xref: /freebsd/sys/contrib/openzfs/module/zfs/dnode.c (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/dbuf.h>
30 #include <sys/dnode.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_impl.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/dsl_dir.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/spa.h>
38 #include <sys/zio.h>
39 #include <sys/dmu_zfetch.h>
40 #include <sys/range_tree.h>
41 #include <sys/trace_zfs.h>
42 #include <sys/zfs_project.h>
43 
44 dnode_stats_t dnode_stats = {
45 	{ "dnode_hold_dbuf_hold",		KSTAT_DATA_UINT64 },
46 	{ "dnode_hold_dbuf_read",		KSTAT_DATA_UINT64 },
47 	{ "dnode_hold_alloc_hits",		KSTAT_DATA_UINT64 },
48 	{ "dnode_hold_alloc_misses",		KSTAT_DATA_UINT64 },
49 	{ "dnode_hold_alloc_interior",		KSTAT_DATA_UINT64 },
50 	{ "dnode_hold_alloc_lock_retry",	KSTAT_DATA_UINT64 },
51 	{ "dnode_hold_alloc_lock_misses",	KSTAT_DATA_UINT64 },
52 	{ "dnode_hold_alloc_type_none",		KSTAT_DATA_UINT64 },
53 	{ "dnode_hold_free_hits",		KSTAT_DATA_UINT64 },
54 	{ "dnode_hold_free_misses",		KSTAT_DATA_UINT64 },
55 	{ "dnode_hold_free_lock_misses",	KSTAT_DATA_UINT64 },
56 	{ "dnode_hold_free_lock_retry",		KSTAT_DATA_UINT64 },
57 	{ "dnode_hold_free_overflow",		KSTAT_DATA_UINT64 },
58 	{ "dnode_hold_free_refcount",		KSTAT_DATA_UINT64 },
59 	{ "dnode_free_interior_lock_retry",	KSTAT_DATA_UINT64 },
60 	{ "dnode_allocate",			KSTAT_DATA_UINT64 },
61 	{ "dnode_reallocate",			KSTAT_DATA_UINT64 },
62 	{ "dnode_buf_evict",			KSTAT_DATA_UINT64 },
63 	{ "dnode_alloc_next_chunk",		KSTAT_DATA_UINT64 },
64 	{ "dnode_alloc_race",			KSTAT_DATA_UINT64 },
65 	{ "dnode_alloc_next_block",		KSTAT_DATA_UINT64 },
66 	{ "dnode_move_invalid",			KSTAT_DATA_UINT64 },
67 	{ "dnode_move_recheck1",		KSTAT_DATA_UINT64 },
68 	{ "dnode_move_recheck2",		KSTAT_DATA_UINT64 },
69 	{ "dnode_move_special",			KSTAT_DATA_UINT64 },
70 	{ "dnode_move_handle",			KSTAT_DATA_UINT64 },
71 	{ "dnode_move_rwlock",			KSTAT_DATA_UINT64 },
72 	{ "dnode_move_active",			KSTAT_DATA_UINT64 },
73 };
74 
75 dnode_sums_t dnode_sums;
76 
77 static kstat_t *dnode_ksp;
78 static kmem_cache_t *dnode_cache;
79 
80 static dnode_phys_t dnode_phys_zero __maybe_unused;
81 
82 int zfs_default_bs = SPA_MINBLOCKSHIFT;
83 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
84 
85 #ifdef	_KERNEL
86 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
87 #endif /* _KERNEL */
88 
89 static int
dbuf_compare(const void * x1,const void * x2)90 dbuf_compare(const void *x1, const void *x2)
91 {
92 	const dmu_buf_impl_t *d1 = x1;
93 	const dmu_buf_impl_t *d2 = x2;
94 
95 	int cmp = TREE_CMP(d1->db_level, d2->db_level);
96 	if (likely(cmp))
97 		return (cmp);
98 
99 	cmp = TREE_CMP(d1->db_blkid, d2->db_blkid);
100 	if (likely(cmp))
101 		return (cmp);
102 
103 	if (d1->db_state == DB_MARKER) {
104 		ASSERT3S(d2->db_state, !=, DB_MARKER);
105 		return (TREE_PCMP(d1->db_parent, d2));
106 	} else if (d2->db_state == DB_MARKER) {
107 		ASSERT3S(d1->db_state, !=, DB_MARKER);
108 		return (TREE_PCMP(d1, d2->db_parent));
109 	}
110 
111 	if (d1->db_state == DB_SEARCH) {
112 		ASSERT3S(d2->db_state, !=, DB_SEARCH);
113 		return (-1);
114 	} else if (d2->db_state == DB_SEARCH) {
115 		ASSERT3S(d1->db_state, !=, DB_SEARCH);
116 		return (1);
117 	}
118 
119 	return (TREE_PCMP(d1, d2));
120 }
121 
122 static int
dnode_cons(void * arg,void * unused,int kmflag)123 dnode_cons(void *arg, void *unused, int kmflag)
124 {
125 	(void) unused, (void) kmflag;
126 	dnode_t *dn = arg;
127 
128 	rw_init(&dn->dn_struct_rwlock, NULL, RW_NOLOCKDEP, NULL);
129 	mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
130 	mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
131 	cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
132 	cv_init(&dn->dn_nodnholds, NULL, CV_DEFAULT, NULL);
133 
134 	/*
135 	 * Every dbuf has a reference, and dropping a tracked reference is
136 	 * O(number of references), so don't track dn_holds.
137 	 */
138 	zfs_refcount_create_untracked(&dn->dn_holds);
139 	zfs_refcount_create(&dn->dn_tx_holds);
140 	list_link_init(&dn->dn_link);
141 
142 	memset(dn->dn_next_type, 0, sizeof (dn->dn_next_type));
143 	memset(dn->dn_next_nblkptr, 0, sizeof (dn->dn_next_nblkptr));
144 	memset(dn->dn_next_nlevels, 0, sizeof (dn->dn_next_nlevels));
145 	memset(dn->dn_next_indblkshift, 0, sizeof (dn->dn_next_indblkshift));
146 	memset(dn->dn_next_bonustype, 0, sizeof (dn->dn_next_bonustype));
147 	memset(dn->dn_rm_spillblk, 0, sizeof (dn->dn_rm_spillblk));
148 	memset(dn->dn_next_bonuslen, 0, sizeof (dn->dn_next_bonuslen));
149 	memset(dn->dn_next_blksz, 0, sizeof (dn->dn_next_blksz));
150 	memset(dn->dn_next_maxblkid, 0, sizeof (dn->dn_next_maxblkid));
151 
152 	for (int i = 0; i < TXG_SIZE; i++) {
153 		multilist_link_init(&dn->dn_dirty_link[i]);
154 		dn->dn_free_ranges[i] = NULL;
155 		list_create(&dn->dn_dirty_records[i],
156 		    sizeof (dbuf_dirty_record_t),
157 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
158 	}
159 
160 	dn->dn_allocated_txg = 0;
161 	dn->dn_free_txg = 0;
162 	dn->dn_assigned_txg = 0;
163 	dn->dn_dirty_txg = 0;
164 	dn->dn_dirtyctx = 0;
165 	dn->dn_dirtyctx_firstset = NULL;
166 	dn->dn_bonus = NULL;
167 	dn->dn_have_spill = B_FALSE;
168 	dn->dn_zio = NULL;
169 	dn->dn_oldused = 0;
170 	dn->dn_oldflags = 0;
171 	dn->dn_olduid = 0;
172 	dn->dn_oldgid = 0;
173 	dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
174 	dn->dn_newuid = 0;
175 	dn->dn_newgid = 0;
176 	dn->dn_newprojid = ZFS_DEFAULT_PROJID;
177 	dn->dn_id_flags = 0;
178 
179 	dn->dn_dbufs_count = 0;
180 	avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
181 	    offsetof(dmu_buf_impl_t, db_link));
182 
183 	dn->dn_moved = 0;
184 	return (0);
185 }
186 
187 static void
dnode_dest(void * arg,void * unused)188 dnode_dest(void *arg, void *unused)
189 {
190 	(void) unused;
191 	dnode_t *dn = arg;
192 
193 	rw_destroy(&dn->dn_struct_rwlock);
194 	mutex_destroy(&dn->dn_mtx);
195 	mutex_destroy(&dn->dn_dbufs_mtx);
196 	cv_destroy(&dn->dn_notxholds);
197 	cv_destroy(&dn->dn_nodnholds);
198 	zfs_refcount_destroy(&dn->dn_holds);
199 	zfs_refcount_destroy(&dn->dn_tx_holds);
200 	ASSERT(!list_link_active(&dn->dn_link));
201 
202 	for (int i = 0; i < TXG_SIZE; i++) {
203 		ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
204 		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
205 		list_destroy(&dn->dn_dirty_records[i]);
206 		ASSERT0(dn->dn_next_nblkptr[i]);
207 		ASSERT0(dn->dn_next_nlevels[i]);
208 		ASSERT0(dn->dn_next_indblkshift[i]);
209 		ASSERT0(dn->dn_next_bonustype[i]);
210 		ASSERT0(dn->dn_rm_spillblk[i]);
211 		ASSERT0(dn->dn_next_bonuslen[i]);
212 		ASSERT0(dn->dn_next_blksz[i]);
213 		ASSERT0(dn->dn_next_maxblkid[i]);
214 	}
215 
216 	ASSERT0(dn->dn_allocated_txg);
217 	ASSERT0(dn->dn_free_txg);
218 	ASSERT0(dn->dn_assigned_txg);
219 	ASSERT0(dn->dn_dirty_txg);
220 	ASSERT0(dn->dn_dirtyctx);
221 	ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
222 	ASSERT3P(dn->dn_bonus, ==, NULL);
223 	ASSERT(!dn->dn_have_spill);
224 	ASSERT3P(dn->dn_zio, ==, NULL);
225 	ASSERT0(dn->dn_oldused);
226 	ASSERT0(dn->dn_oldflags);
227 	ASSERT0(dn->dn_olduid);
228 	ASSERT0(dn->dn_oldgid);
229 	ASSERT0(dn->dn_oldprojid);
230 	ASSERT0(dn->dn_newuid);
231 	ASSERT0(dn->dn_newgid);
232 	ASSERT0(dn->dn_newprojid);
233 	ASSERT0(dn->dn_id_flags);
234 
235 	ASSERT0(dn->dn_dbufs_count);
236 	avl_destroy(&dn->dn_dbufs);
237 }
238 
239 static int
dnode_kstats_update(kstat_t * ksp,int rw)240 dnode_kstats_update(kstat_t *ksp, int rw)
241 {
242 	dnode_stats_t *ds = ksp->ks_data;
243 
244 	if (rw == KSTAT_WRITE)
245 		return (EACCES);
246 	ds->dnode_hold_dbuf_hold.value.ui64 =
247 	    wmsum_value(&dnode_sums.dnode_hold_dbuf_hold);
248 	ds->dnode_hold_dbuf_read.value.ui64 =
249 	    wmsum_value(&dnode_sums.dnode_hold_dbuf_read);
250 	ds->dnode_hold_alloc_hits.value.ui64 =
251 	    wmsum_value(&dnode_sums.dnode_hold_alloc_hits);
252 	ds->dnode_hold_alloc_misses.value.ui64 =
253 	    wmsum_value(&dnode_sums.dnode_hold_alloc_misses);
254 	ds->dnode_hold_alloc_interior.value.ui64 =
255 	    wmsum_value(&dnode_sums.dnode_hold_alloc_interior);
256 	ds->dnode_hold_alloc_lock_retry.value.ui64 =
257 	    wmsum_value(&dnode_sums.dnode_hold_alloc_lock_retry);
258 	ds->dnode_hold_alloc_lock_misses.value.ui64 =
259 	    wmsum_value(&dnode_sums.dnode_hold_alloc_lock_misses);
260 	ds->dnode_hold_alloc_type_none.value.ui64 =
261 	    wmsum_value(&dnode_sums.dnode_hold_alloc_type_none);
262 	ds->dnode_hold_free_hits.value.ui64 =
263 	    wmsum_value(&dnode_sums.dnode_hold_free_hits);
264 	ds->dnode_hold_free_misses.value.ui64 =
265 	    wmsum_value(&dnode_sums.dnode_hold_free_misses);
266 	ds->dnode_hold_free_lock_misses.value.ui64 =
267 	    wmsum_value(&dnode_sums.dnode_hold_free_lock_misses);
268 	ds->dnode_hold_free_lock_retry.value.ui64 =
269 	    wmsum_value(&dnode_sums.dnode_hold_free_lock_retry);
270 	ds->dnode_hold_free_refcount.value.ui64 =
271 	    wmsum_value(&dnode_sums.dnode_hold_free_refcount);
272 	ds->dnode_hold_free_overflow.value.ui64 =
273 	    wmsum_value(&dnode_sums.dnode_hold_free_overflow);
274 	ds->dnode_free_interior_lock_retry.value.ui64 =
275 	    wmsum_value(&dnode_sums.dnode_free_interior_lock_retry);
276 	ds->dnode_allocate.value.ui64 =
277 	    wmsum_value(&dnode_sums.dnode_allocate);
278 	ds->dnode_reallocate.value.ui64 =
279 	    wmsum_value(&dnode_sums.dnode_reallocate);
280 	ds->dnode_buf_evict.value.ui64 =
281 	    wmsum_value(&dnode_sums.dnode_buf_evict);
282 	ds->dnode_alloc_next_chunk.value.ui64 =
283 	    wmsum_value(&dnode_sums.dnode_alloc_next_chunk);
284 	ds->dnode_alloc_race.value.ui64 =
285 	    wmsum_value(&dnode_sums.dnode_alloc_race);
286 	ds->dnode_alloc_next_block.value.ui64 =
287 	    wmsum_value(&dnode_sums.dnode_alloc_next_block);
288 	ds->dnode_move_invalid.value.ui64 =
289 	    wmsum_value(&dnode_sums.dnode_move_invalid);
290 	ds->dnode_move_recheck1.value.ui64 =
291 	    wmsum_value(&dnode_sums.dnode_move_recheck1);
292 	ds->dnode_move_recheck2.value.ui64 =
293 	    wmsum_value(&dnode_sums.dnode_move_recheck2);
294 	ds->dnode_move_special.value.ui64 =
295 	    wmsum_value(&dnode_sums.dnode_move_special);
296 	ds->dnode_move_handle.value.ui64 =
297 	    wmsum_value(&dnode_sums.dnode_move_handle);
298 	ds->dnode_move_rwlock.value.ui64 =
299 	    wmsum_value(&dnode_sums.dnode_move_rwlock);
300 	ds->dnode_move_active.value.ui64 =
301 	    wmsum_value(&dnode_sums.dnode_move_active);
302 	return (0);
303 }
304 
305 void
dnode_init(void)306 dnode_init(void)
307 {
308 	ASSERT(dnode_cache == NULL);
309 	dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t),
310 	    0, dnode_cons, dnode_dest, NULL, NULL, NULL, KMC_RECLAIMABLE);
311 	kmem_cache_set_move(dnode_cache, dnode_move);
312 
313 	wmsum_init(&dnode_sums.dnode_hold_dbuf_hold, 0);
314 	wmsum_init(&dnode_sums.dnode_hold_dbuf_read, 0);
315 	wmsum_init(&dnode_sums.dnode_hold_alloc_hits, 0);
316 	wmsum_init(&dnode_sums.dnode_hold_alloc_misses, 0);
317 	wmsum_init(&dnode_sums.dnode_hold_alloc_interior, 0);
318 	wmsum_init(&dnode_sums.dnode_hold_alloc_lock_retry, 0);
319 	wmsum_init(&dnode_sums.dnode_hold_alloc_lock_misses, 0);
320 	wmsum_init(&dnode_sums.dnode_hold_alloc_type_none, 0);
321 	wmsum_init(&dnode_sums.dnode_hold_free_hits, 0);
322 	wmsum_init(&dnode_sums.dnode_hold_free_misses, 0);
323 	wmsum_init(&dnode_sums.dnode_hold_free_lock_misses, 0);
324 	wmsum_init(&dnode_sums.dnode_hold_free_lock_retry, 0);
325 	wmsum_init(&dnode_sums.dnode_hold_free_refcount, 0);
326 	wmsum_init(&dnode_sums.dnode_hold_free_overflow, 0);
327 	wmsum_init(&dnode_sums.dnode_free_interior_lock_retry, 0);
328 	wmsum_init(&dnode_sums.dnode_allocate, 0);
329 	wmsum_init(&dnode_sums.dnode_reallocate, 0);
330 	wmsum_init(&dnode_sums.dnode_buf_evict, 0);
331 	wmsum_init(&dnode_sums.dnode_alloc_next_chunk, 0);
332 	wmsum_init(&dnode_sums.dnode_alloc_race, 0);
333 	wmsum_init(&dnode_sums.dnode_alloc_next_block, 0);
334 	wmsum_init(&dnode_sums.dnode_move_invalid, 0);
335 	wmsum_init(&dnode_sums.dnode_move_recheck1, 0);
336 	wmsum_init(&dnode_sums.dnode_move_recheck2, 0);
337 	wmsum_init(&dnode_sums.dnode_move_special, 0);
338 	wmsum_init(&dnode_sums.dnode_move_handle, 0);
339 	wmsum_init(&dnode_sums.dnode_move_rwlock, 0);
340 	wmsum_init(&dnode_sums.dnode_move_active, 0);
341 
342 	dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc",
343 	    KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t),
344 	    KSTAT_FLAG_VIRTUAL);
345 	if (dnode_ksp != NULL) {
346 		dnode_ksp->ks_data = &dnode_stats;
347 		dnode_ksp->ks_update = dnode_kstats_update;
348 		kstat_install(dnode_ksp);
349 	}
350 }
351 
352 void
dnode_fini(void)353 dnode_fini(void)
354 {
355 	if (dnode_ksp != NULL) {
356 		kstat_delete(dnode_ksp);
357 		dnode_ksp = NULL;
358 	}
359 
360 	wmsum_fini(&dnode_sums.dnode_hold_dbuf_hold);
361 	wmsum_fini(&dnode_sums.dnode_hold_dbuf_read);
362 	wmsum_fini(&dnode_sums.dnode_hold_alloc_hits);
363 	wmsum_fini(&dnode_sums.dnode_hold_alloc_misses);
364 	wmsum_fini(&dnode_sums.dnode_hold_alloc_interior);
365 	wmsum_fini(&dnode_sums.dnode_hold_alloc_lock_retry);
366 	wmsum_fini(&dnode_sums.dnode_hold_alloc_lock_misses);
367 	wmsum_fini(&dnode_sums.dnode_hold_alloc_type_none);
368 	wmsum_fini(&dnode_sums.dnode_hold_free_hits);
369 	wmsum_fini(&dnode_sums.dnode_hold_free_misses);
370 	wmsum_fini(&dnode_sums.dnode_hold_free_lock_misses);
371 	wmsum_fini(&dnode_sums.dnode_hold_free_lock_retry);
372 	wmsum_fini(&dnode_sums.dnode_hold_free_refcount);
373 	wmsum_fini(&dnode_sums.dnode_hold_free_overflow);
374 	wmsum_fini(&dnode_sums.dnode_free_interior_lock_retry);
375 	wmsum_fini(&dnode_sums.dnode_allocate);
376 	wmsum_fini(&dnode_sums.dnode_reallocate);
377 	wmsum_fini(&dnode_sums.dnode_buf_evict);
378 	wmsum_fini(&dnode_sums.dnode_alloc_next_chunk);
379 	wmsum_fini(&dnode_sums.dnode_alloc_race);
380 	wmsum_fini(&dnode_sums.dnode_alloc_next_block);
381 	wmsum_fini(&dnode_sums.dnode_move_invalid);
382 	wmsum_fini(&dnode_sums.dnode_move_recheck1);
383 	wmsum_fini(&dnode_sums.dnode_move_recheck2);
384 	wmsum_fini(&dnode_sums.dnode_move_special);
385 	wmsum_fini(&dnode_sums.dnode_move_handle);
386 	wmsum_fini(&dnode_sums.dnode_move_rwlock);
387 	wmsum_fini(&dnode_sums.dnode_move_active);
388 
389 	kmem_cache_destroy(dnode_cache);
390 	dnode_cache = NULL;
391 }
392 
393 
394 #ifdef ZFS_DEBUG
395 void
dnode_verify(dnode_t * dn)396 dnode_verify(dnode_t *dn)
397 {
398 	int drop_struct_lock = FALSE;
399 
400 	ASSERT(dn->dn_phys);
401 	ASSERT(dn->dn_objset);
402 	ASSERT(dn->dn_handle->dnh_dnode == dn);
403 
404 	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
405 
406 	if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
407 		return;
408 
409 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
410 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
411 		drop_struct_lock = TRUE;
412 	}
413 	if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
414 		int i;
415 		int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
416 		ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
417 		if (dn->dn_datablkshift) {
418 			ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
419 			ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
420 			ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
421 		}
422 		ASSERT3U(dn->dn_nlevels, <=, 30);
423 		ASSERT(DMU_OT_IS_VALID(dn->dn_type));
424 		ASSERT3U(dn->dn_nblkptr, >=, 1);
425 		ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
426 		ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen);
427 		ASSERT3U(dn->dn_datablksz, ==,
428 		    dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
429 		ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
430 		ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
431 		    dn->dn_bonuslen, <=, max_bonuslen);
432 		for (i = 0; i < TXG_SIZE; i++) {
433 			ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
434 		}
435 	}
436 	if (dn->dn_phys->dn_type != DMU_OT_NONE)
437 		ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
438 	ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
439 	if (dn->dn_dbuf != NULL) {
440 		ASSERT3P(dn->dn_phys, ==,
441 		    (dnode_phys_t *)dn->dn_dbuf->db.db_data +
442 		    (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
443 	}
444 	if (drop_struct_lock)
445 		rw_exit(&dn->dn_struct_rwlock);
446 }
447 #endif
448 
449 void
dnode_byteswap(dnode_phys_t * dnp)450 dnode_byteswap(dnode_phys_t *dnp)
451 {
452 	uint64_t *buf64 = (void*)&dnp->dn_blkptr;
453 	int i;
454 
455 	if (dnp->dn_type == DMU_OT_NONE) {
456 		memset(dnp, 0, sizeof (dnode_phys_t));
457 		return;
458 	}
459 
460 	dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
461 	dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
462 	dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots);
463 	dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
464 	dnp->dn_used = BSWAP_64(dnp->dn_used);
465 
466 	/*
467 	 * dn_nblkptr is only one byte, so it's OK to read it in either
468 	 * byte order.  We can't read dn_bouslen.
469 	 */
470 	ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
471 	ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
472 	for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
473 		buf64[i] = BSWAP_64(buf64[i]);
474 
475 	/*
476 	 * OK to check dn_bonuslen for zero, because it won't matter if
477 	 * we have the wrong byte order.  This is necessary because the
478 	 * dnode dnode is smaller than a regular dnode.
479 	 */
480 	if (dnp->dn_bonuslen != 0) {
481 		dmu_object_byteswap_t byteswap;
482 		ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
483 		byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype);
484 		dmu_ot_byteswap[byteswap].ob_func(DN_BONUS(dnp),
485 		    DN_MAX_BONUS_LEN(dnp));
486 	}
487 
488 	/* Swap SPILL block if we have one */
489 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
490 		byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t));
491 }
492 
493 void
dnode_buf_byteswap(void * vbuf,size_t size)494 dnode_buf_byteswap(void *vbuf, size_t size)
495 {
496 	int i = 0;
497 
498 	ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
499 	ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
500 
501 	while (i < size) {
502 		dnode_phys_t *dnp = (void *)(((char *)vbuf) + i);
503 		dnode_byteswap(dnp);
504 
505 		i += DNODE_MIN_SIZE;
506 		if (dnp->dn_type != DMU_OT_NONE)
507 			i += dnp->dn_extra_slots * DNODE_MIN_SIZE;
508 	}
509 }
510 
511 void
dnode_setbonuslen(dnode_t * dn,int newsize,dmu_tx_t * tx)512 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
513 {
514 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
515 
516 	dnode_setdirty(dn, tx);
517 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
518 	ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
519 	    (dn->dn_nblkptr-1) * sizeof (blkptr_t));
520 
521 	if (newsize < dn->dn_bonuslen) {
522 		/* clear any data after the end of the new size */
523 		size_t diff = dn->dn_bonuslen - newsize;
524 		char *data_end = ((char *)dn->dn_bonus->db.db_data) + newsize;
525 		memset(data_end, 0, diff);
526 	}
527 
528 	dn->dn_bonuslen = newsize;
529 	if (newsize == 0)
530 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
531 	else
532 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
533 	rw_exit(&dn->dn_struct_rwlock);
534 }
535 
536 void
dnode_setbonus_type(dnode_t * dn,dmu_object_type_t newtype,dmu_tx_t * tx)537 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
538 {
539 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
540 	dnode_setdirty(dn, tx);
541 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
542 	dn->dn_bonustype = newtype;
543 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
544 	rw_exit(&dn->dn_struct_rwlock);
545 }
546 
547 void
dnode_set_storage_type(dnode_t * dn,dmu_object_type_t newtype)548 dnode_set_storage_type(dnode_t *dn, dmu_object_type_t newtype)
549 {
550 	/*
551 	 * This is not in the dnode_phys, but it should be, and perhaps one day
552 	 * will. For now we require it be set after taking a hold.
553 	 */
554 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
555 	dn->dn_storage_type = newtype;
556 }
557 
558 void
dnode_rm_spill(dnode_t * dn,dmu_tx_t * tx)559 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
560 {
561 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
562 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
563 	dnode_setdirty(dn, tx);
564 	dn->dn_rm_spillblk[tx->tx_txg & TXG_MASK] = DN_KILL_SPILLBLK;
565 	dn->dn_have_spill = B_FALSE;
566 }
567 
568 static void
dnode_setdblksz(dnode_t * dn,int size)569 dnode_setdblksz(dnode_t *dn, int size)
570 {
571 	ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
572 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
573 	ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
574 	ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
575 	    1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
576 	dn->dn_datablksz = size;
577 	dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
578 	dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
579 }
580 
581 static dnode_t *
dnode_create(objset_t * os,dnode_phys_t * dnp,dmu_buf_impl_t * db,uint64_t object,dnode_handle_t * dnh)582 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
583     uint64_t object, dnode_handle_t *dnh)
584 {
585 	dnode_t *dn;
586 
587 	dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
588 	dn->dn_moved = 0;
589 
590 	/*
591 	 * Defer setting dn_objset until the dnode is ready to be a candidate
592 	 * for the dnode_move() callback.
593 	 */
594 	dn->dn_object = object;
595 	dn->dn_dbuf = db;
596 	dn->dn_handle = dnh;
597 	dn->dn_phys = dnp;
598 
599 	if (dnp->dn_datablkszsec) {
600 		dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
601 	} else {
602 		dn->dn_datablksz = 0;
603 		dn->dn_datablkszsec = 0;
604 		dn->dn_datablkshift = 0;
605 	}
606 	dn->dn_indblkshift = dnp->dn_indblkshift;
607 	dn->dn_nlevels = dnp->dn_nlevels;
608 	dn->dn_type = dnp->dn_type;
609 	dn->dn_nblkptr = dnp->dn_nblkptr;
610 	dn->dn_checksum = dnp->dn_checksum;
611 	dn->dn_compress = dnp->dn_compress;
612 	dn->dn_bonustype = dnp->dn_bonustype;
613 	dn->dn_bonuslen = dnp->dn_bonuslen;
614 	dn->dn_num_slots = dnp->dn_extra_slots + 1;
615 	dn->dn_maxblkid = dnp->dn_maxblkid;
616 	dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
617 	dn->dn_id_flags = 0;
618 
619 	dn->dn_storage_type = DMU_OT_NONE;
620 
621 	dmu_zfetch_init(&dn->dn_zfetch, dn);
622 
623 	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
624 	ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
625 	ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode));
626 
627 	mutex_enter(&os->os_lock);
628 
629 	/*
630 	 * Exclude special dnodes from os_dnodes so an empty os_dnodes
631 	 * signifies that the special dnodes have no references from
632 	 * their children (the entries in os_dnodes).  This allows
633 	 * dnode_destroy() to easily determine if the last child has
634 	 * been removed and then complete eviction of the objset.
635 	 */
636 	if (!DMU_OBJECT_IS_SPECIAL(object))
637 		list_insert_head(&os->os_dnodes, dn);
638 	membar_producer();
639 
640 	/*
641 	 * Everything else must be valid before assigning dn_objset
642 	 * makes the dnode eligible for dnode_move().
643 	 */
644 	dn->dn_objset = os;
645 
646 	dnh->dnh_dnode = dn;
647 	mutex_exit(&os->os_lock);
648 
649 	arc_space_consume(sizeof (dnode_t), ARC_SPACE_DNODE);
650 
651 	return (dn);
652 }
653 
654 /*
655  * Caller must be holding the dnode handle, which is released upon return.
656  */
657 static void
dnode_destroy(dnode_t * dn)658 dnode_destroy(dnode_t *dn)
659 {
660 	objset_t *os = dn->dn_objset;
661 	boolean_t complete_os_eviction = B_FALSE;
662 
663 	ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
664 
665 	mutex_enter(&os->os_lock);
666 	POINTER_INVALIDATE(&dn->dn_objset);
667 	if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
668 		list_remove(&os->os_dnodes, dn);
669 		complete_os_eviction =
670 		    list_is_empty(&os->os_dnodes) &&
671 		    list_link_active(&os->os_evicting_node);
672 	}
673 	mutex_exit(&os->os_lock);
674 
675 	/* the dnode can no longer move, so we can release the handle */
676 	if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock))
677 		zrl_remove(&dn->dn_handle->dnh_zrlock);
678 
679 	dn->dn_allocated_txg = 0;
680 	dn->dn_free_txg = 0;
681 	dn->dn_assigned_txg = 0;
682 	dn->dn_dirty_txg = 0;
683 
684 	dn->dn_dirtyctx = 0;
685 	dn->dn_dirtyctx_firstset = NULL;
686 	if (dn->dn_bonus != NULL) {
687 		mutex_enter(&dn->dn_bonus->db_mtx);
688 		dbuf_destroy(dn->dn_bonus);
689 		dn->dn_bonus = NULL;
690 	}
691 	dn->dn_zio = NULL;
692 
693 	dn->dn_have_spill = B_FALSE;
694 	dn->dn_oldused = 0;
695 	dn->dn_oldflags = 0;
696 	dn->dn_olduid = 0;
697 	dn->dn_oldgid = 0;
698 	dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
699 	dn->dn_newuid = 0;
700 	dn->dn_newgid = 0;
701 	dn->dn_newprojid = ZFS_DEFAULT_PROJID;
702 	dn->dn_id_flags = 0;
703 
704 	dn->dn_storage_type = DMU_OT_NONE;
705 
706 	dmu_zfetch_fini(&dn->dn_zfetch);
707 	kmem_cache_free(dnode_cache, dn);
708 	arc_space_return(sizeof (dnode_t), ARC_SPACE_DNODE);
709 
710 	if (complete_os_eviction)
711 		dmu_objset_evict_done(os);
712 }
713 
714 void
dnode_allocate(dnode_t * dn,dmu_object_type_t ot,int blocksize,int ibs,dmu_object_type_t bonustype,int bonuslen,int dn_slots,dmu_tx_t * tx)715 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
716     dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx)
717 {
718 	int i;
719 
720 	ASSERT3U(dn_slots, >, 0);
721 	ASSERT3U(dn_slots << DNODE_SHIFT, <=,
722 	    spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)));
723 	ASSERT3U(blocksize, <=,
724 	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
725 	if (blocksize == 0)
726 		blocksize = 1 << zfs_default_bs;
727 	else
728 		blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
729 
730 	if (ibs == 0)
731 		ibs = zfs_default_ibs;
732 
733 	ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
734 
735 	dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d dn_slots=%d\n",
736 	    dn->dn_objset, (u_longlong_t)dn->dn_object,
737 	    (u_longlong_t)tx->tx_txg, blocksize, ibs, dn_slots);
738 	DNODE_STAT_BUMP(dnode_allocate);
739 
740 	ASSERT(dn->dn_type == DMU_OT_NONE);
741 	ASSERT0(memcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)));
742 	ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
743 	ASSERT(ot != DMU_OT_NONE);
744 	ASSERT(DMU_OT_IS_VALID(ot));
745 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
746 	    (bonustype == DMU_OT_SA && bonuslen == 0) ||
747 	    (bonustype == DMU_OTN_UINT64_METADATA && bonuslen == 0) ||
748 	    (bonustype != DMU_OT_NONE && bonuslen != 0));
749 	ASSERT(DMU_OT_IS_VALID(bonustype));
750 	ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots));
751 	ASSERT(dn->dn_type == DMU_OT_NONE);
752 	ASSERT0(dn->dn_maxblkid);
753 	ASSERT0(dn->dn_allocated_txg);
754 	ASSERT0(dn->dn_assigned_txg);
755 	ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
756 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1);
757 	ASSERT(avl_is_empty(&dn->dn_dbufs));
758 
759 	for (i = 0; i < TXG_SIZE; i++) {
760 		ASSERT0(dn->dn_next_nblkptr[i]);
761 		ASSERT0(dn->dn_next_nlevels[i]);
762 		ASSERT0(dn->dn_next_indblkshift[i]);
763 		ASSERT0(dn->dn_next_bonuslen[i]);
764 		ASSERT0(dn->dn_next_bonustype[i]);
765 		ASSERT0(dn->dn_rm_spillblk[i]);
766 		ASSERT0(dn->dn_next_blksz[i]);
767 		ASSERT0(dn->dn_next_maxblkid[i]);
768 		ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
769 		ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
770 		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
771 	}
772 
773 	dn->dn_type = ot;
774 	dnode_setdblksz(dn, blocksize);
775 	dn->dn_indblkshift = ibs;
776 	dn->dn_nlevels = 1;
777 	dn->dn_num_slots = dn_slots;
778 	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
779 		dn->dn_nblkptr = 1;
780 	else {
781 		dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR,
782 		    1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
783 		    SPA_BLKPTRSHIFT));
784 	}
785 
786 	dn->dn_bonustype = bonustype;
787 	dn->dn_bonuslen = bonuslen;
788 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
789 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
790 	dn->dn_dirtyctx = 0;
791 
792 	dn->dn_free_txg = 0;
793 	dn->dn_dirtyctx_firstset = NULL;
794 	dn->dn_dirty_txg = 0;
795 
796 	dn->dn_allocated_txg = tx->tx_txg;
797 	dn->dn_id_flags = 0;
798 
799 	dnode_setdirty(dn, tx);
800 	dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
801 	dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
802 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
803 	dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
804 }
805 
806 void
dnode_reallocate(dnode_t * dn,dmu_object_type_t ot,int blocksize,dmu_object_type_t bonustype,int bonuslen,int dn_slots,boolean_t keep_spill,dmu_tx_t * tx)807 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
808     dmu_object_type_t bonustype, int bonuslen, int dn_slots,
809     boolean_t keep_spill, dmu_tx_t *tx)
810 {
811 	int nblkptr;
812 
813 	ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
814 	ASSERT3U(blocksize, <=,
815 	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
816 	ASSERT0(blocksize % SPA_MINBLOCKSIZE);
817 	ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
818 	ASSERT(tx->tx_txg != 0);
819 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
820 	    (bonustype != DMU_OT_NONE && bonuslen != 0) ||
821 	    (bonustype == DMU_OT_SA && bonuslen == 0));
822 	ASSERT(DMU_OT_IS_VALID(bonustype));
823 	ASSERT3U(bonuslen, <=,
824 	    DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))));
825 	ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT));
826 
827 	dnode_free_interior_slots(dn);
828 	DNODE_STAT_BUMP(dnode_reallocate);
829 
830 	/* clean up any unreferenced dbufs */
831 	dnode_evict_dbufs(dn);
832 
833 	dn->dn_id_flags = 0;
834 
835 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
836 	dnode_setdirty(dn, tx);
837 	if (dn->dn_datablksz != blocksize) {
838 		/* change blocksize */
839 		ASSERT0(dn->dn_maxblkid);
840 		ASSERT(BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
841 		    dnode_block_freed(dn, 0));
842 
843 		dnode_setdblksz(dn, blocksize);
844 		dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = blocksize;
845 	}
846 	if (dn->dn_bonuslen != bonuslen)
847 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = bonuslen;
848 
849 	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
850 		nblkptr = 1;
851 	else
852 		nblkptr = MIN(DN_MAX_NBLKPTR,
853 		    1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
854 		    SPA_BLKPTRSHIFT));
855 	if (dn->dn_bonustype != bonustype)
856 		dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = bonustype;
857 	if (dn->dn_nblkptr != nblkptr)
858 		dn->dn_next_nblkptr[tx->tx_txg & TXG_MASK] = nblkptr;
859 	if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR && !keep_spill) {
860 		dbuf_rm_spill(dn, tx);
861 		dnode_rm_spill(dn, tx);
862 	}
863 
864 	rw_exit(&dn->dn_struct_rwlock);
865 
866 	/* change type */
867 	dn->dn_type = ot;
868 
869 	/* change bonus size and type */
870 	mutex_enter(&dn->dn_mtx);
871 	dn->dn_bonustype = bonustype;
872 	dn->dn_bonuslen = bonuslen;
873 	dn->dn_num_slots = dn_slots;
874 	dn->dn_nblkptr = nblkptr;
875 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
876 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
877 	ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
878 
879 	/* fix up the bonus db_size */
880 	if (dn->dn_bonus) {
881 		dn->dn_bonus->db.db_size =
882 		    DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
883 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
884 		ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
885 	}
886 
887 	dn->dn_allocated_txg = tx->tx_txg;
888 	mutex_exit(&dn->dn_mtx);
889 }
890 
891 #ifdef	_KERNEL
892 static void
dnode_move_impl(dnode_t * odn,dnode_t * ndn)893 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
894 {
895 	ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
896 	ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
897 	ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
898 
899 	/* Copy fields. */
900 	ndn->dn_objset = odn->dn_objset;
901 	ndn->dn_object = odn->dn_object;
902 	ndn->dn_dbuf = odn->dn_dbuf;
903 	ndn->dn_handle = odn->dn_handle;
904 	ndn->dn_phys = odn->dn_phys;
905 	ndn->dn_type = odn->dn_type;
906 	ndn->dn_bonuslen = odn->dn_bonuslen;
907 	ndn->dn_bonustype = odn->dn_bonustype;
908 	ndn->dn_nblkptr = odn->dn_nblkptr;
909 	ndn->dn_checksum = odn->dn_checksum;
910 	ndn->dn_compress = odn->dn_compress;
911 	ndn->dn_nlevels = odn->dn_nlevels;
912 	ndn->dn_indblkshift = odn->dn_indblkshift;
913 	ndn->dn_datablkshift = odn->dn_datablkshift;
914 	ndn->dn_datablkszsec = odn->dn_datablkszsec;
915 	ndn->dn_datablksz = odn->dn_datablksz;
916 	ndn->dn_maxblkid = odn->dn_maxblkid;
917 	ndn->dn_num_slots = odn->dn_num_slots;
918 	memcpy(ndn->dn_next_type, odn->dn_next_type,
919 	    sizeof (odn->dn_next_type));
920 	memcpy(ndn->dn_next_nblkptr, odn->dn_next_nblkptr,
921 	    sizeof (odn->dn_next_nblkptr));
922 	memcpy(ndn->dn_next_nlevels, odn->dn_next_nlevels,
923 	    sizeof (odn->dn_next_nlevels));
924 	memcpy(ndn->dn_next_indblkshift, odn->dn_next_indblkshift,
925 	    sizeof (odn->dn_next_indblkshift));
926 	memcpy(ndn->dn_next_bonustype, odn->dn_next_bonustype,
927 	    sizeof (odn->dn_next_bonustype));
928 	memcpy(ndn->dn_rm_spillblk, odn->dn_rm_spillblk,
929 	    sizeof (odn->dn_rm_spillblk));
930 	memcpy(ndn->dn_next_bonuslen, odn->dn_next_bonuslen,
931 	    sizeof (odn->dn_next_bonuslen));
932 	memcpy(ndn->dn_next_blksz, odn->dn_next_blksz,
933 	    sizeof (odn->dn_next_blksz));
934 	memcpy(ndn->dn_next_maxblkid, odn->dn_next_maxblkid,
935 	    sizeof (odn->dn_next_maxblkid));
936 	for (int i = 0; i < TXG_SIZE; i++) {
937 		list_move_tail(&ndn->dn_dirty_records[i],
938 		    &odn->dn_dirty_records[i]);
939 	}
940 	memcpy(ndn->dn_free_ranges, odn->dn_free_ranges,
941 	    sizeof (odn->dn_free_ranges));
942 	ndn->dn_allocated_txg = odn->dn_allocated_txg;
943 	ndn->dn_free_txg = odn->dn_free_txg;
944 	ndn->dn_assigned_txg = odn->dn_assigned_txg;
945 	ndn->dn_dirty_txg = odn->dn_dirty_txg;
946 	ndn->dn_dirtyctx = odn->dn_dirtyctx;
947 	ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
948 	ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0);
949 	zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
950 	ASSERT(avl_is_empty(&ndn->dn_dbufs));
951 	avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
952 	ndn->dn_dbufs_count = odn->dn_dbufs_count;
953 	ndn->dn_bonus = odn->dn_bonus;
954 	ndn->dn_have_spill = odn->dn_have_spill;
955 	ndn->dn_zio = odn->dn_zio;
956 	ndn->dn_oldused = odn->dn_oldused;
957 	ndn->dn_oldflags = odn->dn_oldflags;
958 	ndn->dn_olduid = odn->dn_olduid;
959 	ndn->dn_oldgid = odn->dn_oldgid;
960 	ndn->dn_oldprojid = odn->dn_oldprojid;
961 	ndn->dn_newuid = odn->dn_newuid;
962 	ndn->dn_newgid = odn->dn_newgid;
963 	ndn->dn_newprojid = odn->dn_newprojid;
964 	ndn->dn_id_flags = odn->dn_id_flags;
965 	ndn->dn_storage_type = odn->dn_storage_type;
966 	dmu_zfetch_init(&ndn->dn_zfetch, ndn);
967 
968 	/*
969 	 * Update back pointers. Updating the handle fixes the back pointer of
970 	 * every descendant dbuf as well as the bonus dbuf.
971 	 */
972 	ASSERT(ndn->dn_handle->dnh_dnode == odn);
973 	ndn->dn_handle->dnh_dnode = ndn;
974 
975 	/*
976 	 * Invalidate the original dnode by clearing all of its back pointers.
977 	 */
978 	odn->dn_dbuf = NULL;
979 	odn->dn_handle = NULL;
980 	avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
981 	    offsetof(dmu_buf_impl_t, db_link));
982 	odn->dn_dbufs_count = 0;
983 	odn->dn_bonus = NULL;
984 	dmu_zfetch_fini(&odn->dn_zfetch);
985 
986 	/*
987 	 * Set the low bit of the objset pointer to ensure that dnode_move()
988 	 * recognizes the dnode as invalid in any subsequent callback.
989 	 */
990 	POINTER_INVALIDATE(&odn->dn_objset);
991 
992 	/*
993 	 * Satisfy the destructor.
994 	 */
995 	for (int i = 0; i < TXG_SIZE; i++) {
996 		list_create(&odn->dn_dirty_records[i],
997 		    sizeof (dbuf_dirty_record_t),
998 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
999 		odn->dn_free_ranges[i] = NULL;
1000 		odn->dn_next_nlevels[i] = 0;
1001 		odn->dn_next_indblkshift[i] = 0;
1002 		odn->dn_next_bonustype[i] = 0;
1003 		odn->dn_rm_spillblk[i] = 0;
1004 		odn->dn_next_bonuslen[i] = 0;
1005 		odn->dn_next_blksz[i] = 0;
1006 	}
1007 	odn->dn_allocated_txg = 0;
1008 	odn->dn_free_txg = 0;
1009 	odn->dn_assigned_txg = 0;
1010 	odn->dn_dirty_txg = 0;
1011 	odn->dn_dirtyctx = 0;
1012 	odn->dn_dirtyctx_firstset = NULL;
1013 	odn->dn_have_spill = B_FALSE;
1014 	odn->dn_zio = NULL;
1015 	odn->dn_oldused = 0;
1016 	odn->dn_oldflags = 0;
1017 	odn->dn_olduid = 0;
1018 	odn->dn_oldgid = 0;
1019 	odn->dn_oldprojid = ZFS_DEFAULT_PROJID;
1020 	odn->dn_newuid = 0;
1021 	odn->dn_newgid = 0;
1022 	odn->dn_newprojid = ZFS_DEFAULT_PROJID;
1023 	odn->dn_id_flags = 0;
1024 	odn->dn_storage_type = DMU_OT_NONE;
1025 
1026 	/*
1027 	 * Mark the dnode.
1028 	 */
1029 	ndn->dn_moved = 1;
1030 	odn->dn_moved = (uint8_t)-1;
1031 }
1032 
1033 static kmem_cbrc_t
dnode_move(void * buf,void * newbuf,size_t size,void * arg)1034 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
1035 {
1036 	dnode_t *odn = buf, *ndn = newbuf;
1037 	objset_t *os;
1038 	int64_t refcount;
1039 	uint32_t dbufs;
1040 
1041 #ifndef USE_DNODE_HANDLE
1042 	/*
1043 	 * We can't move dnodes if dbufs reference them directly without
1044 	 * using handles and respecitve locking.  Unless USE_DNODE_HANDLE
1045 	 * is defined the code below is only to make sure it still builds,
1046 	 * but it should never be used, since it is unsafe.
1047 	 */
1048 #ifdef ZFS_DEBUG
1049 	PANIC("dnode_move() called without USE_DNODE_HANDLE");
1050 #endif
1051 	return (KMEM_CBRC_NO);
1052 #endif
1053 
1054 	/*
1055 	 * The dnode is on the objset's list of known dnodes if the objset
1056 	 * pointer is valid. We set the low bit of the objset pointer when
1057 	 * freeing the dnode to invalidate it, and the memory patterns written
1058 	 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
1059 	 * A newly created dnode sets the objset pointer last of all to indicate
1060 	 * that the dnode is known and in a valid state to be moved by this
1061 	 * function.
1062 	 */
1063 	os = odn->dn_objset;
1064 	if (!POINTER_IS_VALID(os)) {
1065 		DNODE_STAT_BUMP(dnode_move_invalid);
1066 		return (KMEM_CBRC_DONT_KNOW);
1067 	}
1068 
1069 	/*
1070 	 * Ensure that the objset does not go away during the move.
1071 	 */
1072 	rw_enter(&os_lock, RW_WRITER);
1073 	if (os != odn->dn_objset) {
1074 		rw_exit(&os_lock);
1075 		DNODE_STAT_BUMP(dnode_move_recheck1);
1076 		return (KMEM_CBRC_DONT_KNOW);
1077 	}
1078 
1079 	/*
1080 	 * If the dnode is still valid, then so is the objset. We know that no
1081 	 * valid objset can be freed while we hold os_lock, so we can safely
1082 	 * ensure that the objset remains in use.
1083 	 */
1084 	mutex_enter(&os->os_lock);
1085 
1086 	/*
1087 	 * Recheck the objset pointer in case the dnode was removed just before
1088 	 * acquiring the lock.
1089 	 */
1090 	if (os != odn->dn_objset) {
1091 		mutex_exit(&os->os_lock);
1092 		rw_exit(&os_lock);
1093 		DNODE_STAT_BUMP(dnode_move_recheck2);
1094 		return (KMEM_CBRC_DONT_KNOW);
1095 	}
1096 
1097 	/*
1098 	 * At this point we know that as long as we hold os->os_lock, the dnode
1099 	 * cannot be freed and fields within the dnode can be safely accessed.
1100 	 * The objset listing this dnode cannot go away as long as this dnode is
1101 	 * on its list.
1102 	 */
1103 	rw_exit(&os_lock);
1104 	if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
1105 		mutex_exit(&os->os_lock);
1106 		DNODE_STAT_BUMP(dnode_move_special);
1107 		return (KMEM_CBRC_NO);
1108 	}
1109 	ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
1110 
1111 	/*
1112 	 * Lock the dnode handle to prevent the dnode from obtaining any new
1113 	 * holds. This also prevents the descendant dbufs and the bonus dbuf
1114 	 * from accessing the dnode, so that we can discount their holds. The
1115 	 * handle is safe to access because we know that while the dnode cannot
1116 	 * go away, neither can its handle. Once we hold dnh_zrlock, we can
1117 	 * safely move any dnode referenced only by dbufs.
1118 	 */
1119 	if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
1120 		mutex_exit(&os->os_lock);
1121 		DNODE_STAT_BUMP(dnode_move_handle);
1122 		return (KMEM_CBRC_LATER);
1123 	}
1124 
1125 	/*
1126 	 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
1127 	 * We need to guarantee that there is a hold for every dbuf in order to
1128 	 * determine whether the dnode is actively referenced. Falsely matching
1129 	 * a dbuf to an active hold would lead to an unsafe move. It's possible
1130 	 * that a thread already having an active dnode hold is about to add a
1131 	 * dbuf, and we can't compare hold and dbuf counts while the add is in
1132 	 * progress.
1133 	 */
1134 	if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
1135 		zrl_exit(&odn->dn_handle->dnh_zrlock);
1136 		mutex_exit(&os->os_lock);
1137 		DNODE_STAT_BUMP(dnode_move_rwlock);
1138 		return (KMEM_CBRC_LATER);
1139 	}
1140 
1141 	/*
1142 	 * A dbuf may be removed (evicted) without an active dnode hold. In that
1143 	 * case, the dbuf count is decremented under the handle lock before the
1144 	 * dbuf's hold is released. This order ensures that if we count the hold
1145 	 * after the dbuf is removed but before its hold is released, we will
1146 	 * treat the unmatched hold as active and exit safely. If we count the
1147 	 * hold before the dbuf is removed, the hold is discounted, and the
1148 	 * removal is blocked until the move completes.
1149 	 */
1150 	refcount = zfs_refcount_count(&odn->dn_holds);
1151 	ASSERT(refcount >= 0);
1152 	dbufs = DN_DBUFS_COUNT(odn);
1153 
1154 	/* We can't have more dbufs than dnode holds. */
1155 	ASSERT3U(dbufs, <=, refcount);
1156 	DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
1157 	    uint32_t, dbufs);
1158 
1159 	if (refcount > dbufs) {
1160 		rw_exit(&odn->dn_struct_rwlock);
1161 		zrl_exit(&odn->dn_handle->dnh_zrlock);
1162 		mutex_exit(&os->os_lock);
1163 		DNODE_STAT_BUMP(dnode_move_active);
1164 		return (KMEM_CBRC_LATER);
1165 	}
1166 
1167 	rw_exit(&odn->dn_struct_rwlock);
1168 
1169 	/*
1170 	 * At this point we know that anyone with a hold on the dnode is not
1171 	 * actively referencing it. The dnode is known and in a valid state to
1172 	 * move. We're holding the locks needed to execute the critical section.
1173 	 */
1174 	dnode_move_impl(odn, ndn);
1175 
1176 	list_link_replace(&odn->dn_link, &ndn->dn_link);
1177 	/* If the dnode was safe to move, the refcount cannot have changed. */
1178 	ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds));
1179 	ASSERT(dbufs == DN_DBUFS_COUNT(ndn));
1180 	zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
1181 	mutex_exit(&os->os_lock);
1182 
1183 	return (KMEM_CBRC_YES);
1184 }
1185 #endif	/* _KERNEL */
1186 
1187 static void
dnode_slots_hold(dnode_children_t * children,int idx,int slots)1188 dnode_slots_hold(dnode_children_t *children, int idx, int slots)
1189 {
1190 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1191 
1192 	for (int i = idx; i < idx + slots; i++) {
1193 		dnode_handle_t *dnh = &children->dnc_children[i];
1194 		zrl_add(&dnh->dnh_zrlock);
1195 	}
1196 }
1197 
1198 static void
dnode_slots_rele(dnode_children_t * children,int idx,int slots)1199 dnode_slots_rele(dnode_children_t *children, int idx, int slots)
1200 {
1201 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1202 
1203 	for (int i = idx; i < idx + slots; i++) {
1204 		dnode_handle_t *dnh = &children->dnc_children[i];
1205 
1206 		if (zrl_is_locked(&dnh->dnh_zrlock))
1207 			zrl_exit(&dnh->dnh_zrlock);
1208 		else
1209 			zrl_remove(&dnh->dnh_zrlock);
1210 	}
1211 }
1212 
1213 static int
dnode_slots_tryenter(dnode_children_t * children,int idx,int slots)1214 dnode_slots_tryenter(dnode_children_t *children, int idx, int slots)
1215 {
1216 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1217 
1218 	for (int i = idx; i < idx + slots; i++) {
1219 		dnode_handle_t *dnh = &children->dnc_children[i];
1220 
1221 		if (!zrl_tryenter(&dnh->dnh_zrlock)) {
1222 			for (int j = idx; j < i; j++) {
1223 				dnh = &children->dnc_children[j];
1224 				zrl_exit(&dnh->dnh_zrlock);
1225 			}
1226 
1227 			return (0);
1228 		}
1229 	}
1230 
1231 	return (1);
1232 }
1233 
1234 static void
dnode_set_slots(dnode_children_t * children,int idx,int slots,void * ptr)1235 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr)
1236 {
1237 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1238 
1239 	for (int i = idx; i < idx + slots; i++) {
1240 		dnode_handle_t *dnh = &children->dnc_children[i];
1241 		dnh->dnh_dnode = ptr;
1242 	}
1243 }
1244 
1245 static boolean_t
dnode_check_slots_free(dnode_children_t * children,int idx,int slots)1246 dnode_check_slots_free(dnode_children_t *children, int idx, int slots)
1247 {
1248 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1249 
1250 	/*
1251 	 * If all dnode slots are either already free or
1252 	 * evictable return B_TRUE.
1253 	 */
1254 	for (int i = idx; i < idx + slots; i++) {
1255 		dnode_handle_t *dnh = &children->dnc_children[i];
1256 		dnode_t *dn = dnh->dnh_dnode;
1257 
1258 		if (dn == DN_SLOT_FREE) {
1259 			continue;
1260 		} else if (DN_SLOT_IS_PTR(dn)) {
1261 			mutex_enter(&dn->dn_mtx);
1262 			boolean_t can_free = (dn->dn_type == DMU_OT_NONE &&
1263 			    zfs_refcount_is_zero(&dn->dn_holds) &&
1264 			    !DNODE_IS_DIRTY(dn));
1265 			mutex_exit(&dn->dn_mtx);
1266 
1267 			if (!can_free)
1268 				return (B_FALSE);
1269 			else
1270 				continue;
1271 		} else {
1272 			return (B_FALSE);
1273 		}
1274 	}
1275 
1276 	return (B_TRUE);
1277 }
1278 
1279 static uint_t
dnode_reclaim_slots(dnode_children_t * children,int idx,int slots)1280 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots)
1281 {
1282 	uint_t reclaimed = 0;
1283 
1284 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1285 
1286 	for (int i = idx; i < idx + slots; i++) {
1287 		dnode_handle_t *dnh = &children->dnc_children[i];
1288 
1289 		ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
1290 
1291 		if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1292 			ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE);
1293 			dnode_destroy(dnh->dnh_dnode);
1294 			dnh->dnh_dnode = DN_SLOT_FREE;
1295 			reclaimed++;
1296 		}
1297 	}
1298 
1299 	return (reclaimed);
1300 }
1301 
1302 void
dnode_free_interior_slots(dnode_t * dn)1303 dnode_free_interior_slots(dnode_t *dn)
1304 {
1305 	dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db);
1306 	int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT;
1307 	int idx = (dn->dn_object & (epb - 1)) + 1;
1308 	int slots = dn->dn_num_slots - 1;
1309 
1310 	if (slots == 0)
1311 		return;
1312 
1313 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1314 
1315 	while (!dnode_slots_tryenter(children, idx, slots)) {
1316 		DNODE_STAT_BUMP(dnode_free_interior_lock_retry);
1317 		kpreempt(KPREEMPT_SYNC);
1318 	}
1319 
1320 	dnode_set_slots(children, idx, slots, DN_SLOT_FREE);
1321 	dnode_slots_rele(children, idx, slots);
1322 }
1323 
1324 void
dnode_special_close(dnode_handle_t * dnh)1325 dnode_special_close(dnode_handle_t *dnh)
1326 {
1327 	dnode_t *dn = dnh->dnh_dnode;
1328 
1329 	/*
1330 	 * Ensure dnode_rele_and_unlock() has released dn_mtx, after final
1331 	 * zfs_refcount_remove()
1332 	 */
1333 	mutex_enter(&dn->dn_mtx);
1334 	if (zfs_refcount_count(&dn->dn_holds) > 0)
1335 		cv_wait(&dn->dn_nodnholds, &dn->dn_mtx);
1336 	mutex_exit(&dn->dn_mtx);
1337 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 0);
1338 
1339 	ASSERT(dn->dn_dbuf == NULL ||
1340 	    dmu_buf_get_user(&dn->dn_dbuf->db) == NULL);
1341 	zrl_add(&dnh->dnh_zrlock);
1342 	dnode_destroy(dn); /* implicit zrl_remove() */
1343 	zrl_destroy(&dnh->dnh_zrlock);
1344 	dnh->dnh_dnode = NULL;
1345 }
1346 
1347 void
dnode_special_open(objset_t * os,dnode_phys_t * dnp,uint64_t object,dnode_handle_t * dnh)1348 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
1349     dnode_handle_t *dnh)
1350 {
1351 	dnode_t *dn;
1352 
1353 	zrl_init(&dnh->dnh_zrlock);
1354 	VERIFY3U(1, ==, zrl_tryenter(&dnh->dnh_zrlock));
1355 
1356 	dn = dnode_create(os, dnp, NULL, object, dnh);
1357 	DNODE_VERIFY(dn);
1358 
1359 	zrl_exit(&dnh->dnh_zrlock);
1360 }
1361 
1362 static void
dnode_buf_evict_async(void * dbu)1363 dnode_buf_evict_async(void *dbu)
1364 {
1365 	dnode_children_t *dnc = dbu;
1366 
1367 	DNODE_STAT_BUMP(dnode_buf_evict);
1368 
1369 	for (int i = 0; i < dnc->dnc_count; i++) {
1370 		dnode_handle_t *dnh = &dnc->dnc_children[i];
1371 		dnode_t *dn;
1372 
1373 		/*
1374 		 * The dnode handle lock guards against the dnode moving to
1375 		 * another valid address, so there is no need here to guard
1376 		 * against changes to or from NULL.
1377 		 */
1378 		if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1379 			zrl_destroy(&dnh->dnh_zrlock);
1380 			dnh->dnh_dnode = DN_SLOT_UNINIT;
1381 			continue;
1382 		}
1383 
1384 		zrl_add(&dnh->dnh_zrlock);
1385 		dn = dnh->dnh_dnode;
1386 		/*
1387 		 * If there are holds on this dnode, then there should
1388 		 * be holds on the dnode's containing dbuf as well; thus
1389 		 * it wouldn't be eligible for eviction and this function
1390 		 * would not have been called.
1391 		 */
1392 		ASSERT(zfs_refcount_is_zero(&dn->dn_holds));
1393 		ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
1394 
1395 		dnode_destroy(dn); /* implicit zrl_remove() for first slot */
1396 		zrl_destroy(&dnh->dnh_zrlock);
1397 		dnh->dnh_dnode = DN_SLOT_UNINIT;
1398 	}
1399 	kmem_free(dnc, sizeof (dnode_children_t) +
1400 	    dnc->dnc_count * sizeof (dnode_handle_t));
1401 }
1402 
1403 /*
1404  * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used
1405  * to ensure the hole at the specified object offset is large enough to
1406  * hold the dnode being created. The slots parameter is also used to ensure
1407  * a dnode does not span multiple dnode blocks. In both of these cases, if
1408  * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases
1409  * are only possible when using DNODE_MUST_BE_FREE.
1410  *
1411  * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
1412  * dnode_hold_impl() will check if the requested dnode is already consumed
1413  * as an extra dnode slot by an large dnode, in which case it returns
1414  * ENOENT.
1415  *
1416  * If the DNODE_DRY_RUN flag is set, we don't actually hold the dnode, just
1417  * return whether the hold would succeed or not. tag and dnp should set to
1418  * NULL in this case.
1419  *
1420  * errors:
1421  * EINVAL - Invalid object number or flags.
1422  * ENOSPC - Hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE)
1423  * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE)
1424  *        - Refers to a freeing dnode (DNODE_MUST_BE_FREE)
1425  *        - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED)
1426  * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED)
1427  *        - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED)
1428  * EIO    - I/O error when reading the meta dnode dbuf.
1429  *
1430  * succeeds even for free dnodes.
1431  */
1432 int
dnode_hold_impl(objset_t * os,uint64_t object,int flag,int slots,const void * tag,dnode_t ** dnp)1433 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots,
1434     const void *tag, dnode_t **dnp)
1435 {
1436 	int epb, idx, err;
1437 	int drop_struct_lock = FALSE;
1438 	int type;
1439 	uint64_t blk;
1440 	dnode_t *mdn, *dn;
1441 	dmu_buf_impl_t *db;
1442 	dnode_children_t *dnc;
1443 	dnode_phys_t *dn_block;
1444 	dnode_handle_t *dnh;
1445 
1446 	ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0));
1447 	ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0));
1448 	IMPLY(flag & DNODE_DRY_RUN, (tag == NULL) && (dnp == NULL));
1449 
1450 	/*
1451 	 * If you are holding the spa config lock as writer, you shouldn't
1452 	 * be asking the DMU to do *anything* unless it's the root pool
1453 	 * which may require us to read from the root filesystem while
1454 	 * holding some (not all) of the locks as writer.
1455 	 */
1456 	ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1457 	    (spa_is_root(os->os_spa) &&
1458 	    spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1459 
1460 	ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE));
1461 
1462 	if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT ||
1463 	    object == DMU_PROJECTUSED_OBJECT) {
1464 		if (object == DMU_USERUSED_OBJECT)
1465 			dn = DMU_USERUSED_DNODE(os);
1466 		else if (object == DMU_GROUPUSED_OBJECT)
1467 			dn = DMU_GROUPUSED_DNODE(os);
1468 		else
1469 			dn = DMU_PROJECTUSED_DNODE(os);
1470 		if (dn == NULL)
1471 			return (SET_ERROR(ENOENT));
1472 		type = dn->dn_type;
1473 		if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1474 			return (SET_ERROR(ENOENT));
1475 		if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1476 			return (SET_ERROR(EEXIST));
1477 		DNODE_VERIFY(dn);
1478 		/* Don't actually hold if dry run, just return 0 */
1479 		if (!(flag & DNODE_DRY_RUN)) {
1480 			(void) zfs_refcount_add(&dn->dn_holds, tag);
1481 			*dnp = dn;
1482 		}
1483 		return (0);
1484 	}
1485 
1486 	if (object == 0 || object >= DN_MAX_OBJECT)
1487 		return (SET_ERROR(EINVAL));
1488 
1489 	mdn = DMU_META_DNODE(os);
1490 	ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1491 
1492 	DNODE_VERIFY(mdn);
1493 
1494 	if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1495 		rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1496 		drop_struct_lock = TRUE;
1497 	}
1498 
1499 	blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t));
1500 	db = dbuf_hold(mdn, blk, FTAG);
1501 	if (drop_struct_lock)
1502 		rw_exit(&mdn->dn_struct_rwlock);
1503 	if (db == NULL) {
1504 		DNODE_STAT_BUMP(dnode_hold_dbuf_hold);
1505 		return (SET_ERROR(EIO));
1506 	}
1507 
1508 	/*
1509 	 * We do not need to decrypt to read the dnode so it doesn't matter
1510 	 * if we get the encrypted or decrypted version.
1511 	 */
1512 	err = dbuf_read(db, NULL, DB_RF_CANFAIL |
1513 	    DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH);
1514 	if (err) {
1515 		DNODE_STAT_BUMP(dnode_hold_dbuf_read);
1516 		dbuf_rele(db, FTAG);
1517 		return (err);
1518 	}
1519 
1520 	ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1521 	epb = db->db.db_size >> DNODE_SHIFT;
1522 
1523 	idx = object & (epb - 1);
1524 	dn_block = (dnode_phys_t *)db->db.db_data;
1525 
1526 	ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1527 	dnc = dmu_buf_get_user(&db->db);
1528 	dnh = NULL;
1529 	if (dnc == NULL) {
1530 		dnode_children_t *winner;
1531 		int skip = 0;
1532 
1533 		dnc = kmem_zalloc(sizeof (dnode_children_t) +
1534 		    epb * sizeof (dnode_handle_t), KM_SLEEP);
1535 		dnc->dnc_count = epb;
1536 		dnh = &dnc->dnc_children[0];
1537 
1538 		/* Initialize dnode slot status from dnode_phys_t */
1539 		for (int i = 0; i < epb; i++) {
1540 			zrl_init(&dnh[i].dnh_zrlock);
1541 
1542 			if (skip) {
1543 				skip--;
1544 				continue;
1545 			}
1546 
1547 			if (dn_block[i].dn_type != DMU_OT_NONE) {
1548 				int interior = dn_block[i].dn_extra_slots;
1549 
1550 				dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED);
1551 				dnode_set_slots(dnc, i + 1, interior,
1552 				    DN_SLOT_INTERIOR);
1553 				skip = interior;
1554 			} else {
1555 				dnh[i].dnh_dnode = DN_SLOT_FREE;
1556 				skip = 0;
1557 			}
1558 		}
1559 
1560 		dmu_buf_init_user(&dnc->dnc_dbu, NULL,
1561 		    dnode_buf_evict_async, NULL);
1562 		winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu);
1563 		if (winner != NULL) {
1564 
1565 			for (int i = 0; i < epb; i++)
1566 				zrl_destroy(&dnh[i].dnh_zrlock);
1567 
1568 			kmem_free(dnc, sizeof (dnode_children_t) +
1569 			    epb * sizeof (dnode_handle_t));
1570 			dnc = winner;
1571 		}
1572 	}
1573 
1574 	ASSERT(dnc->dnc_count == epb);
1575 
1576 	if (flag & DNODE_MUST_BE_ALLOCATED) {
1577 		slots = 1;
1578 
1579 		dnode_slots_hold(dnc, idx, slots);
1580 		dnh = &dnc->dnc_children[idx];
1581 
1582 		if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1583 			dn = dnh->dnh_dnode;
1584 		} else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) {
1585 			DNODE_STAT_BUMP(dnode_hold_alloc_interior);
1586 			dnode_slots_rele(dnc, idx, slots);
1587 			dbuf_rele(db, FTAG);
1588 			return (SET_ERROR(EEXIST));
1589 		} else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) {
1590 			DNODE_STAT_BUMP(dnode_hold_alloc_misses);
1591 			dnode_slots_rele(dnc, idx, slots);
1592 			dbuf_rele(db, FTAG);
1593 			return (SET_ERROR(ENOENT));
1594 		} else {
1595 			dnode_slots_rele(dnc, idx, slots);
1596 			while (!dnode_slots_tryenter(dnc, idx, slots)) {
1597 				DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry);
1598 				kpreempt(KPREEMPT_SYNC);
1599 			}
1600 
1601 			/*
1602 			 * Someone else won the race and called dnode_create()
1603 			 * after we checked DN_SLOT_IS_PTR() above but before
1604 			 * we acquired the lock.
1605 			 */
1606 			if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1607 				DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses);
1608 				dn = dnh->dnh_dnode;
1609 			} else {
1610 				dn = dnode_create(os, dn_block + idx, db,
1611 				    object, dnh);
1612 				dmu_buf_add_user_size(&db->db,
1613 				    sizeof (dnode_t));
1614 			}
1615 		}
1616 
1617 		mutex_enter(&dn->dn_mtx);
1618 		if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) {
1619 			DNODE_STAT_BUMP(dnode_hold_alloc_type_none);
1620 			mutex_exit(&dn->dn_mtx);
1621 			dnode_slots_rele(dnc, idx, slots);
1622 			dbuf_rele(db, FTAG);
1623 			return (SET_ERROR(ENOENT));
1624 		}
1625 
1626 		/* Don't actually hold if dry run, just return 0 */
1627 		if (flag & DNODE_DRY_RUN) {
1628 			mutex_exit(&dn->dn_mtx);
1629 			dnode_slots_rele(dnc, idx, slots);
1630 			dbuf_rele(db, FTAG);
1631 			return (0);
1632 		}
1633 
1634 		DNODE_STAT_BUMP(dnode_hold_alloc_hits);
1635 	} else if (flag & DNODE_MUST_BE_FREE) {
1636 
1637 		if (idx + slots - 1 >= DNODES_PER_BLOCK) {
1638 			DNODE_STAT_BUMP(dnode_hold_free_overflow);
1639 			dbuf_rele(db, FTAG);
1640 			return (SET_ERROR(ENOSPC));
1641 		}
1642 
1643 		dnode_slots_hold(dnc, idx, slots);
1644 
1645 		if (!dnode_check_slots_free(dnc, idx, slots)) {
1646 			DNODE_STAT_BUMP(dnode_hold_free_misses);
1647 			dnode_slots_rele(dnc, idx, slots);
1648 			dbuf_rele(db, FTAG);
1649 			return (SET_ERROR(ENOSPC));
1650 		}
1651 
1652 		dnode_slots_rele(dnc, idx, slots);
1653 		while (!dnode_slots_tryenter(dnc, idx, slots)) {
1654 			DNODE_STAT_BUMP(dnode_hold_free_lock_retry);
1655 			kpreempt(KPREEMPT_SYNC);
1656 		}
1657 
1658 		if (!dnode_check_slots_free(dnc, idx, slots)) {
1659 			DNODE_STAT_BUMP(dnode_hold_free_lock_misses);
1660 			dnode_slots_rele(dnc, idx, slots);
1661 			dbuf_rele(db, FTAG);
1662 			return (SET_ERROR(ENOSPC));
1663 		}
1664 
1665 		/*
1666 		 * Allocated but otherwise free dnodes which would
1667 		 * be in the interior of a multi-slot dnodes need
1668 		 * to be freed.  Single slot dnodes can be safely
1669 		 * re-purposed as a performance optimization.
1670 		 */
1671 		if (slots > 1) {
1672 			uint_t reclaimed =
1673 			    dnode_reclaim_slots(dnc, idx + 1, slots - 1);
1674 			if (reclaimed > 0)
1675 				dmu_buf_sub_user_size(&db->db,
1676 				    reclaimed * sizeof (dnode_t));
1677 		}
1678 
1679 		dnh = &dnc->dnc_children[idx];
1680 		if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1681 			dn = dnh->dnh_dnode;
1682 		} else {
1683 			dn = dnode_create(os, dn_block + idx, db,
1684 			    object, dnh);
1685 			dmu_buf_add_user_size(&db->db, sizeof (dnode_t));
1686 		}
1687 
1688 		mutex_enter(&dn->dn_mtx);
1689 		if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) {
1690 			DNODE_STAT_BUMP(dnode_hold_free_refcount);
1691 			mutex_exit(&dn->dn_mtx);
1692 			dnode_slots_rele(dnc, idx, slots);
1693 			dbuf_rele(db, FTAG);
1694 			return (SET_ERROR(EEXIST));
1695 		}
1696 
1697 		/* Don't actually hold if dry run, just return 0 */
1698 		if (flag & DNODE_DRY_RUN) {
1699 			mutex_exit(&dn->dn_mtx);
1700 			dnode_slots_rele(dnc, idx, slots);
1701 			dbuf_rele(db, FTAG);
1702 			return (0);
1703 		}
1704 
1705 		dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR);
1706 		DNODE_STAT_BUMP(dnode_hold_free_hits);
1707 	} else {
1708 		dbuf_rele(db, FTAG);
1709 		return (SET_ERROR(EINVAL));
1710 	}
1711 
1712 	ASSERT0(dn->dn_free_txg);
1713 
1714 	if (zfs_refcount_add(&dn->dn_holds, tag) == 1)
1715 		dbuf_add_ref(db, dnh);
1716 
1717 	mutex_exit(&dn->dn_mtx);
1718 
1719 	/* Now we can rely on the hold to prevent the dnode from moving. */
1720 	dnode_slots_rele(dnc, idx, slots);
1721 
1722 	DNODE_VERIFY(dn);
1723 	ASSERT3P(dnp, !=, NULL);
1724 	ASSERT3P(dn->dn_dbuf, ==, db);
1725 	ASSERT3U(dn->dn_object, ==, object);
1726 	dbuf_rele(db, FTAG);
1727 
1728 	*dnp = dn;
1729 	return (0);
1730 }
1731 
1732 /*
1733  * Return held dnode if the object is allocated, NULL if not.
1734  */
1735 int
dnode_hold(objset_t * os,uint64_t object,const void * tag,dnode_t ** dnp)1736 dnode_hold(objset_t *os, uint64_t object, const void *tag, dnode_t **dnp)
1737 {
1738 	return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag,
1739 	    dnp));
1740 }
1741 
1742 /*
1743  * Can only add a reference if there is already at least one
1744  * reference on the dnode.  Returns FALSE if unable to add a
1745  * new reference.
1746  */
1747 boolean_t
dnode_add_ref(dnode_t * dn,const void * tag)1748 dnode_add_ref(dnode_t *dn, const void *tag)
1749 {
1750 	mutex_enter(&dn->dn_mtx);
1751 	if (zfs_refcount_is_zero(&dn->dn_holds)) {
1752 		mutex_exit(&dn->dn_mtx);
1753 		return (FALSE);
1754 	}
1755 	VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag));
1756 	mutex_exit(&dn->dn_mtx);
1757 	return (TRUE);
1758 }
1759 
1760 void
dnode_rele(dnode_t * dn,const void * tag)1761 dnode_rele(dnode_t *dn, const void *tag)
1762 {
1763 	mutex_enter(&dn->dn_mtx);
1764 	dnode_rele_and_unlock(dn, tag, B_FALSE);
1765 }
1766 
1767 void
dnode_rele_and_unlock(dnode_t * dn,const void * tag,boolean_t evicting)1768 dnode_rele_and_unlock(dnode_t *dn, const void *tag, boolean_t evicting)
1769 {
1770 	uint64_t refs;
1771 	/* Get while the hold prevents the dnode from moving. */
1772 	dmu_buf_impl_t *db = dn->dn_dbuf;
1773 	dnode_handle_t *dnh = dn->dn_handle;
1774 
1775 	refs = zfs_refcount_remove(&dn->dn_holds, tag);
1776 	if (refs == 0)
1777 		cv_broadcast(&dn->dn_nodnholds);
1778 	mutex_exit(&dn->dn_mtx);
1779 	/* dnode could get destroyed at this point, so don't use it anymore */
1780 
1781 	/*
1782 	 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1783 	 * indirectly by dbuf_rele() while relying on the dnode handle to
1784 	 * prevent the dnode from moving, since releasing the last hold could
1785 	 * result in the dnode's parent dbuf evicting its dnode handles. For
1786 	 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1787 	 * other direct or indirect hold on the dnode must first drop the dnode
1788 	 * handle.
1789 	 */
1790 #ifdef ZFS_DEBUG
1791 	ASSERT(refs > 0 || zrl_owner(&dnh->dnh_zrlock) != curthread);
1792 #endif
1793 
1794 	/* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1795 	if (refs == 0 && db != NULL) {
1796 		/*
1797 		 * Another thread could add a hold to the dnode handle in
1798 		 * dnode_hold_impl() while holding the parent dbuf. Since the
1799 		 * hold on the parent dbuf prevents the handle from being
1800 		 * destroyed, the hold on the handle is OK. We can't yet assert
1801 		 * that the handle has zero references, but that will be
1802 		 * asserted anyway when the handle gets destroyed.
1803 		 */
1804 		mutex_enter(&db->db_mtx);
1805 		dbuf_rele_and_unlock(db, dnh, evicting);
1806 	}
1807 }
1808 
1809 /*
1810  * Test whether we can create a dnode at the specified location.
1811  */
1812 int
dnode_try_claim(objset_t * os,uint64_t object,int slots)1813 dnode_try_claim(objset_t *os, uint64_t object, int slots)
1814 {
1815 	return (dnode_hold_impl(os, object, DNODE_MUST_BE_FREE | DNODE_DRY_RUN,
1816 	    slots, NULL, NULL));
1817 }
1818 
1819 /*
1820  * Checks if the dnode itself is dirty, or is carrying any uncommitted records.
1821  * It is important to check both conditions, as some operations (eg appending
1822  * to a file) can dirty both as a single logical unit, but they are not synced
1823  * out atomically, so checking one and not the other can result in an object
1824  * appearing to be clean mid-way through a commit.
1825  *
1826  * Do not change this lightly! If you get it wrong, dmu_offset_next() can
1827  * detect a hole where there is really data, leading to silent corruption.
1828  */
1829 boolean_t
dnode_is_dirty(dnode_t * dn)1830 dnode_is_dirty(dnode_t *dn)
1831 {
1832 	mutex_enter(&dn->dn_mtx);
1833 
1834 	for (int i = 0; i < TXG_SIZE; i++) {
1835 		if (multilist_link_active(&dn->dn_dirty_link[i]) ||
1836 		    !list_is_empty(&dn->dn_dirty_records[i])) {
1837 			mutex_exit(&dn->dn_mtx);
1838 			return (B_TRUE);
1839 		}
1840 	}
1841 
1842 	mutex_exit(&dn->dn_mtx);
1843 
1844 	return (B_FALSE);
1845 }
1846 
1847 void
dnode_setdirty(dnode_t * dn,dmu_tx_t * tx)1848 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1849 {
1850 	objset_t *os = dn->dn_objset;
1851 	uint64_t txg = tx->tx_txg;
1852 
1853 	if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1854 		dsl_dataset_dirty(os->os_dsl_dataset, tx);
1855 		return;
1856 	}
1857 
1858 	DNODE_VERIFY(dn);
1859 
1860 #ifdef ZFS_DEBUG
1861 	mutex_enter(&dn->dn_mtx);
1862 	ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1863 	ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1864 	mutex_exit(&dn->dn_mtx);
1865 #endif
1866 
1867 	/*
1868 	 * Determine old uid/gid when necessary
1869 	 */
1870 	dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1871 
1872 	multilist_t *dirtylist = &os->os_dirty_dnodes[txg & TXG_MASK];
1873 	multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn);
1874 
1875 	/*
1876 	 * If we are already marked dirty, we're done.
1877 	 */
1878 	if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1879 		multilist_sublist_unlock(mls);
1880 		return;
1881 	}
1882 
1883 	ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) ||
1884 	    !avl_is_empty(&dn->dn_dbufs));
1885 	ASSERT(dn->dn_datablksz != 0);
1886 	ASSERT0(dn->dn_next_bonuslen[txg & TXG_MASK]);
1887 	ASSERT0(dn->dn_next_blksz[txg & TXG_MASK]);
1888 	ASSERT0(dn->dn_next_bonustype[txg & TXG_MASK]);
1889 
1890 	dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1891 	    (u_longlong_t)dn->dn_object, (u_longlong_t)txg);
1892 
1893 	multilist_sublist_insert_head(mls, dn);
1894 
1895 	multilist_sublist_unlock(mls);
1896 
1897 	/*
1898 	 * The dnode maintains a hold on its containing dbuf as
1899 	 * long as there are holds on it.  Each instantiated child
1900 	 * dbuf maintains a hold on the dnode.  When the last child
1901 	 * drops its hold, the dnode will drop its hold on the
1902 	 * containing dbuf. We add a "dirty hold" here so that the
1903 	 * dnode will hang around after we finish processing its
1904 	 * children.
1905 	 */
1906 	VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1907 
1908 	(void) dbuf_dirty(dn->dn_dbuf, tx);
1909 
1910 	dsl_dataset_dirty(os->os_dsl_dataset, tx);
1911 }
1912 
1913 void
dnode_free(dnode_t * dn,dmu_tx_t * tx)1914 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1915 {
1916 	mutex_enter(&dn->dn_mtx);
1917 	if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1918 		mutex_exit(&dn->dn_mtx);
1919 		return;
1920 	}
1921 	dn->dn_free_txg = tx->tx_txg;
1922 	mutex_exit(&dn->dn_mtx);
1923 
1924 	dnode_setdirty(dn, tx);
1925 }
1926 
1927 /*
1928  * Try to change the block size for the indicated dnode.  This can only
1929  * succeed if there are no blocks allocated or dirty beyond first block
1930  */
1931 int
dnode_set_blksz(dnode_t * dn,uint64_t size,int ibs,dmu_tx_t * tx)1932 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1933 {
1934 	dmu_buf_impl_t *db;
1935 	int err;
1936 
1937 	ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
1938 	if (size == 0)
1939 		size = SPA_MINBLOCKSIZE;
1940 	else
1941 		size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1942 
1943 	if (ibs == dn->dn_indblkshift)
1944 		ibs = 0;
1945 
1946 	if (size == dn->dn_datablksz && ibs == 0)
1947 		return (0);
1948 
1949 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1950 
1951 	/* Check for any allocated blocks beyond the first */
1952 	if (dn->dn_maxblkid != 0)
1953 		goto fail;
1954 
1955 	mutex_enter(&dn->dn_dbufs_mtx);
1956 	for (db = avl_first(&dn->dn_dbufs); db != NULL;
1957 	    db = AVL_NEXT(&dn->dn_dbufs, db)) {
1958 		if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1959 		    db->db_blkid != DMU_SPILL_BLKID) {
1960 			mutex_exit(&dn->dn_dbufs_mtx);
1961 			goto fail;
1962 		}
1963 	}
1964 	mutex_exit(&dn->dn_dbufs_mtx);
1965 
1966 	if (ibs && dn->dn_nlevels != 1)
1967 		goto fail;
1968 
1969 	dnode_setdirty(dn, tx);
1970 	if (size != dn->dn_datablksz) {
1971 		/* resize the old block */
1972 		err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db);
1973 		if (err == 0) {
1974 			dbuf_new_size(db, size, tx);
1975 		} else if (err != ENOENT) {
1976 			goto fail;
1977 		}
1978 
1979 		dnode_setdblksz(dn, size);
1980 		dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = size;
1981 		if (db)
1982 			dbuf_rele(db, FTAG);
1983 	}
1984 	if (ibs) {
1985 		dn->dn_indblkshift = ibs;
1986 		dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
1987 	}
1988 
1989 	rw_exit(&dn->dn_struct_rwlock);
1990 	return (0);
1991 
1992 fail:
1993 	rw_exit(&dn->dn_struct_rwlock);
1994 	return (SET_ERROR(ENOTSUP));
1995 }
1996 
1997 static void
dnode_set_nlevels_impl(dnode_t * dn,int new_nlevels,dmu_tx_t * tx)1998 dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx)
1999 {
2000 	uint64_t txgoff = tx->tx_txg & TXG_MASK;
2001 	int old_nlevels = dn->dn_nlevels;
2002 	dmu_buf_impl_t *db;
2003 	list_t *list;
2004 	dbuf_dirty_record_t *new, *dr, *dr_next;
2005 
2006 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2007 
2008 	ASSERT3U(new_nlevels, >, dn->dn_nlevels);
2009 	dn->dn_nlevels = new_nlevels;
2010 
2011 	ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
2012 	dn->dn_next_nlevels[txgoff] = new_nlevels;
2013 
2014 	/* dirty the left indirects */
2015 	db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
2016 	ASSERT(db != NULL);
2017 	new = dbuf_dirty(db, tx);
2018 	dbuf_rele(db, FTAG);
2019 
2020 	/* transfer the dirty records to the new indirect */
2021 	mutex_enter(&dn->dn_mtx);
2022 	mutex_enter(&new->dt.di.dr_mtx);
2023 	list = &dn->dn_dirty_records[txgoff];
2024 	for (dr = list_head(list); dr; dr = dr_next) {
2025 		dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
2026 
2027 		IMPLY(dr->dr_dbuf == NULL, old_nlevels == 1);
2028 		if (dr->dr_dbuf == NULL ||
2029 		    (dr->dr_dbuf->db_level == old_nlevels - 1 &&
2030 		    dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
2031 		    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID)) {
2032 			list_remove(&dn->dn_dirty_records[txgoff], dr);
2033 			list_insert_tail(&new->dt.di.dr_children, dr);
2034 			dr->dr_parent = new;
2035 		}
2036 	}
2037 	mutex_exit(&new->dt.di.dr_mtx);
2038 	mutex_exit(&dn->dn_mtx);
2039 }
2040 
2041 int
dnode_set_nlevels(dnode_t * dn,int nlevels,dmu_tx_t * tx)2042 dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx)
2043 {
2044 	int ret = 0;
2045 
2046 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2047 
2048 	if (dn->dn_nlevels == nlevels) {
2049 		ret = 0;
2050 		goto out;
2051 	} else if (nlevels < dn->dn_nlevels) {
2052 		ret = SET_ERROR(EINVAL);
2053 		goto out;
2054 	}
2055 
2056 	dnode_set_nlevels_impl(dn, nlevels, tx);
2057 
2058 out:
2059 	rw_exit(&dn->dn_struct_rwlock);
2060 	return (ret);
2061 }
2062 
2063 /* read-holding callers must not rely on the lock being continuously held */
2064 void
dnode_new_blkid(dnode_t * dn,uint64_t blkid,dmu_tx_t * tx,boolean_t have_read,boolean_t force)2065 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read,
2066     boolean_t force)
2067 {
2068 	int epbs, new_nlevels;
2069 	uint64_t sz;
2070 
2071 	ASSERT(blkid != DMU_BONUS_BLKID);
2072 
2073 	ASSERT(have_read ?
2074 	    RW_READ_HELD(&dn->dn_struct_rwlock) :
2075 	    RW_WRITE_HELD(&dn->dn_struct_rwlock));
2076 
2077 	/*
2078 	 * if we have a read-lock, check to see if we need to do any work
2079 	 * before upgrading to a write-lock.
2080 	 */
2081 	if (have_read) {
2082 		if (blkid <= dn->dn_maxblkid)
2083 			return;
2084 
2085 		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
2086 			rw_exit(&dn->dn_struct_rwlock);
2087 			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2088 		}
2089 	}
2090 
2091 	/*
2092 	 * Raw sends (indicated by the force flag) require that we take the
2093 	 * given blkid even if the value is lower than the current value.
2094 	 */
2095 	if (!force && blkid <= dn->dn_maxblkid)
2096 		goto out;
2097 
2098 	/*
2099 	 * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff]
2100 	 * to indicate that this field is set. This allows us to set the
2101 	 * maxblkid to 0 on an existing object in dnode_sync().
2102 	 */
2103 	dn->dn_maxblkid = blkid;
2104 	dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] =
2105 	    blkid | DMU_NEXT_MAXBLKID_SET;
2106 
2107 	/*
2108 	 * Compute the number of levels necessary to support the new maxblkid.
2109 	 * Raw sends will ensure nlevels is set correctly for us.
2110 	 */
2111 	new_nlevels = 1;
2112 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2113 	for (sz = dn->dn_nblkptr;
2114 	    sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
2115 		new_nlevels++;
2116 
2117 	ASSERT3U(new_nlevels, <=, DN_MAX_LEVELS);
2118 
2119 	if (!force) {
2120 		if (new_nlevels > dn->dn_nlevels)
2121 			dnode_set_nlevels_impl(dn, new_nlevels, tx);
2122 	} else {
2123 		ASSERT3U(dn->dn_nlevels, >=, new_nlevels);
2124 	}
2125 
2126 out:
2127 	if (have_read)
2128 		rw_downgrade(&dn->dn_struct_rwlock);
2129 }
2130 
2131 static void
dnode_dirty_l1(dnode_t * dn,uint64_t l1blkid,dmu_tx_t * tx)2132 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx)
2133 {
2134 	dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG);
2135 	if (db != NULL) {
2136 		dmu_buf_will_dirty(&db->db, tx);
2137 		dbuf_rele(db, FTAG);
2138 	}
2139 }
2140 
2141 /*
2142  * Dirty all the in-core level-1 dbufs in the range specified by start_blkid
2143  * and end_blkid.
2144  */
2145 static void
dnode_dirty_l1range(dnode_t * dn,uint64_t start_blkid,uint64_t end_blkid,dmu_tx_t * tx)2146 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
2147     dmu_tx_t *tx)
2148 {
2149 	dmu_buf_impl_t *db_search;
2150 	dmu_buf_impl_t *db;
2151 	avl_index_t where;
2152 
2153 	db_search = kmem_zalloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
2154 
2155 	mutex_enter(&dn->dn_dbufs_mtx);
2156 
2157 	db_search->db_level = 1;
2158 	db_search->db_blkid = start_blkid + 1;
2159 	db_search->db_state = DB_SEARCH;
2160 	for (;;) {
2161 
2162 		db = avl_find(&dn->dn_dbufs, db_search, &where);
2163 		if (db == NULL)
2164 			db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
2165 
2166 		if (db == NULL || db->db_level != 1 ||
2167 		    db->db_blkid >= end_blkid) {
2168 			break;
2169 		}
2170 
2171 		/*
2172 		 * Setup the next blkid we want to search for.
2173 		 */
2174 		db_search->db_blkid = db->db_blkid + 1;
2175 		ASSERT3U(db->db_blkid, >=, start_blkid);
2176 
2177 		/*
2178 		 * If the dbuf transitions to DB_EVICTING while we're trying
2179 		 * to dirty it, then we will be unable to discover it in
2180 		 * the dbuf hash table. This will result in a call to
2181 		 * dbuf_create() which needs to acquire the dn_dbufs_mtx
2182 		 * lock. To avoid a deadlock, we drop the lock before
2183 		 * dirtying the level-1 dbuf.
2184 		 */
2185 		mutex_exit(&dn->dn_dbufs_mtx);
2186 		dnode_dirty_l1(dn, db->db_blkid, tx);
2187 		mutex_enter(&dn->dn_dbufs_mtx);
2188 	}
2189 
2190 #ifdef ZFS_DEBUG
2191 	/*
2192 	 * Walk all the in-core level-1 dbufs and verify they have been dirtied.
2193 	 */
2194 	db_search->db_level = 1;
2195 	db_search->db_blkid = start_blkid + 1;
2196 	db_search->db_state = DB_SEARCH;
2197 	db = avl_find(&dn->dn_dbufs, db_search, &where);
2198 	if (db == NULL)
2199 		db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
2200 	for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) {
2201 		if (db->db_level != 1 || db->db_blkid >= end_blkid)
2202 			break;
2203 		if (db->db_state != DB_EVICTING)
2204 			ASSERT(db->db_dirtycnt > 0);
2205 	}
2206 #endif
2207 	kmem_free(db_search, sizeof (dmu_buf_impl_t));
2208 	mutex_exit(&dn->dn_dbufs_mtx);
2209 }
2210 
2211 void
dnode_set_dirtyctx(dnode_t * dn,dmu_tx_t * tx,const void * tag)2212 dnode_set_dirtyctx(dnode_t *dn, dmu_tx_t *tx, const void *tag)
2213 {
2214 	/*
2215 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
2216 	 * initialize the objset.
2217 	 */
2218 	if (dn->dn_dirtyctx == DN_UNDIRTIED) {
2219 		dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2220 
2221 		if (ds != NULL) {
2222 			rrw_enter(&ds->ds_bp_rwlock, RW_READER, tag);
2223 		}
2224 		if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
2225 			if (dmu_tx_is_syncing(tx))
2226 				dn->dn_dirtyctx = DN_DIRTY_SYNC;
2227 			else
2228 				dn->dn_dirtyctx = DN_DIRTY_OPEN;
2229 			dn->dn_dirtyctx_firstset = tag;
2230 		}
2231 		if (ds != NULL) {
2232 			rrw_exit(&ds->ds_bp_rwlock, tag);
2233 		}
2234 	}
2235 }
2236 
2237 static void
dnode_partial_zero(dnode_t * dn,uint64_t off,uint64_t blkoff,uint64_t len,dmu_tx_t * tx)2238 dnode_partial_zero(dnode_t *dn, uint64_t off, uint64_t blkoff, uint64_t len,
2239     dmu_tx_t *tx)
2240 {
2241 	dmu_buf_impl_t *db;
2242 	int res;
2243 
2244 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2245 	res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off), TRUE, FALSE,
2246 	    FTAG, &db);
2247 	rw_exit(&dn->dn_struct_rwlock);
2248 	if (res == 0) {
2249 		db_lock_type_t dblt;
2250 		boolean_t dirty;
2251 
2252 		dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2253 		/* don't dirty if not on disk and not dirty */
2254 		dirty = !list_is_empty(&db->db_dirty_records) ||
2255 		    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr));
2256 		dmu_buf_unlock_parent(db, dblt, FTAG);
2257 		if (dirty) {
2258 			caddr_t data;
2259 
2260 			dmu_buf_will_dirty(&db->db, tx);
2261 			data = db->db.db_data;
2262 			memset(data + blkoff, 0, len);
2263 		}
2264 		dbuf_rele(db, FTAG);
2265 	}
2266 }
2267 
2268 void
dnode_free_range(dnode_t * dn,uint64_t off,uint64_t len,dmu_tx_t * tx)2269 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
2270 {
2271 	uint64_t blkoff, blkid, nblks;
2272 	int blksz, blkshift, head, tail;
2273 	int trunc = FALSE;
2274 	int epbs;
2275 
2276 	blksz = dn->dn_datablksz;
2277 	blkshift = dn->dn_datablkshift;
2278 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2279 
2280 	if (len == DMU_OBJECT_END) {
2281 		len = UINT64_MAX - off;
2282 		trunc = TRUE;
2283 	}
2284 
2285 	/*
2286 	 * First, block align the region to free:
2287 	 */
2288 	if (ISP2(blksz)) {
2289 		head = P2NPHASE(off, blksz);
2290 		blkoff = P2PHASE(off, blksz);
2291 		if ((off >> blkshift) > dn->dn_maxblkid)
2292 			return;
2293 	} else {
2294 		ASSERT(dn->dn_maxblkid == 0);
2295 		if (off == 0 && len >= blksz) {
2296 			/*
2297 			 * Freeing the whole block; fast-track this request.
2298 			 */
2299 			blkid = 0;
2300 			nblks = 1;
2301 			if (dn->dn_nlevels > 1) {
2302 				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2303 				dnode_dirty_l1(dn, 0, tx);
2304 				rw_exit(&dn->dn_struct_rwlock);
2305 			}
2306 			goto done;
2307 		} else if (off >= blksz) {
2308 			/* Freeing past end-of-data */
2309 			return;
2310 		} else {
2311 			/* Freeing part of the block. */
2312 			head = blksz - off;
2313 			ASSERT3U(head, >, 0);
2314 		}
2315 		blkoff = off;
2316 	}
2317 	/* zero out any partial block data at the start of the range */
2318 	if (head) {
2319 		ASSERT3U(blkoff + head, ==, blksz);
2320 		if (len < head)
2321 			head = len;
2322 		dnode_partial_zero(dn, off, blkoff, head, tx);
2323 		off += head;
2324 		len -= head;
2325 	}
2326 
2327 	/* If the range was less than one block, we're done */
2328 	if (len == 0)
2329 		return;
2330 
2331 	/* If the remaining range is past end of file, we're done */
2332 	if ((off >> blkshift) > dn->dn_maxblkid)
2333 		return;
2334 
2335 	ASSERT(ISP2(blksz));
2336 	if (trunc)
2337 		tail = 0;
2338 	else
2339 		tail = P2PHASE(len, blksz);
2340 
2341 	ASSERT0(P2PHASE(off, blksz));
2342 	/* zero out any partial block data at the end of the range */
2343 	if (tail) {
2344 		if (len < tail)
2345 			tail = len;
2346 		dnode_partial_zero(dn, off + len, 0, tail, tx);
2347 		len -= tail;
2348 	}
2349 
2350 	/* If the range did not include a full block, we are done */
2351 	if (len == 0)
2352 		return;
2353 
2354 	ASSERT(IS_P2ALIGNED(off, blksz));
2355 	ASSERT(trunc || IS_P2ALIGNED(len, blksz));
2356 	blkid = off >> blkshift;
2357 	nblks = len >> blkshift;
2358 	if (trunc)
2359 		nblks += 1;
2360 
2361 	/*
2362 	 * Dirty all the indirect blocks in this range.  Note that only
2363 	 * the first and last indirect blocks can actually be written
2364 	 * (if they were partially freed) -- they must be dirtied, even if
2365 	 * they do not exist on disk yet.  The interior blocks will
2366 	 * be freed by free_children(), so they will not actually be written.
2367 	 * Even though these interior blocks will not be written, we
2368 	 * dirty them for two reasons:
2369 	 *
2370 	 *  - It ensures that the indirect blocks remain in memory until
2371 	 *    syncing context.  (They have already been prefetched by
2372 	 *    dmu_tx_hold_free(), so we don't have to worry about reading
2373 	 *    them serially here.)
2374 	 *
2375 	 *  - The dirty space accounting will put pressure on the txg sync
2376 	 *    mechanism to begin syncing, and to delay transactions if there
2377 	 *    is a large amount of freeing.  Even though these indirect
2378 	 *    blocks will not be written, we could need to write the same
2379 	 *    amount of space if we copy the freed BPs into deadlists.
2380 	 */
2381 	if (dn->dn_nlevels > 1) {
2382 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2383 		uint64_t first, last;
2384 
2385 		first = blkid >> epbs;
2386 		dnode_dirty_l1(dn, first, tx);
2387 		if (trunc)
2388 			last = dn->dn_maxblkid >> epbs;
2389 		else
2390 			last = (blkid + nblks - 1) >> epbs;
2391 		if (last != first)
2392 			dnode_dirty_l1(dn, last, tx);
2393 
2394 		dnode_dirty_l1range(dn, first, last, tx);
2395 
2396 		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
2397 		    SPA_BLKPTRSHIFT;
2398 		for (uint64_t i = first + 1; i < last; i++) {
2399 			/*
2400 			 * Set i to the blockid of the next non-hole
2401 			 * level-1 indirect block at or after i.  Note
2402 			 * that dnode_next_offset() operates in terms of
2403 			 * level-0-equivalent bytes.
2404 			 */
2405 			uint64_t ibyte = i << shift;
2406 			int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
2407 			    &ibyte, 2, 1, 0);
2408 			i = ibyte >> shift;
2409 			if (i >= last)
2410 				break;
2411 
2412 			/*
2413 			 * Normally we should not see an error, either
2414 			 * from dnode_next_offset() or dbuf_hold_level()
2415 			 * (except for ESRCH from dnode_next_offset).
2416 			 * If there is an i/o error, then when we read
2417 			 * this block in syncing context, it will use
2418 			 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according
2419 			 * to the "failmode" property.  dnode_next_offset()
2420 			 * doesn't have a flag to indicate MUSTSUCCEED.
2421 			 */
2422 			if (err != 0)
2423 				break;
2424 
2425 			dnode_dirty_l1(dn, i, tx);
2426 		}
2427 		rw_exit(&dn->dn_struct_rwlock);
2428 	}
2429 
2430 done:
2431 	/*
2432 	 * Add this range to the dnode range list.
2433 	 * We will finish up this free operation in the syncing phase.
2434 	 */
2435 	mutex_enter(&dn->dn_mtx);
2436 	{
2437 		int txgoff = tx->tx_txg & TXG_MASK;
2438 		if (dn->dn_free_ranges[txgoff] == NULL) {
2439 			dn->dn_free_ranges[txgoff] = zfs_range_tree_create(NULL,
2440 			    ZFS_RANGE_SEG64, NULL, 0, 0);
2441 		}
2442 		zfs_range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
2443 		zfs_range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
2444 	}
2445 	dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
2446 	    (u_longlong_t)blkid, (u_longlong_t)nblks,
2447 	    (u_longlong_t)tx->tx_txg);
2448 	mutex_exit(&dn->dn_mtx);
2449 
2450 	dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
2451 	dnode_setdirty(dn, tx);
2452 }
2453 
2454 static boolean_t
dnode_spill_freed(dnode_t * dn)2455 dnode_spill_freed(dnode_t *dn)
2456 {
2457 	int i;
2458 
2459 	mutex_enter(&dn->dn_mtx);
2460 	for (i = 0; i < TXG_SIZE; i++) {
2461 		if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
2462 			break;
2463 	}
2464 	mutex_exit(&dn->dn_mtx);
2465 	return (i < TXG_SIZE);
2466 }
2467 
2468 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
2469 uint64_t
dnode_block_freed(dnode_t * dn,uint64_t blkid)2470 dnode_block_freed(dnode_t *dn, uint64_t blkid)
2471 {
2472 	int i;
2473 
2474 	if (blkid == DMU_BONUS_BLKID)
2475 		return (FALSE);
2476 
2477 	if (dn->dn_free_txg)
2478 		return (TRUE);
2479 
2480 	if (blkid == DMU_SPILL_BLKID)
2481 		return (dnode_spill_freed(dn));
2482 
2483 	mutex_enter(&dn->dn_mtx);
2484 	for (i = 0; i < TXG_SIZE; i++) {
2485 		if (dn->dn_free_ranges[i] != NULL &&
2486 		    zfs_range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
2487 			break;
2488 	}
2489 	mutex_exit(&dn->dn_mtx);
2490 	return (i < TXG_SIZE);
2491 }
2492 
2493 /* call from syncing context when we actually write/free space for this dnode */
2494 void
dnode_diduse_space(dnode_t * dn,int64_t delta)2495 dnode_diduse_space(dnode_t *dn, int64_t delta)
2496 {
2497 	uint64_t space;
2498 	dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
2499 	    dn, dn->dn_phys,
2500 	    (u_longlong_t)dn->dn_phys->dn_used,
2501 	    (longlong_t)delta);
2502 
2503 	mutex_enter(&dn->dn_mtx);
2504 	space = DN_USED_BYTES(dn->dn_phys);
2505 	if (delta > 0) {
2506 		ASSERT3U(space + delta, >=, space); /* no overflow */
2507 	} else {
2508 		ASSERT3U(space, >=, -delta); /* no underflow */
2509 	}
2510 	space += delta;
2511 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
2512 		ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
2513 		ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
2514 		dn->dn_phys->dn_used = space >> DEV_BSHIFT;
2515 	} else {
2516 		dn->dn_phys->dn_used = space;
2517 		dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
2518 	}
2519 	mutex_exit(&dn->dn_mtx);
2520 }
2521 
2522 /*
2523  * Scans a block at the indicated "level" looking for a hole or data,
2524  * depending on 'flags'.
2525  *
2526  * If level > 0, then we are scanning an indirect block looking at its
2527  * pointers.  If level == 0, then we are looking at a block of dnodes.
2528  *
2529  * If we don't find what we are looking for in the block, we return ESRCH.
2530  * Otherwise, return with *offset pointing to the beginning (if searching
2531  * forwards) or end (if searching backwards) of the range covered by the
2532  * block pointer we matched on (or dnode).
2533  *
2534  * The basic search algorithm used below by dnode_next_offset() is to
2535  * use this function to search up the block tree (widen the search) until
2536  * we find something (i.e., we don't return ESRCH) and then search back
2537  * down the tree (narrow the search) until we reach our original search
2538  * level.
2539  */
2540 static int
dnode_next_offset_level(dnode_t * dn,int flags,uint64_t * offset,int lvl,uint64_t blkfill,uint64_t txg)2541 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
2542     int lvl, uint64_t blkfill, uint64_t txg)
2543 {
2544 	dmu_buf_impl_t *db = NULL;
2545 	void *data = NULL;
2546 	uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2547 	uint64_t epb = 1ULL << epbs;
2548 	uint64_t minfill, maxfill;
2549 	boolean_t hole;
2550 	int i, inc, error, span;
2551 
2552 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2553 
2554 	hole = ((flags & DNODE_FIND_HOLE) != 0);
2555 	inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
2556 	ASSERT(txg == 0 || !hole);
2557 
2558 	if (lvl == dn->dn_phys->dn_nlevels) {
2559 		error = 0;
2560 		epb = dn->dn_phys->dn_nblkptr;
2561 		data = dn->dn_phys->dn_blkptr;
2562 	} else {
2563 		uint64_t blkid = dbuf_whichblock(dn, lvl, *offset);
2564 		error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db);
2565 		if (error) {
2566 			if (error != ENOENT)
2567 				return (error);
2568 			if (hole)
2569 				return (0);
2570 			/*
2571 			 * This can only happen when we are searching up
2572 			 * the block tree for data.  We don't really need to
2573 			 * adjust the offset, as we will just end up looking
2574 			 * at the pointer to this block in its parent, and its
2575 			 * going to be unallocated, so we will skip over it.
2576 			 */
2577 			return (SET_ERROR(ESRCH));
2578 		}
2579 		error = dbuf_read(db, NULL,
2580 		    DB_RF_CANFAIL | DB_RF_HAVESTRUCT |
2581 		    DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH);
2582 		if (error) {
2583 			dbuf_rele(db, FTAG);
2584 			return (error);
2585 		}
2586 		data = db->db.db_data;
2587 		rw_enter(&db->db_rwlock, RW_READER);
2588 	}
2589 
2590 	if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
2591 	    BP_GET_LOGICAL_BIRTH(db->db_blkptr) <= txg ||
2592 	    BP_IS_HOLE(db->db_blkptr))) {
2593 		/*
2594 		 * This can only happen when we are searching up the tree
2595 		 * and these conditions mean that we need to keep climbing.
2596 		 */
2597 		error = SET_ERROR(ESRCH);
2598 	} else if (lvl == 0) {
2599 		dnode_phys_t *dnp = data;
2600 
2601 		ASSERT(dn->dn_type == DMU_OT_DNODE);
2602 		ASSERT(!(flags & DNODE_FIND_BACKWARDS));
2603 
2604 		for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1);
2605 		    i < blkfill; i += dnp[i].dn_extra_slots + 1) {
2606 			if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
2607 				break;
2608 		}
2609 
2610 		if (i == blkfill)
2611 			error = SET_ERROR(ESRCH);
2612 
2613 		*offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) +
2614 		    (i << DNODE_SHIFT);
2615 	} else {
2616 		blkptr_t *bp = data;
2617 		uint64_t start = *offset;
2618 		span = (lvl - 1) * epbs + dn->dn_datablkshift;
2619 		minfill = 0;
2620 		maxfill = blkfill << ((lvl - 1) * epbs);
2621 
2622 		if (hole)
2623 			maxfill--;
2624 		else
2625 			minfill++;
2626 
2627 		if (span >= 8 * sizeof (*offset)) {
2628 			/* This only happens on the highest indirection level */
2629 			ASSERT3U((lvl - 1), ==, dn->dn_phys->dn_nlevels - 1);
2630 			*offset = 0;
2631 		} else {
2632 			*offset = *offset >> span;
2633 		}
2634 
2635 		for (i = BF64_GET(*offset, 0, epbs);
2636 		    i >= 0 && i < epb; i += inc) {
2637 			if (BP_GET_FILL(&bp[i]) >= minfill &&
2638 			    BP_GET_FILL(&bp[i]) <= maxfill &&
2639 			    (hole || BP_GET_LOGICAL_BIRTH(&bp[i]) > txg))
2640 				break;
2641 			if (inc > 0 || *offset > 0)
2642 				*offset += inc;
2643 		}
2644 
2645 		if (span >= 8 * sizeof (*offset)) {
2646 			*offset = start;
2647 		} else {
2648 			*offset = *offset << span;
2649 		}
2650 
2651 		if (inc < 0) {
2652 			/* traversing backwards; position offset at the end */
2653 			if (span < 8 * sizeof (*offset))
2654 				*offset = MIN(*offset + (1ULL << span) - 1,
2655 				    start);
2656 		} else if (*offset < start) {
2657 			*offset = start;
2658 		}
2659 		if (i < 0 || i >= epb)
2660 			error = SET_ERROR(ESRCH);
2661 	}
2662 
2663 	if (db != NULL) {
2664 		rw_exit(&db->db_rwlock);
2665 		dbuf_rele(db, FTAG);
2666 	}
2667 
2668 	return (error);
2669 }
2670 
2671 /*
2672  * Find the next hole, data, or sparse region at or after *offset.
2673  * The value 'blkfill' tells us how many items we expect to find
2674  * in an L0 data block; this value is 1 for normal objects,
2675  * DNODES_PER_BLOCK for the meta dnode, and some fraction of
2676  * DNODES_PER_BLOCK when searching for sparse regions thereof.
2677  *
2678  * Examples:
2679  *
2680  * dnode_next_offset(dn, flags, offset, 1, 1, 0);
2681  *	Finds the next/previous hole/data in a file.
2682  *	Used in dmu_offset_next().
2683  *
2684  * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
2685  *	Finds the next free/allocated dnode an objset's meta-dnode.
2686  *	Only finds objects that have new contents since txg (ie.
2687  *	bonus buffer changes and content removal are ignored).
2688  *	Used in dmu_object_next().
2689  *
2690  * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
2691  *	Finds the next L2 meta-dnode bp that's at most 1/4 full.
2692  *	Used in dmu_object_alloc().
2693  */
2694 int
dnode_next_offset(dnode_t * dn,int flags,uint64_t * offset,int minlvl,uint64_t blkfill,uint64_t txg)2695 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
2696     int minlvl, uint64_t blkfill, uint64_t txg)
2697 {
2698 	uint64_t initial_offset = *offset;
2699 	int lvl, maxlvl;
2700 	int error = 0;
2701 
2702 	if (!(flags & DNODE_FIND_HAVELOCK))
2703 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
2704 
2705 	if (dn->dn_phys->dn_nlevels == 0) {
2706 		error = SET_ERROR(ESRCH);
2707 		goto out;
2708 	}
2709 
2710 	if (dn->dn_datablkshift == 0) {
2711 		if (*offset < dn->dn_datablksz) {
2712 			if (flags & DNODE_FIND_HOLE)
2713 				*offset = dn->dn_datablksz;
2714 		} else {
2715 			error = SET_ERROR(ESRCH);
2716 		}
2717 		goto out;
2718 	}
2719 
2720 	maxlvl = dn->dn_phys->dn_nlevels;
2721 
2722 	for (lvl = minlvl; lvl <= maxlvl; lvl++) {
2723 		error = dnode_next_offset_level(dn,
2724 		    flags, offset, lvl, blkfill, txg);
2725 		if (error != ESRCH)
2726 			break;
2727 	}
2728 
2729 	while (error == 0 && --lvl >= minlvl) {
2730 		error = dnode_next_offset_level(dn,
2731 		    flags, offset, lvl, blkfill, txg);
2732 	}
2733 
2734 	/*
2735 	 * There's always a "virtual hole" at the end of the object, even
2736 	 * if all BP's which physically exist are non-holes.
2737 	 */
2738 	if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
2739 	    minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
2740 		error = 0;
2741 	}
2742 
2743 	if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
2744 	    initial_offset < *offset : initial_offset > *offset))
2745 		error = SET_ERROR(ESRCH);
2746 out:
2747 	if (!(flags & DNODE_FIND_HAVELOCK))
2748 		rw_exit(&dn->dn_struct_rwlock);
2749 
2750 	return (error);
2751 }
2752 
2753 #if defined(_KERNEL)
2754 EXPORT_SYMBOL(dnode_hold);
2755 EXPORT_SYMBOL(dnode_rele);
2756 EXPORT_SYMBOL(dnode_set_nlevels);
2757 EXPORT_SYMBOL(dnode_set_blksz);
2758 EXPORT_SYMBOL(dnode_free_range);
2759 EXPORT_SYMBOL(dnode_evict_dbufs);
2760 EXPORT_SYMBOL(dnode_evict_bonus);
2761 #endif
2762 
2763 ZFS_MODULE_PARAM(zfs, zfs_, default_bs, INT, ZMOD_RW,
2764 	"Default dnode block shift");
2765 ZFS_MODULE_PARAM(zfs, zfs_, default_ibs, INT, ZMOD_RW,
2766 	"Default dnode indirect block shift");
2767