1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25 * Copyright 2016 Gary Mills
26 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
27 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
28 * Copyright 2019 Joyent, Inc.
29 */
30
31 #include <sys/dsl_scan.h>
32 #include <sys/dsl_pool.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/dsl_prop.h>
35 #include <sys/dsl_dir.h>
36 #include <sys/dsl_synctask.h>
37 #include <sys/dnode.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/arc.h>
41 #include <sys/arc_impl.h>
42 #include <sys/zap.h>
43 #include <sys/zio.h>
44 #include <sys/zfs_context.h>
45 #include <sys/fs/zfs.h>
46 #include <sys/zfs_znode.h>
47 #include <sys/spa_impl.h>
48 #include <sys/vdev_impl.h>
49 #include <sys/zil_impl.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/brt.h>
52 #include <sys/ddt.h>
53 #include <sys/sa.h>
54 #include <sys/sa_impl.h>
55 #include <sys/zfeature.h>
56 #include <sys/abd.h>
57 #include <sys/range_tree.h>
58 #include <sys/dbuf.h>
59 #ifdef _KERNEL
60 #include <sys/zfs_vfsops.h>
61 #endif
62
63 /*
64 * Grand theory statement on scan queue sorting
65 *
66 * Scanning is implemented by recursively traversing all indirection levels
67 * in an object and reading all blocks referenced from said objects. This
68 * results in us approximately traversing the object from lowest logical
69 * offset to the highest. For best performance, we would want the logical
70 * blocks to be physically contiguous. However, this is frequently not the
71 * case with pools given the allocation patterns of copy-on-write filesystems.
72 * So instead, we put the I/Os into a reordering queue and issue them in a
73 * way that will most benefit physical disks (LBA-order).
74 *
75 * Queue management:
76 *
77 * Ideally, we would want to scan all metadata and queue up all block I/O
78 * prior to starting to issue it, because that allows us to do an optimal
79 * sorting job. This can however consume large amounts of memory. Therefore
80 * we continuously monitor the size of the queues and constrain them to 5%
81 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
82 * limit, we clear out a few of the largest extents at the head of the queues
83 * to make room for more scanning. Hopefully, these extents will be fairly
84 * large and contiguous, allowing us to approach sequential I/O throughput
85 * even without a fully sorted tree.
86 *
87 * Metadata scanning takes place in dsl_scan_visit(), which is called from
88 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
89 * metadata on the pool, or we need to make room in memory because our
90 * queues are too large, dsl_scan_visit() is postponed and
91 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
92 * that metadata scanning and queued I/O issuing are mutually exclusive. This
93 * allows us to provide maximum sequential I/O throughput for the majority of
94 * I/O's issued since sequential I/O performance is significantly negatively
95 * impacted if it is interleaved with random I/O.
96 *
97 * Implementation Notes
98 *
99 * One side effect of the queued scanning algorithm is that the scanning code
100 * needs to be notified whenever a block is freed. This is needed to allow
101 * the scanning code to remove these I/Os from the issuing queue. Additionally,
102 * we do not attempt to queue gang blocks to be issued sequentially since this
103 * is very hard to do and would have an extremely limited performance benefit.
104 * Instead, we simply issue gang I/Os as soon as we find them using the legacy
105 * algorithm.
106 *
107 * Backwards compatibility
108 *
109 * This new algorithm is backwards compatible with the legacy on-disk data
110 * structures (and therefore does not require a new feature flag).
111 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
112 * will stop scanning metadata (in logical order) and wait for all outstanding
113 * sorted I/O to complete. Once this is done, we write out a checkpoint
114 * bookmark, indicating that we have scanned everything logically before it.
115 * If the pool is imported on a machine without the new sorting algorithm,
116 * the scan simply resumes from the last checkpoint using the legacy algorithm.
117 */
118
119 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
120 const zbookmark_phys_t *);
121
122 static scan_cb_t dsl_scan_scrub_cb;
123
124 static int scan_ds_queue_compare(const void *a, const void *b);
125 static int scan_prefetch_queue_compare(const void *a, const void *b);
126 static void scan_ds_queue_clear(dsl_scan_t *scn);
127 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
128 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
129 uint64_t *txg);
130 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
131 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
132 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
133 static uint64_t dsl_scan_count_data_disks(spa_t *spa);
134 static void read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb);
135
136 extern uint_t zfs_vdev_async_write_active_min_dirty_percent;
137 static int zfs_scan_blkstats = 0;
138
139 /*
140 * 'zpool status' uses bytes processed per pass to report throughput and
141 * estimate time remaining. We define a pass to start when the scanning
142 * phase completes for a sequential resilver. Optionally, this value
143 * may be used to reset the pass statistics every N txgs to provide an
144 * estimated completion time based on currently observed performance.
145 */
146 static uint_t zfs_scan_report_txgs = 0;
147
148 /*
149 * By default zfs will check to ensure it is not over the hard memory
150 * limit before each txg. If finer-grained control of this is needed
151 * this value can be set to 1 to enable checking before scanning each
152 * block.
153 */
154 static int zfs_scan_strict_mem_lim = B_FALSE;
155
156 /*
157 * Maximum number of parallelly executed bytes per leaf vdev. We attempt
158 * to strike a balance here between keeping the vdev queues full of I/Os
159 * at all times and not overflowing the queues to cause long latency,
160 * which would cause long txg sync times. No matter what, we will not
161 * overload the drives with I/O, since that is protected by
162 * zfs_vdev_scrub_max_active.
163 */
164 static uint64_t zfs_scan_vdev_limit = 16 << 20;
165
166 static uint_t zfs_scan_issue_strategy = 0;
167
168 /* don't queue & sort zios, go direct */
169 static int zfs_scan_legacy = B_FALSE;
170 static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
171
172 /*
173 * fill_weight is non-tunable at runtime, so we copy it at module init from
174 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
175 * break queue sorting.
176 */
177 static uint_t zfs_scan_fill_weight = 3;
178 static uint64_t fill_weight;
179
180 /* See dsl_scan_should_clear() for details on the memory limit tunables */
181 static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */
182 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */
183
184
185 /* fraction of physmem */
186 static uint_t zfs_scan_mem_lim_fact = 20;
187
188 /* fraction of mem lim above */
189 static uint_t zfs_scan_mem_lim_soft_fact = 20;
190
191 /* minimum milliseconds to scrub per txg */
192 static uint_t zfs_scrub_min_time_ms = 1000;
193
194 /* minimum milliseconds to obsolete per txg */
195 static uint_t zfs_obsolete_min_time_ms = 500;
196
197 /* minimum milliseconds to free per txg */
198 static uint_t zfs_free_min_time_ms = 1000;
199
200 /* minimum milliseconds to resilver per txg */
201 static uint_t zfs_resilver_min_time_ms = 3000;
202
203 static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */
204 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
205 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
206 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
207 static const ddt_class_t zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
208 /* max number of blocks to free in a single TXG */
209 static uint64_t zfs_async_block_max_blocks = UINT64_MAX;
210 /* max number of dedup blocks to free in a single TXG */
211 static uint64_t zfs_max_async_dedup_frees = 100000;
212
213 /* set to disable resilver deferring */
214 static int zfs_resilver_disable_defer = B_FALSE;
215
216 /* Don't defer a resilver if the one in progress only got this far: */
217 static uint_t zfs_resilver_defer_percent = 10;
218
219 /*
220 * We wait a few txgs after importing a pool to begin scanning so that
221 * the import / mounting code isn't held up by scrub / resilver IO.
222 * Unfortunately, it is a bit difficult to determine exactly how long
223 * this will take since userspace will trigger fs mounts asynchronously
224 * and the kernel will create zvol minors asynchronously. As a result,
225 * the value provided here is a bit arbitrary, but represents a
226 * reasonable estimate of how many txgs it will take to finish fully
227 * importing a pool
228 */
229 #define SCAN_IMPORT_WAIT_TXGS 5
230
231 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
232 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
233 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
234
235 #define DSL_SCAN_IS_SCRUB(scn) \
236 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB)
237
238 /*
239 * Enable/disable the processing of the free_bpobj object.
240 */
241 static int zfs_free_bpobj_enabled = 1;
242
243 /* Error blocks to be scrubbed in one txg. */
244 static uint_t zfs_scrub_error_blocks_per_txg = 1 << 12;
245
246 /* the order has to match pool_scan_type */
247 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
248 NULL,
249 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */
250 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */
251 };
252
253 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
254 typedef struct {
255 uint64_t sds_dsobj;
256 uint64_t sds_txg;
257 avl_node_t sds_node;
258 } scan_ds_t;
259
260 /*
261 * This controls what conditions are placed on dsl_scan_sync_state():
262 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
263 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
264 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
265 * write out the scn_phys_cached version.
266 * See dsl_scan_sync_state for details.
267 */
268 typedef enum {
269 SYNC_OPTIONAL,
270 SYNC_MANDATORY,
271 SYNC_CACHED
272 } state_sync_type_t;
273
274 /*
275 * This struct represents the minimum information needed to reconstruct a
276 * zio for sequential scanning. This is useful because many of these will
277 * accumulate in the sequential IO queues before being issued, so saving
278 * memory matters here.
279 */
280 typedef struct scan_io {
281 /* fields from blkptr_t */
282 uint64_t sio_blk_prop;
283 uint64_t sio_phys_birth;
284 uint64_t sio_birth;
285 zio_cksum_t sio_cksum;
286 uint32_t sio_nr_dvas;
287
288 /* fields from zio_t */
289 uint32_t sio_flags;
290 zbookmark_phys_t sio_zb;
291
292 /* members for queue sorting */
293 union {
294 avl_node_t sio_addr_node; /* link into issuing queue */
295 list_node_t sio_list_node; /* link for issuing to disk */
296 } sio_nodes;
297
298 /*
299 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
300 * depending on how many were in the original bp. Only the
301 * first DVA is really used for sorting and issuing purposes.
302 * The other DVAs (if provided) simply exist so that the zio
303 * layer can find additional copies to repair from in the
304 * event of an error. This array must go at the end of the
305 * struct to allow this for the variable number of elements.
306 */
307 dva_t sio_dva[];
308 } scan_io_t;
309
310 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
311 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
312 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0])
313 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0])
314 #define SIO_GET_END_OFFSET(sio) \
315 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
316 #define SIO_GET_MUSED(sio) \
317 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
318
319 struct dsl_scan_io_queue {
320 dsl_scan_t *q_scn; /* associated dsl_scan_t */
321 vdev_t *q_vd; /* top-level vdev that this queue represents */
322 zio_t *q_zio; /* scn_zio_root child for waiting on IO */
323
324 /* trees used for sorting I/Os and extents of I/Os */
325 zfs_range_tree_t *q_exts_by_addr;
326 zfs_btree_t q_exts_by_size;
327 avl_tree_t q_sios_by_addr;
328 uint64_t q_sio_memused;
329 uint64_t q_last_ext_addr;
330
331 /* members for zio rate limiting */
332 uint64_t q_maxinflight_bytes;
333 uint64_t q_inflight_bytes;
334 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
335
336 /* per txg statistics */
337 uint64_t q_total_seg_size_this_txg;
338 uint64_t q_segs_this_txg;
339 uint64_t q_total_zio_size_this_txg;
340 uint64_t q_zios_this_txg;
341 };
342
343 /* private data for dsl_scan_prefetch_cb() */
344 typedef struct scan_prefetch_ctx {
345 zfs_refcount_t spc_refcnt; /* refcount for memory management */
346 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */
347 boolean_t spc_root; /* is this prefetch for an objset? */
348 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */
349 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */
350 } scan_prefetch_ctx_t;
351
352 /* private data for dsl_scan_prefetch() */
353 typedef struct scan_prefetch_issue_ctx {
354 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */
355 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */
356 blkptr_t spic_bp; /* bp to prefetch */
357 zbookmark_phys_t spic_zb; /* bookmark to prefetch */
358 } scan_prefetch_issue_ctx_t;
359
360 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
361 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
362 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
363 scan_io_t *sio);
364
365 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
366 static void scan_io_queues_destroy(dsl_scan_t *scn);
367
368 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
369
370 /* sio->sio_nr_dvas must be set so we know which cache to free from */
371 static void
sio_free(scan_io_t * sio)372 sio_free(scan_io_t *sio)
373 {
374 ASSERT3U(sio->sio_nr_dvas, >, 0);
375 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
376
377 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
378 }
379
380 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
381 static scan_io_t *
sio_alloc(unsigned short nr_dvas)382 sio_alloc(unsigned short nr_dvas)
383 {
384 ASSERT3U(nr_dvas, >, 0);
385 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
386
387 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
388 }
389
390 void
scan_init(void)391 scan_init(void)
392 {
393 /*
394 * This is used in ext_size_compare() to weight segments
395 * based on how sparse they are. This cannot be changed
396 * mid-scan and the tree comparison functions don't currently
397 * have a mechanism for passing additional context to the
398 * compare functions. Thus we store this value globally and
399 * we only allow it to be set at module initialization time
400 */
401 fill_weight = zfs_scan_fill_weight;
402
403 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
404 char name[36];
405
406 (void) snprintf(name, sizeof (name), "sio_cache_%d", i);
407 sio_cache[i] = kmem_cache_create(name,
408 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
409 0, NULL, NULL, NULL, NULL, NULL, 0);
410 }
411 }
412
413 void
scan_fini(void)414 scan_fini(void)
415 {
416 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
417 kmem_cache_destroy(sio_cache[i]);
418 }
419 }
420
421 static inline boolean_t
dsl_scan_is_running(const dsl_scan_t * scn)422 dsl_scan_is_running(const dsl_scan_t *scn)
423 {
424 return (scn->scn_phys.scn_state == DSS_SCANNING);
425 }
426
427 boolean_t
dsl_scan_resilvering(dsl_pool_t * dp)428 dsl_scan_resilvering(dsl_pool_t *dp)
429 {
430 return (dsl_scan_is_running(dp->dp_scan) &&
431 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
432 }
433
434 static inline void
sio2bp(const scan_io_t * sio,blkptr_t * bp)435 sio2bp(const scan_io_t *sio, blkptr_t *bp)
436 {
437 memset(bp, 0, sizeof (*bp));
438 bp->blk_prop = sio->sio_blk_prop;
439 BP_SET_PHYSICAL_BIRTH(bp, sio->sio_phys_birth);
440 BP_SET_LOGICAL_BIRTH(bp, sio->sio_birth);
441 bp->blk_fill = 1; /* we always only work with data pointers */
442 bp->blk_cksum = sio->sio_cksum;
443
444 ASSERT3U(sio->sio_nr_dvas, >, 0);
445 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
446
447 memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t));
448 }
449
450 static inline void
bp2sio(const blkptr_t * bp,scan_io_t * sio,int dva_i)451 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
452 {
453 sio->sio_blk_prop = bp->blk_prop;
454 sio->sio_phys_birth = BP_GET_PHYSICAL_BIRTH(bp);
455 sio->sio_birth = BP_GET_LOGICAL_BIRTH(bp);
456 sio->sio_cksum = bp->blk_cksum;
457 sio->sio_nr_dvas = BP_GET_NDVAS(bp);
458
459 /*
460 * Copy the DVAs to the sio. We need all copies of the block so
461 * that the self healing code can use the alternate copies if the
462 * first is corrupted. We want the DVA at index dva_i to be first
463 * in the sio since this is the primary one that we want to issue.
464 */
465 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
466 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
467 }
468 }
469
470 int
dsl_scan_init(dsl_pool_t * dp,uint64_t txg)471 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
472 {
473 int err;
474 dsl_scan_t *scn;
475 spa_t *spa = dp->dp_spa;
476 uint64_t f;
477
478 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
479 scn->scn_dp = dp;
480
481 /*
482 * It's possible that we're resuming a scan after a reboot so
483 * make sure that the scan_async_destroying flag is initialized
484 * appropriately.
485 */
486 ASSERT(!scn->scn_async_destroying);
487 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
488 SPA_FEATURE_ASYNC_DESTROY);
489
490 /*
491 * Calculate the max number of in-flight bytes for pool-wide
492 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
493 * Limits for the issuing phase are done per top-level vdev and
494 * are handled separately.
495 */
496 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
497 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
498
499 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
500 offsetof(scan_ds_t, sds_node));
501 mutex_init(&scn->scn_queue_lock, NULL, MUTEX_DEFAULT, NULL);
502 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
503 sizeof (scan_prefetch_issue_ctx_t),
504 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
505
506 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
507 "scrub_func", sizeof (uint64_t), 1, &f);
508 if (err == 0) {
509 /*
510 * There was an old-style scrub in progress. Restart a
511 * new-style scrub from the beginning.
512 */
513 scn->scn_restart_txg = txg;
514 zfs_dbgmsg("old-style scrub was in progress for %s; "
515 "restarting new-style scrub in txg %llu",
516 spa->spa_name,
517 (longlong_t)scn->scn_restart_txg);
518
519 /*
520 * Load the queue obj from the old location so that it
521 * can be freed by dsl_scan_done().
522 */
523 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
524 "scrub_queue", sizeof (uint64_t), 1,
525 &scn->scn_phys.scn_queue_obj);
526 } else {
527 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
528 DMU_POOL_ERRORSCRUB, sizeof (uint64_t),
529 ERRORSCRUB_PHYS_NUMINTS, &scn->errorscrub_phys);
530
531 if (err != 0 && err != ENOENT)
532 return (err);
533
534 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
535 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
536 &scn->scn_phys);
537
538 /*
539 * Detect if the pool contains the signature of #2094. If it
540 * does properly update the scn->scn_phys structure and notify
541 * the administrator by setting an errata for the pool.
542 */
543 if (err == EOVERFLOW) {
544 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
545 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
546 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
547 (23 * sizeof (uint64_t)));
548
549 err = zap_lookup(dp->dp_meta_objset,
550 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
551 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
552 if (err == 0) {
553 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
554
555 if (overflow & ~DSL_SCAN_FLAGS_MASK ||
556 scn->scn_async_destroying) {
557 spa->spa_errata =
558 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
559 return (EOVERFLOW);
560 }
561
562 memcpy(&scn->scn_phys, zaptmp,
563 SCAN_PHYS_NUMINTS * sizeof (uint64_t));
564 scn->scn_phys.scn_flags = overflow;
565
566 /* Required scrub already in progress. */
567 if (scn->scn_phys.scn_state == DSS_FINISHED ||
568 scn->scn_phys.scn_state == DSS_CANCELED)
569 spa->spa_errata =
570 ZPOOL_ERRATA_ZOL_2094_SCRUB;
571 }
572 }
573
574 if (err == ENOENT)
575 return (0);
576 else if (err)
577 return (err);
578
579 /*
580 * We might be restarting after a reboot, so jump the issued
581 * counter to how far we've scanned. We know we're consistent
582 * up to here.
583 */
584 scn->scn_issued_before_pass = scn->scn_phys.scn_examined -
585 scn->scn_phys.scn_skipped;
586
587 if (dsl_scan_is_running(scn) &&
588 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
589 /*
590 * A new-type scrub was in progress on an old
591 * pool, and the pool was accessed by old
592 * software. Restart from the beginning, since
593 * the old software may have changed the pool in
594 * the meantime.
595 */
596 scn->scn_restart_txg = txg;
597 zfs_dbgmsg("new-style scrub for %s was modified "
598 "by old software; restarting in txg %llu",
599 spa->spa_name,
600 (longlong_t)scn->scn_restart_txg);
601 } else if (dsl_scan_resilvering(dp)) {
602 /*
603 * If a resilver is in progress and there are already
604 * errors, restart it instead of finishing this scan and
605 * then restarting it. If there haven't been any errors
606 * then remember that the incore DTL is valid.
607 */
608 if (scn->scn_phys.scn_errors > 0) {
609 scn->scn_restart_txg = txg;
610 zfs_dbgmsg("resilver can't excise DTL_MISSING "
611 "when finished; restarting on %s in txg "
612 "%llu",
613 spa->spa_name,
614 (u_longlong_t)scn->scn_restart_txg);
615 } else {
616 /* it's safe to excise DTL when finished */
617 spa->spa_scrub_started = B_TRUE;
618 }
619 }
620 }
621
622 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
623
624 /* reload the queue into the in-core state */
625 if (scn->scn_phys.scn_queue_obj != 0) {
626 zap_cursor_t zc;
627 zap_attribute_t *za = zap_attribute_alloc();
628
629 for (zap_cursor_init(&zc, dp->dp_meta_objset,
630 scn->scn_phys.scn_queue_obj);
631 zap_cursor_retrieve(&zc, za) == 0;
632 (void) zap_cursor_advance(&zc)) {
633 scan_ds_queue_insert(scn,
634 zfs_strtonum(za->za_name, NULL),
635 za->za_first_integer);
636 }
637 zap_cursor_fini(&zc);
638 zap_attribute_free(za);
639 }
640
641 ddt_walk_init(spa, scn->scn_phys.scn_max_txg);
642
643 spa_scan_stat_init(spa);
644 vdev_scan_stat_init(spa->spa_root_vdev);
645
646 return (0);
647 }
648
649 void
dsl_scan_fini(dsl_pool_t * dp)650 dsl_scan_fini(dsl_pool_t *dp)
651 {
652 if (dp->dp_scan != NULL) {
653 dsl_scan_t *scn = dp->dp_scan;
654
655 if (scn->scn_taskq != NULL)
656 taskq_destroy(scn->scn_taskq);
657
658 scan_ds_queue_clear(scn);
659 avl_destroy(&scn->scn_queue);
660 mutex_destroy(&scn->scn_queue_lock);
661 scan_ds_prefetch_queue_clear(scn);
662 avl_destroy(&scn->scn_prefetch_queue);
663
664 kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
665 dp->dp_scan = NULL;
666 }
667 }
668
669 static boolean_t
dsl_scan_restarting(dsl_scan_t * scn,dmu_tx_t * tx)670 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
671 {
672 return (scn->scn_restart_txg != 0 &&
673 scn->scn_restart_txg <= tx->tx_txg);
674 }
675
676 boolean_t
dsl_scan_resilver_scheduled(dsl_pool_t * dp)677 dsl_scan_resilver_scheduled(dsl_pool_t *dp)
678 {
679 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
680 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
681 }
682
683 boolean_t
dsl_scan_scrubbing(const dsl_pool_t * dp)684 dsl_scan_scrubbing(const dsl_pool_t *dp)
685 {
686 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
687
688 return (scn_phys->scn_state == DSS_SCANNING &&
689 scn_phys->scn_func == POOL_SCAN_SCRUB);
690 }
691
692 boolean_t
dsl_errorscrubbing(const dsl_pool_t * dp)693 dsl_errorscrubbing(const dsl_pool_t *dp)
694 {
695 dsl_errorscrub_phys_t *errorscrub_phys = &dp->dp_scan->errorscrub_phys;
696
697 return (errorscrub_phys->dep_state == DSS_ERRORSCRUBBING &&
698 errorscrub_phys->dep_func == POOL_SCAN_ERRORSCRUB);
699 }
700
701 boolean_t
dsl_errorscrub_is_paused(const dsl_scan_t * scn)702 dsl_errorscrub_is_paused(const dsl_scan_t *scn)
703 {
704 return (dsl_errorscrubbing(scn->scn_dp) &&
705 scn->errorscrub_phys.dep_paused_flags);
706 }
707
708 boolean_t
dsl_scan_is_paused_scrub(const dsl_scan_t * scn)709 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
710 {
711 return (dsl_scan_scrubbing(scn->scn_dp) &&
712 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
713 }
714
715 static void
dsl_errorscrub_sync_state(dsl_scan_t * scn,dmu_tx_t * tx)716 dsl_errorscrub_sync_state(dsl_scan_t *scn, dmu_tx_t *tx)
717 {
718 scn->errorscrub_phys.dep_cursor =
719 zap_cursor_serialize(&scn->errorscrub_cursor);
720
721 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
722 DMU_POOL_DIRECTORY_OBJECT,
723 DMU_POOL_ERRORSCRUB, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS,
724 &scn->errorscrub_phys, tx));
725 }
726
727 static void
dsl_errorscrub_setup_sync(void * arg,dmu_tx_t * tx)728 dsl_errorscrub_setup_sync(void *arg, dmu_tx_t *tx)
729 {
730 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
731 pool_scan_func_t *funcp = arg;
732 dsl_pool_t *dp = scn->scn_dp;
733 spa_t *spa = dp->dp_spa;
734
735 ASSERT(!dsl_scan_is_running(scn));
736 ASSERT(!dsl_errorscrubbing(scn->scn_dp));
737 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
738
739 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
740 scn->errorscrub_phys.dep_func = *funcp;
741 scn->errorscrub_phys.dep_state = DSS_ERRORSCRUBBING;
742 scn->errorscrub_phys.dep_start_time = gethrestime_sec();
743 scn->errorscrub_phys.dep_to_examine = spa_get_last_errlog_size(spa);
744 scn->errorscrub_phys.dep_examined = 0;
745 scn->errorscrub_phys.dep_errors = 0;
746 scn->errorscrub_phys.dep_cursor = 0;
747 zap_cursor_init_serialized(&scn->errorscrub_cursor,
748 spa->spa_meta_objset, spa->spa_errlog_last,
749 scn->errorscrub_phys.dep_cursor);
750
751 vdev_config_dirty(spa->spa_root_vdev);
752 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_START);
753
754 dsl_errorscrub_sync_state(scn, tx);
755
756 spa_history_log_internal(spa, "error scrub setup", tx,
757 "func=%u mintxg=%u maxtxg=%llu",
758 *funcp, 0, (u_longlong_t)tx->tx_txg);
759 }
760
761 static int
dsl_errorscrub_setup_check(void * arg,dmu_tx_t * tx)762 dsl_errorscrub_setup_check(void *arg, dmu_tx_t *tx)
763 {
764 (void) arg;
765 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
766
767 if (dsl_scan_is_running(scn) || (dsl_errorscrubbing(scn->scn_dp))) {
768 return (SET_ERROR(EBUSY));
769 }
770
771 if (spa_get_last_errlog_size(scn->scn_dp->dp_spa) == 0) {
772 return (ECANCELED);
773 }
774 return (0);
775 }
776
777 /*
778 * Writes out a persistent dsl_scan_phys_t record to the pool directory.
779 * Because we can be running in the block sorting algorithm, we do not always
780 * want to write out the record, only when it is "safe" to do so. This safety
781 * condition is achieved by making sure that the sorting queues are empty
782 * (scn_queues_pending == 0). When this condition is not true, the sync'd state
783 * is inconsistent with how much actual scanning progress has been made. The
784 * kind of sync to be performed is specified by the sync_type argument. If the
785 * sync is optional, we only sync if the queues are empty. If the sync is
786 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
787 * third possible state is a "cached" sync. This is done in response to:
788 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
789 * destroyed, so we wouldn't be able to restart scanning from it.
790 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
791 * superseded by a newer snapshot.
792 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
793 * swapped with its clone.
794 * In all cases, a cached sync simply rewrites the last record we've written,
795 * just slightly modified. For the modifications that are performed to the
796 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
797 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
798 */
799 static void
dsl_scan_sync_state(dsl_scan_t * scn,dmu_tx_t * tx,state_sync_type_t sync_type)800 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
801 {
802 int i;
803 spa_t *spa = scn->scn_dp->dp_spa;
804
805 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0);
806 if (scn->scn_queues_pending == 0) {
807 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
808 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
809 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
810
811 if (q == NULL)
812 continue;
813
814 mutex_enter(&vd->vdev_scan_io_queue_lock);
815 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
816 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
817 NULL);
818 ASSERT3P(zfs_range_tree_first(q->q_exts_by_addr), ==,
819 NULL);
820 mutex_exit(&vd->vdev_scan_io_queue_lock);
821 }
822
823 if (scn->scn_phys.scn_queue_obj != 0)
824 scan_ds_queue_sync(scn, tx);
825 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
826 DMU_POOL_DIRECTORY_OBJECT,
827 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
828 &scn->scn_phys, tx));
829 memcpy(&scn->scn_phys_cached, &scn->scn_phys,
830 sizeof (scn->scn_phys));
831
832 if (scn->scn_checkpointing)
833 zfs_dbgmsg("finish scan checkpoint for %s",
834 spa->spa_name);
835
836 scn->scn_checkpointing = B_FALSE;
837 scn->scn_last_checkpoint = ddi_get_lbolt();
838 } else if (sync_type == SYNC_CACHED) {
839 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
840 DMU_POOL_DIRECTORY_OBJECT,
841 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
842 &scn->scn_phys_cached, tx));
843 }
844 }
845
846 int
dsl_scan_setup_check(void * arg,dmu_tx_t * tx)847 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
848 {
849 (void) arg;
850 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
851 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
852
853 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd) ||
854 dsl_errorscrubbing(scn->scn_dp))
855 return (SET_ERROR(EBUSY));
856
857 return (0);
858 }
859
860 void
dsl_scan_setup_sync(void * arg,dmu_tx_t * tx)861 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
862 {
863 setup_sync_arg_t *setup_sync_arg = (setup_sync_arg_t *)arg;
864 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
865 dmu_object_type_t ot = 0;
866 dsl_pool_t *dp = scn->scn_dp;
867 spa_t *spa = dp->dp_spa;
868
869 ASSERT(!dsl_scan_is_running(scn));
870 ASSERT3U(setup_sync_arg->func, >, POOL_SCAN_NONE);
871 ASSERT3U(setup_sync_arg->func, <, POOL_SCAN_FUNCS);
872 memset(&scn->scn_phys, 0, sizeof (scn->scn_phys));
873
874 /*
875 * If we are starting a fresh scrub, we erase the error scrub
876 * information from disk.
877 */
878 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
879 dsl_errorscrub_sync_state(scn, tx);
880
881 scn->scn_phys.scn_func = setup_sync_arg->func;
882 scn->scn_phys.scn_state = DSS_SCANNING;
883 scn->scn_phys.scn_min_txg = setup_sync_arg->txgstart;
884 if (setup_sync_arg->txgend == 0) {
885 scn->scn_phys.scn_max_txg = tx->tx_txg;
886 } else {
887 scn->scn_phys.scn_max_txg = setup_sync_arg->txgend;
888 }
889 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
890 scn->scn_phys.scn_start_time = gethrestime_sec();
891 scn->scn_phys.scn_errors = 0;
892 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
893 scn->scn_issued_before_pass = 0;
894 scn->scn_restart_txg = 0;
895 scn->scn_done_txg = 0;
896 scn->scn_last_checkpoint = 0;
897 scn->scn_checkpointing = B_FALSE;
898 spa_scan_stat_init(spa);
899 vdev_scan_stat_init(spa->spa_root_vdev);
900
901 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
902 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
903
904 /* rewrite all disk labels */
905 vdev_config_dirty(spa->spa_root_vdev);
906
907 if (vdev_resilver_needed(spa->spa_root_vdev,
908 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
909 nvlist_t *aux = fnvlist_alloc();
910 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
911 "healing");
912 spa_event_notify(spa, NULL, aux,
913 ESC_ZFS_RESILVER_START);
914 nvlist_free(aux);
915 } else {
916 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
917 }
918
919 spa->spa_scrub_started = B_TRUE;
920 /*
921 * If this is an incremental scrub, limit the DDT scrub phase
922 * to just the auto-ditto class (for correctness); the rest
923 * of the scrub should go faster using top-down pruning.
924 */
925 if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
926 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
927
928 /*
929 * When starting a resilver clear any existing rebuild state.
930 * This is required to prevent stale rebuild status from
931 * being reported when a rebuild is run, then a resilver and
932 * finally a scrub. In which case only the scrub status
933 * should be reported by 'zpool status'.
934 */
935 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
936 vdev_t *rvd = spa->spa_root_vdev;
937 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
938 vdev_t *vd = rvd->vdev_child[i];
939 vdev_rebuild_clear_sync(
940 (void *)(uintptr_t)vd->vdev_id, tx);
941 }
942 }
943 }
944
945 /* back to the generic stuff */
946
947 if (zfs_scan_blkstats) {
948 if (dp->dp_blkstats == NULL) {
949 dp->dp_blkstats =
950 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
951 }
952 memset(&dp->dp_blkstats->zab_type, 0,
953 sizeof (dp->dp_blkstats->zab_type));
954 } else {
955 if (dp->dp_blkstats) {
956 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
957 dp->dp_blkstats = NULL;
958 }
959 }
960
961 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
962 ot = DMU_OT_ZAP_OTHER;
963
964 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
965 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
966
967 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
968
969 ddt_walk_init(spa, scn->scn_phys.scn_max_txg);
970
971 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
972
973 spa_history_log_internal(spa, "scan setup", tx,
974 "func=%u mintxg=%llu maxtxg=%llu",
975 setup_sync_arg->func, (u_longlong_t)scn->scn_phys.scn_min_txg,
976 (u_longlong_t)scn->scn_phys.scn_max_txg);
977 }
978
979 /*
980 * Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub,
981 * error scrub or resilver. Can also be called to resume a paused scrub or
982 * error scrub.
983 */
984 int
dsl_scan(dsl_pool_t * dp,pool_scan_func_t func,uint64_t txgstart,uint64_t txgend)985 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func, uint64_t txgstart,
986 uint64_t txgend)
987 {
988 spa_t *spa = dp->dp_spa;
989 dsl_scan_t *scn = dp->dp_scan;
990 setup_sync_arg_t setup_sync_arg;
991
992 if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0)) {
993 return (EINVAL);
994 }
995
996 /*
997 * Purge all vdev caches and probe all devices. We do this here
998 * rather than in sync context because this requires a writer lock
999 * on the spa_config lock, which we can't do from sync context. The
1000 * spa_scrub_reopen flag indicates that vdev_open() should not
1001 * attempt to start another scrub.
1002 */
1003 spa_vdev_state_enter(spa, SCL_NONE);
1004 spa->spa_scrub_reopen = B_TRUE;
1005 vdev_reopen(spa->spa_root_vdev);
1006 spa->spa_scrub_reopen = B_FALSE;
1007 (void) spa_vdev_state_exit(spa, NULL, 0);
1008
1009 if (func == POOL_SCAN_RESILVER) {
1010 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
1011 return (0);
1012 }
1013
1014 if (func == POOL_SCAN_ERRORSCRUB) {
1015 if (dsl_errorscrub_is_paused(dp->dp_scan)) {
1016 /*
1017 * got error scrub start cmd, resume paused error scrub.
1018 */
1019 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1020 POOL_SCRUB_NORMAL);
1021 if (err == 0) {
1022 spa_event_notify(spa, NULL, NULL,
1023 ESC_ZFS_ERRORSCRUB_RESUME);
1024 return (ECANCELED);
1025 }
1026 return (SET_ERROR(err));
1027 }
1028
1029 return (dsl_sync_task(spa_name(dp->dp_spa),
1030 dsl_errorscrub_setup_check, dsl_errorscrub_setup_sync,
1031 &func, 0, ZFS_SPACE_CHECK_RESERVED));
1032 }
1033
1034 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
1035 /* got scrub start cmd, resume paused scrub */
1036 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1037 POOL_SCRUB_NORMAL);
1038 if (err == 0) {
1039 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
1040 return (SET_ERROR(ECANCELED));
1041 }
1042 return (SET_ERROR(err));
1043 }
1044
1045 setup_sync_arg.func = func;
1046 setup_sync_arg.txgstart = txgstart;
1047 setup_sync_arg.txgend = txgend;
1048
1049 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
1050 dsl_scan_setup_sync, &setup_sync_arg, 0,
1051 ZFS_SPACE_CHECK_EXTRA_RESERVED));
1052 }
1053
1054 static void
dsl_errorscrub_done(dsl_scan_t * scn,boolean_t complete,dmu_tx_t * tx)1055 dsl_errorscrub_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1056 {
1057 dsl_pool_t *dp = scn->scn_dp;
1058 spa_t *spa = dp->dp_spa;
1059
1060 if (complete) {
1061 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_FINISH);
1062 spa_history_log_internal(spa, "error scrub done", tx,
1063 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1064 } else {
1065 spa_history_log_internal(spa, "error scrub canceled", tx,
1066 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1067 }
1068
1069 scn->errorscrub_phys.dep_state = complete ? DSS_FINISHED : DSS_CANCELED;
1070 spa->spa_scrub_active = B_FALSE;
1071 spa_errlog_rotate(spa);
1072 scn->errorscrub_phys.dep_end_time = gethrestime_sec();
1073 zap_cursor_fini(&scn->errorscrub_cursor);
1074
1075 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1076 spa->spa_errata = 0;
1077
1078 ASSERT(!dsl_errorscrubbing(scn->scn_dp));
1079 }
1080
1081 static void
dsl_scan_done(dsl_scan_t * scn,boolean_t complete,dmu_tx_t * tx)1082 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1083 {
1084 static const char *old_names[] = {
1085 "scrub_bookmark",
1086 "scrub_ddt_bookmark",
1087 "scrub_ddt_class_max",
1088 "scrub_queue",
1089 "scrub_min_txg",
1090 "scrub_max_txg",
1091 "scrub_func",
1092 "scrub_errors",
1093 NULL
1094 };
1095
1096 dsl_pool_t *dp = scn->scn_dp;
1097 spa_t *spa = dp->dp_spa;
1098 int i;
1099
1100 /* Remove any remnants of an old-style scrub. */
1101 for (i = 0; old_names[i]; i++) {
1102 (void) zap_remove(dp->dp_meta_objset,
1103 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
1104 }
1105
1106 if (scn->scn_phys.scn_queue_obj != 0) {
1107 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1108 scn->scn_phys.scn_queue_obj, tx));
1109 scn->scn_phys.scn_queue_obj = 0;
1110 }
1111 scan_ds_queue_clear(scn);
1112 scan_ds_prefetch_queue_clear(scn);
1113
1114 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1115
1116 /*
1117 * If we were "restarted" from a stopped state, don't bother
1118 * with anything else.
1119 */
1120 if (!dsl_scan_is_running(scn)) {
1121 ASSERT(!scn->scn_is_sorted);
1122 return;
1123 }
1124
1125 if (scn->scn_is_sorted) {
1126 scan_io_queues_destroy(scn);
1127 scn->scn_is_sorted = B_FALSE;
1128
1129 if (scn->scn_taskq != NULL) {
1130 taskq_destroy(scn->scn_taskq);
1131 scn->scn_taskq = NULL;
1132 }
1133 }
1134
1135 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
1136
1137 spa_notify_waiters(spa);
1138
1139 if (dsl_scan_restarting(scn, tx)) {
1140 spa_history_log_internal(spa, "scan aborted, restarting", tx,
1141 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1142 } else if (!complete) {
1143 spa_history_log_internal(spa, "scan cancelled", tx,
1144 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1145 } else {
1146 spa_history_log_internal(spa, "scan done", tx,
1147 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1148 if (DSL_SCAN_IS_SCRUB(scn)) {
1149 VERIFY0(zap_update(dp->dp_meta_objset,
1150 DMU_POOL_DIRECTORY_OBJECT,
1151 DMU_POOL_LAST_SCRUBBED_TXG,
1152 sizeof (uint64_t), 1,
1153 &scn->scn_phys.scn_max_txg, tx));
1154 spa->spa_scrubbed_last_txg = scn->scn_phys.scn_max_txg;
1155 }
1156 }
1157
1158 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
1159 spa->spa_scrub_active = B_FALSE;
1160
1161 /*
1162 * If the scrub/resilver completed, update all DTLs to
1163 * reflect this. Whether it succeeded or not, vacate
1164 * all temporary scrub DTLs.
1165 *
1166 * As the scrub does not currently support traversing
1167 * data that have been freed but are part of a checkpoint,
1168 * we don't mark the scrub as done in the DTLs as faults
1169 * may still exist in those vdevs.
1170 */
1171 if (complete &&
1172 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1173 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1174 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
1175
1176 if (scn->scn_phys.scn_min_txg) {
1177 nvlist_t *aux = fnvlist_alloc();
1178 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
1179 "healing");
1180 spa_event_notify(spa, NULL, aux,
1181 ESC_ZFS_RESILVER_FINISH);
1182 nvlist_free(aux);
1183 } else {
1184 spa_event_notify(spa, NULL, NULL,
1185 ESC_ZFS_SCRUB_FINISH);
1186 }
1187 } else {
1188 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1189 0, B_TRUE, B_FALSE);
1190 }
1191 spa_errlog_rotate(spa);
1192
1193 /*
1194 * Don't clear flag until after vdev_dtl_reassess to ensure that
1195 * DTL_MISSING will get updated when possible.
1196 */
1197 spa->spa_scrub_started = B_FALSE;
1198
1199 /*
1200 * We may have finished replacing a device.
1201 * Let the async thread assess this and handle the detach.
1202 */
1203 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
1204
1205 /*
1206 * Clear any resilver_deferred flags in the config.
1207 * If there are drives that need resilvering, kick
1208 * off an asynchronous request to start resilver.
1209 * vdev_clear_resilver_deferred() may update the config
1210 * before the resilver can restart. In the event of
1211 * a crash during this period, the spa loading code
1212 * will find the drives that need to be resilvered
1213 * and start the resilver then.
1214 */
1215 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
1216 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
1217 spa_history_log_internal(spa,
1218 "starting deferred resilver", tx, "errors=%llu",
1219 (u_longlong_t)spa_approx_errlog_size(spa));
1220 spa_async_request(spa, SPA_ASYNC_RESILVER);
1221 }
1222
1223 /* Clear recent error events (i.e. duplicate events tracking) */
1224 if (complete)
1225 zfs_ereport_clear(spa, NULL);
1226 }
1227
1228 scn->scn_phys.scn_end_time = gethrestime_sec();
1229
1230 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1231 spa->spa_errata = 0;
1232
1233 ASSERT(!dsl_scan_is_running(scn));
1234 }
1235
1236 static int
dsl_errorscrub_pause_resume_check(void * arg,dmu_tx_t * tx)1237 dsl_errorscrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1238 {
1239 pool_scrub_cmd_t *cmd = arg;
1240 dsl_pool_t *dp = dmu_tx_pool(tx);
1241 dsl_scan_t *scn = dp->dp_scan;
1242
1243 if (*cmd == POOL_SCRUB_PAUSE) {
1244 /*
1245 * can't pause a error scrub when there is no in-progress
1246 * error scrub.
1247 */
1248 if (!dsl_errorscrubbing(dp))
1249 return (SET_ERROR(ENOENT));
1250
1251 /* can't pause a paused error scrub */
1252 if (dsl_errorscrub_is_paused(scn))
1253 return (SET_ERROR(EBUSY));
1254 } else if (*cmd != POOL_SCRUB_NORMAL) {
1255 return (SET_ERROR(ENOTSUP));
1256 }
1257
1258 return (0);
1259 }
1260
1261 static void
dsl_errorscrub_pause_resume_sync(void * arg,dmu_tx_t * tx)1262 dsl_errorscrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1263 {
1264 pool_scrub_cmd_t *cmd = arg;
1265 dsl_pool_t *dp = dmu_tx_pool(tx);
1266 spa_t *spa = dp->dp_spa;
1267 dsl_scan_t *scn = dp->dp_scan;
1268
1269 if (*cmd == POOL_SCRUB_PAUSE) {
1270 spa->spa_scan_pass_errorscrub_pause = gethrestime_sec();
1271 scn->errorscrub_phys.dep_paused_flags = B_TRUE;
1272 dsl_errorscrub_sync_state(scn, tx);
1273 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_PAUSED);
1274 } else {
1275 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1276 if (dsl_errorscrub_is_paused(scn)) {
1277 /*
1278 * We need to keep track of how much time we spend
1279 * paused per pass so that we can adjust the error scrub
1280 * rate shown in the output of 'zpool status'.
1281 */
1282 spa->spa_scan_pass_errorscrub_spent_paused +=
1283 gethrestime_sec() -
1284 spa->spa_scan_pass_errorscrub_pause;
1285
1286 spa->spa_scan_pass_errorscrub_pause = 0;
1287 scn->errorscrub_phys.dep_paused_flags = B_FALSE;
1288
1289 zap_cursor_init_serialized(
1290 &scn->errorscrub_cursor,
1291 spa->spa_meta_objset, spa->spa_errlog_last,
1292 scn->errorscrub_phys.dep_cursor);
1293
1294 dsl_errorscrub_sync_state(scn, tx);
1295 }
1296 }
1297 }
1298
1299 static int
dsl_errorscrub_cancel_check(void * arg,dmu_tx_t * tx)1300 dsl_errorscrub_cancel_check(void *arg, dmu_tx_t *tx)
1301 {
1302 (void) arg;
1303 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1304 /* can't cancel a error scrub when there is no one in-progress */
1305 if (!dsl_errorscrubbing(scn->scn_dp))
1306 return (SET_ERROR(ENOENT));
1307 return (0);
1308 }
1309
1310 static void
dsl_errorscrub_cancel_sync(void * arg,dmu_tx_t * tx)1311 dsl_errorscrub_cancel_sync(void *arg, dmu_tx_t *tx)
1312 {
1313 (void) arg;
1314 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1315
1316 dsl_errorscrub_done(scn, B_FALSE, tx);
1317 dsl_errorscrub_sync_state(scn, tx);
1318 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL,
1319 ESC_ZFS_ERRORSCRUB_ABORT);
1320 }
1321
1322 static int
dsl_scan_cancel_check(void * arg,dmu_tx_t * tx)1323 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
1324 {
1325 (void) arg;
1326 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1327
1328 if (!dsl_scan_is_running(scn))
1329 return (SET_ERROR(ENOENT));
1330 return (0);
1331 }
1332
1333 static void
dsl_scan_cancel_sync(void * arg,dmu_tx_t * tx)1334 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
1335 {
1336 (void) arg;
1337 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1338
1339 dsl_scan_done(scn, B_FALSE, tx);
1340 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
1341 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
1342 }
1343
1344 int
dsl_scan_cancel(dsl_pool_t * dp)1345 dsl_scan_cancel(dsl_pool_t *dp)
1346 {
1347 if (dsl_errorscrubbing(dp)) {
1348 return (dsl_sync_task(spa_name(dp->dp_spa),
1349 dsl_errorscrub_cancel_check, dsl_errorscrub_cancel_sync,
1350 NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1351 }
1352 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1353 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1354 }
1355
1356 static int
dsl_scrub_pause_resume_check(void * arg,dmu_tx_t * tx)1357 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1358 {
1359 pool_scrub_cmd_t *cmd = arg;
1360 dsl_pool_t *dp = dmu_tx_pool(tx);
1361 dsl_scan_t *scn = dp->dp_scan;
1362
1363 if (*cmd == POOL_SCRUB_PAUSE) {
1364 /* can't pause a scrub when there is no in-progress scrub */
1365 if (!dsl_scan_scrubbing(dp))
1366 return (SET_ERROR(ENOENT));
1367
1368 /* can't pause a paused scrub */
1369 if (dsl_scan_is_paused_scrub(scn))
1370 return (SET_ERROR(EBUSY));
1371 } else if (*cmd != POOL_SCRUB_NORMAL) {
1372 return (SET_ERROR(ENOTSUP));
1373 }
1374
1375 return (0);
1376 }
1377
1378 static void
dsl_scrub_pause_resume_sync(void * arg,dmu_tx_t * tx)1379 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1380 {
1381 pool_scrub_cmd_t *cmd = arg;
1382 dsl_pool_t *dp = dmu_tx_pool(tx);
1383 spa_t *spa = dp->dp_spa;
1384 dsl_scan_t *scn = dp->dp_scan;
1385
1386 if (*cmd == POOL_SCRUB_PAUSE) {
1387 /* can't pause a scrub when there is no in-progress scrub */
1388 spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1389 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1390 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1391 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1392 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1393 spa_notify_waiters(spa);
1394 } else {
1395 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1396 if (dsl_scan_is_paused_scrub(scn)) {
1397 /*
1398 * We need to keep track of how much time we spend
1399 * paused per pass so that we can adjust the scrub rate
1400 * shown in the output of 'zpool status'
1401 */
1402 spa->spa_scan_pass_scrub_spent_paused +=
1403 gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1404 spa->spa_scan_pass_scrub_pause = 0;
1405 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1406 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1407 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1408 }
1409 }
1410 }
1411
1412 /*
1413 * Set scrub pause/resume state if it makes sense to do so
1414 */
1415 int
dsl_scrub_set_pause_resume(const dsl_pool_t * dp,pool_scrub_cmd_t cmd)1416 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1417 {
1418 if (dsl_errorscrubbing(dp)) {
1419 return (dsl_sync_task(spa_name(dp->dp_spa),
1420 dsl_errorscrub_pause_resume_check,
1421 dsl_errorscrub_pause_resume_sync, &cmd, 3,
1422 ZFS_SPACE_CHECK_RESERVED));
1423 }
1424 return (dsl_sync_task(spa_name(dp->dp_spa),
1425 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1426 ZFS_SPACE_CHECK_RESERVED));
1427 }
1428
1429
1430 /* start a new scan, or restart an existing one. */
1431 void
dsl_scan_restart_resilver(dsl_pool_t * dp,uint64_t txg)1432 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1433 {
1434 if (txg == 0) {
1435 dmu_tx_t *tx;
1436 tx = dmu_tx_create_dd(dp->dp_mos_dir);
1437 VERIFY(0 == dmu_tx_assign(tx, DMU_TX_WAIT));
1438
1439 txg = dmu_tx_get_txg(tx);
1440 dp->dp_scan->scn_restart_txg = txg;
1441 dmu_tx_commit(tx);
1442 } else {
1443 dp->dp_scan->scn_restart_txg = txg;
1444 }
1445 zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1446 dp->dp_spa->spa_name, (longlong_t)txg);
1447 }
1448
1449 void
dsl_free(dsl_pool_t * dp,uint64_t txg,const blkptr_t * bp)1450 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1451 {
1452 zio_free(dp->dp_spa, txg, bp);
1453 }
1454
1455 void
dsl_free_sync(zio_t * pio,dsl_pool_t * dp,uint64_t txg,const blkptr_t * bpp)1456 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1457 {
1458 ASSERT(dsl_pool_sync_context(dp));
1459 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1460 }
1461
1462 static int
scan_ds_queue_compare(const void * a,const void * b)1463 scan_ds_queue_compare(const void *a, const void *b)
1464 {
1465 const scan_ds_t *sds_a = a, *sds_b = b;
1466
1467 if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1468 return (-1);
1469 if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1470 return (0);
1471 return (1);
1472 }
1473
1474 static void
scan_ds_queue_clear(dsl_scan_t * scn)1475 scan_ds_queue_clear(dsl_scan_t *scn)
1476 {
1477 void *cookie = NULL;
1478 scan_ds_t *sds;
1479 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1480 kmem_free(sds, sizeof (*sds));
1481 }
1482 }
1483
1484 static boolean_t
scan_ds_queue_contains(dsl_scan_t * scn,uint64_t dsobj,uint64_t * txg)1485 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1486 {
1487 scan_ds_t srch, *sds;
1488
1489 srch.sds_dsobj = dsobj;
1490 sds = avl_find(&scn->scn_queue, &srch, NULL);
1491 if (sds != NULL && txg != NULL)
1492 *txg = sds->sds_txg;
1493 return (sds != NULL);
1494 }
1495
1496 static void
scan_ds_queue_insert(dsl_scan_t * scn,uint64_t dsobj,uint64_t txg)1497 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1498 {
1499 scan_ds_t *sds;
1500 avl_index_t where;
1501
1502 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1503 sds->sds_dsobj = dsobj;
1504 sds->sds_txg = txg;
1505
1506 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1507 avl_insert(&scn->scn_queue, sds, where);
1508 }
1509
1510 static void
scan_ds_queue_remove(dsl_scan_t * scn,uint64_t dsobj)1511 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1512 {
1513 scan_ds_t srch, *sds;
1514
1515 srch.sds_dsobj = dsobj;
1516
1517 sds = avl_find(&scn->scn_queue, &srch, NULL);
1518 VERIFY(sds != NULL);
1519 avl_remove(&scn->scn_queue, sds);
1520 kmem_free(sds, sizeof (*sds));
1521 }
1522
1523 static void
scan_ds_queue_sync(dsl_scan_t * scn,dmu_tx_t * tx)1524 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1525 {
1526 dsl_pool_t *dp = scn->scn_dp;
1527 spa_t *spa = dp->dp_spa;
1528 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1529 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1530
1531 ASSERT0(scn->scn_queues_pending);
1532 ASSERT(scn->scn_phys.scn_queue_obj != 0);
1533
1534 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1535 scn->scn_phys.scn_queue_obj, tx));
1536 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1537 DMU_OT_NONE, 0, tx);
1538 for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1539 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1540 VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1541 scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1542 sds->sds_txg, tx));
1543 }
1544 }
1545
1546 /*
1547 * Computes the memory limit state that we're currently in. A sorted scan
1548 * needs quite a bit of memory to hold the sorting queue, so we need to
1549 * reasonably constrain the size so it doesn't impact overall system
1550 * performance. We compute two limits:
1551 * 1) Hard memory limit: if the amount of memory used by the sorting
1552 * queues on a pool gets above this value, we stop the metadata
1553 * scanning portion and start issuing the queued up and sorted
1554 * I/Os to reduce memory usage.
1555 * This limit is calculated as a fraction of physmem (by default 5%).
1556 * We constrain the lower bound of the hard limit to an absolute
1557 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1558 * the upper bound to 5% of the total pool size - no chance we'll
1559 * ever need that much memory, but just to keep the value in check.
1560 * 2) Soft memory limit: once we hit the hard memory limit, we start
1561 * issuing I/O to reduce queue memory usage, but we don't want to
1562 * completely empty out the queues, since we might be able to find I/Os
1563 * that will fill in the gaps of our non-sequential IOs at some point
1564 * in the future. So we stop the issuing of I/Os once the amount of
1565 * memory used drops below the soft limit (at which point we stop issuing
1566 * I/O and start scanning metadata again).
1567 *
1568 * This limit is calculated by subtracting a fraction of the hard
1569 * limit from the hard limit. By default this fraction is 5%, so
1570 * the soft limit is 95% of the hard limit. We cap the size of the
1571 * difference between the hard and soft limits at an absolute
1572 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1573 * sufficient to not cause too frequent switching between the
1574 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1575 * worth of queues is about 1.2 GiB of on-pool data, so scanning
1576 * that should take at least a decent fraction of a second).
1577 */
1578 static boolean_t
dsl_scan_should_clear(dsl_scan_t * scn)1579 dsl_scan_should_clear(dsl_scan_t *scn)
1580 {
1581 spa_t *spa = scn->scn_dp->dp_spa;
1582 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1583 uint64_t alloc, mlim_hard, mlim_soft, mused;
1584
1585 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1586 alloc += metaslab_class_get_alloc(spa_special_class(spa));
1587 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1588
1589 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1590 zfs_scan_mem_lim_min);
1591 mlim_hard = MIN(mlim_hard, alloc / 20);
1592 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1593 zfs_scan_mem_lim_soft_max);
1594 mused = 0;
1595 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1596 vdev_t *tvd = rvd->vdev_child[i];
1597 dsl_scan_io_queue_t *queue;
1598
1599 mutex_enter(&tvd->vdev_scan_io_queue_lock);
1600 queue = tvd->vdev_scan_io_queue;
1601 if (queue != NULL) {
1602 /*
1603 * # of extents in exts_by_addr = # in exts_by_size.
1604 * B-tree efficiency is ~75%, but can be as low as 50%.
1605 */
1606 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * ((
1607 sizeof (zfs_range_seg_gap_t) + sizeof (uint64_t)) *
1608 3 / 2) + queue->q_sio_memused;
1609 }
1610 mutex_exit(&tvd->vdev_scan_io_queue_lock);
1611 }
1612
1613 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1614
1615 if (mused == 0)
1616 ASSERT0(scn->scn_queues_pending);
1617
1618 /*
1619 * If we are above our hard limit, we need to clear out memory.
1620 * If we are below our soft limit, we need to accumulate sequential IOs.
1621 * Otherwise, we should keep doing whatever we are currently doing.
1622 */
1623 if (mused >= mlim_hard)
1624 return (B_TRUE);
1625 else if (mused < mlim_soft)
1626 return (B_FALSE);
1627 else
1628 return (scn->scn_clearing);
1629 }
1630
1631 static boolean_t
dsl_scan_check_suspend(dsl_scan_t * scn,const zbookmark_phys_t * zb)1632 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1633 {
1634 /* we never skip user/group accounting objects */
1635 if (zb && (int64_t)zb->zb_object < 0)
1636 return (B_FALSE);
1637
1638 if (scn->scn_suspending)
1639 return (B_TRUE); /* we're already suspending */
1640
1641 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1642 return (B_FALSE); /* we're resuming */
1643
1644 /* We only know how to resume from level-0 and objset blocks. */
1645 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
1646 return (B_FALSE);
1647
1648 /*
1649 * We suspend if:
1650 * - we have scanned for at least the minimum time (default 1 sec
1651 * for scrub, 3 sec for resilver), and either we have sufficient
1652 * dirty data that we are starting to write more quickly
1653 * (default 30%), someone is explicitly waiting for this txg
1654 * to complete, or we have used up all of the time in the txg
1655 * timeout (default 5 sec).
1656 * or
1657 * - the spa is shutting down because this pool is being exported
1658 * or the machine is rebooting.
1659 * or
1660 * - the scan queue has reached its memory use limit
1661 */
1662 uint64_t curr_time_ns = gethrtime();
1663 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1664 uint64_t sync_time_ns = curr_time_ns -
1665 scn->scn_dp->dp_spa->spa_sync_starttime;
1666 uint64_t dirty_min_bytes = zfs_dirty_data_max *
1667 zfs_vdev_async_write_active_min_dirty_percent / 100;
1668 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1669 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1670
1671 if ((NSEC2MSEC(scan_time_ns) > mintime &&
1672 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
1673 txg_sync_waiting(scn->scn_dp) ||
1674 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1675 spa_shutting_down(scn->scn_dp->dp_spa) ||
1676 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn)) ||
1677 !ddt_walk_ready(scn->scn_dp->dp_spa)) {
1678 if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
1679 dprintf("suspending at first available bookmark "
1680 "%llx/%llx/%llx/%llx\n",
1681 (longlong_t)zb->zb_objset,
1682 (longlong_t)zb->zb_object,
1683 (longlong_t)zb->zb_level,
1684 (longlong_t)zb->zb_blkid);
1685 SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
1686 zb->zb_objset, 0, 0, 0);
1687 } else if (zb != NULL) {
1688 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1689 (longlong_t)zb->zb_objset,
1690 (longlong_t)zb->zb_object,
1691 (longlong_t)zb->zb_level,
1692 (longlong_t)zb->zb_blkid);
1693 scn->scn_phys.scn_bookmark = *zb;
1694 } else {
1695 #ifdef ZFS_DEBUG
1696 dsl_scan_phys_t *scnp = &scn->scn_phys;
1697 dprintf("suspending at at DDT bookmark "
1698 "%llx/%llx/%llx/%llx\n",
1699 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1700 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1701 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1702 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1703 #endif
1704 }
1705 scn->scn_suspending = B_TRUE;
1706 return (B_TRUE);
1707 }
1708 return (B_FALSE);
1709 }
1710
1711 static boolean_t
dsl_error_scrub_check_suspend(dsl_scan_t * scn,const zbookmark_phys_t * zb)1712 dsl_error_scrub_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1713 {
1714 /*
1715 * We suspend if:
1716 * - we have scrubbed for at least the minimum time (default 1 sec
1717 * for error scrub), someone is explicitly waiting for this txg
1718 * to complete, or we have used up all of the time in the txg
1719 * timeout (default 5 sec).
1720 * or
1721 * - the spa is shutting down because this pool is being exported
1722 * or the machine is rebooting.
1723 */
1724 uint64_t curr_time_ns = gethrtime();
1725 uint64_t error_scrub_time_ns = curr_time_ns - scn->scn_sync_start_time;
1726 uint64_t sync_time_ns = curr_time_ns -
1727 scn->scn_dp->dp_spa->spa_sync_starttime;
1728 int mintime = zfs_scrub_min_time_ms;
1729
1730 if ((NSEC2MSEC(error_scrub_time_ns) > mintime &&
1731 (txg_sync_waiting(scn->scn_dp) ||
1732 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1733 spa_shutting_down(scn->scn_dp->dp_spa)) {
1734 if (zb) {
1735 dprintf("error scrub suspending at bookmark "
1736 "%llx/%llx/%llx/%llx\n",
1737 (longlong_t)zb->zb_objset,
1738 (longlong_t)zb->zb_object,
1739 (longlong_t)zb->zb_level,
1740 (longlong_t)zb->zb_blkid);
1741 }
1742 return (B_TRUE);
1743 }
1744 return (B_FALSE);
1745 }
1746
1747 typedef struct zil_scan_arg {
1748 dsl_pool_t *zsa_dp;
1749 zil_header_t *zsa_zh;
1750 } zil_scan_arg_t;
1751
1752 static int
dsl_scan_zil_block(zilog_t * zilog,const blkptr_t * bp,void * arg,uint64_t claim_txg)1753 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
1754 uint64_t claim_txg)
1755 {
1756 (void) zilog;
1757 zil_scan_arg_t *zsa = arg;
1758 dsl_pool_t *dp = zsa->zsa_dp;
1759 dsl_scan_t *scn = dp->dp_scan;
1760 zil_header_t *zh = zsa->zsa_zh;
1761 zbookmark_phys_t zb;
1762
1763 ASSERT(!BP_IS_REDACTED(bp));
1764 if (BP_IS_HOLE(bp) ||
1765 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1766 return (0);
1767
1768 /*
1769 * One block ("stubby") can be allocated a long time ago; we
1770 * want to visit that one because it has been allocated
1771 * (on-disk) even if it hasn't been claimed (even though for
1772 * scrub there's nothing to do to it).
1773 */
1774 if (claim_txg == 0 &&
1775 BP_GET_LOGICAL_BIRTH(bp) >= spa_min_claim_txg(dp->dp_spa))
1776 return (0);
1777
1778 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1779 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1780
1781 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1782 return (0);
1783 }
1784
1785 static int
dsl_scan_zil_record(zilog_t * zilog,const lr_t * lrc,void * arg,uint64_t claim_txg)1786 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
1787 uint64_t claim_txg)
1788 {
1789 (void) zilog;
1790 if (lrc->lrc_txtype == TX_WRITE) {
1791 zil_scan_arg_t *zsa = arg;
1792 dsl_pool_t *dp = zsa->zsa_dp;
1793 dsl_scan_t *scn = dp->dp_scan;
1794 zil_header_t *zh = zsa->zsa_zh;
1795 const lr_write_t *lr = (const lr_write_t *)lrc;
1796 const blkptr_t *bp = &lr->lr_blkptr;
1797 zbookmark_phys_t zb;
1798
1799 ASSERT(!BP_IS_REDACTED(bp));
1800 if (BP_IS_HOLE(bp) ||
1801 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1802 return (0);
1803
1804 /*
1805 * birth can be < claim_txg if this record's txg is
1806 * already txg sync'ed (but this log block contains
1807 * other records that are not synced)
1808 */
1809 if (claim_txg == 0 || BP_GET_LOGICAL_BIRTH(bp) < claim_txg)
1810 return (0);
1811
1812 ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
1813 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1814 lr->lr_foid, ZB_ZIL_LEVEL,
1815 lr->lr_offset / BP_GET_LSIZE(bp));
1816
1817 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1818 }
1819 return (0);
1820 }
1821
1822 static void
dsl_scan_zil(dsl_pool_t * dp,zil_header_t * zh)1823 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1824 {
1825 uint64_t claim_txg = zh->zh_claim_txg;
1826 zil_scan_arg_t zsa = { dp, zh };
1827 zilog_t *zilog;
1828
1829 ASSERT(spa_writeable(dp->dp_spa));
1830
1831 /*
1832 * We only want to visit blocks that have been claimed but not yet
1833 * replayed (or, in read-only mode, blocks that *would* be claimed).
1834 */
1835 if (claim_txg == 0)
1836 return;
1837
1838 zilog = zil_alloc(dp->dp_meta_objset, zh);
1839
1840 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1841 claim_txg, B_FALSE);
1842
1843 zil_free(zilog);
1844 }
1845
1846 /*
1847 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1848 * here is to sort the AVL tree by the order each block will be needed.
1849 */
1850 static int
scan_prefetch_queue_compare(const void * a,const void * b)1851 scan_prefetch_queue_compare(const void *a, const void *b)
1852 {
1853 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1854 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1855 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1856
1857 return (zbookmark_compare(spc_a->spc_datablkszsec,
1858 spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1859 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1860 }
1861
1862 static void
scan_prefetch_ctx_rele(scan_prefetch_ctx_t * spc,const void * tag)1863 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag)
1864 {
1865 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1866 zfs_refcount_destroy(&spc->spc_refcnt);
1867 kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1868 }
1869 }
1870
1871 static scan_prefetch_ctx_t *
scan_prefetch_ctx_create(dsl_scan_t * scn,dnode_phys_t * dnp,const void * tag)1872 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag)
1873 {
1874 scan_prefetch_ctx_t *spc;
1875
1876 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1877 zfs_refcount_create(&spc->spc_refcnt);
1878 zfs_refcount_add(&spc->spc_refcnt, tag);
1879 spc->spc_scn = scn;
1880 if (dnp != NULL) {
1881 spc->spc_datablkszsec = dnp->dn_datablkszsec;
1882 spc->spc_indblkshift = dnp->dn_indblkshift;
1883 spc->spc_root = B_FALSE;
1884 } else {
1885 spc->spc_datablkszsec = 0;
1886 spc->spc_indblkshift = 0;
1887 spc->spc_root = B_TRUE;
1888 }
1889
1890 return (spc);
1891 }
1892
1893 static void
scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t * spc,const void * tag)1894 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag)
1895 {
1896 zfs_refcount_add(&spc->spc_refcnt, tag);
1897 }
1898
1899 static void
scan_ds_prefetch_queue_clear(dsl_scan_t * scn)1900 scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
1901 {
1902 spa_t *spa = scn->scn_dp->dp_spa;
1903 void *cookie = NULL;
1904 scan_prefetch_issue_ctx_t *spic = NULL;
1905
1906 mutex_enter(&spa->spa_scrub_lock);
1907 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
1908 &cookie)) != NULL) {
1909 scan_prefetch_ctx_rele(spic->spic_spc, scn);
1910 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1911 }
1912 mutex_exit(&spa->spa_scrub_lock);
1913 }
1914
1915 static boolean_t
dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t * spc,const zbookmark_phys_t * zb)1916 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1917 const zbookmark_phys_t *zb)
1918 {
1919 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1920 dnode_phys_t tmp_dnp;
1921 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1922
1923 if (zb->zb_objset != last_zb->zb_objset)
1924 return (B_TRUE);
1925 if ((int64_t)zb->zb_object < 0)
1926 return (B_FALSE);
1927
1928 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1929 tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1930
1931 if (zbookmark_subtree_completed(dnp, zb, last_zb))
1932 return (B_TRUE);
1933
1934 return (B_FALSE);
1935 }
1936
1937 static void
dsl_scan_prefetch(scan_prefetch_ctx_t * spc,blkptr_t * bp,zbookmark_phys_t * zb)1938 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1939 {
1940 avl_index_t idx;
1941 dsl_scan_t *scn = spc->spc_scn;
1942 spa_t *spa = scn->scn_dp->dp_spa;
1943 scan_prefetch_issue_ctx_t *spic;
1944
1945 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
1946 return;
1947
1948 if (BP_IS_HOLE(bp) ||
1949 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg ||
1950 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1951 BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1952 return;
1953
1954 if (dsl_scan_check_prefetch_resume(spc, zb))
1955 return;
1956
1957 scan_prefetch_ctx_add_ref(spc, scn);
1958 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1959 spic->spic_spc = spc;
1960 spic->spic_bp = *bp;
1961 spic->spic_zb = *zb;
1962
1963 /*
1964 * Add the IO to the queue of blocks to prefetch. This allows us to
1965 * prioritize blocks that we will need first for the main traversal
1966 * thread.
1967 */
1968 mutex_enter(&spa->spa_scrub_lock);
1969 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1970 /* this block is already queued for prefetch */
1971 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1972 scan_prefetch_ctx_rele(spc, scn);
1973 mutex_exit(&spa->spa_scrub_lock);
1974 return;
1975 }
1976
1977 avl_insert(&scn->scn_prefetch_queue, spic, idx);
1978 cv_broadcast(&spa->spa_scrub_io_cv);
1979 mutex_exit(&spa->spa_scrub_lock);
1980 }
1981
1982 static void
dsl_scan_prefetch_dnode(dsl_scan_t * scn,dnode_phys_t * dnp,uint64_t objset,uint64_t object)1983 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1984 uint64_t objset, uint64_t object)
1985 {
1986 int i;
1987 zbookmark_phys_t zb;
1988 scan_prefetch_ctx_t *spc;
1989
1990 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1991 return;
1992
1993 SET_BOOKMARK(&zb, objset, object, 0, 0);
1994
1995 spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1996
1997 for (i = 0; i < dnp->dn_nblkptr; i++) {
1998 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1999 zb.zb_blkid = i;
2000 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
2001 }
2002
2003 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2004 zb.zb_level = 0;
2005 zb.zb_blkid = DMU_SPILL_BLKID;
2006 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
2007 }
2008
2009 scan_prefetch_ctx_rele(spc, FTAG);
2010 }
2011
2012 static void
dsl_scan_prefetch_cb(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * private)2013 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
2014 arc_buf_t *buf, void *private)
2015 {
2016 (void) zio;
2017 scan_prefetch_ctx_t *spc = private;
2018 dsl_scan_t *scn = spc->spc_scn;
2019 spa_t *spa = scn->scn_dp->dp_spa;
2020
2021 /* broadcast that the IO has completed for rate limiting purposes */
2022 mutex_enter(&spa->spa_scrub_lock);
2023 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
2024 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
2025 cv_broadcast(&spa->spa_scrub_io_cv);
2026 mutex_exit(&spa->spa_scrub_lock);
2027
2028 /* if there was an error or we are done prefetching, just cleanup */
2029 if (buf == NULL || scn->scn_prefetch_stop)
2030 goto out;
2031
2032 if (BP_GET_LEVEL(bp) > 0) {
2033 int i;
2034 blkptr_t *cbp;
2035 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2036 zbookmark_phys_t czb;
2037
2038 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2039 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2040 zb->zb_level - 1, zb->zb_blkid * epb + i);
2041 dsl_scan_prefetch(spc, cbp, &czb);
2042 }
2043 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2044 dnode_phys_t *cdnp;
2045 int i;
2046 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2047
2048 for (i = 0, cdnp = buf->b_data; i < epb;
2049 i += cdnp->dn_extra_slots + 1,
2050 cdnp += cdnp->dn_extra_slots + 1) {
2051 dsl_scan_prefetch_dnode(scn, cdnp,
2052 zb->zb_objset, zb->zb_blkid * epb + i);
2053 }
2054 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2055 objset_phys_t *osp = buf->b_data;
2056
2057 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
2058 zb->zb_objset, DMU_META_DNODE_OBJECT);
2059
2060 if (OBJSET_BUF_HAS_USERUSED(buf)) {
2061 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) {
2062 dsl_scan_prefetch_dnode(scn,
2063 &osp->os_projectused_dnode, zb->zb_objset,
2064 DMU_PROJECTUSED_OBJECT);
2065 }
2066 dsl_scan_prefetch_dnode(scn,
2067 &osp->os_groupused_dnode, zb->zb_objset,
2068 DMU_GROUPUSED_OBJECT);
2069 dsl_scan_prefetch_dnode(scn,
2070 &osp->os_userused_dnode, zb->zb_objset,
2071 DMU_USERUSED_OBJECT);
2072 }
2073 }
2074
2075 out:
2076 if (buf != NULL)
2077 arc_buf_destroy(buf, private);
2078 scan_prefetch_ctx_rele(spc, scn);
2079 }
2080
2081 static void
dsl_scan_prefetch_thread(void * arg)2082 dsl_scan_prefetch_thread(void *arg)
2083 {
2084 dsl_scan_t *scn = arg;
2085 spa_t *spa = scn->scn_dp->dp_spa;
2086 scan_prefetch_issue_ctx_t *spic;
2087
2088 /* loop until we are told to stop */
2089 while (!scn->scn_prefetch_stop) {
2090 arc_flags_t flags = ARC_FLAG_NOWAIT |
2091 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
2092 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2093
2094 mutex_enter(&spa->spa_scrub_lock);
2095
2096 /*
2097 * Wait until we have an IO to issue and are not above our
2098 * maximum in flight limit.
2099 */
2100 while (!scn->scn_prefetch_stop &&
2101 (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
2102 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
2103 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2104 }
2105
2106 /* recheck if we should stop since we waited for the cv */
2107 if (scn->scn_prefetch_stop) {
2108 mutex_exit(&spa->spa_scrub_lock);
2109 break;
2110 }
2111
2112 /* remove the prefetch IO from the tree */
2113 spic = avl_first(&scn->scn_prefetch_queue);
2114 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
2115 avl_remove(&scn->scn_prefetch_queue, spic);
2116
2117 mutex_exit(&spa->spa_scrub_lock);
2118
2119 if (BP_IS_PROTECTED(&spic->spic_bp)) {
2120 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
2121 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
2122 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
2123 zio_flags |= ZIO_FLAG_RAW;
2124 }
2125
2126 /* We don't need data L1 buffer since we do not prefetch L0. */
2127 blkptr_t *bp = &spic->spic_bp;
2128 if (BP_GET_LEVEL(bp) == 1 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
2129 BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2130 flags |= ARC_FLAG_NO_BUF;
2131
2132 /* issue the prefetch asynchronously */
2133 (void) arc_read(scn->scn_zio_root, spa, bp,
2134 dsl_scan_prefetch_cb, spic->spic_spc, ZIO_PRIORITY_SCRUB,
2135 zio_flags, &flags, &spic->spic_zb);
2136
2137 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2138 }
2139
2140 ASSERT(scn->scn_prefetch_stop);
2141
2142 /* free any prefetches we didn't get to complete */
2143 mutex_enter(&spa->spa_scrub_lock);
2144 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
2145 avl_remove(&scn->scn_prefetch_queue, spic);
2146 scan_prefetch_ctx_rele(spic->spic_spc, scn);
2147 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2148 }
2149 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
2150 mutex_exit(&spa->spa_scrub_lock);
2151 }
2152
2153 static boolean_t
dsl_scan_check_resume(dsl_scan_t * scn,const dnode_phys_t * dnp,const zbookmark_phys_t * zb)2154 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
2155 const zbookmark_phys_t *zb)
2156 {
2157 /*
2158 * We never skip over user/group accounting objects (obj<0)
2159 */
2160 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
2161 (int64_t)zb->zb_object >= 0) {
2162 /*
2163 * If we already visited this bp & everything below (in
2164 * a prior txg sync), don't bother doing it again.
2165 */
2166 if (zbookmark_subtree_completed(dnp, zb,
2167 &scn->scn_phys.scn_bookmark))
2168 return (B_TRUE);
2169
2170 /*
2171 * If we found the block we're trying to resume from, or
2172 * we went past it, zero it out to indicate that it's OK
2173 * to start checking for suspending again.
2174 */
2175 if (zbookmark_subtree_tbd(dnp, zb,
2176 &scn->scn_phys.scn_bookmark)) {
2177 dprintf("resuming at %llx/%llx/%llx/%llx\n",
2178 (longlong_t)zb->zb_objset,
2179 (longlong_t)zb->zb_object,
2180 (longlong_t)zb->zb_level,
2181 (longlong_t)zb->zb_blkid);
2182 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb));
2183 }
2184 }
2185 return (B_FALSE);
2186 }
2187
2188 static void dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2189 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2190 dmu_objset_type_t ostype, dmu_tx_t *tx);
2191 inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
2192 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2193 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
2194
2195 /*
2196 * Return nonzero on i/o error.
2197 * Return new buf to write out in *bufp.
2198 */
2199 inline __attribute__((always_inline)) static int
dsl_scan_recurse(dsl_scan_t * scn,dsl_dataset_t * ds,dmu_objset_type_t ostype,dnode_phys_t * dnp,const blkptr_t * bp,const zbookmark_phys_t * zb,dmu_tx_t * tx)2200 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2201 dnode_phys_t *dnp, const blkptr_t *bp,
2202 const zbookmark_phys_t *zb, dmu_tx_t *tx)
2203 {
2204 dsl_pool_t *dp = scn->scn_dp;
2205 spa_t *spa = dp->dp_spa;
2206 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2207 int err;
2208
2209 ASSERT(!BP_IS_REDACTED(bp));
2210
2211 /*
2212 * There is an unlikely case of encountering dnodes with contradicting
2213 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
2214 * or modified before commit 4254acb was merged. As it is not possible
2215 * to know which of the two is correct, report an error.
2216 */
2217 if (dnp != NULL &&
2218 dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) {
2219 scn->scn_phys.scn_errors++;
2220 spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp));
2221 return (SET_ERROR(EINVAL));
2222 }
2223
2224 if (BP_GET_LEVEL(bp) > 0) {
2225 arc_flags_t flags = ARC_FLAG_WAIT;
2226 int i;
2227 blkptr_t *cbp;
2228 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2229 arc_buf_t *buf;
2230
2231 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2232 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2233 if (err) {
2234 scn->scn_phys.scn_errors++;
2235 return (err);
2236 }
2237 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2238 zbookmark_phys_t czb;
2239
2240 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2241 zb->zb_level - 1,
2242 zb->zb_blkid * epb + i);
2243 dsl_scan_visitbp(cbp, &czb, dnp,
2244 ds, scn, ostype, tx);
2245 }
2246 arc_buf_destroy(buf, &buf);
2247 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2248 arc_flags_t flags = ARC_FLAG_WAIT;
2249 dnode_phys_t *cdnp;
2250 int i;
2251 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2252 arc_buf_t *buf;
2253
2254 if (BP_IS_PROTECTED(bp)) {
2255 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
2256 zio_flags |= ZIO_FLAG_RAW;
2257 }
2258
2259 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2260 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2261 if (err) {
2262 scn->scn_phys.scn_errors++;
2263 return (err);
2264 }
2265 for (i = 0, cdnp = buf->b_data; i < epb;
2266 i += cdnp->dn_extra_slots + 1,
2267 cdnp += cdnp->dn_extra_slots + 1) {
2268 dsl_scan_visitdnode(scn, ds, ostype,
2269 cdnp, zb->zb_blkid * epb + i, tx);
2270 }
2271
2272 arc_buf_destroy(buf, &buf);
2273 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2274 arc_flags_t flags = ARC_FLAG_WAIT;
2275 objset_phys_t *osp;
2276 arc_buf_t *buf;
2277
2278 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2279 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2280 if (err) {
2281 scn->scn_phys.scn_errors++;
2282 return (err);
2283 }
2284
2285 osp = buf->b_data;
2286
2287 dsl_scan_visitdnode(scn, ds, osp->os_type,
2288 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
2289
2290 if (OBJSET_BUF_HAS_USERUSED(buf)) {
2291 /*
2292 * We also always visit user/group/project accounting
2293 * objects, and never skip them, even if we are
2294 * suspending. This is necessary so that the
2295 * space deltas from this txg get integrated.
2296 */
2297 if (OBJSET_BUF_HAS_PROJECTUSED(buf))
2298 dsl_scan_visitdnode(scn, ds, osp->os_type,
2299 &osp->os_projectused_dnode,
2300 DMU_PROJECTUSED_OBJECT, tx);
2301 dsl_scan_visitdnode(scn, ds, osp->os_type,
2302 &osp->os_groupused_dnode,
2303 DMU_GROUPUSED_OBJECT, tx);
2304 dsl_scan_visitdnode(scn, ds, osp->os_type,
2305 &osp->os_userused_dnode,
2306 DMU_USERUSED_OBJECT, tx);
2307 }
2308 arc_buf_destroy(buf, &buf);
2309 } else if (zfs_blkptr_verify(spa, bp,
2310 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2311 /*
2312 * Sanity check the block pointer contents, this is handled
2313 * by arc_read() for the cases above.
2314 */
2315 scn->scn_phys.scn_errors++;
2316 spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp));
2317 return (SET_ERROR(EINVAL));
2318 }
2319
2320 return (0);
2321 }
2322
2323 inline __attribute__((always_inline)) static void
dsl_scan_visitdnode(dsl_scan_t * scn,dsl_dataset_t * ds,dmu_objset_type_t ostype,dnode_phys_t * dnp,uint64_t object,dmu_tx_t * tx)2324 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
2325 dmu_objset_type_t ostype, dnode_phys_t *dnp,
2326 uint64_t object, dmu_tx_t *tx)
2327 {
2328 int j;
2329
2330 for (j = 0; j < dnp->dn_nblkptr; j++) {
2331 zbookmark_phys_t czb;
2332
2333 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2334 dnp->dn_nlevels - 1, j);
2335 dsl_scan_visitbp(&dnp->dn_blkptr[j],
2336 &czb, dnp, ds, scn, ostype, tx);
2337 }
2338
2339 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2340 zbookmark_phys_t czb;
2341 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2342 0, DMU_SPILL_BLKID);
2343 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
2344 &czb, dnp, ds, scn, ostype, tx);
2345 }
2346 }
2347
2348 /*
2349 * The arguments are in this order because mdb can only print the
2350 * first 5; we want them to be useful.
2351 */
2352 static void
dsl_scan_visitbp(const blkptr_t * bp,const zbookmark_phys_t * zb,dnode_phys_t * dnp,dsl_dataset_t * ds,dsl_scan_t * scn,dmu_objset_type_t ostype,dmu_tx_t * tx)2353 dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2354 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2355 dmu_objset_type_t ostype, dmu_tx_t *tx)
2356 {
2357 dsl_pool_t *dp = scn->scn_dp;
2358
2359 if (dsl_scan_check_suspend(scn, zb))
2360 return;
2361
2362 if (dsl_scan_check_resume(scn, dnp, zb))
2363 return;
2364
2365 scn->scn_visited_this_txg++;
2366
2367 if (BP_IS_HOLE(bp)) {
2368 scn->scn_holes_this_txg++;
2369 return;
2370 }
2371
2372 if (BP_IS_REDACTED(bp)) {
2373 ASSERT(dsl_dataset_feature_is_active(ds,
2374 SPA_FEATURE_REDACTED_DATASETS));
2375 return;
2376 }
2377
2378 /*
2379 * Check if this block contradicts any filesystem flags.
2380 */
2381 spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS;
2382 if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE)
2383 ASSERT(dsl_dataset_feature_is_active(ds, f));
2384
2385 f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp));
2386 if (f != SPA_FEATURE_NONE)
2387 ASSERT(dsl_dataset_feature_is_active(ds, f));
2388
2389 f = zio_compress_to_feature(BP_GET_COMPRESS(bp));
2390 if (f != SPA_FEATURE_NONE)
2391 ASSERT(dsl_dataset_feature_is_active(ds, f));
2392
2393 if (BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) {
2394 scn->scn_lt_min_this_txg++;
2395 return;
2396 }
2397
2398 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp, zb, tx) != 0)
2399 return;
2400
2401 /*
2402 * If dsl_scan_ddt() has already visited this block, it will have
2403 * already done any translations or scrubbing, so don't call the
2404 * callback again.
2405 */
2406 if (ddt_class_contains(dp->dp_spa,
2407 scn->scn_phys.scn_ddt_class_max, bp)) {
2408 scn->scn_ddt_contained_this_txg++;
2409 return;
2410 }
2411
2412 /*
2413 * If this block is from the future (after cur_max_txg), then we
2414 * are doing this on behalf of a deleted snapshot, and we will
2415 * revisit the future block on the next pass of this dataset.
2416 * Don't scan it now unless we need to because something
2417 * under it was modified.
2418 */
2419 if (BP_GET_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
2420 scn->scn_gt_max_this_txg++;
2421 return;
2422 }
2423
2424 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
2425 }
2426
2427 static void
dsl_scan_visit_rootbp(dsl_scan_t * scn,dsl_dataset_t * ds,blkptr_t * bp,dmu_tx_t * tx)2428 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
2429 dmu_tx_t *tx)
2430 {
2431 zbookmark_phys_t zb;
2432 scan_prefetch_ctx_t *spc;
2433
2434 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
2435 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2436
2437 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
2438 SET_BOOKMARK(&scn->scn_prefetch_bookmark,
2439 zb.zb_objset, 0, 0, 0);
2440 } else {
2441 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
2442 }
2443
2444 scn->scn_objsets_visited_this_txg++;
2445
2446 spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
2447 dsl_scan_prefetch(spc, bp, &zb);
2448 scan_prefetch_ctx_rele(spc, FTAG);
2449
2450 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
2451
2452 dprintf_ds(ds, "finished scan%s", "");
2453 }
2454
2455 static void
ds_destroyed_scn_phys(dsl_dataset_t * ds,dsl_scan_phys_t * scn_phys)2456 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
2457 {
2458 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
2459 if (ds->ds_is_snapshot) {
2460 /*
2461 * Note:
2462 * - scn_cur_{min,max}_txg stays the same.
2463 * - Setting the flag is not really necessary if
2464 * scn_cur_max_txg == scn_max_txg, because there
2465 * is nothing after this snapshot that we care
2466 * about. However, we set it anyway and then
2467 * ignore it when we retraverse it in
2468 * dsl_scan_visitds().
2469 */
2470 scn_phys->scn_bookmark.zb_objset =
2471 dsl_dataset_phys(ds)->ds_next_snap_obj;
2472 zfs_dbgmsg("destroying ds %llu on %s; currently "
2473 "traversing; reset zb_objset to %llu",
2474 (u_longlong_t)ds->ds_object,
2475 ds->ds_dir->dd_pool->dp_spa->spa_name,
2476 (u_longlong_t)dsl_dataset_phys(ds)->
2477 ds_next_snap_obj);
2478 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2479 } else {
2480 SET_BOOKMARK(&scn_phys->scn_bookmark,
2481 ZB_DESTROYED_OBJSET, 0, 0, 0);
2482 zfs_dbgmsg("destroying ds %llu on %s; currently "
2483 "traversing; reset bookmark to -1,0,0,0",
2484 (u_longlong_t)ds->ds_object,
2485 ds->ds_dir->dd_pool->dp_spa->spa_name);
2486 }
2487 }
2488 }
2489
2490 /*
2491 * Invoked when a dataset is destroyed. We need to make sure that:
2492 *
2493 * 1) If it is the dataset that was currently being scanned, we write
2494 * a new dsl_scan_phys_t and marking the objset reference in it
2495 * as destroyed.
2496 * 2) Remove it from the work queue, if it was present.
2497 *
2498 * If the dataset was actually a snapshot, instead of marking the dataset
2499 * as destroyed, we instead substitute the next snapshot in line.
2500 */
2501 void
dsl_scan_ds_destroyed(dsl_dataset_t * ds,dmu_tx_t * tx)2502 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2503 {
2504 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2505 dsl_scan_t *scn = dp->dp_scan;
2506 uint64_t mintxg;
2507
2508 if (!dsl_scan_is_running(scn))
2509 return;
2510
2511 ds_destroyed_scn_phys(ds, &scn->scn_phys);
2512 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2513
2514 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2515 scan_ds_queue_remove(scn, ds->ds_object);
2516 if (ds->ds_is_snapshot)
2517 scan_ds_queue_insert(scn,
2518 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2519 }
2520
2521 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2522 ds->ds_object, &mintxg) == 0) {
2523 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2524 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2525 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2526 if (ds->ds_is_snapshot) {
2527 /*
2528 * We keep the same mintxg; it could be >
2529 * ds_creation_txg if the previous snapshot was
2530 * deleted too.
2531 */
2532 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2533 scn->scn_phys.scn_queue_obj,
2534 dsl_dataset_phys(ds)->ds_next_snap_obj,
2535 mintxg, tx) == 0);
2536 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2537 "replacing with %llu",
2538 (u_longlong_t)ds->ds_object,
2539 dp->dp_spa->spa_name,
2540 (u_longlong_t)dsl_dataset_phys(ds)->
2541 ds_next_snap_obj);
2542 } else {
2543 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2544 "removing",
2545 (u_longlong_t)ds->ds_object,
2546 dp->dp_spa->spa_name);
2547 }
2548 }
2549
2550 /*
2551 * dsl_scan_sync() should be called after this, and should sync
2552 * out our changed state, but just to be safe, do it here.
2553 */
2554 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2555 }
2556
2557 static void
ds_snapshotted_bookmark(dsl_dataset_t * ds,zbookmark_phys_t * scn_bookmark)2558 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2559 {
2560 if (scn_bookmark->zb_objset == ds->ds_object) {
2561 scn_bookmark->zb_objset =
2562 dsl_dataset_phys(ds)->ds_prev_snap_obj;
2563 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2564 "reset zb_objset to %llu",
2565 (u_longlong_t)ds->ds_object,
2566 ds->ds_dir->dd_pool->dp_spa->spa_name,
2567 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2568 }
2569 }
2570
2571 /*
2572 * Called when a dataset is snapshotted. If we were currently traversing
2573 * this snapshot, we reset our bookmark to point at the newly created
2574 * snapshot. We also modify our work queue to remove the old snapshot and
2575 * replace with the new one.
2576 */
2577 void
dsl_scan_ds_snapshotted(dsl_dataset_t * ds,dmu_tx_t * tx)2578 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2579 {
2580 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2581 dsl_scan_t *scn = dp->dp_scan;
2582 uint64_t mintxg;
2583
2584 if (!dsl_scan_is_running(scn))
2585 return;
2586
2587 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2588
2589 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2590 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2591
2592 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2593 scan_ds_queue_remove(scn, ds->ds_object);
2594 scan_ds_queue_insert(scn,
2595 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2596 }
2597
2598 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2599 ds->ds_object, &mintxg) == 0) {
2600 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2601 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2602 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2603 scn->scn_phys.scn_queue_obj,
2604 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2605 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2606 "replacing with %llu",
2607 (u_longlong_t)ds->ds_object,
2608 dp->dp_spa->spa_name,
2609 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2610 }
2611
2612 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2613 }
2614
2615 static void
ds_clone_swapped_bookmark(dsl_dataset_t * ds1,dsl_dataset_t * ds2,zbookmark_phys_t * scn_bookmark)2616 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2617 zbookmark_phys_t *scn_bookmark)
2618 {
2619 if (scn_bookmark->zb_objset == ds1->ds_object) {
2620 scn_bookmark->zb_objset = ds2->ds_object;
2621 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2622 "reset zb_objset to %llu",
2623 (u_longlong_t)ds1->ds_object,
2624 ds1->ds_dir->dd_pool->dp_spa->spa_name,
2625 (u_longlong_t)ds2->ds_object);
2626 } else if (scn_bookmark->zb_objset == ds2->ds_object) {
2627 scn_bookmark->zb_objset = ds1->ds_object;
2628 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2629 "reset zb_objset to %llu",
2630 (u_longlong_t)ds2->ds_object,
2631 ds2->ds_dir->dd_pool->dp_spa->spa_name,
2632 (u_longlong_t)ds1->ds_object);
2633 }
2634 }
2635
2636 /*
2637 * Called when an origin dataset and its clone are swapped. If we were
2638 * currently traversing the dataset, we need to switch to traversing the
2639 * newly promoted clone.
2640 */
2641 void
dsl_scan_ds_clone_swapped(dsl_dataset_t * ds1,dsl_dataset_t * ds2,dmu_tx_t * tx)2642 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2643 {
2644 dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2645 dsl_scan_t *scn = dp->dp_scan;
2646 uint64_t mintxg1, mintxg2;
2647 boolean_t ds1_queued, ds2_queued;
2648
2649 if (!dsl_scan_is_running(scn))
2650 return;
2651
2652 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2653 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2654
2655 /*
2656 * Handle the in-memory scan queue.
2657 */
2658 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
2659 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
2660
2661 /* Sanity checking. */
2662 if (ds1_queued) {
2663 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2664 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2665 }
2666 if (ds2_queued) {
2667 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2668 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2669 }
2670
2671 if (ds1_queued && ds2_queued) {
2672 /*
2673 * If both are queued, we don't need to do anything.
2674 * The swapping code below would not handle this case correctly,
2675 * since we can't insert ds2 if it is already there. That's
2676 * because scan_ds_queue_insert() prohibits a duplicate insert
2677 * and panics.
2678 */
2679 } else if (ds1_queued) {
2680 scan_ds_queue_remove(scn, ds1->ds_object);
2681 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
2682 } else if (ds2_queued) {
2683 scan_ds_queue_remove(scn, ds2->ds_object);
2684 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
2685 }
2686
2687 /*
2688 * Handle the on-disk scan queue.
2689 * The on-disk state is an out-of-date version of the in-memory state,
2690 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2691 * be different. Therefore we need to apply the swap logic to the
2692 * on-disk state independently of the in-memory state.
2693 */
2694 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
2695 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
2696 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
2697 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
2698
2699 /* Sanity checking. */
2700 if (ds1_queued) {
2701 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2702 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2703 }
2704 if (ds2_queued) {
2705 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2706 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2707 }
2708
2709 if (ds1_queued && ds2_queued) {
2710 /*
2711 * If both are queued, we don't need to do anything.
2712 * Alternatively, we could check for EEXIST from
2713 * zap_add_int_key() and back out to the original state, but
2714 * that would be more work than checking for this case upfront.
2715 */
2716 } else if (ds1_queued) {
2717 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2718 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2719 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2720 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
2721 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2722 "replacing with %llu",
2723 (u_longlong_t)ds1->ds_object,
2724 dp->dp_spa->spa_name,
2725 (u_longlong_t)ds2->ds_object);
2726 } else if (ds2_queued) {
2727 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2728 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2729 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2730 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
2731 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2732 "replacing with %llu",
2733 (u_longlong_t)ds2->ds_object,
2734 dp->dp_spa->spa_name,
2735 (u_longlong_t)ds1->ds_object);
2736 }
2737
2738 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2739 }
2740
2741 static int
enqueue_clones_cb(dsl_pool_t * dp,dsl_dataset_t * hds,void * arg)2742 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2743 {
2744 uint64_t originobj = *(uint64_t *)arg;
2745 dsl_dataset_t *ds;
2746 int err;
2747 dsl_scan_t *scn = dp->dp_scan;
2748
2749 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2750 return (0);
2751
2752 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2753 if (err)
2754 return (err);
2755
2756 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2757 dsl_dataset_t *prev;
2758 err = dsl_dataset_hold_obj(dp,
2759 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2760
2761 dsl_dataset_rele(ds, FTAG);
2762 if (err)
2763 return (err);
2764 ds = prev;
2765 }
2766 mutex_enter(&scn->scn_queue_lock);
2767 scan_ds_queue_insert(scn, ds->ds_object,
2768 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2769 mutex_exit(&scn->scn_queue_lock);
2770 dsl_dataset_rele(ds, FTAG);
2771 return (0);
2772 }
2773
2774 static void
dsl_scan_visitds(dsl_scan_t * scn,uint64_t dsobj,dmu_tx_t * tx)2775 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2776 {
2777 dsl_pool_t *dp = scn->scn_dp;
2778 dsl_dataset_t *ds;
2779
2780 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2781
2782 if (scn->scn_phys.scn_cur_min_txg >=
2783 scn->scn_phys.scn_max_txg) {
2784 /*
2785 * This can happen if this snapshot was created after the
2786 * scan started, and we already completed a previous snapshot
2787 * that was created after the scan started. This snapshot
2788 * only references blocks with:
2789 *
2790 * birth < our ds_creation_txg
2791 * cur_min_txg is no less than ds_creation_txg.
2792 * We have already visited these blocks.
2793 * or
2794 * birth > scn_max_txg
2795 * The scan requested not to visit these blocks.
2796 *
2797 * Subsequent snapshots (and clones) can reference our
2798 * blocks, or blocks with even higher birth times.
2799 * Therefore we do not need to visit them either,
2800 * so we do not add them to the work queue.
2801 *
2802 * Note that checking for cur_min_txg >= cur_max_txg
2803 * is not sufficient, because in that case we may need to
2804 * visit subsequent snapshots. This happens when min_txg > 0,
2805 * which raises cur_min_txg. In this case we will visit
2806 * this dataset but skip all of its blocks, because the
2807 * rootbp's birth time is < cur_min_txg. Then we will
2808 * add the next snapshots/clones to the work queue.
2809 */
2810 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2811 dsl_dataset_name(ds, dsname);
2812 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2813 "cur_min_txg (%llu) >= max_txg (%llu)",
2814 (longlong_t)dsobj, dsname,
2815 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2816 (longlong_t)scn->scn_phys.scn_max_txg);
2817 kmem_free(dsname, MAXNAMELEN);
2818
2819 goto out;
2820 }
2821
2822 /*
2823 * Only the ZIL in the head (non-snapshot) is valid. Even though
2824 * snapshots can have ZIL block pointers (which may be the same
2825 * BP as in the head), they must be ignored. In addition, $ORIGIN
2826 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2827 * need to look for a ZIL in it either. So we traverse the ZIL here,
2828 * rather than in scan_recurse(), because the regular snapshot
2829 * block-sharing rules don't apply to it.
2830 */
2831 if (!dsl_dataset_is_snapshot(ds) &&
2832 (dp->dp_origin_snap == NULL ||
2833 ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2834 objset_t *os;
2835 if (dmu_objset_from_ds(ds, &os) != 0) {
2836 goto out;
2837 }
2838 dsl_scan_zil(dp, &os->os_zil_header);
2839 }
2840
2841 /*
2842 * Iterate over the bps in this ds.
2843 */
2844 dmu_buf_will_dirty(ds->ds_dbuf, tx);
2845 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2846 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2847 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2848
2849 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2850 dsl_dataset_name(ds, dsname);
2851 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2852 "suspending=%u",
2853 (longlong_t)dsobj, dsname,
2854 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2855 (longlong_t)scn->scn_phys.scn_cur_max_txg,
2856 (int)scn->scn_suspending);
2857 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2858
2859 if (scn->scn_suspending)
2860 goto out;
2861
2862 /*
2863 * We've finished this pass over this dataset.
2864 */
2865
2866 /*
2867 * If we did not completely visit this dataset, do another pass.
2868 */
2869 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2870 zfs_dbgmsg("incomplete pass on %s; visiting again",
2871 dp->dp_spa->spa_name);
2872 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2873 scan_ds_queue_insert(scn, ds->ds_object,
2874 scn->scn_phys.scn_cur_max_txg);
2875 goto out;
2876 }
2877
2878 /*
2879 * Add descendant datasets to work queue.
2880 */
2881 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2882 scan_ds_queue_insert(scn,
2883 dsl_dataset_phys(ds)->ds_next_snap_obj,
2884 dsl_dataset_phys(ds)->ds_creation_txg);
2885 }
2886 if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2887 boolean_t usenext = B_FALSE;
2888 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2889 uint64_t count;
2890 /*
2891 * A bug in a previous version of the code could
2892 * cause upgrade_clones_cb() to not set
2893 * ds_next_snap_obj when it should, leading to a
2894 * missing entry. Therefore we can only use the
2895 * next_clones_obj when its count is correct.
2896 */
2897 int err = zap_count(dp->dp_meta_objset,
2898 dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2899 if (err == 0 &&
2900 count == dsl_dataset_phys(ds)->ds_num_children - 1)
2901 usenext = B_TRUE;
2902 }
2903
2904 if (usenext) {
2905 zap_cursor_t zc;
2906 zap_attribute_t *za = zap_attribute_alloc();
2907 for (zap_cursor_init(&zc, dp->dp_meta_objset,
2908 dsl_dataset_phys(ds)->ds_next_clones_obj);
2909 zap_cursor_retrieve(&zc, za) == 0;
2910 (void) zap_cursor_advance(&zc)) {
2911 scan_ds_queue_insert(scn,
2912 zfs_strtonum(za->za_name, NULL),
2913 dsl_dataset_phys(ds)->ds_creation_txg);
2914 }
2915 zap_cursor_fini(&zc);
2916 zap_attribute_free(za);
2917 } else {
2918 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2919 enqueue_clones_cb, &ds->ds_object,
2920 DS_FIND_CHILDREN));
2921 }
2922 }
2923
2924 out:
2925 dsl_dataset_rele(ds, FTAG);
2926 }
2927
2928 static int
enqueue_cb(dsl_pool_t * dp,dsl_dataset_t * hds,void * arg)2929 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2930 {
2931 (void) arg;
2932 dsl_dataset_t *ds;
2933 int err;
2934 dsl_scan_t *scn = dp->dp_scan;
2935
2936 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2937 if (err)
2938 return (err);
2939
2940 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2941 dsl_dataset_t *prev;
2942 err = dsl_dataset_hold_obj(dp,
2943 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2944 if (err) {
2945 dsl_dataset_rele(ds, FTAG);
2946 return (err);
2947 }
2948
2949 /*
2950 * If this is a clone, we don't need to worry about it for now.
2951 */
2952 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2953 dsl_dataset_rele(ds, FTAG);
2954 dsl_dataset_rele(prev, FTAG);
2955 return (0);
2956 }
2957 dsl_dataset_rele(ds, FTAG);
2958 ds = prev;
2959 }
2960
2961 mutex_enter(&scn->scn_queue_lock);
2962 scan_ds_queue_insert(scn, ds->ds_object,
2963 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2964 mutex_exit(&scn->scn_queue_lock);
2965 dsl_dataset_rele(ds, FTAG);
2966 return (0);
2967 }
2968
2969 void
dsl_scan_ddt_entry(dsl_scan_t * scn,enum zio_checksum checksum,ddt_t * ddt,ddt_lightweight_entry_t * ddlwe,dmu_tx_t * tx)2970 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2971 ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx)
2972 {
2973 (void) tx;
2974 const ddt_key_t *ddk = &ddlwe->ddlwe_key;
2975 blkptr_t bp;
2976 zbookmark_phys_t zb = { 0 };
2977
2978 if (!dsl_scan_is_running(scn))
2979 return;
2980
2981 /*
2982 * This function is special because it is the only thing
2983 * that can add scan_io_t's to the vdev scan queues from
2984 * outside dsl_scan_sync(). For the most part this is ok
2985 * as long as it is called from within syncing context.
2986 * However, dsl_scan_sync() expects that no new sio's will
2987 * be added between when all the work for a scan is done
2988 * and the next txg when the scan is actually marked as
2989 * completed. This check ensures we do not issue new sio's
2990 * during this period.
2991 */
2992 if (scn->scn_done_txg != 0)
2993 return;
2994
2995 for (int p = 0; p < DDT_NPHYS(ddt); p++) {
2996 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
2997 uint64_t phys_birth = ddt_phys_birth(&ddlwe->ddlwe_phys, v);
2998
2999 if (phys_birth == 0 || phys_birth > scn->scn_phys.scn_max_txg)
3000 continue;
3001 ddt_bp_create(checksum, ddk, &ddlwe->ddlwe_phys, v, &bp);
3002
3003 scn->scn_visited_this_txg++;
3004 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
3005 }
3006 }
3007
3008 /*
3009 * Scrub/dedup interaction.
3010 *
3011 * If there are N references to a deduped block, we don't want to scrub it
3012 * N times -- ideally, we should scrub it exactly once.
3013 *
3014 * We leverage the fact that the dde's replication class (ddt_class_t)
3015 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
3016 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
3017 *
3018 * To prevent excess scrubbing, the scrub begins by walking the DDT
3019 * to find all blocks with refcnt > 1, and scrubs each of these once.
3020 * Since there are two replication classes which contain blocks with
3021 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
3022 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
3023 *
3024 * There would be nothing more to say if a block's refcnt couldn't change
3025 * during a scrub, but of course it can so we must account for changes
3026 * in a block's replication class.
3027 *
3028 * Here's an example of what can occur:
3029 *
3030 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
3031 * when visited during the top-down scrub phase, it will be scrubbed twice.
3032 * This negates our scrub optimization, but is otherwise harmless.
3033 *
3034 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
3035 * on each visit during the top-down scrub phase, it will never be scrubbed.
3036 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
3037 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
3038 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
3039 * while a scrub is in progress, it scrubs the block right then.
3040 */
3041 static void
dsl_scan_ddt(dsl_scan_t * scn,dmu_tx_t * tx)3042 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
3043 {
3044 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
3045 ddt_lightweight_entry_t ddlwe = {0};
3046 int error;
3047 uint64_t n = 0;
3048
3049 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &ddlwe)) == 0) {
3050 ddt_t *ddt;
3051
3052 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
3053 break;
3054 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
3055 (longlong_t)ddb->ddb_class,
3056 (longlong_t)ddb->ddb_type,
3057 (longlong_t)ddb->ddb_checksum,
3058 (longlong_t)ddb->ddb_cursor);
3059
3060 /* There should be no pending changes to the dedup table */
3061 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
3062 ASSERT(avl_first(&ddt->ddt_tree) == NULL);
3063
3064 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, ddt, &ddlwe, tx);
3065 n++;
3066
3067 if (dsl_scan_check_suspend(scn, NULL))
3068 break;
3069 }
3070
3071 if (error == EAGAIN) {
3072 dsl_scan_check_suspend(scn, NULL);
3073 error = 0;
3074
3075 zfs_dbgmsg("waiting for ddt to become ready for scan "
3076 "on %s with class_max = %u; suspending=%u",
3077 scn->scn_dp->dp_spa->spa_name,
3078 (int)scn->scn_phys.scn_ddt_class_max,
3079 (int)scn->scn_suspending);
3080 } else
3081 zfs_dbgmsg("scanned %llu ddt entries on %s with "
3082 "class_max = %u; suspending=%u", (longlong_t)n,
3083 scn->scn_dp->dp_spa->spa_name,
3084 (int)scn->scn_phys.scn_ddt_class_max,
3085 (int)scn->scn_suspending);
3086
3087 ASSERT(error == 0 || error == ENOENT);
3088 ASSERT(error != ENOENT ||
3089 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
3090 }
3091
3092 static uint64_t
dsl_scan_ds_maxtxg(dsl_dataset_t * ds)3093 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
3094 {
3095 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
3096 if (ds->ds_is_snapshot)
3097 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
3098 return (smt);
3099 }
3100
3101 static void
dsl_scan_visit(dsl_scan_t * scn,dmu_tx_t * tx)3102 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
3103 {
3104 scan_ds_t *sds;
3105 dsl_pool_t *dp = scn->scn_dp;
3106
3107 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
3108 scn->scn_phys.scn_ddt_class_max) {
3109 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3110 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3111 dsl_scan_ddt(scn, tx);
3112 if (scn->scn_suspending)
3113 return;
3114 }
3115
3116 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
3117 /* First do the MOS & ORIGIN */
3118
3119 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3120 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3121 dsl_scan_visit_rootbp(scn, NULL,
3122 &dp->dp_meta_rootbp, tx);
3123 if (scn->scn_suspending)
3124 return;
3125
3126 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
3127 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3128 enqueue_cb, NULL, DS_FIND_CHILDREN));
3129 } else {
3130 dsl_scan_visitds(scn,
3131 dp->dp_origin_snap->ds_object, tx);
3132 }
3133 ASSERT(!scn->scn_suspending);
3134 } else if (scn->scn_phys.scn_bookmark.zb_objset !=
3135 ZB_DESTROYED_OBJSET) {
3136 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
3137 /*
3138 * If we were suspended, continue from here. Note if the
3139 * ds we were suspended on was deleted, the zb_objset may
3140 * be -1, so we will skip this and find a new objset
3141 * below.
3142 */
3143 dsl_scan_visitds(scn, dsobj, tx);
3144 if (scn->scn_suspending)
3145 return;
3146 }
3147
3148 /*
3149 * In case we suspended right at the end of the ds, zero the
3150 * bookmark so we don't think that we're still trying to resume.
3151 */
3152 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t));
3153
3154 /*
3155 * Keep pulling things out of the dataset avl queue. Updates to the
3156 * persistent zap-object-as-queue happen only at checkpoints.
3157 */
3158 while ((sds = avl_first(&scn->scn_queue)) != NULL) {
3159 dsl_dataset_t *ds;
3160 uint64_t dsobj = sds->sds_dsobj;
3161 uint64_t txg = sds->sds_txg;
3162
3163 /* dequeue and free the ds from the queue */
3164 scan_ds_queue_remove(scn, dsobj);
3165 sds = NULL;
3166
3167 /* set up min / max txg */
3168 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
3169 if (txg != 0) {
3170 scn->scn_phys.scn_cur_min_txg =
3171 MAX(scn->scn_phys.scn_min_txg, txg);
3172 } else {
3173 scn->scn_phys.scn_cur_min_txg =
3174 MAX(scn->scn_phys.scn_min_txg,
3175 dsl_dataset_phys(ds)->ds_prev_snap_txg);
3176 }
3177 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
3178 dsl_dataset_rele(ds, FTAG);
3179
3180 dsl_scan_visitds(scn, dsobj, tx);
3181 if (scn->scn_suspending)
3182 return;
3183 }
3184
3185 /* No more objsets to fetch, we're done */
3186 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
3187 ASSERT0(scn->scn_suspending);
3188 }
3189
3190 static uint64_t
dsl_scan_count_data_disks(spa_t * spa)3191 dsl_scan_count_data_disks(spa_t *spa)
3192 {
3193 vdev_t *rvd = spa->spa_root_vdev;
3194 uint64_t i, leaves = 0;
3195
3196 for (i = 0; i < rvd->vdev_children; i++) {
3197 vdev_t *vd = rvd->vdev_child[i];
3198 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache)
3199 continue;
3200 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd);
3201 }
3202 return (leaves);
3203 }
3204
3205 static void
scan_io_queues_update_zio_stats(dsl_scan_io_queue_t * q,const blkptr_t * bp)3206 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
3207 {
3208 int i;
3209 uint64_t cur_size = 0;
3210
3211 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3212 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
3213 }
3214
3215 q->q_total_zio_size_this_txg += cur_size;
3216 q->q_zios_this_txg++;
3217 }
3218
3219 static void
scan_io_queues_update_seg_stats(dsl_scan_io_queue_t * q,uint64_t start,uint64_t end)3220 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
3221 uint64_t end)
3222 {
3223 q->q_total_seg_size_this_txg += end - start;
3224 q->q_segs_this_txg++;
3225 }
3226
3227 static boolean_t
scan_io_queue_check_suspend(dsl_scan_t * scn)3228 scan_io_queue_check_suspend(dsl_scan_t *scn)
3229 {
3230 /* See comment in dsl_scan_check_suspend() */
3231 uint64_t curr_time_ns = gethrtime();
3232 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
3233 uint64_t sync_time_ns = curr_time_ns -
3234 scn->scn_dp->dp_spa->spa_sync_starttime;
3235 uint64_t dirty_min_bytes = zfs_dirty_data_max *
3236 zfs_vdev_async_write_active_min_dirty_percent / 100;
3237 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3238 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3239
3240 return ((NSEC2MSEC(scan_time_ns) > mintime &&
3241 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
3242 txg_sync_waiting(scn->scn_dp) ||
3243 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
3244 spa_shutting_down(scn->scn_dp->dp_spa));
3245 }
3246
3247 /*
3248 * Given a list of scan_io_t's in io_list, this issues the I/Os out to
3249 * disk. This consumes the io_list and frees the scan_io_t's. This is
3250 * called when emptying queues, either when we're up against the memory
3251 * limit or when we have finished scanning. Returns B_TRUE if we stopped
3252 * processing the list before we finished. Any sios that were not issued
3253 * will remain in the io_list.
3254 */
3255 static boolean_t
scan_io_queue_issue(dsl_scan_io_queue_t * queue,list_t * io_list)3256 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
3257 {
3258 dsl_scan_t *scn = queue->q_scn;
3259 scan_io_t *sio;
3260 boolean_t suspended = B_FALSE;
3261
3262 while ((sio = list_head(io_list)) != NULL) {
3263 blkptr_t bp;
3264
3265 if (scan_io_queue_check_suspend(scn)) {
3266 suspended = B_TRUE;
3267 break;
3268 }
3269
3270 sio2bp(sio, &bp);
3271 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
3272 &sio->sio_zb, queue);
3273 (void) list_remove_head(io_list);
3274 scan_io_queues_update_zio_stats(queue, &bp);
3275 sio_free(sio);
3276 }
3277 return (suspended);
3278 }
3279
3280 /*
3281 * This function removes sios from an IO queue which reside within a given
3282 * zfs_range_seg_t and inserts them (in offset order) into a list. Note that
3283 * we only ever return a maximum of 32 sios at once. If there are more sios
3284 * to process within this segment that did not make it onto the list we
3285 * return B_TRUE and otherwise B_FALSE.
3286 */
3287 static boolean_t
scan_io_queue_gather(dsl_scan_io_queue_t * queue,zfs_range_seg_t * rs,list_t * list)3288 scan_io_queue_gather(dsl_scan_io_queue_t *queue, zfs_range_seg_t *rs,
3289 list_t *list)
3290 {
3291 scan_io_t *srch_sio, *sio, *next_sio;
3292 avl_index_t idx;
3293 uint_t num_sios = 0;
3294 int64_t bytes_issued = 0;
3295
3296 ASSERT(rs != NULL);
3297 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3298
3299 srch_sio = sio_alloc(1);
3300 srch_sio->sio_nr_dvas = 1;
3301 SIO_SET_OFFSET(srch_sio, zfs_rs_get_start(rs, queue->q_exts_by_addr));
3302
3303 /*
3304 * The exact start of the extent might not contain any matching zios,
3305 * so if that's the case, examine the next one in the tree.
3306 */
3307 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
3308 sio_free(srch_sio);
3309
3310 if (sio == NULL)
3311 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
3312
3313 while (sio != NULL && SIO_GET_OFFSET(sio) < zfs_rs_get_end(rs,
3314 queue->q_exts_by_addr) && num_sios <= 32) {
3315 ASSERT3U(SIO_GET_OFFSET(sio), >=, zfs_rs_get_start(rs,
3316 queue->q_exts_by_addr));
3317 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, zfs_rs_get_end(rs,
3318 queue->q_exts_by_addr));
3319
3320 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
3321 avl_remove(&queue->q_sios_by_addr, sio);
3322 if (avl_is_empty(&queue->q_sios_by_addr))
3323 atomic_add_64(&queue->q_scn->scn_queues_pending, -1);
3324 queue->q_sio_memused -= SIO_GET_MUSED(sio);
3325
3326 bytes_issued += SIO_GET_ASIZE(sio);
3327 num_sios++;
3328 list_insert_tail(list, sio);
3329 sio = next_sio;
3330 }
3331
3332 /*
3333 * We limit the number of sios we process at once to 32 to avoid
3334 * biting off more than we can chew. If we didn't take everything
3335 * in the segment we update it to reflect the work we were able to
3336 * complete. Otherwise, we remove it from the range tree entirely.
3337 */
3338 if (sio != NULL && SIO_GET_OFFSET(sio) < zfs_rs_get_end(rs,
3339 queue->q_exts_by_addr)) {
3340 zfs_range_tree_adjust_fill(queue->q_exts_by_addr, rs,
3341 -bytes_issued);
3342 zfs_range_tree_resize_segment(queue->q_exts_by_addr, rs,
3343 SIO_GET_OFFSET(sio), zfs_rs_get_end(rs,
3344 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
3345 queue->q_last_ext_addr = SIO_GET_OFFSET(sio);
3346 return (B_TRUE);
3347 } else {
3348 uint64_t rstart = zfs_rs_get_start(rs, queue->q_exts_by_addr);
3349 uint64_t rend = zfs_rs_get_end(rs, queue->q_exts_by_addr);
3350 zfs_range_tree_remove(queue->q_exts_by_addr, rstart, rend -
3351 rstart);
3352 queue->q_last_ext_addr = -1;
3353 return (B_FALSE);
3354 }
3355 }
3356
3357 /*
3358 * This is called from the queue emptying thread and selects the next
3359 * extent from which we are to issue I/Os. The behavior of this function
3360 * depends on the state of the scan, the current memory consumption and
3361 * whether or not we are performing a scan shutdown.
3362 * 1) We select extents in an elevator algorithm (LBA-order) if the scan
3363 * needs to perform a checkpoint
3364 * 2) We select the largest available extent if we are up against the
3365 * memory limit.
3366 * 3) Otherwise we don't select any extents.
3367 */
3368 static zfs_range_seg_t *
scan_io_queue_fetch_ext(dsl_scan_io_queue_t * queue)3369 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
3370 {
3371 dsl_scan_t *scn = queue->q_scn;
3372 zfs_range_tree_t *rt = queue->q_exts_by_addr;
3373
3374 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3375 ASSERT(scn->scn_is_sorted);
3376
3377 if (!scn->scn_checkpointing && !scn->scn_clearing)
3378 return (NULL);
3379
3380 /*
3381 * During normal clearing, we want to issue our largest segments
3382 * first, keeping IO as sequential as possible, and leaving the
3383 * smaller extents for later with the hope that they might eventually
3384 * grow to larger sequential segments. However, when the scan is
3385 * checkpointing, no new extents will be added to the sorting queue,
3386 * so the way we are sorted now is as good as it will ever get.
3387 * In this case, we instead switch to issuing extents in LBA order.
3388 */
3389 if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) ||
3390 zfs_scan_issue_strategy == 1)
3391 return (zfs_range_tree_first(rt));
3392
3393 /*
3394 * Try to continue previous extent if it is not completed yet. After
3395 * shrink in scan_io_queue_gather() it may no longer be the best, but
3396 * otherwise we leave shorter remnant every txg.
3397 */
3398 uint64_t start;
3399 uint64_t size = 1ULL << rt->rt_shift;
3400 zfs_range_seg_t *addr_rs;
3401 if (queue->q_last_ext_addr != -1) {
3402 start = queue->q_last_ext_addr;
3403 addr_rs = zfs_range_tree_find(rt, start, size);
3404 if (addr_rs != NULL)
3405 return (addr_rs);
3406 }
3407
3408 /*
3409 * Nothing to continue, so find new best extent.
3410 */
3411 uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL);
3412 if (v == NULL)
3413 return (NULL);
3414 queue->q_last_ext_addr = start = *v << rt->rt_shift;
3415
3416 /*
3417 * We need to get the original entry in the by_addr tree so we can
3418 * modify it.
3419 */
3420 addr_rs = zfs_range_tree_find(rt, start, size);
3421 ASSERT3P(addr_rs, !=, NULL);
3422 ASSERT3U(zfs_rs_get_start(addr_rs, rt), ==, start);
3423 ASSERT3U(zfs_rs_get_end(addr_rs, rt), >, start);
3424 return (addr_rs);
3425 }
3426
3427 static void
scan_io_queues_run_one(void * arg)3428 scan_io_queues_run_one(void *arg)
3429 {
3430 dsl_scan_io_queue_t *queue = arg;
3431 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3432 boolean_t suspended = B_FALSE;
3433 zfs_range_seg_t *rs;
3434 scan_io_t *sio;
3435 zio_t *zio;
3436 list_t sio_list;
3437
3438 ASSERT(queue->q_scn->scn_is_sorted);
3439
3440 list_create(&sio_list, sizeof (scan_io_t),
3441 offsetof(scan_io_t, sio_nodes.sio_list_node));
3442 zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa,
3443 NULL, NULL, NULL, ZIO_FLAG_CANFAIL);
3444 mutex_enter(q_lock);
3445 queue->q_zio = zio;
3446
3447 /* Calculate maximum in-flight bytes for this vdev. */
3448 queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit *
3449 (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd)));
3450
3451 /* reset per-queue scan statistics for this txg */
3452 queue->q_total_seg_size_this_txg = 0;
3453 queue->q_segs_this_txg = 0;
3454 queue->q_total_zio_size_this_txg = 0;
3455 queue->q_zios_this_txg = 0;
3456
3457 /* loop until we run out of time or sios */
3458 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
3459 uint64_t seg_start = 0, seg_end = 0;
3460 boolean_t more_left;
3461
3462 ASSERT(list_is_empty(&sio_list));
3463
3464 /* loop while we still have sios left to process in this rs */
3465 do {
3466 scan_io_t *first_sio, *last_sio;
3467
3468 /*
3469 * We have selected which extent needs to be
3470 * processed next. Gather up the corresponding sios.
3471 */
3472 more_left = scan_io_queue_gather(queue, rs, &sio_list);
3473 ASSERT(!list_is_empty(&sio_list));
3474 first_sio = list_head(&sio_list);
3475 last_sio = list_tail(&sio_list);
3476
3477 seg_end = SIO_GET_END_OFFSET(last_sio);
3478 if (seg_start == 0)
3479 seg_start = SIO_GET_OFFSET(first_sio);
3480
3481 /*
3482 * Issuing sios can take a long time so drop the
3483 * queue lock. The sio queue won't be updated by
3484 * other threads since we're in syncing context so
3485 * we can be sure that our trees will remain exactly
3486 * as we left them.
3487 */
3488 mutex_exit(q_lock);
3489 suspended = scan_io_queue_issue(queue, &sio_list);
3490 mutex_enter(q_lock);
3491
3492 if (suspended)
3493 break;
3494 } while (more_left);
3495
3496 /* update statistics for debugging purposes */
3497 scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
3498
3499 if (suspended)
3500 break;
3501 }
3502
3503 /*
3504 * If we were suspended in the middle of processing,
3505 * requeue any unfinished sios and exit.
3506 */
3507 while ((sio = list_remove_head(&sio_list)) != NULL)
3508 scan_io_queue_insert_impl(queue, sio);
3509
3510 queue->q_zio = NULL;
3511 mutex_exit(q_lock);
3512 zio_nowait(zio);
3513 list_destroy(&sio_list);
3514 }
3515
3516 /*
3517 * Performs an emptying run on all scan queues in the pool. This just
3518 * punches out one thread per top-level vdev, each of which processes
3519 * only that vdev's scan queue. We can parallelize the I/O here because
3520 * we know that each queue's I/Os only affect its own top-level vdev.
3521 *
3522 * This function waits for the queue runs to complete, and must be
3523 * called from dsl_scan_sync (or in general, syncing context).
3524 */
3525 static void
scan_io_queues_run(dsl_scan_t * scn)3526 scan_io_queues_run(dsl_scan_t *scn)
3527 {
3528 spa_t *spa = scn->scn_dp->dp_spa;
3529
3530 ASSERT(scn->scn_is_sorted);
3531 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3532
3533 if (scn->scn_queues_pending == 0)
3534 return;
3535
3536 if (scn->scn_taskq == NULL) {
3537 int nthreads = spa->spa_root_vdev->vdev_children;
3538
3539 /*
3540 * We need to make this taskq *always* execute as many
3541 * threads in parallel as we have top-level vdevs and no
3542 * less, otherwise strange serialization of the calls to
3543 * scan_io_queues_run_one can occur during spa_sync runs
3544 * and that significantly impacts performance.
3545 */
3546 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
3547 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
3548 }
3549
3550 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3551 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3552
3553 mutex_enter(&vd->vdev_scan_io_queue_lock);
3554 if (vd->vdev_scan_io_queue != NULL) {
3555 VERIFY(taskq_dispatch(scn->scn_taskq,
3556 scan_io_queues_run_one, vd->vdev_scan_io_queue,
3557 TQ_SLEEP) != TASKQID_INVALID);
3558 }
3559 mutex_exit(&vd->vdev_scan_io_queue_lock);
3560 }
3561
3562 /*
3563 * Wait for the queues to finish issuing their IOs for this run
3564 * before we return. There may still be IOs in flight at this
3565 * point.
3566 */
3567 taskq_wait(scn->scn_taskq);
3568 }
3569
3570 static boolean_t
dsl_scan_async_block_should_pause(dsl_scan_t * scn)3571 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3572 {
3573 uint64_t elapsed_nanosecs;
3574
3575 if (zfs_recover)
3576 return (B_FALSE);
3577
3578 if (zfs_async_block_max_blocks != 0 &&
3579 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
3580 return (B_TRUE);
3581 }
3582
3583 if (zfs_max_async_dedup_frees != 0 &&
3584 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
3585 return (B_TRUE);
3586 }
3587
3588 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3589 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3590 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3591 txg_sync_waiting(scn->scn_dp)) ||
3592 spa_shutting_down(scn->scn_dp->dp_spa));
3593 }
3594
3595 static int
dsl_scan_free_block_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)3596 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3597 {
3598 dsl_scan_t *scn = arg;
3599
3600 if (!scn->scn_is_bptree ||
3601 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3602 if (dsl_scan_async_block_should_pause(scn))
3603 return (SET_ERROR(ERESTART));
3604 }
3605
3606 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3607 dmu_tx_get_txg(tx), bp, 0));
3608 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3609 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3610 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3611 scn->scn_visited_this_txg++;
3612 if (BP_GET_DEDUP(bp))
3613 scn->scn_dedup_frees_this_txg++;
3614 return (0);
3615 }
3616
3617 static void
dsl_scan_update_stats(dsl_scan_t * scn)3618 dsl_scan_update_stats(dsl_scan_t *scn)
3619 {
3620 spa_t *spa = scn->scn_dp->dp_spa;
3621 uint64_t i;
3622 uint64_t seg_size_total = 0, zio_size_total = 0;
3623 uint64_t seg_count_total = 0, zio_count_total = 0;
3624
3625 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3626 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3627 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3628
3629 if (queue == NULL)
3630 continue;
3631
3632 seg_size_total += queue->q_total_seg_size_this_txg;
3633 zio_size_total += queue->q_total_zio_size_this_txg;
3634 seg_count_total += queue->q_segs_this_txg;
3635 zio_count_total += queue->q_zios_this_txg;
3636 }
3637
3638 if (seg_count_total == 0 || zio_count_total == 0) {
3639 scn->scn_avg_seg_size_this_txg = 0;
3640 scn->scn_avg_zio_size_this_txg = 0;
3641 scn->scn_segs_this_txg = 0;
3642 scn->scn_zios_this_txg = 0;
3643 return;
3644 }
3645
3646 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3647 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3648 scn->scn_segs_this_txg = seg_count_total;
3649 scn->scn_zios_this_txg = zio_count_total;
3650 }
3651
3652 static int
bpobj_dsl_scan_free_block_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3653 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3654 dmu_tx_t *tx)
3655 {
3656 ASSERT(!bp_freed);
3657 return (dsl_scan_free_block_cb(arg, bp, tx));
3658 }
3659
3660 static int
dsl_scan_obsolete_block_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3661 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3662 dmu_tx_t *tx)
3663 {
3664 ASSERT(!bp_freed);
3665 dsl_scan_t *scn = arg;
3666 const dva_t *dva = &bp->blk_dva[0];
3667
3668 if (dsl_scan_async_block_should_pause(scn))
3669 return (SET_ERROR(ERESTART));
3670
3671 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3672 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3673 DVA_GET_ASIZE(dva), tx);
3674 scn->scn_visited_this_txg++;
3675 return (0);
3676 }
3677
3678 boolean_t
dsl_scan_active(dsl_scan_t * scn)3679 dsl_scan_active(dsl_scan_t *scn)
3680 {
3681 spa_t *spa = scn->scn_dp->dp_spa;
3682 uint64_t used = 0, comp, uncomp;
3683 boolean_t clones_left;
3684
3685 if (spa->spa_load_state != SPA_LOAD_NONE)
3686 return (B_FALSE);
3687 if (spa_shutting_down(spa))
3688 return (B_FALSE);
3689 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3690 (scn->scn_async_destroying && !scn->scn_async_stalled))
3691 return (B_TRUE);
3692
3693 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3694 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3695 &used, &comp, &uncomp);
3696 }
3697 clones_left = spa_livelist_delete_check(spa);
3698 return ((used != 0) || (clones_left));
3699 }
3700
3701 boolean_t
dsl_errorscrub_active(dsl_scan_t * scn)3702 dsl_errorscrub_active(dsl_scan_t *scn)
3703 {
3704 spa_t *spa = scn->scn_dp->dp_spa;
3705 if (spa->spa_load_state != SPA_LOAD_NONE)
3706 return (B_FALSE);
3707 if (spa_shutting_down(spa))
3708 return (B_FALSE);
3709 if (dsl_errorscrubbing(scn->scn_dp))
3710 return (B_TRUE);
3711 return (B_FALSE);
3712 }
3713
3714 static boolean_t
dsl_scan_check_deferred(vdev_t * vd)3715 dsl_scan_check_deferred(vdev_t *vd)
3716 {
3717 boolean_t need_resilver = B_FALSE;
3718
3719 for (int c = 0; c < vd->vdev_children; c++) {
3720 need_resilver |=
3721 dsl_scan_check_deferred(vd->vdev_child[c]);
3722 }
3723
3724 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3725 !vd->vdev_ops->vdev_op_leaf)
3726 return (need_resilver);
3727
3728 if (!vd->vdev_resilver_deferred)
3729 need_resilver = B_TRUE;
3730
3731 return (need_resilver);
3732 }
3733
3734 static boolean_t
dsl_scan_need_resilver(spa_t * spa,const dva_t * dva,size_t psize,uint64_t phys_birth)3735 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3736 uint64_t phys_birth)
3737 {
3738 vdev_t *vd;
3739
3740 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3741
3742 if (vd->vdev_ops == &vdev_indirect_ops) {
3743 /*
3744 * The indirect vdev can point to multiple
3745 * vdevs. For simplicity, always create
3746 * the resilver zio_t. zio_vdev_io_start()
3747 * will bypass the child resilver i/o's if
3748 * they are on vdevs that don't have DTL's.
3749 */
3750 return (B_TRUE);
3751 }
3752
3753 if (DVA_GET_GANG(dva)) {
3754 /*
3755 * Gang members may be spread across multiple
3756 * vdevs, so the best estimate we have is the
3757 * scrub range, which has already been checked.
3758 * XXX -- it would be better to change our
3759 * allocation policy to ensure that all
3760 * gang members reside on the same vdev.
3761 */
3762 return (B_TRUE);
3763 }
3764
3765 /*
3766 * Check if the top-level vdev must resilver this offset.
3767 * When the offset does not intersect with a dirty leaf DTL
3768 * then it may be possible to skip the resilver IO. The psize
3769 * is provided instead of asize to simplify the check for RAIDZ.
3770 */
3771 if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
3772 return (B_FALSE);
3773
3774 /*
3775 * Check that this top-level vdev has a device under it which
3776 * is resilvering and is not deferred.
3777 */
3778 if (!dsl_scan_check_deferred(vd))
3779 return (B_FALSE);
3780
3781 return (B_TRUE);
3782 }
3783
3784 static int
dsl_process_async_destroys(dsl_pool_t * dp,dmu_tx_t * tx)3785 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3786 {
3787 dsl_scan_t *scn = dp->dp_scan;
3788 spa_t *spa = dp->dp_spa;
3789 int err = 0;
3790
3791 if (spa_suspend_async_destroy(spa))
3792 return (0);
3793
3794 if (zfs_free_bpobj_enabled &&
3795 spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3796 scn->scn_is_bptree = B_FALSE;
3797 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3798 scn->scn_zio_root = zio_root(spa, NULL,
3799 NULL, ZIO_FLAG_MUSTSUCCEED);
3800 err = bpobj_iterate(&dp->dp_free_bpobj,
3801 bpobj_dsl_scan_free_block_cb, scn, tx);
3802 VERIFY0(zio_wait(scn->scn_zio_root));
3803 scn->scn_zio_root = NULL;
3804
3805 if (err != 0 && err != ERESTART)
3806 zfs_panic_recover("error %u from bpobj_iterate()", err);
3807 }
3808
3809 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3810 ASSERT(scn->scn_async_destroying);
3811 scn->scn_is_bptree = B_TRUE;
3812 scn->scn_zio_root = zio_root(spa, NULL,
3813 NULL, ZIO_FLAG_MUSTSUCCEED);
3814 err = bptree_iterate(dp->dp_meta_objset,
3815 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3816 VERIFY0(zio_wait(scn->scn_zio_root));
3817 scn->scn_zio_root = NULL;
3818
3819 if (err == EIO || err == ECKSUM) {
3820 err = 0;
3821 } else if (err != 0 && err != ERESTART) {
3822 zfs_panic_recover("error %u from "
3823 "traverse_dataset_destroyed()", err);
3824 }
3825
3826 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3827 /* finished; deactivate async destroy feature */
3828 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3829 ASSERT(!spa_feature_is_active(spa,
3830 SPA_FEATURE_ASYNC_DESTROY));
3831 VERIFY0(zap_remove(dp->dp_meta_objset,
3832 DMU_POOL_DIRECTORY_OBJECT,
3833 DMU_POOL_BPTREE_OBJ, tx));
3834 VERIFY0(bptree_free(dp->dp_meta_objset,
3835 dp->dp_bptree_obj, tx));
3836 dp->dp_bptree_obj = 0;
3837 scn->scn_async_destroying = B_FALSE;
3838 scn->scn_async_stalled = B_FALSE;
3839 } else {
3840 /*
3841 * If we didn't make progress, mark the async
3842 * destroy as stalled, so that we will not initiate
3843 * a spa_sync() on its behalf. Note that we only
3844 * check this if we are not finished, because if the
3845 * bptree had no blocks for us to visit, we can
3846 * finish without "making progress".
3847 */
3848 scn->scn_async_stalled =
3849 (scn->scn_visited_this_txg == 0);
3850 }
3851 }
3852 if (scn->scn_visited_this_txg) {
3853 zfs_dbgmsg("freed %llu blocks in %llums from "
3854 "free_bpobj/bptree on %s in txg %llu; err=%u",
3855 (longlong_t)scn->scn_visited_this_txg,
3856 (longlong_t)
3857 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3858 spa->spa_name, (longlong_t)tx->tx_txg, err);
3859 scn->scn_visited_this_txg = 0;
3860 scn->scn_dedup_frees_this_txg = 0;
3861
3862 /*
3863 * Write out changes to the DDT and the BRT that may be required
3864 * as a result of the blocks freed. This ensures that the DDT
3865 * and the BRT are clean when a scrub/resilver runs.
3866 */
3867 ddt_sync(spa, tx->tx_txg);
3868 brt_sync(spa, tx->tx_txg);
3869 }
3870 if (err != 0)
3871 return (err);
3872 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3873 zfs_free_leak_on_eio &&
3874 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3875 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3876 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3877 /*
3878 * We have finished background destroying, but there is still
3879 * some space left in the dp_free_dir. Transfer this leaked
3880 * space to the dp_leak_dir.
3881 */
3882 if (dp->dp_leak_dir == NULL) {
3883 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3884 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3885 LEAK_DIR_NAME, tx);
3886 VERIFY0(dsl_pool_open_special_dir(dp,
3887 LEAK_DIR_NAME, &dp->dp_leak_dir));
3888 rrw_exit(&dp->dp_config_rwlock, FTAG);
3889 }
3890 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3891 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3892 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3893 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3894 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3895 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3896 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3897 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3898 }
3899
3900 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3901 !spa_livelist_delete_check(spa)) {
3902 /* finished; verify that space accounting went to zero */
3903 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3904 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3905 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3906 }
3907
3908 spa_notify_waiters(spa);
3909
3910 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3911 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3912 DMU_POOL_OBSOLETE_BPOBJ));
3913 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3914 ASSERT(spa_feature_is_active(dp->dp_spa,
3915 SPA_FEATURE_OBSOLETE_COUNTS));
3916
3917 scn->scn_is_bptree = B_FALSE;
3918 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3919 err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3920 dsl_scan_obsolete_block_cb, scn, tx);
3921 if (err != 0 && err != ERESTART)
3922 zfs_panic_recover("error %u from bpobj_iterate()", err);
3923
3924 if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3925 dsl_pool_destroy_obsolete_bpobj(dp, tx);
3926 }
3927 return (0);
3928 }
3929
3930 static void
name_to_bookmark(char * buf,zbookmark_phys_t * zb)3931 name_to_bookmark(char *buf, zbookmark_phys_t *zb)
3932 {
3933 zb->zb_objset = zfs_strtonum(buf, &buf);
3934 ASSERT(*buf == ':');
3935 zb->zb_object = zfs_strtonum(buf + 1, &buf);
3936 ASSERT(*buf == ':');
3937 zb->zb_level = (int)zfs_strtonum(buf + 1, &buf);
3938 ASSERT(*buf == ':');
3939 zb->zb_blkid = zfs_strtonum(buf + 1, &buf);
3940 ASSERT(*buf == '\0');
3941 }
3942
3943 static void
name_to_object(char * buf,uint64_t * obj)3944 name_to_object(char *buf, uint64_t *obj)
3945 {
3946 *obj = zfs_strtonum(buf, &buf);
3947 ASSERT(*buf == '\0');
3948 }
3949
3950 static void
read_by_block_level(dsl_scan_t * scn,zbookmark_phys_t zb)3951 read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb)
3952 {
3953 dsl_pool_t *dp = scn->scn_dp;
3954 dsl_dataset_t *ds;
3955 objset_t *os;
3956 if (dsl_dataset_hold_obj(dp, zb.zb_objset, FTAG, &ds) != 0)
3957 return;
3958
3959 if (dmu_objset_from_ds(ds, &os) != 0) {
3960 dsl_dataset_rele(ds, FTAG);
3961 return;
3962 }
3963
3964 /*
3965 * If the key is not loaded dbuf_dnode_findbp() will error out with
3966 * EACCES. However in that case dnode_hold() will eventually call
3967 * dbuf_read()->zio_wait() which may call spa_log_error(). This will
3968 * lead to a deadlock due to us holding the mutex spa_errlist_lock.
3969 * Avoid this by checking here if the keys are loaded, if not return.
3970 * If the keys are not loaded the head_errlog feature is meaningless
3971 * as we cannot figure out the birth txg of the block pointer.
3972 */
3973 if (dsl_dataset_get_keystatus(ds->ds_dir) ==
3974 ZFS_KEYSTATUS_UNAVAILABLE) {
3975 dsl_dataset_rele(ds, FTAG);
3976 return;
3977 }
3978
3979 dnode_t *dn;
3980 blkptr_t bp;
3981
3982 if (dnode_hold(os, zb.zb_object, FTAG, &dn) != 0) {
3983 dsl_dataset_rele(ds, FTAG);
3984 return;
3985 }
3986
3987 rw_enter(&dn->dn_struct_rwlock, RW_READER);
3988 int error = dbuf_dnode_findbp(dn, zb.zb_level, zb.zb_blkid, &bp, NULL,
3989 NULL);
3990
3991 if (error) {
3992 rw_exit(&dn->dn_struct_rwlock);
3993 dnode_rele(dn, FTAG);
3994 dsl_dataset_rele(ds, FTAG);
3995 return;
3996 }
3997
3998 if (!error && BP_IS_HOLE(&bp)) {
3999 rw_exit(&dn->dn_struct_rwlock);
4000 dnode_rele(dn, FTAG);
4001 dsl_dataset_rele(ds, FTAG);
4002 return;
4003 }
4004
4005 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW |
4006 ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB;
4007
4008 /* If it's an intent log block, failure is expected. */
4009 if (zb.zb_level == ZB_ZIL_LEVEL)
4010 zio_flags |= ZIO_FLAG_SPECULATIVE;
4011
4012 ASSERT(!BP_IS_EMBEDDED(&bp));
4013 scan_exec_io(dp, &bp, zio_flags, &zb, NULL);
4014 rw_exit(&dn->dn_struct_rwlock);
4015 dnode_rele(dn, FTAG);
4016 dsl_dataset_rele(ds, FTAG);
4017 }
4018
4019 /*
4020 * We keep track of the scrubbed error blocks in "count". This will be used
4021 * when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This
4022 * function is modelled after check_filesystem().
4023 */
4024 static int
scrub_filesystem(spa_t * spa,uint64_t fs,zbookmark_err_phys_t * zep,int * count)4025 scrub_filesystem(spa_t *spa, uint64_t fs, zbookmark_err_phys_t *zep,
4026 int *count)
4027 {
4028 dsl_dataset_t *ds;
4029 dsl_pool_t *dp = spa->spa_dsl_pool;
4030 dsl_scan_t *scn = dp->dp_scan;
4031
4032 int error = dsl_dataset_hold_obj(dp, fs, FTAG, &ds);
4033 if (error != 0)
4034 return (error);
4035
4036 uint64_t latest_txg;
4037 uint64_t txg_to_consider = spa->spa_syncing_txg;
4038 boolean_t check_snapshot = B_TRUE;
4039
4040 error = find_birth_txg(ds, zep, &latest_txg);
4041
4042 /*
4043 * If find_birth_txg() errors out, then err on the side of caution and
4044 * proceed. In worst case scenario scrub all objects. If zep->zb_birth
4045 * is 0 (e.g. in case of encryption with unloaded keys) also proceed to
4046 * scrub all objects.
4047 */
4048 if (error == 0 && zep->zb_birth == latest_txg) {
4049 /* Block neither free nor re written. */
4050 zbookmark_phys_t zb;
4051 zep_to_zb(fs, zep, &zb);
4052 scn->scn_zio_root = zio_root(spa, NULL, NULL,
4053 ZIO_FLAG_CANFAIL);
4054 /* We have already acquired the config lock for spa */
4055 read_by_block_level(scn, zb);
4056
4057 (void) zio_wait(scn->scn_zio_root);
4058 scn->scn_zio_root = NULL;
4059
4060 scn->errorscrub_phys.dep_examined++;
4061 scn->errorscrub_phys.dep_to_examine--;
4062 (*count)++;
4063 if ((*count) == zfs_scrub_error_blocks_per_txg ||
4064 dsl_error_scrub_check_suspend(scn, &zb)) {
4065 dsl_dataset_rele(ds, FTAG);
4066 return (SET_ERROR(EFAULT));
4067 }
4068
4069 check_snapshot = B_FALSE;
4070 } else if (error == 0) {
4071 txg_to_consider = latest_txg;
4072 }
4073
4074 /*
4075 * Retrieve the number of snapshots if the dataset is not a snapshot.
4076 */
4077 uint64_t snap_count = 0;
4078 if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) {
4079
4080 error = zap_count(spa->spa_meta_objset,
4081 dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count);
4082
4083 if (error != 0) {
4084 dsl_dataset_rele(ds, FTAG);
4085 return (error);
4086 }
4087 }
4088
4089 if (snap_count == 0) {
4090 /* Filesystem without snapshots. */
4091 dsl_dataset_rele(ds, FTAG);
4092 return (0);
4093 }
4094
4095 uint64_t snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4096 uint64_t snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4097
4098 dsl_dataset_rele(ds, FTAG);
4099
4100 /* Check only snapshots created from this file system. */
4101 while (snap_obj != 0 && zep->zb_birth < snap_obj_txg &&
4102 snap_obj_txg <= txg_to_consider) {
4103
4104 error = dsl_dataset_hold_obj(dp, snap_obj, FTAG, &ds);
4105 if (error != 0)
4106 return (error);
4107
4108 if (dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj != fs) {
4109 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4110 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4111 dsl_dataset_rele(ds, FTAG);
4112 continue;
4113 }
4114
4115 boolean_t affected = B_TRUE;
4116 if (check_snapshot) {
4117 uint64_t blk_txg;
4118 error = find_birth_txg(ds, zep, &blk_txg);
4119
4120 /*
4121 * Scrub the snapshot also when zb_birth == 0 or when
4122 * find_birth_txg() returns an error.
4123 */
4124 affected = (error == 0 && zep->zb_birth == blk_txg) ||
4125 (error != 0) || (zep->zb_birth == 0);
4126 }
4127
4128 /* Scrub snapshots. */
4129 if (affected) {
4130 zbookmark_phys_t zb;
4131 zep_to_zb(snap_obj, zep, &zb);
4132 scn->scn_zio_root = zio_root(spa, NULL, NULL,
4133 ZIO_FLAG_CANFAIL);
4134 /* We have already acquired the config lock for spa */
4135 read_by_block_level(scn, zb);
4136
4137 (void) zio_wait(scn->scn_zio_root);
4138 scn->scn_zio_root = NULL;
4139
4140 scn->errorscrub_phys.dep_examined++;
4141 scn->errorscrub_phys.dep_to_examine--;
4142 (*count)++;
4143 if ((*count) == zfs_scrub_error_blocks_per_txg ||
4144 dsl_error_scrub_check_suspend(scn, &zb)) {
4145 dsl_dataset_rele(ds, FTAG);
4146 return (EFAULT);
4147 }
4148 }
4149 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4150 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4151 dsl_dataset_rele(ds, FTAG);
4152 }
4153 return (0);
4154 }
4155
4156 void
dsl_errorscrub_sync(dsl_pool_t * dp,dmu_tx_t * tx)4157 dsl_errorscrub_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4158 {
4159 spa_t *spa = dp->dp_spa;
4160 dsl_scan_t *scn = dp->dp_scan;
4161
4162 /*
4163 * Only process scans in sync pass 1.
4164 */
4165
4166 if (spa_sync_pass(spa) > 1)
4167 return;
4168
4169 /*
4170 * If the spa is shutting down, then stop scanning. This will
4171 * ensure that the scan does not dirty any new data during the
4172 * shutdown phase.
4173 */
4174 if (spa_shutting_down(spa))
4175 return;
4176
4177 if (!dsl_errorscrub_active(scn) || dsl_errorscrub_is_paused(scn)) {
4178 return;
4179 }
4180
4181 if (dsl_scan_resilvering(scn->scn_dp)) {
4182 /* cancel the error scrub if resilver started */
4183 dsl_scan_cancel(scn->scn_dp);
4184 return;
4185 }
4186
4187 spa->spa_scrub_active = B_TRUE;
4188 scn->scn_sync_start_time = gethrtime();
4189
4190 /*
4191 * zfs_scan_suspend_progress can be set to disable scrub progress.
4192 * See more detailed comment in dsl_scan_sync().
4193 */
4194 if (zfs_scan_suspend_progress) {
4195 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4196 int mintime = zfs_scrub_min_time_ms;
4197
4198 while (zfs_scan_suspend_progress &&
4199 !txg_sync_waiting(scn->scn_dp) &&
4200 !spa_shutting_down(scn->scn_dp->dp_spa) &&
4201 NSEC2MSEC(scan_time_ns) < mintime) {
4202 delay(hz);
4203 scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4204 }
4205 return;
4206 }
4207
4208 int i = 0;
4209 zap_attribute_t *za;
4210 zbookmark_phys_t *zb;
4211 boolean_t limit_exceeded = B_FALSE;
4212
4213 za = zap_attribute_alloc();
4214 zb = kmem_zalloc(sizeof (zbookmark_phys_t), KM_SLEEP);
4215
4216 if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
4217 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4218 zap_cursor_advance(&scn->errorscrub_cursor)) {
4219 name_to_bookmark(za->za_name, zb);
4220
4221 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4222 NULL, ZIO_FLAG_CANFAIL);
4223 dsl_pool_config_enter(dp, FTAG);
4224 read_by_block_level(scn, *zb);
4225 dsl_pool_config_exit(dp, FTAG);
4226
4227 (void) zio_wait(scn->scn_zio_root);
4228 scn->scn_zio_root = NULL;
4229
4230 scn->errorscrub_phys.dep_examined += 1;
4231 scn->errorscrub_phys.dep_to_examine -= 1;
4232 i++;
4233 if (i == zfs_scrub_error_blocks_per_txg ||
4234 dsl_error_scrub_check_suspend(scn, zb)) {
4235 limit_exceeded = B_TRUE;
4236 break;
4237 }
4238 }
4239
4240 if (!limit_exceeded)
4241 dsl_errorscrub_done(scn, B_TRUE, tx);
4242
4243 dsl_errorscrub_sync_state(scn, tx);
4244 zap_attribute_free(za);
4245 kmem_free(zb, sizeof (*zb));
4246 return;
4247 }
4248
4249 int error = 0;
4250 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4251 zap_cursor_advance(&scn->errorscrub_cursor)) {
4252
4253 zap_cursor_t *head_ds_cursor;
4254 zap_attribute_t *head_ds_attr;
4255 zbookmark_err_phys_t head_ds_block;
4256
4257 head_ds_cursor = kmem_zalloc(sizeof (zap_cursor_t), KM_SLEEP);
4258 head_ds_attr = zap_attribute_alloc();
4259
4260 uint64_t head_ds_err_obj = za->za_first_integer;
4261 uint64_t head_ds;
4262 name_to_object(za->za_name, &head_ds);
4263 boolean_t config_held = B_FALSE;
4264 uint64_t top_affected_fs;
4265
4266 for (zap_cursor_init(head_ds_cursor, spa->spa_meta_objset,
4267 head_ds_err_obj); zap_cursor_retrieve(head_ds_cursor,
4268 head_ds_attr) == 0; zap_cursor_advance(head_ds_cursor)) {
4269
4270 name_to_errphys(head_ds_attr->za_name, &head_ds_block);
4271
4272 /*
4273 * In case we are called from spa_sync the pool
4274 * config is already held.
4275 */
4276 if (!dsl_pool_config_held(dp)) {
4277 dsl_pool_config_enter(dp, FTAG);
4278 config_held = B_TRUE;
4279 }
4280
4281 error = find_top_affected_fs(spa,
4282 head_ds, &head_ds_block, &top_affected_fs);
4283 if (error)
4284 break;
4285
4286 error = scrub_filesystem(spa, top_affected_fs,
4287 &head_ds_block, &i);
4288
4289 if (error == SET_ERROR(EFAULT)) {
4290 limit_exceeded = B_TRUE;
4291 break;
4292 }
4293 }
4294
4295 zap_cursor_fini(head_ds_cursor);
4296 kmem_free(head_ds_cursor, sizeof (*head_ds_cursor));
4297 zap_attribute_free(head_ds_attr);
4298
4299 if (config_held)
4300 dsl_pool_config_exit(dp, FTAG);
4301 }
4302
4303 zap_attribute_free(za);
4304 kmem_free(zb, sizeof (*zb));
4305 if (!limit_exceeded)
4306 dsl_errorscrub_done(scn, B_TRUE, tx);
4307
4308 dsl_errorscrub_sync_state(scn, tx);
4309 }
4310
4311 /*
4312 * This is the primary entry point for scans that is called from syncing
4313 * context. Scans must happen entirely during syncing context so that we
4314 * can guarantee that blocks we are currently scanning will not change out
4315 * from under us. While a scan is active, this function controls how quickly
4316 * transaction groups proceed, instead of the normal handling provided by
4317 * txg_sync_thread().
4318 */
4319 void
dsl_scan_sync(dsl_pool_t * dp,dmu_tx_t * tx)4320 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4321 {
4322 int err = 0;
4323 dsl_scan_t *scn = dp->dp_scan;
4324 spa_t *spa = dp->dp_spa;
4325 state_sync_type_t sync_type = SYNC_OPTIONAL;
4326 int restart_early = 0;
4327
4328 if (spa->spa_resilver_deferred) {
4329 uint64_t to_issue, issued;
4330
4331 if (!spa_feature_is_active(dp->dp_spa,
4332 SPA_FEATURE_RESILVER_DEFER))
4333 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
4334
4335 /*
4336 * See print_scan_scrub_resilver_status() issued/total_i
4337 * @ cmd/zpool/zpool_main.c
4338 */
4339 to_issue =
4340 scn->scn_phys.scn_to_examine - scn->scn_phys.scn_skipped;
4341 issued =
4342 scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
4343 restart_early =
4344 zfs_resilver_disable_defer ||
4345 (issued < (to_issue * zfs_resilver_defer_percent / 100));
4346 }
4347
4348 /*
4349 * Only process scans in sync pass 1.
4350 */
4351 if (spa_sync_pass(spa) > 1)
4352 return;
4353
4354
4355 /*
4356 * Check for scn_restart_txg before checking spa_load_state, so
4357 * that we can restart an old-style scan while the pool is being
4358 * imported (see dsl_scan_init). We also restart scans if there
4359 * is a deferred resilver and the user has manually disabled
4360 * deferred resilvers via zfs_resilver_disable_defer, or if the
4361 * current scan progress is below zfs_resilver_defer_percent.
4362 */
4363 if (dsl_scan_restarting(scn, tx) || restart_early) {
4364 setup_sync_arg_t setup_sync_arg = {
4365 .func = POOL_SCAN_SCRUB,
4366 .txgstart = 0,
4367 .txgend = 0,
4368 };
4369 dsl_scan_done(scn, B_FALSE, tx);
4370 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4371 setup_sync_arg.func = POOL_SCAN_RESILVER;
4372 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu early=%d",
4373 setup_sync_arg.func, dp->dp_spa->spa_name,
4374 (longlong_t)tx->tx_txg, restart_early);
4375 dsl_scan_setup_sync(&setup_sync_arg, tx);
4376 }
4377
4378 /*
4379 * If the spa is shutting down, then stop scanning. This will
4380 * ensure that the scan does not dirty any new data during the
4381 * shutdown phase.
4382 */
4383 if (spa_shutting_down(spa))
4384 return;
4385
4386 /*
4387 * If the scan is inactive due to a stalled async destroy, try again.
4388 */
4389 if (!scn->scn_async_stalled && !dsl_scan_active(scn))
4390 return;
4391
4392 /* reset scan statistics */
4393 scn->scn_visited_this_txg = 0;
4394 scn->scn_dedup_frees_this_txg = 0;
4395 scn->scn_holes_this_txg = 0;
4396 scn->scn_lt_min_this_txg = 0;
4397 scn->scn_gt_max_this_txg = 0;
4398 scn->scn_ddt_contained_this_txg = 0;
4399 scn->scn_objsets_visited_this_txg = 0;
4400 scn->scn_avg_seg_size_this_txg = 0;
4401 scn->scn_segs_this_txg = 0;
4402 scn->scn_avg_zio_size_this_txg = 0;
4403 scn->scn_zios_this_txg = 0;
4404 scn->scn_suspending = B_FALSE;
4405 scn->scn_sync_start_time = gethrtime();
4406 spa->spa_scrub_active = B_TRUE;
4407
4408 /*
4409 * First process the async destroys. If we suspend, don't do
4410 * any scrubbing or resilvering. This ensures that there are no
4411 * async destroys while we are scanning, so the scan code doesn't
4412 * have to worry about traversing it. It is also faster to free the
4413 * blocks than to scrub them.
4414 */
4415 err = dsl_process_async_destroys(dp, tx);
4416 if (err != 0)
4417 return;
4418
4419 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
4420 return;
4421
4422 /*
4423 * Wait a few txgs after importing to begin scanning so that
4424 * we can get the pool imported quickly.
4425 */
4426 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
4427 return;
4428
4429 /*
4430 * zfs_scan_suspend_progress can be set to disable scan progress.
4431 * We don't want to spin the txg_sync thread, so we add a delay
4432 * here to simulate the time spent doing a scan. This is mostly
4433 * useful for testing and debugging.
4434 */
4435 if (zfs_scan_suspend_progress) {
4436 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4437 uint_t mintime = (scn->scn_phys.scn_func ==
4438 POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms :
4439 zfs_scrub_min_time_ms;
4440
4441 while (zfs_scan_suspend_progress &&
4442 !txg_sync_waiting(scn->scn_dp) &&
4443 !spa_shutting_down(scn->scn_dp->dp_spa) &&
4444 NSEC2MSEC(scan_time_ns) < mintime) {
4445 delay(hz);
4446 scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4447 }
4448 return;
4449 }
4450
4451 /*
4452 * Disabled by default, set zfs_scan_report_txgs to report
4453 * average performance over the last zfs_scan_report_txgs TXGs.
4454 */
4455 if (zfs_scan_report_txgs != 0 &&
4456 tx->tx_txg % zfs_scan_report_txgs == 0) {
4457 scn->scn_issued_before_pass += spa->spa_scan_pass_issued;
4458 spa_scan_stat_init(spa);
4459 }
4460
4461 /*
4462 * It is possible to switch from unsorted to sorted at any time,
4463 * but afterwards the scan will remain sorted unless reloaded from
4464 * a checkpoint after a reboot.
4465 */
4466 if (!zfs_scan_legacy) {
4467 scn->scn_is_sorted = B_TRUE;
4468 if (scn->scn_last_checkpoint == 0)
4469 scn->scn_last_checkpoint = ddi_get_lbolt();
4470 }
4471
4472 /*
4473 * For sorted scans, determine what kind of work we will be doing
4474 * this txg based on our memory limitations and whether or not we
4475 * need to perform a checkpoint.
4476 */
4477 if (scn->scn_is_sorted) {
4478 /*
4479 * If we are over our checkpoint interval, set scn_clearing
4480 * so that we can begin checkpointing immediately. The
4481 * checkpoint allows us to save a consistent bookmark
4482 * representing how much data we have scrubbed so far.
4483 * Otherwise, use the memory limit to determine if we should
4484 * scan for metadata or start issue scrub IOs. We accumulate
4485 * metadata until we hit our hard memory limit at which point
4486 * we issue scrub IOs until we are at our soft memory limit.
4487 */
4488 if (scn->scn_checkpointing ||
4489 ddi_get_lbolt() - scn->scn_last_checkpoint >
4490 SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
4491 if (!scn->scn_checkpointing)
4492 zfs_dbgmsg("begin scan checkpoint for %s",
4493 spa->spa_name);
4494
4495 scn->scn_checkpointing = B_TRUE;
4496 scn->scn_clearing = B_TRUE;
4497 } else {
4498 boolean_t should_clear = dsl_scan_should_clear(scn);
4499 if (should_clear && !scn->scn_clearing) {
4500 zfs_dbgmsg("begin scan clearing for %s",
4501 spa->spa_name);
4502 scn->scn_clearing = B_TRUE;
4503 } else if (!should_clear && scn->scn_clearing) {
4504 zfs_dbgmsg("finish scan clearing for %s",
4505 spa->spa_name);
4506 scn->scn_clearing = B_FALSE;
4507 }
4508 }
4509 } else {
4510 ASSERT0(scn->scn_checkpointing);
4511 ASSERT0(scn->scn_clearing);
4512 }
4513
4514 if (!scn->scn_clearing && scn->scn_done_txg == 0) {
4515 /* Need to scan metadata for more blocks to scrub */
4516 dsl_scan_phys_t *scnp = &scn->scn_phys;
4517 taskqid_t prefetch_tqid;
4518
4519 /*
4520 * Calculate the max number of in-flight bytes for pool-wide
4521 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
4522 * Limits for the issuing phase are done per top-level vdev and
4523 * are handled separately.
4524 */
4525 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
4526 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
4527
4528 if (scnp->scn_ddt_bookmark.ddb_class <=
4529 scnp->scn_ddt_class_max) {
4530 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
4531 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4532 "ddt bm=%llu/%llu/%llu/%llx",
4533 spa->spa_name,
4534 (longlong_t)tx->tx_txg,
4535 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
4536 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
4537 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
4538 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
4539 } else {
4540 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4541 "bm=%llu/%llu/%llu/%llu",
4542 spa->spa_name,
4543 (longlong_t)tx->tx_txg,
4544 (longlong_t)scnp->scn_bookmark.zb_objset,
4545 (longlong_t)scnp->scn_bookmark.zb_object,
4546 (longlong_t)scnp->scn_bookmark.zb_level,
4547 (longlong_t)scnp->scn_bookmark.zb_blkid);
4548 }
4549
4550 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4551 NULL, ZIO_FLAG_CANFAIL);
4552
4553 scn->scn_prefetch_stop = B_FALSE;
4554 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
4555 dsl_scan_prefetch_thread, scn, TQ_SLEEP);
4556 ASSERT(prefetch_tqid != TASKQID_INVALID);
4557
4558 dsl_pool_config_enter(dp, FTAG);
4559 dsl_scan_visit(scn, tx);
4560 dsl_pool_config_exit(dp, FTAG);
4561
4562 mutex_enter(&dp->dp_spa->spa_scrub_lock);
4563 scn->scn_prefetch_stop = B_TRUE;
4564 cv_broadcast(&spa->spa_scrub_io_cv);
4565 mutex_exit(&dp->dp_spa->spa_scrub_lock);
4566
4567 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
4568 (void) zio_wait(scn->scn_zio_root);
4569 scn->scn_zio_root = NULL;
4570
4571 zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
4572 "(%llu os's, %llu holes, %llu < mintxg, "
4573 "%llu in ddt, %llu > maxtxg)",
4574 (longlong_t)scn->scn_visited_this_txg,
4575 spa->spa_name,
4576 (longlong_t)NSEC2MSEC(gethrtime() -
4577 scn->scn_sync_start_time),
4578 (longlong_t)scn->scn_objsets_visited_this_txg,
4579 (longlong_t)scn->scn_holes_this_txg,
4580 (longlong_t)scn->scn_lt_min_this_txg,
4581 (longlong_t)scn->scn_ddt_contained_this_txg,
4582 (longlong_t)scn->scn_gt_max_this_txg);
4583
4584 if (!scn->scn_suspending) {
4585 ASSERT0(avl_numnodes(&scn->scn_queue));
4586 scn->scn_done_txg = tx->tx_txg + 1;
4587 if (scn->scn_is_sorted) {
4588 scn->scn_checkpointing = B_TRUE;
4589 scn->scn_clearing = B_TRUE;
4590 scn->scn_issued_before_pass +=
4591 spa->spa_scan_pass_issued;
4592 spa_scan_stat_init(spa);
4593 }
4594 zfs_dbgmsg("scan complete for %s txg %llu",
4595 spa->spa_name,
4596 (longlong_t)tx->tx_txg);
4597 }
4598 } else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) {
4599 ASSERT(scn->scn_clearing);
4600
4601 /* need to issue scrubbing IOs from per-vdev queues */
4602 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4603 NULL, ZIO_FLAG_CANFAIL);
4604 scan_io_queues_run(scn);
4605 (void) zio_wait(scn->scn_zio_root);
4606 scn->scn_zio_root = NULL;
4607
4608 /* calculate and dprintf the current memory usage */
4609 (void) dsl_scan_should_clear(scn);
4610 dsl_scan_update_stats(scn);
4611
4612 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
4613 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
4614 (longlong_t)scn->scn_zios_this_txg,
4615 spa->spa_name,
4616 (longlong_t)scn->scn_segs_this_txg,
4617 (longlong_t)NSEC2MSEC(gethrtime() -
4618 scn->scn_sync_start_time),
4619 (longlong_t)scn->scn_avg_zio_size_this_txg,
4620 (longlong_t)scn->scn_avg_seg_size_this_txg);
4621 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
4622 /* Finished with everything. Mark the scrub as complete */
4623 zfs_dbgmsg("scan issuing complete txg %llu for %s",
4624 (longlong_t)tx->tx_txg,
4625 spa->spa_name);
4626 ASSERT3U(scn->scn_done_txg, !=, 0);
4627 ASSERT0(spa->spa_scrub_inflight);
4628 ASSERT0(scn->scn_queues_pending);
4629 dsl_scan_done(scn, B_TRUE, tx);
4630 sync_type = SYNC_MANDATORY;
4631 }
4632
4633 dsl_scan_sync_state(scn, tx, sync_type);
4634 }
4635
4636 static void
count_block_issued(spa_t * spa,const blkptr_t * bp,boolean_t all)4637 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all)
4638 {
4639 /*
4640 * Don't count embedded bp's, since we already did the work of
4641 * scanning these when we scanned the containing block.
4642 */
4643 if (BP_IS_EMBEDDED(bp))
4644 return;
4645
4646 /*
4647 * Update the spa's stats on how many bytes we have issued.
4648 * Sequential scrubs create a zio for each DVA of the bp. Each
4649 * of these will include all DVAs for repair purposes, but the
4650 * zio code will only try the first one unless there is an issue.
4651 * Therefore, we should only count the first DVA for these IOs.
4652 */
4653 atomic_add_64(&spa->spa_scan_pass_issued,
4654 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4655 }
4656
4657 static void
count_block_skipped(dsl_scan_t * scn,const blkptr_t * bp,boolean_t all)4658 count_block_skipped(dsl_scan_t *scn, const blkptr_t *bp, boolean_t all)
4659 {
4660 if (BP_IS_EMBEDDED(bp))
4661 return;
4662 atomic_add_64(&scn->scn_phys.scn_skipped,
4663 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4664 }
4665
4666 static void
count_block(zfs_all_blkstats_t * zab,const blkptr_t * bp)4667 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp)
4668 {
4669 /*
4670 * If we resume after a reboot, zab will be NULL; don't record
4671 * incomplete stats in that case.
4672 */
4673 if (zab == NULL)
4674 return;
4675
4676 for (int i = 0; i < 4; i++) {
4677 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
4678 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
4679
4680 if (t & DMU_OT_NEWTYPE)
4681 t = DMU_OT_OTHER;
4682 zfs_blkstat_t *zb = &zab->zab_type[l][t];
4683 int equal;
4684
4685 zb->zb_count++;
4686 zb->zb_asize += BP_GET_ASIZE(bp);
4687 zb->zb_lsize += BP_GET_LSIZE(bp);
4688 zb->zb_psize += BP_GET_PSIZE(bp);
4689 zb->zb_gangs += BP_COUNT_GANG(bp);
4690
4691 switch (BP_GET_NDVAS(bp)) {
4692 case 2:
4693 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4694 DVA_GET_VDEV(&bp->blk_dva[1]))
4695 zb->zb_ditto_2_of_2_samevdev++;
4696 break;
4697 case 3:
4698 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4699 DVA_GET_VDEV(&bp->blk_dva[1])) +
4700 (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4701 DVA_GET_VDEV(&bp->blk_dva[2])) +
4702 (DVA_GET_VDEV(&bp->blk_dva[1]) ==
4703 DVA_GET_VDEV(&bp->blk_dva[2]));
4704 if (equal == 1)
4705 zb->zb_ditto_2_of_3_samevdev++;
4706 else if (equal == 3)
4707 zb->zb_ditto_3_of_3_samevdev++;
4708 break;
4709 }
4710 }
4711 }
4712
4713 static void
scan_io_queue_insert_impl(dsl_scan_io_queue_t * queue,scan_io_t * sio)4714 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
4715 {
4716 avl_index_t idx;
4717 dsl_scan_t *scn = queue->q_scn;
4718
4719 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4720
4721 if (unlikely(avl_is_empty(&queue->q_sios_by_addr)))
4722 atomic_add_64(&scn->scn_queues_pending, 1);
4723 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
4724 /* block is already scheduled for reading */
4725 sio_free(sio);
4726 return;
4727 }
4728 avl_insert(&queue->q_sios_by_addr, sio, idx);
4729 queue->q_sio_memused += SIO_GET_MUSED(sio);
4730 zfs_range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio),
4731 SIO_GET_ASIZE(sio));
4732 }
4733
4734 /*
4735 * Given all the info we got from our metadata scanning process, we
4736 * construct a scan_io_t and insert it into the scan sorting queue. The
4737 * I/O must already be suitable for us to process. This is controlled
4738 * by dsl_scan_enqueue().
4739 */
4740 static void
scan_io_queue_insert(dsl_scan_io_queue_t * queue,const blkptr_t * bp,int dva_i,int zio_flags,const zbookmark_phys_t * zb)4741 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
4742 int zio_flags, const zbookmark_phys_t *zb)
4743 {
4744 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
4745
4746 ASSERT0(BP_IS_GANG(bp));
4747 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4748
4749 bp2sio(bp, sio, dva_i);
4750 sio->sio_flags = zio_flags;
4751 sio->sio_zb = *zb;
4752
4753 queue->q_last_ext_addr = -1;
4754 scan_io_queue_insert_impl(queue, sio);
4755 }
4756
4757 /*
4758 * Given a set of I/O parameters as discovered by the metadata traversal
4759 * process, attempts to place the I/O into the sorted queues (if allowed),
4760 * or immediately executes the I/O.
4761 */
4762 static void
dsl_scan_enqueue(dsl_pool_t * dp,const blkptr_t * bp,int zio_flags,const zbookmark_phys_t * zb)4763 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4764 const zbookmark_phys_t *zb)
4765 {
4766 spa_t *spa = dp->dp_spa;
4767
4768 ASSERT(!BP_IS_EMBEDDED(bp));
4769
4770 /*
4771 * Gang blocks are hard to issue sequentially, so we just issue them
4772 * here immediately instead of queuing them.
4773 */
4774 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
4775 scan_exec_io(dp, bp, zio_flags, zb, NULL);
4776 return;
4777 }
4778
4779 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4780 dva_t dva;
4781 vdev_t *vdev;
4782
4783 dva = bp->blk_dva[i];
4784 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
4785 ASSERT(vdev != NULL);
4786
4787 mutex_enter(&vdev->vdev_scan_io_queue_lock);
4788 if (vdev->vdev_scan_io_queue == NULL)
4789 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
4790 ASSERT(dp->dp_scan != NULL);
4791 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
4792 i, zio_flags, zb);
4793 mutex_exit(&vdev->vdev_scan_io_queue_lock);
4794 }
4795 }
4796
4797 static int
dsl_scan_scrub_cb(dsl_pool_t * dp,const blkptr_t * bp,const zbookmark_phys_t * zb)4798 dsl_scan_scrub_cb(dsl_pool_t *dp,
4799 const blkptr_t *bp, const zbookmark_phys_t *zb)
4800 {
4801 dsl_scan_t *scn = dp->dp_scan;
4802 spa_t *spa = dp->dp_spa;
4803 uint64_t phys_birth = BP_GET_BIRTH(bp);
4804 size_t psize = BP_GET_PSIZE(bp);
4805 boolean_t needs_io = B_FALSE;
4806 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
4807
4808 count_block(dp->dp_blkstats, bp);
4809 if (phys_birth <= scn->scn_phys.scn_min_txg ||
4810 phys_birth >= scn->scn_phys.scn_max_txg) {
4811 count_block_skipped(scn, bp, B_TRUE);
4812 return (0);
4813 }
4814
4815 /* Embedded BP's have phys_birth==0, so we reject them above. */
4816 ASSERT(!BP_IS_EMBEDDED(bp));
4817
4818 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
4819 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
4820 zio_flags |= ZIO_FLAG_SCRUB;
4821 needs_io = B_TRUE;
4822 } else {
4823 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
4824 zio_flags |= ZIO_FLAG_RESILVER;
4825 needs_io = B_FALSE;
4826 }
4827
4828 /* If it's an intent log block, failure is expected. */
4829 if (zb->zb_level == ZB_ZIL_LEVEL)
4830 zio_flags |= ZIO_FLAG_SPECULATIVE;
4831
4832 for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
4833 const dva_t *dva = &bp->blk_dva[d];
4834
4835 /*
4836 * Keep track of how much data we've examined so that
4837 * zpool(8) status can make useful progress reports.
4838 */
4839 uint64_t asize = DVA_GET_ASIZE(dva);
4840 scn->scn_phys.scn_examined += asize;
4841 spa->spa_scan_pass_exam += asize;
4842
4843 /* if it's a resilver, this may not be in the target range */
4844 if (!needs_io)
4845 needs_io = dsl_scan_need_resilver(spa, dva, psize,
4846 phys_birth);
4847 }
4848
4849 if (needs_io && !zfs_no_scrub_io) {
4850 dsl_scan_enqueue(dp, bp, zio_flags, zb);
4851 } else {
4852 count_block_skipped(scn, bp, B_TRUE);
4853 }
4854
4855 /* do not relocate this block */
4856 return (0);
4857 }
4858
4859 static void
dsl_scan_scrub_done(zio_t * zio)4860 dsl_scan_scrub_done(zio_t *zio)
4861 {
4862 spa_t *spa = zio->io_spa;
4863 blkptr_t *bp = zio->io_bp;
4864 dsl_scan_io_queue_t *queue = zio->io_private;
4865
4866 abd_free(zio->io_abd);
4867
4868 if (queue == NULL) {
4869 mutex_enter(&spa->spa_scrub_lock);
4870 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
4871 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
4872 cv_broadcast(&spa->spa_scrub_io_cv);
4873 mutex_exit(&spa->spa_scrub_lock);
4874 } else {
4875 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
4876 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
4877 queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
4878 cv_broadcast(&queue->q_zio_cv);
4879 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
4880 }
4881
4882 if (zio->io_error && (zio->io_error != ECKSUM ||
4883 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
4884 if (dsl_errorscrubbing(spa->spa_dsl_pool) &&
4885 !dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) {
4886 atomic_inc_64(&spa->spa_dsl_pool->dp_scan
4887 ->errorscrub_phys.dep_errors);
4888 } else {
4889 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys
4890 .scn_errors);
4891 }
4892 }
4893 }
4894
4895 /*
4896 * Given a scanning zio's information, executes the zio. The zio need
4897 * not necessarily be only sortable, this function simply executes the
4898 * zio, no matter what it is. The optional queue argument allows the
4899 * caller to specify that they want per top level vdev IO rate limiting
4900 * instead of the legacy global limiting.
4901 */
4902 static void
scan_exec_io(dsl_pool_t * dp,const blkptr_t * bp,int zio_flags,const zbookmark_phys_t * zb,dsl_scan_io_queue_t * queue)4903 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4904 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
4905 {
4906 spa_t *spa = dp->dp_spa;
4907 dsl_scan_t *scn = dp->dp_scan;
4908 size_t size = BP_GET_PSIZE(bp);
4909 abd_t *data = abd_alloc_for_io(size, B_FALSE);
4910 zio_t *pio;
4911
4912 if (queue == NULL) {
4913 ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
4914 mutex_enter(&spa->spa_scrub_lock);
4915 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
4916 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
4917 spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
4918 mutex_exit(&spa->spa_scrub_lock);
4919 pio = scn->scn_zio_root;
4920 } else {
4921 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
4922
4923 ASSERT3U(queue->q_maxinflight_bytes, >, 0);
4924 mutex_enter(q_lock);
4925 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
4926 cv_wait(&queue->q_zio_cv, q_lock);
4927 queue->q_inflight_bytes += BP_GET_PSIZE(bp);
4928 pio = queue->q_zio;
4929 mutex_exit(q_lock);
4930 }
4931
4932 ASSERT(pio != NULL);
4933 count_block_issued(spa, bp, queue == NULL);
4934 zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done,
4935 queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
4936 }
4937
4938 /*
4939 * This is the primary extent sorting algorithm. We balance two parameters:
4940 * 1) how many bytes of I/O are in an extent
4941 * 2) how well the extent is filled with I/O (as a fraction of its total size)
4942 * Since we allow extents to have gaps between their constituent I/Os, it's
4943 * possible to have a fairly large extent that contains the same amount of
4944 * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4945 * The algorithm sorts based on a score calculated from the extent's size,
4946 * the relative fill volume (in %) and a "fill weight" parameter that controls
4947 * the split between whether we prefer larger extents or more well populated
4948 * extents:
4949 *
4950 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4951 *
4952 * Example:
4953 * 1) assume extsz = 64 MiB
4954 * 2) assume fill = 32 MiB (extent is half full)
4955 * 3) assume fill_weight = 3
4956 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4957 * SCORE = 32M + (50 * 3 * 32M) / 100
4958 * SCORE = 32M + (4800M / 100)
4959 * SCORE = 32M + 48M
4960 * ^ ^
4961 * | +--- final total relative fill-based score
4962 * +--------- final total fill-based score
4963 * SCORE = 80M
4964 *
4965 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4966 * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4967 * Note that as an optimization, we replace multiplication and division by
4968 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4969 *
4970 * Since we do not care if one extent is only few percent better than another,
4971 * compress the score into 6 bits via binary logarithm AKA highbit64() and
4972 * put into otherwise unused due to ashift high bits of offset. This allows
4973 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
4974 * with single operation. Plus it makes scrubs more sequential and reduces
4975 * chances that minor extent change move it within the B-tree.
4976 */
4977 __attribute__((always_inline)) inline
4978 static int
ext_size_compare(const void * x,const void * y)4979 ext_size_compare(const void *x, const void *y)
4980 {
4981 const uint64_t *a = x, *b = y;
4982
4983 return (TREE_CMP(*a, *b));
4984 }
4985
ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf,uint64_t,ext_size_compare)4986 ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf, uint64_t,
4987 ext_size_compare)
4988
4989 static void
4990 ext_size_create(zfs_range_tree_t *rt, void *arg)
4991 {
4992 (void) rt;
4993 zfs_btree_t *size_tree = arg;
4994
4995 zfs_btree_create(size_tree, ext_size_compare, ext_size_find_in_buf,
4996 sizeof (uint64_t));
4997 }
4998
4999 static void
ext_size_destroy(zfs_range_tree_t * rt,void * arg)5000 ext_size_destroy(zfs_range_tree_t *rt, void *arg)
5001 {
5002 (void) rt;
5003 zfs_btree_t *size_tree = arg;
5004 ASSERT0(zfs_btree_numnodes(size_tree));
5005
5006 zfs_btree_destroy(size_tree);
5007 }
5008
5009 static uint64_t
ext_size_value(zfs_range_tree_t * rt,zfs_range_seg_gap_t * rsg)5010 ext_size_value(zfs_range_tree_t *rt, zfs_range_seg_gap_t *rsg)
5011 {
5012 (void) rt;
5013 uint64_t size = rsg->rs_end - rsg->rs_start;
5014 uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) *
5015 fill_weight * rsg->rs_fill) >> 7);
5016 ASSERT3U(rt->rt_shift, >=, 8);
5017 return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start);
5018 }
5019
5020 static void
ext_size_add(zfs_range_tree_t * rt,zfs_range_seg_t * rs,void * arg)5021 ext_size_add(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
5022 {
5023 zfs_btree_t *size_tree = arg;
5024 ASSERT3U(rt->rt_type, ==, ZFS_RANGE_SEG_GAP);
5025 uint64_t v = ext_size_value(rt, (zfs_range_seg_gap_t *)rs);
5026 zfs_btree_add(size_tree, &v);
5027 }
5028
5029 static void
ext_size_remove(zfs_range_tree_t * rt,zfs_range_seg_t * rs,void * arg)5030 ext_size_remove(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
5031 {
5032 zfs_btree_t *size_tree = arg;
5033 ASSERT3U(rt->rt_type, ==, ZFS_RANGE_SEG_GAP);
5034 uint64_t v = ext_size_value(rt, (zfs_range_seg_gap_t *)rs);
5035 zfs_btree_remove(size_tree, &v);
5036 }
5037
5038 static void
ext_size_vacate(zfs_range_tree_t * rt,void * arg)5039 ext_size_vacate(zfs_range_tree_t *rt, void *arg)
5040 {
5041 zfs_btree_t *size_tree = arg;
5042 zfs_btree_clear(size_tree);
5043 zfs_btree_destroy(size_tree);
5044
5045 ext_size_create(rt, arg);
5046 }
5047
5048 static const zfs_range_tree_ops_t ext_size_ops = {
5049 .rtop_create = ext_size_create,
5050 .rtop_destroy = ext_size_destroy,
5051 .rtop_add = ext_size_add,
5052 .rtop_remove = ext_size_remove,
5053 .rtop_vacate = ext_size_vacate
5054 };
5055
5056 /*
5057 * Comparator for the q_sios_by_addr tree. Sorting is simply performed
5058 * based on LBA-order (from lowest to highest).
5059 */
5060 static int
sio_addr_compare(const void * x,const void * y)5061 sio_addr_compare(const void *x, const void *y)
5062 {
5063 const scan_io_t *a = x, *b = y;
5064
5065 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
5066 }
5067
5068 /* IO queues are created on demand when they are needed. */
5069 static dsl_scan_io_queue_t *
scan_io_queue_create(vdev_t * vd)5070 scan_io_queue_create(vdev_t *vd)
5071 {
5072 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
5073 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
5074
5075 q->q_scn = scn;
5076 q->q_vd = vd;
5077 q->q_sio_memused = 0;
5078 q->q_last_ext_addr = -1;
5079 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
5080 q->q_exts_by_addr = zfs_range_tree_create_gap(&ext_size_ops,
5081 ZFS_RANGE_SEG_GAP, &q->q_exts_by_size, 0, vd->vdev_ashift,
5082 zfs_scan_max_ext_gap);
5083 avl_create(&q->q_sios_by_addr, sio_addr_compare,
5084 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
5085
5086 return (q);
5087 }
5088
5089 /*
5090 * Destroys a scan queue and all segments and scan_io_t's contained in it.
5091 * No further execution of I/O occurs, anything pending in the queue is
5092 * simply freed without being executed.
5093 */
5094 void
dsl_scan_io_queue_destroy(dsl_scan_io_queue_t * queue)5095 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
5096 {
5097 dsl_scan_t *scn = queue->q_scn;
5098 scan_io_t *sio;
5099 void *cookie = NULL;
5100
5101 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
5102
5103 if (!avl_is_empty(&queue->q_sios_by_addr))
5104 atomic_add_64(&scn->scn_queues_pending, -1);
5105 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
5106 NULL) {
5107 ASSERT(zfs_range_tree_contains(queue->q_exts_by_addr,
5108 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
5109 queue->q_sio_memused -= SIO_GET_MUSED(sio);
5110 sio_free(sio);
5111 }
5112
5113 ASSERT0(queue->q_sio_memused);
5114 zfs_range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
5115 zfs_range_tree_destroy(queue->q_exts_by_addr);
5116 avl_destroy(&queue->q_sios_by_addr);
5117 cv_destroy(&queue->q_zio_cv);
5118
5119 kmem_free(queue, sizeof (*queue));
5120 }
5121
5122 /*
5123 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
5124 * called on behalf of vdev_top_transfer when creating or destroying
5125 * a mirror vdev due to zpool attach/detach.
5126 */
5127 void
dsl_scan_io_queue_vdev_xfer(vdev_t * svd,vdev_t * tvd)5128 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
5129 {
5130 mutex_enter(&svd->vdev_scan_io_queue_lock);
5131 mutex_enter(&tvd->vdev_scan_io_queue_lock);
5132
5133 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
5134 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
5135 svd->vdev_scan_io_queue = NULL;
5136 if (tvd->vdev_scan_io_queue != NULL)
5137 tvd->vdev_scan_io_queue->q_vd = tvd;
5138
5139 mutex_exit(&tvd->vdev_scan_io_queue_lock);
5140 mutex_exit(&svd->vdev_scan_io_queue_lock);
5141 }
5142
5143 static void
scan_io_queues_destroy(dsl_scan_t * scn)5144 scan_io_queues_destroy(dsl_scan_t *scn)
5145 {
5146 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
5147
5148 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
5149 vdev_t *tvd = rvd->vdev_child[i];
5150
5151 mutex_enter(&tvd->vdev_scan_io_queue_lock);
5152 if (tvd->vdev_scan_io_queue != NULL)
5153 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
5154 tvd->vdev_scan_io_queue = NULL;
5155 mutex_exit(&tvd->vdev_scan_io_queue_lock);
5156 }
5157 }
5158
5159 static void
dsl_scan_freed_dva(spa_t * spa,const blkptr_t * bp,int dva_i)5160 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
5161 {
5162 dsl_pool_t *dp = spa->spa_dsl_pool;
5163 dsl_scan_t *scn = dp->dp_scan;
5164 vdev_t *vdev;
5165 kmutex_t *q_lock;
5166 dsl_scan_io_queue_t *queue;
5167 scan_io_t *srch_sio, *sio;
5168 avl_index_t idx;
5169 uint64_t start, size;
5170
5171 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
5172 ASSERT(vdev != NULL);
5173 q_lock = &vdev->vdev_scan_io_queue_lock;
5174 queue = vdev->vdev_scan_io_queue;
5175
5176 mutex_enter(q_lock);
5177 if (queue == NULL) {
5178 mutex_exit(q_lock);
5179 return;
5180 }
5181
5182 srch_sio = sio_alloc(BP_GET_NDVAS(bp));
5183 bp2sio(bp, srch_sio, dva_i);
5184 start = SIO_GET_OFFSET(srch_sio);
5185 size = SIO_GET_ASIZE(srch_sio);
5186
5187 /*
5188 * We can find the zio in two states:
5189 * 1) Cold, just sitting in the queue of zio's to be issued at
5190 * some point in the future. In this case, all we do is
5191 * remove the zio from the q_sios_by_addr tree, decrement
5192 * its data volume from the containing zfs_range_seg_t and
5193 * resort the q_exts_by_size tree to reflect that the
5194 * zfs_range_seg_t has lost some of its 'fill'. We don't shorten
5195 * the zfs_range_seg_t - this is usually rare enough not to be
5196 * worth the extra hassle of trying keep track of precise
5197 * extent boundaries.
5198 * 2) Hot, where the zio is currently in-flight in
5199 * dsl_scan_issue_ios. In this case, we can't simply
5200 * reach in and stop the in-flight zio's, so we instead
5201 * block the caller. Eventually, dsl_scan_issue_ios will
5202 * be done with issuing the zio's it gathered and will
5203 * signal us.
5204 */
5205 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
5206 sio_free(srch_sio);
5207
5208 if (sio != NULL) {
5209 blkptr_t tmpbp;
5210
5211 /* Got it while it was cold in the queue */
5212 ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
5213 ASSERT3U(size, ==, SIO_GET_ASIZE(sio));
5214 avl_remove(&queue->q_sios_by_addr, sio);
5215 if (avl_is_empty(&queue->q_sios_by_addr))
5216 atomic_add_64(&scn->scn_queues_pending, -1);
5217 queue->q_sio_memused -= SIO_GET_MUSED(sio);
5218
5219 ASSERT(zfs_range_tree_contains(queue->q_exts_by_addr, start,
5220 size));
5221 zfs_range_tree_remove_fill(queue->q_exts_by_addr, start, size);
5222
5223 /* count the block as though we skipped it */
5224 sio2bp(sio, &tmpbp);
5225 count_block_skipped(scn, &tmpbp, B_FALSE);
5226
5227 sio_free(sio);
5228 }
5229 mutex_exit(q_lock);
5230 }
5231
5232 /*
5233 * Callback invoked when a zio_free() zio is executing. This needs to be
5234 * intercepted to prevent the zio from deallocating a particular portion
5235 * of disk space and it then getting reallocated and written to, while we
5236 * still have it queued up for processing.
5237 */
5238 void
dsl_scan_freed(spa_t * spa,const blkptr_t * bp)5239 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
5240 {
5241 dsl_pool_t *dp = spa->spa_dsl_pool;
5242 dsl_scan_t *scn = dp->dp_scan;
5243
5244 ASSERT(!BP_IS_EMBEDDED(bp));
5245 ASSERT(scn != NULL);
5246 if (!dsl_scan_is_running(scn))
5247 return;
5248
5249 for (int i = 0; i < BP_GET_NDVAS(bp); i++)
5250 dsl_scan_freed_dva(spa, bp, i);
5251 }
5252
5253 /*
5254 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
5255 * not started, start it. Otherwise, only restart if max txg in DTL range is
5256 * greater than the max txg in the current scan. If the DTL max is less than
5257 * the scan max, then the vdev has not missed any new data since the resilver
5258 * started, so a restart is not needed.
5259 */
5260 void
dsl_scan_assess_vdev(dsl_pool_t * dp,vdev_t * vd)5261 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
5262 {
5263 uint64_t min, max;
5264
5265 if (!vdev_resilver_needed(vd, &min, &max))
5266 return;
5267
5268 if (!dsl_scan_resilvering(dp)) {
5269 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5270 return;
5271 }
5272
5273 if (max <= dp->dp_scan->scn_phys.scn_max_txg)
5274 return;
5275
5276 /* restart is needed, check if it can be deferred */
5277 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
5278 vdev_defer_resilver(vd);
5279 else
5280 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5281 }
5282
5283 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW,
5284 "Max bytes in flight per leaf vdev for scrubs and resilvers");
5285
5286 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW,
5287 "Min millisecs to scrub per txg");
5288
5289 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW,
5290 "Min millisecs to obsolete per txg");
5291
5292 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW,
5293 "Min millisecs to free per txg");
5294
5295 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW,
5296 "Min millisecs to resilver per txg");
5297
5298 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
5299 "Set to prevent scans from progressing");
5300
5301 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
5302 "Set to disable scrub I/O");
5303
5304 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
5305 "Set to disable scrub prefetching");
5306
5307 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW,
5308 "Max number of blocks freed in one txg");
5309
5310 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW,
5311 "Max number of dedup blocks freed in one txg");
5312
5313 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
5314 "Enable processing of the free_bpobj");
5315
5316 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW,
5317 "Enable block statistics calculation during scrub");
5318
5319 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW,
5320 "Fraction of RAM for scan hard limit");
5321
5322 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW,
5323 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
5324
5325 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
5326 "Scrub using legacy non-sequential method");
5327
5328 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW,
5329 "Scan progress on-disk checkpointing interval");
5330
5331 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW,
5332 "Max gap in bytes between sequential scrub / resilver I/Os");
5333
5334 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW,
5335 "Fraction of hard limit used as soft limit");
5336
5337 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
5338 "Tunable to attempt to reduce lock contention");
5339
5340 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW,
5341 "Tunable to adjust bias towards more filled segments during scans");
5342
5343 ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW,
5344 "Tunable to report resilver performance over the last N txgs");
5345
5346 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
5347 "Process all resilvers immediately");
5348
5349 ZFS_MODULE_PARAM(zfs, zfs_, resilver_defer_percent, UINT, ZMOD_RW,
5350 "Issued IO percent complete after which resilvers are deferred");
5351
5352 ZFS_MODULE_PARAM(zfs, zfs_, scrub_error_blocks_per_txg, UINT, ZMOD_RW,
5353 "Error blocks to be scrubbed in one txg");
5354