1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2013 Martin Matuska. All rights reserved.
26 * Copyright (c) 2014 Joyent, Inc. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
29 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
30 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
31 */
32
33 #include <sys/dmu.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dsl_prop.h>
39 #include <sys/dsl_synctask.h>
40 #include <sys/dsl_deleg.h>
41 #include <sys/dmu_impl.h>
42 #include <sys/spa.h>
43 #include <sys/spa_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/zap.h>
46 #include <sys/zio.h>
47 #include <sys/arc.h>
48 #include <sys/sunddi.h>
49 #include <sys/zfeature.h>
50 #include <sys/policy.h>
51 #include <sys/zfs_vfsops.h>
52 #include <sys/zfs_znode.h>
53 #include <sys/zvol.h>
54 #include <sys/zthr.h>
55 #include "zfs_namecheck.h"
56 #include "zfs_prop.h"
57
58 /*
59 * This controls if we verify the ZVOL quota or not.
60 * Currently, quotas are not implemented for ZVOLs.
61 * The quota size is the size of the ZVOL.
62 * The size of the volume already implies the ZVOL size quota.
63 * The quota mechanism can introduce a significant performance drop.
64 */
65 static int zvol_enforce_quotas = B_TRUE;
66
67 /*
68 * Filesystem and Snapshot Limits
69 * ------------------------------
70 *
71 * These limits are used to restrict the number of filesystems and/or snapshots
72 * that can be created at a given level in the tree or below. A typical
73 * use-case is with a delegated dataset where the administrator wants to ensure
74 * that a user within the zone is not creating too many additional filesystems
75 * or snapshots, even though they're not exceeding their space quota.
76 *
77 * The filesystem and snapshot counts are stored as extensible properties. This
78 * capability is controlled by a feature flag and must be enabled to be used.
79 * Once enabled, the feature is not active until the first limit is set. At
80 * that point, future operations to create/destroy filesystems or snapshots
81 * will validate and update the counts.
82 *
83 * Because the count properties will not exist before the feature is active,
84 * the counts are updated when a limit is first set on an uninitialized
85 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
86 * all of the nested filesystems/snapshots. Thus, a new leaf node has a
87 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
88 * snapshot count properties on a node indicate uninitialized counts on that
89 * node.) When first setting a limit on an uninitialized node, the code starts
90 * at the filesystem with the new limit and descends into all sub-filesystems
91 * to add the count properties.
92 *
93 * In practice this is lightweight since a limit is typically set when the
94 * filesystem is created and thus has no children. Once valid, changing the
95 * limit value won't require a re-traversal since the counts are already valid.
96 * When recursively fixing the counts, if a node with a limit is encountered
97 * during the descent, the counts are known to be valid and there is no need to
98 * descend into that filesystem's children. The counts on filesystems above the
99 * one with the new limit will still be uninitialized, unless a limit is
100 * eventually set on one of those filesystems. The counts are always recursively
101 * updated when a limit is set on a dataset, unless there is already a limit.
102 * When a new limit value is set on a filesystem with an existing limit, it is
103 * possible for the new limit to be less than the current count at that level
104 * since a user who can change the limit is also allowed to exceed the limit.
105 *
106 * Once the feature is active, then whenever a filesystem or snapshot is
107 * created, the code recurses up the tree, validating the new count against the
108 * limit at each initialized level. In practice, most levels will not have a
109 * limit set. If there is a limit at any initialized level up the tree, the
110 * check must pass or the creation will fail. Likewise, when a filesystem or
111 * snapshot is destroyed, the counts are recursively adjusted all the way up
112 * the initialized nodes in the tree. Renaming a filesystem into different point
113 * in the tree will first validate, then update the counts on each branch up to
114 * the common ancestor. A receive will also validate the counts and then update
115 * them.
116 *
117 * An exception to the above behavior is that the limit is not enforced if the
118 * user has permission to modify the limit. This is primarily so that
119 * recursive snapshots in the global zone always work. We want to prevent a
120 * denial-of-service in which a lower level delegated dataset could max out its
121 * limit and thus block recursive snapshots from being taken in the global zone.
122 * Because of this, it is possible for the snapshot count to be over the limit
123 * and snapshots taken in the global zone could cause a lower level dataset to
124 * hit or exceed its limit. The administrator taking the global zone recursive
125 * snapshot should be aware of this side-effect and behave accordingly.
126 * For consistency, the filesystem limit is also not enforced if the user can
127 * modify the limit.
128 *
129 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
130 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
131 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
132 * dsl_dir_init_fs_ss_count().
133 */
134
135 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
136
137 typedef struct ddulrt_arg {
138 dsl_dir_t *ddulrta_dd;
139 uint64_t ddlrta_txg;
140 } ddulrt_arg_t;
141
142 static void
dsl_dir_evict_async(void * dbu)143 dsl_dir_evict_async(void *dbu)
144 {
145 dsl_dir_t *dd = dbu;
146 int t;
147 dsl_pool_t *dp __maybe_unused = dd->dd_pool;
148
149 dd->dd_dbuf = NULL;
150
151 for (t = 0; t < TXG_SIZE; t++) {
152 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
153 ASSERT(dd->dd_tempreserved[t] == 0);
154 ASSERT(dd->dd_space_towrite[t] == 0);
155 }
156
157 if (dd->dd_parent)
158 dsl_dir_async_rele(dd->dd_parent, dd);
159
160 spa_async_close(dd->dd_pool->dp_spa, dd);
161
162 if (dsl_deadlist_is_open(&dd->dd_livelist))
163 dsl_dir_livelist_close(dd);
164
165 dsl_prop_fini(dd);
166 cv_destroy(&dd->dd_activity_cv);
167 mutex_destroy(&dd->dd_activity_lock);
168 mutex_destroy(&dd->dd_lock);
169 kmem_free(dd, sizeof (dsl_dir_t));
170 }
171
172 int
dsl_dir_hold_obj(dsl_pool_t * dp,uint64_t ddobj,const char * tail,const void * tag,dsl_dir_t ** ddp)173 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
174 const char *tail, const void *tag, dsl_dir_t **ddp)
175 {
176 dmu_buf_t *dbuf;
177 dsl_dir_t *dd;
178 dmu_object_info_t doi;
179 int err;
180
181 ASSERT(dsl_pool_config_held(dp));
182
183 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
184 if (err != 0)
185 return (err);
186 dd = dmu_buf_get_user(dbuf);
187
188 dmu_object_info_from_db(dbuf, &doi);
189 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
190 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
191
192 if (dd == NULL) {
193 dsl_dir_t *winner;
194
195 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
196 dd->dd_object = ddobj;
197 dd->dd_dbuf = dbuf;
198 dd->dd_pool = dp;
199
200 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
201 mutex_init(&dd->dd_activity_lock, NULL, MUTEX_DEFAULT, NULL);
202 cv_init(&dd->dd_activity_cv, NULL, CV_DEFAULT, NULL);
203 dsl_prop_init(dd);
204
205 if (dsl_dir_is_zapified(dd)) {
206 err = zap_lookup(dp->dp_meta_objset,
207 ddobj, DD_FIELD_CRYPTO_KEY_OBJ,
208 sizeof (uint64_t), 1, &dd->dd_crypto_obj);
209 if (err == 0) {
210 /* check for on-disk format errata */
211 if (dsl_dir_incompatible_encryption_version(
212 dd)) {
213 dp->dp_spa->spa_errata =
214 ZPOOL_ERRATA_ZOL_6845_ENCRYPTION;
215 }
216 } else if (err != ENOENT) {
217 goto errout;
218 }
219 }
220
221 if (dsl_dir_phys(dd)->dd_parent_obj) {
222 err = dsl_dir_hold_obj(dp,
223 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
224 &dd->dd_parent);
225 if (err != 0)
226 goto errout;
227 if (tail) {
228 #ifdef ZFS_DEBUG
229 uint64_t foundobj;
230
231 err = zap_lookup(dp->dp_meta_objset,
232 dsl_dir_phys(dd->dd_parent)->
233 dd_child_dir_zapobj, tail,
234 sizeof (foundobj), 1, &foundobj);
235 ASSERT(err || foundobj == ddobj);
236 #endif
237 (void) strlcpy(dd->dd_myname, tail,
238 sizeof (dd->dd_myname));
239 } else {
240 err = zap_value_search(dp->dp_meta_objset,
241 dsl_dir_phys(dd->dd_parent)->
242 dd_child_dir_zapobj,
243 ddobj, 0, dd->dd_myname,
244 sizeof (dd->dd_myname));
245 }
246 if (err != 0)
247 goto errout;
248 } else {
249 (void) strlcpy(dd->dd_myname, spa_name(dp->dp_spa),
250 sizeof (dd->dd_myname));
251 }
252
253 if (dsl_dir_is_clone(dd)) {
254 dmu_buf_t *origin_bonus;
255 dsl_dataset_phys_t *origin_phys;
256
257 /*
258 * We can't open the origin dataset, because
259 * that would require opening this dsl_dir.
260 * Just look at its phys directly instead.
261 */
262 err = dmu_bonus_hold(dp->dp_meta_objset,
263 dsl_dir_phys(dd)->dd_origin_obj, FTAG,
264 &origin_bonus);
265 if (err != 0)
266 goto errout;
267 origin_phys = origin_bonus->db_data;
268 dd->dd_origin_txg =
269 origin_phys->ds_creation_txg;
270 dmu_buf_rele(origin_bonus, FTAG);
271 if (dsl_dir_is_zapified(dd)) {
272 uint64_t obj;
273 err = zap_lookup(dp->dp_meta_objset,
274 dd->dd_object, DD_FIELD_LIVELIST,
275 sizeof (uint64_t), 1, &obj);
276 if (err == 0) {
277 err = dsl_dir_livelist_open(dd, obj);
278 if (err != 0)
279 goto errout;
280 } else if (err != ENOENT)
281 goto errout;
282 }
283 }
284
285 if (dsl_dir_is_zapified(dd)) {
286 inode_timespec_t t = {0};
287 (void) zap_lookup(dp->dp_meta_objset, ddobj,
288 DD_FIELD_SNAPSHOTS_CHANGED,
289 sizeof (uint64_t),
290 sizeof (inode_timespec_t) / sizeof (uint64_t),
291 &t);
292 dd->dd_snap_cmtime = t;
293 }
294
295 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async,
296 &dd->dd_dbuf);
297 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
298 if (winner != NULL) {
299 if (dd->dd_parent)
300 dsl_dir_rele(dd->dd_parent, dd);
301 if (dsl_deadlist_is_open(&dd->dd_livelist))
302 dsl_dir_livelist_close(dd);
303 dsl_prop_fini(dd);
304 cv_destroy(&dd->dd_activity_cv);
305 mutex_destroy(&dd->dd_activity_lock);
306 mutex_destroy(&dd->dd_lock);
307 kmem_free(dd, sizeof (dsl_dir_t));
308 dd = winner;
309 } else {
310 spa_open_ref(dp->dp_spa, dd);
311 }
312 }
313
314 /*
315 * The dsl_dir_t has both open-to-close and instantiate-to-evict
316 * holds on the spa. We need the open-to-close holds because
317 * otherwise the spa_refcnt wouldn't change when we open a
318 * dir which the spa also has open, so we could incorrectly
319 * think it was OK to unload/export/destroy the pool. We need
320 * the instantiate-to-evict hold because the dsl_dir_t has a
321 * pointer to the dd_pool, which has a pointer to the spa_t.
322 */
323 spa_open_ref(dp->dp_spa, tag);
324 ASSERT3P(dd->dd_pool, ==, dp);
325 ASSERT3U(dd->dd_object, ==, ddobj);
326 ASSERT3P(dd->dd_dbuf, ==, dbuf);
327 *ddp = dd;
328 return (0);
329
330 errout:
331 if (dd->dd_parent)
332 dsl_dir_rele(dd->dd_parent, dd);
333 if (dsl_deadlist_is_open(&dd->dd_livelist))
334 dsl_dir_livelist_close(dd);
335 dsl_prop_fini(dd);
336 cv_destroy(&dd->dd_activity_cv);
337 mutex_destroy(&dd->dd_activity_lock);
338 mutex_destroy(&dd->dd_lock);
339 kmem_free(dd, sizeof (dsl_dir_t));
340 dmu_buf_rele(dbuf, tag);
341 return (err);
342 }
343
344 void
dsl_dir_rele(dsl_dir_t * dd,const void * tag)345 dsl_dir_rele(dsl_dir_t *dd, const void *tag)
346 {
347 dprintf_dd(dd, "%s\n", "");
348 spa_close(dd->dd_pool->dp_spa, tag);
349 dmu_buf_rele(dd->dd_dbuf, tag);
350 }
351
352 /*
353 * Remove a reference to the given dsl dir that is being asynchronously
354 * released. Async releases occur from a taskq performing eviction of
355 * dsl datasets and dirs. This process is identical to a normal release
356 * with the exception of using the async API for releasing the reference on
357 * the spa.
358 */
359 void
dsl_dir_async_rele(dsl_dir_t * dd,const void * tag)360 dsl_dir_async_rele(dsl_dir_t *dd, const void *tag)
361 {
362 dprintf_dd(dd, "%s\n", "");
363 spa_async_close(dd->dd_pool->dp_spa, tag);
364 dmu_buf_rele(dd->dd_dbuf, tag);
365 }
366
367 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
368 void
dsl_dir_name(dsl_dir_t * dd,char * buf)369 dsl_dir_name(dsl_dir_t *dd, char *buf)
370 {
371 if (dd->dd_parent) {
372 dsl_dir_name(dd->dd_parent, buf);
373 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
374 ZFS_MAX_DATASET_NAME_LEN);
375 } else {
376 buf[0] = '\0';
377 }
378 if (!MUTEX_HELD(&dd->dd_lock)) {
379 /*
380 * recursive mutex so that we can use
381 * dprintf_dd() with dd_lock held
382 */
383 mutex_enter(&dd->dd_lock);
384 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
385 <, ZFS_MAX_DATASET_NAME_LEN);
386 mutex_exit(&dd->dd_lock);
387 } else {
388 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
389 <, ZFS_MAX_DATASET_NAME_LEN);
390 }
391 }
392
393 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
394 int
dsl_dir_namelen(dsl_dir_t * dd)395 dsl_dir_namelen(dsl_dir_t *dd)
396 {
397 int result = 0;
398
399 if (dd->dd_parent) {
400 /* parent's name + 1 for the "/" */
401 result = dsl_dir_namelen(dd->dd_parent) + 1;
402 }
403
404 if (!MUTEX_HELD(&dd->dd_lock)) {
405 /* see dsl_dir_name */
406 mutex_enter(&dd->dd_lock);
407 result += strlen(dd->dd_myname);
408 mutex_exit(&dd->dd_lock);
409 } else {
410 result += strlen(dd->dd_myname);
411 }
412
413 return (result);
414 }
415
416 static int
getcomponent(const char * path,char * component,const char ** nextp)417 getcomponent(const char *path, char *component, const char **nextp)
418 {
419 char *p;
420
421 if ((path == NULL) || (path[0] == '\0'))
422 return (SET_ERROR(ENOENT));
423 /* This would be a good place to reserve some namespace... */
424 p = strpbrk(path, "/@");
425 if (p && (p[1] == '/' || p[1] == '@')) {
426 /* two separators in a row */
427 return (SET_ERROR(EINVAL));
428 }
429 if (p == NULL || p == path) {
430 /*
431 * if the first thing is an @ or /, it had better be an
432 * @ and it had better not have any more ats or slashes,
433 * and it had better have something after the @.
434 */
435 if (p != NULL &&
436 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
437 return (SET_ERROR(EINVAL));
438 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
439 return (SET_ERROR(ENAMETOOLONG));
440 (void) strlcpy(component, path, ZFS_MAX_DATASET_NAME_LEN);
441 p = NULL;
442 } else if (p[0] == '/') {
443 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
444 return (SET_ERROR(ENAMETOOLONG));
445 (void) strlcpy(component, path, p - path + 1);
446 p++;
447 } else if (p[0] == '@') {
448 /*
449 * if the next separator is an @, there better not be
450 * any more slashes.
451 */
452 if (strchr(path, '/'))
453 return (SET_ERROR(EINVAL));
454 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
455 return (SET_ERROR(ENAMETOOLONG));
456 (void) strlcpy(component, path, p - path + 1);
457 } else {
458 panic("invalid p=%p", (void *)p);
459 }
460 *nextp = p;
461 return (0);
462 }
463
464 /*
465 * Return the dsl_dir_t, and possibly the last component which couldn't
466 * be found in *tail. The name must be in the specified dsl_pool_t. This
467 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the
468 * path is bogus, or if tail==NULL and we couldn't parse the whole name.
469 * (*tail)[0] == '@' means that the last component is a snapshot.
470 */
471 int
dsl_dir_hold(dsl_pool_t * dp,const char * name,const void * tag,dsl_dir_t ** ddp,const char ** tailp)472 dsl_dir_hold(dsl_pool_t *dp, const char *name, const void *tag,
473 dsl_dir_t **ddp, const char **tailp)
474 {
475 char *buf;
476 const char *spaname, *next, *nextnext = NULL;
477 int err;
478 dsl_dir_t *dd;
479 uint64_t ddobj;
480
481 buf = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
482 err = getcomponent(name, buf, &next);
483 if (err != 0)
484 goto error;
485
486 /* Make sure the name is in the specified pool. */
487 spaname = spa_name(dp->dp_spa);
488 if (strcmp(buf, spaname) != 0) {
489 err = SET_ERROR(EXDEV);
490 goto error;
491 }
492
493 ASSERT(dsl_pool_config_held(dp));
494
495 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
496 if (err != 0) {
497 goto error;
498 }
499
500 while (next != NULL) {
501 dsl_dir_t *child_dd;
502 err = getcomponent(next, buf, &nextnext);
503 if (err != 0)
504 break;
505 ASSERT(next[0] != '\0');
506 if (next[0] == '@')
507 break;
508 dprintf("looking up %s in obj%lld\n",
509 buf, (longlong_t)dsl_dir_phys(dd)->dd_child_dir_zapobj);
510
511 err = zap_lookup(dp->dp_meta_objset,
512 dsl_dir_phys(dd)->dd_child_dir_zapobj,
513 buf, sizeof (ddobj), 1, &ddobj);
514 if (err != 0) {
515 if (err == ENOENT)
516 err = 0;
517 break;
518 }
519
520 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
521 if (err != 0)
522 break;
523 dsl_dir_rele(dd, tag);
524 dd = child_dd;
525 next = nextnext;
526 }
527
528 if (err != 0) {
529 dsl_dir_rele(dd, tag);
530 goto error;
531 }
532
533 /*
534 * It's an error if there's more than one component left, or
535 * tailp==NULL and there's any component left.
536 */
537 if (next != NULL &&
538 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
539 /* bad path name */
540 dsl_dir_rele(dd, tag);
541 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
542 err = SET_ERROR(ENOENT);
543 }
544 if (tailp != NULL)
545 *tailp = next;
546 if (err == 0)
547 *ddp = dd;
548 error:
549 kmem_free(buf, ZFS_MAX_DATASET_NAME_LEN);
550 return (err);
551 }
552
553 /*
554 * If the counts are already initialized for this filesystem and its
555 * descendants then do nothing, otherwise initialize the counts.
556 *
557 * The counts on this filesystem, and those below, may be uninitialized due to
558 * either the use of a pre-existing pool which did not support the
559 * filesystem/snapshot limit feature, or one in which the feature had not yet
560 * been enabled.
561 *
562 * Recursively descend the filesystem tree and update the filesystem/snapshot
563 * counts on each filesystem below, then update the cumulative count on the
564 * current filesystem. If the filesystem already has a count set on it,
565 * then we know that its counts, and the counts on the filesystems below it,
566 * are already correct, so we don't have to update this filesystem.
567 */
568 static void
dsl_dir_init_fs_ss_count(dsl_dir_t * dd,dmu_tx_t * tx)569 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
570 {
571 uint64_t my_fs_cnt = 0;
572 uint64_t my_ss_cnt = 0;
573 dsl_pool_t *dp = dd->dd_pool;
574 objset_t *os = dp->dp_meta_objset;
575 zap_cursor_t *zc;
576 zap_attribute_t *za;
577 dsl_dataset_t *ds;
578
579 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
580 ASSERT(dsl_pool_config_held(dp));
581 ASSERT(dmu_tx_is_syncing(tx));
582
583 dsl_dir_zapify(dd, tx);
584
585 /*
586 * If the filesystem count has already been initialized then we
587 * don't need to recurse down any further.
588 */
589 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
590 return;
591
592 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
593 za = zap_attribute_alloc();
594
595 /* Iterate my child dirs */
596 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
597 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
598 dsl_dir_t *chld_dd;
599 uint64_t count;
600
601 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
602 &chld_dd));
603
604 /*
605 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets.
606 */
607 if (chld_dd->dd_myname[0] == '$') {
608 dsl_dir_rele(chld_dd, FTAG);
609 continue;
610 }
611
612 my_fs_cnt++; /* count this child */
613
614 dsl_dir_init_fs_ss_count(chld_dd, tx);
615
616 VERIFY0(zap_lookup(os, chld_dd->dd_object,
617 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
618 my_fs_cnt += count;
619 VERIFY0(zap_lookup(os, chld_dd->dd_object,
620 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
621 my_ss_cnt += count;
622
623 dsl_dir_rele(chld_dd, FTAG);
624 }
625 zap_cursor_fini(zc);
626 /* Count my snapshots (we counted children's snapshots above) */
627 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
628 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
629
630 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
631 zap_cursor_retrieve(zc, za) == 0;
632 zap_cursor_advance(zc)) {
633 /* Don't count temporary snapshots */
634 if (za->za_name[0] != '%')
635 my_ss_cnt++;
636 }
637 zap_cursor_fini(zc);
638
639 dsl_dataset_rele(ds, FTAG);
640
641 kmem_free(zc, sizeof (zap_cursor_t));
642 zap_attribute_free(za);
643
644 /* we're in a sync task, update counts */
645 dmu_buf_will_dirty(dd->dd_dbuf, tx);
646 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
647 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
648 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
649 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
650 }
651
652 static int
dsl_dir_actv_fs_ss_limit_check(void * arg,dmu_tx_t * tx)653 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
654 {
655 char *ddname = (char *)arg;
656 dsl_pool_t *dp = dmu_tx_pool(tx);
657 dsl_dataset_t *ds;
658 dsl_dir_t *dd;
659 int error;
660
661 error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
662 if (error != 0)
663 return (error);
664
665 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
666 dsl_dataset_rele(ds, FTAG);
667 return (SET_ERROR(ENOTSUP));
668 }
669
670 dd = ds->ds_dir;
671 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
672 dsl_dir_is_zapified(dd) &&
673 zap_contains(dp->dp_meta_objset, dd->dd_object,
674 DD_FIELD_FILESYSTEM_COUNT) == 0) {
675 dsl_dataset_rele(ds, FTAG);
676 return (SET_ERROR(EALREADY));
677 }
678
679 dsl_dataset_rele(ds, FTAG);
680 return (0);
681 }
682
683 static void
dsl_dir_actv_fs_ss_limit_sync(void * arg,dmu_tx_t * tx)684 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
685 {
686 char *ddname = (char *)arg;
687 dsl_pool_t *dp = dmu_tx_pool(tx);
688 dsl_dataset_t *ds;
689 spa_t *spa;
690
691 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
692
693 spa = dsl_dataset_get_spa(ds);
694
695 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
696 /*
697 * Since the feature was not active and we're now setting a
698 * limit, increment the feature-active counter so that the
699 * feature becomes active for the first time.
700 *
701 * We are already in a sync task so we can update the MOS.
702 */
703 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
704 }
705
706 /*
707 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
708 * we need to ensure the counts are correct. Descend down the tree from
709 * this point and update all of the counts to be accurate.
710 */
711 dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
712
713 dsl_dataset_rele(ds, FTAG);
714 }
715
716 /*
717 * Make sure the feature is enabled and activate it if necessary.
718 * Since we're setting a limit, ensure the on-disk counts are valid.
719 * This is only called by the ioctl path when setting a limit value.
720 *
721 * We do not need to validate the new limit, since users who can change the
722 * limit are also allowed to exceed the limit.
723 */
724 int
dsl_dir_activate_fs_ss_limit(const char * ddname)725 dsl_dir_activate_fs_ss_limit(const char *ddname)
726 {
727 int error;
728
729 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
730 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
731 ZFS_SPACE_CHECK_RESERVED);
732
733 if (error == EALREADY)
734 error = 0;
735
736 return (error);
737 }
738
739 /*
740 * Used to determine if the filesystem_limit or snapshot_limit should be
741 * enforced. We allow the limit to be exceeded if the user has permission to
742 * write the property value. We pass in the creds that we got in the open
743 * context since we will always be the GZ root in syncing context. We also have
744 * to handle the case where we are allowed to change the limit on the current
745 * dataset, but there may be another limit in the tree above.
746 *
747 * We can never modify these two properties within a non-global zone. In
748 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
749 * can't use that function since we are already holding the dp_config_rwlock.
750 * In addition, we already have the dd and dealing with snapshots is simplified
751 * in this code.
752 */
753
754 typedef enum {
755 ENFORCE_ALWAYS,
756 ENFORCE_NEVER,
757 ENFORCE_ABOVE
758 } enforce_res_t;
759
760 static enforce_res_t
dsl_enforce_ds_ss_limits(dsl_dir_t * dd,zfs_prop_t prop,cred_t * cr,proc_t * proc)761 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop,
762 cred_t *cr, proc_t *proc)
763 {
764 enforce_res_t enforce = ENFORCE_ALWAYS;
765 uint64_t obj;
766 dsl_dataset_t *ds;
767 uint64_t zoned;
768 const char *zonedstr;
769
770 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
771 prop == ZFS_PROP_SNAPSHOT_LIMIT);
772
773 #ifdef _KERNEL
774 if (crgetzoneid(cr) != GLOBAL_ZONEID)
775 return (ENFORCE_ALWAYS);
776
777 /*
778 * We are checking the saved credentials of the user process, which is
779 * not the current process. Note that we can't use secpolicy_zfs(),
780 * because it only works if the cred is that of the current process (on
781 * Linux).
782 */
783 if (secpolicy_zfs_proc(cr, proc) == 0)
784 return (ENFORCE_NEVER);
785 #else
786 (void) proc;
787 #endif
788
789 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
790 return (ENFORCE_ALWAYS);
791
792 ASSERT(dsl_pool_config_held(dd->dd_pool));
793
794 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
795 return (ENFORCE_ALWAYS);
796
797 zonedstr = zfs_prop_to_name(ZFS_PROP_ZONED);
798 if (dsl_prop_get_ds(ds, zonedstr, 8, 1, &zoned, NULL) || zoned) {
799 /* Only root can access zoned fs's from the GZ */
800 enforce = ENFORCE_ALWAYS;
801 } else {
802 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
803 enforce = ENFORCE_ABOVE;
804 }
805
806 dsl_dataset_rele(ds, FTAG);
807 return (enforce);
808 }
809
810 /*
811 * Check if adding additional child filesystem(s) would exceed any filesystem
812 * limits or adding additional snapshot(s) would exceed any snapshot limits.
813 * The prop argument indicates which limit to check.
814 *
815 * Note that all filesystem limits up to the root (or the highest
816 * initialized) filesystem or the given ancestor must be satisfied.
817 */
818 int
dsl_fs_ss_limit_check(dsl_dir_t * dd,uint64_t delta,zfs_prop_t prop,dsl_dir_t * ancestor,cred_t * cr,proc_t * proc)819 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
820 dsl_dir_t *ancestor, cred_t *cr, proc_t *proc)
821 {
822 objset_t *os = dd->dd_pool->dp_meta_objset;
823 uint64_t limit, count;
824 const char *count_prop;
825 enforce_res_t enforce;
826 int err = 0;
827
828 ASSERT(dsl_pool_config_held(dd->dd_pool));
829 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
830 prop == ZFS_PROP_SNAPSHOT_LIMIT);
831
832 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
833 /*
834 * We don't enforce the limit for temporary snapshots. This is
835 * indicated by a NULL cred_t argument.
836 */
837 if (cr == NULL)
838 return (0);
839
840 count_prop = DD_FIELD_SNAPSHOT_COUNT;
841 } else {
842 count_prop = DD_FIELD_FILESYSTEM_COUNT;
843 }
844 /*
845 * If we're allowed to change the limit, don't enforce the limit
846 * e.g. this can happen if a snapshot is taken by an administrative
847 * user in the global zone (i.e. a recursive snapshot by root).
848 * However, we must handle the case of delegated permissions where we
849 * are allowed to change the limit on the current dataset, but there
850 * is another limit in the tree above.
851 */
852 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr, proc);
853 if (enforce == ENFORCE_NEVER)
854 return (0);
855
856 /*
857 * e.g. if renaming a dataset with no snapshots, count adjustment
858 * is 0.
859 */
860 if (delta == 0)
861 return (0);
862
863 /*
864 * If an ancestor has been provided, stop checking the limit once we
865 * hit that dir. We need this during rename so that we don't overcount
866 * the check once we recurse up to the common ancestor.
867 */
868 if (ancestor == dd)
869 return (0);
870
871 /*
872 * If we hit an uninitialized node while recursing up the tree, we can
873 * stop since we know there is no limit here (or above). The counts are
874 * not valid on this node and we know we won't touch this node's counts.
875 */
876 if (!dsl_dir_is_zapified(dd))
877 return (0);
878 err = zap_lookup(os, dd->dd_object,
879 count_prop, sizeof (count), 1, &count);
880 if (err == ENOENT)
881 return (0);
882 if (err != 0)
883 return (err);
884
885 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
886 B_FALSE);
887 if (err != 0)
888 return (err);
889
890 /* Is there a limit which we've hit? */
891 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
892 return (SET_ERROR(EDQUOT));
893
894 if (dd->dd_parent != NULL)
895 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
896 ancestor, cr, proc);
897
898 return (err);
899 }
900
901 /*
902 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
903 * parents. When a new filesystem/snapshot is created, increment the count on
904 * all parents, and when a filesystem/snapshot is destroyed, decrement the
905 * count.
906 */
907 void
dsl_fs_ss_count_adjust(dsl_dir_t * dd,int64_t delta,const char * prop,dmu_tx_t * tx)908 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
909 dmu_tx_t *tx)
910 {
911 int err;
912 objset_t *os = dd->dd_pool->dp_meta_objset;
913 uint64_t count;
914
915 ASSERT(dsl_pool_config_held(dd->dd_pool));
916 ASSERT(dmu_tx_is_syncing(tx));
917 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
918 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
919
920 /*
921 * We don't do accounting for hidden ($FREE, $MOS & $ORIGIN) objsets.
922 */
923 if (dd->dd_myname[0] == '$' && strcmp(prop,
924 DD_FIELD_FILESYSTEM_COUNT) == 0) {
925 return;
926 }
927
928 /*
929 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
930 */
931 if (delta == 0)
932 return;
933
934 /*
935 * If we hit an uninitialized node while recursing up the tree, we can
936 * stop since we know the counts are not valid on this node and we
937 * know we shouldn't touch this node's counts. An uninitialized count
938 * on the node indicates that either the feature has not yet been
939 * activated or there are no limits on this part of the tree.
940 */
941 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
942 prop, sizeof (count), 1, &count)) == ENOENT)
943 return;
944 VERIFY0(err);
945
946 count += delta;
947 /* Use a signed verify to make sure we're not neg. */
948 VERIFY3S(count, >=, 0);
949
950 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
951 tx));
952
953 /* Roll up this additional count into our ancestors */
954 if (dd->dd_parent != NULL)
955 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
956 }
957
958 uint64_t
dsl_dir_create_sync(dsl_pool_t * dp,dsl_dir_t * pds,const char * name,dmu_tx_t * tx)959 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
960 dmu_tx_t *tx)
961 {
962 objset_t *mos = dp->dp_meta_objset;
963 uint64_t ddobj;
964 dsl_dir_phys_t *ddphys;
965 dmu_buf_t *dbuf;
966
967 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
968 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
969 if (pds) {
970 VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
971 name, sizeof (uint64_t), 1, &ddobj, tx));
972 } else {
973 /* it's the root dir */
974 VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
975 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
976 }
977 VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
978 dmu_buf_will_dirty(dbuf, tx);
979 ddphys = dbuf->db_data;
980
981 ddphys->dd_creation_time = gethrestime_sec();
982 if (pds) {
983 ddphys->dd_parent_obj = pds->dd_object;
984
985 /* update the filesystem counts */
986 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
987 }
988 ddphys->dd_props_zapobj = zap_create(mos,
989 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
990 ddphys->dd_child_dir_zapobj = zap_create(mos,
991 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
992 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
993 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
994
995 dmu_buf_rele(dbuf, FTAG);
996
997 return (ddobj);
998 }
999
1000 boolean_t
dsl_dir_is_clone(dsl_dir_t * dd)1001 dsl_dir_is_clone(dsl_dir_t *dd)
1002 {
1003 return (dsl_dir_phys(dd)->dd_origin_obj &&
1004 (dd->dd_pool->dp_origin_snap == NULL ||
1005 dsl_dir_phys(dd)->dd_origin_obj !=
1006 dd->dd_pool->dp_origin_snap->ds_object));
1007 }
1008
1009 uint64_t
dsl_dir_get_used(dsl_dir_t * dd)1010 dsl_dir_get_used(dsl_dir_t *dd)
1011 {
1012 return (dsl_dir_phys(dd)->dd_used_bytes);
1013 }
1014
1015 uint64_t
dsl_dir_get_compressed(dsl_dir_t * dd)1016 dsl_dir_get_compressed(dsl_dir_t *dd)
1017 {
1018 return (dsl_dir_phys(dd)->dd_compressed_bytes);
1019 }
1020
1021 uint64_t
dsl_dir_get_quota(dsl_dir_t * dd)1022 dsl_dir_get_quota(dsl_dir_t *dd)
1023 {
1024 return (dsl_dir_phys(dd)->dd_quota);
1025 }
1026
1027 uint64_t
dsl_dir_get_reservation(dsl_dir_t * dd)1028 dsl_dir_get_reservation(dsl_dir_t *dd)
1029 {
1030 return (dsl_dir_phys(dd)->dd_reserved);
1031 }
1032
1033 uint64_t
dsl_dir_get_compressratio(dsl_dir_t * dd)1034 dsl_dir_get_compressratio(dsl_dir_t *dd)
1035 {
1036 /* a fixed point number, 100x the ratio */
1037 return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
1038 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
1039 dsl_dir_phys(dd)->dd_compressed_bytes));
1040 }
1041
1042 uint64_t
dsl_dir_get_logicalused(dsl_dir_t * dd)1043 dsl_dir_get_logicalused(dsl_dir_t *dd)
1044 {
1045 return (dsl_dir_phys(dd)->dd_uncompressed_bytes);
1046 }
1047
1048 uint64_t
dsl_dir_get_usedsnap(dsl_dir_t * dd)1049 dsl_dir_get_usedsnap(dsl_dir_t *dd)
1050 {
1051 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
1052 }
1053
1054 uint64_t
dsl_dir_get_usedds(dsl_dir_t * dd)1055 dsl_dir_get_usedds(dsl_dir_t *dd)
1056 {
1057 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
1058 }
1059
1060 uint64_t
dsl_dir_get_usedrefreserv(dsl_dir_t * dd)1061 dsl_dir_get_usedrefreserv(dsl_dir_t *dd)
1062 {
1063 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
1064 }
1065
1066 uint64_t
dsl_dir_get_usedchild(dsl_dir_t * dd)1067 dsl_dir_get_usedchild(dsl_dir_t *dd)
1068 {
1069 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
1070 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
1071 }
1072
1073 void
dsl_dir_get_origin(dsl_dir_t * dd,char * buf)1074 dsl_dir_get_origin(dsl_dir_t *dd, char *buf)
1075 {
1076 dsl_dataset_t *ds;
1077 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
1078 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
1079
1080 dsl_dataset_name(ds, buf);
1081
1082 dsl_dataset_rele(ds, FTAG);
1083 }
1084
1085 int
dsl_dir_get_filesystem_count(dsl_dir_t * dd,uint64_t * count)1086 dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count)
1087 {
1088 if (dsl_dir_is_zapified(dd)) {
1089 objset_t *os = dd->dd_pool->dp_meta_objset;
1090 return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
1091 sizeof (*count), 1, count));
1092 } else {
1093 return (SET_ERROR(ENOENT));
1094 }
1095 }
1096
1097 int
dsl_dir_get_snapshot_count(dsl_dir_t * dd,uint64_t * count)1098 dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count)
1099 {
1100 if (dsl_dir_is_zapified(dd)) {
1101 objset_t *os = dd->dd_pool->dp_meta_objset;
1102 return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
1103 sizeof (*count), 1, count));
1104 } else {
1105 return (SET_ERROR(ENOENT));
1106 }
1107 }
1108
1109 void
dsl_dir_stats(dsl_dir_t * dd,nvlist_t * nv)1110 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
1111 {
1112 mutex_enter(&dd->dd_lock);
1113 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
1114 dsl_dir_get_quota(dd));
1115 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
1116 dsl_dir_get_reservation(dd));
1117 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
1118 dsl_dir_get_logicalused(dd));
1119 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1120 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
1121 dsl_dir_get_usedsnap(dd));
1122 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
1123 dsl_dir_get_usedds(dd));
1124 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
1125 dsl_dir_get_usedrefreserv(dd));
1126 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
1127 dsl_dir_get_usedchild(dd));
1128 }
1129 mutex_exit(&dd->dd_lock);
1130
1131 uint64_t count;
1132 if (dsl_dir_get_filesystem_count(dd, &count) == 0) {
1133 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT,
1134 count);
1135 }
1136 if (dsl_dir_get_snapshot_count(dd, &count) == 0) {
1137 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT,
1138 count);
1139 }
1140
1141 if (dsl_dir_is_clone(dd)) {
1142 char buf[ZFS_MAX_DATASET_NAME_LEN];
1143 dsl_dir_get_origin(dd, buf);
1144 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
1145 }
1146
1147 }
1148
1149 void
dsl_dir_dirty(dsl_dir_t * dd,dmu_tx_t * tx)1150 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
1151 {
1152 dsl_pool_t *dp = dd->dd_pool;
1153
1154 ASSERT(dsl_dir_phys(dd));
1155
1156 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
1157 /* up the hold count until we can be written out */
1158 dmu_buf_add_ref(dd->dd_dbuf, dd);
1159 }
1160 }
1161
1162 static int64_t
parent_delta(dsl_dir_t * dd,uint64_t used,int64_t delta)1163 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
1164 {
1165 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
1166 uint64_t new_accounted =
1167 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1168 return (new_accounted - old_accounted);
1169 }
1170
1171 void
dsl_dir_sync(dsl_dir_t * dd,dmu_tx_t * tx)1172 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1173 {
1174 ASSERT(dmu_tx_is_syncing(tx));
1175
1176 mutex_enter(&dd->dd_lock);
1177 ASSERT0(dd->dd_tempreserved[tx->tx_txg & TXG_MASK]);
1178 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", (u_longlong_t)tx->tx_txg,
1179 (u_longlong_t)dd->dd_space_towrite[tx->tx_txg & TXG_MASK] / 1024);
1180 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] = 0;
1181 mutex_exit(&dd->dd_lock);
1182
1183 /* release the hold from dsl_dir_dirty */
1184 dmu_buf_rele(dd->dd_dbuf, dd);
1185 }
1186
1187 static uint64_t
dsl_dir_space_towrite(dsl_dir_t * dd)1188 dsl_dir_space_towrite(dsl_dir_t *dd)
1189 {
1190 uint64_t space = 0;
1191
1192 ASSERT(MUTEX_HELD(&dd->dd_lock));
1193
1194 for (int i = 0; i < TXG_SIZE; i++)
1195 space += dd->dd_space_towrite[i & TXG_MASK];
1196
1197 return (space);
1198 }
1199
1200 /*
1201 * How much space would dd have available if ancestor had delta applied
1202 * to it? If ondiskonly is set, we're only interested in what's
1203 * on-disk, not estimated pending changes.
1204 */
1205 uint64_t
dsl_dir_space_available(dsl_dir_t * dd,dsl_dir_t * ancestor,int64_t delta,int ondiskonly)1206 dsl_dir_space_available(dsl_dir_t *dd,
1207 dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1208 {
1209 uint64_t parentspace, myspace, quota, used;
1210
1211 /*
1212 * If there are no restrictions otherwise, assume we have
1213 * unlimited space available.
1214 */
1215 quota = UINT64_MAX;
1216 parentspace = UINT64_MAX;
1217
1218 if (dd->dd_parent != NULL) {
1219 parentspace = dsl_dir_space_available(dd->dd_parent,
1220 ancestor, delta, ondiskonly);
1221 }
1222
1223 mutex_enter(&dd->dd_lock);
1224 if (dsl_dir_phys(dd)->dd_quota != 0)
1225 quota = dsl_dir_phys(dd)->dd_quota;
1226 used = dsl_dir_phys(dd)->dd_used_bytes;
1227 if (!ondiskonly)
1228 used += dsl_dir_space_towrite(dd);
1229
1230 if (dd->dd_parent == NULL) {
1231 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool,
1232 ZFS_SPACE_CHECK_NORMAL);
1233 quota = MIN(quota, poolsize);
1234 }
1235
1236 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1237 /*
1238 * We have some space reserved, in addition to what our
1239 * parent gave us.
1240 */
1241 parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1242 }
1243
1244 if (dd == ancestor) {
1245 ASSERT(delta <= 0);
1246 ASSERT(used >= -delta);
1247 used += delta;
1248 if (parentspace != UINT64_MAX)
1249 parentspace -= delta;
1250 }
1251
1252 if (used > quota) {
1253 /* over quota */
1254 myspace = 0;
1255 } else {
1256 /*
1257 * the lesser of the space provided by our parent and
1258 * the space left in our quota
1259 */
1260 myspace = MIN(parentspace, quota - used);
1261 }
1262
1263 mutex_exit(&dd->dd_lock);
1264
1265 return (myspace);
1266 }
1267
1268 struct tempreserve {
1269 list_node_t tr_node;
1270 dsl_dir_t *tr_ds;
1271 uint64_t tr_size;
1272 };
1273
1274 static int
dsl_dir_tempreserve_impl(dsl_dir_t * dd,uint64_t asize,boolean_t netfree,boolean_t ignorequota,list_t * tr_list,dmu_tx_t * tx,boolean_t first)1275 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1276 boolean_t ignorequota, list_t *tr_list,
1277 dmu_tx_t *tx, boolean_t first)
1278 {
1279 uint64_t txg;
1280 uint64_t quota;
1281 struct tempreserve *tr;
1282 int retval;
1283 uint64_t ext_quota;
1284 uint64_t ref_rsrv;
1285
1286 top_of_function:
1287 txg = tx->tx_txg;
1288 retval = EDQUOT;
1289 ref_rsrv = 0;
1290
1291 ASSERT3U(txg, !=, 0);
1292 ASSERT3S(asize, >, 0);
1293
1294 mutex_enter(&dd->dd_lock);
1295
1296 /*
1297 * Check against the dsl_dir's quota. We don't add in the delta
1298 * when checking for over-quota because they get one free hit.
1299 */
1300 uint64_t est_inflight = dsl_dir_space_towrite(dd);
1301 for (int i = 0; i < TXG_SIZE; i++)
1302 est_inflight += dd->dd_tempreserved[i];
1303 uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1304
1305 /*
1306 * On the first iteration, fetch the dataset's used-on-disk and
1307 * refreservation values. Also, if checkrefquota is set, test if
1308 * allocating this space would exceed the dataset's refquota.
1309 */
1310 if (first && tx->tx_objset) {
1311 int error;
1312 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1313
1314 error = dsl_dataset_check_quota(ds, !netfree,
1315 asize, est_inflight, &used_on_disk, &ref_rsrv);
1316 if (error != 0) {
1317 mutex_exit(&dd->dd_lock);
1318 DMU_TX_STAT_BUMP(dmu_tx_quota);
1319 return (error);
1320 }
1321 }
1322
1323 /*
1324 * If this transaction will result in a net free of space,
1325 * we want to let it through.
1326 */
1327 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0 ||
1328 (tx->tx_objset && dmu_objset_type(tx->tx_objset) == DMU_OST_ZVOL &&
1329 zvol_enforce_quotas == B_FALSE))
1330 quota = UINT64_MAX;
1331 else
1332 quota = dsl_dir_phys(dd)->dd_quota;
1333
1334 /*
1335 * Adjust the quota against the actual pool size at the root
1336 * minus any outstanding deferred frees.
1337 * To ensure that it's possible to remove files from a full
1338 * pool without inducing transient overcommits, we throttle
1339 * netfree transactions against a quota that is slightly larger,
1340 * but still within the pool's allocation slop. In cases where
1341 * we're very close to full, this will allow a steady trickle of
1342 * removes to get through.
1343 */
1344 if (dd->dd_parent == NULL) {
1345 uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool,
1346 (netfree) ?
1347 ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL);
1348
1349 if (avail < quota) {
1350 quota = avail;
1351 retval = SET_ERROR(ENOSPC);
1352 }
1353 }
1354
1355 /*
1356 * If they are requesting more space, and our current estimate
1357 * is over quota, they get to try again unless the actual
1358 * on-disk is over quota and there are no pending changes
1359 * or deferred frees (which may free up space for us).
1360 */
1361 ext_quota = quota >> 5;
1362 if (quota == UINT64_MAX)
1363 ext_quota = 0;
1364
1365 if (used_on_disk >= quota) {
1366 if (retval == ENOSPC && (used_on_disk - quota) <
1367 dsl_pool_deferred_space(dd->dd_pool)) {
1368 retval = SET_ERROR(ERESTART);
1369 }
1370 /* Quota exceeded */
1371 mutex_exit(&dd->dd_lock);
1372 DMU_TX_STAT_BUMP(dmu_tx_quota);
1373 return (retval);
1374 } else if (used_on_disk + est_inflight >= quota + ext_quota) {
1375 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1376 "quota=%lluK tr=%lluK\n",
1377 (u_longlong_t)used_on_disk>>10,
1378 (u_longlong_t)est_inflight>>10,
1379 (u_longlong_t)quota>>10, (u_longlong_t)asize>>10);
1380 mutex_exit(&dd->dd_lock);
1381 DMU_TX_STAT_BUMP(dmu_tx_quota);
1382 return (SET_ERROR(ERESTART));
1383 }
1384
1385 /* We need to up our estimated delta before dropping dd_lock */
1386 dd->dd_tempreserved[txg & TXG_MASK] += asize;
1387
1388 uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1389 asize - ref_rsrv);
1390 mutex_exit(&dd->dd_lock);
1391
1392 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1393 tr->tr_ds = dd;
1394 tr->tr_size = asize;
1395 list_insert_tail(tr_list, tr);
1396
1397 /* see if it's OK with our parent */
1398 if (dd->dd_parent != NULL && parent_rsrv != 0) {
1399 /*
1400 * Recurse on our parent without recursion. This has been
1401 * observed to be potentially large stack usage even within
1402 * the test suite. Largest seen stack was 7632 bytes on linux.
1403 */
1404
1405 dd = dd->dd_parent;
1406 asize = parent_rsrv;
1407 ignorequota = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1408 first = B_FALSE;
1409 goto top_of_function;
1410 }
1411
1412 return (0);
1413 }
1414
1415 /*
1416 * Reserve space in this dsl_dir, to be used in this tx's txg.
1417 * After the space has been dirtied (and dsl_dir_willuse_space()
1418 * has been called), the reservation should be canceled, using
1419 * dsl_dir_tempreserve_clear().
1420 */
1421 int
dsl_dir_tempreserve_space(dsl_dir_t * dd,uint64_t lsize,uint64_t asize,boolean_t netfree,void ** tr_cookiep,dmu_tx_t * tx)1422 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1423 boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx)
1424 {
1425 int err;
1426 list_t *tr_list;
1427
1428 if (asize == 0) {
1429 *tr_cookiep = NULL;
1430 return (0);
1431 }
1432
1433 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1434 list_create(tr_list, sizeof (struct tempreserve),
1435 offsetof(struct tempreserve, tr_node));
1436 ASSERT3S(asize, >, 0);
1437
1438 err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg);
1439 if (err == 0) {
1440 struct tempreserve *tr;
1441
1442 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1443 tr->tr_size = lsize;
1444 list_insert_tail(tr_list, tr);
1445 } else {
1446 if (err == EAGAIN) {
1447 /*
1448 * If arc_memory_throttle() detected that pageout
1449 * is running and we are low on memory, we delay new
1450 * non-pageout transactions to give pageout an
1451 * advantage.
1452 *
1453 * It is unfortunate to be delaying while the caller's
1454 * locks are held.
1455 */
1456 txg_delay(dd->dd_pool, tx->tx_txg,
1457 MSEC2NSEC(10), MSEC2NSEC(10));
1458 err = SET_ERROR(ERESTART);
1459 }
1460 }
1461
1462 if (err == 0) {
1463 err = dsl_dir_tempreserve_impl(dd, asize, netfree,
1464 B_FALSE, tr_list, tx, B_TRUE);
1465 }
1466
1467 if (err != 0)
1468 dsl_dir_tempreserve_clear(tr_list, tx);
1469 else
1470 *tr_cookiep = tr_list;
1471
1472 return (err);
1473 }
1474
1475 /*
1476 * Clear a temporary reservation that we previously made with
1477 * dsl_dir_tempreserve_space().
1478 */
1479 void
dsl_dir_tempreserve_clear(void * tr_cookie,dmu_tx_t * tx)1480 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1481 {
1482 int txgidx = tx->tx_txg & TXG_MASK;
1483 list_t *tr_list = tr_cookie;
1484 struct tempreserve *tr;
1485
1486 ASSERT3U(tx->tx_txg, !=, 0);
1487
1488 if (tr_cookie == NULL)
1489 return;
1490
1491 while ((tr = list_remove_head(tr_list)) != NULL) {
1492 if (tr->tr_ds) {
1493 mutex_enter(&tr->tr_ds->dd_lock);
1494 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1495 tr->tr_size);
1496 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1497 mutex_exit(&tr->tr_ds->dd_lock);
1498 } else {
1499 arc_tempreserve_clear(tr->tr_size);
1500 }
1501 kmem_free(tr, sizeof (struct tempreserve));
1502 }
1503
1504 kmem_free(tr_list, sizeof (list_t));
1505 }
1506
1507 /*
1508 * This should be called from open context when we think we're going to write
1509 * or free space, for example when dirtying data. Be conservative; it's okay
1510 * to write less space or free more, but we don't want to write more or free
1511 * less than the amount specified.
1512 *
1513 * NOTE: The behavior of this function is identical to the Illumos / FreeBSD
1514 * version however it has been adjusted to use an iterative rather than
1515 * recursive algorithm to minimize stack usage.
1516 */
1517 void
dsl_dir_willuse_space(dsl_dir_t * dd,int64_t space,dmu_tx_t * tx)1518 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1519 {
1520 int64_t parent_space;
1521 uint64_t est_used;
1522
1523 do {
1524 mutex_enter(&dd->dd_lock);
1525 if (space > 0)
1526 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1527
1528 est_used = dsl_dir_space_towrite(dd) +
1529 dsl_dir_phys(dd)->dd_used_bytes;
1530 parent_space = parent_delta(dd, est_used, space);
1531 mutex_exit(&dd->dd_lock);
1532
1533 /* Make sure that we clean up dd_space_to* */
1534 dsl_dir_dirty(dd, tx);
1535
1536 dd = dd->dd_parent;
1537 space = parent_space;
1538 } while (space && dd);
1539 }
1540
1541 /* call from syncing context when we actually write/free space for this dd */
1542 void
dsl_dir_diduse_space(dsl_dir_t * dd,dd_used_t type,int64_t used,int64_t compressed,int64_t uncompressed,dmu_tx_t * tx)1543 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1544 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1545 {
1546 int64_t accounted_delta;
1547
1548 ASSERT(dmu_tx_is_syncing(tx));
1549 ASSERT(type < DD_USED_NUM);
1550
1551 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1552
1553 /*
1554 * dsl_dataset_set_refreservation_sync_impl() calls this with
1555 * dd_lock held, so that it can atomically update
1556 * ds->ds_reserved and the dsl_dir accounting, so that
1557 * dsl_dataset_check_quota() can see dataset and dir accounting
1558 * consistently.
1559 */
1560 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1561 if (needlock)
1562 mutex_enter(&dd->dd_lock);
1563 dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1564 accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used);
1565 ASSERT(used >= 0 || ddp->dd_used_bytes >= -used);
1566 ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed);
1567 ASSERT(uncompressed >= 0 ||
1568 ddp->dd_uncompressed_bytes >= -uncompressed);
1569 ddp->dd_used_bytes += used;
1570 ddp->dd_uncompressed_bytes += uncompressed;
1571 ddp->dd_compressed_bytes += compressed;
1572
1573 if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1574 ASSERT(used >= 0 || ddp->dd_used_breakdown[type] >= -used);
1575 ddp->dd_used_breakdown[type] += used;
1576 #ifdef ZFS_DEBUG
1577 {
1578 dd_used_t t;
1579 uint64_t u = 0;
1580 for (t = 0; t < DD_USED_NUM; t++)
1581 u += ddp->dd_used_breakdown[t];
1582 ASSERT3U(u, ==, ddp->dd_used_bytes);
1583 }
1584 #endif
1585 }
1586 if (needlock)
1587 mutex_exit(&dd->dd_lock);
1588
1589 if (dd->dd_parent != NULL) {
1590 dsl_dir_diduse_transfer_space(dd->dd_parent,
1591 accounted_delta, compressed, uncompressed,
1592 used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1593 }
1594 }
1595
1596 void
dsl_dir_transfer_space(dsl_dir_t * dd,int64_t delta,dd_used_t oldtype,dd_used_t newtype,dmu_tx_t * tx)1597 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1598 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1599 {
1600 ASSERT(dmu_tx_is_syncing(tx));
1601 ASSERT(oldtype < DD_USED_NUM);
1602 ASSERT(newtype < DD_USED_NUM);
1603
1604 dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1605 if (delta == 0 ||
1606 !(ddp->dd_flags & DD_FLAG_USED_BREAKDOWN))
1607 return;
1608
1609 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1610 mutex_enter(&dd->dd_lock);
1611 ASSERT(delta > 0 ?
1612 ddp->dd_used_breakdown[oldtype] >= delta :
1613 ddp->dd_used_breakdown[newtype] >= -delta);
1614 ASSERT(ddp->dd_used_bytes >= ABS(delta));
1615 ddp->dd_used_breakdown[oldtype] -= delta;
1616 ddp->dd_used_breakdown[newtype] += delta;
1617 mutex_exit(&dd->dd_lock);
1618 }
1619
1620 void
dsl_dir_diduse_transfer_space(dsl_dir_t * dd,int64_t used,int64_t compressed,int64_t uncompressed,int64_t tonew,dd_used_t oldtype,dd_used_t newtype,dmu_tx_t * tx)1621 dsl_dir_diduse_transfer_space(dsl_dir_t *dd, int64_t used,
1622 int64_t compressed, int64_t uncompressed, int64_t tonew,
1623 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1624 {
1625 int64_t accounted_delta;
1626
1627 ASSERT(dmu_tx_is_syncing(tx));
1628 ASSERT(oldtype < DD_USED_NUM);
1629 ASSERT(newtype < DD_USED_NUM);
1630
1631 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1632
1633 mutex_enter(&dd->dd_lock);
1634 dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1635 accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used);
1636 ASSERT(used >= 0 || ddp->dd_used_bytes >= -used);
1637 ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed);
1638 ASSERT(uncompressed >= 0 ||
1639 ddp->dd_uncompressed_bytes >= -uncompressed);
1640 ddp->dd_used_bytes += used;
1641 ddp->dd_uncompressed_bytes += uncompressed;
1642 ddp->dd_compressed_bytes += compressed;
1643
1644 if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1645 ASSERT(tonew - used <= 0 ||
1646 ddp->dd_used_breakdown[oldtype] >= tonew - used);
1647 ASSERT(tonew >= 0 ||
1648 ddp->dd_used_breakdown[newtype] >= -tonew);
1649 ddp->dd_used_breakdown[oldtype] -= tonew - used;
1650 ddp->dd_used_breakdown[newtype] += tonew;
1651 #ifdef ZFS_DEBUG
1652 {
1653 dd_used_t t;
1654 uint64_t u = 0;
1655 for (t = 0; t < DD_USED_NUM; t++)
1656 u += ddp->dd_used_breakdown[t];
1657 ASSERT3U(u, ==, ddp->dd_used_bytes);
1658 }
1659 #endif
1660 }
1661 mutex_exit(&dd->dd_lock);
1662
1663 if (dd->dd_parent != NULL) {
1664 dsl_dir_diduse_transfer_space(dd->dd_parent,
1665 accounted_delta, compressed, uncompressed,
1666 used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1667 }
1668 }
1669
1670 typedef struct dsl_dir_set_qr_arg {
1671 const char *ddsqra_name;
1672 zprop_source_t ddsqra_source;
1673 uint64_t ddsqra_value;
1674 } dsl_dir_set_qr_arg_t;
1675
1676 static int
dsl_dir_set_quota_check(void * arg,dmu_tx_t * tx)1677 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1678 {
1679 dsl_dir_set_qr_arg_t *ddsqra = arg;
1680 dsl_pool_t *dp = dmu_tx_pool(tx);
1681 dsl_dataset_t *ds;
1682 int error;
1683 uint64_t towrite, newval;
1684
1685 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1686 if (error != 0)
1687 return (error);
1688
1689 error = dsl_prop_predict(ds->ds_dir, "quota",
1690 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1691 if (error != 0) {
1692 dsl_dataset_rele(ds, FTAG);
1693 return (error);
1694 }
1695
1696 if (newval == 0) {
1697 dsl_dataset_rele(ds, FTAG);
1698 return (0);
1699 }
1700
1701 mutex_enter(&ds->ds_dir->dd_lock);
1702 /*
1703 * If we are doing the preliminary check in open context, and
1704 * there are pending changes, then don't fail it, since the
1705 * pending changes could under-estimate the amount of space to be
1706 * freed up.
1707 */
1708 towrite = dsl_dir_space_towrite(ds->ds_dir);
1709 if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1710 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1711 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1712 error = SET_ERROR(ENOSPC);
1713 }
1714 mutex_exit(&ds->ds_dir->dd_lock);
1715 dsl_dataset_rele(ds, FTAG);
1716 return (error);
1717 }
1718
1719 static void
dsl_dir_set_quota_sync(void * arg,dmu_tx_t * tx)1720 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1721 {
1722 dsl_dir_set_qr_arg_t *ddsqra = arg;
1723 dsl_pool_t *dp = dmu_tx_pool(tx);
1724 dsl_dataset_t *ds;
1725 uint64_t newval;
1726
1727 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1728
1729 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1730 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1731 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1732 &ddsqra->ddsqra_value, tx);
1733
1734 VERIFY0(dsl_prop_get_int_ds(ds,
1735 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1736 } else {
1737 newval = ddsqra->ddsqra_value;
1738 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1739 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1740 }
1741
1742 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1743 mutex_enter(&ds->ds_dir->dd_lock);
1744 dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1745 mutex_exit(&ds->ds_dir->dd_lock);
1746 dsl_dataset_rele(ds, FTAG);
1747 }
1748
1749 int
dsl_dir_set_quota(const char * ddname,zprop_source_t source,uint64_t quota)1750 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1751 {
1752 dsl_dir_set_qr_arg_t ddsqra;
1753
1754 ddsqra.ddsqra_name = ddname;
1755 ddsqra.ddsqra_source = source;
1756 ddsqra.ddsqra_value = quota;
1757
1758 return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1759 dsl_dir_set_quota_sync, &ddsqra, 0,
1760 ZFS_SPACE_CHECK_EXTRA_RESERVED));
1761 }
1762
1763 static int
dsl_dir_set_reservation_check(void * arg,dmu_tx_t * tx)1764 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1765 {
1766 dsl_dir_set_qr_arg_t *ddsqra = arg;
1767 dsl_pool_t *dp = dmu_tx_pool(tx);
1768 dsl_dataset_t *ds;
1769 dsl_dir_t *dd;
1770 uint64_t newval, used, avail;
1771 int error;
1772
1773 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1774 if (error != 0)
1775 return (error);
1776 dd = ds->ds_dir;
1777
1778 /*
1779 * If we are doing the preliminary check in open context, the
1780 * space estimates may be inaccurate.
1781 */
1782 if (!dmu_tx_is_syncing(tx)) {
1783 dsl_dataset_rele(ds, FTAG);
1784 return (0);
1785 }
1786
1787 error = dsl_prop_predict(ds->ds_dir,
1788 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1789 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1790 if (error != 0) {
1791 dsl_dataset_rele(ds, FTAG);
1792 return (error);
1793 }
1794
1795 mutex_enter(&dd->dd_lock);
1796 used = dsl_dir_phys(dd)->dd_used_bytes;
1797 mutex_exit(&dd->dd_lock);
1798
1799 if (dd->dd_parent) {
1800 avail = dsl_dir_space_available(dd->dd_parent,
1801 NULL, 0, FALSE);
1802 } else {
1803 avail = dsl_pool_adjustedsize(dd->dd_pool,
1804 ZFS_SPACE_CHECK_NORMAL) - used;
1805 }
1806
1807 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1808 uint64_t delta = MAX(used, newval) -
1809 MAX(used, dsl_dir_phys(dd)->dd_reserved);
1810
1811 if (delta > avail ||
1812 (dsl_dir_phys(dd)->dd_quota > 0 &&
1813 newval > dsl_dir_phys(dd)->dd_quota))
1814 error = SET_ERROR(ENOSPC);
1815 }
1816
1817 dsl_dataset_rele(ds, FTAG);
1818 return (error);
1819 }
1820
1821 void
dsl_dir_set_reservation_sync_impl(dsl_dir_t * dd,uint64_t value,dmu_tx_t * tx)1822 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1823 {
1824 uint64_t used;
1825 int64_t delta;
1826
1827 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1828
1829 mutex_enter(&dd->dd_lock);
1830 used = dsl_dir_phys(dd)->dd_used_bytes;
1831 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1832 dsl_dir_phys(dd)->dd_reserved = value;
1833
1834 if (dd->dd_parent != NULL) {
1835 /* Roll up this additional usage into our ancestors */
1836 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1837 delta, 0, 0, tx);
1838 }
1839 mutex_exit(&dd->dd_lock);
1840 }
1841
1842 static void
dsl_dir_set_reservation_sync(void * arg,dmu_tx_t * tx)1843 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1844 {
1845 dsl_dir_set_qr_arg_t *ddsqra = arg;
1846 dsl_pool_t *dp = dmu_tx_pool(tx);
1847 dsl_dataset_t *ds;
1848 uint64_t newval;
1849
1850 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1851
1852 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1853 dsl_prop_set_sync_impl(ds,
1854 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1855 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1856 &ddsqra->ddsqra_value, tx);
1857
1858 VERIFY0(dsl_prop_get_int_ds(ds,
1859 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1860 } else {
1861 newval = ddsqra->ddsqra_value;
1862 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1863 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1864 (longlong_t)newval);
1865 }
1866
1867 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1868 dsl_dataset_rele(ds, FTAG);
1869 }
1870
1871 int
dsl_dir_set_reservation(const char * ddname,zprop_source_t source,uint64_t reservation)1872 dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1873 uint64_t reservation)
1874 {
1875 dsl_dir_set_qr_arg_t ddsqra;
1876
1877 ddsqra.ddsqra_name = ddname;
1878 ddsqra.ddsqra_source = source;
1879 ddsqra.ddsqra_value = reservation;
1880
1881 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1882 dsl_dir_set_reservation_sync, &ddsqra, 0,
1883 ZFS_SPACE_CHECK_EXTRA_RESERVED));
1884 }
1885
1886 static dsl_dir_t *
closest_common_ancestor(dsl_dir_t * ds1,dsl_dir_t * ds2)1887 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1888 {
1889 for (; ds1; ds1 = ds1->dd_parent) {
1890 dsl_dir_t *dd;
1891 for (dd = ds2; dd; dd = dd->dd_parent) {
1892 if (ds1 == dd)
1893 return (dd);
1894 }
1895 }
1896 return (NULL);
1897 }
1898
1899 /*
1900 * If delta is applied to dd, how much of that delta would be applied to
1901 * ancestor? Syncing context only.
1902 */
1903 static int64_t
would_change(dsl_dir_t * dd,int64_t delta,dsl_dir_t * ancestor)1904 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1905 {
1906 if (dd == ancestor)
1907 return (delta);
1908
1909 mutex_enter(&dd->dd_lock);
1910 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1911 mutex_exit(&dd->dd_lock);
1912 return (would_change(dd->dd_parent, delta, ancestor));
1913 }
1914
1915 typedef struct dsl_dir_rename_arg {
1916 const char *ddra_oldname;
1917 const char *ddra_newname;
1918 cred_t *ddra_cred;
1919 proc_t *ddra_proc;
1920 } dsl_dir_rename_arg_t;
1921
1922 typedef struct dsl_valid_rename_arg {
1923 int char_delta;
1924 int nest_delta;
1925 } dsl_valid_rename_arg_t;
1926
1927 static int
dsl_valid_rename(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)1928 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1929 {
1930 (void) dp;
1931 dsl_valid_rename_arg_t *dvra = arg;
1932 char namebuf[ZFS_MAX_DATASET_NAME_LEN];
1933
1934 dsl_dataset_name(ds, namebuf);
1935
1936 ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN),
1937 <, ZFS_MAX_DATASET_NAME_LEN);
1938 int namelen = strlen(namebuf) + dvra->char_delta;
1939 int depth = get_dataset_depth(namebuf) + dvra->nest_delta;
1940
1941 if (namelen >= ZFS_MAX_DATASET_NAME_LEN)
1942 return (SET_ERROR(ENAMETOOLONG));
1943 if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting)
1944 return (SET_ERROR(ENAMETOOLONG));
1945 return (0);
1946 }
1947
1948 static int
dsl_dir_rename_check(void * arg,dmu_tx_t * tx)1949 dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1950 {
1951 dsl_dir_rename_arg_t *ddra = arg;
1952 dsl_pool_t *dp = dmu_tx_pool(tx);
1953 dsl_dir_t *dd, *newparent;
1954 dsl_valid_rename_arg_t dvra;
1955 dsl_dataset_t *parentds;
1956 objset_t *parentos;
1957 const char *mynewname;
1958 int error;
1959
1960 /* target dir should exist */
1961 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1962 if (error != 0)
1963 return (error);
1964
1965 /* new parent should exist */
1966 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1967 &newparent, &mynewname);
1968 if (error != 0) {
1969 dsl_dir_rele(dd, FTAG);
1970 return (error);
1971 }
1972
1973 /* can't rename to different pool */
1974 if (dd->dd_pool != newparent->dd_pool) {
1975 dsl_dir_rele(newparent, FTAG);
1976 dsl_dir_rele(dd, FTAG);
1977 return (SET_ERROR(EXDEV));
1978 }
1979
1980 /* new name should not already exist */
1981 if (mynewname == NULL) {
1982 dsl_dir_rele(newparent, FTAG);
1983 dsl_dir_rele(dd, FTAG);
1984 return (SET_ERROR(EEXIST));
1985 }
1986
1987 /* can't rename below anything but filesystems (eg. no ZVOLs) */
1988 error = dsl_dataset_hold_obj(newparent->dd_pool,
1989 dsl_dir_phys(newparent)->dd_head_dataset_obj, FTAG, &parentds);
1990 if (error != 0) {
1991 dsl_dir_rele(newparent, FTAG);
1992 dsl_dir_rele(dd, FTAG);
1993 return (error);
1994 }
1995 error = dmu_objset_from_ds(parentds, &parentos);
1996 if (error != 0) {
1997 dsl_dataset_rele(parentds, FTAG);
1998 dsl_dir_rele(newparent, FTAG);
1999 dsl_dir_rele(dd, FTAG);
2000 return (error);
2001 }
2002 if (dmu_objset_type(parentos) != DMU_OST_ZFS) {
2003 dsl_dataset_rele(parentds, FTAG);
2004 dsl_dir_rele(newparent, FTAG);
2005 dsl_dir_rele(dd, FTAG);
2006 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
2007 }
2008 dsl_dataset_rele(parentds, FTAG);
2009
2010 ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN),
2011 <, ZFS_MAX_DATASET_NAME_LEN);
2012 ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN),
2013 <, ZFS_MAX_DATASET_NAME_LEN);
2014 dvra.char_delta = strlen(ddra->ddra_newname)
2015 - strlen(ddra->ddra_oldname);
2016 dvra.nest_delta = get_dataset_depth(ddra->ddra_newname)
2017 - get_dataset_depth(ddra->ddra_oldname);
2018
2019 /* if the name length is growing, validate child name lengths */
2020 if (dvra.char_delta > 0 || dvra.nest_delta > 0) {
2021 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
2022 &dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
2023 if (error != 0) {
2024 dsl_dir_rele(newparent, FTAG);
2025 dsl_dir_rele(dd, FTAG);
2026 return (error);
2027 }
2028 }
2029
2030 if (dmu_tx_is_syncing(tx)) {
2031 if (spa_feature_is_active(dp->dp_spa,
2032 SPA_FEATURE_FS_SS_LIMIT)) {
2033 /*
2034 * Although this is the check function and we don't
2035 * normally make on-disk changes in check functions,
2036 * we need to do that here.
2037 *
2038 * Ensure this portion of the tree's counts have been
2039 * initialized in case the new parent has limits set.
2040 */
2041 dsl_dir_init_fs_ss_count(dd, tx);
2042 }
2043 }
2044
2045 if (newparent != dd->dd_parent) {
2046 /* is there enough space? */
2047 uint64_t myspace =
2048 MAX(dsl_dir_phys(dd)->dd_used_bytes,
2049 dsl_dir_phys(dd)->dd_reserved);
2050 objset_t *os = dd->dd_pool->dp_meta_objset;
2051 uint64_t fs_cnt = 0;
2052 uint64_t ss_cnt = 0;
2053
2054 if (dsl_dir_is_zapified(dd)) {
2055 int err;
2056
2057 err = zap_lookup(os, dd->dd_object,
2058 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
2059 &fs_cnt);
2060 if (err != ENOENT && err != 0) {
2061 dsl_dir_rele(newparent, FTAG);
2062 dsl_dir_rele(dd, FTAG);
2063 return (err);
2064 }
2065
2066 /*
2067 * have to add 1 for the filesystem itself that we're
2068 * moving
2069 */
2070 fs_cnt++;
2071
2072 err = zap_lookup(os, dd->dd_object,
2073 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
2074 &ss_cnt);
2075 if (err != ENOENT && err != 0) {
2076 dsl_dir_rele(newparent, FTAG);
2077 dsl_dir_rele(dd, FTAG);
2078 return (err);
2079 }
2080 }
2081
2082 /* check for encryption errors */
2083 error = dsl_dir_rename_crypt_check(dd, newparent);
2084 if (error != 0) {
2085 dsl_dir_rele(newparent, FTAG);
2086 dsl_dir_rele(dd, FTAG);
2087 return (SET_ERROR(EACCES));
2088 }
2089
2090 /* no rename into our descendant */
2091 if (closest_common_ancestor(dd, newparent) == dd) {
2092 dsl_dir_rele(newparent, FTAG);
2093 dsl_dir_rele(dd, FTAG);
2094 return (SET_ERROR(EINVAL));
2095 }
2096
2097 error = dsl_dir_transfer_possible(dd->dd_parent,
2098 newparent, fs_cnt, ss_cnt, myspace,
2099 ddra->ddra_cred, ddra->ddra_proc);
2100 if (error != 0) {
2101 dsl_dir_rele(newparent, FTAG);
2102 dsl_dir_rele(dd, FTAG);
2103 return (error);
2104 }
2105 }
2106
2107 dsl_dir_rele(newparent, FTAG);
2108 dsl_dir_rele(dd, FTAG);
2109 return (0);
2110 }
2111
2112 static void
dsl_dir_rename_sync(void * arg,dmu_tx_t * tx)2113 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
2114 {
2115 dsl_dir_rename_arg_t *ddra = arg;
2116 dsl_pool_t *dp = dmu_tx_pool(tx);
2117 dsl_dir_t *dd, *newparent;
2118 const char *mynewname;
2119 objset_t *mos = dp->dp_meta_objset;
2120
2121 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
2122 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
2123 &mynewname));
2124
2125 ASSERT3P(mynewname, !=, NULL);
2126
2127 /* Log this before we change the name. */
2128 spa_history_log_internal_dd(dd, "rename", tx,
2129 "-> %s", ddra->ddra_newname);
2130
2131 if (newparent != dd->dd_parent) {
2132 objset_t *os = dd->dd_pool->dp_meta_objset;
2133 uint64_t fs_cnt = 0;
2134 uint64_t ss_cnt = 0;
2135
2136 /*
2137 * We already made sure the dd counts were initialized in the
2138 * check function.
2139 */
2140 if (spa_feature_is_active(dp->dp_spa,
2141 SPA_FEATURE_FS_SS_LIMIT)) {
2142 VERIFY0(zap_lookup(os, dd->dd_object,
2143 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
2144 &fs_cnt));
2145 /* add 1 for the filesystem itself that we're moving */
2146 fs_cnt++;
2147
2148 VERIFY0(zap_lookup(os, dd->dd_object,
2149 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
2150 &ss_cnt));
2151 }
2152
2153 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
2154 DD_FIELD_FILESYSTEM_COUNT, tx);
2155 dsl_fs_ss_count_adjust(newparent, fs_cnt,
2156 DD_FIELD_FILESYSTEM_COUNT, tx);
2157
2158 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
2159 DD_FIELD_SNAPSHOT_COUNT, tx);
2160 dsl_fs_ss_count_adjust(newparent, ss_cnt,
2161 DD_FIELD_SNAPSHOT_COUNT, tx);
2162
2163 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
2164 -dsl_dir_phys(dd)->dd_used_bytes,
2165 -dsl_dir_phys(dd)->dd_compressed_bytes,
2166 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2167 dsl_dir_diduse_space(newparent, DD_USED_CHILD,
2168 dsl_dir_phys(dd)->dd_used_bytes,
2169 dsl_dir_phys(dd)->dd_compressed_bytes,
2170 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2171
2172 if (dsl_dir_phys(dd)->dd_reserved >
2173 dsl_dir_phys(dd)->dd_used_bytes) {
2174 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
2175 dsl_dir_phys(dd)->dd_used_bytes;
2176
2177 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
2178 -unused_rsrv, 0, 0, tx);
2179 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
2180 unused_rsrv, 0, 0, tx);
2181 }
2182 }
2183
2184 dmu_buf_will_dirty(dd->dd_dbuf, tx);
2185
2186 /* remove from old parent zapobj */
2187 VERIFY0(zap_remove(mos,
2188 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
2189 dd->dd_myname, tx));
2190
2191 (void) strlcpy(dd->dd_myname, mynewname,
2192 sizeof (dd->dd_myname));
2193 dsl_dir_rele(dd->dd_parent, dd);
2194 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
2195 VERIFY0(dsl_dir_hold_obj(dp,
2196 newparent->dd_object, NULL, dd, &dd->dd_parent));
2197
2198 /* add to new parent zapobj */
2199 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
2200 dd->dd_myname, 8, 1, &dd->dd_object, tx));
2201
2202 /* TODO: A rename callback to avoid these layering violations. */
2203 zfsvfs_update_fromname(ddra->ddra_oldname, ddra->ddra_newname);
2204 zvol_rename_minors(dp->dp_spa, ddra->ddra_oldname,
2205 ddra->ddra_newname, B_TRUE);
2206
2207 dsl_prop_notify_all(dd);
2208
2209 dsl_dir_rele(newparent, FTAG);
2210 dsl_dir_rele(dd, FTAG);
2211 }
2212
2213 int
dsl_dir_rename(const char * oldname,const char * newname)2214 dsl_dir_rename(const char *oldname, const char *newname)
2215 {
2216 dsl_dir_rename_arg_t ddra;
2217
2218 ddra.ddra_oldname = oldname;
2219 ddra.ddra_newname = newname;
2220 ddra.ddra_cred = CRED();
2221 ddra.ddra_proc = curproc;
2222
2223 return (dsl_sync_task(oldname,
2224 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
2225 3, ZFS_SPACE_CHECK_RESERVED));
2226 }
2227
2228 int
dsl_dir_transfer_possible(dsl_dir_t * sdd,dsl_dir_t * tdd,uint64_t fs_cnt,uint64_t ss_cnt,uint64_t space,cred_t * cr,proc_t * proc)2229 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
2230 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space,
2231 cred_t *cr, proc_t *proc)
2232 {
2233 dsl_dir_t *ancestor;
2234 int64_t adelta;
2235 uint64_t avail;
2236 int err;
2237
2238 ancestor = closest_common_ancestor(sdd, tdd);
2239 adelta = would_change(sdd, -space, ancestor);
2240 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
2241 if (avail < space)
2242 return (SET_ERROR(ENOSPC));
2243
2244 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
2245 ancestor, cr, proc);
2246 if (err != 0)
2247 return (err);
2248 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
2249 ancestor, cr, proc);
2250 if (err != 0)
2251 return (err);
2252
2253 return (0);
2254 }
2255
2256 inode_timespec_t
dsl_dir_snap_cmtime(dsl_dir_t * dd)2257 dsl_dir_snap_cmtime(dsl_dir_t *dd)
2258 {
2259 inode_timespec_t t;
2260
2261 mutex_enter(&dd->dd_lock);
2262 t = dd->dd_snap_cmtime;
2263 mutex_exit(&dd->dd_lock);
2264
2265 return (t);
2266 }
2267
2268 void
dsl_dir_snap_cmtime_update(dsl_dir_t * dd,dmu_tx_t * tx)2269 dsl_dir_snap_cmtime_update(dsl_dir_t *dd, dmu_tx_t *tx)
2270 {
2271 dsl_pool_t *dp = dmu_tx_pool(tx);
2272 inode_timespec_t t;
2273 gethrestime(&t);
2274
2275 mutex_enter(&dd->dd_lock);
2276 dd->dd_snap_cmtime = t;
2277 if (spa_feature_is_enabled(dp->dp_spa,
2278 SPA_FEATURE_EXTENSIBLE_DATASET)) {
2279 objset_t *mos = dd->dd_pool->dp_meta_objset;
2280 uint64_t ddobj = dd->dd_object;
2281 dsl_dir_zapify(dd, tx);
2282 VERIFY0(zap_update(mos, ddobj,
2283 DD_FIELD_SNAPSHOTS_CHANGED,
2284 sizeof (uint64_t),
2285 sizeof (inode_timespec_t) / sizeof (uint64_t),
2286 &t, tx));
2287 }
2288 mutex_exit(&dd->dd_lock);
2289 }
2290
2291 void
dsl_dir_zapify(dsl_dir_t * dd,dmu_tx_t * tx)2292 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
2293 {
2294 objset_t *mos = dd->dd_pool->dp_meta_objset;
2295 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
2296 }
2297
2298 boolean_t
dsl_dir_is_zapified(dsl_dir_t * dd)2299 dsl_dir_is_zapified(dsl_dir_t *dd)
2300 {
2301 dmu_object_info_t doi;
2302
2303 dmu_object_info_from_db(dd->dd_dbuf, &doi);
2304 return (doi.doi_type == DMU_OTN_ZAP_METADATA);
2305 }
2306
2307 int
dsl_dir_livelist_open(dsl_dir_t * dd,uint64_t obj)2308 dsl_dir_livelist_open(dsl_dir_t *dd, uint64_t obj)
2309 {
2310 objset_t *mos = dd->dd_pool->dp_meta_objset;
2311 ASSERT(spa_feature_is_active(dd->dd_pool->dp_spa,
2312 SPA_FEATURE_LIVELIST));
2313 int err = dsl_deadlist_open(&dd->dd_livelist, mos, obj);
2314 if (err != 0)
2315 return (err);
2316 bplist_create(&dd->dd_pending_allocs);
2317 bplist_create(&dd->dd_pending_frees);
2318 return (0);
2319 }
2320
2321 void
dsl_dir_livelist_close(dsl_dir_t * dd)2322 dsl_dir_livelist_close(dsl_dir_t *dd)
2323 {
2324 dsl_deadlist_close(&dd->dd_livelist);
2325 bplist_destroy(&dd->dd_pending_allocs);
2326 bplist_destroy(&dd->dd_pending_frees);
2327 }
2328
2329 void
dsl_dir_remove_livelist(dsl_dir_t * dd,dmu_tx_t * tx,boolean_t total)2330 dsl_dir_remove_livelist(dsl_dir_t *dd, dmu_tx_t *tx, boolean_t total)
2331 {
2332 uint64_t obj;
2333 dsl_pool_t *dp = dmu_tx_pool(tx);
2334 spa_t *spa = dp->dp_spa;
2335 livelist_condense_entry_t to_condense = spa->spa_to_condense;
2336
2337 if (!dsl_deadlist_is_open(&dd->dd_livelist))
2338 return;
2339
2340 /*
2341 * If the livelist being removed is set to be condensed, stop the
2342 * condense zthr and indicate the cancellation in the spa_to_condense
2343 * struct in case the condense no-wait synctask has already started
2344 */
2345 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
2346 if (ll_condense_thread != NULL &&
2347 (to_condense.ds != NULL) && (to_condense.ds->ds_dir == dd)) {
2348 /*
2349 * We use zthr_wait_cycle_done instead of zthr_cancel
2350 * because we don't want to destroy the zthr, just have
2351 * it skip its current task.
2352 */
2353 spa->spa_to_condense.cancelled = B_TRUE;
2354 zthr_wait_cycle_done(ll_condense_thread);
2355 /*
2356 * If we've returned from zthr_wait_cycle_done without
2357 * clearing the to_condense data structure it's either
2358 * because the no-wait synctask has started (which is
2359 * indicated by 'syncing' field of to_condense) and we
2360 * can expect it to clear to_condense on its own.
2361 * Otherwise, we returned before the zthr ran. The
2362 * checkfunc will now fail as cancelled == B_TRUE so we
2363 * can safely NULL out ds, allowing a different dir's
2364 * livelist to be condensed.
2365 *
2366 * We can be sure that the to_condense struct will not
2367 * be repopulated at this stage because both this
2368 * function and dsl_livelist_try_condense execute in
2369 * syncing context.
2370 */
2371 if ((spa->spa_to_condense.ds != NULL) &&
2372 !spa->spa_to_condense.syncing) {
2373 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf,
2374 spa);
2375 spa->spa_to_condense.ds = NULL;
2376 }
2377 }
2378
2379 dsl_dir_livelist_close(dd);
2380 VERIFY0(zap_lookup(dp->dp_meta_objset, dd->dd_object,
2381 DD_FIELD_LIVELIST, sizeof (uint64_t), 1, &obj));
2382 VERIFY0(zap_remove(dp->dp_meta_objset, dd->dd_object,
2383 DD_FIELD_LIVELIST, tx));
2384 if (total) {
2385 dsl_deadlist_free(dp->dp_meta_objset, obj, tx);
2386 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2387 }
2388 }
2389
2390 static int
dsl_dir_activity_in_progress(dsl_dir_t * dd,dsl_dataset_t * ds,zfs_wait_activity_t activity,boolean_t * in_progress)2391 dsl_dir_activity_in_progress(dsl_dir_t *dd, dsl_dataset_t *ds,
2392 zfs_wait_activity_t activity, boolean_t *in_progress)
2393 {
2394 int error = 0;
2395
2396 ASSERT(MUTEX_HELD(&dd->dd_activity_lock));
2397
2398 switch (activity) {
2399 case ZFS_WAIT_DELETEQ: {
2400 #ifdef _KERNEL
2401 objset_t *os;
2402 error = dmu_objset_from_ds(ds, &os);
2403 if (error != 0)
2404 break;
2405
2406 mutex_enter(&os->os_user_ptr_lock);
2407 void *user = dmu_objset_get_user(os);
2408 mutex_exit(&os->os_user_ptr_lock);
2409 if (dmu_objset_type(os) != DMU_OST_ZFS ||
2410 user == NULL || zfs_get_vfs_flag_unmounted(os)) {
2411 *in_progress = B_FALSE;
2412 return (0);
2413 }
2414
2415 uint64_t readonly = B_FALSE;
2416 error = zfs_get_temporary_prop(ds, ZFS_PROP_READONLY, &readonly,
2417 NULL);
2418
2419 if (error != 0)
2420 break;
2421
2422 if (readonly || !spa_writeable(dd->dd_pool->dp_spa)) {
2423 *in_progress = B_FALSE;
2424 return (0);
2425 }
2426
2427 uint64_t count, unlinked_obj;
2428 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
2429 &unlinked_obj);
2430 if (error != 0) {
2431 dsl_dataset_rele(ds, FTAG);
2432 break;
2433 }
2434 error = zap_count(os, unlinked_obj, &count);
2435
2436 if (error == 0)
2437 *in_progress = (count != 0);
2438 break;
2439 #else
2440 /*
2441 * The delete queue is ZPL specific, and libzpool doesn't have
2442 * it. It doesn't make sense to wait for it.
2443 */
2444 (void) ds;
2445 *in_progress = B_FALSE;
2446 break;
2447 #endif
2448 }
2449 default:
2450 panic("unrecognized value for activity %d", activity);
2451 }
2452
2453 return (error);
2454 }
2455
2456 int
dsl_dir_wait(dsl_dir_t * dd,dsl_dataset_t * ds,zfs_wait_activity_t activity,boolean_t * waited)2457 dsl_dir_wait(dsl_dir_t *dd, dsl_dataset_t *ds, zfs_wait_activity_t activity,
2458 boolean_t *waited)
2459 {
2460 int error = 0;
2461 boolean_t in_progress;
2462 dsl_pool_t *dp = dd->dd_pool;
2463 for (;;) {
2464 dsl_pool_config_enter(dp, FTAG);
2465 error = dsl_dir_activity_in_progress(dd, ds, activity,
2466 &in_progress);
2467 dsl_pool_config_exit(dp, FTAG);
2468 if (error != 0 || !in_progress)
2469 break;
2470
2471 *waited = B_TRUE;
2472
2473 if (cv_wait_sig(&dd->dd_activity_cv, &dd->dd_activity_lock) ==
2474 0 || dd->dd_activity_cancelled) {
2475 error = SET_ERROR(EINTR);
2476 break;
2477 }
2478 }
2479 return (error);
2480 }
2481
2482 void
dsl_dir_cancel_waiters(dsl_dir_t * dd)2483 dsl_dir_cancel_waiters(dsl_dir_t *dd)
2484 {
2485 mutex_enter(&dd->dd_activity_lock);
2486 dd->dd_activity_cancelled = B_TRUE;
2487 cv_broadcast(&dd->dd_activity_cv);
2488 while (dd->dd_activity_waiters > 0)
2489 cv_wait(&dd->dd_activity_cv, &dd->dd_activity_lock);
2490 mutex_exit(&dd->dd_activity_lock);
2491 }
2492
2493 #if defined(_KERNEL)
2494 EXPORT_SYMBOL(dsl_dir_set_quota);
2495 EXPORT_SYMBOL(dsl_dir_set_reservation);
2496 #endif
2497
2498 ZFS_MODULE_PARAM(zfs, , zvol_enforce_quotas, INT, ZMOD_RW,
2499 "Enable strict ZVOL quota enforcment");
2500