xref: /freebsd/sys/contrib/openzfs/module/zfs/dsl_pool.c (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2013 Steven Hartland. All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
28  */
29 
30 #include <sys/dsl_pool.h>
31 #include <sys/dsl_dataset.h>
32 #include <sys/dsl_prop.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_synctask.h>
35 #include <sys/dsl_scan.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/zap.h>
41 #include <sys/zio.h>
42 #include <sys/zfs_context.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/spa_impl.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/metaslab_impl.h>
48 #include <sys/bptree.h>
49 #include <sys/zfeature.h>
50 #include <sys/zil_impl.h>
51 #include <sys/dsl_userhold.h>
52 #include <sys/trace_zfs.h>
53 #include <sys/mmp.h>
54 
55 /*
56  * ZFS Write Throttle
57  * ------------------
58  *
59  * ZFS must limit the rate of incoming writes to the rate at which it is able
60  * to sync data modifications to the backend storage. Throttling by too much
61  * creates an artificial limit; throttling by too little can only be sustained
62  * for short periods and would lead to highly lumpy performance. On a per-pool
63  * basis, ZFS tracks the amount of modified (dirty) data. As operations change
64  * data, the amount of dirty data increases; as ZFS syncs out data, the amount
65  * of dirty data decreases. When the amount of dirty data exceeds a
66  * predetermined threshold further modifications are blocked until the amount
67  * of dirty data decreases (as data is synced out).
68  *
69  * The limit on dirty data is tunable, and should be adjusted according to
70  * both the IO capacity and available memory of the system. The larger the
71  * window, the more ZFS is able to aggregate and amortize metadata (and data)
72  * changes. However, memory is a limited resource, and allowing for more dirty
73  * data comes at the cost of keeping other useful data in memory (for example
74  * ZFS data cached by the ARC).
75  *
76  * Implementation
77  *
78  * As buffers are modified dsl_pool_willuse_space() increments both the per-
79  * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
80  * dirty space used; dsl_pool_dirty_space() decrements those values as data
81  * is synced out from dsl_pool_sync(). While only the poolwide value is
82  * relevant, the per-txg value is useful for debugging. The tunable
83  * zfs_dirty_data_max determines the dirty space limit. Once that value is
84  * exceeded, new writes are halted until space frees up.
85  *
86  * The zfs_dirty_data_sync_percent tunable dictates the threshold at which we
87  * ensure that there is a txg syncing (see the comment in txg.c for a full
88  * description of transaction group stages).
89  *
90  * The IO scheduler uses both the dirty space limit and current amount of
91  * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
92  * issues. See the comment in vdev_queue.c for details of the IO scheduler.
93  *
94  * The delay is also calculated based on the amount of dirty data.  See the
95  * comment above dmu_tx_delay() for details.
96  */
97 
98 /*
99  * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
100  * capped at zfs_dirty_data_max_max.  It can also be overridden with a module
101  * parameter.
102  */
103 uint64_t zfs_dirty_data_max = 0;
104 uint64_t zfs_dirty_data_max_max = 0;
105 uint_t zfs_dirty_data_max_percent = 10;
106 uint_t zfs_dirty_data_max_max_percent = 25;
107 
108 /*
109  * The upper limit of TX_WRITE log data.  Write operations are throttled
110  * when approaching the limit until log data is cleared out after txg sync.
111  * It only counts TX_WRITE log with WR_COPIED or WR_NEED_COPY.
112  */
113 uint64_t zfs_wrlog_data_max = 0;
114 
115 /*
116  * If there's at least this much dirty data (as a percentage of
117  * zfs_dirty_data_max), push out a txg.  This should be less than
118  * zfs_vdev_async_write_active_min_dirty_percent.
119  */
120 static uint_t zfs_dirty_data_sync_percent = 20;
121 
122 /*
123  * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
124  * and delay each transaction.
125  * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
126  */
127 uint_t zfs_delay_min_dirty_percent = 60;
128 
129 /*
130  * This controls how quickly the delay approaches infinity.
131  * Larger values cause it to delay more for a given amount of dirty data.
132  * Therefore larger values will cause there to be less dirty data for a
133  * given throughput.
134  *
135  * For the smoothest delay, this value should be about 1 billion divided
136  * by the maximum number of operations per second.  This will smoothly
137  * handle between 10x and 1/10th this number.
138  *
139  * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
140  * multiply in dmu_tx_delay().
141  */
142 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
143 
144 /*
145  * These tunables determine the behavior of how zil_itxg_clean() is
146  * called via zil_clean() in the context of spa_sync(). When an itxg
147  * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
148  * If the dispatch fails, the call to zil_itxg_clean() will occur
149  * synchronously in the context of spa_sync(), which can negatively
150  * impact the performance of spa_sync() (e.g. in the case of the itxg
151  * list having a large number of itxs that needs to be cleaned).
152  *
153  * Thus, these tunables can be used to manipulate the behavior of the
154  * taskq used by zil_clean(); they determine the number of taskq entries
155  * that are pre-populated when the taskq is first created (via the
156  * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
157  * taskq entries that are cached after an on-demand allocation (via the
158  * "zfs_zil_clean_taskq_maxalloc").
159  *
160  * The idea being, we want to try reasonably hard to ensure there will
161  * already be a taskq entry pre-allocated by the time that it is needed
162  * by zil_clean(). This way, we can avoid the possibility of an
163  * on-demand allocation of a new taskq entry from failing, which would
164  * result in zil_itxg_clean() being called synchronously from zil_clean()
165  * (which can adversely affect performance of spa_sync()).
166  *
167  * Additionally, the number of threads used by the taskq can be
168  * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
169  */
170 static int zfs_zil_clean_taskq_nthr_pct = 100;
171 static int zfs_zil_clean_taskq_minalloc = 1024;
172 static int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
173 
174 int
dsl_pool_open_special_dir(dsl_pool_t * dp,const char * name,dsl_dir_t ** ddp)175 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
176 {
177 	uint64_t obj;
178 	int err;
179 
180 	err = zap_lookup(dp->dp_meta_objset,
181 	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
182 	    name, sizeof (obj), 1, &obj);
183 	if (err)
184 		return (err);
185 
186 	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
187 }
188 
189 static dsl_pool_t *
dsl_pool_open_impl(spa_t * spa,uint64_t txg)190 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
191 {
192 	dsl_pool_t *dp;
193 	blkptr_t *bp = spa_get_rootblkptr(spa);
194 
195 	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
196 	dp->dp_spa = spa;
197 	dp->dp_meta_rootbp = *bp;
198 	rrw_init(&dp->dp_config_rwlock, B_TRUE);
199 	txg_init(dp, txg);
200 	mmp_init(spa);
201 
202 	txg_list_create(&dp->dp_dirty_datasets, spa,
203 	    offsetof(dsl_dataset_t, ds_dirty_link));
204 	txg_list_create(&dp->dp_dirty_zilogs, spa,
205 	    offsetof(zilog_t, zl_dirty_link));
206 	txg_list_create(&dp->dp_dirty_dirs, spa,
207 	    offsetof(dsl_dir_t, dd_dirty_link));
208 	txg_list_create(&dp->dp_sync_tasks, spa,
209 	    offsetof(dsl_sync_task_t, dst_node));
210 	txg_list_create(&dp->dp_early_sync_tasks, spa,
211 	    offsetof(dsl_sync_task_t, dst_node));
212 
213 	dp->dp_sync_taskq = spa_sync_tq_create(spa, "dp_sync_taskq");
214 
215 	dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
216 	    zfs_zil_clean_taskq_nthr_pct, minclsyspri,
217 	    zfs_zil_clean_taskq_minalloc,
218 	    zfs_zil_clean_taskq_maxalloc,
219 	    TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
220 
221 	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
222 	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
223 
224 	aggsum_init(&dp->dp_wrlog_total, 0);
225 	for (int i = 0; i < TXG_SIZE; i++) {
226 		aggsum_init(&dp->dp_wrlog_pertxg[i], 0);
227 	}
228 
229 	dp->dp_zrele_taskq = taskq_create("z_zrele", 100, defclsyspri,
230 	    boot_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
231 	    TASKQ_THREADS_CPU_PCT);
232 	dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain",
233 	    100, defclsyspri, boot_ncpus, INT_MAX,
234 	    TASKQ_PREPOPULATE | TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
235 
236 	return (dp);
237 }
238 
239 int
dsl_pool_init(spa_t * spa,uint64_t txg,dsl_pool_t ** dpp)240 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
241 {
242 	int err;
243 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
244 
245 	/*
246 	 * Initialize the caller's dsl_pool_t structure before we actually open
247 	 * the meta objset.  This is done because a self-healing write zio may
248 	 * be issued as part of dmu_objset_open_impl() and the spa needs its
249 	 * dsl_pool_t initialized in order to handle the write.
250 	 */
251 	*dpp = dp;
252 
253 	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
254 	    &dp->dp_meta_objset);
255 	if (err != 0) {
256 		dsl_pool_close(dp);
257 		*dpp = NULL;
258 	}
259 
260 	return (err);
261 }
262 
263 int
dsl_pool_open(dsl_pool_t * dp)264 dsl_pool_open(dsl_pool_t *dp)
265 {
266 	int err;
267 	dsl_dir_t *dd;
268 	dsl_dataset_t *ds;
269 	uint64_t obj;
270 
271 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
272 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
273 	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
274 	    &dp->dp_root_dir_obj);
275 	if (err)
276 		goto out;
277 
278 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
279 	    NULL, dp, &dp->dp_root_dir);
280 	if (err)
281 		goto out;
282 
283 	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
284 	if (err)
285 		goto out;
286 
287 	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
288 		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
289 		if (err)
290 			goto out;
291 		err = dsl_dataset_hold_obj(dp,
292 		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
293 		if (err == 0) {
294 			err = dsl_dataset_hold_obj(dp,
295 			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
296 			    &dp->dp_origin_snap);
297 			dsl_dataset_rele(ds, FTAG);
298 		}
299 		dsl_dir_rele(dd, dp);
300 		if (err)
301 			goto out;
302 	}
303 
304 	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
305 		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
306 		    &dp->dp_free_dir);
307 		if (err)
308 			goto out;
309 
310 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
311 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
312 		if (err)
313 			goto out;
314 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
315 		    dp->dp_meta_objset, obj));
316 	}
317 
318 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
319 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
320 		    DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
321 		if (err == 0) {
322 			VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
323 			    dp->dp_meta_objset, obj));
324 		} else if (err == ENOENT) {
325 			/*
326 			 * We might not have created the remap bpobj yet.
327 			 */
328 		} else {
329 			goto out;
330 		}
331 	}
332 
333 	/*
334 	 * Note: errors ignored, because the these special dirs, used for
335 	 * space accounting, are only created on demand.
336 	 */
337 	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
338 	    &dp->dp_leak_dir);
339 
340 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
341 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
342 		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
343 		    &dp->dp_bptree_obj);
344 		if (err != 0)
345 			goto out;
346 	}
347 
348 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
349 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
350 		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
351 		    &dp->dp_empty_bpobj);
352 		if (err != 0)
353 			goto out;
354 	}
355 
356 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
357 	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
358 	    &dp->dp_tmp_userrefs_obj);
359 	if (err == ENOENT)
360 		err = 0;
361 	if (err)
362 		goto out;
363 
364 	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
365 
366 out:
367 	rrw_exit(&dp->dp_config_rwlock, FTAG);
368 	return (err);
369 }
370 
371 void
dsl_pool_close(dsl_pool_t * dp)372 dsl_pool_close(dsl_pool_t *dp)
373 {
374 	/*
375 	 * Drop our references from dsl_pool_open().
376 	 *
377 	 * Since we held the origin_snap from "syncing" context (which
378 	 * includes pool-opening context), it actually only got a "ref"
379 	 * and not a hold, so just drop that here.
380 	 */
381 	if (dp->dp_origin_snap != NULL)
382 		dsl_dataset_rele(dp->dp_origin_snap, dp);
383 	if (dp->dp_mos_dir != NULL)
384 		dsl_dir_rele(dp->dp_mos_dir, dp);
385 	if (dp->dp_free_dir != NULL)
386 		dsl_dir_rele(dp->dp_free_dir, dp);
387 	if (dp->dp_leak_dir != NULL)
388 		dsl_dir_rele(dp->dp_leak_dir, dp);
389 	if (dp->dp_root_dir != NULL)
390 		dsl_dir_rele(dp->dp_root_dir, dp);
391 
392 	bpobj_close(&dp->dp_free_bpobj);
393 	bpobj_close(&dp->dp_obsolete_bpobj);
394 
395 	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
396 	if (dp->dp_meta_objset != NULL)
397 		dmu_objset_evict(dp->dp_meta_objset);
398 
399 	txg_list_destroy(&dp->dp_dirty_datasets);
400 	txg_list_destroy(&dp->dp_dirty_zilogs);
401 	txg_list_destroy(&dp->dp_sync_tasks);
402 	txg_list_destroy(&dp->dp_early_sync_tasks);
403 	txg_list_destroy(&dp->dp_dirty_dirs);
404 
405 	taskq_destroy(dp->dp_zil_clean_taskq);
406 	spa_sync_tq_destroy(dp->dp_spa);
407 
408 	if (dp->dp_spa->spa_state == POOL_STATE_EXPORTED ||
409 	    dp->dp_spa->spa_state == POOL_STATE_DESTROYED) {
410 		/*
411 		 * On export/destroy perform the ARC flush asynchronously.
412 		 */
413 		arc_flush_async(dp->dp_spa);
414 	} else {
415 		/*
416 		 * We can't set retry to TRUE since we're explicitly specifying
417 		 * a spa to flush. This is good enough; any missed buffers for
418 		 * this spa won't cause trouble, and they'll eventually fall
419 		 * out of the ARC just like any other unused buffer.
420 		 */
421 		arc_flush(dp->dp_spa, FALSE);
422 	}
423 
424 	mmp_fini(dp->dp_spa);
425 	txg_fini(dp);
426 	dsl_scan_fini(dp);
427 	dmu_buf_user_evict_wait();
428 
429 	rrw_destroy(&dp->dp_config_rwlock);
430 	mutex_destroy(&dp->dp_lock);
431 	cv_destroy(&dp->dp_spaceavail_cv);
432 
433 	ASSERT0(aggsum_value(&dp->dp_wrlog_total));
434 	aggsum_fini(&dp->dp_wrlog_total);
435 	for (int i = 0; i < TXG_SIZE; i++) {
436 		ASSERT0(aggsum_value(&dp->dp_wrlog_pertxg[i]));
437 		aggsum_fini(&dp->dp_wrlog_pertxg[i]);
438 	}
439 
440 	taskq_destroy(dp->dp_unlinked_drain_taskq);
441 	taskq_destroy(dp->dp_zrele_taskq);
442 	if (dp->dp_blkstats != NULL)
443 		vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
444 	kmem_free(dp, sizeof (dsl_pool_t));
445 }
446 
447 void
dsl_pool_create_obsolete_bpobj(dsl_pool_t * dp,dmu_tx_t * tx)448 dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
449 {
450 	uint64_t obj;
451 	/*
452 	 * Currently, we only create the obsolete_bpobj where there are
453 	 * indirect vdevs with referenced mappings.
454 	 */
455 	ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
456 	/* create and open the obsolete_bpobj */
457 	obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
458 	VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
459 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
460 	    DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
461 	spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
462 }
463 
464 void
dsl_pool_destroy_obsolete_bpobj(dsl_pool_t * dp,dmu_tx_t * tx)465 dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
466 {
467 	spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
468 	VERIFY0(zap_remove(dp->dp_meta_objset,
469 	    DMU_POOL_DIRECTORY_OBJECT,
470 	    DMU_POOL_OBSOLETE_BPOBJ, tx));
471 	bpobj_free(dp->dp_meta_objset,
472 	    dp->dp_obsolete_bpobj.bpo_object, tx);
473 	bpobj_close(&dp->dp_obsolete_bpobj);
474 }
475 
476 dsl_pool_t *
dsl_pool_create(spa_t * spa,nvlist_t * zplprops,dsl_crypto_params_t * dcp,uint64_t txg)477 dsl_pool_create(spa_t *spa, nvlist_t *zplprops __attribute__((unused)),
478     dsl_crypto_params_t *dcp, uint64_t txg)
479 {
480 	int err;
481 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
482 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
483 #ifdef _KERNEL
484 	objset_t *os;
485 #else
486 	objset_t *os __attribute__((unused));
487 #endif
488 	dsl_dataset_t *ds;
489 	uint64_t obj;
490 
491 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
492 
493 	/* create and open the MOS (meta-objset) */
494 	dp->dp_meta_objset = dmu_objset_create_impl(spa,
495 	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
496 	spa->spa_meta_objset = dp->dp_meta_objset;
497 
498 	/* create the pool directory */
499 	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
500 	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
501 	ASSERT0(err);
502 
503 	/* Initialize scan structures */
504 	VERIFY0(dsl_scan_init(dp, txg));
505 
506 	/* create and open the root dir */
507 	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
508 	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
509 	    NULL, dp, &dp->dp_root_dir));
510 
511 	/* create and open the meta-objset dir */
512 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
513 	VERIFY0(dsl_pool_open_special_dir(dp,
514 	    MOS_DIR_NAME, &dp->dp_mos_dir));
515 
516 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
517 		/* create and open the free dir */
518 		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
519 		    FREE_DIR_NAME, tx);
520 		VERIFY0(dsl_pool_open_special_dir(dp,
521 		    FREE_DIR_NAME, &dp->dp_free_dir));
522 
523 		/* create and open the free_bplist */
524 		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
525 		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
526 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
527 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
528 		    dp->dp_meta_objset, obj));
529 	}
530 
531 	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
532 		dsl_pool_create_origin(dp, tx);
533 
534 	/*
535 	 * Some features may be needed when creating the root dataset, so we
536 	 * create the feature objects here.
537 	 */
538 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
539 		spa_feature_create_zap_objects(spa, tx);
540 
541 	if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF &&
542 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT)
543 		spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx);
544 
545 	/* create the root dataset */
546 	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx);
547 
548 	/* create the root objset */
549 	VERIFY0(dsl_dataset_hold_obj_flags(dp, obj,
550 	    DS_HOLD_FLAG_DECRYPT, FTAG, &ds));
551 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
552 	os = dmu_objset_create_impl(dp->dp_spa, ds,
553 	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
554 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
555 #ifdef _KERNEL
556 	zfs_create_fs(os, kcred, zplprops, tx);
557 #endif
558 	dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
559 
560 	dmu_tx_commit(tx);
561 
562 	rrw_exit(&dp->dp_config_rwlock, FTAG);
563 
564 	return (dp);
565 }
566 
567 /*
568  * Account for the meta-objset space in its placeholder dsl_dir.
569  */
570 void
dsl_pool_mos_diduse_space(dsl_pool_t * dp,int64_t used,int64_t comp,int64_t uncomp)571 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
572     int64_t used, int64_t comp, int64_t uncomp)
573 {
574 	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
575 	mutex_enter(&dp->dp_lock);
576 	dp->dp_mos_used_delta += used;
577 	dp->dp_mos_compressed_delta += comp;
578 	dp->dp_mos_uncompressed_delta += uncomp;
579 	mutex_exit(&dp->dp_lock);
580 }
581 
582 static void
dsl_pool_sync_mos(dsl_pool_t * dp,dmu_tx_t * tx)583 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
584 {
585 	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
586 	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
587 	VERIFY0(zio_wait(zio));
588 	dmu_objset_sync_done(dp->dp_meta_objset, tx);
589 	taskq_wait(dp->dp_sync_taskq);
590 	multilist_destroy(&dp->dp_meta_objset->os_synced_dnodes);
591 
592 	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
593 	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
594 }
595 
596 static void
dsl_pool_dirty_delta(dsl_pool_t * dp,int64_t delta)597 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
598 {
599 	ASSERT(MUTEX_HELD(&dp->dp_lock));
600 
601 	if (delta < 0)
602 		ASSERT3U(-delta, <=, dp->dp_dirty_total);
603 
604 	dp->dp_dirty_total += delta;
605 
606 	/*
607 	 * Note: we signal even when increasing dp_dirty_total.
608 	 * This ensures forward progress -- each thread wakes the next waiter.
609 	 */
610 	if (dp->dp_dirty_total < zfs_dirty_data_max)
611 		cv_signal(&dp->dp_spaceavail_cv);
612 }
613 
614 void
dsl_pool_wrlog_count(dsl_pool_t * dp,int64_t size,uint64_t txg)615 dsl_pool_wrlog_count(dsl_pool_t *dp, int64_t size, uint64_t txg)
616 {
617 	ASSERT3S(size, >=, 0);
618 
619 	aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], size);
620 	aggsum_add(&dp->dp_wrlog_total, size);
621 
622 	/* Choose a value slightly bigger than min dirty sync bytes */
623 	uint64_t sync_min =
624 	    zfs_wrlog_data_max * (zfs_dirty_data_sync_percent + 10) / 200;
625 	if (aggsum_compare(&dp->dp_wrlog_pertxg[txg & TXG_MASK], sync_min) > 0)
626 		txg_kick(dp, txg);
627 }
628 
629 boolean_t
dsl_pool_need_wrlog_delay(dsl_pool_t * dp)630 dsl_pool_need_wrlog_delay(dsl_pool_t *dp)
631 {
632 	uint64_t delay_min_bytes =
633 	    zfs_wrlog_data_max * zfs_delay_min_dirty_percent / 100;
634 
635 	return (aggsum_compare(&dp->dp_wrlog_total, delay_min_bytes) > 0);
636 }
637 
638 static void
dsl_pool_wrlog_clear(dsl_pool_t * dp,uint64_t txg)639 dsl_pool_wrlog_clear(dsl_pool_t *dp, uint64_t txg)
640 {
641 	int64_t delta;
642 	delta = -(int64_t)aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]);
643 	aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], delta);
644 	aggsum_add(&dp->dp_wrlog_total, delta);
645 	/* Compact per-CPU sums after the big change. */
646 	(void) aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]);
647 	(void) aggsum_value(&dp->dp_wrlog_total);
648 }
649 
650 #ifdef ZFS_DEBUG
651 static boolean_t
dsl_early_sync_task_verify(dsl_pool_t * dp,uint64_t txg)652 dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg)
653 {
654 	spa_t *spa = dp->dp_spa;
655 	vdev_t *rvd = spa->spa_root_vdev;
656 
657 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
658 		vdev_t *vd = rvd->vdev_child[c];
659 		txg_list_t *tl = &vd->vdev_ms_list;
660 		metaslab_t *ms;
661 
662 		for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms;
663 		    ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) {
664 			VERIFY(zfs_range_tree_is_empty(ms->ms_freeing));
665 			VERIFY(zfs_range_tree_is_empty(ms->ms_checkpointing));
666 		}
667 	}
668 
669 	return (B_TRUE);
670 }
671 #else
672 #define	dsl_early_sync_task_verify(dp, txg) \
673 	((void) sizeof (dp), (void) sizeof (txg), B_TRUE)
674 #endif
675 
676 void
dsl_pool_sync(dsl_pool_t * dp,uint64_t txg)677 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
678 {
679 	zio_t *rio;	/* root zio for all dirty dataset syncs */
680 	dmu_tx_t *tx;
681 	dsl_dir_t *dd;
682 	dsl_dataset_t *ds;
683 	objset_t *mos = dp->dp_meta_objset;
684 	list_t synced_datasets;
685 
686 	list_create(&synced_datasets, sizeof (dsl_dataset_t),
687 	    offsetof(dsl_dataset_t, ds_synced_link));
688 
689 	tx = dmu_tx_create_assigned(dp, txg);
690 
691 	/*
692 	 * Run all early sync tasks before writing out any dirty blocks.
693 	 * For more info on early sync tasks see block comment in
694 	 * dsl_early_sync_task().
695 	 */
696 	if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) {
697 		dsl_sync_task_t *dst;
698 
699 		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
700 		while ((dst =
701 		    txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) {
702 			ASSERT(dsl_early_sync_task_verify(dp, txg));
703 			dsl_sync_task_sync(dst, tx);
704 		}
705 		ASSERT(dsl_early_sync_task_verify(dp, txg));
706 	}
707 
708 	/*
709 	 * Write out all dirty blocks of dirty datasets. Note, this could
710 	 * create a very large (+10k) zio tree.
711 	 */
712 	rio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
713 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
714 		/*
715 		 * We must not sync any non-MOS datasets twice, because
716 		 * we may have taken a snapshot of them.  However, we
717 		 * may sync newly-created datasets on pass 2.
718 		 */
719 		ASSERT(!list_link_active(&ds->ds_synced_link));
720 		list_insert_tail(&synced_datasets, ds);
721 		dsl_dataset_sync(ds, rio, tx);
722 	}
723 	VERIFY0(zio_wait(rio));
724 
725 	/*
726 	 * Update the long range free counter after
727 	 * we're done syncing user data
728 	 */
729 	mutex_enter(&dp->dp_lock);
730 	ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
731 	    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
732 	dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
733 	mutex_exit(&dp->dp_lock);
734 
735 	/*
736 	 * After the data blocks have been written (ensured by the zio_wait()
737 	 * above), update the user/group/project space accounting.  This happens
738 	 * in tasks dispatched to dp_sync_taskq, so wait for them before
739 	 * continuing.
740 	 */
741 	for (ds = list_head(&synced_datasets); ds != NULL;
742 	    ds = list_next(&synced_datasets, ds)) {
743 		dmu_objset_sync_done(ds->ds_objset, tx);
744 	}
745 	taskq_wait(dp->dp_sync_taskq);
746 
747 	/*
748 	 * Sync the datasets again to push out the changes due to
749 	 * userspace updates.  This must be done before we process the
750 	 * sync tasks, so that any snapshots will have the correct
751 	 * user accounting information (and we won't get confused
752 	 * about which blocks are part of the snapshot).
753 	 */
754 	rio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
755 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
756 		objset_t *os = ds->ds_objset;
757 
758 		ASSERT(list_link_active(&ds->ds_synced_link));
759 		dmu_buf_rele(ds->ds_dbuf, ds);
760 		dsl_dataset_sync(ds, rio, tx);
761 
762 		/*
763 		 * Release any key mappings created by calls to
764 		 * dsl_dataset_dirty() from the userquota accounting
765 		 * code paths.
766 		 */
767 		if (os->os_encrypted && !os->os_raw_receive &&
768 		    !os->os_next_write_raw[txg & TXG_MASK]) {
769 			ASSERT3P(ds->ds_key_mapping, !=, NULL);
770 			key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
771 		}
772 	}
773 	VERIFY0(zio_wait(rio));
774 
775 	/*
776 	 * Now that the datasets have been completely synced, we can
777 	 * clean up our in-memory structures accumulated while syncing:
778 	 *
779 	 *  - move dead blocks from the pending deadlist and livelists
780 	 *    to the on-disk versions
781 	 *  - release hold from dsl_dataset_dirty()
782 	 *  - release key mapping hold from dsl_dataset_dirty()
783 	 */
784 	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
785 		objset_t *os = ds->ds_objset;
786 
787 		if (os->os_encrypted && !os->os_raw_receive &&
788 		    !os->os_next_write_raw[txg & TXG_MASK]) {
789 			ASSERT3P(ds->ds_key_mapping, !=, NULL);
790 			key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
791 		}
792 
793 		dsl_dataset_sync_done(ds, tx);
794 		dmu_buf_rele(ds->ds_dbuf, ds);
795 	}
796 
797 	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
798 		dsl_dir_sync(dd, tx);
799 	}
800 
801 	/*
802 	 * The MOS's space is accounted for in the pool/$MOS
803 	 * (dp_mos_dir).  We can't modify the mos while we're syncing
804 	 * it, so we remember the deltas and apply them here.
805 	 */
806 	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
807 	    dp->dp_mos_uncompressed_delta != 0) {
808 		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
809 		    dp->dp_mos_used_delta,
810 		    dp->dp_mos_compressed_delta,
811 		    dp->dp_mos_uncompressed_delta, tx);
812 		dp->dp_mos_used_delta = 0;
813 		dp->dp_mos_compressed_delta = 0;
814 		dp->dp_mos_uncompressed_delta = 0;
815 	}
816 
817 	if (dmu_objset_is_dirty(mos, txg)) {
818 		dsl_pool_sync_mos(dp, tx);
819 	}
820 
821 	/*
822 	 * We have written all of the accounted dirty data, so our
823 	 * dp_space_towrite should now be zero. However, some seldom-used
824 	 * code paths do not adhere to this (e.g. dbuf_undirty()). Shore up
825 	 * the accounting of any dirtied space now.
826 	 *
827 	 * Note that, besides any dirty data from datasets, the amount of
828 	 * dirty data in the MOS is also accounted by the pool. Therefore,
829 	 * we want to do this cleanup after dsl_pool_sync_mos() so we don't
830 	 * attempt to update the accounting for the same dirty data twice.
831 	 * (i.e. at this point we only update the accounting for the space
832 	 * that we know that we "leaked").
833 	 */
834 	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
835 
836 	/*
837 	 * If we modify a dataset in the same txg that we want to destroy it,
838 	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
839 	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
840 	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
841 	 * and clearing the hold on it) before we process the sync_tasks.
842 	 * The MOS data dirtied by the sync_tasks will be synced on the next
843 	 * pass.
844 	 */
845 	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
846 		dsl_sync_task_t *dst;
847 		/*
848 		 * No more sync tasks should have been added while we
849 		 * were syncing.
850 		 */
851 		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
852 		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
853 			dsl_sync_task_sync(dst, tx);
854 	}
855 
856 	dmu_tx_commit(tx);
857 
858 	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
859 }
860 
861 void
dsl_pool_sync_done(dsl_pool_t * dp,uint64_t txg)862 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
863 {
864 	zilog_t *zilog;
865 
866 	while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) {
867 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
868 		/*
869 		 * We don't remove the zilog from the dp_dirty_zilogs
870 		 * list until after we've cleaned it. This ensures that
871 		 * callers of zilog_is_dirty() receive an accurate
872 		 * answer when they are racing with the spa sync thread.
873 		 */
874 		zil_clean(zilog, txg);
875 		(void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
876 		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
877 		dmu_buf_rele(ds->ds_dbuf, zilog);
878 	}
879 
880 	dsl_pool_wrlog_clear(dp, txg);
881 
882 	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
883 }
884 
885 /*
886  * TRUE if the current thread is the tx_sync_thread or if we
887  * are being called from SPA context during pool initialization.
888  */
889 int
dsl_pool_sync_context(dsl_pool_t * dp)890 dsl_pool_sync_context(dsl_pool_t *dp)
891 {
892 	return (curthread == dp->dp_tx.tx_sync_thread ||
893 	    spa_is_initializing(dp->dp_spa) ||
894 	    taskq_member(dp->dp_sync_taskq, curthread));
895 }
896 
897 /*
898  * This function returns the amount of allocatable space in the pool
899  * minus whatever space is currently reserved by ZFS for specific
900  * purposes. Specifically:
901  *
902  * 1] Any reserved SLOP space
903  * 2] Any space used by the checkpoint
904  * 3] Any space used for deferred frees
905  *
906  * The latter 2 are especially important because they are needed to
907  * rectify the SPA's and DMU's different understanding of how much space
908  * is used. Now the DMU is aware of that extra space tracked by the SPA
909  * without having to maintain a separate special dir (e.g similar to
910  * $MOS, $FREEING, and $LEAKED).
911  *
912  * Note: By deferred frees here, we mean the frees that were deferred
913  * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the
914  * segments placed in ms_defer trees during metaslab_sync_done().
915  */
916 uint64_t
dsl_pool_adjustedsize(dsl_pool_t * dp,zfs_space_check_t slop_policy)917 dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy)
918 {
919 	spa_t *spa = dp->dp_spa;
920 	uint64_t space, resv, adjustedsize;
921 	uint64_t spa_deferred_frees =
922 	    spa->spa_deferred_bpobj.bpo_phys->bpo_bytes;
923 
924 	space = spa_get_dspace(spa)
925 	    - spa_get_checkpoint_space(spa) - spa_deferred_frees;
926 	resv = spa_get_slop_space(spa);
927 
928 	switch (slop_policy) {
929 	case ZFS_SPACE_CHECK_NORMAL:
930 		break;
931 	case ZFS_SPACE_CHECK_RESERVED:
932 		resv >>= 1;
933 		break;
934 	case ZFS_SPACE_CHECK_EXTRA_RESERVED:
935 		resv >>= 2;
936 		break;
937 	case ZFS_SPACE_CHECK_NONE:
938 		resv = 0;
939 		break;
940 	default:
941 		panic("invalid slop policy value: %d", slop_policy);
942 		break;
943 	}
944 	adjustedsize = (space >= resv) ? (space - resv) : 0;
945 
946 	return (adjustedsize);
947 }
948 
949 uint64_t
dsl_pool_unreserved_space(dsl_pool_t * dp,zfs_space_check_t slop_policy)950 dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy)
951 {
952 	uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy);
953 	uint64_t deferred =
954 	    metaslab_class_get_deferred(spa_normal_class(dp->dp_spa));
955 	uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0;
956 	return (quota);
957 }
958 
959 uint64_t
dsl_pool_deferred_space(dsl_pool_t * dp)960 dsl_pool_deferred_space(dsl_pool_t *dp)
961 {
962 	return (metaslab_class_get_deferred(spa_normal_class(dp->dp_spa)));
963 }
964 
965 boolean_t
dsl_pool_need_dirty_delay(dsl_pool_t * dp)966 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
967 {
968 	uint64_t delay_min_bytes =
969 	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
970 
971 	/*
972 	 * We are not taking the dp_lock here and few other places, since torn
973 	 * reads are unlikely: on 64-bit systems due to register size and on
974 	 * 32-bit due to memory constraints.  Pool-wide locks in hot path may
975 	 * be too expensive, while we do not need a precise result here.
976 	 */
977 	return (dp->dp_dirty_total > delay_min_bytes);
978 }
979 
980 static boolean_t
dsl_pool_need_dirty_sync(dsl_pool_t * dp,uint64_t txg)981 dsl_pool_need_dirty_sync(dsl_pool_t *dp, uint64_t txg)
982 {
983 	uint64_t dirty_min_bytes =
984 	    zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100;
985 	uint64_t dirty = dp->dp_dirty_pertxg[txg & TXG_MASK];
986 
987 	return (dirty > dirty_min_bytes);
988 }
989 
990 void
dsl_pool_dirty_space(dsl_pool_t * dp,int64_t space,dmu_tx_t * tx)991 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
992 {
993 	if (space > 0) {
994 		mutex_enter(&dp->dp_lock);
995 		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
996 		dsl_pool_dirty_delta(dp, space);
997 		boolean_t needsync = !dmu_tx_is_syncing(tx) &&
998 		    dsl_pool_need_dirty_sync(dp, tx->tx_txg);
999 		mutex_exit(&dp->dp_lock);
1000 
1001 		if (needsync)
1002 			txg_kick(dp, tx->tx_txg);
1003 	}
1004 }
1005 
1006 void
dsl_pool_undirty_space(dsl_pool_t * dp,int64_t space,uint64_t txg)1007 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
1008 {
1009 	ASSERT3S(space, >=, 0);
1010 	if (space == 0)
1011 		return;
1012 
1013 	mutex_enter(&dp->dp_lock);
1014 	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
1015 		/* XXX writing something we didn't dirty? */
1016 		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
1017 	}
1018 	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
1019 	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
1020 	ASSERT3U(dp->dp_dirty_total, >=, space);
1021 	dsl_pool_dirty_delta(dp, -space);
1022 	mutex_exit(&dp->dp_lock);
1023 }
1024 
1025 static int
upgrade_clones_cb(dsl_pool_t * dp,dsl_dataset_t * hds,void * arg)1026 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
1027 {
1028 	dmu_tx_t *tx = arg;
1029 	dsl_dataset_t *ds, *prev = NULL;
1030 	int err;
1031 
1032 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
1033 	if (err)
1034 		return (err);
1035 
1036 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
1037 		err = dsl_dataset_hold_obj(dp,
1038 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
1039 		if (err) {
1040 			dsl_dataset_rele(ds, FTAG);
1041 			return (err);
1042 		}
1043 
1044 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
1045 			break;
1046 		dsl_dataset_rele(ds, FTAG);
1047 		ds = prev;
1048 		prev = NULL;
1049 	}
1050 
1051 	if (prev == NULL) {
1052 		prev = dp->dp_origin_snap;
1053 
1054 		/*
1055 		 * The $ORIGIN can't have any data, or the accounting
1056 		 * will be wrong.
1057 		 */
1058 		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1059 		ASSERT0(BP_GET_LOGICAL_BIRTH(&dsl_dataset_phys(prev)->ds_bp));
1060 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
1061 
1062 		/* The origin doesn't get attached to itself */
1063 		if (ds->ds_object == prev->ds_object) {
1064 			dsl_dataset_rele(ds, FTAG);
1065 			return (0);
1066 		}
1067 
1068 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
1069 		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
1070 		dsl_dataset_phys(ds)->ds_prev_snap_txg =
1071 		    dsl_dataset_phys(prev)->ds_creation_txg;
1072 
1073 		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1074 		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
1075 
1076 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
1077 		dsl_dataset_phys(prev)->ds_num_children++;
1078 
1079 		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
1080 			ASSERT(ds->ds_prev == NULL);
1081 			VERIFY0(dsl_dataset_hold_obj(dp,
1082 			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
1083 			    ds, &ds->ds_prev));
1084 		}
1085 	}
1086 
1087 	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
1088 	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
1089 
1090 	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
1091 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
1092 		dsl_dataset_phys(prev)->ds_next_clones_obj =
1093 		    zap_create(dp->dp_meta_objset,
1094 		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
1095 	}
1096 	VERIFY0(zap_add_int(dp->dp_meta_objset,
1097 	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
1098 
1099 	dsl_dataset_rele(ds, FTAG);
1100 	if (prev != dp->dp_origin_snap)
1101 		dsl_dataset_rele(prev, FTAG);
1102 	return (0);
1103 }
1104 
1105 void
dsl_pool_upgrade_clones(dsl_pool_t * dp,dmu_tx_t * tx)1106 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1107 {
1108 	ASSERT(dmu_tx_is_syncing(tx));
1109 	ASSERT(dp->dp_origin_snap != NULL);
1110 
1111 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
1112 	    tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1113 }
1114 
1115 static int
upgrade_dir_clones_cb(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)1116 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1117 {
1118 	dmu_tx_t *tx = arg;
1119 	objset_t *mos = dp->dp_meta_objset;
1120 
1121 	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
1122 		dsl_dataset_t *origin;
1123 
1124 		VERIFY0(dsl_dataset_hold_obj(dp,
1125 		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
1126 
1127 		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
1128 			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
1129 			dsl_dir_phys(origin->ds_dir)->dd_clones =
1130 			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
1131 			    0, tx);
1132 		}
1133 
1134 		VERIFY0(zap_add_int(dp->dp_meta_objset,
1135 		    dsl_dir_phys(origin->ds_dir)->dd_clones,
1136 		    ds->ds_object, tx));
1137 
1138 		dsl_dataset_rele(origin, FTAG);
1139 	}
1140 	return (0);
1141 }
1142 
1143 void
dsl_pool_upgrade_dir_clones(dsl_pool_t * dp,dmu_tx_t * tx)1144 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1145 {
1146 	uint64_t obj;
1147 
1148 	ASSERT(dmu_tx_is_syncing(tx));
1149 
1150 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
1151 	VERIFY0(dsl_pool_open_special_dir(dp,
1152 	    FREE_DIR_NAME, &dp->dp_free_dir));
1153 
1154 	/*
1155 	 * We can't use bpobj_alloc(), because spa_version() still
1156 	 * returns the old version, and we need a new-version bpobj with
1157 	 * subobj support.  So call dmu_object_alloc() directly.
1158 	 */
1159 	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
1160 	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
1161 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1162 	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
1163 	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
1164 
1165 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1166 	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1167 }
1168 
1169 void
dsl_pool_create_origin(dsl_pool_t * dp,dmu_tx_t * tx)1170 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
1171 {
1172 	uint64_t dsobj;
1173 	dsl_dataset_t *ds;
1174 
1175 	ASSERT(dmu_tx_is_syncing(tx));
1176 	ASSERT(dp->dp_origin_snap == NULL);
1177 	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
1178 
1179 	/* create the origin dir, ds, & snap-ds */
1180 	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
1181 	    NULL, 0, kcred, NULL, tx);
1182 	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
1183 	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
1184 	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
1185 	    dp, &dp->dp_origin_snap));
1186 	dsl_dataset_rele(ds, FTAG);
1187 }
1188 
1189 taskq_t *
dsl_pool_zrele_taskq(dsl_pool_t * dp)1190 dsl_pool_zrele_taskq(dsl_pool_t *dp)
1191 {
1192 	return (dp->dp_zrele_taskq);
1193 }
1194 
1195 taskq_t *
dsl_pool_unlinked_drain_taskq(dsl_pool_t * dp)1196 dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp)
1197 {
1198 	return (dp->dp_unlinked_drain_taskq);
1199 }
1200 
1201 /*
1202  * Walk through the pool-wide zap object of temporary snapshot user holds
1203  * and release them.
1204  */
1205 void
dsl_pool_clean_tmp_userrefs(dsl_pool_t * dp)1206 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
1207 {
1208 	zap_attribute_t *za;
1209 	zap_cursor_t zc;
1210 	objset_t *mos = dp->dp_meta_objset;
1211 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1212 	nvlist_t *holds;
1213 
1214 	if (zapobj == 0)
1215 		return;
1216 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1217 
1218 	holds = fnvlist_alloc();
1219 
1220 	za = zap_attribute_alloc();
1221 	for (zap_cursor_init(&zc, mos, zapobj);
1222 	    zap_cursor_retrieve(&zc, za) == 0;
1223 	    zap_cursor_advance(&zc)) {
1224 		char *htag;
1225 		nvlist_t *tags;
1226 
1227 		htag = strchr(za->za_name, '-');
1228 		*htag = '\0';
1229 		++htag;
1230 		if (nvlist_lookup_nvlist(holds, za->za_name, &tags) != 0) {
1231 			tags = fnvlist_alloc();
1232 			fnvlist_add_boolean(tags, htag);
1233 			fnvlist_add_nvlist(holds, za->za_name, tags);
1234 			fnvlist_free(tags);
1235 		} else {
1236 			fnvlist_add_boolean(tags, htag);
1237 		}
1238 	}
1239 	dsl_dataset_user_release_tmp(dp, holds);
1240 	fnvlist_free(holds);
1241 	zap_cursor_fini(&zc);
1242 	zap_attribute_free(za);
1243 }
1244 
1245 /*
1246  * Create the pool-wide zap object for storing temporary snapshot holds.
1247  */
1248 static void
dsl_pool_user_hold_create_obj(dsl_pool_t * dp,dmu_tx_t * tx)1249 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
1250 {
1251 	objset_t *mos = dp->dp_meta_objset;
1252 
1253 	ASSERT(dp->dp_tmp_userrefs_obj == 0);
1254 	ASSERT(dmu_tx_is_syncing(tx));
1255 
1256 	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
1257 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
1258 }
1259 
1260 static int
dsl_pool_user_hold_rele_impl(dsl_pool_t * dp,uint64_t dsobj,const char * tag,uint64_t now,dmu_tx_t * tx,boolean_t holding)1261 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
1262     const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
1263 {
1264 	objset_t *mos = dp->dp_meta_objset;
1265 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1266 	char *name;
1267 	int error;
1268 
1269 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1270 	ASSERT(dmu_tx_is_syncing(tx));
1271 
1272 	/*
1273 	 * If the pool was created prior to SPA_VERSION_USERREFS, the
1274 	 * zap object for temporary holds might not exist yet.
1275 	 */
1276 	if (zapobj == 0) {
1277 		if (holding) {
1278 			dsl_pool_user_hold_create_obj(dp, tx);
1279 			zapobj = dp->dp_tmp_userrefs_obj;
1280 		} else {
1281 			return (SET_ERROR(ENOENT));
1282 		}
1283 	}
1284 
1285 	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1286 	if (holding)
1287 		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1288 	else
1289 		error = zap_remove(mos, zapobj, name, tx);
1290 	kmem_strfree(name);
1291 
1292 	return (error);
1293 }
1294 
1295 /*
1296  * Add a temporary hold for the given dataset object and tag.
1297  */
1298 int
dsl_pool_user_hold(dsl_pool_t * dp,uint64_t dsobj,const char * tag,uint64_t now,dmu_tx_t * tx)1299 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1300     uint64_t now, dmu_tx_t *tx)
1301 {
1302 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1303 }
1304 
1305 /*
1306  * Release a temporary hold for the given dataset object and tag.
1307  */
1308 int
dsl_pool_user_release(dsl_pool_t * dp,uint64_t dsobj,const char * tag,dmu_tx_t * tx)1309 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1310     dmu_tx_t *tx)
1311 {
1312 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
1313 	    tx, B_FALSE));
1314 }
1315 
1316 /*
1317  * DSL Pool Configuration Lock
1318  *
1319  * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1320  * creation / destruction / rename / property setting).  It must be held for
1321  * read to hold a dataset or dsl_dir.  I.e. you must call
1322  * dsl_pool_config_enter() or dsl_pool_hold() before calling
1323  * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
1324  * must be held continuously until all datasets and dsl_dirs are released.
1325  *
1326  * The only exception to this rule is that if a "long hold" is placed on
1327  * a dataset, then the dp_config_rwlock may be dropped while the dataset
1328  * is still held.  The long hold will prevent the dataset from being
1329  * destroyed -- the destroy will fail with EBUSY.  A long hold can be
1330  * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1331  * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1332  *
1333  * Legitimate long-holders (including owners) should be long-running, cancelable
1334  * tasks that should cause "zfs destroy" to fail.  This includes DMU
1335  * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1336  * "zfs send", and "zfs diff".  There are several other long-holders whose
1337  * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1338  *
1339  * The usual formula for long-holding would be:
1340  * dsl_pool_hold()
1341  * dsl_dataset_hold()
1342  * ... perform checks ...
1343  * dsl_dataset_long_hold()
1344  * dsl_pool_rele()
1345  * ... perform long-running task ...
1346  * dsl_dataset_long_rele()
1347  * dsl_dataset_rele()
1348  *
1349  * Note that when the long hold is released, the dataset is still held but
1350  * the pool is not held.  The dataset may change arbitrarily during this time
1351  * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1352  * dataset except release it.
1353  *
1354  * Operations generally fall somewhere into the following taxonomy:
1355  *
1356  *                              Read-Only             Modifying
1357  *
1358  *    Dataset Layer / MOS        zfs get             zfs destroy
1359  *
1360  *     Individual Dataset         read()                write()
1361  *
1362  *
1363  * Dataset Layer Operations
1364  *
1365  * Modifying operations should generally use dsl_sync_task().  The synctask
1366  * infrastructure enforces proper locking strategy with respect to the
1367  * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1368  *
1369  * Read-only operations will manually hold the pool, then the dataset, obtain
1370  * information from the dataset, then release the pool and dataset.
1371  * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1372  * hold/rele.
1373  *
1374  *
1375  * Operations On Individual Datasets
1376  *
1377  * Objects _within_ an objset should only be modified by the current 'owner'
1378  * of the objset to prevent incorrect concurrent modification. Thus, use
1379  * {dmu_objset,dsl_dataset}_own to mark some entity as the current owner,
1380  * and fail with EBUSY if there is already an owner. The owner can then
1381  * implement its own locking strategy, independent of the dataset layer's
1382  * locking infrastructure.
1383  * (E.g., the ZPL has its own set of locks to control concurrency. A regular
1384  *  vnop will not reach into the dataset layer).
1385  *
1386  * Ideally, objects would also only be read by the objset’s owner, so that we
1387  * don’t observe state mid-modification.
1388  * (E.g. the ZPL is creating a new object and linking it into a directory; if
1389  * you don’t coordinate with the ZPL to hold ZPL-level locks, you could see an
1390  * intermediate state.  The ioctl level violates this but in pretty benign
1391  * ways, e.g. reading the zpl props object.)
1392  */
1393 
1394 int
dsl_pool_hold(const char * name,const void * tag,dsl_pool_t ** dp)1395 dsl_pool_hold(const char *name, const void *tag, dsl_pool_t **dp)
1396 {
1397 	spa_t *spa;
1398 	int error;
1399 
1400 	error = spa_open(name, &spa, tag);
1401 	if (error == 0) {
1402 		*dp = spa_get_dsl(spa);
1403 		dsl_pool_config_enter(*dp, tag);
1404 	}
1405 	return (error);
1406 }
1407 
1408 void
dsl_pool_rele(dsl_pool_t * dp,const void * tag)1409 dsl_pool_rele(dsl_pool_t *dp, const void *tag)
1410 {
1411 	dsl_pool_config_exit(dp, tag);
1412 	spa_close(dp->dp_spa, tag);
1413 }
1414 
1415 void
dsl_pool_config_enter(dsl_pool_t * dp,const void * tag)1416 dsl_pool_config_enter(dsl_pool_t *dp, const void *tag)
1417 {
1418 	/*
1419 	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1420 	 *
1421 	 * The rrwlock can (with the track_all flag) track all reading threads,
1422 	 * which is very useful for debugging which code path failed to release
1423 	 * the lock, and for verifying that the *current* thread does hold
1424 	 * the lock.
1425 	 *
1426 	 * (Unlike a rwlock, which knows that N threads hold it for
1427 	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1428 	 * if any thread holds it for read, even if this thread doesn't).
1429 	 */
1430 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1431 	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1432 }
1433 
1434 void
dsl_pool_config_enter_prio(dsl_pool_t * dp,const void * tag)1435 dsl_pool_config_enter_prio(dsl_pool_t *dp, const void *tag)
1436 {
1437 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1438 	rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1439 }
1440 
1441 void
dsl_pool_config_exit(dsl_pool_t * dp,const void * tag)1442 dsl_pool_config_exit(dsl_pool_t *dp, const void *tag)
1443 {
1444 	rrw_exit(&dp->dp_config_rwlock, tag);
1445 }
1446 
1447 boolean_t
dsl_pool_config_held(dsl_pool_t * dp)1448 dsl_pool_config_held(dsl_pool_t *dp)
1449 {
1450 	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1451 }
1452 
1453 boolean_t
dsl_pool_config_held_writer(dsl_pool_t * dp)1454 dsl_pool_config_held_writer(dsl_pool_t *dp)
1455 {
1456 	return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1457 }
1458 
1459 EXPORT_SYMBOL(dsl_pool_config_enter);
1460 EXPORT_SYMBOL(dsl_pool_config_exit);
1461 
1462 /* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
1463 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_percent, UINT, ZMOD_RD,
1464 	"Max percent of RAM allowed to be dirty");
1465 
1466 /* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
1467 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max_percent, UINT, ZMOD_RD,
1468 	"zfs_dirty_data_max upper bound as % of RAM");
1469 
1470 ZFS_MODULE_PARAM(zfs, zfs_, delay_min_dirty_percent, UINT, ZMOD_RW,
1471 	"Transaction delay threshold");
1472 
1473 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max, U64, ZMOD_RW,
1474 	"Determines the dirty space limit");
1475 
1476 ZFS_MODULE_PARAM(zfs, zfs_, wrlog_data_max, U64, ZMOD_RW,
1477 	"The size limit of write-transaction zil log data");
1478 
1479 /* zfs_dirty_data_max_max only applied at module load in arc_init(). */
1480 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max, U64, ZMOD_RD,
1481 	"zfs_dirty_data_max upper bound in bytes");
1482 
1483 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_sync_percent, UINT, ZMOD_RW,
1484 	"Dirty data txg sync threshold as a percentage of zfs_dirty_data_max");
1485 
1486 ZFS_MODULE_PARAM(zfs, zfs_, delay_scale, U64, ZMOD_RW,
1487 	"How quickly delay approaches infinity");
1488 
1489 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_nthr_pct, INT, ZMOD_RW,
1490 	"Max percent of CPUs that are used per dp_sync_taskq");
1491 
1492 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_minalloc, INT, ZMOD_RW,
1493 	"Number of taskq entries that are pre-populated");
1494 
1495 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_maxalloc, INT, ZMOD_RW,
1496 	"Max number of taskq entries that are cached");
1497