO_N:
6422 			case VDEV_PROP_SLOW_IO_T:
6423 				err = vdev_prop_get_int(vd, prop, &intval);
6424 				if (err && err != ENOENT)
6425 					break;
6426 
6427 				if (intval == vdev_prop_default_numeric(prop))
6428 					src = ZPROP_SRC_DEFAULT;
6429 				else
6430 					src = ZPROP_SRC_LOCAL;
6431 
6432 				vdev_prop_add_list(outnvl, propname, NULL,
6433 				    intval, src);
6434 				break;
6435 			/* Text Properties */
6436 			case VDEV_PROP_COMMENT:
6437 				/* Exists in the ZAP below */
6438 				/* FALLTHRU */
6439 			case VDEV_PROP_USERPROP:
6440 				/* User Properites */
6441 				src = ZPROP_SRC_LOCAL;
6442 
6443 				err = zap_length(mos, objid, nvpair_name(elem),
6444 				    &integer_size, &num_integers);
6445 				if (err)
6446 					break;
6447 
6448 				switch (integer_size) {
6449 				case 8:
6450 					/* User properties cannot be integers */
6451 					err = EINVAL;
6452 					break;
6453 				case 1:
6454 					/* string property */
6455 					strval = kmem_alloc(num_integers,
6456 					    KM_SLEEP);
6457 					err = zap_lookup(mos, objid,
6458 					    nvpair_name(elem), 1,
6459 					    num_integers, strval);
6460 					if (err) {
6461 						kmem_free(strval,
6462 						    num_integers);
6463 						break;
6464 					}
6465 					vdev_prop_add_list(outnvl, propname,
6466 					    strval, 0, src);
6467 					kmem_free(strval, num_integers);
6468 					break;
6469 				}
6470 				break;
6471 			default:
6472 				err = ENOENT;
6473 				break;
6474 			}
6475 			if (err)
6476 				break;
6477 		}
6478 	} else {
6479 		/*
6480 		 * Get all properties from the MOS vdev property object.
6481 		 */
6482 		zap_cursor_t zc;
6483 		zap_attribute_t *za = zap_attribute_alloc();
6484 		for (zap_cursor_init(&zc, mos, objid);
6485 		    (err = zap_cursor_retrieve(&zc, za)) == 0;
6486 		    zap_cursor_advance(&zc)) {
6487 			intval = 0;
6488 			strval = NULL;
6489 			zprop_source_t src = ZPROP_SRC_DEFAULT;
6490 			propname = za->za_name;
6491 
6492 			switch (za->za_integer_length) {
6493 			case 8:
6494 				/* We do not allow integer user properties */
6495 				/* This is likely an internal value */
6496 				break;
6497 			case 1:
6498 				/* string property */
6499 				strval = kmem_alloc(za->za_num_integers,
6500 				    KM_SLEEP);
6501 				err = zap_lookup(mos, objid, za->za_name, 1,
6502 				    za->za_num_integers, strval);
6503 				if (err) {
6504 					kmem_free(strval, za->za_num_integers);
6505 					break;
6506 				}
6507 				vdev_prop_add_list(outnvl, propname, strval, 0,
6508 				    src);
6509 				kmem_free(strval, za->za_num_integers);
6510 				break;
6511 
6512 			default:
6513 				break;
6514 			}
6515 		}
6516 		zap_cursor_fini(&zc);
6517 		zap_attribute_free(za);
6518 	}
6519 
6520 	mutex_exit(&spa->spa_props_lock);
6521 	if (err && err != ENOENT) {
6522 		return (err);
6523 	}
6524 
6525 	return (0);
6526 }
6527 
6528 EXPORT_SYMBOL(vdev_fault);
6529 EXPORT_SYMBOL(vdev_degrade);
6530 EXPORT_SYMBOL(vdev_online);
6531 EXPORT_SYMBOL(vdev_offline);
6532 EXPORT_SYMBOL(vdev_clear);
6533 
6534 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
6535 	"Target number of metaslabs per top-level vdev");
6536 
6537 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
6538 	"Default lower limit for metaslab size");
6539 
6540 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW,
6541 	"Default upper limit for metaslab size");
6542 
6543 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
6544 	"Minimum number of metaslabs per top-level vdev");
6545 
6546 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
6547 	"Practical upper limit of total metaslabs per top-level vdev");
6548 
6549 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
6550 	"Rate limit slow IO (delay) events to this many per second");
6551 
6552 ZFS_MODULE_PARAM(zfs, zfs_, deadman_events_per_second, UINT, ZMOD_RW,
6553 	"Rate limit hung IO (deadman) events to this many per second");
6554 
6555 ZFS_MODULE_PARAM(zfs, zfs_, dio_write_verify_events_per_second, UINT, ZMOD_RW,
6556 	"Rate Direct I/O write verify events to this many per second");
6557 
6558 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, direct_write_verify, UINT, ZMOD_RW,
6559 	"Direct I/O writes will perform for checksum verification before "
6560 	"commiting write");
6561 
6562 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
6563 	"Rate limit checksum events to this many checksum errors per second "
6564 	"(do not set below ZED threshold).");
6565 
6566 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
6567 	"Ignore errors during resilver/scrub");
6568 
6569 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
6570 	"Bypass vdev_validate()");
6571 
6572 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
6573 	"Disable cache flushes");
6574 
6575 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
6576 	"Minimum number of metaslabs required to dedicate one for log blocks");
6577 
6578 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
6579 	param_set_min_auto_ashift, param_get_uint, ZMOD_RW,
6580 	"Minimum ashift used when creating new top-level vdevs");
6581 
6582 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
6583 	param_set_max_auto_ashift, param_get_uint, ZMOD_RW,
6584 	"Maximum ashift used when optimizing for logical -> physical sector "
6585 	"size on new top-level vdevs");
6586 
6587 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, raidz_impl,
6588 		param_set_raidz_impl, param_get_raidz_impl, ZMOD_RW,
6589 		"RAIDZ implementation");
6590