1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * This file and its contents are supplied under the terms of the
6 * Common Development and Distribution License ("CDDL"), version 1.0.
7 * You may only use this file in accordance with the terms of version
8 * 1.0 of the CDDL.
9 *
10 * A full copy of the text of the CDDL should have accompanied this
11 * source. A copy of the CDDL is also available via the Internet at
12 * http://www.illumos.org/license/CDDL.
13 *
14 * CDDL HEADER END
15 */
16
17 /*
18 * Copyright (c) 2017, Datto, Inc. All rights reserved.
19 */
20
21 #include <sys/zio_crypt.h>
22 #include <sys/dmu.h>
23 #include <sys/dmu_objset.h>
24 #include <sys/dnode.h>
25 #include <sys/fs/zfs.h>
26 #include <sys/zio.h>
27 #include <sys/zil.h>
28 #include <sys/sha2.h>
29 #include <sys/hkdf.h>
30 #include <sys/qat.h>
31
32 /*
33 * This file is responsible for handling all of the details of generating
34 * encryption parameters and performing encryption and authentication.
35 *
36 * BLOCK ENCRYPTION PARAMETERS:
37 * Encryption /Authentication Algorithm Suite (crypt):
38 * The encryption algorithm, mode, and key length we are going to use. We
39 * currently support AES in either GCM or CCM modes with 128, 192, and 256 bit
40 * keys. All authentication is currently done with SHA512-HMAC.
41 *
42 * Plaintext:
43 * The unencrypted data that we want to encrypt.
44 *
45 * Initialization Vector (IV):
46 * An initialization vector for the encryption algorithms. This is used to
47 * "tweak" the encryption algorithms so that two blocks of the same data are
48 * encrypted into different ciphertext outputs, thus obfuscating block patterns.
49 * The supported encryption modes (AES-GCM and AES-CCM) require that an IV is
50 * never reused with the same encryption key. This value is stored unencrypted
51 * and must simply be provided to the decryption function. We use a 96 bit IV
52 * (as recommended by NIST) for all block encryption. For non-dedup blocks we
53 * derive the IV randomly. The first 64 bits of the IV are stored in the second
54 * word of DVA[2] and the remaining 32 bits are stored in the upper 32 bits of
55 * blk_fill. This is safe because encrypted blocks can't use the upper 32 bits
56 * of blk_fill. We only encrypt level 0 blocks, which normally have a fill count
57 * of 1. The only exception is for DMU_OT_DNODE objects, where the fill count of
58 * level 0 blocks is the number of allocated dnodes in that block. The on-disk
59 * format supports at most 2^15 slots per L0 dnode block, because the maximum
60 * block size is 16MB (2^24). In either case, for level 0 blocks this number
61 * will still be smaller than UINT32_MAX so it is safe to store the IV in the
62 * top 32 bits of blk_fill, while leaving the bottom 32 bits of the fill count
63 * for the dnode code.
64 *
65 * Master key:
66 * This is the most important secret data of an encrypted dataset. It is used
67 * along with the salt to generate that actual encryption keys via HKDF. We
68 * do not use the master key to directly encrypt any data because there are
69 * theoretical limits on how much data can actually be safely encrypted with
70 * any encryption mode. The master key is stored encrypted on disk with the
71 * user's wrapping key. Its length is determined by the encryption algorithm.
72 * For details on how this is stored see the block comment in dsl_crypt.c
73 *
74 * Salt:
75 * Used as an input to the HKDF function, along with the master key. We use a
76 * 64 bit salt, stored unencrypted in the first word of DVA[2]. Any given salt
77 * can be used for encrypting many blocks, so we cache the current salt and the
78 * associated derived key in zio_crypt_t so we do not need to derive it again
79 * needlessly.
80 *
81 * Encryption Key:
82 * A secret binary key, generated from an HKDF function used to encrypt and
83 * decrypt data.
84 *
85 * Message Authentication Code (MAC)
86 * The MAC is an output of authenticated encryption modes such as AES-GCM and
87 * AES-CCM. Its purpose is to ensure that an attacker cannot modify encrypted
88 * data on disk and return garbage to the application. Effectively, it is a
89 * checksum that can not be reproduced by an attacker. We store the MAC in the
90 * second 128 bits of blk_cksum, leaving the first 128 bits for a truncated
91 * regular checksum of the ciphertext which can be used for scrubbing.
92 *
93 * OBJECT AUTHENTICATION:
94 * Some object types, such as DMU_OT_MASTER_NODE cannot be encrypted because
95 * they contain some info that always needs to be readable. To prevent this
96 * data from being altered, we authenticate this data using SHA512-HMAC. This
97 * will produce a MAC (similar to the one produced via encryption) which can
98 * be used to verify the object was not modified. HMACs do not require key
99 * rotation or IVs, so we can keep up to the full 3 copies of authenticated
100 * data.
101 *
102 * ZIL ENCRYPTION:
103 * ZIL blocks have their bp written to disk ahead of the associated data, so we
104 * cannot store the MAC there as we normally do. For these blocks the MAC is
105 * stored in the embedded checksum within the zil_chain_t header. The salt and
106 * IV are generated for the block on bp allocation instead of at encryption
107 * time. In addition, ZIL blocks have some pieces that must be left in plaintext
108 * for claiming even though all of the sensitive user data still needs to be
109 * encrypted. The function zio_crypt_init_uios_zil() handles parsing which
110 * pieces of the block need to be encrypted. All data that is not encrypted is
111 * authenticated using the AAD mechanisms that the supported encryption modes
112 * provide for. In order to preserve the semantics of the ZIL for encrypted
113 * datasets, the ZIL is not protected at the objset level as described below.
114 *
115 * DNODE ENCRYPTION:
116 * Similarly to ZIL blocks, the core part of each dnode_phys_t needs to be left
117 * in plaintext for scrubbing and claiming, but the bonus buffers might contain
118 * sensitive user data. The function zio_crypt_init_uios_dnode() handles parsing
119 * which pieces of the block need to be encrypted. For more details about
120 * dnode authentication and encryption, see zio_crypt_init_uios_dnode().
121 *
122 * OBJECT SET AUTHENTICATION:
123 * Up to this point, everything we have encrypted and authenticated has been
124 * at level 0 (or -2 for the ZIL). If we did not do any further work the
125 * on-disk format would be susceptible to attacks that deleted or rearranged
126 * the order of level 0 blocks. Ideally, the cleanest solution would be to
127 * maintain a tree of authentication MACs going up the bp tree. However, this
128 * presents a problem for raw sends. Send files do not send information about
129 * indirect blocks so there would be no convenient way to transfer the MACs and
130 * they cannot be recalculated on the receive side without the master key which
131 * would defeat one of the purposes of raw sends in the first place. Instead,
132 * for the indirect levels of the bp tree, we use a regular SHA512 of the MACs
133 * from the level below. We also include some portable fields from blk_prop such
134 * as the lsize and compression algorithm to prevent the data from being
135 * misinterpreted.
136 *
137 * At the objset level, we maintain 2 separate 256 bit MACs in the
138 * objset_phys_t. The first one is "portable" and is the logical root of the
139 * MAC tree maintained in the metadnode's bps. The second, is "local" and is
140 * used as the root MAC for the user accounting objects, which are also not
141 * transferred via "zfs send". The portable MAC is sent in the DRR_BEGIN payload
142 * of the send file. The useraccounting code ensures that the useraccounting
143 * info is not present upon a receive, so the local MAC can simply be cleared
144 * out at that time. For more info about objset_phys_t authentication, see
145 * zio_crypt_do_objset_hmacs().
146 *
147 * CONSIDERATIONS FOR DEDUP:
148 * In order for dedup to work, blocks that we want to dedup with one another
149 * need to use the same IV and encryption key, so that they will have the same
150 * ciphertext. Normally, one should never reuse an IV with the same encryption
151 * key or else AES-GCM and AES-CCM can both actually leak the plaintext of both
152 * blocks. In this case, however, since we are using the same plaintext as
153 * well all that we end up with is a duplicate of the original ciphertext we
154 * already had. As a result, an attacker with read access to the raw disk will
155 * be able to tell which blocks are the same but this information is given away
156 * by dedup anyway. In order to get the same IVs and encryption keys for
157 * equivalent blocks of data we use an HMAC of the plaintext. We use an HMAC
158 * here so that a reproducible checksum of the plaintext is never available to
159 * the attacker. The HMAC key is kept alongside the master key, encrypted on
160 * disk. The first 64 bits of the HMAC are used in place of the random salt, and
161 * the next 96 bits are used as the IV. As a result of this mechanism, dedup
162 * will only work within a clone family since encrypted dedup requires use of
163 * the same master and HMAC keys.
164 */
165
166 /*
167 * After encrypting many blocks with the same key we may start to run up
168 * against the theoretical limits of how much data can securely be encrypted
169 * with a single key using the supported encryption modes. The most obvious
170 * limitation is that our risk of generating 2 equivalent 96 bit IVs increases
171 * the more IVs we generate (which both GCM and CCM modes strictly forbid).
172 * This risk actually grows surprisingly quickly over time according to the
173 * Birthday Problem. With a total IV space of 2^(96 bits), and assuming we have
174 * generated n IVs with a cryptographically secure RNG, the approximate
175 * probability p(n) of a collision is given as:
176 *
177 * p(n) ~= e^(-n*(n-1)/(2*(2^96)))
178 *
179 * [http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html]
180 *
181 * Assuming that we want to ensure that p(n) never goes over 1 / 1 trillion
182 * we must not write more than 398,065,730 blocks with the same encryption key.
183 * Therefore, we rotate our keys after 400,000,000 blocks have been written by
184 * generating a new random 64 bit salt for our HKDF encryption key generation
185 * function.
186 */
187 #define ZFS_KEY_MAX_SALT_USES_DEFAULT 400000000
188 #define ZFS_CURRENT_MAX_SALT_USES \
189 (MIN(zfs_key_max_salt_uses, ZFS_KEY_MAX_SALT_USES_DEFAULT))
190 static unsigned long zfs_key_max_salt_uses = ZFS_KEY_MAX_SALT_USES_DEFAULT;
191
192 typedef struct blkptr_auth_buf {
193 uint64_t bab_prop; /* blk_prop - portable mask */
194 uint8_t bab_mac[ZIO_DATA_MAC_LEN]; /* MAC from blk_cksum */
195 uint64_t bab_pad; /* reserved for future use */
196 } blkptr_auth_buf_t;
197
198 const zio_crypt_info_t zio_crypt_table[ZIO_CRYPT_FUNCTIONS] = {
199 {"", ZC_TYPE_NONE, 0, "inherit"},
200 {"", ZC_TYPE_NONE, 0, "on"},
201 {"", ZC_TYPE_NONE, 0, "off"},
202 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 16, "aes-128-ccm"},
203 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 24, "aes-192-ccm"},
204 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 32, "aes-256-ccm"},
205 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 16, "aes-128-gcm"},
206 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 24, "aes-192-gcm"},
207 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 32, "aes-256-gcm"}
208 };
209
210 void
zio_crypt_key_destroy(zio_crypt_key_t * key)211 zio_crypt_key_destroy(zio_crypt_key_t *key)
212 {
213 rw_destroy(&key->zk_salt_lock);
214
215 /* free crypto templates */
216 crypto_destroy_ctx_template(key->zk_current_tmpl);
217 crypto_destroy_ctx_template(key->zk_hmac_tmpl);
218
219 /* zero out sensitive data */
220 memset(key, 0, sizeof (zio_crypt_key_t));
221 }
222
223 int
zio_crypt_key_init(uint64_t crypt,zio_crypt_key_t * key)224 zio_crypt_key_init(uint64_t crypt, zio_crypt_key_t *key)
225 {
226 int ret;
227 crypto_mechanism_t mech = {0};
228 uint_t keydata_len;
229
230 ASSERT(key != NULL);
231 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
232
233 /*
234 * Workaround for GCC 12+ with UBSan enabled deficencies.
235 *
236 * GCC 12+ invoked with -fsanitize=undefined incorrectly reports the code
237 * below as violating -Warray-bounds
238 */
239 #if defined(__GNUC__) && !defined(__clang__) && \
240 ((!defined(_KERNEL) && defined(ZFS_UBSAN_ENABLED)) || \
241 defined(CONFIG_UBSAN))
242 #pragma GCC diagnostic push
243 #pragma GCC diagnostic ignored "-Warray-bounds"
244 #endif
245 keydata_len = zio_crypt_table[crypt].ci_keylen;
246 #if defined(__GNUC__) && !defined(__clang__) && \
247 ((!defined(_KERNEL) && defined(ZFS_UBSAN_ENABLED)) || \
248 defined(CONFIG_UBSAN))
249 #pragma GCC diagnostic pop
250 #endif
251 memset(key, 0, sizeof (zio_crypt_key_t));
252 rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
253
254 /* fill keydata buffers and salt with random data */
255 ret = random_get_bytes((uint8_t *)&key->zk_guid, sizeof (uint64_t));
256 if (ret != 0)
257 goto error;
258
259 ret = random_get_bytes(key->zk_master_keydata, keydata_len);
260 if (ret != 0)
261 goto error;
262
263 ret = random_get_bytes(key->zk_hmac_keydata, SHA512_HMAC_KEYLEN);
264 if (ret != 0)
265 goto error;
266
267 ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
268 if (ret != 0)
269 goto error;
270
271 /* derive the current key from the master key */
272 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
273 key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
274 keydata_len);
275 if (ret != 0)
276 goto error;
277
278 /* initialize keys for the ICP */
279 key->zk_current_key.ck_data = key->zk_current_keydata;
280 key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
281
282 key->zk_hmac_key.ck_data = &key->zk_hmac_key;
283 key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
284
285 /*
286 * Initialize the crypto templates. It's ok if this fails because
287 * this is just an optimization.
288 */
289 mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
290 ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
291 &key->zk_current_tmpl);
292 if (ret != CRYPTO_SUCCESS)
293 key->zk_current_tmpl = NULL;
294
295 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
296 ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
297 &key->zk_hmac_tmpl);
298 if (ret != CRYPTO_SUCCESS)
299 key->zk_hmac_tmpl = NULL;
300
301 key->zk_crypt = crypt;
302 key->zk_version = ZIO_CRYPT_KEY_CURRENT_VERSION;
303 key->zk_salt_count = 0;
304
305 return (0);
306
307 error:
308 zio_crypt_key_destroy(key);
309 return (ret);
310 }
311
312 static int
zio_crypt_key_change_salt(zio_crypt_key_t * key)313 zio_crypt_key_change_salt(zio_crypt_key_t *key)
314 {
315 int ret = 0;
316 uint8_t salt[ZIO_DATA_SALT_LEN];
317 crypto_mechanism_t mech;
318 uint_t keydata_len = zio_crypt_table[key->zk_crypt].ci_keylen;
319
320 /* generate a new salt */
321 ret = random_get_bytes(salt, ZIO_DATA_SALT_LEN);
322 if (ret != 0)
323 goto error;
324
325 rw_enter(&key->zk_salt_lock, RW_WRITER);
326
327 /* someone beat us to the salt rotation, just unlock and return */
328 if (key->zk_salt_count < ZFS_CURRENT_MAX_SALT_USES)
329 goto out_unlock;
330
331 /* derive the current key from the master key and the new salt */
332 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
333 salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, keydata_len);
334 if (ret != 0)
335 goto out_unlock;
336
337 /* assign the salt and reset the usage count */
338 memcpy(key->zk_salt, salt, ZIO_DATA_SALT_LEN);
339 key->zk_salt_count = 0;
340
341 /* destroy the old context template and create the new one */
342 crypto_destroy_ctx_template(key->zk_current_tmpl);
343 ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
344 &key->zk_current_tmpl);
345 if (ret != CRYPTO_SUCCESS)
346 key->zk_current_tmpl = NULL;
347
348 rw_exit(&key->zk_salt_lock);
349
350 return (0);
351
352 out_unlock:
353 rw_exit(&key->zk_salt_lock);
354 error:
355 return (ret);
356 }
357
358 /* See comment above zfs_key_max_salt_uses definition for details */
359 int
zio_crypt_key_get_salt(zio_crypt_key_t * key,uint8_t * salt)360 zio_crypt_key_get_salt(zio_crypt_key_t *key, uint8_t *salt)
361 {
362 int ret;
363 boolean_t salt_change;
364
365 rw_enter(&key->zk_salt_lock, RW_READER);
366
367 memcpy(salt, key->zk_salt, ZIO_DATA_SALT_LEN);
368 salt_change = (atomic_inc_64_nv(&key->zk_salt_count) >=
369 ZFS_CURRENT_MAX_SALT_USES);
370
371 rw_exit(&key->zk_salt_lock);
372
373 if (salt_change) {
374 ret = zio_crypt_key_change_salt(key);
375 if (ret != 0)
376 goto error;
377 }
378
379 return (0);
380
381 error:
382 return (ret);
383 }
384
385 /*
386 * This function handles all encryption and decryption in zfs. When
387 * encrypting it expects puio to reference the plaintext and cuio to
388 * reference the ciphertext. cuio must have enough space for the
389 * ciphertext + room for a MAC. datalen should be the length of the
390 * plaintext / ciphertext alone.
391 */
392 static int
zio_do_crypt_uio(boolean_t encrypt,uint64_t crypt,crypto_key_t * key,crypto_ctx_template_t tmpl,uint8_t * ivbuf,uint_t datalen,zfs_uio_t * puio,zfs_uio_t * cuio,uint8_t * authbuf,uint_t auth_len)393 zio_do_crypt_uio(boolean_t encrypt, uint64_t crypt, crypto_key_t *key,
394 crypto_ctx_template_t tmpl, uint8_t *ivbuf, uint_t datalen,
395 zfs_uio_t *puio, zfs_uio_t *cuio, uint8_t *authbuf, uint_t auth_len)
396 {
397 int ret;
398 crypto_data_t plaindata, cipherdata;
399 CK_AES_CCM_PARAMS ccmp;
400 CK_AES_GCM_PARAMS gcmp;
401 crypto_mechanism_t mech;
402 zio_crypt_info_t crypt_info;
403 uint_t plain_full_len, maclen;
404
405 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
406
407 /* lookup the encryption info */
408 crypt_info = zio_crypt_table[crypt];
409
410 /* the mac will always be the last iovec_t in the cipher uio */
411 maclen = cuio->uio_iov[cuio->uio_iovcnt - 1].iov_len;
412
413 ASSERT(maclen <= ZIO_DATA_MAC_LEN);
414
415 /* setup encryption mechanism (same as crypt) */
416 mech.cm_type = crypto_mech2id(crypt_info.ci_mechname);
417
418 /*
419 * Strangely, the ICP requires that plain_full_len must include
420 * the MAC length when decrypting, even though the UIO does not
421 * need to have the extra space allocated.
422 */
423 if (encrypt) {
424 plain_full_len = datalen;
425 } else {
426 plain_full_len = datalen + maclen;
427 }
428
429 /*
430 * setup encryption params (currently only AES CCM and AES GCM
431 * are supported)
432 */
433 if (crypt_info.ci_crypt_type == ZC_TYPE_CCM) {
434 ccmp.ulNonceSize = ZIO_DATA_IV_LEN;
435 ccmp.ulAuthDataSize = auth_len;
436 ccmp.authData = authbuf;
437 ccmp.ulMACSize = maclen;
438 ccmp.nonce = ivbuf;
439 ccmp.ulDataSize = plain_full_len;
440
441 mech.cm_param = (char *)(&ccmp);
442 mech.cm_param_len = sizeof (CK_AES_CCM_PARAMS);
443 } else {
444 gcmp.ulIvLen = ZIO_DATA_IV_LEN;
445 gcmp.ulIvBits = CRYPTO_BYTES2BITS(ZIO_DATA_IV_LEN);
446 gcmp.ulAADLen = auth_len;
447 gcmp.pAAD = authbuf;
448 gcmp.ulTagBits = CRYPTO_BYTES2BITS(maclen);
449 gcmp.pIv = ivbuf;
450
451 mech.cm_param = (char *)(&gcmp);
452 mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS);
453 }
454
455 /* populate the cipher and plain data structs. */
456 plaindata.cd_format = CRYPTO_DATA_UIO;
457 plaindata.cd_offset = 0;
458 plaindata.cd_uio = puio;
459 plaindata.cd_length = plain_full_len;
460
461 cipherdata.cd_format = CRYPTO_DATA_UIO;
462 cipherdata.cd_offset = 0;
463 cipherdata.cd_uio = cuio;
464 cipherdata.cd_length = datalen + maclen;
465
466 /* perform the actual encryption */
467 if (encrypt) {
468 ret = crypto_encrypt(&mech, &plaindata, key, tmpl, &cipherdata);
469 if (ret != CRYPTO_SUCCESS) {
470 ret = SET_ERROR(EIO);
471 goto error;
472 }
473 } else {
474 ret = crypto_decrypt(&mech, &cipherdata, key, tmpl, &plaindata);
475 if (ret != CRYPTO_SUCCESS) {
476 ASSERT3U(ret, ==, CRYPTO_INVALID_MAC);
477 ret = SET_ERROR(ECKSUM);
478 goto error;
479 }
480 }
481
482 return (0);
483
484 error:
485 return (ret);
486 }
487
488 int
zio_crypt_key_wrap(crypto_key_t * cwkey,zio_crypt_key_t * key,uint8_t * iv,uint8_t * mac,uint8_t * keydata_out,uint8_t * hmac_keydata_out)489 zio_crypt_key_wrap(crypto_key_t *cwkey, zio_crypt_key_t *key, uint8_t *iv,
490 uint8_t *mac, uint8_t *keydata_out, uint8_t *hmac_keydata_out)
491 {
492 int ret;
493 zfs_uio_t puio, cuio;
494 uint64_t aad[3];
495 iovec_t plain_iovecs[2], cipher_iovecs[3];
496 uint64_t crypt = key->zk_crypt;
497 uint_t enc_len, keydata_len, aad_len;
498
499 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
500
501 keydata_len = zio_crypt_table[crypt].ci_keylen;
502
503 /* generate iv for wrapping the master and hmac key */
504 ret = random_get_pseudo_bytes(iv, WRAPPING_IV_LEN);
505 if (ret != 0)
506 goto error;
507
508 /* initialize zfs_uio_ts */
509 plain_iovecs[0].iov_base = key->zk_master_keydata;
510 plain_iovecs[0].iov_len = keydata_len;
511 plain_iovecs[1].iov_base = key->zk_hmac_keydata;
512 plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
513
514 cipher_iovecs[0].iov_base = keydata_out;
515 cipher_iovecs[0].iov_len = keydata_len;
516 cipher_iovecs[1].iov_base = hmac_keydata_out;
517 cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
518 cipher_iovecs[2].iov_base = mac;
519 cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
520
521 /*
522 * Although we don't support writing to the old format, we do
523 * support rewrapping the key so that the user can move and
524 * quarantine datasets on the old format.
525 */
526 if (key->zk_version == 0) {
527 aad_len = sizeof (uint64_t);
528 aad[0] = LE_64(key->zk_guid);
529 } else {
530 ASSERT3U(key->zk_version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
531 aad_len = sizeof (uint64_t) * 3;
532 aad[0] = LE_64(key->zk_guid);
533 aad[1] = LE_64(crypt);
534 aad[2] = LE_64(key->zk_version);
535 }
536
537 enc_len = zio_crypt_table[crypt].ci_keylen + SHA512_HMAC_KEYLEN;
538 puio.uio_iov = plain_iovecs;
539 puio.uio_iovcnt = 2;
540 puio.uio_segflg = UIO_SYSSPACE;
541 cuio.uio_iov = cipher_iovecs;
542 cuio.uio_iovcnt = 3;
543 cuio.uio_segflg = UIO_SYSSPACE;
544
545 /* encrypt the keys and store the resulting ciphertext and mac */
546 ret = zio_do_crypt_uio(B_TRUE, crypt, cwkey, NULL, iv, enc_len,
547 &puio, &cuio, (uint8_t *)aad, aad_len);
548 if (ret != 0)
549 goto error;
550
551 return (0);
552
553 error:
554 return (ret);
555 }
556
557 int
zio_crypt_key_unwrap(crypto_key_t * cwkey,uint64_t crypt,uint64_t version,uint64_t guid,uint8_t * keydata,uint8_t * hmac_keydata,uint8_t * iv,uint8_t * mac,zio_crypt_key_t * key)558 zio_crypt_key_unwrap(crypto_key_t *cwkey, uint64_t crypt, uint64_t version,
559 uint64_t guid, uint8_t *keydata, uint8_t *hmac_keydata, uint8_t *iv,
560 uint8_t *mac, zio_crypt_key_t *key)
561 {
562 crypto_mechanism_t mech;
563 zfs_uio_t puio, cuio;
564 uint64_t aad[3];
565 iovec_t plain_iovecs[2], cipher_iovecs[3];
566 uint_t enc_len, keydata_len, aad_len;
567 int ret;
568
569 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
570
571 rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
572
573 keydata_len = zio_crypt_table[crypt].ci_keylen;
574
575 /* initialize zfs_uio_ts */
576 plain_iovecs[0].iov_base = key->zk_master_keydata;
577 plain_iovecs[0].iov_len = keydata_len;
578 plain_iovecs[1].iov_base = key->zk_hmac_keydata;
579 plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
580
581 cipher_iovecs[0].iov_base = keydata;
582 cipher_iovecs[0].iov_len = keydata_len;
583 cipher_iovecs[1].iov_base = hmac_keydata;
584 cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
585 cipher_iovecs[2].iov_base = mac;
586 cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
587
588 if (version == 0) {
589 aad_len = sizeof (uint64_t);
590 aad[0] = LE_64(guid);
591 } else {
592 ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
593 aad_len = sizeof (uint64_t) * 3;
594 aad[0] = LE_64(guid);
595 aad[1] = LE_64(crypt);
596 aad[2] = LE_64(version);
597 }
598
599 enc_len = keydata_len + SHA512_HMAC_KEYLEN;
600 puio.uio_iov = plain_iovecs;
601 puio.uio_segflg = UIO_SYSSPACE;
602 puio.uio_iovcnt = 2;
603 cuio.uio_iov = cipher_iovecs;
604 cuio.uio_iovcnt = 3;
605 cuio.uio_segflg = UIO_SYSSPACE;
606
607 /* decrypt the keys and store the result in the output buffers */
608 ret = zio_do_crypt_uio(B_FALSE, crypt, cwkey, NULL, iv, enc_len,
609 &puio, &cuio, (uint8_t *)aad, aad_len);
610 if (ret != 0)
611 goto error;
612
613 /* generate a fresh salt */
614 ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
615 if (ret != 0)
616 goto error;
617
618 /* derive the current key from the master key */
619 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
620 key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
621 keydata_len);
622 if (ret != 0)
623 goto error;
624
625 /* initialize keys for ICP */
626 key->zk_current_key.ck_data = key->zk_current_keydata;
627 key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
628
629 key->zk_hmac_key.ck_data = key->zk_hmac_keydata;
630 key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
631
632 /*
633 * Initialize the crypto templates. It's ok if this fails because
634 * this is just an optimization.
635 */
636 mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
637 ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
638 &key->zk_current_tmpl);
639 if (ret != CRYPTO_SUCCESS)
640 key->zk_current_tmpl = NULL;
641
642 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
643 ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
644 &key->zk_hmac_tmpl);
645 if (ret != CRYPTO_SUCCESS)
646 key->zk_hmac_tmpl = NULL;
647
648 key->zk_crypt = crypt;
649 key->zk_version = version;
650 key->zk_guid = guid;
651 key->zk_salt_count = 0;
652
653 return (0);
654
655 error:
656 zio_crypt_key_destroy(key);
657 return (ret);
658 }
659
660 int
zio_crypt_generate_iv(uint8_t * ivbuf)661 zio_crypt_generate_iv(uint8_t *ivbuf)
662 {
663 int ret;
664
665 /* randomly generate the IV */
666 ret = random_get_pseudo_bytes(ivbuf, ZIO_DATA_IV_LEN);
667 if (ret != 0)
668 goto error;
669
670 return (0);
671
672 error:
673 memset(ivbuf, 0, ZIO_DATA_IV_LEN);
674 return (ret);
675 }
676
677 int
zio_crypt_do_hmac(zio_crypt_key_t * key,uint8_t * data,uint_t datalen,uint8_t * digestbuf,uint_t digestlen)678 zio_crypt_do_hmac(zio_crypt_key_t *key, uint8_t *data, uint_t datalen,
679 uint8_t *digestbuf, uint_t digestlen)
680 {
681 int ret;
682 crypto_mechanism_t mech;
683 crypto_data_t in_data, digest_data;
684 uint8_t raw_digestbuf[SHA512_DIGEST_LENGTH];
685
686 ASSERT3U(digestlen, <=, SHA512_DIGEST_LENGTH);
687
688 /* initialize sha512-hmac mechanism and crypto data */
689 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
690 mech.cm_param = NULL;
691 mech.cm_param_len = 0;
692
693 /* initialize the crypto data */
694 in_data.cd_format = CRYPTO_DATA_RAW;
695 in_data.cd_offset = 0;
696 in_data.cd_length = datalen;
697 in_data.cd_raw.iov_base = (char *)data;
698 in_data.cd_raw.iov_len = in_data.cd_length;
699
700 digest_data.cd_format = CRYPTO_DATA_RAW;
701 digest_data.cd_offset = 0;
702 digest_data.cd_length = SHA512_DIGEST_LENGTH;
703 digest_data.cd_raw.iov_base = (char *)raw_digestbuf;
704 digest_data.cd_raw.iov_len = digest_data.cd_length;
705
706 /* generate the hmac */
707 ret = crypto_mac(&mech, &in_data, &key->zk_hmac_key, key->zk_hmac_tmpl,
708 &digest_data);
709 if (ret != CRYPTO_SUCCESS) {
710 ret = SET_ERROR(EIO);
711 goto error;
712 }
713
714 memcpy(digestbuf, raw_digestbuf, digestlen);
715
716 return (0);
717
718 error:
719 memset(digestbuf, 0, digestlen);
720 return (ret);
721 }
722
723 int
zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t * key,uint8_t * data,uint_t datalen,uint8_t * ivbuf,uint8_t * salt)724 zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t *key, uint8_t *data,
725 uint_t datalen, uint8_t *ivbuf, uint8_t *salt)
726 {
727 int ret;
728 uint8_t digestbuf[SHA512_DIGEST_LENGTH];
729
730 ret = zio_crypt_do_hmac(key, data, datalen,
731 digestbuf, SHA512_DIGEST_LENGTH);
732 if (ret != 0)
733 return (ret);
734
735 memcpy(salt, digestbuf, ZIO_DATA_SALT_LEN);
736 memcpy(ivbuf, digestbuf + ZIO_DATA_SALT_LEN, ZIO_DATA_IV_LEN);
737
738 return (0);
739 }
740
741 /*
742 * The following functions are used to encode and decode encryption parameters
743 * into blkptr_t and zil_header_t. The ICP wants to use these parameters as
744 * byte strings, which normally means that these strings would not need to deal
745 * with byteswapping at all. However, both blkptr_t and zil_header_t may be
746 * byteswapped by lower layers and so we must "undo" that byteswap here upon
747 * decoding and encoding in a non-native byteorder. These functions require
748 * that the byteorder bit is correct before being called.
749 */
750 void
zio_crypt_encode_params_bp(blkptr_t * bp,uint8_t * salt,uint8_t * iv)751 zio_crypt_encode_params_bp(blkptr_t *bp, uint8_t *salt, uint8_t *iv)
752 {
753 uint64_t val64;
754 uint32_t val32;
755
756 ASSERT(BP_IS_ENCRYPTED(bp));
757
758 if (!BP_SHOULD_BYTESWAP(bp)) {
759 memcpy(&bp->blk_dva[2].dva_word[0], salt, sizeof (uint64_t));
760 memcpy(&bp->blk_dva[2].dva_word[1], iv, sizeof (uint64_t));
761 memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
762 BP_SET_IV2(bp, val32);
763 } else {
764 memcpy(&val64, salt, sizeof (uint64_t));
765 bp->blk_dva[2].dva_word[0] = BSWAP_64(val64);
766
767 memcpy(&val64, iv, sizeof (uint64_t));
768 bp->blk_dva[2].dva_word[1] = BSWAP_64(val64);
769
770 memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
771 BP_SET_IV2(bp, BSWAP_32(val32));
772 }
773 }
774
775 void
zio_crypt_decode_params_bp(const blkptr_t * bp,uint8_t * salt,uint8_t * iv)776 zio_crypt_decode_params_bp(const blkptr_t *bp, uint8_t *salt, uint8_t *iv)
777 {
778 uint64_t val64;
779 uint32_t val32;
780
781 ASSERT(BP_IS_PROTECTED(bp));
782
783 /* for convenience, so callers don't need to check */
784 if (BP_IS_AUTHENTICATED(bp)) {
785 memset(salt, 0, ZIO_DATA_SALT_LEN);
786 memset(iv, 0, ZIO_DATA_IV_LEN);
787 return;
788 }
789
790 if (!BP_SHOULD_BYTESWAP(bp)) {
791 memcpy(salt, &bp->blk_dva[2].dva_word[0], sizeof (uint64_t));
792 memcpy(iv, &bp->blk_dva[2].dva_word[1], sizeof (uint64_t));
793
794 val32 = (uint32_t)BP_GET_IV2(bp);
795 memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
796 } else {
797 val64 = BSWAP_64(bp->blk_dva[2].dva_word[0]);
798 memcpy(salt, &val64, sizeof (uint64_t));
799
800 val64 = BSWAP_64(bp->blk_dva[2].dva_word[1]);
801 memcpy(iv, &val64, sizeof (uint64_t));
802
803 val32 = BSWAP_32((uint32_t)BP_GET_IV2(bp));
804 memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
805 }
806 }
807
808 void
zio_crypt_encode_mac_bp(blkptr_t * bp,uint8_t * mac)809 zio_crypt_encode_mac_bp(blkptr_t *bp, uint8_t *mac)
810 {
811 uint64_t val64;
812
813 ASSERT(BP_USES_CRYPT(bp));
814 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_OBJSET);
815
816 if (!BP_SHOULD_BYTESWAP(bp)) {
817 memcpy(&bp->blk_cksum.zc_word[2], mac, sizeof (uint64_t));
818 memcpy(&bp->blk_cksum.zc_word[3], mac + sizeof (uint64_t),
819 sizeof (uint64_t));
820 } else {
821 memcpy(&val64, mac, sizeof (uint64_t));
822 bp->blk_cksum.zc_word[2] = BSWAP_64(val64);
823
824 memcpy(&val64, mac + sizeof (uint64_t), sizeof (uint64_t));
825 bp->blk_cksum.zc_word[3] = BSWAP_64(val64);
826 }
827 }
828
829 void
zio_crypt_decode_mac_bp(const blkptr_t * bp,uint8_t * mac)830 zio_crypt_decode_mac_bp(const blkptr_t *bp, uint8_t *mac)
831 {
832 uint64_t val64;
833
834 ASSERT(BP_USES_CRYPT(bp) || BP_IS_HOLE(bp));
835
836 /* for convenience, so callers don't need to check */
837 if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
838 memset(mac, 0, ZIO_DATA_MAC_LEN);
839 return;
840 }
841
842 if (!BP_SHOULD_BYTESWAP(bp)) {
843 memcpy(mac, &bp->blk_cksum.zc_word[2], sizeof (uint64_t));
844 memcpy(mac + sizeof (uint64_t), &bp->blk_cksum.zc_word[3],
845 sizeof (uint64_t));
846 } else {
847 val64 = BSWAP_64(bp->blk_cksum.zc_word[2]);
848 memcpy(mac, &val64, sizeof (uint64_t));
849
850 val64 = BSWAP_64(bp->blk_cksum.zc_word[3]);
851 memcpy(mac + sizeof (uint64_t), &val64, sizeof (uint64_t));
852 }
853 }
854
855 void
zio_crypt_encode_mac_zil(void * data,uint8_t * mac)856 zio_crypt_encode_mac_zil(void *data, uint8_t *mac)
857 {
858 zil_chain_t *zilc = data;
859
860 memcpy(&zilc->zc_eck.zec_cksum.zc_word[2], mac, sizeof (uint64_t));
861 memcpy(&zilc->zc_eck.zec_cksum.zc_word[3], mac + sizeof (uint64_t),
862 sizeof (uint64_t));
863 }
864
865 void
zio_crypt_decode_mac_zil(const void * data,uint8_t * mac)866 zio_crypt_decode_mac_zil(const void *data, uint8_t *mac)
867 {
868 /*
869 * The ZIL MAC is embedded in the block it protects, which will
870 * not have been byteswapped by the time this function has been called.
871 * As a result, we don't need to worry about byteswapping the MAC.
872 */
873 const zil_chain_t *zilc = data;
874
875 memcpy(mac, &zilc->zc_eck.zec_cksum.zc_word[2], sizeof (uint64_t));
876 memcpy(mac + sizeof (uint64_t), &zilc->zc_eck.zec_cksum.zc_word[3],
877 sizeof (uint64_t));
878 }
879
880 /*
881 * This routine takes a block of dnodes (src_abd) and copies only the bonus
882 * buffers to the same offsets in the dst buffer. datalen should be the size
883 * of both the src_abd and the dst buffer (not just the length of the bonus
884 * buffers).
885 */
886 void
zio_crypt_copy_dnode_bonus(abd_t * src_abd,uint8_t * dst,uint_t datalen)887 zio_crypt_copy_dnode_bonus(abd_t *src_abd, uint8_t *dst, uint_t datalen)
888 {
889 uint_t i, max_dnp = datalen >> DNODE_SHIFT;
890 uint8_t *src;
891 dnode_phys_t *dnp, *sdnp, *ddnp;
892
893 src = abd_borrow_buf_copy(src_abd, datalen);
894
895 sdnp = (dnode_phys_t *)src;
896 ddnp = (dnode_phys_t *)dst;
897
898 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
899 dnp = &sdnp[i];
900 if (dnp->dn_type != DMU_OT_NONE &&
901 DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
902 dnp->dn_bonuslen != 0) {
903 memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp),
904 DN_MAX_BONUS_LEN(dnp));
905 }
906 }
907
908 abd_return_buf(src_abd, src, datalen);
909 }
910
911 /*
912 * This function decides what fields from blk_prop are included in
913 * the on-disk various MAC algorithms.
914 */
915 static void
zio_crypt_bp_zero_nonportable_blkprop(blkptr_t * bp,uint64_t version)916 zio_crypt_bp_zero_nonportable_blkprop(blkptr_t *bp, uint64_t version)
917 {
918 /*
919 * Version 0 did not properly zero out all non-portable fields
920 * as it should have done. We maintain this code so that we can
921 * do read-only imports of pools on this version.
922 */
923 if (version == 0) {
924 BP_SET_DEDUP(bp, 0);
925 BP_SET_CHECKSUM(bp, 0);
926 BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
927 return;
928 }
929
930 ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
931
932 /*
933 * The hole_birth feature might set these fields even if this bp
934 * is a hole. We zero them out here to guarantee that raw sends
935 * will function with or without the feature.
936 */
937 if (BP_IS_HOLE(bp)) {
938 bp->blk_prop = 0ULL;
939 return;
940 }
941
942 /*
943 * At L0 we want to verify these fields to ensure that data blocks
944 * can not be reinterpreted. For instance, we do not want an attacker
945 * to trick us into returning raw lz4 compressed data to the user
946 * by modifying the compression bits. At higher levels, we cannot
947 * enforce this policy since raw sends do not convey any information
948 * about indirect blocks, so these values might be different on the
949 * receive side. Fortunately, this does not open any new attack
950 * vectors, since any alterations that can be made to a higher level
951 * bp must still verify the correct order of the layer below it.
952 */
953 if (BP_GET_LEVEL(bp) != 0) {
954 BP_SET_BYTEORDER(bp, 0);
955 BP_SET_COMPRESS(bp, 0);
956
957 /*
958 * psize cannot be set to zero or it will trigger
959 * asserts, but the value doesn't really matter as
960 * long as it is constant.
961 */
962 BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
963 }
964
965 BP_SET_DEDUP(bp, 0);
966 BP_SET_CHECKSUM(bp, 0);
967 }
968
969 static void
zio_crypt_bp_auth_init(uint64_t version,boolean_t should_bswap,blkptr_t * bp,blkptr_auth_buf_t * bab,uint_t * bab_len)970 zio_crypt_bp_auth_init(uint64_t version, boolean_t should_bswap, blkptr_t *bp,
971 blkptr_auth_buf_t *bab, uint_t *bab_len)
972 {
973 blkptr_t tmpbp = *bp;
974
975 if (should_bswap)
976 byteswap_uint64_array(&tmpbp, sizeof (blkptr_t));
977
978 ASSERT(BP_USES_CRYPT(&tmpbp) || BP_IS_HOLE(&tmpbp));
979 ASSERT0(BP_IS_EMBEDDED(&tmpbp));
980
981 zio_crypt_decode_mac_bp(&tmpbp, bab->bab_mac);
982
983 /*
984 * We always MAC blk_prop in LE to ensure portability. This
985 * must be done after decoding the mac, since the endianness
986 * will get zero'd out here.
987 */
988 zio_crypt_bp_zero_nonportable_blkprop(&tmpbp, version);
989 bab->bab_prop = LE_64(tmpbp.blk_prop);
990 bab->bab_pad = 0ULL;
991
992 /* version 0 did not include the padding */
993 *bab_len = sizeof (blkptr_auth_buf_t);
994 if (version == 0)
995 *bab_len -= sizeof (uint64_t);
996 }
997
998 static int
zio_crypt_bp_do_hmac_updates(crypto_context_t ctx,uint64_t version,boolean_t should_bswap,blkptr_t * bp)999 zio_crypt_bp_do_hmac_updates(crypto_context_t ctx, uint64_t version,
1000 boolean_t should_bswap, blkptr_t *bp)
1001 {
1002 int ret;
1003 uint_t bab_len;
1004 blkptr_auth_buf_t bab;
1005 crypto_data_t cd;
1006
1007 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1008 cd.cd_format = CRYPTO_DATA_RAW;
1009 cd.cd_offset = 0;
1010 cd.cd_length = bab_len;
1011 cd.cd_raw.iov_base = (char *)&bab;
1012 cd.cd_raw.iov_len = cd.cd_length;
1013
1014 ret = crypto_mac_update(ctx, &cd);
1015 if (ret != CRYPTO_SUCCESS) {
1016 ret = SET_ERROR(EIO);
1017 goto error;
1018 }
1019
1020 return (0);
1021
1022 error:
1023 return (ret);
1024 }
1025
1026 static void
zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX * ctx,uint64_t version,boolean_t should_bswap,blkptr_t * bp)1027 zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX *ctx, uint64_t version,
1028 boolean_t should_bswap, blkptr_t *bp)
1029 {
1030 uint_t bab_len;
1031 blkptr_auth_buf_t bab;
1032
1033 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1034 SHA2Update(ctx, &bab, bab_len);
1035 }
1036
1037 static void
zio_crypt_bp_do_aad_updates(uint8_t ** aadp,uint_t * aad_len,uint64_t version,boolean_t should_bswap,blkptr_t * bp)1038 zio_crypt_bp_do_aad_updates(uint8_t **aadp, uint_t *aad_len, uint64_t version,
1039 boolean_t should_bswap, blkptr_t *bp)
1040 {
1041 uint_t bab_len;
1042 blkptr_auth_buf_t bab;
1043
1044 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1045 memcpy(*aadp, &bab, bab_len);
1046 *aadp += bab_len;
1047 *aad_len += bab_len;
1048 }
1049
1050 static int
zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx,uint64_t version,boolean_t should_bswap,dnode_phys_t * dnp)1051 zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx, uint64_t version,
1052 boolean_t should_bswap, dnode_phys_t *dnp)
1053 {
1054 int ret, i;
1055 dnode_phys_t *adnp, tmp_dncore;
1056 size_t dn_core_size = offsetof(dnode_phys_t, dn_blkptr);
1057 boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
1058 crypto_data_t cd;
1059
1060 cd.cd_format = CRYPTO_DATA_RAW;
1061 cd.cd_offset = 0;
1062
1063 /*
1064 * Authenticate the core dnode (masking out non-portable bits).
1065 * We only copy the first 64 bytes we operate on to avoid the overhead
1066 * of copying 512-64 unneeded bytes. The compiler seems to be fine
1067 * with that.
1068 */
1069 memcpy(&tmp_dncore, dnp, dn_core_size);
1070 adnp = &tmp_dncore;
1071
1072 if (le_bswap) {
1073 adnp->dn_datablkszsec = BSWAP_16(adnp->dn_datablkszsec);
1074 adnp->dn_bonuslen = BSWAP_16(adnp->dn_bonuslen);
1075 adnp->dn_maxblkid = BSWAP_64(adnp->dn_maxblkid);
1076 adnp->dn_used = BSWAP_64(adnp->dn_used);
1077 }
1078 adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
1079 adnp->dn_used = 0;
1080
1081 cd.cd_length = dn_core_size;
1082 cd.cd_raw.iov_base = (char *)adnp;
1083 cd.cd_raw.iov_len = cd.cd_length;
1084
1085 ret = crypto_mac_update(ctx, &cd);
1086 if (ret != CRYPTO_SUCCESS) {
1087 ret = SET_ERROR(EIO);
1088 goto error;
1089 }
1090
1091 for (i = 0; i < dnp->dn_nblkptr; i++) {
1092 ret = zio_crypt_bp_do_hmac_updates(ctx, version,
1093 should_bswap, &dnp->dn_blkptr[i]);
1094 if (ret != 0)
1095 goto error;
1096 }
1097
1098 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1099 ret = zio_crypt_bp_do_hmac_updates(ctx, version,
1100 should_bswap, DN_SPILL_BLKPTR(dnp));
1101 if (ret != 0)
1102 goto error;
1103 }
1104
1105 return (0);
1106
1107 error:
1108 return (ret);
1109 }
1110
1111 /*
1112 * objset_phys_t blocks introduce a number of exceptions to the normal
1113 * authentication process. objset_phys_t's contain 2 separate HMACS for
1114 * protecting the integrity of their data. The portable_mac protects the
1115 * metadnode. This MAC can be sent with a raw send and protects against
1116 * reordering of data within the metadnode. The local_mac protects the user
1117 * accounting objects which are not sent from one system to another.
1118 *
1119 * In addition, objset blocks are the only blocks that can be modified and
1120 * written to disk without the key loaded under certain circumstances. During
1121 * zil_claim() we need to be able to update the zil_header_t to complete
1122 * claiming log blocks and during raw receives we need to write out the
1123 * portable_mac from the send file. Both of these actions are possible
1124 * because these fields are not protected by either MAC so neither one will
1125 * need to modify the MACs without the key. However, when the modified blocks
1126 * are written out they will be byteswapped into the host machine's native
1127 * endianness which will modify fields protected by the MAC. As a result, MAC
1128 * calculation for objset blocks works slightly differently from other block
1129 * types. Where other block types MAC the data in whatever endianness is
1130 * written to disk, objset blocks always MAC little endian version of their
1131 * values. In the code, should_bswap is the value from BP_SHOULD_BYTESWAP()
1132 * and le_bswap indicates whether a byteswap is needed to get this block
1133 * into little endian format.
1134 */
1135 int
zio_crypt_do_objset_hmacs(zio_crypt_key_t * key,void * data,uint_t datalen,boolean_t should_bswap,uint8_t * portable_mac,uint8_t * local_mac)1136 zio_crypt_do_objset_hmacs(zio_crypt_key_t *key, void *data, uint_t datalen,
1137 boolean_t should_bswap, uint8_t *portable_mac, uint8_t *local_mac)
1138 {
1139 int ret;
1140 crypto_mechanism_t mech;
1141 crypto_context_t ctx;
1142 crypto_data_t cd;
1143 objset_phys_t *osp = data;
1144 uint64_t intval;
1145 boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
1146 uint8_t raw_portable_mac[SHA512_DIGEST_LENGTH];
1147 uint8_t raw_local_mac[SHA512_DIGEST_LENGTH];
1148
1149 /* initialize HMAC mechanism */
1150 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
1151 mech.cm_param = NULL;
1152 mech.cm_param_len = 0;
1153
1154 cd.cd_format = CRYPTO_DATA_RAW;
1155 cd.cd_offset = 0;
1156
1157 /* calculate the portable MAC from the portable fields and metadnode */
1158 ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx);
1159 if (ret != CRYPTO_SUCCESS) {
1160 ret = SET_ERROR(EIO);
1161 goto error;
1162 }
1163
1164 /* add in the os_type */
1165 intval = (le_bswap) ? osp->os_type : BSWAP_64(osp->os_type);
1166 cd.cd_length = sizeof (uint64_t);
1167 cd.cd_raw.iov_base = (char *)&intval;
1168 cd.cd_raw.iov_len = cd.cd_length;
1169
1170 ret = crypto_mac_update(ctx, &cd);
1171 if (ret != CRYPTO_SUCCESS) {
1172 ret = SET_ERROR(EIO);
1173 goto error;
1174 }
1175
1176 /* add in the portable os_flags */
1177 intval = osp->os_flags;
1178 if (should_bswap)
1179 intval = BSWAP_64(intval);
1180 intval &= OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1181 if (!ZFS_HOST_BYTEORDER)
1182 intval = BSWAP_64(intval);
1183
1184 cd.cd_length = sizeof (uint64_t);
1185 cd.cd_raw.iov_base = (char *)&intval;
1186 cd.cd_raw.iov_len = cd.cd_length;
1187
1188 ret = crypto_mac_update(ctx, &cd);
1189 if (ret != CRYPTO_SUCCESS) {
1190 ret = SET_ERROR(EIO);
1191 goto error;
1192 }
1193
1194 /* add in fields from the metadnode */
1195 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1196 should_bswap, &osp->os_meta_dnode);
1197 if (ret)
1198 goto error;
1199
1200 /* store the final digest in a temporary buffer and copy what we need */
1201 cd.cd_length = SHA512_DIGEST_LENGTH;
1202 cd.cd_raw.iov_base = (char *)raw_portable_mac;
1203 cd.cd_raw.iov_len = cd.cd_length;
1204
1205 ret = crypto_mac_final(ctx, &cd);
1206 if (ret != CRYPTO_SUCCESS) {
1207 ret = SET_ERROR(EIO);
1208 goto error;
1209 }
1210
1211 memcpy(portable_mac, raw_portable_mac, ZIO_OBJSET_MAC_LEN);
1212
1213 /*
1214 * This is necessary here as we check next whether
1215 * OBJSET_FLAG_USERACCOUNTING_COMPLETE is set in order to
1216 * decide if the local_mac should be zeroed out. That flag will always
1217 * be set by dmu_objset_id_quota_upgrade_cb() and
1218 * dmu_objset_userspace_upgrade_cb() if useraccounting has been
1219 * completed.
1220 */
1221 intval = osp->os_flags;
1222 if (should_bswap)
1223 intval = BSWAP_64(intval);
1224 boolean_t uacct_incomplete =
1225 !(intval & OBJSET_FLAG_USERACCOUNTING_COMPLETE);
1226
1227 /*
1228 * The local MAC protects the user, group and project accounting.
1229 * If these objects are not present, the local MAC is zeroed out.
1230 */
1231 if (uacct_incomplete ||
1232 (datalen >= OBJSET_PHYS_SIZE_V3 &&
1233 osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1234 osp->os_groupused_dnode.dn_type == DMU_OT_NONE &&
1235 osp->os_projectused_dnode.dn_type == DMU_OT_NONE) ||
1236 (datalen >= OBJSET_PHYS_SIZE_V2 &&
1237 osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1238 osp->os_groupused_dnode.dn_type == DMU_OT_NONE) ||
1239 (datalen <= OBJSET_PHYS_SIZE_V1)) {
1240 memset(local_mac, 0, ZIO_OBJSET_MAC_LEN);
1241 return (0);
1242 }
1243
1244 /* calculate the local MAC from the userused and groupused dnodes */
1245 ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx);
1246 if (ret != CRYPTO_SUCCESS) {
1247 ret = SET_ERROR(EIO);
1248 goto error;
1249 }
1250
1251 /* add in the non-portable os_flags */
1252 intval = osp->os_flags;
1253 if (should_bswap)
1254 intval = BSWAP_64(intval);
1255 intval &= ~OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1256 if (!ZFS_HOST_BYTEORDER)
1257 intval = BSWAP_64(intval);
1258
1259 cd.cd_length = sizeof (uint64_t);
1260 cd.cd_raw.iov_base = (char *)&intval;
1261 cd.cd_raw.iov_len = cd.cd_length;
1262
1263 ret = crypto_mac_update(ctx, &cd);
1264 if (ret != CRYPTO_SUCCESS) {
1265 ret = SET_ERROR(EIO);
1266 goto error;
1267 }
1268
1269 /* add in fields from the user accounting dnodes */
1270 if (osp->os_userused_dnode.dn_type != DMU_OT_NONE) {
1271 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1272 should_bswap, &osp->os_userused_dnode);
1273 if (ret)
1274 goto error;
1275 }
1276
1277 if (osp->os_groupused_dnode.dn_type != DMU_OT_NONE) {
1278 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1279 should_bswap, &osp->os_groupused_dnode);
1280 if (ret)
1281 goto error;
1282 }
1283
1284 if (osp->os_projectused_dnode.dn_type != DMU_OT_NONE &&
1285 datalen >= OBJSET_PHYS_SIZE_V3) {
1286 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1287 should_bswap, &osp->os_projectused_dnode);
1288 if (ret)
1289 goto error;
1290 }
1291
1292 /* store the final digest in a temporary buffer and copy what we need */
1293 cd.cd_length = SHA512_DIGEST_LENGTH;
1294 cd.cd_raw.iov_base = (char *)raw_local_mac;
1295 cd.cd_raw.iov_len = cd.cd_length;
1296
1297 ret = crypto_mac_final(ctx, &cd);
1298 if (ret != CRYPTO_SUCCESS) {
1299 ret = SET_ERROR(EIO);
1300 goto error;
1301 }
1302
1303 memcpy(local_mac, raw_local_mac, ZIO_OBJSET_MAC_LEN);
1304
1305 return (0);
1306
1307 error:
1308 memset(portable_mac, 0, ZIO_OBJSET_MAC_LEN);
1309 memset(local_mac, 0, ZIO_OBJSET_MAC_LEN);
1310 return (ret);
1311 }
1312
1313 static void
zio_crypt_destroy_uio(zfs_uio_t * uio)1314 zio_crypt_destroy_uio(zfs_uio_t *uio)
1315 {
1316 if (uio->uio_iov)
1317 kmem_free(uio->uio_iov, uio->uio_iovcnt * sizeof (iovec_t));
1318 }
1319
1320 /*
1321 * This function parses an uncompressed indirect block and returns a checksum
1322 * of all the portable fields from all of the contained bps. The portable
1323 * fields are the MAC and all of the fields from blk_prop except for the dedup,
1324 * checksum, and psize bits. For an explanation of the purpose of this, see
1325 * the comment block on object set authentication.
1326 */
1327 static int
zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate,void * buf,uint_t datalen,uint64_t version,boolean_t byteswap,uint8_t * cksum)1328 zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate, void *buf,
1329 uint_t datalen, uint64_t version, boolean_t byteswap, uint8_t *cksum)
1330 {
1331 blkptr_t *bp;
1332 int i, epb = datalen >> SPA_BLKPTRSHIFT;
1333 SHA2_CTX ctx;
1334 uint8_t digestbuf[SHA512_DIGEST_LENGTH];
1335
1336 /* checksum all of the MACs from the layer below */
1337 SHA2Init(SHA512, &ctx);
1338 for (i = 0, bp = buf; i < epb; i++, bp++) {
1339 zio_crypt_bp_do_indrect_checksum_updates(&ctx, version,
1340 byteswap, bp);
1341 }
1342 SHA2Final(digestbuf, &ctx);
1343
1344 if (generate) {
1345 memcpy(cksum, digestbuf, ZIO_DATA_MAC_LEN);
1346 return (0);
1347 }
1348
1349 if (memcmp(digestbuf, cksum, ZIO_DATA_MAC_LEN) != 0)
1350 return (SET_ERROR(ECKSUM));
1351
1352 return (0);
1353 }
1354
1355 int
zio_crypt_do_indirect_mac_checksum(boolean_t generate,void * buf,uint_t datalen,boolean_t byteswap,uint8_t * cksum)1356 zio_crypt_do_indirect_mac_checksum(boolean_t generate, void *buf,
1357 uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1358 {
1359 int ret;
1360
1361 /*
1362 * Unfortunately, callers of this function will not always have
1363 * easy access to the on-disk format version. This info is
1364 * normally found in the DSL Crypto Key, but the checksum-of-MACs
1365 * is expected to be verifiable even when the key isn't loaded.
1366 * Here, instead of doing a ZAP lookup for the version for each
1367 * zio, we simply try both existing formats.
1368 */
1369 ret = zio_crypt_do_indirect_mac_checksum_impl(generate, buf,
1370 datalen, ZIO_CRYPT_KEY_CURRENT_VERSION, byteswap, cksum);
1371 if (ret == ECKSUM) {
1372 ASSERT(!generate);
1373 ret = zio_crypt_do_indirect_mac_checksum_impl(generate,
1374 buf, datalen, 0, byteswap, cksum);
1375 }
1376
1377 return (ret);
1378 }
1379
1380 int
zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate,abd_t * abd,uint_t datalen,boolean_t byteswap,uint8_t * cksum)1381 zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate, abd_t *abd,
1382 uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1383 {
1384 int ret;
1385 void *buf;
1386
1387 buf = abd_borrow_buf_copy(abd, datalen);
1388 ret = zio_crypt_do_indirect_mac_checksum(generate, buf, datalen,
1389 byteswap, cksum);
1390 abd_return_buf(abd, buf, datalen);
1391
1392 return (ret);
1393 }
1394
1395 /*
1396 * Special case handling routine for encrypting / decrypting ZIL blocks.
1397 * We do not check for the older ZIL chain because the encryption feature
1398 * was not available before the newer ZIL chain was introduced. The goal
1399 * here is to encrypt everything except the blkptr_t of a lr_write_t and
1400 * the zil_chain_t header. Everything that is not encrypted is authenticated.
1401 */
1402 static int
zio_crypt_init_uios_zil(boolean_t encrypt,uint8_t * plainbuf,uint8_t * cipherbuf,uint_t datalen,boolean_t byteswap,zfs_uio_t * puio,zfs_uio_t * cuio,uint_t * enc_len,uint8_t ** authbuf,uint_t * auth_len,boolean_t * no_crypt)1403 zio_crypt_init_uios_zil(boolean_t encrypt, uint8_t *plainbuf,
1404 uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, zfs_uio_t *puio,
1405 zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf, uint_t *auth_len,
1406 boolean_t *no_crypt)
1407 {
1408 int ret;
1409 uint64_t txtype, lr_len, nused;
1410 uint_t nr_src, nr_dst, crypt_len;
1411 uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
1412 iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
1413 uint8_t *src, *dst, *slrp, *dlrp, *blkend, *aadp;
1414 zil_chain_t *zilc;
1415 lr_t *lr;
1416 uint8_t *aadbuf = zio_buf_alloc(datalen);
1417
1418 /* cipherbuf always needs an extra iovec for the MAC */
1419 if (encrypt) {
1420 src = plainbuf;
1421 dst = cipherbuf;
1422 nr_src = 0;
1423 nr_dst = 1;
1424 } else {
1425 src = cipherbuf;
1426 dst = plainbuf;
1427 nr_src = 1;
1428 nr_dst = 0;
1429 }
1430 memset(dst, 0, datalen);
1431
1432 /* find the start and end record of the log block */
1433 zilc = (zil_chain_t *)src;
1434 slrp = src + sizeof (zil_chain_t);
1435 aadp = aadbuf;
1436 nused = ((byteswap) ? BSWAP_64(zilc->zc_nused) : zilc->zc_nused);
1437 ASSERT3U(nused, >=, sizeof (zil_chain_t));
1438 ASSERT3U(nused, <=, datalen);
1439 blkend = src + nused;
1440
1441 /* calculate the number of encrypted iovecs we will need */
1442 for (; slrp < blkend; slrp += lr_len) {
1443 lr = (lr_t *)slrp;
1444
1445 if (!byteswap) {
1446 txtype = lr->lrc_txtype;
1447 lr_len = lr->lrc_reclen;
1448 } else {
1449 txtype = BSWAP_64(lr->lrc_txtype);
1450 lr_len = BSWAP_64(lr->lrc_reclen);
1451 }
1452 ASSERT3U(lr_len, >=, sizeof (lr_t));
1453 ASSERT3U(lr_len, <=, blkend - slrp);
1454
1455 nr_iovecs++;
1456 if (txtype == TX_WRITE && lr_len != sizeof (lr_write_t))
1457 nr_iovecs++;
1458 }
1459
1460 nr_src += nr_iovecs;
1461 nr_dst += nr_iovecs;
1462
1463 /* allocate the iovec arrays */
1464 if (nr_src != 0) {
1465 src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
1466 if (src_iovecs == NULL) {
1467 ret = SET_ERROR(ENOMEM);
1468 goto error;
1469 }
1470 }
1471
1472 if (nr_dst != 0) {
1473 dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
1474 if (dst_iovecs == NULL) {
1475 ret = SET_ERROR(ENOMEM);
1476 goto error;
1477 }
1478 }
1479
1480 /*
1481 * Copy the plain zil header over and authenticate everything except
1482 * the checksum that will store our MAC. If we are writing the data
1483 * the embedded checksum will not have been calculated yet, so we don't
1484 * authenticate that.
1485 */
1486 memcpy(dst, src, sizeof (zil_chain_t));
1487 memcpy(aadp, src, sizeof (zil_chain_t) - sizeof (zio_eck_t));
1488 aadp += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1489 aad_len += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1490
1491 /* loop over records again, filling in iovecs */
1492 nr_iovecs = 0;
1493 slrp = src + sizeof (zil_chain_t);
1494 dlrp = dst + sizeof (zil_chain_t);
1495
1496 for (; slrp < blkend; slrp += lr_len, dlrp += lr_len) {
1497 lr = (lr_t *)slrp;
1498
1499 if (!byteswap) {
1500 txtype = lr->lrc_txtype;
1501 lr_len = lr->lrc_reclen;
1502 } else {
1503 txtype = BSWAP_64(lr->lrc_txtype);
1504 lr_len = BSWAP_64(lr->lrc_reclen);
1505 }
1506
1507 /* copy the common lr_t */
1508 memcpy(dlrp, slrp, sizeof (lr_t));
1509 memcpy(aadp, slrp, sizeof (lr_t));
1510 aadp += sizeof (lr_t);
1511 aad_len += sizeof (lr_t);
1512
1513 ASSERT3P(src_iovecs, !=, NULL);
1514 ASSERT3P(dst_iovecs, !=, NULL);
1515
1516 /*
1517 * If this is a TX_WRITE record we want to encrypt everything
1518 * except the bp if exists. If the bp does exist we want to
1519 * authenticate it.
1520 */
1521 if (txtype == TX_WRITE) {
1522 const size_t o = offsetof(lr_write_t, lr_blkptr);
1523 crypt_len = o - sizeof (lr_t);
1524 src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
1525 src_iovecs[nr_iovecs].iov_len = crypt_len;
1526 dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
1527 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1528
1529 /* copy the bp now since it will not be encrypted */
1530 memcpy(dlrp + o, slrp + o, sizeof (blkptr_t));
1531 memcpy(aadp, slrp + o, sizeof (blkptr_t));
1532 aadp += sizeof (blkptr_t);
1533 aad_len += sizeof (blkptr_t);
1534 nr_iovecs++;
1535 total_len += crypt_len;
1536
1537 if (lr_len != sizeof (lr_write_t)) {
1538 crypt_len = lr_len - sizeof (lr_write_t);
1539 src_iovecs[nr_iovecs].iov_base =
1540 slrp + sizeof (lr_write_t);
1541 src_iovecs[nr_iovecs].iov_len = crypt_len;
1542 dst_iovecs[nr_iovecs].iov_base =
1543 dlrp + sizeof (lr_write_t);
1544 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1545 nr_iovecs++;
1546 total_len += crypt_len;
1547 }
1548 } else if (txtype == TX_CLONE_RANGE) {
1549 const size_t o = offsetof(lr_clone_range_t, lr_nbps);
1550 crypt_len = o - sizeof (lr_t);
1551 src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
1552 src_iovecs[nr_iovecs].iov_len = crypt_len;
1553 dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
1554 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1555
1556 /* copy the bps now since they will not be encrypted */
1557 memcpy(dlrp + o, slrp + o, lr_len - o);
1558 memcpy(aadp, slrp + o, lr_len - o);
1559 aadp += lr_len - o;
1560 aad_len += lr_len - o;
1561 nr_iovecs++;
1562 total_len += crypt_len;
1563 } else {
1564 crypt_len = lr_len - sizeof (lr_t);
1565 src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
1566 src_iovecs[nr_iovecs].iov_len = crypt_len;
1567 dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
1568 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1569 nr_iovecs++;
1570 total_len += crypt_len;
1571 }
1572 }
1573
1574 *no_crypt = (nr_iovecs == 0);
1575 *enc_len = total_len;
1576 *authbuf = aadbuf;
1577 *auth_len = aad_len;
1578
1579 if (encrypt) {
1580 puio->uio_iov = src_iovecs;
1581 puio->uio_iovcnt = nr_src;
1582 cuio->uio_iov = dst_iovecs;
1583 cuio->uio_iovcnt = nr_dst;
1584 } else {
1585 puio->uio_iov = dst_iovecs;
1586 puio->uio_iovcnt = nr_dst;
1587 cuio->uio_iov = src_iovecs;
1588 cuio->uio_iovcnt = nr_src;
1589 }
1590
1591 return (0);
1592
1593 error:
1594 zio_buf_free(aadbuf, datalen);
1595 if (src_iovecs != NULL)
1596 kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
1597 if (dst_iovecs != NULL)
1598 kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
1599
1600 *enc_len = 0;
1601 *authbuf = NULL;
1602 *auth_len = 0;
1603 *no_crypt = B_FALSE;
1604 puio->uio_iov = NULL;
1605 puio->uio_iovcnt = 0;
1606 cuio->uio_iov = NULL;
1607 cuio->uio_iovcnt = 0;
1608 return (ret);
1609 }
1610
1611 /*
1612 * Special case handling routine for encrypting / decrypting dnode blocks.
1613 */
1614 static int
zio_crypt_init_uios_dnode(boolean_t encrypt,uint64_t version,uint8_t * plainbuf,uint8_t * cipherbuf,uint_t datalen,boolean_t byteswap,zfs_uio_t * puio,zfs_uio_t * cuio,uint_t * enc_len,uint8_t ** authbuf,uint_t * auth_len,boolean_t * no_crypt)1615 zio_crypt_init_uios_dnode(boolean_t encrypt, uint64_t version,
1616 uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1617 zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf,
1618 uint_t *auth_len, boolean_t *no_crypt)
1619 {
1620 int ret;
1621 uint_t nr_src, nr_dst, crypt_len;
1622 uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
1623 uint_t i, j, max_dnp = datalen >> DNODE_SHIFT;
1624 iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
1625 uint8_t *src, *dst, *aadp;
1626 dnode_phys_t *dnp, *adnp, *sdnp, *ddnp;
1627 uint8_t *aadbuf = zio_buf_alloc(datalen);
1628
1629 if (encrypt) {
1630 src = plainbuf;
1631 dst = cipherbuf;
1632 nr_src = 0;
1633 nr_dst = 1;
1634 } else {
1635 src = cipherbuf;
1636 dst = plainbuf;
1637 nr_src = 1;
1638 nr_dst = 0;
1639 }
1640
1641 sdnp = (dnode_phys_t *)src;
1642 ddnp = (dnode_phys_t *)dst;
1643 aadp = aadbuf;
1644
1645 /*
1646 * Count the number of iovecs we will need to do the encryption by
1647 * counting the number of bonus buffers that need to be encrypted.
1648 */
1649 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1650 /*
1651 * This block may still be byteswapped. However, all of the
1652 * values we use are either uint8_t's (for which byteswapping
1653 * is a noop) or a * != 0 check, which will work regardless
1654 * of whether or not we byteswap.
1655 */
1656 if (sdnp[i].dn_type != DMU_OT_NONE &&
1657 DMU_OT_IS_ENCRYPTED(sdnp[i].dn_bonustype) &&
1658 sdnp[i].dn_bonuslen != 0) {
1659 nr_iovecs++;
1660 }
1661 }
1662
1663 nr_src += nr_iovecs;
1664 nr_dst += nr_iovecs;
1665
1666 if (nr_src != 0) {
1667 src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
1668 if (src_iovecs == NULL) {
1669 ret = SET_ERROR(ENOMEM);
1670 goto error;
1671 }
1672 }
1673
1674 if (nr_dst != 0) {
1675 dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
1676 if (dst_iovecs == NULL) {
1677 ret = SET_ERROR(ENOMEM);
1678 goto error;
1679 }
1680 }
1681
1682 nr_iovecs = 0;
1683
1684 /*
1685 * Iterate through the dnodes again, this time filling in the uios
1686 * we allocated earlier. We also concatenate any data we want to
1687 * authenticate onto aadbuf.
1688 */
1689 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1690 dnp = &sdnp[i];
1691
1692 /* copy over the core fields and blkptrs (kept as plaintext) */
1693 memcpy(&ddnp[i], dnp,
1694 (uint8_t *)DN_BONUS(dnp) - (uint8_t *)dnp);
1695
1696 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1697 memcpy(DN_SPILL_BLKPTR(&ddnp[i]), DN_SPILL_BLKPTR(dnp),
1698 sizeof (blkptr_t));
1699 }
1700
1701 /*
1702 * Handle authenticated data. We authenticate everything in
1703 * the dnode that can be brought over when we do a raw send.
1704 * This includes all of the core fields as well as the MACs
1705 * stored in the bp checksums and all of the portable bits
1706 * from blk_prop. We include the dnode padding here in case it
1707 * ever gets used in the future. Some dn_flags and dn_used are
1708 * not portable so we mask those out values out of the
1709 * authenticated data.
1710 */
1711 crypt_len = offsetof(dnode_phys_t, dn_blkptr);
1712 memcpy(aadp, dnp, crypt_len);
1713 adnp = (dnode_phys_t *)aadp;
1714 adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
1715 adnp->dn_used = 0;
1716 aadp += crypt_len;
1717 aad_len += crypt_len;
1718
1719 for (j = 0; j < dnp->dn_nblkptr; j++) {
1720 zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
1721 version, byteswap, &dnp->dn_blkptr[j]);
1722 }
1723
1724 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1725 zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
1726 version, byteswap, DN_SPILL_BLKPTR(dnp));
1727 }
1728
1729 /*
1730 * If this bonus buffer needs to be encrypted, we prepare an
1731 * iovec_t. The encryption / decryption functions will fill
1732 * this in for us with the encrypted or decrypted data.
1733 * Otherwise we add the bonus buffer to the authenticated
1734 * data buffer and copy it over to the destination. The
1735 * encrypted iovec extends to DN_MAX_BONUS_LEN(dnp) so that
1736 * we can guarantee alignment with the AES block size
1737 * (128 bits).
1738 */
1739 crypt_len = DN_MAX_BONUS_LEN(dnp);
1740 if (dnp->dn_type != DMU_OT_NONE &&
1741 DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
1742 dnp->dn_bonuslen != 0) {
1743 ASSERT3U(nr_iovecs, <, nr_src);
1744 ASSERT3U(nr_iovecs, <, nr_dst);
1745 ASSERT3P(src_iovecs, !=, NULL);
1746 ASSERT3P(dst_iovecs, !=, NULL);
1747 src_iovecs[nr_iovecs].iov_base = DN_BONUS(dnp);
1748 src_iovecs[nr_iovecs].iov_len = crypt_len;
1749 dst_iovecs[nr_iovecs].iov_base = DN_BONUS(&ddnp[i]);
1750 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1751
1752 nr_iovecs++;
1753 total_len += crypt_len;
1754 } else {
1755 memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp), crypt_len);
1756 memcpy(aadp, DN_BONUS(dnp), crypt_len);
1757 aadp += crypt_len;
1758 aad_len += crypt_len;
1759 }
1760 }
1761
1762 *no_crypt = (nr_iovecs == 0);
1763 *enc_len = total_len;
1764 *authbuf = aadbuf;
1765 *auth_len = aad_len;
1766
1767 if (encrypt) {
1768 puio->uio_iov = src_iovecs;
1769 puio->uio_iovcnt = nr_src;
1770 cuio->uio_iov = dst_iovecs;
1771 cuio->uio_iovcnt = nr_dst;
1772 } else {
1773 puio->uio_iov = dst_iovecs;
1774 puio->uio_iovcnt = nr_dst;
1775 cuio->uio_iov = src_iovecs;
1776 cuio->uio_iovcnt = nr_src;
1777 }
1778
1779 return (0);
1780
1781 error:
1782 zio_buf_free(aadbuf, datalen);
1783 if (src_iovecs != NULL)
1784 kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
1785 if (dst_iovecs != NULL)
1786 kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
1787
1788 *enc_len = 0;
1789 *authbuf = NULL;
1790 *auth_len = 0;
1791 *no_crypt = B_FALSE;
1792 puio->uio_iov = NULL;
1793 puio->uio_iovcnt = 0;
1794 cuio->uio_iov = NULL;
1795 cuio->uio_iovcnt = 0;
1796 return (ret);
1797 }
1798
1799 static int
zio_crypt_init_uios_normal(boolean_t encrypt,uint8_t * plainbuf,uint8_t * cipherbuf,uint_t datalen,zfs_uio_t * puio,zfs_uio_t * cuio,uint_t * enc_len)1800 zio_crypt_init_uios_normal(boolean_t encrypt, uint8_t *plainbuf,
1801 uint8_t *cipherbuf, uint_t datalen, zfs_uio_t *puio, zfs_uio_t *cuio,
1802 uint_t *enc_len)
1803 {
1804 (void) encrypt;
1805 int ret;
1806 uint_t nr_plain = 1, nr_cipher = 2;
1807 iovec_t *plain_iovecs = NULL, *cipher_iovecs = NULL;
1808
1809 /* allocate the iovecs for the plain and cipher data */
1810 plain_iovecs = kmem_alloc(nr_plain * sizeof (iovec_t),
1811 KM_SLEEP);
1812 if (!plain_iovecs) {
1813 ret = SET_ERROR(ENOMEM);
1814 goto error;
1815 }
1816
1817 cipher_iovecs = kmem_alloc(nr_cipher * sizeof (iovec_t),
1818 KM_SLEEP);
1819 if (!cipher_iovecs) {
1820 ret = SET_ERROR(ENOMEM);
1821 goto error;
1822 }
1823
1824 plain_iovecs[0].iov_base = plainbuf;
1825 plain_iovecs[0].iov_len = datalen;
1826 cipher_iovecs[0].iov_base = cipherbuf;
1827 cipher_iovecs[0].iov_len = datalen;
1828
1829 *enc_len = datalen;
1830 puio->uio_iov = plain_iovecs;
1831 puio->uio_iovcnt = nr_plain;
1832 cuio->uio_iov = cipher_iovecs;
1833 cuio->uio_iovcnt = nr_cipher;
1834
1835 return (0);
1836
1837 error:
1838 if (plain_iovecs != NULL)
1839 kmem_free(plain_iovecs, nr_plain * sizeof (iovec_t));
1840 if (cipher_iovecs != NULL)
1841 kmem_free(cipher_iovecs, nr_cipher * sizeof (iovec_t));
1842
1843 *enc_len = 0;
1844 puio->uio_iov = NULL;
1845 puio->uio_iovcnt = 0;
1846 cuio->uio_iov = NULL;
1847 cuio->uio_iovcnt = 0;
1848 return (ret);
1849 }
1850
1851 /*
1852 * This function builds up the plaintext (puio) and ciphertext (cuio) uios so
1853 * that they can be used for encryption and decryption by zio_do_crypt_uio().
1854 * Most blocks will use zio_crypt_init_uios_normal(), with ZIL and dnode blocks
1855 * requiring special handling to parse out pieces that are to be encrypted. The
1856 * authbuf is used by these special cases to store additional authenticated
1857 * data (AAD) for the encryption modes.
1858 */
1859 static int
zio_crypt_init_uios(boolean_t encrypt,uint64_t version,dmu_object_type_t ot,uint8_t * plainbuf,uint8_t * cipherbuf,uint_t datalen,boolean_t byteswap,uint8_t * mac,zfs_uio_t * puio,zfs_uio_t * cuio,uint_t * enc_len,uint8_t ** authbuf,uint_t * auth_len,boolean_t * no_crypt)1860 zio_crypt_init_uios(boolean_t encrypt, uint64_t version, dmu_object_type_t ot,
1861 uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1862 uint8_t *mac, zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len,
1863 uint8_t **authbuf, uint_t *auth_len, boolean_t *no_crypt)
1864 {
1865 int ret;
1866 iovec_t *mac_iov;
1867
1868 ASSERT(DMU_OT_IS_ENCRYPTED(ot) || ot == DMU_OT_NONE);
1869
1870 /* route to handler */
1871 switch (ot) {
1872 case DMU_OT_INTENT_LOG:
1873 ret = zio_crypt_init_uios_zil(encrypt, plainbuf, cipherbuf,
1874 datalen, byteswap, puio, cuio, enc_len, authbuf, auth_len,
1875 no_crypt);
1876 break;
1877 case DMU_OT_DNODE:
1878 ret = zio_crypt_init_uios_dnode(encrypt, version, plainbuf,
1879 cipherbuf, datalen, byteswap, puio, cuio, enc_len, authbuf,
1880 auth_len, no_crypt);
1881 break;
1882 default:
1883 ret = zio_crypt_init_uios_normal(encrypt, plainbuf, cipherbuf,
1884 datalen, puio, cuio, enc_len);
1885 *authbuf = NULL;
1886 *auth_len = 0;
1887 *no_crypt = B_FALSE;
1888 break;
1889 }
1890
1891 if (ret != 0)
1892 goto error;
1893
1894 /* populate the uios */
1895 puio->uio_segflg = UIO_SYSSPACE;
1896 cuio->uio_segflg = UIO_SYSSPACE;
1897
1898 mac_iov = ((iovec_t *)&cuio->uio_iov[cuio->uio_iovcnt - 1]);
1899 mac_iov->iov_base = mac;
1900 mac_iov->iov_len = ZIO_DATA_MAC_LEN;
1901
1902 return (0);
1903
1904 error:
1905 return (ret);
1906 }
1907
1908 /*
1909 * Primary encryption / decryption entrypoint for zio data.
1910 */
1911 int
zio_do_crypt_data(boolean_t encrypt,zio_crypt_key_t * key,dmu_object_type_t ot,boolean_t byteswap,uint8_t * salt,uint8_t * iv,uint8_t * mac,uint_t datalen,uint8_t * plainbuf,uint8_t * cipherbuf,boolean_t * no_crypt)1912 zio_do_crypt_data(boolean_t encrypt, zio_crypt_key_t *key,
1913 dmu_object_type_t ot, boolean_t byteswap, uint8_t *salt, uint8_t *iv,
1914 uint8_t *mac, uint_t datalen, uint8_t *plainbuf, uint8_t *cipherbuf,
1915 boolean_t *no_crypt)
1916 {
1917 int ret;
1918 boolean_t locked = B_FALSE;
1919 uint64_t crypt = key->zk_crypt;
1920 uint_t keydata_len = zio_crypt_table[crypt].ci_keylen;
1921 uint_t enc_len, auth_len;
1922 zfs_uio_t puio, cuio;
1923 uint8_t enc_keydata[MASTER_KEY_MAX_LEN];
1924 crypto_key_t tmp_ckey, *ckey = NULL;
1925 crypto_ctx_template_t tmpl;
1926 uint8_t *authbuf = NULL;
1927
1928 memset(&puio, 0, sizeof (puio));
1929 memset(&cuio, 0, sizeof (cuio));
1930
1931 /*
1932 * If the needed key is the current one, just use it. Otherwise we
1933 * need to generate a temporary one from the given salt + master key.
1934 * If we are encrypting, we must return a copy of the current salt
1935 * so that it can be stored in the blkptr_t.
1936 */
1937 rw_enter(&key->zk_salt_lock, RW_READER);
1938 locked = B_TRUE;
1939
1940 if (memcmp(salt, key->zk_salt, ZIO_DATA_SALT_LEN) == 0) {
1941 ckey = &key->zk_current_key;
1942 tmpl = key->zk_current_tmpl;
1943 } else {
1944 rw_exit(&key->zk_salt_lock);
1945 locked = B_FALSE;
1946
1947 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
1948 salt, ZIO_DATA_SALT_LEN, enc_keydata, keydata_len);
1949 if (ret != 0)
1950 goto error;
1951
1952 tmp_ckey.ck_data = enc_keydata;
1953 tmp_ckey.ck_length = CRYPTO_BYTES2BITS(keydata_len);
1954
1955 ckey = &tmp_ckey;
1956 tmpl = NULL;
1957 }
1958
1959 /*
1960 * Attempt to use QAT acceleration if we can. We currently don't
1961 * do this for metadnode and ZIL blocks, since they have a much
1962 * more involved buffer layout and the qat_crypt() function only
1963 * works in-place.
1964 */
1965 if (qat_crypt_use_accel(datalen) &&
1966 ot != DMU_OT_INTENT_LOG && ot != DMU_OT_DNODE) {
1967 uint8_t *srcbuf, *dstbuf;
1968
1969 if (encrypt) {
1970 srcbuf = plainbuf;
1971 dstbuf = cipherbuf;
1972 } else {
1973 srcbuf = cipherbuf;
1974 dstbuf = plainbuf;
1975 }
1976
1977 ret = qat_crypt((encrypt) ? QAT_ENCRYPT : QAT_DECRYPT, srcbuf,
1978 dstbuf, NULL, 0, iv, mac, ckey, key->zk_crypt, datalen);
1979 if (ret == CPA_STATUS_SUCCESS) {
1980 if (locked) {
1981 rw_exit(&key->zk_salt_lock);
1982 locked = B_FALSE;
1983 }
1984
1985 return (0);
1986 }
1987 /* If the hardware implementation fails fall back to software */
1988 }
1989
1990 /* create uios for encryption */
1991 ret = zio_crypt_init_uios(encrypt, key->zk_version, ot, plainbuf,
1992 cipherbuf, datalen, byteswap, mac, &puio, &cuio, &enc_len,
1993 &authbuf, &auth_len, no_crypt);
1994 if (ret != 0)
1995 goto error;
1996
1997 /* perform the encryption / decryption in software */
1998 ret = zio_do_crypt_uio(encrypt, key->zk_crypt, ckey, tmpl, iv, enc_len,
1999 &puio, &cuio, authbuf, auth_len);
2000 if (ret != 0)
2001 goto error;
2002
2003 if (locked) {
2004 rw_exit(&key->zk_salt_lock);
2005 }
2006
2007 if (authbuf != NULL)
2008 zio_buf_free(authbuf, datalen);
2009 if (ckey == &tmp_ckey)
2010 memset(enc_keydata, 0, keydata_len);
2011 zio_crypt_destroy_uio(&puio);
2012 zio_crypt_destroy_uio(&cuio);
2013
2014 return (0);
2015
2016 error:
2017 if (locked)
2018 rw_exit(&key->zk_salt_lock);
2019 if (authbuf != NULL)
2020 zio_buf_free(authbuf, datalen);
2021 if (ckey == &tmp_ckey)
2022 memset(enc_keydata, 0, keydata_len);
2023 zio_crypt_destroy_uio(&puio);
2024 zio_crypt_destroy_uio(&cuio);
2025
2026 return (ret);
2027 }
2028
2029 /*
2030 * Simple wrapper around zio_do_crypt_data() to work with abd's instead of
2031 * linear buffers.
2032 */
2033 int
zio_do_crypt_abd(boolean_t encrypt,zio_crypt_key_t * key,dmu_object_type_t ot,boolean_t byteswap,uint8_t * salt,uint8_t * iv,uint8_t * mac,uint_t datalen,abd_t * pabd,abd_t * cabd,boolean_t * no_crypt)2034 zio_do_crypt_abd(boolean_t encrypt, zio_crypt_key_t *key, dmu_object_type_t ot,
2035 boolean_t byteswap, uint8_t *salt, uint8_t *iv, uint8_t *mac,
2036 uint_t datalen, abd_t *pabd, abd_t *cabd, boolean_t *no_crypt)
2037 {
2038 int ret;
2039 void *ptmp, *ctmp;
2040
2041 if (encrypt) {
2042 ptmp = abd_borrow_buf_copy(pabd, datalen);
2043 ctmp = abd_borrow_buf(cabd, datalen);
2044 } else {
2045 ptmp = abd_borrow_buf(pabd, datalen);
2046 ctmp = abd_borrow_buf_copy(cabd, datalen);
2047 }
2048
2049 ret = zio_do_crypt_data(encrypt, key, ot, byteswap, salt, iv, mac,
2050 datalen, ptmp, ctmp, no_crypt);
2051 if (ret != 0)
2052 goto error;
2053
2054 if (encrypt) {
2055 abd_return_buf(pabd, ptmp, datalen);
2056 abd_return_buf_copy(cabd, ctmp, datalen);
2057 } else {
2058 abd_return_buf_copy(pabd, ptmp, datalen);
2059 abd_return_buf(cabd, ctmp, datalen);
2060 }
2061
2062 return (0);
2063
2064 error:
2065 if (encrypt) {
2066 abd_return_buf(pabd, ptmp, datalen);
2067 abd_return_buf_copy(cabd, ctmp, datalen);
2068 } else {
2069 abd_return_buf_copy(pabd, ptmp, datalen);
2070 abd_return_buf(cabd, ctmp, datalen);
2071 }
2072
2073 return (ret);
2074 }
2075
2076 #if defined(_KERNEL)
2077 module_param(zfs_key_max_salt_uses, ulong, 0644);
2078 MODULE_PARM_DESC(zfs_key_max_salt_uses, "Max number of times a salt value "
2079 "can be used for generating encryption keys before it is rotated");
2080 #endif
2081