xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zio_crypt.c (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * This file and its contents are supplied under the terms of the
6  * Common Development and Distribution License ("CDDL"), version 1.0.
7  * You may only use this file in accordance with the terms of version
8  * 1.0 of the CDDL.
9  *
10  * A full copy of the text of the CDDL should have accompanied this
11  * source.  A copy of the CDDL is also available via the Internet at
12  * http://www.illumos.org/license/CDDL.
13  *
14  * CDDL HEADER END
15  */
16 
17 /*
18  * Copyright (c) 2017, Datto, Inc. All rights reserved.
19  */
20 
21 #include <sys/zio_crypt.h>
22 #include <sys/dmu.h>
23 #include <sys/dmu_objset.h>
24 #include <sys/dnode.h>
25 #include <sys/fs/zfs.h>
26 #include <sys/zio.h>
27 #include <sys/zil.h>
28 #include <sys/sha2.h>
29 #include <sys/hkdf.h>
30 #include <sys/qat.h>
31 
32 /*
33  * This file is responsible for handling all of the details of generating
34  * encryption parameters and performing encryption and authentication.
35  *
36  * BLOCK ENCRYPTION PARAMETERS:
37  * Encryption /Authentication Algorithm Suite (crypt):
38  * The encryption algorithm, mode, and key length we are going to use. We
39  * currently support AES in either GCM or CCM modes with 128, 192, and 256 bit
40  * keys. All authentication is currently done with SHA512-HMAC.
41  *
42  * Plaintext:
43  * The unencrypted data that we want to encrypt.
44  *
45  * Initialization Vector (IV):
46  * An initialization vector for the encryption algorithms. This is used to
47  * "tweak" the encryption algorithms so that two blocks of the same data are
48  * encrypted into different ciphertext outputs, thus obfuscating block patterns.
49  * The supported encryption modes (AES-GCM and AES-CCM) require that an IV is
50  * never reused with the same encryption key. This value is stored unencrypted
51  * and must simply be provided to the decryption function. We use a 96 bit IV
52  * (as recommended by NIST) for all block encryption. For non-dedup blocks we
53  * derive the IV randomly. The first 64 bits of the IV are stored in the second
54  * word of DVA[2] and the remaining 32 bits are stored in the upper 32 bits of
55  * blk_fill. This is safe because encrypted blocks can't use the upper 32 bits
56  * of blk_fill. We only encrypt level 0 blocks, which normally have a fill count
57  * of 1. The only exception is for DMU_OT_DNODE objects, where the fill count of
58  * level 0 blocks is the number of allocated dnodes in that block. The on-disk
59  * format supports at most 2^15 slots per L0 dnode block, because the maximum
60  * block size is 16MB (2^24). In either case, for level 0 blocks this number
61  * will still be smaller than UINT32_MAX so it is safe to store the IV in the
62  * top 32 bits of blk_fill, while leaving the bottom 32 bits of the fill count
63  * for the dnode code.
64  *
65  * Master key:
66  * This is the most important secret data of an encrypted dataset. It is used
67  * along with the salt to generate that actual encryption keys via HKDF. We
68  * do not use the master key to directly encrypt any data because there are
69  * theoretical limits on how much data can actually be safely encrypted with
70  * any encryption mode. The master key is stored encrypted on disk with the
71  * user's wrapping key. Its length is determined by the encryption algorithm.
72  * For details on how this is stored see the block comment in dsl_crypt.c
73  *
74  * Salt:
75  * Used as an input to the HKDF function, along with the master key. We use a
76  * 64 bit salt, stored unencrypted in the first word of DVA[2]. Any given salt
77  * can be used for encrypting many blocks, so we cache the current salt and the
78  * associated derived key in zio_crypt_t so we do not need to derive it again
79  * needlessly.
80  *
81  * Encryption Key:
82  * A secret binary key, generated from an HKDF function used to encrypt and
83  * decrypt data.
84  *
85  * Message Authentication Code (MAC)
86  * The MAC is an output of authenticated encryption modes such as AES-GCM and
87  * AES-CCM. Its purpose is to ensure that an attacker cannot modify encrypted
88  * data on disk and return garbage to the application. Effectively, it is a
89  * checksum that can not be reproduced by an attacker. We store the MAC in the
90  * second 128 bits of blk_cksum, leaving the first 128 bits for a truncated
91  * regular checksum of the ciphertext which can be used for scrubbing.
92  *
93  * OBJECT AUTHENTICATION:
94  * Some object types, such as DMU_OT_MASTER_NODE cannot be encrypted because
95  * they contain some info that always needs to be readable. To prevent this
96  * data from being altered, we authenticate this data using SHA512-HMAC. This
97  * will produce a MAC (similar to the one produced via encryption) which can
98  * be used to verify the object was not modified. HMACs do not require key
99  * rotation or IVs, so we can keep up to the full 3 copies of authenticated
100  * data.
101  *
102  * ZIL ENCRYPTION:
103  * ZIL blocks have their bp written to disk ahead of the associated data, so we
104  * cannot store the MAC there as we normally do. For these blocks the MAC is
105  * stored in the embedded checksum within the zil_chain_t header. The salt and
106  * IV are generated for the block on bp allocation instead of at encryption
107  * time. In addition, ZIL blocks have some pieces that must be left in plaintext
108  * for claiming even though all of the sensitive user data still needs to be
109  * encrypted. The function zio_crypt_init_uios_zil() handles parsing which
110  * pieces of the block need to be encrypted. All data that is not encrypted is
111  * authenticated using the AAD mechanisms that the supported encryption modes
112  * provide for. In order to preserve the semantics of the ZIL for encrypted
113  * datasets, the ZIL is not protected at the objset level as described below.
114  *
115  * DNODE ENCRYPTION:
116  * Similarly to ZIL blocks, the core part of each dnode_phys_t needs to be left
117  * in plaintext for scrubbing and claiming, but the bonus buffers might contain
118  * sensitive user data. The function zio_crypt_init_uios_dnode() handles parsing
119  * which pieces of the block need to be encrypted. For more details about
120  * dnode authentication and encryption, see zio_crypt_init_uios_dnode().
121  *
122  * OBJECT SET AUTHENTICATION:
123  * Up to this point, everything we have encrypted and authenticated has been
124  * at level 0 (or -2 for the ZIL). If we did not do any further work the
125  * on-disk format would be susceptible to attacks that deleted or rearranged
126  * the order of level 0 blocks. Ideally, the cleanest solution would be to
127  * maintain a tree of authentication MACs going up the bp tree. However, this
128  * presents a problem for raw sends. Send files do not send information about
129  * indirect blocks so there would be no convenient way to transfer the MACs and
130  * they cannot be recalculated on the receive side without the master key which
131  * would defeat one of the purposes of raw sends in the first place. Instead,
132  * for the indirect levels of the bp tree, we use a regular SHA512 of the MACs
133  * from the level below. We also include some portable fields from blk_prop such
134  * as the lsize and compression algorithm to prevent the data from being
135  * misinterpreted.
136  *
137  * At the objset level, we maintain 2 separate 256 bit MACs in the
138  * objset_phys_t. The first one is "portable" and is the logical root of the
139  * MAC tree maintained in the metadnode's bps. The second, is "local" and is
140  * used as the root MAC for the user accounting objects, which are also not
141  * transferred via "zfs send". The portable MAC is sent in the DRR_BEGIN payload
142  * of the send file. The useraccounting code ensures that the useraccounting
143  * info is not present upon a receive, so the local MAC can simply be cleared
144  * out at that time. For more info about objset_phys_t authentication, see
145  * zio_crypt_do_objset_hmacs().
146  *
147  * CONSIDERATIONS FOR DEDUP:
148  * In order for dedup to work, blocks that we want to dedup with one another
149  * need to use the same IV and encryption key, so that they will have the same
150  * ciphertext. Normally, one should never reuse an IV with the same encryption
151  * key or else AES-GCM and AES-CCM can both actually leak the plaintext of both
152  * blocks. In this case, however, since we are using the same plaintext as
153  * well all that we end up with is a duplicate of the original ciphertext we
154  * already had. As a result, an attacker with read access to the raw disk will
155  * be able to tell which blocks are the same but this information is given away
156  * by dedup anyway. In order to get the same IVs and encryption keys for
157  * equivalent blocks of data we use an HMAC of the plaintext. We use an HMAC
158  * here so that a reproducible checksum of the plaintext is never available to
159  * the attacker. The HMAC key is kept alongside the master key, encrypted on
160  * disk. The first 64 bits of the HMAC are used in place of the random salt, and
161  * the next 96 bits are used as the IV. As a result of this mechanism, dedup
162  * will only work within a clone family since encrypted dedup requires use of
163  * the same master and HMAC keys.
164  */
165 
166 /*
167  * After encrypting many blocks with the same key we may start to run up
168  * against the theoretical limits of how much data can securely be encrypted
169  * with a single key using the supported encryption modes. The most obvious
170  * limitation is that our risk of generating 2 equivalent 96 bit IVs increases
171  * the more IVs we generate (which both GCM and CCM modes strictly forbid).
172  * This risk actually grows surprisingly quickly over time according to the
173  * Birthday Problem. With a total IV space of 2^(96 bits), and assuming we have
174  * generated n IVs with a cryptographically secure RNG, the approximate
175  * probability p(n) of a collision is given as:
176  *
177  * p(n) ~= e^(-n*(n-1)/(2*(2^96)))
178  *
179  * [http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html]
180  *
181  * Assuming that we want to ensure that p(n) never goes over 1 / 1 trillion
182  * we must not write more than 398,065,730 blocks with the same encryption key.
183  * Therefore, we rotate our keys after 400,000,000 blocks have been written by
184  * generating a new random 64 bit salt for our HKDF encryption key generation
185  * function.
186  */
187 #define	ZFS_KEY_MAX_SALT_USES_DEFAULT	400000000
188 #define	ZFS_CURRENT_MAX_SALT_USES	\
189 	(MIN(zfs_key_max_salt_uses, ZFS_KEY_MAX_SALT_USES_DEFAULT))
190 static unsigned long zfs_key_max_salt_uses = ZFS_KEY_MAX_SALT_USES_DEFAULT;
191 
192 typedef struct blkptr_auth_buf {
193 	uint64_t bab_prop;			/* blk_prop - portable mask */
194 	uint8_t bab_mac[ZIO_DATA_MAC_LEN];	/* MAC from blk_cksum */
195 	uint64_t bab_pad;			/* reserved for future use */
196 } blkptr_auth_buf_t;
197 
198 const zio_crypt_info_t zio_crypt_table[ZIO_CRYPT_FUNCTIONS] = {
199 	{"",			ZC_TYPE_NONE,	0,	"inherit"},
200 	{"",			ZC_TYPE_NONE,	0,	"on"},
201 	{"",			ZC_TYPE_NONE,	0,	"off"},
202 	{SUN_CKM_AES_CCM,	ZC_TYPE_CCM,	16,	"aes-128-ccm"},
203 	{SUN_CKM_AES_CCM,	ZC_TYPE_CCM,	24,	"aes-192-ccm"},
204 	{SUN_CKM_AES_CCM,	ZC_TYPE_CCM,	32,	"aes-256-ccm"},
205 	{SUN_CKM_AES_GCM,	ZC_TYPE_GCM,	16,	"aes-128-gcm"},
206 	{SUN_CKM_AES_GCM,	ZC_TYPE_GCM,	24,	"aes-192-gcm"},
207 	{SUN_CKM_AES_GCM,	ZC_TYPE_GCM,	32,	"aes-256-gcm"}
208 };
209 
210 void
zio_crypt_key_destroy(zio_crypt_key_t * key)211 zio_crypt_key_destroy(zio_crypt_key_t *key)
212 {
213 	rw_destroy(&key->zk_salt_lock);
214 
215 	/* free crypto templates */
216 	crypto_destroy_ctx_template(key->zk_current_tmpl);
217 	crypto_destroy_ctx_template(key->zk_hmac_tmpl);
218 
219 	/* zero out sensitive data */
220 	memset(key, 0, sizeof (zio_crypt_key_t));
221 }
222 
223 int
zio_crypt_key_init(uint64_t crypt,zio_crypt_key_t * key)224 zio_crypt_key_init(uint64_t crypt, zio_crypt_key_t *key)
225 {
226 	int ret;
227 	crypto_mechanism_t mech = {0};
228 	uint_t keydata_len;
229 
230 	ASSERT(key != NULL);
231 	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
232 
233 /*
234  * Workaround for GCC 12+ with UBSan enabled deficencies.
235  *
236  * GCC 12+ invoked with -fsanitize=undefined incorrectly reports the code
237  * below as violating -Warray-bounds
238  */
239 #if defined(__GNUC__) && !defined(__clang__) && \
240 	((!defined(_KERNEL) && defined(ZFS_UBSAN_ENABLED)) || \
241 	    defined(CONFIG_UBSAN))
242 #pragma GCC diagnostic push
243 #pragma GCC diagnostic ignored "-Warray-bounds"
244 #endif
245 	keydata_len = zio_crypt_table[crypt].ci_keylen;
246 #if defined(__GNUC__) && !defined(__clang__) && \
247 	((!defined(_KERNEL) && defined(ZFS_UBSAN_ENABLED)) || \
248 	    defined(CONFIG_UBSAN))
249 #pragma GCC diagnostic pop
250 #endif
251 	memset(key, 0, sizeof (zio_crypt_key_t));
252 	rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
253 
254 	/* fill keydata buffers and salt with random data */
255 	ret = random_get_bytes((uint8_t *)&key->zk_guid, sizeof (uint64_t));
256 	if (ret != 0)
257 		goto error;
258 
259 	ret = random_get_bytes(key->zk_master_keydata, keydata_len);
260 	if (ret != 0)
261 		goto error;
262 
263 	ret = random_get_bytes(key->zk_hmac_keydata, SHA512_HMAC_KEYLEN);
264 	if (ret != 0)
265 		goto error;
266 
267 	ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
268 	if (ret != 0)
269 		goto error;
270 
271 	/* derive the current key from the master key */
272 	ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
273 	    key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
274 	    keydata_len);
275 	if (ret != 0)
276 		goto error;
277 
278 	/* initialize keys for the ICP */
279 	key->zk_current_key.ck_data = key->zk_current_keydata;
280 	key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
281 
282 	key->zk_hmac_key.ck_data = &key->zk_hmac_key;
283 	key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
284 
285 	/*
286 	 * Initialize the crypto templates. It's ok if this fails because
287 	 * this is just an optimization.
288 	 */
289 	mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
290 	ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
291 	    &key->zk_current_tmpl);
292 	if (ret != CRYPTO_SUCCESS)
293 		key->zk_current_tmpl = NULL;
294 
295 	mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
296 	ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
297 	    &key->zk_hmac_tmpl);
298 	if (ret != CRYPTO_SUCCESS)
299 		key->zk_hmac_tmpl = NULL;
300 
301 	key->zk_crypt = crypt;
302 	key->zk_version = ZIO_CRYPT_KEY_CURRENT_VERSION;
303 	key->zk_salt_count = 0;
304 
305 	return (0);
306 
307 error:
308 	zio_crypt_key_destroy(key);
309 	return (ret);
310 }
311 
312 static int
zio_crypt_key_change_salt(zio_crypt_key_t * key)313 zio_crypt_key_change_salt(zio_crypt_key_t *key)
314 {
315 	int ret = 0;
316 	uint8_t salt[ZIO_DATA_SALT_LEN];
317 	crypto_mechanism_t mech;
318 	uint_t keydata_len = zio_crypt_table[key->zk_crypt].ci_keylen;
319 
320 	/* generate a new salt */
321 	ret = random_get_bytes(salt, ZIO_DATA_SALT_LEN);
322 	if (ret != 0)
323 		goto error;
324 
325 	rw_enter(&key->zk_salt_lock, RW_WRITER);
326 
327 	/* someone beat us to the salt rotation, just unlock and return */
328 	if (key->zk_salt_count < ZFS_CURRENT_MAX_SALT_USES)
329 		goto out_unlock;
330 
331 	/* derive the current key from the master key and the new salt */
332 	ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
333 	    salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, keydata_len);
334 	if (ret != 0)
335 		goto out_unlock;
336 
337 	/* assign the salt and reset the usage count */
338 	memcpy(key->zk_salt, salt, ZIO_DATA_SALT_LEN);
339 	key->zk_salt_count = 0;
340 
341 	/* destroy the old context template and create the new one */
342 	crypto_destroy_ctx_template(key->zk_current_tmpl);
343 	ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
344 	    &key->zk_current_tmpl);
345 	if (ret != CRYPTO_SUCCESS)
346 		key->zk_current_tmpl = NULL;
347 
348 	rw_exit(&key->zk_salt_lock);
349 
350 	return (0);
351 
352 out_unlock:
353 	rw_exit(&key->zk_salt_lock);
354 error:
355 	return (ret);
356 }
357 
358 /* See comment above zfs_key_max_salt_uses definition for details */
359 int
zio_crypt_key_get_salt(zio_crypt_key_t * key,uint8_t * salt)360 zio_crypt_key_get_salt(zio_crypt_key_t *key, uint8_t *salt)
361 {
362 	int ret;
363 	boolean_t salt_change;
364 
365 	rw_enter(&key->zk_salt_lock, RW_READER);
366 
367 	memcpy(salt, key->zk_salt, ZIO_DATA_SALT_LEN);
368 	salt_change = (atomic_inc_64_nv(&key->zk_salt_count) >=
369 	    ZFS_CURRENT_MAX_SALT_USES);
370 
371 	rw_exit(&key->zk_salt_lock);
372 
373 	if (salt_change) {
374 		ret = zio_crypt_key_change_salt(key);
375 		if (ret != 0)
376 			goto error;
377 	}
378 
379 	return (0);
380 
381 error:
382 	return (ret);
383 }
384 
385 /*
386  * This function handles all encryption and decryption in zfs. When
387  * encrypting it expects puio to reference the plaintext and cuio to
388  * reference the ciphertext. cuio must have enough space for the
389  * ciphertext + room for a MAC. datalen should be the length of the
390  * plaintext / ciphertext alone.
391  */
392 static int
zio_do_crypt_uio(boolean_t encrypt,uint64_t crypt,crypto_key_t * key,crypto_ctx_template_t tmpl,uint8_t * ivbuf,uint_t datalen,zfs_uio_t * puio,zfs_uio_t * cuio,uint8_t * authbuf,uint_t auth_len)393 zio_do_crypt_uio(boolean_t encrypt, uint64_t crypt, crypto_key_t *key,
394     crypto_ctx_template_t tmpl, uint8_t *ivbuf, uint_t datalen,
395     zfs_uio_t *puio, zfs_uio_t *cuio, uint8_t *authbuf, uint_t auth_len)
396 {
397 	int ret;
398 	crypto_data_t plaindata, cipherdata;
399 	CK_AES_CCM_PARAMS ccmp;
400 	CK_AES_GCM_PARAMS gcmp;
401 	crypto_mechanism_t mech;
402 	zio_crypt_info_t crypt_info;
403 	uint_t plain_full_len, maclen;
404 
405 	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
406 
407 	/* lookup the encryption info */
408 	crypt_info = zio_crypt_table[crypt];
409 
410 	/* the mac will always be the last iovec_t in the cipher uio */
411 	maclen = cuio->uio_iov[cuio->uio_iovcnt - 1].iov_len;
412 
413 	ASSERT(maclen <= ZIO_DATA_MAC_LEN);
414 
415 	/* setup encryption mechanism (same as crypt) */
416 	mech.cm_type = crypto_mech2id(crypt_info.ci_mechname);
417 
418 	/*
419 	 * Strangely, the ICP requires that plain_full_len must include
420 	 * the MAC length when decrypting, even though the UIO does not
421 	 * need to have the extra space allocated.
422 	 */
423 	if (encrypt) {
424 		plain_full_len = datalen;
425 	} else {
426 		plain_full_len = datalen + maclen;
427 	}
428 
429 	/*
430 	 * setup encryption params (currently only AES CCM and AES GCM
431 	 * are supported)
432 	 */
433 	if (crypt_info.ci_crypt_type == ZC_TYPE_CCM) {
434 		ccmp.ulNonceSize = ZIO_DATA_IV_LEN;
435 		ccmp.ulAuthDataSize = auth_len;
436 		ccmp.authData = authbuf;
437 		ccmp.ulMACSize = maclen;
438 		ccmp.nonce = ivbuf;
439 		ccmp.ulDataSize = plain_full_len;
440 
441 		mech.cm_param = (char *)(&ccmp);
442 		mech.cm_param_len = sizeof (CK_AES_CCM_PARAMS);
443 	} else {
444 		gcmp.ulIvLen = ZIO_DATA_IV_LEN;
445 		gcmp.ulIvBits = CRYPTO_BYTES2BITS(ZIO_DATA_IV_LEN);
446 		gcmp.ulAADLen = auth_len;
447 		gcmp.pAAD = authbuf;
448 		gcmp.ulTagBits = CRYPTO_BYTES2BITS(maclen);
449 		gcmp.pIv = ivbuf;
450 
451 		mech.cm_param = (char *)(&gcmp);
452 		mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS);
453 	}
454 
455 	/* populate the cipher and plain data structs. */
456 	plaindata.cd_format = CRYPTO_DATA_UIO;
457 	plaindata.cd_offset = 0;
458 	plaindata.cd_uio = puio;
459 	plaindata.cd_length = plain_full_len;
460 
461 	cipherdata.cd_format = CRYPTO_DATA_UIO;
462 	cipherdata.cd_offset = 0;
463 	cipherdata.cd_uio = cuio;
464 	cipherdata.cd_length = datalen + maclen;
465 
466 	/* perform the actual encryption */
467 	if (encrypt) {
468 		ret = crypto_encrypt(&mech, &plaindata, key, tmpl, &cipherdata);
469 		if (ret != CRYPTO_SUCCESS) {
470 			ret = SET_ERROR(EIO);
471 			goto error;
472 		}
473 	} else {
474 		ret = crypto_decrypt(&mech, &cipherdata, key, tmpl, &plaindata);
475 		if (ret != CRYPTO_SUCCESS) {
476 			ASSERT3U(ret, ==, CRYPTO_INVALID_MAC);
477 			ret = SET_ERROR(ECKSUM);
478 			goto error;
479 		}
480 	}
481 
482 	return (0);
483 
484 error:
485 	return (ret);
486 }
487 
488 int
zio_crypt_key_wrap(crypto_key_t * cwkey,zio_crypt_key_t * key,uint8_t * iv,uint8_t * mac,uint8_t * keydata_out,uint8_t * hmac_keydata_out)489 zio_crypt_key_wrap(crypto_key_t *cwkey, zio_crypt_key_t *key, uint8_t *iv,
490     uint8_t *mac, uint8_t *keydata_out, uint8_t *hmac_keydata_out)
491 {
492 	int ret;
493 	zfs_uio_t puio, cuio;
494 	uint64_t aad[3];
495 	iovec_t plain_iovecs[2], cipher_iovecs[3];
496 	uint64_t crypt = key->zk_crypt;
497 	uint_t enc_len, keydata_len, aad_len;
498 
499 	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
500 
501 	keydata_len = zio_crypt_table[crypt].ci_keylen;
502 
503 	/* generate iv for wrapping the master and hmac key */
504 	ret = random_get_pseudo_bytes(iv, WRAPPING_IV_LEN);
505 	if (ret != 0)
506 		goto error;
507 
508 	/* initialize zfs_uio_ts */
509 	plain_iovecs[0].iov_base = key->zk_master_keydata;
510 	plain_iovecs[0].iov_len = keydata_len;
511 	plain_iovecs[1].iov_base = key->zk_hmac_keydata;
512 	plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
513 
514 	cipher_iovecs[0].iov_base = keydata_out;
515 	cipher_iovecs[0].iov_len = keydata_len;
516 	cipher_iovecs[1].iov_base = hmac_keydata_out;
517 	cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
518 	cipher_iovecs[2].iov_base = mac;
519 	cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
520 
521 	/*
522 	 * Although we don't support writing to the old format, we do
523 	 * support rewrapping the key so that the user can move and
524 	 * quarantine datasets on the old format.
525 	 */
526 	if (key->zk_version == 0) {
527 		aad_len = sizeof (uint64_t);
528 		aad[0] = LE_64(key->zk_guid);
529 	} else {
530 		ASSERT3U(key->zk_version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
531 		aad_len = sizeof (uint64_t) * 3;
532 		aad[0] = LE_64(key->zk_guid);
533 		aad[1] = LE_64(crypt);
534 		aad[2] = LE_64(key->zk_version);
535 	}
536 
537 	enc_len = zio_crypt_table[crypt].ci_keylen + SHA512_HMAC_KEYLEN;
538 	puio.uio_iov = plain_iovecs;
539 	puio.uio_iovcnt = 2;
540 	puio.uio_segflg = UIO_SYSSPACE;
541 	cuio.uio_iov = cipher_iovecs;
542 	cuio.uio_iovcnt = 3;
543 	cuio.uio_segflg = UIO_SYSSPACE;
544 
545 	/* encrypt the keys and store the resulting ciphertext and mac */
546 	ret = zio_do_crypt_uio(B_TRUE, crypt, cwkey, NULL, iv, enc_len,
547 	    &puio, &cuio, (uint8_t *)aad, aad_len);
548 	if (ret != 0)
549 		goto error;
550 
551 	return (0);
552 
553 error:
554 	return (ret);
555 }
556 
557 int
zio_crypt_key_unwrap(crypto_key_t * cwkey,uint64_t crypt,uint64_t version,uint64_t guid,uint8_t * keydata,uint8_t * hmac_keydata,uint8_t * iv,uint8_t * mac,zio_crypt_key_t * key)558 zio_crypt_key_unwrap(crypto_key_t *cwkey, uint64_t crypt, uint64_t version,
559     uint64_t guid, uint8_t *keydata, uint8_t *hmac_keydata, uint8_t *iv,
560     uint8_t *mac, zio_crypt_key_t *key)
561 {
562 	crypto_mechanism_t mech;
563 	zfs_uio_t puio, cuio;
564 	uint64_t aad[3];
565 	iovec_t plain_iovecs[2], cipher_iovecs[3];
566 	uint_t enc_len, keydata_len, aad_len;
567 	int ret;
568 
569 	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
570 
571 	rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
572 
573 	keydata_len = zio_crypt_table[crypt].ci_keylen;
574 
575 	/* initialize zfs_uio_ts */
576 	plain_iovecs[0].iov_base = key->zk_master_keydata;
577 	plain_iovecs[0].iov_len = keydata_len;
578 	plain_iovecs[1].iov_base = key->zk_hmac_keydata;
579 	plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
580 
581 	cipher_iovecs[0].iov_base = keydata;
582 	cipher_iovecs[0].iov_len = keydata_len;
583 	cipher_iovecs[1].iov_base = hmac_keydata;
584 	cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
585 	cipher_iovecs[2].iov_base = mac;
586 	cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
587 
588 	if (version == 0) {
589 		aad_len = sizeof (uint64_t);
590 		aad[0] = LE_64(guid);
591 	} else {
592 		ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
593 		aad_len = sizeof (uint64_t) * 3;
594 		aad[0] = LE_64(guid);
595 		aad[1] = LE_64(crypt);
596 		aad[2] = LE_64(version);
597 	}
598 
599 	enc_len = keydata_len + SHA512_HMAC_KEYLEN;
600 	puio.uio_iov = plain_iovecs;
601 	puio.uio_segflg = UIO_SYSSPACE;
602 	puio.uio_iovcnt = 2;
603 	cuio.uio_iov = cipher_iovecs;
604 	cuio.uio_iovcnt = 3;
605 	cuio.uio_segflg = UIO_SYSSPACE;
606 
607 	/* decrypt the keys and store the result in the output buffers */
608 	ret = zio_do_crypt_uio(B_FALSE, crypt, cwkey, NULL, iv, enc_len,
609 	    &puio, &cuio, (uint8_t *)aad, aad_len);
610 	if (ret != 0)
611 		goto error;
612 
613 	/* generate a fresh salt */
614 	ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
615 	if (ret != 0)
616 		goto error;
617 
618 	/* derive the current key from the master key */
619 	ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
620 	    key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
621 	    keydata_len);
622 	if (ret != 0)
623 		goto error;
624 
625 	/* initialize keys for ICP */
626 	key->zk_current_key.ck_data = key->zk_current_keydata;
627 	key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
628 
629 	key->zk_hmac_key.ck_data = key->zk_hmac_keydata;
630 	key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
631 
632 	/*
633 	 * Initialize the crypto templates. It's ok if this fails because
634 	 * this is just an optimization.
635 	 */
636 	mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
637 	ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
638 	    &key->zk_current_tmpl);
639 	if (ret != CRYPTO_SUCCESS)
640 		key->zk_current_tmpl = NULL;
641 
642 	mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
643 	ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
644 	    &key->zk_hmac_tmpl);
645 	if (ret != CRYPTO_SUCCESS)
646 		key->zk_hmac_tmpl = NULL;
647 
648 	key->zk_crypt = crypt;
649 	key->zk_version = version;
650 	key->zk_guid = guid;
651 	key->zk_salt_count = 0;
652 
653 	return (0);
654 
655 error:
656 	zio_crypt_key_destroy(key);
657 	return (ret);
658 }
659 
660 int
zio_crypt_generate_iv(uint8_t * ivbuf)661 zio_crypt_generate_iv(uint8_t *ivbuf)
662 {
663 	int ret;
664 
665 	/* randomly generate the IV */
666 	ret = random_get_pseudo_bytes(ivbuf, ZIO_DATA_IV_LEN);
667 	if (ret != 0)
668 		goto error;
669 
670 	return (0);
671 
672 error:
673 	memset(ivbuf, 0, ZIO_DATA_IV_LEN);
674 	return (ret);
675 }
676 
677 int
zio_crypt_do_hmac(zio_crypt_key_t * key,uint8_t * data,uint_t datalen,uint8_t * digestbuf,uint_t digestlen)678 zio_crypt_do_hmac(zio_crypt_key_t *key, uint8_t *data, uint_t datalen,
679     uint8_t *digestbuf, uint_t digestlen)
680 {
681 	int ret;
682 	crypto_mechanism_t mech;
683 	crypto_data_t in_data, digest_data;
684 	uint8_t raw_digestbuf[SHA512_DIGEST_LENGTH];
685 
686 	ASSERT3U(digestlen, <=, SHA512_DIGEST_LENGTH);
687 
688 	/* initialize sha512-hmac mechanism and crypto data */
689 	mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
690 	mech.cm_param = NULL;
691 	mech.cm_param_len = 0;
692 
693 	/* initialize the crypto data */
694 	in_data.cd_format = CRYPTO_DATA_RAW;
695 	in_data.cd_offset = 0;
696 	in_data.cd_length = datalen;
697 	in_data.cd_raw.iov_base = (char *)data;
698 	in_data.cd_raw.iov_len = in_data.cd_length;
699 
700 	digest_data.cd_format = CRYPTO_DATA_RAW;
701 	digest_data.cd_offset = 0;
702 	digest_data.cd_length = SHA512_DIGEST_LENGTH;
703 	digest_data.cd_raw.iov_base = (char *)raw_digestbuf;
704 	digest_data.cd_raw.iov_len = digest_data.cd_length;
705 
706 	/* generate the hmac */
707 	ret = crypto_mac(&mech, &in_data, &key->zk_hmac_key, key->zk_hmac_tmpl,
708 	    &digest_data);
709 	if (ret != CRYPTO_SUCCESS) {
710 		ret = SET_ERROR(EIO);
711 		goto error;
712 	}
713 
714 	memcpy(digestbuf, raw_digestbuf, digestlen);
715 
716 	return (0);
717 
718 error:
719 	memset(digestbuf, 0, digestlen);
720 	return (ret);
721 }
722 
723 int
zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t * key,uint8_t * data,uint_t datalen,uint8_t * ivbuf,uint8_t * salt)724 zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t *key, uint8_t *data,
725     uint_t datalen, uint8_t *ivbuf, uint8_t *salt)
726 {
727 	int ret;
728 	uint8_t digestbuf[SHA512_DIGEST_LENGTH];
729 
730 	ret = zio_crypt_do_hmac(key, data, datalen,
731 	    digestbuf, SHA512_DIGEST_LENGTH);
732 	if (ret != 0)
733 		return (ret);
734 
735 	memcpy(salt, digestbuf, ZIO_DATA_SALT_LEN);
736 	memcpy(ivbuf, digestbuf + ZIO_DATA_SALT_LEN, ZIO_DATA_IV_LEN);
737 
738 	return (0);
739 }
740 
741 /*
742  * The following functions are used to encode and decode encryption parameters
743  * into blkptr_t and zil_header_t. The ICP wants to use these parameters as
744  * byte strings, which normally means that these strings would not need to deal
745  * with byteswapping at all. However, both blkptr_t and zil_header_t may be
746  * byteswapped by lower layers and so we must "undo" that byteswap here upon
747  * decoding and encoding in a non-native byteorder. These functions require
748  * that the byteorder bit is correct before being called.
749  */
750 void
zio_crypt_encode_params_bp(blkptr_t * bp,uint8_t * salt,uint8_t * iv)751 zio_crypt_encode_params_bp(blkptr_t *bp, uint8_t *salt, uint8_t *iv)
752 {
753 	uint64_t val64;
754 	uint32_t val32;
755 
756 	ASSERT(BP_IS_ENCRYPTED(bp));
757 
758 	if (!BP_SHOULD_BYTESWAP(bp)) {
759 		memcpy(&bp->blk_dva[2].dva_word[0], salt, sizeof (uint64_t));
760 		memcpy(&bp->blk_dva[2].dva_word[1], iv, sizeof (uint64_t));
761 		memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
762 		BP_SET_IV2(bp, val32);
763 	} else {
764 		memcpy(&val64, salt, sizeof (uint64_t));
765 		bp->blk_dva[2].dva_word[0] = BSWAP_64(val64);
766 
767 		memcpy(&val64, iv, sizeof (uint64_t));
768 		bp->blk_dva[2].dva_word[1] = BSWAP_64(val64);
769 
770 		memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
771 		BP_SET_IV2(bp, BSWAP_32(val32));
772 	}
773 }
774 
775 void
zio_crypt_decode_params_bp(const blkptr_t * bp,uint8_t * salt,uint8_t * iv)776 zio_crypt_decode_params_bp(const blkptr_t *bp, uint8_t *salt, uint8_t *iv)
777 {
778 	uint64_t val64;
779 	uint32_t val32;
780 
781 	ASSERT(BP_IS_PROTECTED(bp));
782 
783 	/* for convenience, so callers don't need to check */
784 	if (BP_IS_AUTHENTICATED(bp)) {
785 		memset(salt, 0, ZIO_DATA_SALT_LEN);
786 		memset(iv, 0, ZIO_DATA_IV_LEN);
787 		return;
788 	}
789 
790 	if (!BP_SHOULD_BYTESWAP(bp)) {
791 		memcpy(salt, &bp->blk_dva[2].dva_word[0], sizeof (uint64_t));
792 		memcpy(iv, &bp->blk_dva[2].dva_word[1], sizeof (uint64_t));
793 
794 		val32 = (uint32_t)BP_GET_IV2(bp);
795 		memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
796 	} else {
797 		val64 = BSWAP_64(bp->blk_dva[2].dva_word[0]);
798 		memcpy(salt, &val64, sizeof (uint64_t));
799 
800 		val64 = BSWAP_64(bp->blk_dva[2].dva_word[1]);
801 		memcpy(iv, &val64, sizeof (uint64_t));
802 
803 		val32 = BSWAP_32((uint32_t)BP_GET_IV2(bp));
804 		memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
805 	}
806 }
807 
808 void
zio_crypt_encode_mac_bp(blkptr_t * bp,uint8_t * mac)809 zio_crypt_encode_mac_bp(blkptr_t *bp, uint8_t *mac)
810 {
811 	uint64_t val64;
812 
813 	ASSERT(BP_USES_CRYPT(bp));
814 	ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_OBJSET);
815 
816 	if (!BP_SHOULD_BYTESWAP(bp)) {
817 		memcpy(&bp->blk_cksum.zc_word[2], mac, sizeof (uint64_t));
818 		memcpy(&bp->blk_cksum.zc_word[3], mac + sizeof (uint64_t),
819 		    sizeof (uint64_t));
820 	} else {
821 		memcpy(&val64, mac, sizeof (uint64_t));
822 		bp->blk_cksum.zc_word[2] = BSWAP_64(val64);
823 
824 		memcpy(&val64, mac + sizeof (uint64_t), sizeof (uint64_t));
825 		bp->blk_cksum.zc_word[3] = BSWAP_64(val64);
826 	}
827 }
828 
829 void
zio_crypt_decode_mac_bp(const blkptr_t * bp,uint8_t * mac)830 zio_crypt_decode_mac_bp(const blkptr_t *bp, uint8_t *mac)
831 {
832 	uint64_t val64;
833 
834 	ASSERT(BP_USES_CRYPT(bp) || BP_IS_HOLE(bp));
835 
836 	/* for convenience, so callers don't need to check */
837 	if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
838 		memset(mac, 0, ZIO_DATA_MAC_LEN);
839 		return;
840 	}
841 
842 	if (!BP_SHOULD_BYTESWAP(bp)) {
843 		memcpy(mac, &bp->blk_cksum.zc_word[2], sizeof (uint64_t));
844 		memcpy(mac + sizeof (uint64_t), &bp->blk_cksum.zc_word[3],
845 		    sizeof (uint64_t));
846 	} else {
847 		val64 = BSWAP_64(bp->blk_cksum.zc_word[2]);
848 		memcpy(mac, &val64, sizeof (uint64_t));
849 
850 		val64 = BSWAP_64(bp->blk_cksum.zc_word[3]);
851 		memcpy(mac + sizeof (uint64_t), &val64, sizeof (uint64_t));
852 	}
853 }
854 
855 void
zio_crypt_encode_mac_zil(void * data,uint8_t * mac)856 zio_crypt_encode_mac_zil(void *data, uint8_t *mac)
857 {
858 	zil_chain_t *zilc = data;
859 
860 	memcpy(&zilc->zc_eck.zec_cksum.zc_word[2], mac, sizeof (uint64_t));
861 	memcpy(&zilc->zc_eck.zec_cksum.zc_word[3], mac + sizeof (uint64_t),
862 	    sizeof (uint64_t));
863 }
864 
865 void
zio_crypt_decode_mac_zil(const void * data,uint8_t * mac)866 zio_crypt_decode_mac_zil(const void *data, uint8_t *mac)
867 {
868 	/*
869 	 * The ZIL MAC is embedded in the block it protects, which will
870 	 * not have been byteswapped by the time this function has been called.
871 	 * As a result, we don't need to worry about byteswapping the MAC.
872 	 */
873 	const zil_chain_t *zilc = data;
874 
875 	memcpy(mac, &zilc->zc_eck.zec_cksum.zc_word[2], sizeof (uint64_t));
876 	memcpy(mac + sizeof (uint64_t), &zilc->zc_eck.zec_cksum.zc_word[3],
877 	    sizeof (uint64_t));
878 }
879 
880 /*
881  * This routine takes a block of dnodes (src_abd) and copies only the bonus
882  * buffers to the same offsets in the dst buffer. datalen should be the size
883  * of both the src_abd and the dst buffer (not just the length of the bonus
884  * buffers).
885  */
886 void
zio_crypt_copy_dnode_bonus(abd_t * src_abd,uint8_t * dst,uint_t datalen)887 zio_crypt_copy_dnode_bonus(abd_t *src_abd, uint8_t *dst, uint_t datalen)
888 {
889 	uint_t i, max_dnp = datalen >> DNODE_SHIFT;
890 	uint8_t *src;
891 	dnode_phys_t *dnp, *sdnp, *ddnp;
892 
893 	src = abd_borrow_buf_copy(src_abd, datalen);
894 
895 	sdnp = (dnode_phys_t *)src;
896 	ddnp = (dnode_phys_t *)dst;
897 
898 	for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
899 		dnp = &sdnp[i];
900 		if (dnp->dn_type != DMU_OT_NONE &&
901 		    DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
902 		    dnp->dn_bonuslen != 0) {
903 			memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp),
904 			    DN_MAX_BONUS_LEN(dnp));
905 		}
906 	}
907 
908 	abd_return_buf(src_abd, src, datalen);
909 }
910 
911 /*
912  * This function decides what fields from blk_prop are included in
913  * the on-disk various MAC algorithms.
914  */
915 static void
zio_crypt_bp_zero_nonportable_blkprop(blkptr_t * bp,uint64_t version)916 zio_crypt_bp_zero_nonportable_blkprop(blkptr_t *bp, uint64_t version)
917 {
918 	/*
919 	 * Version 0 did not properly zero out all non-portable fields
920 	 * as it should have done. We maintain this code so that we can
921 	 * do read-only imports of pools on this version.
922 	 */
923 	if (version == 0) {
924 		BP_SET_DEDUP(bp, 0);
925 		BP_SET_CHECKSUM(bp, 0);
926 		BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
927 		return;
928 	}
929 
930 	ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
931 
932 	/*
933 	 * The hole_birth feature might set these fields even if this bp
934 	 * is a hole. We zero them out here to guarantee that raw sends
935 	 * will function with or without the feature.
936 	 */
937 	if (BP_IS_HOLE(bp)) {
938 		bp->blk_prop = 0ULL;
939 		return;
940 	}
941 
942 	/*
943 	 * At L0 we want to verify these fields to ensure that data blocks
944 	 * can not be reinterpreted. For instance, we do not want an attacker
945 	 * to trick us into returning raw lz4 compressed data to the user
946 	 * by modifying the compression bits. At higher levels, we cannot
947 	 * enforce this policy since raw sends do not convey any information
948 	 * about indirect blocks, so these values might be different on the
949 	 * receive side. Fortunately, this does not open any new attack
950 	 * vectors, since any alterations that can be made to a higher level
951 	 * bp must still verify the correct order of the layer below it.
952 	 */
953 	if (BP_GET_LEVEL(bp) != 0) {
954 		BP_SET_BYTEORDER(bp, 0);
955 		BP_SET_COMPRESS(bp, 0);
956 
957 		/*
958 		 * psize cannot be set to zero or it will trigger
959 		 * asserts, but the value doesn't really matter as
960 		 * long as it is constant.
961 		 */
962 		BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
963 	}
964 
965 	BP_SET_DEDUP(bp, 0);
966 	BP_SET_CHECKSUM(bp, 0);
967 }
968 
969 static void
zio_crypt_bp_auth_init(uint64_t version,boolean_t should_bswap,blkptr_t * bp,blkptr_auth_buf_t * bab,uint_t * bab_len)970 zio_crypt_bp_auth_init(uint64_t version, boolean_t should_bswap, blkptr_t *bp,
971     blkptr_auth_buf_t *bab, uint_t *bab_len)
972 {
973 	blkptr_t tmpbp = *bp;
974 
975 	if (should_bswap)
976 		byteswap_uint64_array(&tmpbp, sizeof (blkptr_t));
977 
978 	ASSERT(BP_USES_CRYPT(&tmpbp) || BP_IS_HOLE(&tmpbp));
979 	ASSERT0(BP_IS_EMBEDDED(&tmpbp));
980 
981 	zio_crypt_decode_mac_bp(&tmpbp, bab->bab_mac);
982 
983 	/*
984 	 * We always MAC blk_prop in LE to ensure portability. This
985 	 * must be done after decoding the mac, since the endianness
986 	 * will get zero'd out here.
987 	 */
988 	zio_crypt_bp_zero_nonportable_blkprop(&tmpbp, version);
989 	bab->bab_prop = LE_64(tmpbp.blk_prop);
990 	bab->bab_pad = 0ULL;
991 
992 	/* version 0 did not include the padding */
993 	*bab_len = sizeof (blkptr_auth_buf_t);
994 	if (version == 0)
995 		*bab_len -= sizeof (uint64_t);
996 }
997 
998 static int
zio_crypt_bp_do_hmac_updates(crypto_context_t ctx,uint64_t version,boolean_t should_bswap,blkptr_t * bp)999 zio_crypt_bp_do_hmac_updates(crypto_context_t ctx, uint64_t version,
1000     boolean_t should_bswap, blkptr_t *bp)
1001 {
1002 	int ret;
1003 	uint_t bab_len;
1004 	blkptr_auth_buf_t bab;
1005 	crypto_data_t cd;
1006 
1007 	zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1008 	cd.cd_format = CRYPTO_DATA_RAW;
1009 	cd.cd_offset = 0;
1010 	cd.cd_length = bab_len;
1011 	cd.cd_raw.iov_base = (char *)&bab;
1012 	cd.cd_raw.iov_len = cd.cd_length;
1013 
1014 	ret = crypto_mac_update(ctx, &cd);
1015 	if (ret != CRYPTO_SUCCESS) {
1016 		ret = SET_ERROR(EIO);
1017 		goto error;
1018 	}
1019 
1020 	return (0);
1021 
1022 error:
1023 	return (ret);
1024 }
1025 
1026 static void
zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX * ctx,uint64_t version,boolean_t should_bswap,blkptr_t * bp)1027 zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX *ctx, uint64_t version,
1028     boolean_t should_bswap, blkptr_t *bp)
1029 {
1030 	uint_t bab_len;
1031 	blkptr_auth_buf_t bab;
1032 
1033 	zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1034 	SHA2Update(ctx, &bab, bab_len);
1035 }
1036 
1037 static void
zio_crypt_bp_do_aad_updates(uint8_t ** aadp,uint_t * aad_len,uint64_t version,boolean_t should_bswap,blkptr_t * bp)1038 zio_crypt_bp_do_aad_updates(uint8_t **aadp, uint_t *aad_len, uint64_t version,
1039     boolean_t should_bswap, blkptr_t *bp)
1040 {
1041 	uint_t bab_len;
1042 	blkptr_auth_buf_t bab;
1043 
1044 	zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1045 	memcpy(*aadp, &bab, bab_len);
1046 	*aadp += bab_len;
1047 	*aad_len += bab_len;
1048 }
1049 
1050 static int
zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx,uint64_t version,boolean_t should_bswap,dnode_phys_t * dnp)1051 zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx, uint64_t version,
1052     boolean_t should_bswap, dnode_phys_t *dnp)
1053 {
1054 	int ret, i;
1055 	dnode_phys_t *adnp, tmp_dncore;
1056 	size_t dn_core_size = offsetof(dnode_phys_t, dn_blkptr);
1057 	boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
1058 	crypto_data_t cd;
1059 
1060 	cd.cd_format = CRYPTO_DATA_RAW;
1061 	cd.cd_offset = 0;
1062 
1063 	/*
1064 	 * Authenticate the core dnode (masking out non-portable bits).
1065 	 * We only copy the first 64 bytes we operate on to avoid the overhead
1066 	 * of copying 512-64 unneeded bytes. The compiler seems to be fine
1067 	 * with that.
1068 	 */
1069 	memcpy(&tmp_dncore, dnp, dn_core_size);
1070 	adnp = &tmp_dncore;
1071 
1072 	if (le_bswap) {
1073 		adnp->dn_datablkszsec = BSWAP_16(adnp->dn_datablkszsec);
1074 		adnp->dn_bonuslen = BSWAP_16(adnp->dn_bonuslen);
1075 		adnp->dn_maxblkid = BSWAP_64(adnp->dn_maxblkid);
1076 		adnp->dn_used = BSWAP_64(adnp->dn_used);
1077 	}
1078 	adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
1079 	adnp->dn_used = 0;
1080 
1081 	cd.cd_length = dn_core_size;
1082 	cd.cd_raw.iov_base = (char *)adnp;
1083 	cd.cd_raw.iov_len = cd.cd_length;
1084 
1085 	ret = crypto_mac_update(ctx, &cd);
1086 	if (ret != CRYPTO_SUCCESS) {
1087 		ret = SET_ERROR(EIO);
1088 		goto error;
1089 	}
1090 
1091 	for (i = 0; i < dnp->dn_nblkptr; i++) {
1092 		ret = zio_crypt_bp_do_hmac_updates(ctx, version,
1093 		    should_bswap, &dnp->dn_blkptr[i]);
1094 		if (ret != 0)
1095 			goto error;
1096 	}
1097 
1098 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1099 		ret = zio_crypt_bp_do_hmac_updates(ctx, version,
1100 		    should_bswap, DN_SPILL_BLKPTR(dnp));
1101 		if (ret != 0)
1102 			goto error;
1103 	}
1104 
1105 	return (0);
1106 
1107 error:
1108 	return (ret);
1109 }
1110 
1111 /*
1112  * objset_phys_t blocks introduce a number of exceptions to the normal
1113  * authentication process. objset_phys_t's contain 2 separate HMACS for
1114  * protecting the integrity of their data. The portable_mac protects the
1115  * metadnode. This MAC can be sent with a raw send and protects against
1116  * reordering of data within the metadnode. The local_mac protects the user
1117  * accounting objects which are not sent from one system to another.
1118  *
1119  * In addition, objset blocks are the only blocks that can be modified and
1120  * written to disk without the key loaded under certain circumstances. During
1121  * zil_claim() we need to be able to update the zil_header_t to complete
1122  * claiming log blocks and during raw receives we need to write out the
1123  * portable_mac from the send file. Both of these actions are possible
1124  * because these fields are not protected by either MAC so neither one will
1125  * need to modify the MACs without the key. However, when the modified blocks
1126  * are written out they will be byteswapped into the host machine's native
1127  * endianness which will modify fields protected by the MAC. As a result, MAC
1128  * calculation for objset blocks works slightly differently from other block
1129  * types. Where other block types MAC the data in whatever endianness is
1130  * written to disk, objset blocks always MAC little endian version of their
1131  * values. In the code, should_bswap is the value from BP_SHOULD_BYTESWAP()
1132  * and le_bswap indicates whether a byteswap is needed to get this block
1133  * into little endian format.
1134  */
1135 int
zio_crypt_do_objset_hmacs(zio_crypt_key_t * key,void * data,uint_t datalen,boolean_t should_bswap,uint8_t * portable_mac,uint8_t * local_mac)1136 zio_crypt_do_objset_hmacs(zio_crypt_key_t *key, void *data, uint_t datalen,
1137     boolean_t should_bswap, uint8_t *portable_mac, uint8_t *local_mac)
1138 {
1139 	int ret;
1140 	crypto_mechanism_t mech;
1141 	crypto_context_t ctx;
1142 	crypto_data_t cd;
1143 	objset_phys_t *osp = data;
1144 	uint64_t intval;
1145 	boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
1146 	uint8_t raw_portable_mac[SHA512_DIGEST_LENGTH];
1147 	uint8_t raw_local_mac[SHA512_DIGEST_LENGTH];
1148 
1149 	/* initialize HMAC mechanism */
1150 	mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
1151 	mech.cm_param = NULL;
1152 	mech.cm_param_len = 0;
1153 
1154 	cd.cd_format = CRYPTO_DATA_RAW;
1155 	cd.cd_offset = 0;
1156 
1157 	/* calculate the portable MAC from the portable fields and metadnode */
1158 	ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx);
1159 	if (ret != CRYPTO_SUCCESS) {
1160 		ret = SET_ERROR(EIO);
1161 		goto error;
1162 	}
1163 
1164 	/* add in the os_type */
1165 	intval = (le_bswap) ? osp->os_type : BSWAP_64(osp->os_type);
1166 	cd.cd_length = sizeof (uint64_t);
1167 	cd.cd_raw.iov_base = (char *)&intval;
1168 	cd.cd_raw.iov_len = cd.cd_length;
1169 
1170 	ret = crypto_mac_update(ctx, &cd);
1171 	if (ret != CRYPTO_SUCCESS) {
1172 		ret = SET_ERROR(EIO);
1173 		goto error;
1174 	}
1175 
1176 	/* add in the portable os_flags */
1177 	intval = osp->os_flags;
1178 	if (should_bswap)
1179 		intval = BSWAP_64(intval);
1180 	intval &= OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1181 	if (!ZFS_HOST_BYTEORDER)
1182 		intval = BSWAP_64(intval);
1183 
1184 	cd.cd_length = sizeof (uint64_t);
1185 	cd.cd_raw.iov_base = (char *)&intval;
1186 	cd.cd_raw.iov_len = cd.cd_length;
1187 
1188 	ret = crypto_mac_update(ctx, &cd);
1189 	if (ret != CRYPTO_SUCCESS) {
1190 		ret = SET_ERROR(EIO);
1191 		goto error;
1192 	}
1193 
1194 	/* add in fields from the metadnode */
1195 	ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1196 	    should_bswap, &osp->os_meta_dnode);
1197 	if (ret)
1198 		goto error;
1199 
1200 	/* store the final digest in a temporary buffer and copy what we need */
1201 	cd.cd_length = SHA512_DIGEST_LENGTH;
1202 	cd.cd_raw.iov_base = (char *)raw_portable_mac;
1203 	cd.cd_raw.iov_len = cd.cd_length;
1204 
1205 	ret = crypto_mac_final(ctx, &cd);
1206 	if (ret != CRYPTO_SUCCESS) {
1207 		ret = SET_ERROR(EIO);
1208 		goto error;
1209 	}
1210 
1211 	memcpy(portable_mac, raw_portable_mac, ZIO_OBJSET_MAC_LEN);
1212 
1213 	/*
1214 	 * This is necessary here as we check next whether
1215 	 * OBJSET_FLAG_USERACCOUNTING_COMPLETE is set in order to
1216 	 * decide if the local_mac should be zeroed out. That flag will always
1217 	 * be set by dmu_objset_id_quota_upgrade_cb() and
1218 	 * dmu_objset_userspace_upgrade_cb() if useraccounting has been
1219 	 * completed.
1220 	 */
1221 	intval = osp->os_flags;
1222 	if (should_bswap)
1223 		intval = BSWAP_64(intval);
1224 	boolean_t uacct_incomplete =
1225 	    !(intval & OBJSET_FLAG_USERACCOUNTING_COMPLETE);
1226 
1227 	/*
1228 	 * The local MAC protects the user, group and project accounting.
1229 	 * If these objects are not present, the local MAC is zeroed out.
1230 	 */
1231 	if (uacct_incomplete ||
1232 	    (datalen >= OBJSET_PHYS_SIZE_V3 &&
1233 	    osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1234 	    osp->os_groupused_dnode.dn_type == DMU_OT_NONE &&
1235 	    osp->os_projectused_dnode.dn_type == DMU_OT_NONE) ||
1236 	    (datalen >= OBJSET_PHYS_SIZE_V2 &&
1237 	    osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1238 	    osp->os_groupused_dnode.dn_type == DMU_OT_NONE) ||
1239 	    (datalen <= OBJSET_PHYS_SIZE_V1)) {
1240 		memset(local_mac, 0, ZIO_OBJSET_MAC_LEN);
1241 		return (0);
1242 	}
1243 
1244 	/* calculate the local MAC from the userused and groupused dnodes */
1245 	ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx);
1246 	if (ret != CRYPTO_SUCCESS) {
1247 		ret = SET_ERROR(EIO);
1248 		goto error;
1249 	}
1250 
1251 	/* add in the non-portable os_flags */
1252 	intval = osp->os_flags;
1253 	if (should_bswap)
1254 		intval = BSWAP_64(intval);
1255 	intval &= ~OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1256 	if (!ZFS_HOST_BYTEORDER)
1257 		intval = BSWAP_64(intval);
1258 
1259 	cd.cd_length = sizeof (uint64_t);
1260 	cd.cd_raw.iov_base = (char *)&intval;
1261 	cd.cd_raw.iov_len = cd.cd_length;
1262 
1263 	ret = crypto_mac_update(ctx, &cd);
1264 	if (ret != CRYPTO_SUCCESS) {
1265 		ret = SET_ERROR(EIO);
1266 		goto error;
1267 	}
1268 
1269 	/* add in fields from the user accounting dnodes */
1270 	if (osp->os_userused_dnode.dn_type != DMU_OT_NONE) {
1271 		ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1272 		    should_bswap, &osp->os_userused_dnode);
1273 		if (ret)
1274 			goto error;
1275 	}
1276 
1277 	if (osp->os_groupused_dnode.dn_type != DMU_OT_NONE) {
1278 		ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1279 		    should_bswap, &osp->os_groupused_dnode);
1280 		if (ret)
1281 			goto error;
1282 	}
1283 
1284 	if (osp->os_projectused_dnode.dn_type != DMU_OT_NONE &&
1285 	    datalen >= OBJSET_PHYS_SIZE_V3) {
1286 		ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1287 		    should_bswap, &osp->os_projectused_dnode);
1288 		if (ret)
1289 			goto error;
1290 	}
1291 
1292 	/* store the final digest in a temporary buffer and copy what we need */
1293 	cd.cd_length = SHA512_DIGEST_LENGTH;
1294 	cd.cd_raw.iov_base = (char *)raw_local_mac;
1295 	cd.cd_raw.iov_len = cd.cd_length;
1296 
1297 	ret = crypto_mac_final(ctx, &cd);
1298 	if (ret != CRYPTO_SUCCESS) {
1299 		ret = SET_ERROR(EIO);
1300 		goto error;
1301 	}
1302 
1303 	memcpy(local_mac, raw_local_mac, ZIO_OBJSET_MAC_LEN);
1304 
1305 	return (0);
1306 
1307 error:
1308 	memset(portable_mac, 0, ZIO_OBJSET_MAC_LEN);
1309 	memset(local_mac, 0, ZIO_OBJSET_MAC_LEN);
1310 	return (ret);
1311 }
1312 
1313 static void
zio_crypt_destroy_uio(zfs_uio_t * uio)1314 zio_crypt_destroy_uio(zfs_uio_t *uio)
1315 {
1316 	if (uio->uio_iov)
1317 		kmem_free(uio->uio_iov, uio->uio_iovcnt * sizeof (iovec_t));
1318 }
1319 
1320 /*
1321  * This function parses an uncompressed indirect block and returns a checksum
1322  * of all the portable fields from all of the contained bps. The portable
1323  * fields are the MAC and all of the fields from blk_prop except for the dedup,
1324  * checksum, and psize bits. For an explanation of the purpose of this, see
1325  * the comment block on object set authentication.
1326  */
1327 static int
zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate,void * buf,uint_t datalen,uint64_t version,boolean_t byteswap,uint8_t * cksum)1328 zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate, void *buf,
1329     uint_t datalen, uint64_t version, boolean_t byteswap, uint8_t *cksum)
1330 {
1331 	blkptr_t *bp;
1332 	int i, epb = datalen >> SPA_BLKPTRSHIFT;
1333 	SHA2_CTX ctx;
1334 	uint8_t digestbuf[SHA512_DIGEST_LENGTH];
1335 
1336 	/* checksum all of the MACs from the layer below */
1337 	SHA2Init(SHA512, &ctx);
1338 	for (i = 0, bp = buf; i < epb; i++, bp++) {
1339 		zio_crypt_bp_do_indrect_checksum_updates(&ctx, version,
1340 		    byteswap, bp);
1341 	}
1342 	SHA2Final(digestbuf, &ctx);
1343 
1344 	if (generate) {
1345 		memcpy(cksum, digestbuf, ZIO_DATA_MAC_LEN);
1346 		return (0);
1347 	}
1348 
1349 	if (memcmp(digestbuf, cksum, ZIO_DATA_MAC_LEN) != 0)
1350 		return (SET_ERROR(ECKSUM));
1351 
1352 	return (0);
1353 }
1354 
1355 int
zio_crypt_do_indirect_mac_checksum(boolean_t generate,void * buf,uint_t datalen,boolean_t byteswap,uint8_t * cksum)1356 zio_crypt_do_indirect_mac_checksum(boolean_t generate, void *buf,
1357     uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1358 {
1359 	int ret;
1360 
1361 	/*
1362 	 * Unfortunately, callers of this function will not always have
1363 	 * easy access to the on-disk format version. This info is
1364 	 * normally found in the DSL Crypto Key, but the checksum-of-MACs
1365 	 * is expected to be verifiable even when the key isn't loaded.
1366 	 * Here, instead of doing a ZAP lookup for the version for each
1367 	 * zio, we simply try both existing formats.
1368 	 */
1369 	ret = zio_crypt_do_indirect_mac_checksum_impl(generate, buf,
1370 	    datalen, ZIO_CRYPT_KEY_CURRENT_VERSION, byteswap, cksum);
1371 	if (ret == ECKSUM) {
1372 		ASSERT(!generate);
1373 		ret = zio_crypt_do_indirect_mac_checksum_impl(generate,
1374 		    buf, datalen, 0, byteswap, cksum);
1375 	}
1376 
1377 	return (ret);
1378 }
1379 
1380 int
zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate,abd_t * abd,uint_t datalen,boolean_t byteswap,uint8_t * cksum)1381 zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate, abd_t *abd,
1382     uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1383 {
1384 	int ret;
1385 	void *buf;
1386 
1387 	buf = abd_borrow_buf_copy(abd, datalen);
1388 	ret = zio_crypt_do_indirect_mac_checksum(generate, buf, datalen,
1389 	    byteswap, cksum);
1390 	abd_return_buf(abd, buf, datalen);
1391 
1392 	return (ret);
1393 }
1394 
1395 /*
1396  * Special case handling routine for encrypting / decrypting ZIL blocks.
1397  * We do not check for the older ZIL chain because the encryption feature
1398  * was not available before the newer ZIL chain was introduced. The goal
1399  * here is to encrypt everything except the blkptr_t of a lr_write_t and
1400  * the zil_chain_t header. Everything that is not encrypted is authenticated.
1401  */
1402 static int
zio_crypt_init_uios_zil(boolean_t encrypt,uint8_t * plainbuf,uint8_t * cipherbuf,uint_t datalen,boolean_t byteswap,zfs_uio_t * puio,zfs_uio_t * cuio,uint_t * enc_len,uint8_t ** authbuf,uint_t * auth_len,boolean_t * no_crypt)1403 zio_crypt_init_uios_zil(boolean_t encrypt, uint8_t *plainbuf,
1404     uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, zfs_uio_t *puio,
1405     zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf, uint_t *auth_len,
1406     boolean_t *no_crypt)
1407 {
1408 	int ret;
1409 	uint64_t txtype, lr_len, nused;
1410 	uint_t nr_src, nr_dst, crypt_len;
1411 	uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
1412 	iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
1413 	uint8_t *src, *dst, *slrp, *dlrp, *blkend, *aadp;
1414 	zil_chain_t *zilc;
1415 	lr_t *lr;
1416 	uint8_t *aadbuf = zio_buf_alloc(datalen);
1417 
1418 	/* cipherbuf always needs an extra iovec for the MAC */
1419 	if (encrypt) {
1420 		src = plainbuf;
1421 		dst = cipherbuf;
1422 		nr_src = 0;
1423 		nr_dst = 1;
1424 	} else {
1425 		src = cipherbuf;
1426 		dst = plainbuf;
1427 		nr_src = 1;
1428 		nr_dst = 0;
1429 	}
1430 	memset(dst, 0, datalen);
1431 
1432 	/* find the start and end record of the log block */
1433 	zilc = (zil_chain_t *)src;
1434 	slrp = src + sizeof (zil_chain_t);
1435 	aadp = aadbuf;
1436 	nused = ((byteswap) ? BSWAP_64(zilc->zc_nused) : zilc->zc_nused);
1437 	ASSERT3U(nused, >=, sizeof (zil_chain_t));
1438 	ASSERT3U(nused, <=, datalen);
1439 	blkend = src + nused;
1440 
1441 	/* calculate the number of encrypted iovecs we will need */
1442 	for (; slrp < blkend; slrp += lr_len) {
1443 		lr = (lr_t *)slrp;
1444 
1445 		if (!byteswap) {
1446 			txtype = lr->lrc_txtype;
1447 			lr_len = lr->lrc_reclen;
1448 		} else {
1449 			txtype = BSWAP_64(lr->lrc_txtype);
1450 			lr_len = BSWAP_64(lr->lrc_reclen);
1451 		}
1452 		ASSERT3U(lr_len, >=, sizeof (lr_t));
1453 		ASSERT3U(lr_len, <=, blkend - slrp);
1454 
1455 		nr_iovecs++;
1456 		if (txtype == TX_WRITE && lr_len != sizeof (lr_write_t))
1457 			nr_iovecs++;
1458 	}
1459 
1460 	nr_src += nr_iovecs;
1461 	nr_dst += nr_iovecs;
1462 
1463 	/* allocate the iovec arrays */
1464 	if (nr_src != 0) {
1465 		src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
1466 		if (src_iovecs == NULL) {
1467 			ret = SET_ERROR(ENOMEM);
1468 			goto error;
1469 		}
1470 	}
1471 
1472 	if (nr_dst != 0) {
1473 		dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
1474 		if (dst_iovecs == NULL) {
1475 			ret = SET_ERROR(ENOMEM);
1476 			goto error;
1477 		}
1478 	}
1479 
1480 	/*
1481 	 * Copy the plain zil header over and authenticate everything except
1482 	 * the checksum that will store our MAC. If we are writing the data
1483 	 * the embedded checksum will not have been calculated yet, so we don't
1484 	 * authenticate that.
1485 	 */
1486 	memcpy(dst, src, sizeof (zil_chain_t));
1487 	memcpy(aadp, src, sizeof (zil_chain_t) - sizeof (zio_eck_t));
1488 	aadp += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1489 	aad_len += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1490 
1491 	/* loop over records again, filling in iovecs */
1492 	nr_iovecs = 0;
1493 	slrp = src + sizeof (zil_chain_t);
1494 	dlrp = dst + sizeof (zil_chain_t);
1495 
1496 	for (; slrp < blkend; slrp += lr_len, dlrp += lr_len) {
1497 		lr = (lr_t *)slrp;
1498 
1499 		if (!byteswap) {
1500 			txtype = lr->lrc_txtype;
1501 			lr_len = lr->lrc_reclen;
1502 		} else {
1503 			txtype = BSWAP_64(lr->lrc_txtype);
1504 			lr_len = BSWAP_64(lr->lrc_reclen);
1505 		}
1506 
1507 		/* copy the common lr_t */
1508 		memcpy(dlrp, slrp, sizeof (lr_t));
1509 		memcpy(aadp, slrp, sizeof (lr_t));
1510 		aadp += sizeof (lr_t);
1511 		aad_len += sizeof (lr_t);
1512 
1513 		ASSERT3P(src_iovecs, !=, NULL);
1514 		ASSERT3P(dst_iovecs, !=, NULL);
1515 
1516 		/*
1517 		 * If this is a TX_WRITE record we want to encrypt everything
1518 		 * except the bp if exists. If the bp does exist we want to
1519 		 * authenticate it.
1520 		 */
1521 		if (txtype == TX_WRITE) {
1522 			const size_t o = offsetof(lr_write_t, lr_blkptr);
1523 			crypt_len = o - sizeof (lr_t);
1524 			src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
1525 			src_iovecs[nr_iovecs].iov_len = crypt_len;
1526 			dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
1527 			dst_iovecs[nr_iovecs].iov_len = crypt_len;
1528 
1529 			/* copy the bp now since it will not be encrypted */
1530 			memcpy(dlrp + o, slrp + o, sizeof (blkptr_t));
1531 			memcpy(aadp, slrp + o, sizeof (blkptr_t));
1532 			aadp += sizeof (blkptr_t);
1533 			aad_len += sizeof (blkptr_t);
1534 			nr_iovecs++;
1535 			total_len += crypt_len;
1536 
1537 			if (lr_len != sizeof (lr_write_t)) {
1538 				crypt_len = lr_len - sizeof (lr_write_t);
1539 				src_iovecs[nr_iovecs].iov_base =
1540 				    slrp + sizeof (lr_write_t);
1541 				src_iovecs[nr_iovecs].iov_len = crypt_len;
1542 				dst_iovecs[nr_iovecs].iov_base =
1543 				    dlrp + sizeof (lr_write_t);
1544 				dst_iovecs[nr_iovecs].iov_len = crypt_len;
1545 				nr_iovecs++;
1546 				total_len += crypt_len;
1547 			}
1548 		} else if (txtype == TX_CLONE_RANGE) {
1549 			const size_t o = offsetof(lr_clone_range_t, lr_nbps);
1550 			crypt_len = o - sizeof (lr_t);
1551 			src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
1552 			src_iovecs[nr_iovecs].iov_len = crypt_len;
1553 			dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
1554 			dst_iovecs[nr_iovecs].iov_len = crypt_len;
1555 
1556 			/* copy the bps now since they will not be encrypted */
1557 			memcpy(dlrp + o, slrp + o, lr_len - o);
1558 			memcpy(aadp, slrp + o, lr_len - o);
1559 			aadp += lr_len - o;
1560 			aad_len += lr_len - o;
1561 			nr_iovecs++;
1562 			total_len += crypt_len;
1563 		} else {
1564 			crypt_len = lr_len - sizeof (lr_t);
1565 			src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
1566 			src_iovecs[nr_iovecs].iov_len = crypt_len;
1567 			dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
1568 			dst_iovecs[nr_iovecs].iov_len = crypt_len;
1569 			nr_iovecs++;
1570 			total_len += crypt_len;
1571 		}
1572 	}
1573 
1574 	*no_crypt = (nr_iovecs == 0);
1575 	*enc_len = total_len;
1576 	*authbuf = aadbuf;
1577 	*auth_len = aad_len;
1578 
1579 	if (encrypt) {
1580 		puio->uio_iov = src_iovecs;
1581 		puio->uio_iovcnt = nr_src;
1582 		cuio->uio_iov = dst_iovecs;
1583 		cuio->uio_iovcnt = nr_dst;
1584 	} else {
1585 		puio->uio_iov = dst_iovecs;
1586 		puio->uio_iovcnt = nr_dst;
1587 		cuio->uio_iov = src_iovecs;
1588 		cuio->uio_iovcnt = nr_src;
1589 	}
1590 
1591 	return (0);
1592 
1593 error:
1594 	zio_buf_free(aadbuf, datalen);
1595 	if (src_iovecs != NULL)
1596 		kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
1597 	if (dst_iovecs != NULL)
1598 		kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
1599 
1600 	*enc_len = 0;
1601 	*authbuf = NULL;
1602 	*auth_len = 0;
1603 	*no_crypt = B_FALSE;
1604 	puio->uio_iov = NULL;
1605 	puio->uio_iovcnt = 0;
1606 	cuio->uio_iov = NULL;
1607 	cuio->uio_iovcnt = 0;
1608 	return (ret);
1609 }
1610 
1611 /*
1612  * Special case handling routine for encrypting / decrypting dnode blocks.
1613  */
1614 static int
zio_crypt_init_uios_dnode(boolean_t encrypt,uint64_t version,uint8_t * plainbuf,uint8_t * cipherbuf,uint_t datalen,boolean_t byteswap,zfs_uio_t * puio,zfs_uio_t * cuio,uint_t * enc_len,uint8_t ** authbuf,uint_t * auth_len,boolean_t * no_crypt)1615 zio_crypt_init_uios_dnode(boolean_t encrypt, uint64_t version,
1616     uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1617     zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf,
1618     uint_t *auth_len, boolean_t *no_crypt)
1619 {
1620 	int ret;
1621 	uint_t nr_src, nr_dst, crypt_len;
1622 	uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
1623 	uint_t i, j, max_dnp = datalen >> DNODE_SHIFT;
1624 	iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
1625 	uint8_t *src, *dst, *aadp;
1626 	dnode_phys_t *dnp, *adnp, *sdnp, *ddnp;
1627 	uint8_t *aadbuf = zio_buf_alloc(datalen);
1628 
1629 	if (encrypt) {
1630 		src = plainbuf;
1631 		dst = cipherbuf;
1632 		nr_src = 0;
1633 		nr_dst = 1;
1634 	} else {
1635 		src = cipherbuf;
1636 		dst = plainbuf;
1637 		nr_src = 1;
1638 		nr_dst = 0;
1639 	}
1640 
1641 	sdnp = (dnode_phys_t *)src;
1642 	ddnp = (dnode_phys_t *)dst;
1643 	aadp = aadbuf;
1644 
1645 	/*
1646 	 * Count the number of iovecs we will need to do the encryption by
1647 	 * counting the number of bonus buffers that need to be encrypted.
1648 	 */
1649 	for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1650 		/*
1651 		 * This block may still be byteswapped. However, all of the
1652 		 * values we use are either uint8_t's (for which byteswapping
1653 		 * is a noop) or a * != 0 check, which will work regardless
1654 		 * of whether or not we byteswap.
1655 		 */
1656 		if (sdnp[i].dn_type != DMU_OT_NONE &&
1657 		    DMU_OT_IS_ENCRYPTED(sdnp[i].dn_bonustype) &&
1658 		    sdnp[i].dn_bonuslen != 0) {
1659 			nr_iovecs++;
1660 		}
1661 	}
1662 
1663 	nr_src += nr_iovecs;
1664 	nr_dst += nr_iovecs;
1665 
1666 	if (nr_src != 0) {
1667 		src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
1668 		if (src_iovecs == NULL) {
1669 			ret = SET_ERROR(ENOMEM);
1670 			goto error;
1671 		}
1672 	}
1673 
1674 	if (nr_dst != 0) {
1675 		dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
1676 		if (dst_iovecs == NULL) {
1677 			ret = SET_ERROR(ENOMEM);
1678 			goto error;
1679 		}
1680 	}
1681 
1682 	nr_iovecs = 0;
1683 
1684 	/*
1685 	 * Iterate through the dnodes again, this time filling in the uios
1686 	 * we allocated earlier. We also concatenate any data we want to
1687 	 * authenticate onto aadbuf.
1688 	 */
1689 	for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1690 		dnp = &sdnp[i];
1691 
1692 		/* copy over the core fields and blkptrs (kept as plaintext) */
1693 		memcpy(&ddnp[i], dnp,
1694 		    (uint8_t *)DN_BONUS(dnp) - (uint8_t *)dnp);
1695 
1696 		if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1697 			memcpy(DN_SPILL_BLKPTR(&ddnp[i]), DN_SPILL_BLKPTR(dnp),
1698 			    sizeof (blkptr_t));
1699 		}
1700 
1701 		/*
1702 		 * Handle authenticated data. We authenticate everything in
1703 		 * the dnode that can be brought over when we do a raw send.
1704 		 * This includes all of the core fields as well as the MACs
1705 		 * stored in the bp checksums and all of the portable bits
1706 		 * from blk_prop. We include the dnode padding here in case it
1707 		 * ever gets used in the future. Some dn_flags and dn_used are
1708 		 * not portable so we mask those out values out of the
1709 		 * authenticated data.
1710 		 */
1711 		crypt_len = offsetof(dnode_phys_t, dn_blkptr);
1712 		memcpy(aadp, dnp, crypt_len);
1713 		adnp = (dnode_phys_t *)aadp;
1714 		adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
1715 		adnp->dn_used = 0;
1716 		aadp += crypt_len;
1717 		aad_len += crypt_len;
1718 
1719 		for (j = 0; j < dnp->dn_nblkptr; j++) {
1720 			zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
1721 			    version, byteswap, &dnp->dn_blkptr[j]);
1722 		}
1723 
1724 		if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1725 			zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
1726 			    version, byteswap, DN_SPILL_BLKPTR(dnp));
1727 		}
1728 
1729 		/*
1730 		 * If this bonus buffer needs to be encrypted, we prepare an
1731 		 * iovec_t. The encryption / decryption functions will fill
1732 		 * this in for us with the encrypted or decrypted data.
1733 		 * Otherwise we add the bonus buffer to the authenticated
1734 		 * data buffer and copy it over to the destination. The
1735 		 * encrypted iovec extends to DN_MAX_BONUS_LEN(dnp) so that
1736 		 * we can guarantee alignment with the AES block size
1737 		 * (128 bits).
1738 		 */
1739 		crypt_len = DN_MAX_BONUS_LEN(dnp);
1740 		if (dnp->dn_type != DMU_OT_NONE &&
1741 		    DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
1742 		    dnp->dn_bonuslen != 0) {
1743 			ASSERT3U(nr_iovecs, <, nr_src);
1744 			ASSERT3U(nr_iovecs, <, nr_dst);
1745 			ASSERT3P(src_iovecs, !=, NULL);
1746 			ASSERT3P(dst_iovecs, !=, NULL);
1747 			src_iovecs[nr_iovecs].iov_base = DN_BONUS(dnp);
1748 			src_iovecs[nr_iovecs].iov_len = crypt_len;
1749 			dst_iovecs[nr_iovecs].iov_base = DN_BONUS(&ddnp[i]);
1750 			dst_iovecs[nr_iovecs].iov_len = crypt_len;
1751 
1752 			nr_iovecs++;
1753 			total_len += crypt_len;
1754 		} else {
1755 			memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp), crypt_len);
1756 			memcpy(aadp, DN_BONUS(dnp), crypt_len);
1757 			aadp += crypt_len;
1758 			aad_len += crypt_len;
1759 		}
1760 	}
1761 
1762 	*no_crypt = (nr_iovecs == 0);
1763 	*enc_len = total_len;
1764 	*authbuf = aadbuf;
1765 	*auth_len = aad_len;
1766 
1767 	if (encrypt) {
1768 		puio->uio_iov = src_iovecs;
1769 		puio->uio_iovcnt = nr_src;
1770 		cuio->uio_iov = dst_iovecs;
1771 		cuio->uio_iovcnt = nr_dst;
1772 	} else {
1773 		puio->uio_iov = dst_iovecs;
1774 		puio->uio_iovcnt = nr_dst;
1775 		cuio->uio_iov = src_iovecs;
1776 		cuio->uio_iovcnt = nr_src;
1777 	}
1778 
1779 	return (0);
1780 
1781 error:
1782 	zio_buf_free(aadbuf, datalen);
1783 	if (src_iovecs != NULL)
1784 		kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
1785 	if (dst_iovecs != NULL)
1786 		kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
1787 
1788 	*enc_len = 0;
1789 	*authbuf = NULL;
1790 	*auth_len = 0;
1791 	*no_crypt = B_FALSE;
1792 	puio->uio_iov = NULL;
1793 	puio->uio_iovcnt = 0;
1794 	cuio->uio_iov = NULL;
1795 	cuio->uio_iovcnt = 0;
1796 	return (ret);
1797 }
1798 
1799 static int
zio_crypt_init_uios_normal(boolean_t encrypt,uint8_t * plainbuf,uint8_t * cipherbuf,uint_t datalen,zfs_uio_t * puio,zfs_uio_t * cuio,uint_t * enc_len)1800 zio_crypt_init_uios_normal(boolean_t encrypt, uint8_t *plainbuf,
1801     uint8_t *cipherbuf, uint_t datalen, zfs_uio_t *puio, zfs_uio_t *cuio,
1802     uint_t *enc_len)
1803 {
1804 	(void) encrypt;
1805 	int ret;
1806 	uint_t nr_plain = 1, nr_cipher = 2;
1807 	iovec_t *plain_iovecs = NULL, *cipher_iovecs = NULL;
1808 
1809 	/* allocate the iovecs for the plain and cipher data */
1810 	plain_iovecs = kmem_alloc(nr_plain * sizeof (iovec_t),
1811 	    KM_SLEEP);
1812 	if (!plain_iovecs) {
1813 		ret = SET_ERROR(ENOMEM);
1814 		goto error;
1815 	}
1816 
1817 	cipher_iovecs = kmem_alloc(nr_cipher * sizeof (iovec_t),
1818 	    KM_SLEEP);
1819 	if (!cipher_iovecs) {
1820 		ret = SET_ERROR(ENOMEM);
1821 		goto error;
1822 	}
1823 
1824 	plain_iovecs[0].iov_base = plainbuf;
1825 	plain_iovecs[0].iov_len = datalen;
1826 	cipher_iovecs[0].iov_base = cipherbuf;
1827 	cipher_iovecs[0].iov_len = datalen;
1828 
1829 	*enc_len = datalen;
1830 	puio->uio_iov = plain_iovecs;
1831 	puio->uio_iovcnt = nr_plain;
1832 	cuio->uio_iov = cipher_iovecs;
1833 	cuio->uio_iovcnt = nr_cipher;
1834 
1835 	return (0);
1836 
1837 error:
1838 	if (plain_iovecs != NULL)
1839 		kmem_free(plain_iovecs, nr_plain * sizeof (iovec_t));
1840 	if (cipher_iovecs != NULL)
1841 		kmem_free(cipher_iovecs, nr_cipher * sizeof (iovec_t));
1842 
1843 	*enc_len = 0;
1844 	puio->uio_iov = NULL;
1845 	puio->uio_iovcnt = 0;
1846 	cuio->uio_iov = NULL;
1847 	cuio->uio_iovcnt = 0;
1848 	return (ret);
1849 }
1850 
1851 /*
1852  * This function builds up the plaintext (puio) and ciphertext (cuio) uios so
1853  * that they can be used for encryption and decryption by zio_do_crypt_uio().
1854  * Most blocks will use zio_crypt_init_uios_normal(), with ZIL and dnode blocks
1855  * requiring special handling to parse out pieces that are to be encrypted. The
1856  * authbuf is used by these special cases to store additional authenticated
1857  * data (AAD) for the encryption modes.
1858  */
1859 static int
zio_crypt_init_uios(boolean_t encrypt,uint64_t version,dmu_object_type_t ot,uint8_t * plainbuf,uint8_t * cipherbuf,uint_t datalen,boolean_t byteswap,uint8_t * mac,zfs_uio_t * puio,zfs_uio_t * cuio,uint_t * enc_len,uint8_t ** authbuf,uint_t * auth_len,boolean_t * no_crypt)1860 zio_crypt_init_uios(boolean_t encrypt, uint64_t version, dmu_object_type_t ot,
1861     uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1862     uint8_t *mac, zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len,
1863     uint8_t **authbuf, uint_t *auth_len, boolean_t *no_crypt)
1864 {
1865 	int ret;
1866 	iovec_t *mac_iov;
1867 
1868 	ASSERT(DMU_OT_IS_ENCRYPTED(ot) || ot == DMU_OT_NONE);
1869 
1870 	/* route to handler */
1871 	switch (ot) {
1872 	case DMU_OT_INTENT_LOG:
1873 		ret = zio_crypt_init_uios_zil(encrypt, plainbuf, cipherbuf,
1874 		    datalen, byteswap, puio, cuio, enc_len, authbuf, auth_len,
1875 		    no_crypt);
1876 		break;
1877 	case DMU_OT_DNODE:
1878 		ret = zio_crypt_init_uios_dnode(encrypt, version, plainbuf,
1879 		    cipherbuf, datalen, byteswap, puio, cuio, enc_len, authbuf,
1880 		    auth_len, no_crypt);
1881 		break;
1882 	default:
1883 		ret = zio_crypt_init_uios_normal(encrypt, plainbuf, cipherbuf,
1884 		    datalen, puio, cuio, enc_len);
1885 		*authbuf = NULL;
1886 		*auth_len = 0;
1887 		*no_crypt = B_FALSE;
1888 		break;
1889 	}
1890 
1891 	if (ret != 0)
1892 		goto error;
1893 
1894 	/* populate the uios */
1895 	puio->uio_segflg = UIO_SYSSPACE;
1896 	cuio->uio_segflg = UIO_SYSSPACE;
1897 
1898 	mac_iov = ((iovec_t *)&cuio->uio_iov[cuio->uio_iovcnt - 1]);
1899 	mac_iov->iov_base = mac;
1900 	mac_iov->iov_len = ZIO_DATA_MAC_LEN;
1901 
1902 	return (0);
1903 
1904 error:
1905 	return (ret);
1906 }
1907 
1908 /*
1909  * Primary encryption / decryption entrypoint for zio data.
1910  */
1911 int
zio_do_crypt_data(boolean_t encrypt,zio_crypt_key_t * key,dmu_object_type_t ot,boolean_t byteswap,uint8_t * salt,uint8_t * iv,uint8_t * mac,uint_t datalen,uint8_t * plainbuf,uint8_t * cipherbuf,boolean_t * no_crypt)1912 zio_do_crypt_data(boolean_t encrypt, zio_crypt_key_t *key,
1913     dmu_object_type_t ot, boolean_t byteswap, uint8_t *salt, uint8_t *iv,
1914     uint8_t *mac, uint_t datalen, uint8_t *plainbuf, uint8_t *cipherbuf,
1915     boolean_t *no_crypt)
1916 {
1917 	int ret;
1918 	boolean_t locked = B_FALSE;
1919 	uint64_t crypt = key->zk_crypt;
1920 	uint_t keydata_len = zio_crypt_table[crypt].ci_keylen;
1921 	uint_t enc_len, auth_len;
1922 	zfs_uio_t puio, cuio;
1923 	uint8_t enc_keydata[MASTER_KEY_MAX_LEN];
1924 	crypto_key_t tmp_ckey, *ckey = NULL;
1925 	crypto_ctx_template_t tmpl;
1926 	uint8_t *authbuf = NULL;
1927 
1928 	memset(&puio, 0, sizeof (puio));
1929 	memset(&cuio, 0, sizeof (cuio));
1930 
1931 	/*
1932 	 * If the needed key is the current one, just use it. Otherwise we
1933 	 * need to generate a temporary one from the given salt + master key.
1934 	 * If we are encrypting, we must return a copy of the current salt
1935 	 * so that it can be stored in the blkptr_t.
1936 	 */
1937 	rw_enter(&key->zk_salt_lock, RW_READER);
1938 	locked = B_TRUE;
1939 
1940 	if (memcmp(salt, key->zk_salt, ZIO_DATA_SALT_LEN) == 0) {
1941 		ckey = &key->zk_current_key;
1942 		tmpl = key->zk_current_tmpl;
1943 	} else {
1944 		rw_exit(&key->zk_salt_lock);
1945 		locked = B_FALSE;
1946 
1947 		ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
1948 		    salt, ZIO_DATA_SALT_LEN, enc_keydata, keydata_len);
1949 		if (ret != 0)
1950 			goto error;
1951 
1952 		tmp_ckey.ck_data = enc_keydata;
1953 		tmp_ckey.ck_length = CRYPTO_BYTES2BITS(keydata_len);
1954 
1955 		ckey = &tmp_ckey;
1956 		tmpl = NULL;
1957 	}
1958 
1959 	/*
1960 	 * Attempt to use QAT acceleration if we can. We currently don't
1961 	 * do this for metadnode and ZIL blocks, since they have a much
1962 	 * more involved buffer layout and the qat_crypt() function only
1963 	 * works in-place.
1964 	 */
1965 	if (qat_crypt_use_accel(datalen) &&
1966 	    ot != DMU_OT_INTENT_LOG && ot != DMU_OT_DNODE) {
1967 		uint8_t *srcbuf, *dstbuf;
1968 
1969 		if (encrypt) {
1970 			srcbuf = plainbuf;
1971 			dstbuf = cipherbuf;
1972 		} else {
1973 			srcbuf = cipherbuf;
1974 			dstbuf = plainbuf;
1975 		}
1976 
1977 		ret = qat_crypt((encrypt) ? QAT_ENCRYPT : QAT_DECRYPT, srcbuf,
1978 		    dstbuf, NULL, 0, iv, mac, ckey, key->zk_crypt, datalen);
1979 		if (ret == CPA_STATUS_SUCCESS) {
1980 			if (locked) {
1981 				rw_exit(&key->zk_salt_lock);
1982 				locked = B_FALSE;
1983 			}
1984 
1985 			return (0);
1986 		}
1987 		/* If the hardware implementation fails fall back to software */
1988 	}
1989 
1990 	/* create uios for encryption */
1991 	ret = zio_crypt_init_uios(encrypt, key->zk_version, ot, plainbuf,
1992 	    cipherbuf, datalen, byteswap, mac, &puio, &cuio, &enc_len,
1993 	    &authbuf, &auth_len, no_crypt);
1994 	if (ret != 0)
1995 		goto error;
1996 
1997 	/* perform the encryption / decryption in software */
1998 	ret = zio_do_crypt_uio(encrypt, key->zk_crypt, ckey, tmpl, iv, enc_len,
1999 	    &puio, &cuio, authbuf, auth_len);
2000 	if (ret != 0)
2001 		goto error;
2002 
2003 	if (locked) {
2004 		rw_exit(&key->zk_salt_lock);
2005 	}
2006 
2007 	if (authbuf != NULL)
2008 		zio_buf_free(authbuf, datalen);
2009 	if (ckey == &tmp_ckey)
2010 		memset(enc_keydata, 0, keydata_len);
2011 	zio_crypt_destroy_uio(&puio);
2012 	zio_crypt_destroy_uio(&cuio);
2013 
2014 	return (0);
2015 
2016 error:
2017 	if (locked)
2018 		rw_exit(&key->zk_salt_lock);
2019 	if (authbuf != NULL)
2020 		zio_buf_free(authbuf, datalen);
2021 	if (ckey == &tmp_ckey)
2022 		memset(enc_keydata, 0, keydata_len);
2023 	zio_crypt_destroy_uio(&puio);
2024 	zio_crypt_destroy_uio(&cuio);
2025 
2026 	return (ret);
2027 }
2028 
2029 /*
2030  * Simple wrapper around zio_do_crypt_data() to work with abd's instead of
2031  * linear buffers.
2032  */
2033 int
zio_do_crypt_abd(boolean_t encrypt,zio_crypt_key_t * key,dmu_object_type_t ot,boolean_t byteswap,uint8_t * salt,uint8_t * iv,uint8_t * mac,uint_t datalen,abd_t * pabd,abd_t * cabd,boolean_t * no_crypt)2034 zio_do_crypt_abd(boolean_t encrypt, zio_crypt_key_t *key, dmu_object_type_t ot,
2035     boolean_t byteswap, uint8_t *salt, uint8_t *iv, uint8_t *mac,
2036     uint_t datalen, abd_t *pabd, abd_t *cabd, boolean_t *no_crypt)
2037 {
2038 	int ret;
2039 	void *ptmp, *ctmp;
2040 
2041 	if (encrypt) {
2042 		ptmp = abd_borrow_buf_copy(pabd, datalen);
2043 		ctmp = abd_borrow_buf(cabd, datalen);
2044 	} else {
2045 		ptmp = abd_borrow_buf(pabd, datalen);
2046 		ctmp = abd_borrow_buf_copy(cabd, datalen);
2047 	}
2048 
2049 	ret = zio_do_crypt_data(encrypt, key, ot, byteswap, salt, iv, mac,
2050 	    datalen, ptmp, ctmp, no_crypt);
2051 	if (ret != 0)
2052 		goto error;
2053 
2054 	if (encrypt) {
2055 		abd_return_buf(pabd, ptmp, datalen);
2056 		abd_return_buf_copy(cabd, ctmp, datalen);
2057 	} else {
2058 		abd_return_buf_copy(pabd, ptmp, datalen);
2059 		abd_return_buf(cabd, ctmp, datalen);
2060 	}
2061 
2062 	return (0);
2063 
2064 error:
2065 	if (encrypt) {
2066 		abd_return_buf(pabd, ptmp, datalen);
2067 		abd_return_buf_copy(cabd, ctmp, datalen);
2068 	} else {
2069 		abd_return_buf_copy(pabd, ptmp, datalen);
2070 		abd_return_buf(cabd, ctmp, datalen);
2071 	}
2072 
2073 	return (ret);
2074 }
2075 
2076 #if defined(_KERNEL)
2077 module_param(zfs_key_max_salt_uses, ulong, 0644);
2078 MODULE_PARM_DESC(zfs_key_max_salt_uses, "Max number of times a salt value "
2079 	"can be used for generating encryption keys before it is rotated");
2080 #endif
2081