xref: /linux/mm/page_alloc.c (revision 00c010e130e58301db2ea0cec1eadc931e1cb8cf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* Free the page without taking locks. Rely on trylock only. */
92 #define FPI_TRYLOCK		((__force fpi_t)BIT(2))
93 
94 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
95 static DEFINE_MUTEX(pcp_batch_high_lock);
96 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
97 
98 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
99 /*
100  * On SMP, spin_trylock is sufficient protection.
101  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
102  */
103 #define pcp_trylock_prepare(flags)	do { } while (0)
104 #define pcp_trylock_finish(flag)	do { } while (0)
105 #else
106 
107 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
108 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
109 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
110 #endif
111 
112 /*
113  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
114  * a migration causing the wrong PCP to be locked and remote memory being
115  * potentially allocated, pin the task to the CPU for the lookup+lock.
116  * preempt_disable is used on !RT because it is faster than migrate_disable.
117  * migrate_disable is used on RT because otherwise RT spinlock usage is
118  * interfered with and a high priority task cannot preempt the allocator.
119  */
120 #ifndef CONFIG_PREEMPT_RT
121 #define pcpu_task_pin()		preempt_disable()
122 #define pcpu_task_unpin()	preempt_enable()
123 #else
124 #define pcpu_task_pin()		migrate_disable()
125 #define pcpu_task_unpin()	migrate_enable()
126 #endif
127 
128 /*
129  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
130  * Return value should be used with equivalent unlock helper.
131  */
132 #define pcpu_spin_lock(type, member, ptr)				\
133 ({									\
134 	type *_ret;							\
135 	pcpu_task_pin();						\
136 	_ret = this_cpu_ptr(ptr);					\
137 	spin_lock(&_ret->member);					\
138 	_ret;								\
139 })
140 
141 #define pcpu_spin_trylock(type, member, ptr)				\
142 ({									\
143 	type *_ret;							\
144 	pcpu_task_pin();						\
145 	_ret = this_cpu_ptr(ptr);					\
146 	if (!spin_trylock(&_ret->member)) {				\
147 		pcpu_task_unpin();					\
148 		_ret = NULL;						\
149 	}								\
150 	_ret;								\
151 })
152 
153 #define pcpu_spin_unlock(member, ptr)					\
154 ({									\
155 	spin_unlock(&ptr->member);					\
156 	pcpu_task_unpin();						\
157 })
158 
159 /* struct per_cpu_pages specific helpers. */
160 #define pcp_spin_lock(ptr)						\
161 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_trylock(ptr)						\
164 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
165 
166 #define pcp_spin_unlock(ptr)						\
167 	pcpu_spin_unlock(lock, ptr)
168 
169 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
170 DEFINE_PER_CPU(int, numa_node);
171 EXPORT_PER_CPU_SYMBOL(numa_node);
172 #endif
173 
174 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
175 
176 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
177 /*
178  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
179  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
180  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
181  * defined in <linux/topology.h>.
182  */
183 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
184 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
185 #endif
186 
187 static DEFINE_MUTEX(pcpu_drain_mutex);
188 
189 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
190 volatile unsigned long latent_entropy __latent_entropy;
191 EXPORT_SYMBOL(latent_entropy);
192 #endif
193 
194 /*
195  * Array of node states.
196  */
197 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
198 	[N_POSSIBLE] = NODE_MASK_ALL,
199 	[N_ONLINE] = { { [0] = 1UL } },
200 #ifndef CONFIG_NUMA
201 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
202 #ifdef CONFIG_HIGHMEM
203 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
204 #endif
205 	[N_MEMORY] = { { [0] = 1UL } },
206 	[N_CPU] = { { [0] = 1UL } },
207 #endif	/* NUMA */
208 };
209 EXPORT_SYMBOL(node_states);
210 
211 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
212 
213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
214 unsigned int pageblock_order __read_mostly;
215 #endif
216 
217 static void __free_pages_ok(struct page *page, unsigned int order,
218 			    fpi_t fpi_flags);
219 
220 /*
221  * results with 256, 32 in the lowmem_reserve sysctl:
222  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
223  *	1G machine -> (16M dma, 784M normal, 224M high)
224  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
225  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
226  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
227  *
228  * TBD: should special case ZONE_DMA32 machines here - in those we normally
229  * don't need any ZONE_NORMAL reservation
230  */
231 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
232 #ifdef CONFIG_ZONE_DMA
233 	[ZONE_DMA] = 256,
234 #endif
235 #ifdef CONFIG_ZONE_DMA32
236 	[ZONE_DMA32] = 256,
237 #endif
238 	[ZONE_NORMAL] = 32,
239 #ifdef CONFIG_HIGHMEM
240 	[ZONE_HIGHMEM] = 0,
241 #endif
242 	[ZONE_MOVABLE] = 0,
243 };
244 
245 char * const zone_names[MAX_NR_ZONES] = {
246 #ifdef CONFIG_ZONE_DMA
247 	 "DMA",
248 #endif
249 #ifdef CONFIG_ZONE_DMA32
250 	 "DMA32",
251 #endif
252 	 "Normal",
253 #ifdef CONFIG_HIGHMEM
254 	 "HighMem",
255 #endif
256 	 "Movable",
257 #ifdef CONFIG_ZONE_DEVICE
258 	 "Device",
259 #endif
260 };
261 
262 const char * const migratetype_names[MIGRATE_TYPES] = {
263 	"Unmovable",
264 	"Movable",
265 	"Reclaimable",
266 	"HighAtomic",
267 #ifdef CONFIG_CMA
268 	"CMA",
269 #endif
270 #ifdef CONFIG_MEMORY_ISOLATION
271 	"Isolate",
272 #endif
273 };
274 
275 int min_free_kbytes = 1024;
276 int user_min_free_kbytes = -1;
277 static int watermark_boost_factor __read_mostly = 15000;
278 static int watermark_scale_factor = 10;
279 int defrag_mode;
280 
281 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
282 int movable_zone;
283 EXPORT_SYMBOL(movable_zone);
284 
285 #if MAX_NUMNODES > 1
286 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
287 unsigned int nr_online_nodes __read_mostly = 1;
288 EXPORT_SYMBOL(nr_node_ids);
289 EXPORT_SYMBOL(nr_online_nodes);
290 #endif
291 
292 static bool page_contains_unaccepted(struct page *page, unsigned int order);
293 static bool cond_accept_memory(struct zone *zone, unsigned int order,
294 			       int alloc_flags);
295 static bool __free_unaccepted(struct page *page);
296 
297 int page_group_by_mobility_disabled __read_mostly;
298 
299 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
300 /*
301  * During boot we initialize deferred pages on-demand, as needed, but once
302  * page_alloc_init_late() has finished, the deferred pages are all initialized,
303  * and we can permanently disable that path.
304  */
305 DEFINE_STATIC_KEY_TRUE(deferred_pages);
306 
deferred_pages_enabled(void)307 static inline bool deferred_pages_enabled(void)
308 {
309 	return static_branch_unlikely(&deferred_pages);
310 }
311 
312 /*
313  * deferred_grow_zone() is __init, but it is called from
314  * get_page_from_freelist() during early boot until deferred_pages permanently
315  * disables this call. This is why we have refdata wrapper to avoid warning,
316  * and to ensure that the function body gets unloaded.
317  */
318 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)319 _deferred_grow_zone(struct zone *zone, unsigned int order)
320 {
321 	return deferred_grow_zone(zone, order);
322 }
323 #else
deferred_pages_enabled(void)324 static inline bool deferred_pages_enabled(void)
325 {
326 	return false;
327 }
328 
_deferred_grow_zone(struct zone * zone,unsigned int order)329 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
330 {
331 	return false;
332 }
333 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
334 
335 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)336 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
337 							unsigned long pfn)
338 {
339 #ifdef CONFIG_SPARSEMEM
340 	return section_to_usemap(__pfn_to_section(pfn));
341 #else
342 	return page_zone(page)->pageblock_flags;
343 #endif /* CONFIG_SPARSEMEM */
344 }
345 
pfn_to_bitidx(const struct page * page,unsigned long pfn)346 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
347 {
348 #ifdef CONFIG_SPARSEMEM
349 	pfn &= (PAGES_PER_SECTION-1);
350 #else
351 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
352 #endif /* CONFIG_SPARSEMEM */
353 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
354 }
355 
356 /**
357  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
358  * @page: The page within the block of interest
359  * @pfn: The target page frame number
360  * @mask: mask of bits that the caller is interested in
361  *
362  * Return: pageblock_bits flags
363  */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)364 unsigned long get_pfnblock_flags_mask(const struct page *page,
365 					unsigned long pfn, unsigned long mask)
366 {
367 	unsigned long *bitmap;
368 	unsigned long bitidx, word_bitidx;
369 	unsigned long word;
370 
371 	bitmap = get_pageblock_bitmap(page, pfn);
372 	bitidx = pfn_to_bitidx(page, pfn);
373 	word_bitidx = bitidx / BITS_PER_LONG;
374 	bitidx &= (BITS_PER_LONG-1);
375 	/*
376 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
377 	 * a consistent read of the memory array, so that results, even though
378 	 * racy, are not corrupted.
379 	 */
380 	word = READ_ONCE(bitmap[word_bitidx]);
381 	return (word >> bitidx) & mask;
382 }
383 
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)384 static __always_inline int get_pfnblock_migratetype(const struct page *page,
385 					unsigned long pfn)
386 {
387 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
388 }
389 
390 /**
391  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
392  * @page: The page within the block of interest
393  * @flags: The flags to set
394  * @pfn: The target page frame number
395  * @mask: mask of bits that the caller is interested in
396  */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)397 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
398 					unsigned long pfn,
399 					unsigned long mask)
400 {
401 	unsigned long *bitmap;
402 	unsigned long bitidx, word_bitidx;
403 	unsigned long word;
404 
405 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
406 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
407 
408 	bitmap = get_pageblock_bitmap(page, pfn);
409 	bitidx = pfn_to_bitidx(page, pfn);
410 	word_bitidx = bitidx / BITS_PER_LONG;
411 	bitidx &= (BITS_PER_LONG-1);
412 
413 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
414 
415 	mask <<= bitidx;
416 	flags <<= bitidx;
417 
418 	word = READ_ONCE(bitmap[word_bitidx]);
419 	do {
420 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
421 }
422 
set_pageblock_migratetype(struct page * page,int migratetype)423 void set_pageblock_migratetype(struct page *page, int migratetype)
424 {
425 	if (unlikely(page_group_by_mobility_disabled &&
426 		     migratetype < MIGRATE_PCPTYPES))
427 		migratetype = MIGRATE_UNMOVABLE;
428 
429 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
430 				page_to_pfn(page), MIGRATETYPE_MASK);
431 }
432 
433 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)434 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
435 {
436 	int ret;
437 	unsigned seq;
438 	unsigned long pfn = page_to_pfn(page);
439 	unsigned long sp, start_pfn;
440 
441 	do {
442 		seq = zone_span_seqbegin(zone);
443 		start_pfn = zone->zone_start_pfn;
444 		sp = zone->spanned_pages;
445 		ret = !zone_spans_pfn(zone, pfn);
446 	} while (zone_span_seqretry(zone, seq));
447 
448 	if (ret)
449 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
450 			pfn, zone_to_nid(zone), zone->name,
451 			start_pfn, start_pfn + sp);
452 
453 	return ret;
454 }
455 
456 /*
457  * Temporary debugging check for pages not lying within a given zone.
458  */
bad_range(struct zone * zone,struct page * page)459 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
460 {
461 	if (page_outside_zone_boundaries(zone, page))
462 		return true;
463 	if (zone != page_zone(page))
464 		return true;
465 
466 	return false;
467 }
468 #else
bad_range(struct zone * zone,struct page * page)469 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
470 {
471 	return false;
472 }
473 #endif
474 
bad_page(struct page * page,const char * reason)475 static void bad_page(struct page *page, const char *reason)
476 {
477 	static unsigned long resume;
478 	static unsigned long nr_shown;
479 	static unsigned long nr_unshown;
480 
481 	/*
482 	 * Allow a burst of 60 reports, then keep quiet for that minute;
483 	 * or allow a steady drip of one report per second.
484 	 */
485 	if (nr_shown == 60) {
486 		if (time_before(jiffies, resume)) {
487 			nr_unshown++;
488 			goto out;
489 		}
490 		if (nr_unshown) {
491 			pr_alert(
492 			      "BUG: Bad page state: %lu messages suppressed\n",
493 				nr_unshown);
494 			nr_unshown = 0;
495 		}
496 		nr_shown = 0;
497 	}
498 	if (nr_shown++ == 0)
499 		resume = jiffies + 60 * HZ;
500 
501 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
502 		current->comm, page_to_pfn(page));
503 	dump_page(page, reason);
504 
505 	print_modules();
506 	dump_stack();
507 out:
508 	/* Leave bad fields for debug, except PageBuddy could make trouble */
509 	if (PageBuddy(page))
510 		__ClearPageBuddy(page);
511 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
512 }
513 
order_to_pindex(int migratetype,int order)514 static inline unsigned int order_to_pindex(int migratetype, int order)
515 {
516 
517 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
518 	bool movable;
519 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
520 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
521 
522 		movable = migratetype == MIGRATE_MOVABLE;
523 
524 		return NR_LOWORDER_PCP_LISTS + movable;
525 	}
526 #else
527 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
528 #endif
529 
530 	return (MIGRATE_PCPTYPES * order) + migratetype;
531 }
532 
pindex_to_order(unsigned int pindex)533 static inline int pindex_to_order(unsigned int pindex)
534 {
535 	int order = pindex / MIGRATE_PCPTYPES;
536 
537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
538 	if (pindex >= NR_LOWORDER_PCP_LISTS)
539 		order = HPAGE_PMD_ORDER;
540 #else
541 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
542 #endif
543 
544 	return order;
545 }
546 
pcp_allowed_order(unsigned int order)547 static inline bool pcp_allowed_order(unsigned int order)
548 {
549 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
550 		return true;
551 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
552 	if (order == HPAGE_PMD_ORDER)
553 		return true;
554 #endif
555 	return false;
556 }
557 
558 /*
559  * Higher-order pages are called "compound pages".  They are structured thusly:
560  *
561  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
562  *
563  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
564  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
565  *
566  * The first tail page's ->compound_order holds the order of allocation.
567  * This usage means that zero-order pages may not be compound.
568  */
569 
prep_compound_page(struct page * page,unsigned int order)570 void prep_compound_page(struct page *page, unsigned int order)
571 {
572 	int i;
573 	int nr_pages = 1 << order;
574 
575 	__SetPageHead(page);
576 	for (i = 1; i < nr_pages; i++)
577 		prep_compound_tail(page, i);
578 
579 	prep_compound_head(page, order);
580 }
581 
set_buddy_order(struct page * page,unsigned int order)582 static inline void set_buddy_order(struct page *page, unsigned int order)
583 {
584 	set_page_private(page, order);
585 	__SetPageBuddy(page);
586 }
587 
588 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)589 static inline struct capture_control *task_capc(struct zone *zone)
590 {
591 	struct capture_control *capc = current->capture_control;
592 
593 	return unlikely(capc) &&
594 		!(current->flags & PF_KTHREAD) &&
595 		!capc->page &&
596 		capc->cc->zone == zone ? capc : NULL;
597 }
598 
599 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)600 compaction_capture(struct capture_control *capc, struct page *page,
601 		   int order, int migratetype)
602 {
603 	if (!capc || order != capc->cc->order)
604 		return false;
605 
606 	/* Do not accidentally pollute CMA or isolated regions*/
607 	if (is_migrate_cma(migratetype) ||
608 	    is_migrate_isolate(migratetype))
609 		return false;
610 
611 	/*
612 	 * Do not let lower order allocations pollute a movable pageblock
613 	 * unless compaction is also requesting movable pages.
614 	 * This might let an unmovable request use a reclaimable pageblock
615 	 * and vice-versa but no more than normal fallback logic which can
616 	 * have trouble finding a high-order free page.
617 	 */
618 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
619 	    capc->cc->migratetype != MIGRATE_MOVABLE)
620 		return false;
621 
622 	if (migratetype != capc->cc->migratetype)
623 		trace_mm_page_alloc_extfrag(page, capc->cc->order, order,
624 					    capc->cc->migratetype, migratetype);
625 
626 	capc->page = page;
627 	return true;
628 }
629 
630 #else
task_capc(struct zone * zone)631 static inline struct capture_control *task_capc(struct zone *zone)
632 {
633 	return NULL;
634 }
635 
636 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)637 compaction_capture(struct capture_control *capc, struct page *page,
638 		   int order, int migratetype)
639 {
640 	return false;
641 }
642 #endif /* CONFIG_COMPACTION */
643 
account_freepages(struct zone * zone,int nr_pages,int migratetype)644 static inline void account_freepages(struct zone *zone, int nr_pages,
645 				     int migratetype)
646 {
647 	lockdep_assert_held(&zone->lock);
648 
649 	if (is_migrate_isolate(migratetype))
650 		return;
651 
652 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
653 
654 	if (is_migrate_cma(migratetype))
655 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
656 	else if (is_migrate_highatomic(migratetype))
657 		WRITE_ONCE(zone->nr_free_highatomic,
658 			   zone->nr_free_highatomic + nr_pages);
659 }
660 
661 /* Used for pages not on another list */
__add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)662 static inline void __add_to_free_list(struct page *page, struct zone *zone,
663 				      unsigned int order, int migratetype,
664 				      bool tail)
665 {
666 	struct free_area *area = &zone->free_area[order];
667 	int nr_pages = 1 << order;
668 
669 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
670 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
671 		     get_pageblock_migratetype(page), migratetype, nr_pages);
672 
673 	if (tail)
674 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
675 	else
676 		list_add(&page->buddy_list, &area->free_list[migratetype]);
677 	area->nr_free++;
678 
679 	if (order >= pageblock_order && !is_migrate_isolate(migratetype))
680 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
681 }
682 
683 /*
684  * Used for pages which are on another list. Move the pages to the tail
685  * of the list - so the moved pages won't immediately be considered for
686  * allocation again (e.g., optimization for memory onlining).
687  */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int old_mt,int new_mt)688 static inline void move_to_free_list(struct page *page, struct zone *zone,
689 				     unsigned int order, int old_mt, int new_mt)
690 {
691 	struct free_area *area = &zone->free_area[order];
692 	int nr_pages = 1 << order;
693 
694 	/* Free page moving can fail, so it happens before the type update */
695 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
696 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
697 		     get_pageblock_migratetype(page), old_mt, nr_pages);
698 
699 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
700 
701 	account_freepages(zone, -nr_pages, old_mt);
702 	account_freepages(zone, nr_pages, new_mt);
703 
704 	if (order >= pageblock_order &&
705 	    is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) {
706 		if (!is_migrate_isolate(old_mt))
707 			nr_pages = -nr_pages;
708 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
709 	}
710 }
711 
__del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)712 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
713 					     unsigned int order, int migratetype)
714 {
715 	int nr_pages = 1 << order;
716 
717         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
718 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
719 		     get_pageblock_migratetype(page), migratetype, nr_pages);
720 
721 	/* clear reported state and update reported page count */
722 	if (page_reported(page))
723 		__ClearPageReported(page);
724 
725 	list_del(&page->buddy_list);
726 	__ClearPageBuddy(page);
727 	set_page_private(page, 0);
728 	zone->free_area[order].nr_free--;
729 
730 	if (order >= pageblock_order && !is_migrate_isolate(migratetype))
731 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages);
732 }
733 
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)734 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
735 					   unsigned int order, int migratetype)
736 {
737 	__del_page_from_free_list(page, zone, order, migratetype);
738 	account_freepages(zone, -(1 << order), migratetype);
739 }
740 
get_page_from_free_area(struct free_area * area,int migratetype)741 static inline struct page *get_page_from_free_area(struct free_area *area,
742 					    int migratetype)
743 {
744 	return list_first_entry_or_null(&area->free_list[migratetype],
745 					struct page, buddy_list);
746 }
747 
748 /*
749  * If this is less than the 2nd largest possible page, check if the buddy
750  * of the next-higher order is free. If it is, it's possible
751  * that pages are being freed that will coalesce soon. In case,
752  * that is happening, add the free page to the tail of the list
753  * so it's less likely to be used soon and more likely to be merged
754  * as a 2-level higher order page
755  */
756 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)757 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
758 		   struct page *page, unsigned int order)
759 {
760 	unsigned long higher_page_pfn;
761 	struct page *higher_page;
762 
763 	if (order >= MAX_PAGE_ORDER - 1)
764 		return false;
765 
766 	higher_page_pfn = buddy_pfn & pfn;
767 	higher_page = page + (higher_page_pfn - pfn);
768 
769 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
770 			NULL) != NULL;
771 }
772 
773 /*
774  * Freeing function for a buddy system allocator.
775  *
776  * The concept of a buddy system is to maintain direct-mapped table
777  * (containing bit values) for memory blocks of various "orders".
778  * The bottom level table contains the map for the smallest allocatable
779  * units of memory (here, pages), and each level above it describes
780  * pairs of units from the levels below, hence, "buddies".
781  * At a high level, all that happens here is marking the table entry
782  * at the bottom level available, and propagating the changes upward
783  * as necessary, plus some accounting needed to play nicely with other
784  * parts of the VM system.
785  * At each level, we keep a list of pages, which are heads of continuous
786  * free pages of length of (1 << order) and marked with PageBuddy.
787  * Page's order is recorded in page_private(page) field.
788  * So when we are allocating or freeing one, we can derive the state of the
789  * other.  That is, if we allocate a small block, and both were
790  * free, the remainder of the region must be split into blocks.
791  * If a block is freed, and its buddy is also free, then this
792  * triggers coalescing into a block of larger size.
793  *
794  * -- nyc
795  */
796 
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)797 static inline void __free_one_page(struct page *page,
798 		unsigned long pfn,
799 		struct zone *zone, unsigned int order,
800 		int migratetype, fpi_t fpi_flags)
801 {
802 	struct capture_control *capc = task_capc(zone);
803 	unsigned long buddy_pfn = 0;
804 	unsigned long combined_pfn;
805 	struct page *buddy;
806 	bool to_tail;
807 
808 	VM_BUG_ON(!zone_is_initialized(zone));
809 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
810 
811 	VM_BUG_ON(migratetype == -1);
812 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
813 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
814 
815 	account_freepages(zone, 1 << order, migratetype);
816 
817 	while (order < MAX_PAGE_ORDER) {
818 		int buddy_mt = migratetype;
819 
820 		if (compaction_capture(capc, page, order, migratetype)) {
821 			account_freepages(zone, -(1 << order), migratetype);
822 			return;
823 		}
824 
825 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
826 		if (!buddy)
827 			goto done_merging;
828 
829 		if (unlikely(order >= pageblock_order)) {
830 			/*
831 			 * We want to prevent merge between freepages on pageblock
832 			 * without fallbacks and normal pageblock. Without this,
833 			 * pageblock isolation could cause incorrect freepage or CMA
834 			 * accounting or HIGHATOMIC accounting.
835 			 */
836 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
837 
838 			if (migratetype != buddy_mt &&
839 			    (!migratetype_is_mergeable(migratetype) ||
840 			     !migratetype_is_mergeable(buddy_mt)))
841 				goto done_merging;
842 		}
843 
844 		/*
845 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
846 		 * merge with it and move up one order.
847 		 */
848 		if (page_is_guard(buddy))
849 			clear_page_guard(zone, buddy, order);
850 		else
851 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
852 
853 		if (unlikely(buddy_mt != migratetype)) {
854 			/*
855 			 * Match buddy type. This ensures that an
856 			 * expand() down the line puts the sub-blocks
857 			 * on the right freelists.
858 			 */
859 			set_pageblock_migratetype(buddy, migratetype);
860 		}
861 
862 		combined_pfn = buddy_pfn & pfn;
863 		page = page + (combined_pfn - pfn);
864 		pfn = combined_pfn;
865 		order++;
866 	}
867 
868 done_merging:
869 	set_buddy_order(page, order);
870 
871 	if (fpi_flags & FPI_TO_TAIL)
872 		to_tail = true;
873 	else if (is_shuffle_order(order))
874 		to_tail = shuffle_pick_tail();
875 	else
876 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
877 
878 	__add_to_free_list(page, zone, order, migratetype, to_tail);
879 
880 	/* Notify page reporting subsystem of freed page */
881 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
882 		page_reporting_notify_free(order);
883 }
884 
885 /*
886  * A bad page could be due to a number of fields. Instead of multiple branches,
887  * try and check multiple fields with one check. The caller must do a detailed
888  * check if necessary.
889  */
page_expected_state(struct page * page,unsigned long check_flags)890 static inline bool page_expected_state(struct page *page,
891 					unsigned long check_flags)
892 {
893 	if (unlikely(atomic_read(&page->_mapcount) != -1))
894 		return false;
895 
896 	if (unlikely((unsigned long)page->mapping |
897 			page_ref_count(page) |
898 #ifdef CONFIG_MEMCG
899 			page->memcg_data |
900 #endif
901 			page_pool_page_is_pp(page) |
902 			(page->flags & check_flags)))
903 		return false;
904 
905 	return true;
906 }
907 
page_bad_reason(struct page * page,unsigned long flags)908 static const char *page_bad_reason(struct page *page, unsigned long flags)
909 {
910 	const char *bad_reason = NULL;
911 
912 	if (unlikely(atomic_read(&page->_mapcount) != -1))
913 		bad_reason = "nonzero mapcount";
914 	if (unlikely(page->mapping != NULL))
915 		bad_reason = "non-NULL mapping";
916 	if (unlikely(page_ref_count(page) != 0))
917 		bad_reason = "nonzero _refcount";
918 	if (unlikely(page->flags & flags)) {
919 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
920 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
921 		else
922 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
923 	}
924 #ifdef CONFIG_MEMCG
925 	if (unlikely(page->memcg_data))
926 		bad_reason = "page still charged to cgroup";
927 #endif
928 	if (unlikely(page_pool_page_is_pp(page)))
929 		bad_reason = "page_pool leak";
930 	return bad_reason;
931 }
932 
free_page_is_bad(struct page * page)933 static inline bool free_page_is_bad(struct page *page)
934 {
935 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
936 		return false;
937 
938 	/* Something has gone sideways, find it */
939 	bad_page(page, page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
940 	return true;
941 }
942 
is_check_pages_enabled(void)943 static inline bool is_check_pages_enabled(void)
944 {
945 	return static_branch_unlikely(&check_pages_enabled);
946 }
947 
free_tail_page_prepare(struct page * head_page,struct page * page)948 static int free_tail_page_prepare(struct page *head_page, struct page *page)
949 {
950 	struct folio *folio = (struct folio *)head_page;
951 	int ret = 1;
952 
953 	/*
954 	 * We rely page->lru.next never has bit 0 set, unless the page
955 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
956 	 */
957 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
958 
959 	if (!is_check_pages_enabled()) {
960 		ret = 0;
961 		goto out;
962 	}
963 	switch (page - head_page) {
964 	case 1:
965 		/* the first tail page: these may be in place of ->mapping */
966 		if (unlikely(folio_large_mapcount(folio))) {
967 			bad_page(page, "nonzero large_mapcount");
968 			goto out;
969 		}
970 		if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) &&
971 		    unlikely(atomic_read(&folio->_nr_pages_mapped))) {
972 			bad_page(page, "nonzero nr_pages_mapped");
973 			goto out;
974 		}
975 		if (IS_ENABLED(CONFIG_MM_ID)) {
976 			if (unlikely(folio->_mm_id_mapcount[0] != -1)) {
977 				bad_page(page, "nonzero mm mapcount 0");
978 				goto out;
979 			}
980 			if (unlikely(folio->_mm_id_mapcount[1] != -1)) {
981 				bad_page(page, "nonzero mm mapcount 1");
982 				goto out;
983 			}
984 		}
985 		if (IS_ENABLED(CONFIG_64BIT)) {
986 			if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
987 				bad_page(page, "nonzero entire_mapcount");
988 				goto out;
989 			}
990 			if (unlikely(atomic_read(&folio->_pincount))) {
991 				bad_page(page, "nonzero pincount");
992 				goto out;
993 			}
994 		}
995 		break;
996 	case 2:
997 		/* the second tail page: deferred_list overlaps ->mapping */
998 		if (unlikely(!list_empty(&folio->_deferred_list))) {
999 			bad_page(page, "on deferred list");
1000 			goto out;
1001 		}
1002 		if (!IS_ENABLED(CONFIG_64BIT)) {
1003 			if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
1004 				bad_page(page, "nonzero entire_mapcount");
1005 				goto out;
1006 			}
1007 			if (unlikely(atomic_read(&folio->_pincount))) {
1008 				bad_page(page, "nonzero pincount");
1009 				goto out;
1010 			}
1011 		}
1012 		break;
1013 	case 3:
1014 		/* the third tail page: hugetlb specifics overlap ->mappings */
1015 		if (IS_ENABLED(CONFIG_HUGETLB_PAGE))
1016 			break;
1017 		fallthrough;
1018 	default:
1019 		if (page->mapping != TAIL_MAPPING) {
1020 			bad_page(page, "corrupted mapping in tail page");
1021 			goto out;
1022 		}
1023 		break;
1024 	}
1025 	if (unlikely(!PageTail(page))) {
1026 		bad_page(page, "PageTail not set");
1027 		goto out;
1028 	}
1029 	if (unlikely(compound_head(page) != head_page)) {
1030 		bad_page(page, "compound_head not consistent");
1031 		goto out;
1032 	}
1033 	ret = 0;
1034 out:
1035 	page->mapping = NULL;
1036 	clear_compound_head(page);
1037 	return ret;
1038 }
1039 
1040 /*
1041  * Skip KASAN memory poisoning when either:
1042  *
1043  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1044  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1045  *    using page tags instead (see below).
1046  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1047  *    that error detection is disabled for accesses via the page address.
1048  *
1049  * Pages will have match-all tags in the following circumstances:
1050  *
1051  * 1. Pages are being initialized for the first time, including during deferred
1052  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1053  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1054  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1055  * 3. The allocation was excluded from being checked due to sampling,
1056  *    see the call to kasan_unpoison_pages.
1057  *
1058  * Poisoning pages during deferred memory init will greatly lengthen the
1059  * process and cause problem in large memory systems as the deferred pages
1060  * initialization is done with interrupt disabled.
1061  *
1062  * Assuming that there will be no reference to those newly initialized
1063  * pages before they are ever allocated, this should have no effect on
1064  * KASAN memory tracking as the poison will be properly inserted at page
1065  * allocation time. The only corner case is when pages are allocated by
1066  * on-demand allocation and then freed again before the deferred pages
1067  * initialization is done, but this is not likely to happen.
1068  */
should_skip_kasan_poison(struct page * page)1069 static inline bool should_skip_kasan_poison(struct page *page)
1070 {
1071 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1072 		return deferred_pages_enabled();
1073 
1074 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1075 }
1076 
kernel_init_pages(struct page * page,int numpages)1077 static void kernel_init_pages(struct page *page, int numpages)
1078 {
1079 	int i;
1080 
1081 	/* s390's use of memset() could override KASAN redzones. */
1082 	kasan_disable_current();
1083 	for (i = 0; i < numpages; i++)
1084 		clear_highpage_kasan_tagged(page + i);
1085 	kasan_enable_current();
1086 }
1087 
1088 #ifdef CONFIG_MEM_ALLOC_PROFILING
1089 
1090 /* Should be called only if mem_alloc_profiling_enabled() */
__clear_page_tag_ref(struct page * page)1091 void __clear_page_tag_ref(struct page *page)
1092 {
1093 	union pgtag_ref_handle handle;
1094 	union codetag_ref ref;
1095 
1096 	if (get_page_tag_ref(page, &ref, &handle)) {
1097 		set_codetag_empty(&ref);
1098 		update_page_tag_ref(handle, &ref);
1099 		put_page_tag_ref(handle);
1100 	}
1101 }
1102 
1103 /* Should be called only if mem_alloc_profiling_enabled() */
1104 static noinline
__pgalloc_tag_add(struct page * page,struct task_struct * task,unsigned int nr)1105 void __pgalloc_tag_add(struct page *page, struct task_struct *task,
1106 		       unsigned int nr)
1107 {
1108 	union pgtag_ref_handle handle;
1109 	union codetag_ref ref;
1110 
1111 	if (get_page_tag_ref(page, &ref, &handle)) {
1112 		alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr);
1113 		update_page_tag_ref(handle, &ref);
1114 		put_page_tag_ref(handle);
1115 	}
1116 }
1117 
pgalloc_tag_add(struct page * page,struct task_struct * task,unsigned int nr)1118 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1119 				   unsigned int nr)
1120 {
1121 	if (mem_alloc_profiling_enabled())
1122 		__pgalloc_tag_add(page, task, nr);
1123 }
1124 
1125 /* Should be called only if mem_alloc_profiling_enabled() */
1126 static noinline
__pgalloc_tag_sub(struct page * page,unsigned int nr)1127 void __pgalloc_tag_sub(struct page *page, unsigned int nr)
1128 {
1129 	union pgtag_ref_handle handle;
1130 	union codetag_ref ref;
1131 
1132 	if (get_page_tag_ref(page, &ref, &handle)) {
1133 		alloc_tag_sub(&ref, PAGE_SIZE * nr);
1134 		update_page_tag_ref(handle, &ref);
1135 		put_page_tag_ref(handle);
1136 	}
1137 }
1138 
pgalloc_tag_sub(struct page * page,unsigned int nr)1139 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr)
1140 {
1141 	if (mem_alloc_profiling_enabled())
1142 		__pgalloc_tag_sub(page, nr);
1143 }
1144 
1145 /* When tag is not NULL, assuming mem_alloc_profiling_enabled */
pgalloc_tag_sub_pages(struct alloc_tag * tag,unsigned int nr)1146 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr)
1147 {
1148 	if (tag)
1149 		this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr);
1150 }
1151 
1152 #else /* CONFIG_MEM_ALLOC_PROFILING */
1153 
pgalloc_tag_add(struct page * page,struct task_struct * task,unsigned int nr)1154 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1155 				   unsigned int nr) {}
pgalloc_tag_sub(struct page * page,unsigned int nr)1156 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {}
pgalloc_tag_sub_pages(struct alloc_tag * tag,unsigned int nr)1157 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) {}
1158 
1159 #endif /* CONFIG_MEM_ALLOC_PROFILING */
1160 
free_pages_prepare(struct page * page,unsigned int order)1161 __always_inline bool free_pages_prepare(struct page *page,
1162 			unsigned int order)
1163 {
1164 	int bad = 0;
1165 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1166 	bool init = want_init_on_free();
1167 	bool compound = PageCompound(page);
1168 	struct folio *folio = page_folio(page);
1169 
1170 	VM_BUG_ON_PAGE(PageTail(page), page);
1171 
1172 	trace_mm_page_free(page, order);
1173 	kmsan_free_page(page, order);
1174 
1175 	if (memcg_kmem_online() && PageMemcgKmem(page))
1176 		__memcg_kmem_uncharge_page(page, order);
1177 
1178 	/*
1179 	 * In rare cases, when truncation or holepunching raced with
1180 	 * munlock after VM_LOCKED was cleared, Mlocked may still be
1181 	 * found set here.  This does not indicate a problem, unless
1182 	 * "unevictable_pgs_cleared" appears worryingly large.
1183 	 */
1184 	if (unlikely(folio_test_mlocked(folio))) {
1185 		long nr_pages = folio_nr_pages(folio);
1186 
1187 		__folio_clear_mlocked(folio);
1188 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1189 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1190 	}
1191 
1192 	if (unlikely(PageHWPoison(page)) && !order) {
1193 		/* Do not let hwpoison pages hit pcplists/buddy */
1194 		reset_page_owner(page, order);
1195 		page_table_check_free(page, order);
1196 		pgalloc_tag_sub(page, 1 << order);
1197 
1198 		/*
1199 		 * The page is isolated and accounted for.
1200 		 * Mark the codetag as empty to avoid accounting error
1201 		 * when the page is freed by unpoison_memory().
1202 		 */
1203 		clear_page_tag_ref(page);
1204 		return false;
1205 	}
1206 
1207 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1208 
1209 	/*
1210 	 * Check tail pages before head page information is cleared to
1211 	 * avoid checking PageCompound for order-0 pages.
1212 	 */
1213 	if (unlikely(order)) {
1214 		int i;
1215 
1216 		if (compound) {
1217 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1218 #ifdef NR_PAGES_IN_LARGE_FOLIO
1219 			folio->_nr_pages = 0;
1220 #endif
1221 		}
1222 		for (i = 1; i < (1 << order); i++) {
1223 			if (compound)
1224 				bad += free_tail_page_prepare(page, page + i);
1225 			if (is_check_pages_enabled()) {
1226 				if (free_page_is_bad(page + i)) {
1227 					bad++;
1228 					continue;
1229 				}
1230 			}
1231 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1232 		}
1233 	}
1234 	if (PageMappingFlags(page)) {
1235 		if (PageAnon(page))
1236 			mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1237 		page->mapping = NULL;
1238 	}
1239 	if (is_check_pages_enabled()) {
1240 		if (free_page_is_bad(page))
1241 			bad++;
1242 		if (bad)
1243 			return false;
1244 	}
1245 
1246 	page_cpupid_reset_last(page);
1247 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1248 	reset_page_owner(page, order);
1249 	page_table_check_free(page, order);
1250 	pgalloc_tag_sub(page, 1 << order);
1251 
1252 	if (!PageHighMem(page)) {
1253 		debug_check_no_locks_freed(page_address(page),
1254 					   PAGE_SIZE << order);
1255 		debug_check_no_obj_freed(page_address(page),
1256 					   PAGE_SIZE << order);
1257 	}
1258 
1259 	kernel_poison_pages(page, 1 << order);
1260 
1261 	/*
1262 	 * As memory initialization might be integrated into KASAN,
1263 	 * KASAN poisoning and memory initialization code must be
1264 	 * kept together to avoid discrepancies in behavior.
1265 	 *
1266 	 * With hardware tag-based KASAN, memory tags must be set before the
1267 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1268 	 */
1269 	if (!skip_kasan_poison) {
1270 		kasan_poison_pages(page, order, init);
1271 
1272 		/* Memory is already initialized if KASAN did it internally. */
1273 		if (kasan_has_integrated_init())
1274 			init = false;
1275 	}
1276 	if (init)
1277 		kernel_init_pages(page, 1 << order);
1278 
1279 	/*
1280 	 * arch_free_page() can make the page's contents inaccessible.  s390
1281 	 * does this.  So nothing which can access the page's contents should
1282 	 * happen after this.
1283 	 */
1284 	arch_free_page(page, order);
1285 
1286 	debug_pagealloc_unmap_pages(page, 1 << order);
1287 
1288 	return true;
1289 }
1290 
1291 /*
1292  * Frees a number of pages from the PCP lists
1293  * Assumes all pages on list are in same zone.
1294  * count is the number of pages to free.
1295  */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1296 static void free_pcppages_bulk(struct zone *zone, int count,
1297 					struct per_cpu_pages *pcp,
1298 					int pindex)
1299 {
1300 	unsigned long flags;
1301 	unsigned int order;
1302 	struct page *page;
1303 
1304 	/*
1305 	 * Ensure proper count is passed which otherwise would stuck in the
1306 	 * below while (list_empty(list)) loop.
1307 	 */
1308 	count = min(pcp->count, count);
1309 
1310 	/* Ensure requested pindex is drained first. */
1311 	pindex = pindex - 1;
1312 
1313 	spin_lock_irqsave(&zone->lock, flags);
1314 
1315 	while (count > 0) {
1316 		struct list_head *list;
1317 		int nr_pages;
1318 
1319 		/* Remove pages from lists in a round-robin fashion. */
1320 		do {
1321 			if (++pindex > NR_PCP_LISTS - 1)
1322 				pindex = 0;
1323 			list = &pcp->lists[pindex];
1324 		} while (list_empty(list));
1325 
1326 		order = pindex_to_order(pindex);
1327 		nr_pages = 1 << order;
1328 		do {
1329 			unsigned long pfn;
1330 			int mt;
1331 
1332 			page = list_last_entry(list, struct page, pcp_list);
1333 			pfn = page_to_pfn(page);
1334 			mt = get_pfnblock_migratetype(page, pfn);
1335 
1336 			/* must delete to avoid corrupting pcp list */
1337 			list_del(&page->pcp_list);
1338 			count -= nr_pages;
1339 			pcp->count -= nr_pages;
1340 
1341 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1342 			trace_mm_page_pcpu_drain(page, order, mt);
1343 		} while (count > 0 && !list_empty(list));
1344 	}
1345 
1346 	spin_unlock_irqrestore(&zone->lock, flags);
1347 }
1348 
1349 /* Split a multi-block free page into its individual pageblocks. */
split_large_buddy(struct zone * zone,struct page * page,unsigned long pfn,int order,fpi_t fpi)1350 static void split_large_buddy(struct zone *zone, struct page *page,
1351 			      unsigned long pfn, int order, fpi_t fpi)
1352 {
1353 	unsigned long end = pfn + (1 << order);
1354 
1355 	VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1356 	/* Caller removed page from freelist, buddy info cleared! */
1357 	VM_WARN_ON_ONCE(PageBuddy(page));
1358 
1359 	if (order > pageblock_order)
1360 		order = pageblock_order;
1361 
1362 	do {
1363 		int mt = get_pfnblock_migratetype(page, pfn);
1364 
1365 		__free_one_page(page, pfn, zone, order, mt, fpi);
1366 		pfn += 1 << order;
1367 		if (pfn == end)
1368 			break;
1369 		page = pfn_to_page(pfn);
1370 	} while (1);
1371 }
1372 
add_page_to_zone_llist(struct zone * zone,struct page * page,unsigned int order)1373 static void add_page_to_zone_llist(struct zone *zone, struct page *page,
1374 				   unsigned int order)
1375 {
1376 	/* Remember the order */
1377 	page->order = order;
1378 	/* Add the page to the free list */
1379 	llist_add(&page->pcp_llist, &zone->trylock_free_pages);
1380 }
1381 
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,fpi_t fpi_flags)1382 static void free_one_page(struct zone *zone, struct page *page,
1383 			  unsigned long pfn, unsigned int order,
1384 			  fpi_t fpi_flags)
1385 {
1386 	struct llist_head *llhead;
1387 	unsigned long flags;
1388 
1389 	if (unlikely(fpi_flags & FPI_TRYLOCK)) {
1390 		if (!spin_trylock_irqsave(&zone->lock, flags)) {
1391 			add_page_to_zone_llist(zone, page, order);
1392 			return;
1393 		}
1394 	} else {
1395 		spin_lock_irqsave(&zone->lock, flags);
1396 	}
1397 
1398 	/* The lock succeeded. Process deferred pages. */
1399 	llhead = &zone->trylock_free_pages;
1400 	if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) {
1401 		struct llist_node *llnode;
1402 		struct page *p, *tmp;
1403 
1404 		llnode = llist_del_all(llhead);
1405 		llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) {
1406 			unsigned int p_order = p->order;
1407 
1408 			split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags);
1409 			__count_vm_events(PGFREE, 1 << p_order);
1410 		}
1411 	}
1412 	split_large_buddy(zone, page, pfn, order, fpi_flags);
1413 	spin_unlock_irqrestore(&zone->lock, flags);
1414 
1415 	__count_vm_events(PGFREE, 1 << order);
1416 }
1417 
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1418 static void __free_pages_ok(struct page *page, unsigned int order,
1419 			    fpi_t fpi_flags)
1420 {
1421 	unsigned long pfn = page_to_pfn(page);
1422 	struct zone *zone = page_zone(page);
1423 
1424 	if (free_pages_prepare(page, order))
1425 		free_one_page(zone, page, pfn, order, fpi_flags);
1426 }
1427 
__free_pages_core(struct page * page,unsigned int order,enum meminit_context context)1428 void __meminit __free_pages_core(struct page *page, unsigned int order,
1429 		enum meminit_context context)
1430 {
1431 	unsigned int nr_pages = 1 << order;
1432 	struct page *p = page;
1433 	unsigned int loop;
1434 
1435 	/*
1436 	 * When initializing the memmap, __init_single_page() sets the refcount
1437 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1438 	 * refcount of all involved pages to 0.
1439 	 *
1440 	 * Note that hotplugged memory pages are initialized to PageOffline().
1441 	 * Pages freed from memblock might be marked as reserved.
1442 	 */
1443 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1444 	    unlikely(context == MEMINIT_HOTPLUG)) {
1445 		for (loop = 0; loop < nr_pages; loop++, p++) {
1446 			VM_WARN_ON_ONCE(PageReserved(p));
1447 			__ClearPageOffline(p);
1448 			set_page_count(p, 0);
1449 		}
1450 
1451 		adjust_managed_page_count(page, nr_pages);
1452 	} else {
1453 		for (loop = 0; loop < nr_pages; loop++, p++) {
1454 			__ClearPageReserved(p);
1455 			set_page_count(p, 0);
1456 		}
1457 
1458 		/* memblock adjusts totalram_pages() manually. */
1459 		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1460 	}
1461 
1462 	if (page_contains_unaccepted(page, order)) {
1463 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1464 			return;
1465 
1466 		accept_memory(page_to_phys(page), PAGE_SIZE << order);
1467 	}
1468 
1469 	/*
1470 	 * Bypass PCP and place fresh pages right to the tail, primarily
1471 	 * relevant for memory onlining.
1472 	 */
1473 	__free_pages_ok(page, order, FPI_TO_TAIL);
1474 }
1475 
1476 /*
1477  * Check that the whole (or subset of) a pageblock given by the interval of
1478  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1479  * with the migration of free compaction scanner.
1480  *
1481  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1482  *
1483  * It's possible on some configurations to have a setup like node0 node1 node0
1484  * i.e. it's possible that all pages within a zones range of pages do not
1485  * belong to a single zone. We assume that a border between node0 and node1
1486  * can occur within a single pageblock, but not a node0 node1 node0
1487  * interleaving within a single pageblock. It is therefore sufficient to check
1488  * the first and last page of a pageblock and avoid checking each individual
1489  * page in a pageblock.
1490  *
1491  * Note: the function may return non-NULL struct page even for a page block
1492  * which contains a memory hole (i.e. there is no physical memory for a subset
1493  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1494  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1495  * even though the start pfn is online and valid. This should be safe most of
1496  * the time because struct pages are still initialized via init_unavailable_range()
1497  * and pfn walkers shouldn't touch any physical memory range for which they do
1498  * not recognize any specific metadata in struct pages.
1499  */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1500 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1501 				     unsigned long end_pfn, struct zone *zone)
1502 {
1503 	struct page *start_page;
1504 	struct page *end_page;
1505 
1506 	/* end_pfn is one past the range we are checking */
1507 	end_pfn--;
1508 
1509 	if (!pfn_valid(end_pfn))
1510 		return NULL;
1511 
1512 	start_page = pfn_to_online_page(start_pfn);
1513 	if (!start_page)
1514 		return NULL;
1515 
1516 	if (page_zone(start_page) != zone)
1517 		return NULL;
1518 
1519 	end_page = pfn_to_page(end_pfn);
1520 
1521 	/* This gives a shorter code than deriving page_zone(end_page) */
1522 	if (page_zone_id(start_page) != page_zone_id(end_page))
1523 		return NULL;
1524 
1525 	return start_page;
1526 }
1527 
1528 /*
1529  * The order of subdivision here is critical for the IO subsystem.
1530  * Please do not alter this order without good reasons and regression
1531  * testing. Specifically, as large blocks of memory are subdivided,
1532  * the order in which smaller blocks are delivered depends on the order
1533  * they're subdivided in this function. This is the primary factor
1534  * influencing the order in which pages are delivered to the IO
1535  * subsystem according to empirical testing, and this is also justified
1536  * by considering the behavior of a buddy system containing a single
1537  * large block of memory acted on by a series of small allocations.
1538  * This behavior is a critical factor in sglist merging's success.
1539  *
1540  * -- nyc
1541  */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1542 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1543 				  int high, int migratetype)
1544 {
1545 	unsigned int size = 1 << high;
1546 	unsigned int nr_added = 0;
1547 
1548 	while (high > low) {
1549 		high--;
1550 		size >>= 1;
1551 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1552 
1553 		/*
1554 		 * Mark as guard pages (or page), that will allow to
1555 		 * merge back to allocator when buddy will be freed.
1556 		 * Corresponding page table entries will not be touched,
1557 		 * pages will stay not present in virtual address space
1558 		 */
1559 		if (set_page_guard(zone, &page[size], high))
1560 			continue;
1561 
1562 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1563 		set_buddy_order(&page[size], high);
1564 		nr_added += size;
1565 	}
1566 
1567 	return nr_added;
1568 }
1569 
page_del_and_expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1570 static __always_inline void page_del_and_expand(struct zone *zone,
1571 						struct page *page, int low,
1572 						int high, int migratetype)
1573 {
1574 	int nr_pages = 1 << high;
1575 
1576 	__del_page_from_free_list(page, zone, high, migratetype);
1577 	nr_pages -= expand(zone, page, low, high, migratetype);
1578 	account_freepages(zone, -nr_pages, migratetype);
1579 }
1580 
check_new_page_bad(struct page * page)1581 static void check_new_page_bad(struct page *page)
1582 {
1583 	if (unlikely(PageHWPoison(page))) {
1584 		/* Don't complain about hwpoisoned pages */
1585 		if (PageBuddy(page))
1586 			__ClearPageBuddy(page);
1587 		return;
1588 	}
1589 
1590 	bad_page(page,
1591 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1592 }
1593 
1594 /*
1595  * This page is about to be returned from the page allocator
1596  */
check_new_page(struct page * page)1597 static bool check_new_page(struct page *page)
1598 {
1599 	if (likely(page_expected_state(page,
1600 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1601 		return false;
1602 
1603 	check_new_page_bad(page);
1604 	return true;
1605 }
1606 
check_new_pages(struct page * page,unsigned int order)1607 static inline bool check_new_pages(struct page *page, unsigned int order)
1608 {
1609 	if (is_check_pages_enabled()) {
1610 		for (int i = 0; i < (1 << order); i++) {
1611 			struct page *p = page + i;
1612 
1613 			if (check_new_page(p))
1614 				return true;
1615 		}
1616 	}
1617 
1618 	return false;
1619 }
1620 
should_skip_kasan_unpoison(gfp_t flags)1621 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1622 {
1623 	/* Don't skip if a software KASAN mode is enabled. */
1624 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1625 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1626 		return false;
1627 
1628 	/* Skip, if hardware tag-based KASAN is not enabled. */
1629 	if (!kasan_hw_tags_enabled())
1630 		return true;
1631 
1632 	/*
1633 	 * With hardware tag-based KASAN enabled, skip if this has been
1634 	 * requested via __GFP_SKIP_KASAN.
1635 	 */
1636 	return flags & __GFP_SKIP_KASAN;
1637 }
1638 
should_skip_init(gfp_t flags)1639 static inline bool should_skip_init(gfp_t flags)
1640 {
1641 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1642 	if (!kasan_hw_tags_enabled())
1643 		return false;
1644 
1645 	/* For hardware tag-based KASAN, skip if requested. */
1646 	return (flags & __GFP_SKIP_ZERO);
1647 }
1648 
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1649 inline void post_alloc_hook(struct page *page, unsigned int order,
1650 				gfp_t gfp_flags)
1651 {
1652 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1653 			!should_skip_init(gfp_flags);
1654 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1655 	int i;
1656 
1657 	set_page_private(page, 0);
1658 
1659 	arch_alloc_page(page, order);
1660 	debug_pagealloc_map_pages(page, 1 << order);
1661 
1662 	/*
1663 	 * Page unpoisoning must happen before memory initialization.
1664 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1665 	 * allocations and the page unpoisoning code will complain.
1666 	 */
1667 	kernel_unpoison_pages(page, 1 << order);
1668 
1669 	/*
1670 	 * As memory initialization might be integrated into KASAN,
1671 	 * KASAN unpoisoning and memory initializion code must be
1672 	 * kept together to avoid discrepancies in behavior.
1673 	 */
1674 
1675 	/*
1676 	 * If memory tags should be zeroed
1677 	 * (which happens only when memory should be initialized as well).
1678 	 */
1679 	if (zero_tags) {
1680 		/* Initialize both memory and memory tags. */
1681 		for (i = 0; i != 1 << order; ++i)
1682 			tag_clear_highpage(page + i);
1683 
1684 		/* Take note that memory was initialized by the loop above. */
1685 		init = false;
1686 	}
1687 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1688 	    kasan_unpoison_pages(page, order, init)) {
1689 		/* Take note that memory was initialized by KASAN. */
1690 		if (kasan_has_integrated_init())
1691 			init = false;
1692 	} else {
1693 		/*
1694 		 * If memory tags have not been set by KASAN, reset the page
1695 		 * tags to ensure page_address() dereferencing does not fault.
1696 		 */
1697 		for (i = 0; i != 1 << order; ++i)
1698 			page_kasan_tag_reset(page + i);
1699 	}
1700 	/* If memory is still not initialized, initialize it now. */
1701 	if (init)
1702 		kernel_init_pages(page, 1 << order);
1703 
1704 	set_page_owner(page, order, gfp_flags);
1705 	page_table_check_alloc(page, order);
1706 	pgalloc_tag_add(page, current, 1 << order);
1707 }
1708 
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1709 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1710 							unsigned int alloc_flags)
1711 {
1712 	post_alloc_hook(page, order, gfp_flags);
1713 
1714 	if (order && (gfp_flags & __GFP_COMP))
1715 		prep_compound_page(page, order);
1716 
1717 	/*
1718 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1719 	 * allocate the page. The expectation is that the caller is taking
1720 	 * steps that will free more memory. The caller should avoid the page
1721 	 * being used for !PFMEMALLOC purposes.
1722 	 */
1723 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1724 		set_page_pfmemalloc(page);
1725 	else
1726 		clear_page_pfmemalloc(page);
1727 }
1728 
1729 /*
1730  * Go through the free lists for the given migratetype and remove
1731  * the smallest available page from the freelists
1732  */
1733 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1734 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1735 						int migratetype)
1736 {
1737 	unsigned int current_order;
1738 	struct free_area *area;
1739 	struct page *page;
1740 
1741 	/* Find a page of the appropriate size in the preferred list */
1742 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1743 		area = &(zone->free_area[current_order]);
1744 		page = get_page_from_free_area(area, migratetype);
1745 		if (!page)
1746 			continue;
1747 
1748 		page_del_and_expand(zone, page, order, current_order,
1749 				    migratetype);
1750 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1751 				pcp_allowed_order(order) &&
1752 				migratetype < MIGRATE_PCPTYPES);
1753 		return page;
1754 	}
1755 
1756 	return NULL;
1757 }
1758 
1759 
1760 /*
1761  * This array describes the order lists are fallen back to when
1762  * the free lists for the desirable migrate type are depleted
1763  *
1764  * The other migratetypes do not have fallbacks.
1765  */
1766 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1767 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1768 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1769 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1770 };
1771 
1772 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1773 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1774 					unsigned int order)
1775 {
1776 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1777 }
1778 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1779 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1780 					unsigned int order) { return NULL; }
1781 #endif
1782 
1783 /*
1784  * Change the type of a block and move all its free pages to that
1785  * type's freelist.
1786  */
__move_freepages_block(struct zone * zone,unsigned long start_pfn,int old_mt,int new_mt)1787 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1788 				  int old_mt, int new_mt)
1789 {
1790 	struct page *page;
1791 	unsigned long pfn, end_pfn;
1792 	unsigned int order;
1793 	int pages_moved = 0;
1794 
1795 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1796 	end_pfn = pageblock_end_pfn(start_pfn);
1797 
1798 	for (pfn = start_pfn; pfn < end_pfn;) {
1799 		page = pfn_to_page(pfn);
1800 		if (!PageBuddy(page)) {
1801 			pfn++;
1802 			continue;
1803 		}
1804 
1805 		/* Make sure we are not inadvertently changing nodes */
1806 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1807 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1808 
1809 		order = buddy_order(page);
1810 
1811 		move_to_free_list(page, zone, order, old_mt, new_mt);
1812 
1813 		pfn += 1 << order;
1814 		pages_moved += 1 << order;
1815 	}
1816 
1817 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1818 
1819 	return pages_moved;
1820 }
1821 
prep_move_freepages_block(struct zone * zone,struct page * page,unsigned long * start_pfn,int * num_free,int * num_movable)1822 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1823 				      unsigned long *start_pfn,
1824 				      int *num_free, int *num_movable)
1825 {
1826 	unsigned long pfn, start, end;
1827 
1828 	pfn = page_to_pfn(page);
1829 	start = pageblock_start_pfn(pfn);
1830 	end = pageblock_end_pfn(pfn);
1831 
1832 	/*
1833 	 * The caller only has the lock for @zone, don't touch ranges
1834 	 * that straddle into other zones. While we could move part of
1835 	 * the range that's inside the zone, this call is usually
1836 	 * accompanied by other operations such as migratetype updates
1837 	 * which also should be locked.
1838 	 */
1839 	if (!zone_spans_pfn(zone, start))
1840 		return false;
1841 	if (!zone_spans_pfn(zone, end - 1))
1842 		return false;
1843 
1844 	*start_pfn = start;
1845 
1846 	if (num_free) {
1847 		*num_free = 0;
1848 		*num_movable = 0;
1849 		for (pfn = start; pfn < end;) {
1850 			page = pfn_to_page(pfn);
1851 			if (PageBuddy(page)) {
1852 				int nr = 1 << buddy_order(page);
1853 
1854 				*num_free += nr;
1855 				pfn += nr;
1856 				continue;
1857 			}
1858 			/*
1859 			 * We assume that pages that could be isolated for
1860 			 * migration are movable. But we don't actually try
1861 			 * isolating, as that would be expensive.
1862 			 */
1863 			if (PageLRU(page) || __PageMovable(page))
1864 				(*num_movable)++;
1865 			pfn++;
1866 		}
1867 	}
1868 
1869 	return true;
1870 }
1871 
move_freepages_block(struct zone * zone,struct page * page,int old_mt,int new_mt)1872 static int move_freepages_block(struct zone *zone, struct page *page,
1873 				int old_mt, int new_mt)
1874 {
1875 	unsigned long start_pfn;
1876 
1877 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1878 		return -1;
1879 
1880 	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1881 }
1882 
1883 #ifdef CONFIG_MEMORY_ISOLATION
1884 /* Look for a buddy that straddles start_pfn */
find_large_buddy(unsigned long start_pfn)1885 static unsigned long find_large_buddy(unsigned long start_pfn)
1886 {
1887 	int order = 0;
1888 	struct page *page;
1889 	unsigned long pfn = start_pfn;
1890 
1891 	while (!PageBuddy(page = pfn_to_page(pfn))) {
1892 		/* Nothing found */
1893 		if (++order > MAX_PAGE_ORDER)
1894 			return start_pfn;
1895 		pfn &= ~0UL << order;
1896 	}
1897 
1898 	/*
1899 	 * Found a preceding buddy, but does it straddle?
1900 	 */
1901 	if (pfn + (1 << buddy_order(page)) > start_pfn)
1902 		return pfn;
1903 
1904 	/* Nothing found */
1905 	return start_pfn;
1906 }
1907 
1908 /**
1909  * move_freepages_block_isolate - move free pages in block for page isolation
1910  * @zone: the zone
1911  * @page: the pageblock page
1912  * @migratetype: migratetype to set on the pageblock
1913  *
1914  * This is similar to move_freepages_block(), but handles the special
1915  * case encountered in page isolation, where the block of interest
1916  * might be part of a larger buddy spanning multiple pageblocks.
1917  *
1918  * Unlike the regular page allocator path, which moves pages while
1919  * stealing buddies off the freelist, page isolation is interested in
1920  * arbitrary pfn ranges that may have overlapping buddies on both ends.
1921  *
1922  * This function handles that. Straddling buddies are split into
1923  * individual pageblocks. Only the block of interest is moved.
1924  *
1925  * Returns %true if pages could be moved, %false otherwise.
1926  */
move_freepages_block_isolate(struct zone * zone,struct page * page,int migratetype)1927 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1928 				  int migratetype)
1929 {
1930 	unsigned long start_pfn, pfn;
1931 
1932 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1933 		return false;
1934 
1935 	/* No splits needed if buddies can't span multiple blocks */
1936 	if (pageblock_order == MAX_PAGE_ORDER)
1937 		goto move;
1938 
1939 	/* We're a tail block in a larger buddy */
1940 	pfn = find_large_buddy(start_pfn);
1941 	if (pfn != start_pfn) {
1942 		struct page *buddy = pfn_to_page(pfn);
1943 		int order = buddy_order(buddy);
1944 
1945 		del_page_from_free_list(buddy, zone, order,
1946 					get_pfnblock_migratetype(buddy, pfn));
1947 		set_pageblock_migratetype(page, migratetype);
1948 		split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
1949 		return true;
1950 	}
1951 
1952 	/* We're the starting block of a larger buddy */
1953 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1954 		int order = buddy_order(page);
1955 
1956 		del_page_from_free_list(page, zone, order,
1957 					get_pfnblock_migratetype(page, pfn));
1958 		set_pageblock_migratetype(page, migratetype);
1959 		split_large_buddy(zone, page, pfn, order, FPI_NONE);
1960 		return true;
1961 	}
1962 move:
1963 	__move_freepages_block(zone, start_pfn,
1964 			       get_pfnblock_migratetype(page, start_pfn),
1965 			       migratetype);
1966 	return true;
1967 }
1968 #endif /* CONFIG_MEMORY_ISOLATION */
1969 
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1970 static void change_pageblock_range(struct page *pageblock_page,
1971 					int start_order, int migratetype)
1972 {
1973 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1974 
1975 	while (nr_pageblocks--) {
1976 		set_pageblock_migratetype(pageblock_page, migratetype);
1977 		pageblock_page += pageblock_nr_pages;
1978 	}
1979 }
1980 
boost_watermark(struct zone * zone)1981 static inline bool boost_watermark(struct zone *zone)
1982 {
1983 	unsigned long max_boost;
1984 
1985 	if (!watermark_boost_factor)
1986 		return false;
1987 	/*
1988 	 * Don't bother in zones that are unlikely to produce results.
1989 	 * On small machines, including kdump capture kernels running
1990 	 * in a small area, boosting the watermark can cause an out of
1991 	 * memory situation immediately.
1992 	 */
1993 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1994 		return false;
1995 
1996 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1997 			watermark_boost_factor, 10000);
1998 
1999 	/*
2000 	 * high watermark may be uninitialised if fragmentation occurs
2001 	 * very early in boot so do not boost. We do not fall
2002 	 * through and boost by pageblock_nr_pages as failing
2003 	 * allocations that early means that reclaim is not going
2004 	 * to help and it may even be impossible to reclaim the
2005 	 * boosted watermark resulting in a hang.
2006 	 */
2007 	if (!max_boost)
2008 		return false;
2009 
2010 	max_boost = max(pageblock_nr_pages, max_boost);
2011 
2012 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2013 		max_boost);
2014 
2015 	return true;
2016 }
2017 
2018 /*
2019  * When we are falling back to another migratetype during allocation, should we
2020  * try to claim an entire block to satisfy further allocations, instead of
2021  * polluting multiple pageblocks?
2022  */
should_try_claim_block(unsigned int order,int start_mt)2023 static bool should_try_claim_block(unsigned int order, int start_mt)
2024 {
2025 	/*
2026 	 * Leaving this order check is intended, although there is
2027 	 * relaxed order check in next check. The reason is that
2028 	 * we can actually claim the whole pageblock if this condition met,
2029 	 * but, below check doesn't guarantee it and that is just heuristic
2030 	 * so could be changed anytime.
2031 	 */
2032 	if (order >= pageblock_order)
2033 		return true;
2034 
2035 	/*
2036 	 * Above a certain threshold, always try to claim, as it's likely there
2037 	 * will be more free pages in the pageblock.
2038 	 */
2039 	if (order >= pageblock_order / 2)
2040 		return true;
2041 
2042 	/*
2043 	 * Unmovable/reclaimable allocations would cause permanent
2044 	 * fragmentations if they fell back to allocating from a movable block
2045 	 * (polluting it), so we try to claim the whole block regardless of the
2046 	 * allocation size. Later movable allocations can always steal from this
2047 	 * block, which is less problematic.
2048 	 */
2049 	if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE)
2050 		return true;
2051 
2052 	if (page_group_by_mobility_disabled)
2053 		return true;
2054 
2055 	/*
2056 	 * Movable pages won't cause permanent fragmentation, so when you alloc
2057 	 * small pages, we just need to temporarily steal unmovable or
2058 	 * reclaimable pages that are closest to the request size. After a
2059 	 * while, memory compaction may occur to form large contiguous pages,
2060 	 * and the next movable allocation may not need to steal.
2061 	 */
2062 	return false;
2063 }
2064 
2065 /*
2066  * Check whether there is a suitable fallback freepage with requested order.
2067  * If claimable is true, this function returns fallback_mt only if
2068  * we would do this whole-block claiming. This would help to reduce
2069  * fragmentation due to mixed migratetype pages in one pageblock.
2070  */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool claimable)2071 int find_suitable_fallback(struct free_area *area, unsigned int order,
2072 			   int migratetype, bool claimable)
2073 {
2074 	int i;
2075 
2076 	if (claimable && !should_try_claim_block(order, migratetype))
2077 		return -2;
2078 
2079 	if (area->nr_free == 0)
2080 		return -1;
2081 
2082 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2083 		int fallback_mt = fallbacks[migratetype][i];
2084 
2085 		if (!free_area_empty(area, fallback_mt))
2086 			return fallback_mt;
2087 	}
2088 
2089 	return -1;
2090 }
2091 
2092 /*
2093  * This function implements actual block claiming behaviour. If order is large
2094  * enough, we can claim the whole pageblock for the requested migratetype. If
2095  * not, we check the pageblock for constituent pages; if at least half of the
2096  * pages are free or compatible, we can still claim the whole block, so pages
2097  * freed in the future will be put on the correct free list.
2098  */
2099 static struct page *
try_to_claim_block(struct zone * zone,struct page * page,int current_order,int order,int start_type,int block_type,unsigned int alloc_flags)2100 try_to_claim_block(struct zone *zone, struct page *page,
2101 		   int current_order, int order, int start_type,
2102 		   int block_type, unsigned int alloc_flags)
2103 {
2104 	int free_pages, movable_pages, alike_pages;
2105 	unsigned long start_pfn;
2106 
2107 	/* Take ownership for orders >= pageblock_order */
2108 	if (current_order >= pageblock_order) {
2109 		unsigned int nr_added;
2110 
2111 		del_page_from_free_list(page, zone, current_order, block_type);
2112 		change_pageblock_range(page, current_order, start_type);
2113 		nr_added = expand(zone, page, order, current_order, start_type);
2114 		account_freepages(zone, nr_added, start_type);
2115 		return page;
2116 	}
2117 
2118 	/*
2119 	 * Boost watermarks to increase reclaim pressure to reduce the
2120 	 * likelihood of future fallbacks. Wake kswapd now as the node
2121 	 * may be balanced overall and kswapd will not wake naturally.
2122 	 */
2123 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2124 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2125 
2126 	/* moving whole block can fail due to zone boundary conditions */
2127 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
2128 				       &movable_pages))
2129 		return NULL;
2130 
2131 	/*
2132 	 * Determine how many pages are compatible with our allocation.
2133 	 * For movable allocation, it's the number of movable pages which
2134 	 * we just obtained. For other types it's a bit more tricky.
2135 	 */
2136 	if (start_type == MIGRATE_MOVABLE) {
2137 		alike_pages = movable_pages;
2138 	} else {
2139 		/*
2140 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2141 		 * to MOVABLE pageblock, consider all non-movable pages as
2142 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2143 		 * vice versa, be conservative since we can't distinguish the
2144 		 * exact migratetype of non-movable pages.
2145 		 */
2146 		if (block_type == MIGRATE_MOVABLE)
2147 			alike_pages = pageblock_nr_pages
2148 						- (free_pages + movable_pages);
2149 		else
2150 			alike_pages = 0;
2151 	}
2152 	/*
2153 	 * If a sufficient number of pages in the block are either free or of
2154 	 * compatible migratability as our allocation, claim the whole block.
2155 	 */
2156 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2157 			page_group_by_mobility_disabled) {
2158 		__move_freepages_block(zone, start_pfn, block_type, start_type);
2159 		return __rmqueue_smallest(zone, order, start_type);
2160 	}
2161 
2162 	return NULL;
2163 }
2164 
2165 /*
2166  * Try to allocate from some fallback migratetype by claiming the entire block,
2167  * i.e. converting it to the allocation's start migratetype.
2168  *
2169  * The use of signed ints for order and current_order is a deliberate
2170  * deviation from the rest of this file, to make the for loop
2171  * condition simpler.
2172  */
2173 static __always_inline struct page *
__rmqueue_claim(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2174 __rmqueue_claim(struct zone *zone, int order, int start_migratetype,
2175 						unsigned int alloc_flags)
2176 {
2177 	struct free_area *area;
2178 	int current_order;
2179 	int min_order = order;
2180 	struct page *page;
2181 	int fallback_mt;
2182 
2183 	/*
2184 	 * Do not steal pages from freelists belonging to other pageblocks
2185 	 * i.e. orders < pageblock_order. If there are no local zones free,
2186 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2187 	 */
2188 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2189 		min_order = pageblock_order;
2190 
2191 	/*
2192 	 * Find the largest available free page in the other list. This roughly
2193 	 * approximates finding the pageblock with the most free pages, which
2194 	 * would be too costly to do exactly.
2195 	 */
2196 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2197 				--current_order) {
2198 		area = &(zone->free_area[current_order]);
2199 		fallback_mt = find_suitable_fallback(area, current_order,
2200 						     start_migratetype, true);
2201 
2202 		/* No block in that order */
2203 		if (fallback_mt == -1)
2204 			continue;
2205 
2206 		/* Advanced into orders too low to claim, abort */
2207 		if (fallback_mt == -2)
2208 			break;
2209 
2210 		page = get_page_from_free_area(area, fallback_mt);
2211 		page = try_to_claim_block(zone, page, current_order, order,
2212 					  start_migratetype, fallback_mt,
2213 					  alloc_flags);
2214 		if (page) {
2215 			trace_mm_page_alloc_extfrag(page, order, current_order,
2216 						    start_migratetype, fallback_mt);
2217 			return page;
2218 		}
2219 	}
2220 
2221 	return NULL;
2222 }
2223 
2224 /*
2225  * Try to steal a single page from some fallback migratetype. Leave the rest of
2226  * the block as its current migratetype, potentially causing fragmentation.
2227  */
2228 static __always_inline struct page *
__rmqueue_steal(struct zone * zone,int order,int start_migratetype)2229 __rmqueue_steal(struct zone *zone, int order, int start_migratetype)
2230 {
2231 	struct free_area *area;
2232 	int current_order;
2233 	struct page *page;
2234 	int fallback_mt;
2235 
2236 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2237 		area = &(zone->free_area[current_order]);
2238 		fallback_mt = find_suitable_fallback(area, current_order,
2239 						     start_migratetype, false);
2240 		if (fallback_mt == -1)
2241 			continue;
2242 
2243 		page = get_page_from_free_area(area, fallback_mt);
2244 		page_del_and_expand(zone, page, order, current_order, fallback_mt);
2245 		trace_mm_page_alloc_extfrag(page, order, current_order,
2246 					    start_migratetype, fallback_mt);
2247 		return page;
2248 	}
2249 
2250 	return NULL;
2251 }
2252 
2253 enum rmqueue_mode {
2254 	RMQUEUE_NORMAL,
2255 	RMQUEUE_CMA,
2256 	RMQUEUE_CLAIM,
2257 	RMQUEUE_STEAL,
2258 };
2259 
2260 /*
2261  * Do the hard work of removing an element from the buddy allocator.
2262  * Call me with the zone->lock already held.
2263  */
2264 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,enum rmqueue_mode * mode)2265 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2266 	  unsigned int alloc_flags, enum rmqueue_mode *mode)
2267 {
2268 	struct page *page;
2269 
2270 	if (IS_ENABLED(CONFIG_CMA)) {
2271 		/*
2272 		 * Balance movable allocations between regular and CMA areas by
2273 		 * allocating from CMA when over half of the zone's free memory
2274 		 * is in the CMA area.
2275 		 */
2276 		if (alloc_flags & ALLOC_CMA &&
2277 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2278 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2279 			page = __rmqueue_cma_fallback(zone, order);
2280 			if (page)
2281 				return page;
2282 		}
2283 	}
2284 
2285 	/*
2286 	 * First try the freelists of the requested migratetype, then try
2287 	 * fallbacks modes with increasing levels of fragmentation risk.
2288 	 *
2289 	 * The fallback logic is expensive and rmqueue_bulk() calls in
2290 	 * a loop with the zone->lock held, meaning the freelists are
2291 	 * not subject to any outside changes. Remember in *mode where
2292 	 * we found pay dirt, to save us the search on the next call.
2293 	 */
2294 	switch (*mode) {
2295 	case RMQUEUE_NORMAL:
2296 		page = __rmqueue_smallest(zone, order, migratetype);
2297 		if (page)
2298 			return page;
2299 		fallthrough;
2300 	case RMQUEUE_CMA:
2301 		if (alloc_flags & ALLOC_CMA) {
2302 			page = __rmqueue_cma_fallback(zone, order);
2303 			if (page) {
2304 				*mode = RMQUEUE_CMA;
2305 				return page;
2306 			}
2307 		}
2308 		fallthrough;
2309 	case RMQUEUE_CLAIM:
2310 		page = __rmqueue_claim(zone, order, migratetype, alloc_flags);
2311 		if (page) {
2312 			/* Replenished preferred freelist, back to normal mode. */
2313 			*mode = RMQUEUE_NORMAL;
2314 			return page;
2315 		}
2316 		fallthrough;
2317 	case RMQUEUE_STEAL:
2318 		if (!(alloc_flags & ALLOC_NOFRAGMENT)) {
2319 			page = __rmqueue_steal(zone, order, migratetype);
2320 			if (page) {
2321 				*mode = RMQUEUE_STEAL;
2322 				return page;
2323 			}
2324 		}
2325 	}
2326 	return NULL;
2327 }
2328 
2329 /*
2330  * Obtain a specified number of elements from the buddy allocator, all under
2331  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2332  * Returns the number of new pages which were placed at *list.
2333  */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2334 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2335 			unsigned long count, struct list_head *list,
2336 			int migratetype, unsigned int alloc_flags)
2337 {
2338 	enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
2339 	unsigned long flags;
2340 	int i;
2341 
2342 	if (unlikely(alloc_flags & ALLOC_TRYLOCK)) {
2343 		if (!spin_trylock_irqsave(&zone->lock, flags))
2344 			return 0;
2345 	} else {
2346 		spin_lock_irqsave(&zone->lock, flags);
2347 	}
2348 	for (i = 0; i < count; ++i) {
2349 		struct page *page = __rmqueue(zone, order, migratetype,
2350 					      alloc_flags, &rmqm);
2351 		if (unlikely(page == NULL))
2352 			break;
2353 
2354 		/*
2355 		 * Split buddy pages returned by expand() are received here in
2356 		 * physical page order. The page is added to the tail of
2357 		 * caller's list. From the callers perspective, the linked list
2358 		 * is ordered by page number under some conditions. This is
2359 		 * useful for IO devices that can forward direction from the
2360 		 * head, thus also in the physical page order. This is useful
2361 		 * for IO devices that can merge IO requests if the physical
2362 		 * pages are ordered properly.
2363 		 */
2364 		list_add_tail(&page->pcp_list, list);
2365 	}
2366 	spin_unlock_irqrestore(&zone->lock, flags);
2367 
2368 	return i;
2369 }
2370 
2371 /*
2372  * Called from the vmstat counter updater to decay the PCP high.
2373  * Return whether there are addition works to do.
2374  */
decay_pcp_high(struct zone * zone,struct per_cpu_pages * pcp)2375 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2376 {
2377 	int high_min, to_drain, batch;
2378 	int todo = 0;
2379 
2380 	high_min = READ_ONCE(pcp->high_min);
2381 	batch = READ_ONCE(pcp->batch);
2382 	/*
2383 	 * Decrease pcp->high periodically to try to free possible
2384 	 * idle PCP pages.  And, avoid to free too many pages to
2385 	 * control latency.  This caps pcp->high decrement too.
2386 	 */
2387 	if (pcp->high > high_min) {
2388 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2389 				 pcp->high - (pcp->high >> 3), high_min);
2390 		if (pcp->high > high_min)
2391 			todo++;
2392 	}
2393 
2394 	to_drain = pcp->count - pcp->high;
2395 	if (to_drain > 0) {
2396 		spin_lock(&pcp->lock);
2397 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2398 		spin_unlock(&pcp->lock);
2399 		todo++;
2400 	}
2401 
2402 	return todo;
2403 }
2404 
2405 #ifdef CONFIG_NUMA
2406 /*
2407  * Called from the vmstat counter updater to drain pagesets of this
2408  * currently executing processor on remote nodes after they have
2409  * expired.
2410  */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2411 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2412 {
2413 	int to_drain, batch;
2414 
2415 	batch = READ_ONCE(pcp->batch);
2416 	to_drain = min(pcp->count, batch);
2417 	if (to_drain > 0) {
2418 		spin_lock(&pcp->lock);
2419 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2420 		spin_unlock(&pcp->lock);
2421 	}
2422 }
2423 #endif
2424 
2425 /*
2426  * Drain pcplists of the indicated processor and zone.
2427  */
drain_pages_zone(unsigned int cpu,struct zone * zone)2428 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2429 {
2430 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2431 	int count;
2432 
2433 	do {
2434 		spin_lock(&pcp->lock);
2435 		count = pcp->count;
2436 		if (count) {
2437 			int to_drain = min(count,
2438 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2439 
2440 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2441 			count -= to_drain;
2442 		}
2443 		spin_unlock(&pcp->lock);
2444 	} while (count);
2445 }
2446 
2447 /*
2448  * Drain pcplists of all zones on the indicated processor.
2449  */
drain_pages(unsigned int cpu)2450 static void drain_pages(unsigned int cpu)
2451 {
2452 	struct zone *zone;
2453 
2454 	for_each_populated_zone(zone) {
2455 		drain_pages_zone(cpu, zone);
2456 	}
2457 }
2458 
2459 /*
2460  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2461  */
drain_local_pages(struct zone * zone)2462 void drain_local_pages(struct zone *zone)
2463 {
2464 	int cpu = smp_processor_id();
2465 
2466 	if (zone)
2467 		drain_pages_zone(cpu, zone);
2468 	else
2469 		drain_pages(cpu);
2470 }
2471 
2472 /*
2473  * The implementation of drain_all_pages(), exposing an extra parameter to
2474  * drain on all cpus.
2475  *
2476  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2477  * not empty. The check for non-emptiness can however race with a free to
2478  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2479  * that need the guarantee that every CPU has drained can disable the
2480  * optimizing racy check.
2481  */
__drain_all_pages(struct zone * zone,bool force_all_cpus)2482 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2483 {
2484 	int cpu;
2485 
2486 	/*
2487 	 * Allocate in the BSS so we won't require allocation in
2488 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2489 	 */
2490 	static cpumask_t cpus_with_pcps;
2491 
2492 	/*
2493 	 * Do not drain if one is already in progress unless it's specific to
2494 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2495 	 * the drain to be complete when the call returns.
2496 	 */
2497 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2498 		if (!zone)
2499 			return;
2500 		mutex_lock(&pcpu_drain_mutex);
2501 	}
2502 
2503 	/*
2504 	 * We don't care about racing with CPU hotplug event
2505 	 * as offline notification will cause the notified
2506 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2507 	 * disables preemption as part of its processing
2508 	 */
2509 	for_each_online_cpu(cpu) {
2510 		struct per_cpu_pages *pcp;
2511 		struct zone *z;
2512 		bool has_pcps = false;
2513 
2514 		if (force_all_cpus) {
2515 			/*
2516 			 * The pcp.count check is racy, some callers need a
2517 			 * guarantee that no cpu is missed.
2518 			 */
2519 			has_pcps = true;
2520 		} else if (zone) {
2521 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2522 			if (pcp->count)
2523 				has_pcps = true;
2524 		} else {
2525 			for_each_populated_zone(z) {
2526 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2527 				if (pcp->count) {
2528 					has_pcps = true;
2529 					break;
2530 				}
2531 			}
2532 		}
2533 
2534 		if (has_pcps)
2535 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2536 		else
2537 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2538 	}
2539 
2540 	for_each_cpu(cpu, &cpus_with_pcps) {
2541 		if (zone)
2542 			drain_pages_zone(cpu, zone);
2543 		else
2544 			drain_pages(cpu);
2545 	}
2546 
2547 	mutex_unlock(&pcpu_drain_mutex);
2548 }
2549 
2550 /*
2551  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2552  *
2553  * When zone parameter is non-NULL, spill just the single zone's pages.
2554  */
drain_all_pages(struct zone * zone)2555 void drain_all_pages(struct zone *zone)
2556 {
2557 	__drain_all_pages(zone, false);
2558 }
2559 
nr_pcp_free(struct per_cpu_pages * pcp,int batch,int high,bool free_high)2560 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2561 {
2562 	int min_nr_free, max_nr_free;
2563 
2564 	/* Free as much as possible if batch freeing high-order pages. */
2565 	if (unlikely(free_high))
2566 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2567 
2568 	/* Check for PCP disabled or boot pageset */
2569 	if (unlikely(high < batch))
2570 		return 1;
2571 
2572 	/* Leave at least pcp->batch pages on the list */
2573 	min_nr_free = batch;
2574 	max_nr_free = high - batch;
2575 
2576 	/*
2577 	 * Increase the batch number to the number of the consecutive
2578 	 * freed pages to reduce zone lock contention.
2579 	 */
2580 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2581 
2582 	return batch;
2583 }
2584 
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,int batch,bool free_high)2585 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2586 		       int batch, bool free_high)
2587 {
2588 	int high, high_min, high_max;
2589 
2590 	high_min = READ_ONCE(pcp->high_min);
2591 	high_max = READ_ONCE(pcp->high_max);
2592 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2593 
2594 	if (unlikely(!high))
2595 		return 0;
2596 
2597 	if (unlikely(free_high)) {
2598 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2599 				high_min);
2600 		return 0;
2601 	}
2602 
2603 	/*
2604 	 * If reclaim is active, limit the number of pages that can be
2605 	 * stored on pcp lists
2606 	 */
2607 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2608 		int free_count = max_t(int, pcp->free_count, batch);
2609 
2610 		pcp->high = max(high - free_count, high_min);
2611 		return min(batch << 2, pcp->high);
2612 	}
2613 
2614 	if (high_min == high_max)
2615 		return high;
2616 
2617 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2618 		int free_count = max_t(int, pcp->free_count, batch);
2619 
2620 		pcp->high = max(high - free_count, high_min);
2621 		high = max(pcp->count, high_min);
2622 	} else if (pcp->count >= high) {
2623 		int need_high = pcp->free_count + batch;
2624 
2625 		/* pcp->high should be large enough to hold batch freed pages */
2626 		if (pcp->high < need_high)
2627 			pcp->high = clamp(need_high, high_min, high_max);
2628 	}
2629 
2630 	return high;
2631 }
2632 
free_frozen_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order,fpi_t fpi_flags)2633 static void free_frozen_page_commit(struct zone *zone,
2634 		struct per_cpu_pages *pcp, struct page *page, int migratetype,
2635 		unsigned int order, fpi_t fpi_flags)
2636 {
2637 	int high, batch;
2638 	int pindex;
2639 	bool free_high = false;
2640 
2641 	/*
2642 	 * On freeing, reduce the number of pages that are batch allocated.
2643 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2644 	 * allocations.
2645 	 */
2646 	pcp->alloc_factor >>= 1;
2647 	__count_vm_events(PGFREE, 1 << order);
2648 	pindex = order_to_pindex(migratetype, order);
2649 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2650 	pcp->count += 1 << order;
2651 
2652 	batch = READ_ONCE(pcp->batch);
2653 	/*
2654 	 * As high-order pages other than THP's stored on PCP can contribute
2655 	 * to fragmentation, limit the number stored when PCP is heavily
2656 	 * freeing without allocation. The remainder after bulk freeing
2657 	 * stops will be drained from vmstat refresh context.
2658 	 */
2659 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2660 		free_high = (pcp->free_count >= (batch + pcp->high_min / 2) &&
2661 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2662 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2663 			      pcp->count >= batch));
2664 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2665 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2666 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2667 	}
2668 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2669 		pcp->free_count += (1 << order);
2670 
2671 	if (unlikely(fpi_flags & FPI_TRYLOCK)) {
2672 		/*
2673 		 * Do not attempt to take a zone lock. Let pcp->count get
2674 		 * over high mark temporarily.
2675 		 */
2676 		return;
2677 	}
2678 	high = nr_pcp_high(pcp, zone, batch, free_high);
2679 	if (pcp->count >= high) {
2680 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2681 				   pcp, pindex);
2682 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2683 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2684 				      ZONE_MOVABLE, 0))
2685 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2686 	}
2687 }
2688 
2689 /*
2690  * Free a pcp page
2691  */
__free_frozen_pages(struct page * page,unsigned int order,fpi_t fpi_flags)2692 static void __free_frozen_pages(struct page *page, unsigned int order,
2693 				fpi_t fpi_flags)
2694 {
2695 	unsigned long __maybe_unused UP_flags;
2696 	struct per_cpu_pages *pcp;
2697 	struct zone *zone;
2698 	unsigned long pfn = page_to_pfn(page);
2699 	int migratetype;
2700 
2701 	if (!pcp_allowed_order(order)) {
2702 		__free_pages_ok(page, order, fpi_flags);
2703 		return;
2704 	}
2705 
2706 	if (!free_pages_prepare(page, order))
2707 		return;
2708 
2709 	/*
2710 	 * We only track unmovable, reclaimable and movable on pcp lists.
2711 	 * Place ISOLATE pages on the isolated list because they are being
2712 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2713 	 * get those areas back if necessary. Otherwise, we may have to free
2714 	 * excessively into the page allocator
2715 	 */
2716 	zone = page_zone(page);
2717 	migratetype = get_pfnblock_migratetype(page, pfn);
2718 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2719 		if (unlikely(is_migrate_isolate(migratetype))) {
2720 			free_one_page(zone, page, pfn, order, fpi_flags);
2721 			return;
2722 		}
2723 		migratetype = MIGRATE_MOVABLE;
2724 	}
2725 
2726 	if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT)
2727 		     && (in_nmi() || in_hardirq()))) {
2728 		add_page_to_zone_llist(zone, page, order);
2729 		return;
2730 	}
2731 	pcp_trylock_prepare(UP_flags);
2732 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2733 	if (pcp) {
2734 		free_frozen_page_commit(zone, pcp, page, migratetype, order, fpi_flags);
2735 		pcp_spin_unlock(pcp);
2736 	} else {
2737 		free_one_page(zone, page, pfn, order, fpi_flags);
2738 	}
2739 	pcp_trylock_finish(UP_flags);
2740 }
2741 
free_frozen_pages(struct page * page,unsigned int order)2742 void free_frozen_pages(struct page *page, unsigned int order)
2743 {
2744 	__free_frozen_pages(page, order, FPI_NONE);
2745 }
2746 
2747 /*
2748  * Free a batch of folios
2749  */
free_unref_folios(struct folio_batch * folios)2750 void free_unref_folios(struct folio_batch *folios)
2751 {
2752 	unsigned long __maybe_unused UP_flags;
2753 	struct per_cpu_pages *pcp = NULL;
2754 	struct zone *locked_zone = NULL;
2755 	int i, j;
2756 
2757 	/* Prepare folios for freeing */
2758 	for (i = 0, j = 0; i < folios->nr; i++) {
2759 		struct folio *folio = folios->folios[i];
2760 		unsigned long pfn = folio_pfn(folio);
2761 		unsigned int order = folio_order(folio);
2762 
2763 		if (!free_pages_prepare(&folio->page, order))
2764 			continue;
2765 		/*
2766 		 * Free orders not handled on the PCP directly to the
2767 		 * allocator.
2768 		 */
2769 		if (!pcp_allowed_order(order)) {
2770 			free_one_page(folio_zone(folio), &folio->page,
2771 				      pfn, order, FPI_NONE);
2772 			continue;
2773 		}
2774 		folio->private = (void *)(unsigned long)order;
2775 		if (j != i)
2776 			folios->folios[j] = folio;
2777 		j++;
2778 	}
2779 	folios->nr = j;
2780 
2781 	for (i = 0; i < folios->nr; i++) {
2782 		struct folio *folio = folios->folios[i];
2783 		struct zone *zone = folio_zone(folio);
2784 		unsigned long pfn = folio_pfn(folio);
2785 		unsigned int order = (unsigned long)folio->private;
2786 		int migratetype;
2787 
2788 		folio->private = NULL;
2789 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2790 
2791 		/* Different zone requires a different pcp lock */
2792 		if (zone != locked_zone ||
2793 		    is_migrate_isolate(migratetype)) {
2794 			if (pcp) {
2795 				pcp_spin_unlock(pcp);
2796 				pcp_trylock_finish(UP_flags);
2797 				locked_zone = NULL;
2798 				pcp = NULL;
2799 			}
2800 
2801 			/*
2802 			 * Free isolated pages directly to the
2803 			 * allocator, see comment in free_frozen_pages.
2804 			 */
2805 			if (is_migrate_isolate(migratetype)) {
2806 				free_one_page(zone, &folio->page, pfn,
2807 					      order, FPI_NONE);
2808 				continue;
2809 			}
2810 
2811 			/*
2812 			 * trylock is necessary as folios may be getting freed
2813 			 * from IRQ or SoftIRQ context after an IO completion.
2814 			 */
2815 			pcp_trylock_prepare(UP_flags);
2816 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2817 			if (unlikely(!pcp)) {
2818 				pcp_trylock_finish(UP_flags);
2819 				free_one_page(zone, &folio->page, pfn,
2820 					      order, FPI_NONE);
2821 				continue;
2822 			}
2823 			locked_zone = zone;
2824 		}
2825 
2826 		/*
2827 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2828 		 * to the MIGRATE_MOVABLE pcp list.
2829 		 */
2830 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2831 			migratetype = MIGRATE_MOVABLE;
2832 
2833 		trace_mm_page_free_batched(&folio->page);
2834 		free_frozen_page_commit(zone, pcp, &folio->page, migratetype,
2835 					order, FPI_NONE);
2836 	}
2837 
2838 	if (pcp) {
2839 		pcp_spin_unlock(pcp);
2840 		pcp_trylock_finish(UP_flags);
2841 	}
2842 	folio_batch_reinit(folios);
2843 }
2844 
2845 /*
2846  * split_page takes a non-compound higher-order page, and splits it into
2847  * n (1<<order) sub-pages: page[0..n]
2848  * Each sub-page must be freed individually.
2849  *
2850  * Note: this is probably too low level an operation for use in drivers.
2851  * Please consult with lkml before using this in your driver.
2852  */
split_page(struct page * page,unsigned int order)2853 void split_page(struct page *page, unsigned int order)
2854 {
2855 	int i;
2856 
2857 	VM_BUG_ON_PAGE(PageCompound(page), page);
2858 	VM_BUG_ON_PAGE(!page_count(page), page);
2859 
2860 	for (i = 1; i < (1 << order); i++)
2861 		set_page_refcounted(page + i);
2862 	split_page_owner(page, order, 0);
2863 	pgalloc_tag_split(page_folio(page), order, 0);
2864 	split_page_memcg(page, order);
2865 }
2866 EXPORT_SYMBOL_GPL(split_page);
2867 
__isolate_free_page(struct page * page,unsigned int order)2868 int __isolate_free_page(struct page *page, unsigned int order)
2869 {
2870 	struct zone *zone = page_zone(page);
2871 	int mt = get_pageblock_migratetype(page);
2872 
2873 	if (!is_migrate_isolate(mt)) {
2874 		unsigned long watermark;
2875 		/*
2876 		 * Obey watermarks as if the page was being allocated. We can
2877 		 * emulate a high-order watermark check with a raised order-0
2878 		 * watermark, because we already know our high-order page
2879 		 * exists.
2880 		 */
2881 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2882 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2883 			return 0;
2884 	}
2885 
2886 	del_page_from_free_list(page, zone, order, mt);
2887 
2888 	/*
2889 	 * Set the pageblock if the isolated page is at least half of a
2890 	 * pageblock
2891 	 */
2892 	if (order >= pageblock_order - 1) {
2893 		struct page *endpage = page + (1 << order) - 1;
2894 		for (; page < endpage; page += pageblock_nr_pages) {
2895 			int mt = get_pageblock_migratetype(page);
2896 			/*
2897 			 * Only change normal pageblocks (i.e., they can merge
2898 			 * with others)
2899 			 */
2900 			if (migratetype_is_mergeable(mt))
2901 				move_freepages_block(zone, page, mt,
2902 						     MIGRATE_MOVABLE);
2903 		}
2904 	}
2905 
2906 	return 1UL << order;
2907 }
2908 
2909 /**
2910  * __putback_isolated_page - Return a now-isolated page back where we got it
2911  * @page: Page that was isolated
2912  * @order: Order of the isolated page
2913  * @mt: The page's pageblock's migratetype
2914  *
2915  * This function is meant to return a page pulled from the free lists via
2916  * __isolate_free_page back to the free lists they were pulled from.
2917  */
__putback_isolated_page(struct page * page,unsigned int order,int mt)2918 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2919 {
2920 	struct zone *zone = page_zone(page);
2921 
2922 	/* zone lock should be held when this function is called */
2923 	lockdep_assert_held(&zone->lock);
2924 
2925 	/* Return isolated page to tail of freelist. */
2926 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2927 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2928 }
2929 
2930 /*
2931  * Update NUMA hit/miss statistics
2932  */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)2933 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2934 				   long nr_account)
2935 {
2936 #ifdef CONFIG_NUMA
2937 	enum numa_stat_item local_stat = NUMA_LOCAL;
2938 
2939 	/* skip numa counters update if numa stats is disabled */
2940 	if (!static_branch_likely(&vm_numa_stat_key))
2941 		return;
2942 
2943 	if (zone_to_nid(z) != numa_node_id())
2944 		local_stat = NUMA_OTHER;
2945 
2946 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2947 		__count_numa_events(z, NUMA_HIT, nr_account);
2948 	else {
2949 		__count_numa_events(z, NUMA_MISS, nr_account);
2950 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2951 	}
2952 	__count_numa_events(z, local_stat, nr_account);
2953 #endif
2954 }
2955 
2956 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)2957 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2958 			   unsigned int order, unsigned int alloc_flags,
2959 			   int migratetype)
2960 {
2961 	struct page *page;
2962 	unsigned long flags;
2963 
2964 	do {
2965 		page = NULL;
2966 		if (unlikely(alloc_flags & ALLOC_TRYLOCK)) {
2967 			if (!spin_trylock_irqsave(&zone->lock, flags))
2968 				return NULL;
2969 		} else {
2970 			spin_lock_irqsave(&zone->lock, flags);
2971 		}
2972 		if (alloc_flags & ALLOC_HIGHATOMIC)
2973 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2974 		if (!page) {
2975 			enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
2976 
2977 			page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm);
2978 
2979 			/*
2980 			 * If the allocation fails, allow OOM handling and
2981 			 * order-0 (atomic) allocs access to HIGHATOMIC
2982 			 * reserves as failing now is worse than failing a
2983 			 * high-order atomic allocation in the future.
2984 			 */
2985 			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2986 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2987 
2988 			if (!page) {
2989 				spin_unlock_irqrestore(&zone->lock, flags);
2990 				return NULL;
2991 			}
2992 		}
2993 		spin_unlock_irqrestore(&zone->lock, flags);
2994 	} while (check_new_pages(page, order));
2995 
2996 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2997 	zone_statistics(preferred_zone, zone, 1);
2998 
2999 	return page;
3000 }
3001 
nr_pcp_alloc(struct per_cpu_pages * pcp,struct zone * zone,int order)3002 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
3003 {
3004 	int high, base_batch, batch, max_nr_alloc;
3005 	int high_max, high_min;
3006 
3007 	base_batch = READ_ONCE(pcp->batch);
3008 	high_min = READ_ONCE(pcp->high_min);
3009 	high_max = READ_ONCE(pcp->high_max);
3010 	high = pcp->high = clamp(pcp->high, high_min, high_max);
3011 
3012 	/* Check for PCP disabled or boot pageset */
3013 	if (unlikely(high < base_batch))
3014 		return 1;
3015 
3016 	if (order)
3017 		batch = base_batch;
3018 	else
3019 		batch = (base_batch << pcp->alloc_factor);
3020 
3021 	/*
3022 	 * If we had larger pcp->high, we could avoid to allocate from
3023 	 * zone.
3024 	 */
3025 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
3026 		high = pcp->high = min(high + batch, high_max);
3027 
3028 	if (!order) {
3029 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
3030 		/*
3031 		 * Double the number of pages allocated each time there is
3032 		 * subsequent allocation of order-0 pages without any freeing.
3033 		 */
3034 		if (batch <= max_nr_alloc &&
3035 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
3036 			pcp->alloc_factor++;
3037 		batch = min(batch, max_nr_alloc);
3038 	}
3039 
3040 	/*
3041 	 * Scale batch relative to order if batch implies free pages
3042 	 * can be stored on the PCP. Batch can be 1 for small zones or
3043 	 * for boot pagesets which should never store free pages as
3044 	 * the pages may belong to arbitrary zones.
3045 	 */
3046 	if (batch > 1)
3047 		batch = max(batch >> order, 2);
3048 
3049 	return batch;
3050 }
3051 
3052 /* Remove page from the per-cpu list, caller must protect the list */
3053 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)3054 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3055 			int migratetype,
3056 			unsigned int alloc_flags,
3057 			struct per_cpu_pages *pcp,
3058 			struct list_head *list)
3059 {
3060 	struct page *page;
3061 
3062 	do {
3063 		if (list_empty(list)) {
3064 			int batch = nr_pcp_alloc(pcp, zone, order);
3065 			int alloced;
3066 
3067 			alloced = rmqueue_bulk(zone, order,
3068 					batch, list,
3069 					migratetype, alloc_flags);
3070 
3071 			pcp->count += alloced << order;
3072 			if (unlikely(list_empty(list)))
3073 				return NULL;
3074 		}
3075 
3076 		page = list_first_entry(list, struct page, pcp_list);
3077 		list_del(&page->pcp_list);
3078 		pcp->count -= 1 << order;
3079 	} while (check_new_pages(page, order));
3080 
3081 	return page;
3082 }
3083 
3084 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)3085 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3086 			struct zone *zone, unsigned int order,
3087 			int migratetype, unsigned int alloc_flags)
3088 {
3089 	struct per_cpu_pages *pcp;
3090 	struct list_head *list;
3091 	struct page *page;
3092 	unsigned long __maybe_unused UP_flags;
3093 
3094 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3095 	pcp_trylock_prepare(UP_flags);
3096 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3097 	if (!pcp) {
3098 		pcp_trylock_finish(UP_flags);
3099 		return NULL;
3100 	}
3101 
3102 	/*
3103 	 * On allocation, reduce the number of pages that are batch freed.
3104 	 * See nr_pcp_free() where free_factor is increased for subsequent
3105 	 * frees.
3106 	 */
3107 	pcp->free_count >>= 1;
3108 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3109 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3110 	pcp_spin_unlock(pcp);
3111 	pcp_trylock_finish(UP_flags);
3112 	if (page) {
3113 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3114 		zone_statistics(preferred_zone, zone, 1);
3115 	}
3116 	return page;
3117 }
3118 
3119 /*
3120  * Allocate a page from the given zone.
3121  * Use pcplists for THP or "cheap" high-order allocations.
3122  */
3123 
3124 /*
3125  * Do not instrument rmqueue() with KMSAN. This function may call
3126  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3127  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3128  * may call rmqueue() again, which will result in a deadlock.
3129  */
3130 __no_sanitize_memory
3131 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3132 struct page *rmqueue(struct zone *preferred_zone,
3133 			struct zone *zone, unsigned int order,
3134 			gfp_t gfp_flags, unsigned int alloc_flags,
3135 			int migratetype)
3136 {
3137 	struct page *page;
3138 
3139 	if (likely(pcp_allowed_order(order))) {
3140 		page = rmqueue_pcplist(preferred_zone, zone, order,
3141 				       migratetype, alloc_flags);
3142 		if (likely(page))
3143 			goto out;
3144 	}
3145 
3146 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3147 							migratetype);
3148 
3149 out:
3150 	/* Separate test+clear to avoid unnecessary atomics */
3151 	if ((alloc_flags & ALLOC_KSWAPD) &&
3152 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3153 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3154 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3155 	}
3156 
3157 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3158 	return page;
3159 }
3160 
3161 /*
3162  * Reserve the pageblock(s) surrounding an allocation request for
3163  * exclusive use of high-order atomic allocations if there are no
3164  * empty page blocks that contain a page with a suitable order
3165  */
reserve_highatomic_pageblock(struct page * page,int order,struct zone * zone)3166 static void reserve_highatomic_pageblock(struct page *page, int order,
3167 					 struct zone *zone)
3168 {
3169 	int mt;
3170 	unsigned long max_managed, flags;
3171 
3172 	/*
3173 	 * The number reserved as: minimum is 1 pageblock, maximum is
3174 	 * roughly 1% of a zone. But if 1% of a zone falls below a
3175 	 * pageblock size, then don't reserve any pageblocks.
3176 	 * Check is race-prone but harmless.
3177 	 */
3178 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
3179 		return;
3180 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
3181 	if (zone->nr_reserved_highatomic >= max_managed)
3182 		return;
3183 
3184 	spin_lock_irqsave(&zone->lock, flags);
3185 
3186 	/* Recheck the nr_reserved_highatomic limit under the lock */
3187 	if (zone->nr_reserved_highatomic >= max_managed)
3188 		goto out_unlock;
3189 
3190 	/* Yoink! */
3191 	mt = get_pageblock_migratetype(page);
3192 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
3193 	if (!migratetype_is_mergeable(mt))
3194 		goto out_unlock;
3195 
3196 	if (order < pageblock_order) {
3197 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
3198 			goto out_unlock;
3199 		zone->nr_reserved_highatomic += pageblock_nr_pages;
3200 	} else {
3201 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
3202 		zone->nr_reserved_highatomic += 1 << order;
3203 	}
3204 
3205 out_unlock:
3206 	spin_unlock_irqrestore(&zone->lock, flags);
3207 }
3208 
3209 /*
3210  * Used when an allocation is about to fail under memory pressure. This
3211  * potentially hurts the reliability of high-order allocations when under
3212  * intense memory pressure but failed atomic allocations should be easier
3213  * to recover from than an OOM.
3214  *
3215  * If @force is true, try to unreserve pageblocks even though highatomic
3216  * pageblock is exhausted.
3217  */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)3218 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
3219 						bool force)
3220 {
3221 	struct zonelist *zonelist = ac->zonelist;
3222 	unsigned long flags;
3223 	struct zoneref *z;
3224 	struct zone *zone;
3225 	struct page *page;
3226 	int order;
3227 	int ret;
3228 
3229 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
3230 								ac->nodemask) {
3231 		/*
3232 		 * Preserve at least one pageblock unless memory pressure
3233 		 * is really high.
3234 		 */
3235 		if (!force && zone->nr_reserved_highatomic <=
3236 					pageblock_nr_pages)
3237 			continue;
3238 
3239 		spin_lock_irqsave(&zone->lock, flags);
3240 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
3241 			struct free_area *area = &(zone->free_area[order]);
3242 			unsigned long size;
3243 
3244 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
3245 			if (!page)
3246 				continue;
3247 
3248 			size = max(pageblock_nr_pages, 1UL << order);
3249 			/*
3250 			 * It should never happen but changes to
3251 			 * locking could inadvertently allow a per-cpu
3252 			 * drain to add pages to MIGRATE_HIGHATOMIC
3253 			 * while unreserving so be safe and watch for
3254 			 * underflows.
3255 			 */
3256 			if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic))
3257 				size = zone->nr_reserved_highatomic;
3258 			zone->nr_reserved_highatomic -= size;
3259 
3260 			/*
3261 			 * Convert to ac->migratetype and avoid the normal
3262 			 * pageblock stealing heuristics. Minimally, the caller
3263 			 * is doing the work and needs the pages. More
3264 			 * importantly, if the block was always converted to
3265 			 * MIGRATE_UNMOVABLE or another type then the number
3266 			 * of pageblocks that cannot be completely freed
3267 			 * may increase.
3268 			 */
3269 			if (order < pageblock_order)
3270 				ret = move_freepages_block(zone, page,
3271 							   MIGRATE_HIGHATOMIC,
3272 							   ac->migratetype);
3273 			else {
3274 				move_to_free_list(page, zone, order,
3275 						  MIGRATE_HIGHATOMIC,
3276 						  ac->migratetype);
3277 				change_pageblock_range(page, order,
3278 						       ac->migratetype);
3279 				ret = 1;
3280 			}
3281 			/*
3282 			 * Reserving the block(s) already succeeded,
3283 			 * so this should not fail on zone boundaries.
3284 			 */
3285 			WARN_ON_ONCE(ret == -1);
3286 			if (ret > 0) {
3287 				spin_unlock_irqrestore(&zone->lock, flags);
3288 				return ret;
3289 			}
3290 		}
3291 		spin_unlock_irqrestore(&zone->lock, flags);
3292 	}
3293 
3294 	return false;
3295 }
3296 
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)3297 static inline long __zone_watermark_unusable_free(struct zone *z,
3298 				unsigned int order, unsigned int alloc_flags)
3299 {
3300 	long unusable_free = (1 << order) - 1;
3301 
3302 	/*
3303 	 * If the caller does not have rights to reserves below the min
3304 	 * watermark then subtract the free pages reserved for highatomic.
3305 	 */
3306 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3307 		unusable_free += READ_ONCE(z->nr_free_highatomic);
3308 
3309 #ifdef CONFIG_CMA
3310 	/* If allocation can't use CMA areas don't use free CMA pages */
3311 	if (!(alloc_flags & ALLOC_CMA))
3312 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3313 #endif
3314 
3315 	return unusable_free;
3316 }
3317 
3318 /*
3319  * Return true if free base pages are above 'mark'. For high-order checks it
3320  * will return true of the order-0 watermark is reached and there is at least
3321  * one free page of a suitable size. Checking now avoids taking the zone lock
3322  * to check in the allocation paths if no pages are free.
3323  */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)3324 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3325 			 int highest_zoneidx, unsigned int alloc_flags,
3326 			 long free_pages)
3327 {
3328 	long min = mark;
3329 	int o;
3330 
3331 	/* free_pages may go negative - that's OK */
3332 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3333 
3334 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3335 		/*
3336 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3337 		 * as OOM.
3338 		 */
3339 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3340 			min -= min / 2;
3341 
3342 			/*
3343 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3344 			 * access more reserves than just __GFP_HIGH. Other
3345 			 * non-blocking allocations requests such as GFP_NOWAIT
3346 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3347 			 * access to the min reserve.
3348 			 */
3349 			if (alloc_flags & ALLOC_NON_BLOCK)
3350 				min -= min / 4;
3351 		}
3352 
3353 		/*
3354 		 * OOM victims can try even harder than the normal reserve
3355 		 * users on the grounds that it's definitely going to be in
3356 		 * the exit path shortly and free memory. Any allocation it
3357 		 * makes during the free path will be small and short-lived.
3358 		 */
3359 		if (alloc_flags & ALLOC_OOM)
3360 			min -= min / 2;
3361 	}
3362 
3363 	/*
3364 	 * Check watermarks for an order-0 allocation request. If these
3365 	 * are not met, then a high-order request also cannot go ahead
3366 	 * even if a suitable page happened to be free.
3367 	 */
3368 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3369 		return false;
3370 
3371 	/* If this is an order-0 request then the watermark is fine */
3372 	if (!order)
3373 		return true;
3374 
3375 	/* For a high-order request, check at least one suitable page is free */
3376 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3377 		struct free_area *area = &z->free_area[o];
3378 		int mt;
3379 
3380 		if (!area->nr_free)
3381 			continue;
3382 
3383 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3384 			if (!free_area_empty(area, mt))
3385 				return true;
3386 		}
3387 
3388 #ifdef CONFIG_CMA
3389 		if ((alloc_flags & ALLOC_CMA) &&
3390 		    !free_area_empty(area, MIGRATE_CMA)) {
3391 			return true;
3392 		}
3393 #endif
3394 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3395 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3396 			return true;
3397 		}
3398 	}
3399 	return false;
3400 }
3401 
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)3402 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3403 		      int highest_zoneidx, unsigned int alloc_flags)
3404 {
3405 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3406 					zone_page_state(z, NR_FREE_PAGES));
3407 }
3408 
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)3409 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3410 				unsigned long mark, int highest_zoneidx,
3411 				unsigned int alloc_flags, gfp_t gfp_mask)
3412 {
3413 	long free_pages;
3414 
3415 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3416 
3417 	/*
3418 	 * Fast check for order-0 only. If this fails then the reserves
3419 	 * need to be calculated.
3420 	 */
3421 	if (!order) {
3422 		long usable_free;
3423 		long reserved;
3424 
3425 		usable_free = free_pages;
3426 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3427 
3428 		/* reserved may over estimate high-atomic reserves. */
3429 		usable_free -= min(usable_free, reserved);
3430 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3431 			return true;
3432 	}
3433 
3434 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3435 					free_pages))
3436 		return true;
3437 
3438 	/*
3439 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3440 	 * when checking the min watermark. The min watermark is the
3441 	 * point where boosting is ignored so that kswapd is woken up
3442 	 * when below the low watermark.
3443 	 */
3444 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3445 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3446 		mark = z->_watermark[WMARK_MIN];
3447 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3448 					alloc_flags, free_pages);
3449 	}
3450 
3451 	return false;
3452 }
3453 
3454 #ifdef CONFIG_NUMA
3455 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3456 
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3457 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3458 {
3459 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3460 				node_reclaim_distance;
3461 }
3462 #else	/* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3463 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3464 {
3465 	return true;
3466 }
3467 #endif	/* CONFIG_NUMA */
3468 
3469 /*
3470  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3471  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3472  * premature use of a lower zone may cause lowmem pressure problems that
3473  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3474  * probably too small. It only makes sense to spread allocations to avoid
3475  * fragmentation between the Normal and DMA32 zones.
3476  */
3477 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3478 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3479 {
3480 	unsigned int alloc_flags;
3481 
3482 	/*
3483 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3484 	 * to save a branch.
3485 	 */
3486 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3487 
3488 	if (defrag_mode) {
3489 		alloc_flags |= ALLOC_NOFRAGMENT;
3490 		return alloc_flags;
3491 	}
3492 
3493 #ifdef CONFIG_ZONE_DMA32
3494 	if (!zone)
3495 		return alloc_flags;
3496 
3497 	if (zone_idx(zone) != ZONE_NORMAL)
3498 		return alloc_flags;
3499 
3500 	/*
3501 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3502 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3503 	 * on UMA that if Normal is populated then so is DMA32.
3504 	 */
3505 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3506 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3507 		return alloc_flags;
3508 
3509 	alloc_flags |= ALLOC_NOFRAGMENT;
3510 #endif /* CONFIG_ZONE_DMA32 */
3511 	return alloc_flags;
3512 }
3513 
3514 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)3515 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3516 						  unsigned int alloc_flags)
3517 {
3518 #ifdef CONFIG_CMA
3519 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3520 		alloc_flags |= ALLOC_CMA;
3521 #endif
3522 	return alloc_flags;
3523 }
3524 
3525 /*
3526  * get_page_from_freelist goes through the zonelist trying to allocate
3527  * a page.
3528  */
3529 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3530 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3531 						const struct alloc_context *ac)
3532 {
3533 	struct zoneref *z;
3534 	struct zone *zone;
3535 	struct pglist_data *last_pgdat = NULL;
3536 	bool last_pgdat_dirty_ok = false;
3537 	bool no_fallback;
3538 
3539 retry:
3540 	/*
3541 	 * Scan zonelist, looking for a zone with enough free.
3542 	 * See also cpuset_current_node_allowed() comment in kernel/cgroup/cpuset.c.
3543 	 */
3544 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3545 	z = ac->preferred_zoneref;
3546 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3547 					ac->nodemask) {
3548 		struct page *page;
3549 		unsigned long mark;
3550 
3551 		if (cpusets_enabled() &&
3552 			(alloc_flags & ALLOC_CPUSET) &&
3553 			!__cpuset_zone_allowed(zone, gfp_mask))
3554 				continue;
3555 		/*
3556 		 * When allocating a page cache page for writing, we
3557 		 * want to get it from a node that is within its dirty
3558 		 * limit, such that no single node holds more than its
3559 		 * proportional share of globally allowed dirty pages.
3560 		 * The dirty limits take into account the node's
3561 		 * lowmem reserves and high watermark so that kswapd
3562 		 * should be able to balance it without having to
3563 		 * write pages from its LRU list.
3564 		 *
3565 		 * XXX: For now, allow allocations to potentially
3566 		 * exceed the per-node dirty limit in the slowpath
3567 		 * (spread_dirty_pages unset) before going into reclaim,
3568 		 * which is important when on a NUMA setup the allowed
3569 		 * nodes are together not big enough to reach the
3570 		 * global limit.  The proper fix for these situations
3571 		 * will require awareness of nodes in the
3572 		 * dirty-throttling and the flusher threads.
3573 		 */
3574 		if (ac->spread_dirty_pages) {
3575 			if (last_pgdat != zone->zone_pgdat) {
3576 				last_pgdat = zone->zone_pgdat;
3577 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3578 			}
3579 
3580 			if (!last_pgdat_dirty_ok)
3581 				continue;
3582 		}
3583 
3584 		if (no_fallback && !defrag_mode && nr_online_nodes > 1 &&
3585 		    zone != zonelist_zone(ac->preferred_zoneref)) {
3586 			int local_nid;
3587 
3588 			/*
3589 			 * If moving to a remote node, retry but allow
3590 			 * fragmenting fallbacks. Locality is more important
3591 			 * than fragmentation avoidance.
3592 			 */
3593 			local_nid = zonelist_node_idx(ac->preferred_zoneref);
3594 			if (zone_to_nid(zone) != local_nid) {
3595 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3596 				goto retry;
3597 			}
3598 		}
3599 
3600 		cond_accept_memory(zone, order, alloc_flags);
3601 
3602 		/*
3603 		 * Detect whether the number of free pages is below high
3604 		 * watermark.  If so, we will decrease pcp->high and free
3605 		 * PCP pages in free path to reduce the possibility of
3606 		 * premature page reclaiming.  Detection is done here to
3607 		 * avoid to do that in hotter free path.
3608 		 */
3609 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3610 			goto check_alloc_wmark;
3611 
3612 		mark = high_wmark_pages(zone);
3613 		if (zone_watermark_fast(zone, order, mark,
3614 					ac->highest_zoneidx, alloc_flags,
3615 					gfp_mask))
3616 			goto try_this_zone;
3617 		else
3618 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3619 
3620 check_alloc_wmark:
3621 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3622 		if (!zone_watermark_fast(zone, order, mark,
3623 				       ac->highest_zoneidx, alloc_flags,
3624 				       gfp_mask)) {
3625 			int ret;
3626 
3627 			if (cond_accept_memory(zone, order, alloc_flags))
3628 				goto try_this_zone;
3629 
3630 			/*
3631 			 * Watermark failed for this zone, but see if we can
3632 			 * grow this zone if it contains deferred pages.
3633 			 */
3634 			if (deferred_pages_enabled()) {
3635 				if (_deferred_grow_zone(zone, order))
3636 					goto try_this_zone;
3637 			}
3638 			/* Checked here to keep the fast path fast */
3639 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3640 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3641 				goto try_this_zone;
3642 
3643 			if (!node_reclaim_enabled() ||
3644 			    !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3645 				continue;
3646 
3647 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3648 			switch (ret) {
3649 			case NODE_RECLAIM_NOSCAN:
3650 				/* did not scan */
3651 				continue;
3652 			case NODE_RECLAIM_FULL:
3653 				/* scanned but unreclaimable */
3654 				continue;
3655 			default:
3656 				/* did we reclaim enough */
3657 				if (zone_watermark_ok(zone, order, mark,
3658 					ac->highest_zoneidx, alloc_flags))
3659 					goto try_this_zone;
3660 
3661 				continue;
3662 			}
3663 		}
3664 
3665 try_this_zone:
3666 		page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3667 				gfp_mask, alloc_flags, ac->migratetype);
3668 		if (page) {
3669 			prep_new_page(page, order, gfp_mask, alloc_flags);
3670 
3671 			/*
3672 			 * If this is a high-order atomic allocation then check
3673 			 * if the pageblock should be reserved for the future
3674 			 */
3675 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3676 				reserve_highatomic_pageblock(page, order, zone);
3677 
3678 			return page;
3679 		} else {
3680 			if (cond_accept_memory(zone, order, alloc_flags))
3681 				goto try_this_zone;
3682 
3683 			/* Try again if zone has deferred pages */
3684 			if (deferred_pages_enabled()) {
3685 				if (_deferred_grow_zone(zone, order))
3686 					goto try_this_zone;
3687 			}
3688 		}
3689 	}
3690 
3691 	/*
3692 	 * It's possible on a UMA machine to get through all zones that are
3693 	 * fragmented. If avoiding fragmentation, reset and try again.
3694 	 */
3695 	if (no_fallback && !defrag_mode) {
3696 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3697 		goto retry;
3698 	}
3699 
3700 	return NULL;
3701 }
3702 
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3703 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3704 {
3705 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3706 
3707 	/*
3708 	 * This documents exceptions given to allocations in certain
3709 	 * contexts that are allowed to allocate outside current's set
3710 	 * of allowed nodes.
3711 	 */
3712 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3713 		if (tsk_is_oom_victim(current) ||
3714 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3715 			filter &= ~SHOW_MEM_FILTER_NODES;
3716 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3717 		filter &= ~SHOW_MEM_FILTER_NODES;
3718 
3719 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3720 }
3721 
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3722 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3723 {
3724 	struct va_format vaf;
3725 	va_list args;
3726 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3727 
3728 	if ((gfp_mask & __GFP_NOWARN) ||
3729 	     !__ratelimit(&nopage_rs) ||
3730 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3731 		return;
3732 
3733 	va_start(args, fmt);
3734 	vaf.fmt = fmt;
3735 	vaf.va = &args;
3736 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3737 			current->comm, &vaf, gfp_mask, &gfp_mask,
3738 			nodemask_pr_args(nodemask));
3739 	va_end(args);
3740 
3741 	cpuset_print_current_mems_allowed();
3742 	pr_cont("\n");
3743 	dump_stack();
3744 	warn_alloc_show_mem(gfp_mask, nodemask);
3745 }
3746 
3747 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3748 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3749 			      unsigned int alloc_flags,
3750 			      const struct alloc_context *ac)
3751 {
3752 	struct page *page;
3753 
3754 	page = get_page_from_freelist(gfp_mask, order,
3755 			alloc_flags|ALLOC_CPUSET, ac);
3756 	/*
3757 	 * fallback to ignore cpuset restriction if our nodes
3758 	 * are depleted
3759 	 */
3760 	if (!page)
3761 		page = get_page_from_freelist(gfp_mask, order,
3762 				alloc_flags, ac);
3763 	return page;
3764 }
3765 
3766 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3767 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3768 	const struct alloc_context *ac, unsigned long *did_some_progress)
3769 {
3770 	struct oom_control oc = {
3771 		.zonelist = ac->zonelist,
3772 		.nodemask = ac->nodemask,
3773 		.memcg = NULL,
3774 		.gfp_mask = gfp_mask,
3775 		.order = order,
3776 	};
3777 	struct page *page;
3778 
3779 	*did_some_progress = 0;
3780 
3781 	/*
3782 	 * Acquire the oom lock.  If that fails, somebody else is
3783 	 * making progress for us.
3784 	 */
3785 	if (!mutex_trylock(&oom_lock)) {
3786 		*did_some_progress = 1;
3787 		schedule_timeout_uninterruptible(1);
3788 		return NULL;
3789 	}
3790 
3791 	/*
3792 	 * Go through the zonelist yet one more time, keep very high watermark
3793 	 * here, this is only to catch a parallel oom killing, we must fail if
3794 	 * we're still under heavy pressure. But make sure that this reclaim
3795 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3796 	 * allocation which will never fail due to oom_lock already held.
3797 	 */
3798 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3799 				      ~__GFP_DIRECT_RECLAIM, order,
3800 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3801 	if (page)
3802 		goto out;
3803 
3804 	/* Coredumps can quickly deplete all memory reserves */
3805 	if (current->flags & PF_DUMPCORE)
3806 		goto out;
3807 	/* The OOM killer will not help higher order allocs */
3808 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3809 		goto out;
3810 	/*
3811 	 * We have already exhausted all our reclaim opportunities without any
3812 	 * success so it is time to admit defeat. We will skip the OOM killer
3813 	 * because it is very likely that the caller has a more reasonable
3814 	 * fallback than shooting a random task.
3815 	 *
3816 	 * The OOM killer may not free memory on a specific node.
3817 	 */
3818 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3819 		goto out;
3820 	/* The OOM killer does not needlessly kill tasks for lowmem */
3821 	if (ac->highest_zoneidx < ZONE_NORMAL)
3822 		goto out;
3823 	if (pm_suspended_storage())
3824 		goto out;
3825 	/*
3826 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3827 	 * other request to make a forward progress.
3828 	 * We are in an unfortunate situation where out_of_memory cannot
3829 	 * do much for this context but let's try it to at least get
3830 	 * access to memory reserved if the current task is killed (see
3831 	 * out_of_memory). Once filesystems are ready to handle allocation
3832 	 * failures more gracefully we should just bail out here.
3833 	 */
3834 
3835 	/* Exhausted what can be done so it's blame time */
3836 	if (out_of_memory(&oc) ||
3837 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3838 		*did_some_progress = 1;
3839 
3840 		/*
3841 		 * Help non-failing allocations by giving them access to memory
3842 		 * reserves
3843 		 */
3844 		if (gfp_mask & __GFP_NOFAIL)
3845 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3846 					ALLOC_NO_WATERMARKS, ac);
3847 	}
3848 out:
3849 	mutex_unlock(&oom_lock);
3850 	return page;
3851 }
3852 
3853 /*
3854  * Maximum number of compaction retries with a progress before OOM
3855  * killer is consider as the only way to move forward.
3856  */
3857 #define MAX_COMPACT_RETRIES 16
3858 
3859 #ifdef CONFIG_COMPACTION
3860 /* Try memory compaction for high-order allocations before reclaim */
3861 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3862 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3863 		unsigned int alloc_flags, const struct alloc_context *ac,
3864 		enum compact_priority prio, enum compact_result *compact_result)
3865 {
3866 	struct page *page = NULL;
3867 	unsigned long pflags;
3868 	unsigned int noreclaim_flag;
3869 
3870 	if (!order)
3871 		return NULL;
3872 
3873 	psi_memstall_enter(&pflags);
3874 	delayacct_compact_start();
3875 	noreclaim_flag = memalloc_noreclaim_save();
3876 
3877 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3878 								prio, &page);
3879 
3880 	memalloc_noreclaim_restore(noreclaim_flag);
3881 	psi_memstall_leave(&pflags);
3882 	delayacct_compact_end();
3883 
3884 	if (*compact_result == COMPACT_SKIPPED)
3885 		return NULL;
3886 	/*
3887 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3888 	 * count a compaction stall
3889 	 */
3890 	count_vm_event(COMPACTSTALL);
3891 
3892 	/* Prep a captured page if available */
3893 	if (page)
3894 		prep_new_page(page, order, gfp_mask, alloc_flags);
3895 
3896 	/* Try get a page from the freelist if available */
3897 	if (!page)
3898 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3899 
3900 	if (page) {
3901 		struct zone *zone = page_zone(page);
3902 
3903 		zone->compact_blockskip_flush = false;
3904 		compaction_defer_reset(zone, order, true);
3905 		count_vm_event(COMPACTSUCCESS);
3906 		return page;
3907 	}
3908 
3909 	/*
3910 	 * It's bad if compaction run occurs and fails. The most likely reason
3911 	 * is that pages exist, but not enough to satisfy watermarks.
3912 	 */
3913 	count_vm_event(COMPACTFAIL);
3914 
3915 	cond_resched();
3916 
3917 	return NULL;
3918 }
3919 
3920 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3921 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3922 		     enum compact_result compact_result,
3923 		     enum compact_priority *compact_priority,
3924 		     int *compaction_retries)
3925 {
3926 	int max_retries = MAX_COMPACT_RETRIES;
3927 	int min_priority;
3928 	bool ret = false;
3929 	int retries = *compaction_retries;
3930 	enum compact_priority priority = *compact_priority;
3931 
3932 	if (!order)
3933 		return false;
3934 
3935 	if (fatal_signal_pending(current))
3936 		return false;
3937 
3938 	/*
3939 	 * Compaction was skipped due to a lack of free order-0
3940 	 * migration targets. Continue if reclaim can help.
3941 	 */
3942 	if (compact_result == COMPACT_SKIPPED) {
3943 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3944 		goto out;
3945 	}
3946 
3947 	/*
3948 	 * Compaction managed to coalesce some page blocks, but the
3949 	 * allocation failed presumably due to a race. Retry some.
3950 	 */
3951 	if (compact_result == COMPACT_SUCCESS) {
3952 		/*
3953 		 * !costly requests are much more important than
3954 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3955 		 * facto nofail and invoke OOM killer to move on while
3956 		 * costly can fail and users are ready to cope with
3957 		 * that. 1/4 retries is rather arbitrary but we would
3958 		 * need much more detailed feedback from compaction to
3959 		 * make a better decision.
3960 		 */
3961 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3962 			max_retries /= 4;
3963 
3964 		if (++(*compaction_retries) <= max_retries) {
3965 			ret = true;
3966 			goto out;
3967 		}
3968 	}
3969 
3970 	/*
3971 	 * Compaction failed. Retry with increasing priority.
3972 	 */
3973 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3974 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3975 
3976 	if (*compact_priority > min_priority) {
3977 		(*compact_priority)--;
3978 		*compaction_retries = 0;
3979 		ret = true;
3980 	}
3981 out:
3982 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3983 	return ret;
3984 }
3985 #else
3986 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3987 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3988 		unsigned int alloc_flags, const struct alloc_context *ac,
3989 		enum compact_priority prio, enum compact_result *compact_result)
3990 {
3991 	*compact_result = COMPACT_SKIPPED;
3992 	return NULL;
3993 }
3994 
3995 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3996 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3997 		     enum compact_result compact_result,
3998 		     enum compact_priority *compact_priority,
3999 		     int *compaction_retries)
4000 {
4001 	struct zone *zone;
4002 	struct zoneref *z;
4003 
4004 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4005 		return false;
4006 
4007 	/*
4008 	 * There are setups with compaction disabled which would prefer to loop
4009 	 * inside the allocator rather than hit the oom killer prematurely.
4010 	 * Let's give them a good hope and keep retrying while the order-0
4011 	 * watermarks are OK.
4012 	 */
4013 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4014 				ac->highest_zoneidx, ac->nodemask) {
4015 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4016 					ac->highest_zoneidx, alloc_flags))
4017 			return true;
4018 	}
4019 	return false;
4020 }
4021 #endif /* CONFIG_COMPACTION */
4022 
4023 #ifdef CONFIG_LOCKDEP
4024 static struct lockdep_map __fs_reclaim_map =
4025 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4026 
__need_reclaim(gfp_t gfp_mask)4027 static bool __need_reclaim(gfp_t gfp_mask)
4028 {
4029 	/* no reclaim without waiting on it */
4030 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4031 		return false;
4032 
4033 	/* this guy won't enter reclaim */
4034 	if (current->flags & PF_MEMALLOC)
4035 		return false;
4036 
4037 	if (gfp_mask & __GFP_NOLOCKDEP)
4038 		return false;
4039 
4040 	return true;
4041 }
4042 
__fs_reclaim_acquire(unsigned long ip)4043 void __fs_reclaim_acquire(unsigned long ip)
4044 {
4045 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4046 }
4047 
__fs_reclaim_release(unsigned long ip)4048 void __fs_reclaim_release(unsigned long ip)
4049 {
4050 	lock_release(&__fs_reclaim_map, ip);
4051 }
4052 
fs_reclaim_acquire(gfp_t gfp_mask)4053 void fs_reclaim_acquire(gfp_t gfp_mask)
4054 {
4055 	gfp_mask = current_gfp_context(gfp_mask);
4056 
4057 	if (__need_reclaim(gfp_mask)) {
4058 		if (gfp_mask & __GFP_FS)
4059 			__fs_reclaim_acquire(_RET_IP_);
4060 
4061 #ifdef CONFIG_MMU_NOTIFIER
4062 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4063 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4064 #endif
4065 
4066 	}
4067 }
4068 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4069 
fs_reclaim_release(gfp_t gfp_mask)4070 void fs_reclaim_release(gfp_t gfp_mask)
4071 {
4072 	gfp_mask = current_gfp_context(gfp_mask);
4073 
4074 	if (__need_reclaim(gfp_mask)) {
4075 		if (gfp_mask & __GFP_FS)
4076 			__fs_reclaim_release(_RET_IP_);
4077 	}
4078 }
4079 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4080 #endif
4081 
4082 /*
4083  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4084  * have been rebuilt so allocation retries. Reader side does not lock and
4085  * retries the allocation if zonelist changes. Writer side is protected by the
4086  * embedded spin_lock.
4087  */
4088 static DEFINE_SEQLOCK(zonelist_update_seq);
4089 
zonelist_iter_begin(void)4090 static unsigned int zonelist_iter_begin(void)
4091 {
4092 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4093 		return read_seqbegin(&zonelist_update_seq);
4094 
4095 	return 0;
4096 }
4097 
check_retry_zonelist(unsigned int seq)4098 static unsigned int check_retry_zonelist(unsigned int seq)
4099 {
4100 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4101 		return read_seqretry(&zonelist_update_seq, seq);
4102 
4103 	return seq;
4104 }
4105 
4106 /* Perform direct synchronous page reclaim */
4107 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)4108 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4109 					const struct alloc_context *ac)
4110 {
4111 	unsigned int noreclaim_flag;
4112 	unsigned long progress;
4113 
4114 	cond_resched();
4115 
4116 	/* We now go into synchronous reclaim */
4117 	cpuset_memory_pressure_bump();
4118 	fs_reclaim_acquire(gfp_mask);
4119 	noreclaim_flag = memalloc_noreclaim_save();
4120 
4121 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4122 								ac->nodemask);
4123 
4124 	memalloc_noreclaim_restore(noreclaim_flag);
4125 	fs_reclaim_release(gfp_mask);
4126 
4127 	cond_resched();
4128 
4129 	return progress;
4130 }
4131 
4132 /* The really slow allocator path where we enter direct reclaim */
4133 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)4134 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4135 		unsigned int alloc_flags, const struct alloc_context *ac,
4136 		unsigned long *did_some_progress)
4137 {
4138 	struct page *page = NULL;
4139 	unsigned long pflags;
4140 	bool drained = false;
4141 
4142 	psi_memstall_enter(&pflags);
4143 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4144 	if (unlikely(!(*did_some_progress)))
4145 		goto out;
4146 
4147 retry:
4148 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4149 
4150 	/*
4151 	 * If an allocation failed after direct reclaim, it could be because
4152 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4153 	 * Shrink them and try again
4154 	 */
4155 	if (!page && !drained) {
4156 		unreserve_highatomic_pageblock(ac, false);
4157 		drain_all_pages(NULL);
4158 		drained = true;
4159 		goto retry;
4160 	}
4161 out:
4162 	psi_memstall_leave(&pflags);
4163 
4164 	return page;
4165 }
4166 
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)4167 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4168 			     const struct alloc_context *ac)
4169 {
4170 	struct zoneref *z;
4171 	struct zone *zone;
4172 	pg_data_t *last_pgdat = NULL;
4173 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4174 	unsigned int reclaim_order;
4175 
4176 	if (defrag_mode)
4177 		reclaim_order = max(order, pageblock_order);
4178 	else
4179 		reclaim_order = order;
4180 
4181 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4182 					ac->nodemask) {
4183 		if (!managed_zone(zone))
4184 			continue;
4185 		if (last_pgdat == zone->zone_pgdat)
4186 			continue;
4187 		wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx);
4188 		last_pgdat = zone->zone_pgdat;
4189 	}
4190 }
4191 
4192 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask,unsigned int order)4193 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4194 {
4195 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4196 
4197 	/*
4198 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4199 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4200 	 * to save two branches.
4201 	 */
4202 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4203 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4204 
4205 	/*
4206 	 * The caller may dip into page reserves a bit more if the caller
4207 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4208 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4209 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4210 	 */
4211 	alloc_flags |= (__force int)
4212 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4213 
4214 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4215 		/*
4216 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4217 		 * if it can't schedule.
4218 		 */
4219 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4220 			alloc_flags |= ALLOC_NON_BLOCK;
4221 
4222 			if (order > 0)
4223 				alloc_flags |= ALLOC_HIGHATOMIC;
4224 		}
4225 
4226 		/*
4227 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4228 		 * GFP_ATOMIC) rather than fail, see the comment for
4229 		 * cpuset_current_node_allowed().
4230 		 */
4231 		if (alloc_flags & ALLOC_MIN_RESERVE)
4232 			alloc_flags &= ~ALLOC_CPUSET;
4233 	} else if (unlikely(rt_or_dl_task(current)) && in_task())
4234 		alloc_flags |= ALLOC_MIN_RESERVE;
4235 
4236 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4237 
4238 	if (defrag_mode)
4239 		alloc_flags |= ALLOC_NOFRAGMENT;
4240 
4241 	return alloc_flags;
4242 }
4243 
oom_reserves_allowed(struct task_struct * tsk)4244 static bool oom_reserves_allowed(struct task_struct *tsk)
4245 {
4246 	if (!tsk_is_oom_victim(tsk))
4247 		return false;
4248 
4249 	/*
4250 	 * !MMU doesn't have oom reaper so give access to memory reserves
4251 	 * only to the thread with TIF_MEMDIE set
4252 	 */
4253 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4254 		return false;
4255 
4256 	return true;
4257 }
4258 
4259 /*
4260  * Distinguish requests which really need access to full memory
4261  * reserves from oom victims which can live with a portion of it
4262  */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)4263 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4264 {
4265 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4266 		return 0;
4267 	if (gfp_mask & __GFP_MEMALLOC)
4268 		return ALLOC_NO_WATERMARKS;
4269 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4270 		return ALLOC_NO_WATERMARKS;
4271 	if (!in_interrupt()) {
4272 		if (current->flags & PF_MEMALLOC)
4273 			return ALLOC_NO_WATERMARKS;
4274 		else if (oom_reserves_allowed(current))
4275 			return ALLOC_OOM;
4276 	}
4277 
4278 	return 0;
4279 }
4280 
gfp_pfmemalloc_allowed(gfp_t gfp_mask)4281 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4282 {
4283 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4284 }
4285 
4286 /*
4287  * Checks whether it makes sense to retry the reclaim to make a forward progress
4288  * for the given allocation request.
4289  *
4290  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4291  * without success, or when we couldn't even meet the watermark if we
4292  * reclaimed all remaining pages on the LRU lists.
4293  *
4294  * Returns true if a retry is viable or false to enter the oom path.
4295  */
4296 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)4297 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4298 		     struct alloc_context *ac, int alloc_flags,
4299 		     bool did_some_progress, int *no_progress_loops)
4300 {
4301 	struct zone *zone;
4302 	struct zoneref *z;
4303 	bool ret = false;
4304 
4305 	/*
4306 	 * Costly allocations might have made a progress but this doesn't mean
4307 	 * their order will become available due to high fragmentation so
4308 	 * always increment the no progress counter for them
4309 	 */
4310 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4311 		*no_progress_loops = 0;
4312 	else
4313 		(*no_progress_loops)++;
4314 
4315 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4316 		goto out;
4317 
4318 
4319 	/*
4320 	 * Keep reclaiming pages while there is a chance this will lead
4321 	 * somewhere.  If none of the target zones can satisfy our allocation
4322 	 * request even if all reclaimable pages are considered then we are
4323 	 * screwed and have to go OOM.
4324 	 */
4325 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4326 				ac->highest_zoneidx, ac->nodemask) {
4327 		unsigned long available;
4328 		unsigned long reclaimable;
4329 		unsigned long min_wmark = min_wmark_pages(zone);
4330 		bool wmark;
4331 
4332 		if (cpusets_enabled() &&
4333 			(alloc_flags & ALLOC_CPUSET) &&
4334 			!__cpuset_zone_allowed(zone, gfp_mask))
4335 				continue;
4336 
4337 		available = reclaimable = zone_reclaimable_pages(zone);
4338 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4339 
4340 		/*
4341 		 * Would the allocation succeed if we reclaimed all
4342 		 * reclaimable pages?
4343 		 */
4344 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4345 				ac->highest_zoneidx, alloc_flags, available);
4346 		trace_reclaim_retry_zone(z, order, reclaimable,
4347 				available, min_wmark, *no_progress_loops, wmark);
4348 		if (wmark) {
4349 			ret = true;
4350 			break;
4351 		}
4352 	}
4353 
4354 	/*
4355 	 * Memory allocation/reclaim might be called from a WQ context and the
4356 	 * current implementation of the WQ concurrency control doesn't
4357 	 * recognize that a particular WQ is congested if the worker thread is
4358 	 * looping without ever sleeping. Therefore we have to do a short sleep
4359 	 * here rather than calling cond_resched().
4360 	 */
4361 	if (current->flags & PF_WQ_WORKER)
4362 		schedule_timeout_uninterruptible(1);
4363 	else
4364 		cond_resched();
4365 out:
4366 	/* Before OOM, exhaust highatomic_reserve */
4367 	if (!ret)
4368 		return unreserve_highatomic_pageblock(ac, true);
4369 
4370 	return ret;
4371 }
4372 
4373 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4374 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4375 {
4376 	/*
4377 	 * It's possible that cpuset's mems_allowed and the nodemask from
4378 	 * mempolicy don't intersect. This should be normally dealt with by
4379 	 * policy_nodemask(), but it's possible to race with cpuset update in
4380 	 * such a way the check therein was true, and then it became false
4381 	 * before we got our cpuset_mems_cookie here.
4382 	 * This assumes that for all allocations, ac->nodemask can come only
4383 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4384 	 * when it does not intersect with the cpuset restrictions) or the
4385 	 * caller can deal with a violated nodemask.
4386 	 */
4387 	if (cpusets_enabled() && ac->nodemask &&
4388 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4389 		ac->nodemask = NULL;
4390 		return true;
4391 	}
4392 
4393 	/*
4394 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4395 	 * possible to race with parallel threads in such a way that our
4396 	 * allocation can fail while the mask is being updated. If we are about
4397 	 * to fail, check if the cpuset changed during allocation and if so,
4398 	 * retry.
4399 	 */
4400 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4401 		return true;
4402 
4403 	return false;
4404 }
4405 
4406 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4407 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4408 						struct alloc_context *ac)
4409 {
4410 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4411 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4412 	bool nofail = gfp_mask & __GFP_NOFAIL;
4413 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4414 	struct page *page = NULL;
4415 	unsigned int alloc_flags;
4416 	unsigned long did_some_progress;
4417 	enum compact_priority compact_priority;
4418 	enum compact_result compact_result;
4419 	int compaction_retries;
4420 	int no_progress_loops;
4421 	unsigned int cpuset_mems_cookie;
4422 	unsigned int zonelist_iter_cookie;
4423 	int reserve_flags;
4424 
4425 	if (unlikely(nofail)) {
4426 		/*
4427 		 * We most definitely don't want callers attempting to
4428 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
4429 		 */
4430 		WARN_ON_ONCE(order > 1);
4431 		/*
4432 		 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4433 		 * otherwise, we may result in lockup.
4434 		 */
4435 		WARN_ON_ONCE(!can_direct_reclaim);
4436 		/*
4437 		 * PF_MEMALLOC request from this context is rather bizarre
4438 		 * because we cannot reclaim anything and only can loop waiting
4439 		 * for somebody to do a work for us.
4440 		 */
4441 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4442 	}
4443 
4444 restart:
4445 	compaction_retries = 0;
4446 	no_progress_loops = 0;
4447 	compact_result = COMPACT_SKIPPED;
4448 	compact_priority = DEF_COMPACT_PRIORITY;
4449 	cpuset_mems_cookie = read_mems_allowed_begin();
4450 	zonelist_iter_cookie = zonelist_iter_begin();
4451 
4452 	/*
4453 	 * The fast path uses conservative alloc_flags to succeed only until
4454 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4455 	 * alloc_flags precisely. So we do that now.
4456 	 */
4457 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4458 
4459 	/*
4460 	 * We need to recalculate the starting point for the zonelist iterator
4461 	 * because we might have used different nodemask in the fast path, or
4462 	 * there was a cpuset modification and we are retrying - otherwise we
4463 	 * could end up iterating over non-eligible zones endlessly.
4464 	 */
4465 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4466 					ac->highest_zoneidx, ac->nodemask);
4467 	if (!zonelist_zone(ac->preferred_zoneref))
4468 		goto nopage;
4469 
4470 	/*
4471 	 * Check for insane configurations where the cpuset doesn't contain
4472 	 * any suitable zone to satisfy the request - e.g. non-movable
4473 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4474 	 */
4475 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4476 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4477 					ac->highest_zoneidx,
4478 					&cpuset_current_mems_allowed);
4479 		if (!zonelist_zone(z))
4480 			goto nopage;
4481 	}
4482 
4483 	if (alloc_flags & ALLOC_KSWAPD)
4484 		wake_all_kswapds(order, gfp_mask, ac);
4485 
4486 	/*
4487 	 * The adjusted alloc_flags might result in immediate success, so try
4488 	 * that first
4489 	 */
4490 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4491 	if (page)
4492 		goto got_pg;
4493 
4494 	/*
4495 	 * For costly allocations, try direct compaction first, as it's likely
4496 	 * that we have enough base pages and don't need to reclaim. For non-
4497 	 * movable high-order allocations, do that as well, as compaction will
4498 	 * try prevent permanent fragmentation by migrating from blocks of the
4499 	 * same migratetype.
4500 	 * Don't try this for allocations that are allowed to ignore
4501 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4502 	 */
4503 	if (can_direct_reclaim && can_compact &&
4504 			(costly_order ||
4505 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4506 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4507 		page = __alloc_pages_direct_compact(gfp_mask, order,
4508 						alloc_flags, ac,
4509 						INIT_COMPACT_PRIORITY,
4510 						&compact_result);
4511 		if (page)
4512 			goto got_pg;
4513 
4514 		/*
4515 		 * Checks for costly allocations with __GFP_NORETRY, which
4516 		 * includes some THP page fault allocations
4517 		 */
4518 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4519 			/*
4520 			 * If allocating entire pageblock(s) and compaction
4521 			 * failed because all zones are below low watermarks
4522 			 * or is prohibited because it recently failed at this
4523 			 * order, fail immediately unless the allocator has
4524 			 * requested compaction and reclaim retry.
4525 			 *
4526 			 * Reclaim is
4527 			 *  - potentially very expensive because zones are far
4528 			 *    below their low watermarks or this is part of very
4529 			 *    bursty high order allocations,
4530 			 *  - not guaranteed to help because isolate_freepages()
4531 			 *    may not iterate over freed pages as part of its
4532 			 *    linear scan, and
4533 			 *  - unlikely to make entire pageblocks free on its
4534 			 *    own.
4535 			 */
4536 			if (compact_result == COMPACT_SKIPPED ||
4537 			    compact_result == COMPACT_DEFERRED)
4538 				goto nopage;
4539 
4540 			/*
4541 			 * Looks like reclaim/compaction is worth trying, but
4542 			 * sync compaction could be very expensive, so keep
4543 			 * using async compaction.
4544 			 */
4545 			compact_priority = INIT_COMPACT_PRIORITY;
4546 		}
4547 	}
4548 
4549 retry:
4550 	/*
4551 	 * Deal with possible cpuset update races or zonelist updates to avoid
4552 	 * infinite retries.
4553 	 */
4554 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4555 	    check_retry_zonelist(zonelist_iter_cookie))
4556 		goto restart;
4557 
4558 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4559 	if (alloc_flags & ALLOC_KSWAPD)
4560 		wake_all_kswapds(order, gfp_mask, ac);
4561 
4562 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4563 	if (reserve_flags)
4564 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4565 					  (alloc_flags & ALLOC_KSWAPD);
4566 
4567 	/*
4568 	 * Reset the nodemask and zonelist iterators if memory policies can be
4569 	 * ignored. These allocations are high priority and system rather than
4570 	 * user oriented.
4571 	 */
4572 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4573 		ac->nodemask = NULL;
4574 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4575 					ac->highest_zoneidx, ac->nodemask);
4576 	}
4577 
4578 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4579 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4580 	if (page)
4581 		goto got_pg;
4582 
4583 	/* Caller is not willing to reclaim, we can't balance anything */
4584 	if (!can_direct_reclaim)
4585 		goto nopage;
4586 
4587 	/* Avoid recursion of direct reclaim */
4588 	if (current->flags & PF_MEMALLOC)
4589 		goto nopage;
4590 
4591 	/* Try direct reclaim and then allocating */
4592 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4593 							&did_some_progress);
4594 	if (page)
4595 		goto got_pg;
4596 
4597 	/* Try direct compaction and then allocating */
4598 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4599 					compact_priority, &compact_result);
4600 	if (page)
4601 		goto got_pg;
4602 
4603 	/* Do not loop if specifically requested */
4604 	if (gfp_mask & __GFP_NORETRY)
4605 		goto nopage;
4606 
4607 	/*
4608 	 * Do not retry costly high order allocations unless they are
4609 	 * __GFP_RETRY_MAYFAIL and we can compact
4610 	 */
4611 	if (costly_order && (!can_compact ||
4612 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4613 		goto nopage;
4614 
4615 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4616 				 did_some_progress > 0, &no_progress_loops))
4617 		goto retry;
4618 
4619 	/*
4620 	 * It doesn't make any sense to retry for the compaction if the order-0
4621 	 * reclaim is not able to make any progress because the current
4622 	 * implementation of the compaction depends on the sufficient amount
4623 	 * of free memory (see __compaction_suitable)
4624 	 */
4625 	if (did_some_progress > 0 && can_compact &&
4626 			should_compact_retry(ac, order, alloc_flags,
4627 				compact_result, &compact_priority,
4628 				&compaction_retries))
4629 		goto retry;
4630 
4631 	/* Reclaim/compaction failed to prevent the fallback */
4632 	if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) {
4633 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4634 		goto retry;
4635 	}
4636 
4637 	/*
4638 	 * Deal with possible cpuset update races or zonelist updates to avoid
4639 	 * a unnecessary OOM kill.
4640 	 */
4641 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4642 	    check_retry_zonelist(zonelist_iter_cookie))
4643 		goto restart;
4644 
4645 	/* Reclaim has failed us, start killing things */
4646 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4647 	if (page)
4648 		goto got_pg;
4649 
4650 	/* Avoid allocations with no watermarks from looping endlessly */
4651 	if (tsk_is_oom_victim(current) &&
4652 	    (alloc_flags & ALLOC_OOM ||
4653 	     (gfp_mask & __GFP_NOMEMALLOC)))
4654 		goto nopage;
4655 
4656 	/* Retry as long as the OOM killer is making progress */
4657 	if (did_some_progress) {
4658 		no_progress_loops = 0;
4659 		goto retry;
4660 	}
4661 
4662 nopage:
4663 	/*
4664 	 * Deal with possible cpuset update races or zonelist updates to avoid
4665 	 * a unnecessary OOM kill.
4666 	 */
4667 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4668 	    check_retry_zonelist(zonelist_iter_cookie))
4669 		goto restart;
4670 
4671 	/*
4672 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4673 	 * we always retry
4674 	 */
4675 	if (unlikely(nofail)) {
4676 		/*
4677 		 * Lacking direct_reclaim we can't do anything to reclaim memory,
4678 		 * we disregard these unreasonable nofail requests and still
4679 		 * return NULL
4680 		 */
4681 		if (!can_direct_reclaim)
4682 			goto fail;
4683 
4684 		/*
4685 		 * Help non-failing allocations by giving some access to memory
4686 		 * reserves normally used for high priority non-blocking
4687 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4688 		 * could deplete whole memory reserves which would just make
4689 		 * the situation worse.
4690 		 */
4691 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4692 		if (page)
4693 			goto got_pg;
4694 
4695 		cond_resched();
4696 		goto retry;
4697 	}
4698 fail:
4699 	warn_alloc(gfp_mask, ac->nodemask,
4700 			"page allocation failure: order:%u", order);
4701 got_pg:
4702 	return page;
4703 }
4704 
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)4705 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4706 		int preferred_nid, nodemask_t *nodemask,
4707 		struct alloc_context *ac, gfp_t *alloc_gfp,
4708 		unsigned int *alloc_flags)
4709 {
4710 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4711 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4712 	ac->nodemask = nodemask;
4713 	ac->migratetype = gfp_migratetype(gfp_mask);
4714 
4715 	if (cpusets_enabled()) {
4716 		*alloc_gfp |= __GFP_HARDWALL;
4717 		/*
4718 		 * When we are in the interrupt context, it is irrelevant
4719 		 * to the current task context. It means that any node ok.
4720 		 */
4721 		if (in_task() && !ac->nodemask)
4722 			ac->nodemask = &cpuset_current_mems_allowed;
4723 		else
4724 			*alloc_flags |= ALLOC_CPUSET;
4725 	}
4726 
4727 	might_alloc(gfp_mask);
4728 
4729 	/*
4730 	 * Don't invoke should_fail logic, since it may call
4731 	 * get_random_u32() and printk() which need to spin_lock.
4732 	 */
4733 	if (!(*alloc_flags & ALLOC_TRYLOCK) &&
4734 	    should_fail_alloc_page(gfp_mask, order))
4735 		return false;
4736 
4737 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4738 
4739 	/* Dirty zone balancing only done in the fast path */
4740 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4741 
4742 	/*
4743 	 * The preferred zone is used for statistics but crucially it is
4744 	 * also used as the starting point for the zonelist iterator. It
4745 	 * may get reset for allocations that ignore memory policies.
4746 	 */
4747 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4748 					ac->highest_zoneidx, ac->nodemask);
4749 
4750 	return true;
4751 }
4752 
4753 /*
4754  * __alloc_pages_bulk - Allocate a number of order-0 pages to an array
4755  * @gfp: GFP flags for the allocation
4756  * @preferred_nid: The preferred NUMA node ID to allocate from
4757  * @nodemask: Set of nodes to allocate from, may be NULL
4758  * @nr_pages: The number of pages desired in the array
4759  * @page_array: Array to store the pages
4760  *
4761  * This is a batched version of the page allocator that attempts to
4762  * allocate nr_pages quickly. Pages are added to the page_array.
4763  *
4764  * Note that only NULL elements are populated with pages and nr_pages
4765  * is the maximum number of pages that will be stored in the array.
4766  *
4767  * Returns the number of pages in the array.
4768  */
alloc_pages_bulk_noprof(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct page ** page_array)4769 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4770 			nodemask_t *nodemask, int nr_pages,
4771 			struct page **page_array)
4772 {
4773 	struct page *page;
4774 	unsigned long __maybe_unused UP_flags;
4775 	struct zone *zone;
4776 	struct zoneref *z;
4777 	struct per_cpu_pages *pcp;
4778 	struct list_head *pcp_list;
4779 	struct alloc_context ac;
4780 	gfp_t alloc_gfp;
4781 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4782 	int nr_populated = 0, nr_account = 0;
4783 
4784 	/*
4785 	 * Skip populated array elements to determine if any pages need
4786 	 * to be allocated before disabling IRQs.
4787 	 */
4788 	while (nr_populated < nr_pages && page_array[nr_populated])
4789 		nr_populated++;
4790 
4791 	/* No pages requested? */
4792 	if (unlikely(nr_pages <= 0))
4793 		goto out;
4794 
4795 	/* Already populated array? */
4796 	if (unlikely(nr_pages - nr_populated == 0))
4797 		goto out;
4798 
4799 	/* Bulk allocator does not support memcg accounting. */
4800 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4801 		goto failed;
4802 
4803 	/* Use the single page allocator for one page. */
4804 	if (nr_pages - nr_populated == 1)
4805 		goto failed;
4806 
4807 #ifdef CONFIG_PAGE_OWNER
4808 	/*
4809 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4810 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4811 	 * removes much of the performance benefit of bulk allocation so
4812 	 * force the caller to allocate one page at a time as it'll have
4813 	 * similar performance to added complexity to the bulk allocator.
4814 	 */
4815 	if (static_branch_unlikely(&page_owner_inited))
4816 		goto failed;
4817 #endif
4818 
4819 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4820 	gfp &= gfp_allowed_mask;
4821 	alloc_gfp = gfp;
4822 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4823 		goto out;
4824 	gfp = alloc_gfp;
4825 
4826 	/* Find an allowed local zone that meets the low watermark. */
4827 	z = ac.preferred_zoneref;
4828 	for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4829 		unsigned long mark;
4830 
4831 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4832 		    !__cpuset_zone_allowed(zone, gfp)) {
4833 			continue;
4834 		}
4835 
4836 		if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
4837 		    zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
4838 			goto failed;
4839 		}
4840 
4841 		cond_accept_memory(zone, 0, alloc_flags);
4842 retry_this_zone:
4843 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4844 		if (zone_watermark_fast(zone, 0,  mark,
4845 				zonelist_zone_idx(ac.preferred_zoneref),
4846 				alloc_flags, gfp)) {
4847 			break;
4848 		}
4849 
4850 		if (cond_accept_memory(zone, 0, alloc_flags))
4851 			goto retry_this_zone;
4852 
4853 		/* Try again if zone has deferred pages */
4854 		if (deferred_pages_enabled()) {
4855 			if (_deferred_grow_zone(zone, 0))
4856 				goto retry_this_zone;
4857 		}
4858 	}
4859 
4860 	/*
4861 	 * If there are no allowed local zones that meets the watermarks then
4862 	 * try to allocate a single page and reclaim if necessary.
4863 	 */
4864 	if (unlikely(!zone))
4865 		goto failed;
4866 
4867 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4868 	pcp_trylock_prepare(UP_flags);
4869 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4870 	if (!pcp)
4871 		goto failed_irq;
4872 
4873 	/* Attempt the batch allocation */
4874 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4875 	while (nr_populated < nr_pages) {
4876 
4877 		/* Skip existing pages */
4878 		if (page_array[nr_populated]) {
4879 			nr_populated++;
4880 			continue;
4881 		}
4882 
4883 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4884 								pcp, pcp_list);
4885 		if (unlikely(!page)) {
4886 			/* Try and allocate at least one page */
4887 			if (!nr_account) {
4888 				pcp_spin_unlock(pcp);
4889 				goto failed_irq;
4890 			}
4891 			break;
4892 		}
4893 		nr_account++;
4894 
4895 		prep_new_page(page, 0, gfp, 0);
4896 		set_page_refcounted(page);
4897 		page_array[nr_populated++] = page;
4898 	}
4899 
4900 	pcp_spin_unlock(pcp);
4901 	pcp_trylock_finish(UP_flags);
4902 
4903 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4904 	zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
4905 
4906 out:
4907 	return nr_populated;
4908 
4909 failed_irq:
4910 	pcp_trylock_finish(UP_flags);
4911 
4912 failed:
4913 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4914 	if (page)
4915 		page_array[nr_populated++] = page;
4916 	goto out;
4917 }
4918 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4919 
4920 /*
4921  * This is the 'heart' of the zoned buddy allocator.
4922  */
__alloc_frozen_pages_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4923 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order,
4924 		int preferred_nid, nodemask_t *nodemask)
4925 {
4926 	struct page *page;
4927 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4928 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4929 	struct alloc_context ac = { };
4930 
4931 	/*
4932 	 * There are several places where we assume that the order value is sane
4933 	 * so bail out early if the request is out of bound.
4934 	 */
4935 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4936 		return NULL;
4937 
4938 	gfp &= gfp_allowed_mask;
4939 	/*
4940 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4941 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4942 	 * from a particular context which has been marked by
4943 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4944 	 * movable zones are not used during allocation.
4945 	 */
4946 	gfp = current_gfp_context(gfp);
4947 	alloc_gfp = gfp;
4948 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4949 			&alloc_gfp, &alloc_flags))
4950 		return NULL;
4951 
4952 	/*
4953 	 * Forbid the first pass from falling back to types that fragment
4954 	 * memory until all local zones are considered.
4955 	 */
4956 	alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
4957 
4958 	/* First allocation attempt */
4959 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4960 	if (likely(page))
4961 		goto out;
4962 
4963 	alloc_gfp = gfp;
4964 	ac.spread_dirty_pages = false;
4965 
4966 	/*
4967 	 * Restore the original nodemask if it was potentially replaced with
4968 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4969 	 */
4970 	ac.nodemask = nodemask;
4971 
4972 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4973 
4974 out:
4975 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4976 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4977 		free_frozen_pages(page, order);
4978 		page = NULL;
4979 	}
4980 
4981 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4982 	kmsan_alloc_page(page, order, alloc_gfp);
4983 
4984 	return page;
4985 }
4986 EXPORT_SYMBOL(__alloc_frozen_pages_noprof);
4987 
__alloc_pages_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4988 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4989 		int preferred_nid, nodemask_t *nodemask)
4990 {
4991 	struct page *page;
4992 
4993 	page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask);
4994 	if (page)
4995 		set_page_refcounted(page);
4996 	return page;
4997 }
4998 EXPORT_SYMBOL(__alloc_pages_noprof);
4999 
__folio_alloc_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)5000 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
5001 		nodemask_t *nodemask)
5002 {
5003 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
5004 					preferred_nid, nodemask);
5005 	return page_rmappable_folio(page);
5006 }
5007 EXPORT_SYMBOL(__folio_alloc_noprof);
5008 
5009 /*
5010  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5011  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5012  * you need to access high mem.
5013  */
get_free_pages_noprof(gfp_t gfp_mask,unsigned int order)5014 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
5015 {
5016 	struct page *page;
5017 
5018 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
5019 	if (!page)
5020 		return 0;
5021 	return (unsigned long) page_address(page);
5022 }
5023 EXPORT_SYMBOL(get_free_pages_noprof);
5024 
get_zeroed_page_noprof(gfp_t gfp_mask)5025 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
5026 {
5027 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
5028 }
5029 EXPORT_SYMBOL(get_zeroed_page_noprof);
5030 
5031 /**
5032  * ___free_pages - Free pages allocated with alloc_pages().
5033  * @page: The page pointer returned from alloc_pages().
5034  * @order: The order of the allocation.
5035  * @fpi_flags: Free Page Internal flags.
5036  *
5037  * This function can free multi-page allocations that are not compound
5038  * pages.  It does not check that the @order passed in matches that of
5039  * the allocation, so it is easy to leak memory.  Freeing more memory
5040  * than was allocated will probably emit a warning.
5041  *
5042  * If the last reference to this page is speculative, it will be released
5043  * by put_page() which only frees the first page of a non-compound
5044  * allocation.  To prevent the remaining pages from being leaked, we free
5045  * the subsequent pages here.  If you want to use the page's reference
5046  * count to decide when to free the allocation, you should allocate a
5047  * compound page, and use put_page() instead of __free_pages().
5048  *
5049  * Context: May be called in interrupt context or while holding a normal
5050  * spinlock, but not in NMI context or while holding a raw spinlock.
5051  */
___free_pages(struct page * page,unsigned int order,fpi_t fpi_flags)5052 static void ___free_pages(struct page *page, unsigned int order,
5053 			  fpi_t fpi_flags)
5054 {
5055 	/* get PageHead before we drop reference */
5056 	int head = PageHead(page);
5057 	/* get alloc tag in case the page is released by others */
5058 	struct alloc_tag *tag = pgalloc_tag_get(page);
5059 
5060 	if (put_page_testzero(page))
5061 		__free_frozen_pages(page, order, fpi_flags);
5062 	else if (!head) {
5063 		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
5064 		while (order-- > 0)
5065 			__free_frozen_pages(page + (1 << order), order,
5066 					    fpi_flags);
5067 	}
5068 }
__free_pages(struct page * page,unsigned int order)5069 void __free_pages(struct page *page, unsigned int order)
5070 {
5071 	___free_pages(page, order, FPI_NONE);
5072 }
5073 EXPORT_SYMBOL(__free_pages);
5074 
5075 /*
5076  * Can be called while holding raw_spin_lock or from IRQ and NMI for any
5077  * page type (not only those that came from alloc_pages_nolock)
5078  */
free_pages_nolock(struct page * page,unsigned int order)5079 void free_pages_nolock(struct page *page, unsigned int order)
5080 {
5081 	___free_pages(page, order, FPI_TRYLOCK);
5082 }
5083 
free_pages(unsigned long addr,unsigned int order)5084 void free_pages(unsigned long addr, unsigned int order)
5085 {
5086 	if (addr != 0) {
5087 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5088 		__free_pages(virt_to_page((void *)addr), order);
5089 	}
5090 }
5091 
5092 EXPORT_SYMBOL(free_pages);
5093 
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)5094 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5095 		size_t size)
5096 {
5097 	if (addr) {
5098 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5099 		struct page *page = virt_to_page((void *)addr);
5100 		struct page *last = page + nr;
5101 
5102 		split_page_owner(page, order, 0);
5103 		pgalloc_tag_split(page_folio(page), order, 0);
5104 		split_page_memcg(page, order);
5105 		while (page < --last)
5106 			set_page_refcounted(last);
5107 
5108 		last = page + (1UL << order);
5109 		for (page += nr; page < last; page++)
5110 			__free_pages_ok(page, 0, FPI_TO_TAIL);
5111 	}
5112 	return (void *)addr;
5113 }
5114 
5115 /**
5116  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5117  * @size: the number of bytes to allocate
5118  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5119  *
5120  * This function is similar to alloc_pages(), except that it allocates the
5121  * minimum number of pages to satisfy the request.  alloc_pages() can only
5122  * allocate memory in power-of-two pages.
5123  *
5124  * This function is also limited by MAX_PAGE_ORDER.
5125  *
5126  * Memory allocated by this function must be released by free_pages_exact().
5127  *
5128  * Return: pointer to the allocated area or %NULL in case of error.
5129  */
alloc_pages_exact_noprof(size_t size,gfp_t gfp_mask)5130 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
5131 {
5132 	unsigned int order = get_order(size);
5133 	unsigned long addr;
5134 
5135 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5136 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5137 
5138 	addr = get_free_pages_noprof(gfp_mask, order);
5139 	return make_alloc_exact(addr, order, size);
5140 }
5141 EXPORT_SYMBOL(alloc_pages_exact_noprof);
5142 
5143 /**
5144  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5145  *			   pages on a node.
5146  * @nid: the preferred node ID where memory should be allocated
5147  * @size: the number of bytes to allocate
5148  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5149  *
5150  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5151  * back.
5152  *
5153  * Return: pointer to the allocated area or %NULL in case of error.
5154  */
alloc_pages_exact_nid_noprof(int nid,size_t size,gfp_t gfp_mask)5155 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5156 {
5157 	unsigned int order = get_order(size);
5158 	struct page *p;
5159 
5160 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5161 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5162 
5163 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
5164 	if (!p)
5165 		return NULL;
5166 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5167 }
5168 
5169 /**
5170  * free_pages_exact - release memory allocated via alloc_pages_exact()
5171  * @virt: the value returned by alloc_pages_exact.
5172  * @size: size of allocation, same value as passed to alloc_pages_exact().
5173  *
5174  * Release the memory allocated by a previous call to alloc_pages_exact.
5175  */
free_pages_exact(void * virt,size_t size)5176 void free_pages_exact(void *virt, size_t size)
5177 {
5178 	unsigned long addr = (unsigned long)virt;
5179 	unsigned long end = addr + PAGE_ALIGN(size);
5180 
5181 	while (addr < end) {
5182 		free_page(addr);
5183 		addr += PAGE_SIZE;
5184 	}
5185 }
5186 EXPORT_SYMBOL(free_pages_exact);
5187 
5188 /**
5189  * nr_free_zone_pages - count number of pages beyond high watermark
5190  * @offset: The zone index of the highest zone
5191  *
5192  * nr_free_zone_pages() counts the number of pages which are beyond the
5193  * high watermark within all zones at or below a given zone index.  For each
5194  * zone, the number of pages is calculated as:
5195  *
5196  *     nr_free_zone_pages = managed_pages - high_pages
5197  *
5198  * Return: number of pages beyond high watermark.
5199  */
nr_free_zone_pages(int offset)5200 static unsigned long nr_free_zone_pages(int offset)
5201 {
5202 	struct zoneref *z;
5203 	struct zone *zone;
5204 
5205 	/* Just pick one node, since fallback list is circular */
5206 	unsigned long sum = 0;
5207 
5208 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5209 
5210 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5211 		unsigned long size = zone_managed_pages(zone);
5212 		unsigned long high = high_wmark_pages(zone);
5213 		if (size > high)
5214 			sum += size - high;
5215 	}
5216 
5217 	return sum;
5218 }
5219 
5220 /**
5221  * nr_free_buffer_pages - count number of pages beyond high watermark
5222  *
5223  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5224  * watermark within ZONE_DMA and ZONE_NORMAL.
5225  *
5226  * Return: number of pages beyond high watermark within ZONE_DMA and
5227  * ZONE_NORMAL.
5228  */
nr_free_buffer_pages(void)5229 unsigned long nr_free_buffer_pages(void)
5230 {
5231 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5232 }
5233 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5234 
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)5235 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5236 {
5237 	zoneref->zone = zone;
5238 	zoneref->zone_idx = zone_idx(zone);
5239 }
5240 
5241 /*
5242  * Builds allocation fallback zone lists.
5243  *
5244  * Add all populated zones of a node to the zonelist.
5245  */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)5246 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5247 {
5248 	struct zone *zone;
5249 	enum zone_type zone_type = MAX_NR_ZONES;
5250 	int nr_zones = 0;
5251 
5252 	do {
5253 		zone_type--;
5254 		zone = pgdat->node_zones + zone_type;
5255 		if (populated_zone(zone)) {
5256 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5257 			check_highest_zone(zone_type);
5258 		}
5259 	} while (zone_type);
5260 
5261 	return nr_zones;
5262 }
5263 
5264 #ifdef CONFIG_NUMA
5265 
__parse_numa_zonelist_order(char * s)5266 static int __parse_numa_zonelist_order(char *s)
5267 {
5268 	/*
5269 	 * We used to support different zonelists modes but they turned
5270 	 * out to be just not useful. Let's keep the warning in place
5271 	 * if somebody still use the cmd line parameter so that we do
5272 	 * not fail it silently
5273 	 */
5274 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5275 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5276 		return -EINVAL;
5277 	}
5278 	return 0;
5279 }
5280 
5281 static char numa_zonelist_order[] = "Node";
5282 #define NUMA_ZONELIST_ORDER_LEN	16
5283 /*
5284  * sysctl handler for numa_zonelist_order
5285  */
numa_zonelist_order_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5286 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5287 		void *buffer, size_t *length, loff_t *ppos)
5288 {
5289 	if (write)
5290 		return __parse_numa_zonelist_order(buffer);
5291 	return proc_dostring(table, write, buffer, length, ppos);
5292 }
5293 
5294 static int node_load[MAX_NUMNODES];
5295 
5296 /**
5297  * find_next_best_node - find the next node that should appear in a given node's fallback list
5298  * @node: node whose fallback list we're appending
5299  * @used_node_mask: nodemask_t of already used nodes
5300  *
5301  * We use a number of factors to determine which is the next node that should
5302  * appear on a given node's fallback list.  The node should not have appeared
5303  * already in @node's fallback list, and it should be the next closest node
5304  * according to the distance array (which contains arbitrary distance values
5305  * from each node to each node in the system), and should also prefer nodes
5306  * with no CPUs, since presumably they'll have very little allocation pressure
5307  * on them otherwise.
5308  *
5309  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5310  */
find_next_best_node(int node,nodemask_t * used_node_mask)5311 int find_next_best_node(int node, nodemask_t *used_node_mask)
5312 {
5313 	int n, val;
5314 	int min_val = INT_MAX;
5315 	int best_node = NUMA_NO_NODE;
5316 
5317 	/*
5318 	 * Use the local node if we haven't already, but for memoryless local
5319 	 * node, we should skip it and fall back to other nodes.
5320 	 */
5321 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5322 		node_set(node, *used_node_mask);
5323 		return node;
5324 	}
5325 
5326 	for_each_node_state(n, N_MEMORY) {
5327 
5328 		/* Don't want a node to appear more than once */
5329 		if (node_isset(n, *used_node_mask))
5330 			continue;
5331 
5332 		/* Use the distance array to find the distance */
5333 		val = node_distance(node, n);
5334 
5335 		/* Penalize nodes under us ("prefer the next node") */
5336 		val += (n < node);
5337 
5338 		/* Give preference to headless and unused nodes */
5339 		if (!cpumask_empty(cpumask_of_node(n)))
5340 			val += PENALTY_FOR_NODE_WITH_CPUS;
5341 
5342 		/* Slight preference for less loaded node */
5343 		val *= MAX_NUMNODES;
5344 		val += node_load[n];
5345 
5346 		if (val < min_val) {
5347 			min_val = val;
5348 			best_node = n;
5349 		}
5350 	}
5351 
5352 	if (best_node >= 0)
5353 		node_set(best_node, *used_node_mask);
5354 
5355 	return best_node;
5356 }
5357 
5358 
5359 /*
5360  * Build zonelists ordered by node and zones within node.
5361  * This results in maximum locality--normal zone overflows into local
5362  * DMA zone, if any--but risks exhausting DMA zone.
5363  */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)5364 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5365 		unsigned nr_nodes)
5366 {
5367 	struct zoneref *zonerefs;
5368 	int i;
5369 
5370 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5371 
5372 	for (i = 0; i < nr_nodes; i++) {
5373 		int nr_zones;
5374 
5375 		pg_data_t *node = NODE_DATA(node_order[i]);
5376 
5377 		nr_zones = build_zonerefs_node(node, zonerefs);
5378 		zonerefs += nr_zones;
5379 	}
5380 	zonerefs->zone = NULL;
5381 	zonerefs->zone_idx = 0;
5382 }
5383 
5384 /*
5385  * Build __GFP_THISNODE zonelists
5386  */
build_thisnode_zonelists(pg_data_t * pgdat)5387 static void build_thisnode_zonelists(pg_data_t *pgdat)
5388 {
5389 	struct zoneref *zonerefs;
5390 	int nr_zones;
5391 
5392 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5393 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5394 	zonerefs += nr_zones;
5395 	zonerefs->zone = NULL;
5396 	zonerefs->zone_idx = 0;
5397 }
5398 
build_zonelists(pg_data_t * pgdat)5399 static void build_zonelists(pg_data_t *pgdat)
5400 {
5401 	static int node_order[MAX_NUMNODES];
5402 	int node, nr_nodes = 0;
5403 	nodemask_t used_mask = NODE_MASK_NONE;
5404 	int local_node, prev_node;
5405 
5406 	/* NUMA-aware ordering of nodes */
5407 	local_node = pgdat->node_id;
5408 	prev_node = local_node;
5409 
5410 	memset(node_order, 0, sizeof(node_order));
5411 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5412 		/*
5413 		 * We don't want to pressure a particular node.
5414 		 * So adding penalty to the first node in same
5415 		 * distance group to make it round-robin.
5416 		 */
5417 		if (node_distance(local_node, node) !=
5418 		    node_distance(local_node, prev_node))
5419 			node_load[node] += 1;
5420 
5421 		node_order[nr_nodes++] = node;
5422 		prev_node = node;
5423 	}
5424 
5425 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5426 	build_thisnode_zonelists(pgdat);
5427 	pr_info("Fallback order for Node %d: ", local_node);
5428 	for (node = 0; node < nr_nodes; node++)
5429 		pr_cont("%d ", node_order[node]);
5430 	pr_cont("\n");
5431 }
5432 
5433 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5434 /*
5435  * Return node id of node used for "local" allocations.
5436  * I.e., first node id of first zone in arg node's generic zonelist.
5437  * Used for initializing percpu 'numa_mem', which is used primarily
5438  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5439  */
local_memory_node(int node)5440 int local_memory_node(int node)
5441 {
5442 	struct zoneref *z;
5443 
5444 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5445 				   gfp_zone(GFP_KERNEL),
5446 				   NULL);
5447 	return zonelist_node_idx(z);
5448 }
5449 #endif
5450 
5451 static void setup_min_unmapped_ratio(void);
5452 static void setup_min_slab_ratio(void);
5453 #else	/* CONFIG_NUMA */
5454 
build_zonelists(pg_data_t * pgdat)5455 static void build_zonelists(pg_data_t *pgdat)
5456 {
5457 	struct zoneref *zonerefs;
5458 	int nr_zones;
5459 
5460 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5461 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5462 	zonerefs += nr_zones;
5463 
5464 	zonerefs->zone = NULL;
5465 	zonerefs->zone_idx = 0;
5466 }
5467 
5468 #endif	/* CONFIG_NUMA */
5469 
5470 /*
5471  * Boot pageset table. One per cpu which is going to be used for all
5472  * zones and all nodes. The parameters will be set in such a way
5473  * that an item put on a list will immediately be handed over to
5474  * the buddy list. This is safe since pageset manipulation is done
5475  * with interrupts disabled.
5476  *
5477  * The boot_pagesets must be kept even after bootup is complete for
5478  * unused processors and/or zones. They do play a role for bootstrapping
5479  * hotplugged processors.
5480  *
5481  * zoneinfo_show() and maybe other functions do
5482  * not check if the processor is online before following the pageset pointer.
5483  * Other parts of the kernel may not check if the zone is available.
5484  */
5485 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5486 /* These effectively disable the pcplists in the boot pageset completely */
5487 #define BOOT_PAGESET_HIGH	0
5488 #define BOOT_PAGESET_BATCH	1
5489 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5490 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5491 
__build_all_zonelists(void * data)5492 static void __build_all_zonelists(void *data)
5493 {
5494 	int nid;
5495 	int __maybe_unused cpu;
5496 	pg_data_t *self = data;
5497 	unsigned long flags;
5498 
5499 	/*
5500 	 * The zonelist_update_seq must be acquired with irqsave because the
5501 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5502 	 */
5503 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5504 	/*
5505 	 * Also disable synchronous printk() to prevent any printk() from
5506 	 * trying to hold port->lock, for
5507 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5508 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5509 	 */
5510 	printk_deferred_enter();
5511 
5512 #ifdef CONFIG_NUMA
5513 	memset(node_load, 0, sizeof(node_load));
5514 #endif
5515 
5516 	/*
5517 	 * This node is hotadded and no memory is yet present.   So just
5518 	 * building zonelists is fine - no need to touch other nodes.
5519 	 */
5520 	if (self && !node_online(self->node_id)) {
5521 		build_zonelists(self);
5522 	} else {
5523 		/*
5524 		 * All possible nodes have pgdat preallocated
5525 		 * in free_area_init
5526 		 */
5527 		for_each_node(nid) {
5528 			pg_data_t *pgdat = NODE_DATA(nid);
5529 
5530 			build_zonelists(pgdat);
5531 		}
5532 
5533 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5534 		/*
5535 		 * We now know the "local memory node" for each node--
5536 		 * i.e., the node of the first zone in the generic zonelist.
5537 		 * Set up numa_mem percpu variable for on-line cpus.  During
5538 		 * boot, only the boot cpu should be on-line;  we'll init the
5539 		 * secondary cpus' numa_mem as they come on-line.  During
5540 		 * node/memory hotplug, we'll fixup all on-line cpus.
5541 		 */
5542 		for_each_online_cpu(cpu)
5543 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5544 #endif
5545 	}
5546 
5547 	printk_deferred_exit();
5548 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5549 }
5550 
5551 static noinline void __init
build_all_zonelists_init(void)5552 build_all_zonelists_init(void)
5553 {
5554 	int cpu;
5555 
5556 	__build_all_zonelists(NULL);
5557 
5558 	/*
5559 	 * Initialize the boot_pagesets that are going to be used
5560 	 * for bootstrapping processors. The real pagesets for
5561 	 * each zone will be allocated later when the per cpu
5562 	 * allocator is available.
5563 	 *
5564 	 * boot_pagesets are used also for bootstrapping offline
5565 	 * cpus if the system is already booted because the pagesets
5566 	 * are needed to initialize allocators on a specific cpu too.
5567 	 * F.e. the percpu allocator needs the page allocator which
5568 	 * needs the percpu allocator in order to allocate its pagesets
5569 	 * (a chicken-egg dilemma).
5570 	 */
5571 	for_each_possible_cpu(cpu)
5572 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5573 
5574 	mminit_verify_zonelist();
5575 	cpuset_init_current_mems_allowed();
5576 }
5577 
5578 /*
5579  * unless system_state == SYSTEM_BOOTING.
5580  *
5581  * __ref due to call of __init annotated helper build_all_zonelists_init
5582  * [protected by SYSTEM_BOOTING].
5583  */
build_all_zonelists(pg_data_t * pgdat)5584 void __ref build_all_zonelists(pg_data_t *pgdat)
5585 {
5586 	unsigned long vm_total_pages;
5587 
5588 	if (system_state == SYSTEM_BOOTING) {
5589 		build_all_zonelists_init();
5590 	} else {
5591 		__build_all_zonelists(pgdat);
5592 		/* cpuset refresh routine should be here */
5593 	}
5594 	/* Get the number of free pages beyond high watermark in all zones. */
5595 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5596 	/*
5597 	 * Disable grouping by mobility if the number of pages in the
5598 	 * system is too low to allow the mechanism to work. It would be
5599 	 * more accurate, but expensive to check per-zone. This check is
5600 	 * made on memory-hotadd so a system can start with mobility
5601 	 * disabled and enable it later
5602 	 */
5603 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5604 		page_group_by_mobility_disabled = 1;
5605 	else
5606 		page_group_by_mobility_disabled = 0;
5607 
5608 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5609 		nr_online_nodes,
5610 		str_off_on(page_group_by_mobility_disabled),
5611 		vm_total_pages);
5612 #ifdef CONFIG_NUMA
5613 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5614 #endif
5615 }
5616 
zone_batchsize(struct zone * zone)5617 static int zone_batchsize(struct zone *zone)
5618 {
5619 #ifdef CONFIG_MMU
5620 	int batch;
5621 
5622 	/*
5623 	 * The number of pages to batch allocate is either ~0.1%
5624 	 * of the zone or 1MB, whichever is smaller. The batch
5625 	 * size is striking a balance between allocation latency
5626 	 * and zone lock contention.
5627 	 */
5628 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5629 	batch /= 4;		/* We effectively *= 4 below */
5630 	if (batch < 1)
5631 		batch = 1;
5632 
5633 	/*
5634 	 * Clamp the batch to a 2^n - 1 value. Having a power
5635 	 * of 2 value was found to be more likely to have
5636 	 * suboptimal cache aliasing properties in some cases.
5637 	 *
5638 	 * For example if 2 tasks are alternately allocating
5639 	 * batches of pages, one task can end up with a lot
5640 	 * of pages of one half of the possible page colors
5641 	 * and the other with pages of the other colors.
5642 	 */
5643 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5644 
5645 	return batch;
5646 
5647 #else
5648 	/* The deferral and batching of frees should be suppressed under NOMMU
5649 	 * conditions.
5650 	 *
5651 	 * The problem is that NOMMU needs to be able to allocate large chunks
5652 	 * of contiguous memory as there's no hardware page translation to
5653 	 * assemble apparent contiguous memory from discontiguous pages.
5654 	 *
5655 	 * Queueing large contiguous runs of pages for batching, however,
5656 	 * causes the pages to actually be freed in smaller chunks.  As there
5657 	 * can be a significant delay between the individual batches being
5658 	 * recycled, this leads to the once large chunks of space being
5659 	 * fragmented and becoming unavailable for high-order allocations.
5660 	 */
5661 	return 0;
5662 #endif
5663 }
5664 
5665 static int percpu_pagelist_high_fraction;
zone_highsize(struct zone * zone,int batch,int cpu_online,int high_fraction)5666 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5667 			 int high_fraction)
5668 {
5669 #ifdef CONFIG_MMU
5670 	int high;
5671 	int nr_split_cpus;
5672 	unsigned long total_pages;
5673 
5674 	if (!high_fraction) {
5675 		/*
5676 		 * By default, the high value of the pcp is based on the zone
5677 		 * low watermark so that if they are full then background
5678 		 * reclaim will not be started prematurely.
5679 		 */
5680 		total_pages = low_wmark_pages(zone);
5681 	} else {
5682 		/*
5683 		 * If percpu_pagelist_high_fraction is configured, the high
5684 		 * value is based on a fraction of the managed pages in the
5685 		 * zone.
5686 		 */
5687 		total_pages = zone_managed_pages(zone) / high_fraction;
5688 	}
5689 
5690 	/*
5691 	 * Split the high value across all online CPUs local to the zone. Note
5692 	 * that early in boot that CPUs may not be online yet and that during
5693 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5694 	 * onlined. For memory nodes that have no CPUs, split the high value
5695 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5696 	 * prematurely due to pages stored on pcp lists.
5697 	 */
5698 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5699 	if (!nr_split_cpus)
5700 		nr_split_cpus = num_online_cpus();
5701 	high = total_pages / nr_split_cpus;
5702 
5703 	/*
5704 	 * Ensure high is at least batch*4. The multiple is based on the
5705 	 * historical relationship between high and batch.
5706 	 */
5707 	high = max(high, batch << 2);
5708 
5709 	return high;
5710 #else
5711 	return 0;
5712 #endif
5713 }
5714 
5715 /*
5716  * pcp->high and pcp->batch values are related and generally batch is lower
5717  * than high. They are also related to pcp->count such that count is lower
5718  * than high, and as soon as it reaches high, the pcplist is flushed.
5719  *
5720  * However, guaranteeing these relations at all times would require e.g. write
5721  * barriers here but also careful usage of read barriers at the read side, and
5722  * thus be prone to error and bad for performance. Thus the update only prevents
5723  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5724  * should ensure they can cope with those fields changing asynchronously, and
5725  * fully trust only the pcp->count field on the local CPU with interrupts
5726  * disabled.
5727  *
5728  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5729  * outside of boot time (or some other assurance that no concurrent updaters
5730  * exist).
5731  */
pageset_update(struct per_cpu_pages * pcp,unsigned long high_min,unsigned long high_max,unsigned long batch)5732 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5733 			   unsigned long high_max, unsigned long batch)
5734 {
5735 	WRITE_ONCE(pcp->batch, batch);
5736 	WRITE_ONCE(pcp->high_min, high_min);
5737 	WRITE_ONCE(pcp->high_max, high_max);
5738 }
5739 
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)5740 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5741 {
5742 	int pindex;
5743 
5744 	memset(pcp, 0, sizeof(*pcp));
5745 	memset(pzstats, 0, sizeof(*pzstats));
5746 
5747 	spin_lock_init(&pcp->lock);
5748 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5749 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5750 
5751 	/*
5752 	 * Set batch and high values safe for a boot pageset. A true percpu
5753 	 * pageset's initialization will update them subsequently. Here we don't
5754 	 * need to be as careful as pageset_update() as nobody can access the
5755 	 * pageset yet.
5756 	 */
5757 	pcp->high_min = BOOT_PAGESET_HIGH;
5758 	pcp->high_max = BOOT_PAGESET_HIGH;
5759 	pcp->batch = BOOT_PAGESET_BATCH;
5760 	pcp->free_count = 0;
5761 }
5762 
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high_min,unsigned long high_max,unsigned long batch)5763 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5764 					      unsigned long high_max, unsigned long batch)
5765 {
5766 	struct per_cpu_pages *pcp;
5767 	int cpu;
5768 
5769 	for_each_possible_cpu(cpu) {
5770 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5771 		pageset_update(pcp, high_min, high_max, batch);
5772 	}
5773 }
5774 
5775 /*
5776  * Calculate and set new high and batch values for all per-cpu pagesets of a
5777  * zone based on the zone's size.
5778  */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)5779 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5780 {
5781 	int new_high_min, new_high_max, new_batch;
5782 
5783 	new_batch = max(1, zone_batchsize(zone));
5784 	if (percpu_pagelist_high_fraction) {
5785 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5786 					     percpu_pagelist_high_fraction);
5787 		/*
5788 		 * PCP high is tuned manually, disable auto-tuning via
5789 		 * setting high_min and high_max to the manual value.
5790 		 */
5791 		new_high_max = new_high_min;
5792 	} else {
5793 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5794 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5795 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5796 	}
5797 
5798 	if (zone->pageset_high_min == new_high_min &&
5799 	    zone->pageset_high_max == new_high_max &&
5800 	    zone->pageset_batch == new_batch)
5801 		return;
5802 
5803 	zone->pageset_high_min = new_high_min;
5804 	zone->pageset_high_max = new_high_max;
5805 	zone->pageset_batch = new_batch;
5806 
5807 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5808 					  new_batch);
5809 }
5810 
setup_zone_pageset(struct zone * zone)5811 void __meminit setup_zone_pageset(struct zone *zone)
5812 {
5813 	int cpu;
5814 
5815 	/* Size may be 0 on !SMP && !NUMA */
5816 	if (sizeof(struct per_cpu_zonestat) > 0)
5817 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5818 
5819 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5820 	for_each_possible_cpu(cpu) {
5821 		struct per_cpu_pages *pcp;
5822 		struct per_cpu_zonestat *pzstats;
5823 
5824 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5825 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5826 		per_cpu_pages_init(pcp, pzstats);
5827 	}
5828 
5829 	zone_set_pageset_high_and_batch(zone, 0);
5830 }
5831 
5832 /*
5833  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5834  * page high values need to be recalculated.
5835  */
zone_pcp_update(struct zone * zone,int cpu_online)5836 static void zone_pcp_update(struct zone *zone, int cpu_online)
5837 {
5838 	mutex_lock(&pcp_batch_high_lock);
5839 	zone_set_pageset_high_and_batch(zone, cpu_online);
5840 	mutex_unlock(&pcp_batch_high_lock);
5841 }
5842 
zone_pcp_update_cacheinfo(struct zone * zone,unsigned int cpu)5843 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5844 {
5845 	struct per_cpu_pages *pcp;
5846 	struct cpu_cacheinfo *cci;
5847 
5848 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5849 	cci = get_cpu_cacheinfo(cpu);
5850 	/*
5851 	 * If data cache slice of CPU is large enough, "pcp->batch"
5852 	 * pages can be preserved in PCP before draining PCP for
5853 	 * consecutive high-order pages freeing without allocation.
5854 	 * This can reduce zone lock contention without hurting
5855 	 * cache-hot pages sharing.
5856 	 */
5857 	spin_lock(&pcp->lock);
5858 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5859 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5860 	else
5861 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5862 	spin_unlock(&pcp->lock);
5863 }
5864 
setup_pcp_cacheinfo(unsigned int cpu)5865 void setup_pcp_cacheinfo(unsigned int cpu)
5866 {
5867 	struct zone *zone;
5868 
5869 	for_each_populated_zone(zone)
5870 		zone_pcp_update_cacheinfo(zone, cpu);
5871 }
5872 
5873 /*
5874  * Allocate per cpu pagesets and initialize them.
5875  * Before this call only boot pagesets were available.
5876  */
setup_per_cpu_pageset(void)5877 void __init setup_per_cpu_pageset(void)
5878 {
5879 	struct pglist_data *pgdat;
5880 	struct zone *zone;
5881 	int __maybe_unused cpu;
5882 
5883 	for_each_populated_zone(zone)
5884 		setup_zone_pageset(zone);
5885 
5886 #ifdef CONFIG_NUMA
5887 	/*
5888 	 * Unpopulated zones continue using the boot pagesets.
5889 	 * The numa stats for these pagesets need to be reset.
5890 	 * Otherwise, they will end up skewing the stats of
5891 	 * the nodes these zones are associated with.
5892 	 */
5893 	for_each_possible_cpu(cpu) {
5894 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5895 		memset(pzstats->vm_numa_event, 0,
5896 		       sizeof(pzstats->vm_numa_event));
5897 	}
5898 #endif
5899 
5900 	for_each_online_pgdat(pgdat)
5901 		pgdat->per_cpu_nodestats =
5902 			alloc_percpu(struct per_cpu_nodestat);
5903 }
5904 
zone_pcp_init(struct zone * zone)5905 __meminit void zone_pcp_init(struct zone *zone)
5906 {
5907 	/*
5908 	 * per cpu subsystem is not up at this point. The following code
5909 	 * relies on the ability of the linker to provide the
5910 	 * offset of a (static) per cpu variable into the per cpu area.
5911 	 */
5912 	zone->per_cpu_pageset = &boot_pageset;
5913 	zone->per_cpu_zonestats = &boot_zonestats;
5914 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5915 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5916 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5917 
5918 	if (populated_zone(zone))
5919 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5920 			 zone->present_pages, zone_batchsize(zone));
5921 }
5922 
5923 static void setup_per_zone_lowmem_reserve(void);
5924 
adjust_managed_page_count(struct page * page,long count)5925 void adjust_managed_page_count(struct page *page, long count)
5926 {
5927 	atomic_long_add(count, &page_zone(page)->managed_pages);
5928 	totalram_pages_add(count);
5929 	setup_per_zone_lowmem_reserve();
5930 }
5931 EXPORT_SYMBOL(adjust_managed_page_count);
5932 
free_reserved_area(void * start,void * end,int poison,const char * s)5933 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5934 {
5935 	void *pos;
5936 	unsigned long pages = 0;
5937 
5938 	start = (void *)PAGE_ALIGN((unsigned long)start);
5939 	end = (void *)((unsigned long)end & PAGE_MASK);
5940 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5941 		struct page *page = virt_to_page(pos);
5942 		void *direct_map_addr;
5943 
5944 		/*
5945 		 * 'direct_map_addr' might be different from 'pos'
5946 		 * because some architectures' virt_to_page()
5947 		 * work with aliases.  Getting the direct map
5948 		 * address ensures that we get a _writeable_
5949 		 * alias for the memset().
5950 		 */
5951 		direct_map_addr = page_address(page);
5952 		/*
5953 		 * Perform a kasan-unchecked memset() since this memory
5954 		 * has not been initialized.
5955 		 */
5956 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5957 		if ((unsigned int)poison <= 0xFF)
5958 			memset(direct_map_addr, poison, PAGE_SIZE);
5959 
5960 		free_reserved_page(page);
5961 	}
5962 
5963 	if (pages && s)
5964 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5965 
5966 	return pages;
5967 }
5968 
free_reserved_page(struct page * page)5969 void free_reserved_page(struct page *page)
5970 {
5971 	clear_page_tag_ref(page);
5972 	ClearPageReserved(page);
5973 	init_page_count(page);
5974 	__free_page(page);
5975 	adjust_managed_page_count(page, 1);
5976 }
5977 EXPORT_SYMBOL(free_reserved_page);
5978 
page_alloc_cpu_dead(unsigned int cpu)5979 static int page_alloc_cpu_dead(unsigned int cpu)
5980 {
5981 	struct zone *zone;
5982 
5983 	lru_add_drain_cpu(cpu);
5984 	mlock_drain_remote(cpu);
5985 	drain_pages(cpu);
5986 
5987 	/*
5988 	 * Spill the event counters of the dead processor
5989 	 * into the current processors event counters.
5990 	 * This artificially elevates the count of the current
5991 	 * processor.
5992 	 */
5993 	vm_events_fold_cpu(cpu);
5994 
5995 	/*
5996 	 * Zero the differential counters of the dead processor
5997 	 * so that the vm statistics are consistent.
5998 	 *
5999 	 * This is only okay since the processor is dead and cannot
6000 	 * race with what we are doing.
6001 	 */
6002 	cpu_vm_stats_fold(cpu);
6003 
6004 	for_each_populated_zone(zone)
6005 		zone_pcp_update(zone, 0);
6006 
6007 	return 0;
6008 }
6009 
page_alloc_cpu_online(unsigned int cpu)6010 static int page_alloc_cpu_online(unsigned int cpu)
6011 {
6012 	struct zone *zone;
6013 
6014 	for_each_populated_zone(zone)
6015 		zone_pcp_update(zone, 1);
6016 	return 0;
6017 }
6018 
page_alloc_init_cpuhp(void)6019 void __init page_alloc_init_cpuhp(void)
6020 {
6021 	int ret;
6022 
6023 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
6024 					"mm/page_alloc:pcp",
6025 					page_alloc_cpu_online,
6026 					page_alloc_cpu_dead);
6027 	WARN_ON(ret < 0);
6028 }
6029 
6030 /*
6031  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6032  *	or min_free_kbytes changes.
6033  */
calculate_totalreserve_pages(void)6034 static void calculate_totalreserve_pages(void)
6035 {
6036 	struct pglist_data *pgdat;
6037 	unsigned long reserve_pages = 0;
6038 	enum zone_type i, j;
6039 
6040 	for_each_online_pgdat(pgdat) {
6041 
6042 		pgdat->totalreserve_pages = 0;
6043 
6044 		for (i = 0; i < MAX_NR_ZONES; i++) {
6045 			struct zone *zone = pgdat->node_zones + i;
6046 			long max = 0;
6047 			unsigned long managed_pages = zone_managed_pages(zone);
6048 
6049 			/* Find valid and maximum lowmem_reserve in the zone */
6050 			for (j = i; j < MAX_NR_ZONES; j++) {
6051 				if (zone->lowmem_reserve[j] > max)
6052 					max = zone->lowmem_reserve[j];
6053 			}
6054 
6055 			/* we treat the high watermark as reserved pages. */
6056 			max += high_wmark_pages(zone);
6057 
6058 			if (max > managed_pages)
6059 				max = managed_pages;
6060 
6061 			pgdat->totalreserve_pages += max;
6062 
6063 			reserve_pages += max;
6064 		}
6065 	}
6066 	totalreserve_pages = reserve_pages;
6067 	trace_mm_calculate_totalreserve_pages(totalreserve_pages);
6068 }
6069 
6070 /*
6071  * setup_per_zone_lowmem_reserve - called whenever
6072  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6073  *	has a correct pages reserved value, so an adequate number of
6074  *	pages are left in the zone after a successful __alloc_pages().
6075  */
setup_per_zone_lowmem_reserve(void)6076 static void setup_per_zone_lowmem_reserve(void)
6077 {
6078 	struct pglist_data *pgdat;
6079 	enum zone_type i, j;
6080 
6081 	for_each_online_pgdat(pgdat) {
6082 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
6083 			struct zone *zone = &pgdat->node_zones[i];
6084 			int ratio = sysctl_lowmem_reserve_ratio[i];
6085 			bool clear = !ratio || !zone_managed_pages(zone);
6086 			unsigned long managed_pages = 0;
6087 
6088 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
6089 				struct zone *upper_zone = &pgdat->node_zones[j];
6090 
6091 				managed_pages += zone_managed_pages(upper_zone);
6092 
6093 				if (clear)
6094 					zone->lowmem_reserve[j] = 0;
6095 				else
6096 					zone->lowmem_reserve[j] = managed_pages / ratio;
6097 				trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone,
6098 								       zone->lowmem_reserve[j]);
6099 			}
6100 		}
6101 	}
6102 
6103 	/* update totalreserve_pages */
6104 	calculate_totalreserve_pages();
6105 }
6106 
__setup_per_zone_wmarks(void)6107 static void __setup_per_zone_wmarks(void)
6108 {
6109 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6110 	unsigned long lowmem_pages = 0;
6111 	struct zone *zone;
6112 	unsigned long flags;
6113 
6114 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
6115 	for_each_zone(zone) {
6116 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
6117 			lowmem_pages += zone_managed_pages(zone);
6118 	}
6119 
6120 	for_each_zone(zone) {
6121 		u64 tmp;
6122 
6123 		spin_lock_irqsave(&zone->lock, flags);
6124 		tmp = (u64)pages_min * zone_managed_pages(zone);
6125 		tmp = div64_ul(tmp, lowmem_pages);
6126 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
6127 			/*
6128 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6129 			 * need highmem and movable zones pages, so cap pages_min
6130 			 * to a small  value here.
6131 			 *
6132 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6133 			 * deltas control async page reclaim, and so should
6134 			 * not be capped for highmem and movable zones.
6135 			 */
6136 			unsigned long min_pages;
6137 
6138 			min_pages = zone_managed_pages(zone) / 1024;
6139 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6140 			zone->_watermark[WMARK_MIN] = min_pages;
6141 		} else {
6142 			/*
6143 			 * If it's a lowmem zone, reserve a number of pages
6144 			 * proportionate to the zone's size.
6145 			 */
6146 			zone->_watermark[WMARK_MIN] = tmp;
6147 		}
6148 
6149 		/*
6150 		 * Set the kswapd watermarks distance according to the
6151 		 * scale factor in proportion to available memory, but
6152 		 * ensure a minimum size on small systems.
6153 		 */
6154 		tmp = max_t(u64, tmp >> 2,
6155 			    mult_frac(zone_managed_pages(zone),
6156 				      watermark_scale_factor, 10000));
6157 
6158 		zone->watermark_boost = 0;
6159 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6160 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6161 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6162 		trace_mm_setup_per_zone_wmarks(zone);
6163 
6164 		spin_unlock_irqrestore(&zone->lock, flags);
6165 	}
6166 
6167 	/* update totalreserve_pages */
6168 	calculate_totalreserve_pages();
6169 }
6170 
6171 /**
6172  * setup_per_zone_wmarks - called when min_free_kbytes changes
6173  * or when memory is hot-{added|removed}
6174  *
6175  * Ensures that the watermark[min,low,high] values for each zone are set
6176  * correctly with respect to min_free_kbytes.
6177  */
setup_per_zone_wmarks(void)6178 void setup_per_zone_wmarks(void)
6179 {
6180 	struct zone *zone;
6181 	static DEFINE_SPINLOCK(lock);
6182 
6183 	spin_lock(&lock);
6184 	__setup_per_zone_wmarks();
6185 	spin_unlock(&lock);
6186 
6187 	/*
6188 	 * The watermark size have changed so update the pcpu batch
6189 	 * and high limits or the limits may be inappropriate.
6190 	 */
6191 	for_each_zone(zone)
6192 		zone_pcp_update(zone, 0);
6193 }
6194 
6195 /*
6196  * Initialise min_free_kbytes.
6197  *
6198  * For small machines we want it small (128k min).  For large machines
6199  * we want it large (256MB max).  But it is not linear, because network
6200  * bandwidth does not increase linearly with machine size.  We use
6201  *
6202  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6203  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6204  *
6205  * which yields
6206  *
6207  * 16MB:	512k
6208  * 32MB:	724k
6209  * 64MB:	1024k
6210  * 128MB:	1448k
6211  * 256MB:	2048k
6212  * 512MB:	2896k
6213  * 1024MB:	4096k
6214  * 2048MB:	5792k
6215  * 4096MB:	8192k
6216  * 8192MB:	11584k
6217  * 16384MB:	16384k
6218  */
calculate_min_free_kbytes(void)6219 void calculate_min_free_kbytes(void)
6220 {
6221 	unsigned long lowmem_kbytes;
6222 	int new_min_free_kbytes;
6223 
6224 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6225 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6226 
6227 	if (new_min_free_kbytes > user_min_free_kbytes)
6228 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6229 	else
6230 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6231 				new_min_free_kbytes, user_min_free_kbytes);
6232 
6233 }
6234 
init_per_zone_wmark_min(void)6235 int __meminit init_per_zone_wmark_min(void)
6236 {
6237 	calculate_min_free_kbytes();
6238 	setup_per_zone_wmarks();
6239 	refresh_zone_stat_thresholds();
6240 	setup_per_zone_lowmem_reserve();
6241 
6242 #ifdef CONFIG_NUMA
6243 	setup_min_unmapped_ratio();
6244 	setup_min_slab_ratio();
6245 #endif
6246 
6247 	khugepaged_min_free_kbytes_update();
6248 
6249 	return 0;
6250 }
postcore_initcall(init_per_zone_wmark_min)6251 postcore_initcall(init_per_zone_wmark_min)
6252 
6253 /*
6254  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6255  *	that we can call two helper functions whenever min_free_kbytes
6256  *	changes.
6257  */
6258 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6259 		void *buffer, size_t *length, loff_t *ppos)
6260 {
6261 	int rc;
6262 
6263 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6264 	if (rc)
6265 		return rc;
6266 
6267 	if (write) {
6268 		user_min_free_kbytes = min_free_kbytes;
6269 		setup_per_zone_wmarks();
6270 	}
6271 	return 0;
6272 }
6273 
watermark_scale_factor_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6274 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6275 		void *buffer, size_t *length, loff_t *ppos)
6276 {
6277 	int rc;
6278 
6279 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6280 	if (rc)
6281 		return rc;
6282 
6283 	if (write)
6284 		setup_per_zone_wmarks();
6285 
6286 	return 0;
6287 }
6288 
6289 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)6290 static void setup_min_unmapped_ratio(void)
6291 {
6292 	pg_data_t *pgdat;
6293 	struct zone *zone;
6294 
6295 	for_each_online_pgdat(pgdat)
6296 		pgdat->min_unmapped_pages = 0;
6297 
6298 	for_each_zone(zone)
6299 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6300 						         sysctl_min_unmapped_ratio) / 100;
6301 }
6302 
6303 
sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6304 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6305 		void *buffer, size_t *length, loff_t *ppos)
6306 {
6307 	int rc;
6308 
6309 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6310 	if (rc)
6311 		return rc;
6312 
6313 	setup_min_unmapped_ratio();
6314 
6315 	return 0;
6316 }
6317 
setup_min_slab_ratio(void)6318 static void setup_min_slab_ratio(void)
6319 {
6320 	pg_data_t *pgdat;
6321 	struct zone *zone;
6322 
6323 	for_each_online_pgdat(pgdat)
6324 		pgdat->min_slab_pages = 0;
6325 
6326 	for_each_zone(zone)
6327 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6328 						     sysctl_min_slab_ratio) / 100;
6329 }
6330 
sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6331 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6332 		void *buffer, size_t *length, loff_t *ppos)
6333 {
6334 	int rc;
6335 
6336 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6337 	if (rc)
6338 		return rc;
6339 
6340 	setup_min_slab_ratio();
6341 
6342 	return 0;
6343 }
6344 #endif
6345 
6346 /*
6347  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6348  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6349  *	whenever sysctl_lowmem_reserve_ratio changes.
6350  *
6351  * The reserve ratio obviously has absolutely no relation with the
6352  * minimum watermarks. The lowmem reserve ratio can only make sense
6353  * if in function of the boot time zone sizes.
6354  */
lowmem_reserve_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6355 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6356 		int write, void *buffer, size_t *length, loff_t *ppos)
6357 {
6358 	int i;
6359 
6360 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6361 
6362 	for (i = 0; i < MAX_NR_ZONES; i++) {
6363 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6364 			sysctl_lowmem_reserve_ratio[i] = 0;
6365 	}
6366 
6367 	setup_per_zone_lowmem_reserve();
6368 	return 0;
6369 }
6370 
6371 /*
6372  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6373  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6374  * pagelist can have before it gets flushed back to buddy allocator.
6375  */
percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6376 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6377 		int write, void *buffer, size_t *length, loff_t *ppos)
6378 {
6379 	struct zone *zone;
6380 	int old_percpu_pagelist_high_fraction;
6381 	int ret;
6382 
6383 	mutex_lock(&pcp_batch_high_lock);
6384 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6385 
6386 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6387 	if (!write || ret < 0)
6388 		goto out;
6389 
6390 	/* Sanity checking to avoid pcp imbalance */
6391 	if (percpu_pagelist_high_fraction &&
6392 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6393 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6394 		ret = -EINVAL;
6395 		goto out;
6396 	}
6397 
6398 	/* No change? */
6399 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6400 		goto out;
6401 
6402 	for_each_populated_zone(zone)
6403 		zone_set_pageset_high_and_batch(zone, 0);
6404 out:
6405 	mutex_unlock(&pcp_batch_high_lock);
6406 	return ret;
6407 }
6408 
6409 static const struct ctl_table page_alloc_sysctl_table[] = {
6410 	{
6411 		.procname	= "min_free_kbytes",
6412 		.data		= &min_free_kbytes,
6413 		.maxlen		= sizeof(min_free_kbytes),
6414 		.mode		= 0644,
6415 		.proc_handler	= min_free_kbytes_sysctl_handler,
6416 		.extra1		= SYSCTL_ZERO,
6417 	},
6418 	{
6419 		.procname	= "watermark_boost_factor",
6420 		.data		= &watermark_boost_factor,
6421 		.maxlen		= sizeof(watermark_boost_factor),
6422 		.mode		= 0644,
6423 		.proc_handler	= proc_dointvec_minmax,
6424 		.extra1		= SYSCTL_ZERO,
6425 	},
6426 	{
6427 		.procname	= "watermark_scale_factor",
6428 		.data		= &watermark_scale_factor,
6429 		.maxlen		= sizeof(watermark_scale_factor),
6430 		.mode		= 0644,
6431 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6432 		.extra1		= SYSCTL_ONE,
6433 		.extra2		= SYSCTL_THREE_THOUSAND,
6434 	},
6435 	{
6436 		.procname	= "defrag_mode",
6437 		.data		= &defrag_mode,
6438 		.maxlen		= sizeof(defrag_mode),
6439 		.mode		= 0644,
6440 		.proc_handler	= proc_dointvec_minmax,
6441 		.extra1		= SYSCTL_ZERO,
6442 		.extra2		= SYSCTL_ONE,
6443 	},
6444 	{
6445 		.procname	= "percpu_pagelist_high_fraction",
6446 		.data		= &percpu_pagelist_high_fraction,
6447 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6448 		.mode		= 0644,
6449 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6450 		.extra1		= SYSCTL_ZERO,
6451 	},
6452 	{
6453 		.procname	= "lowmem_reserve_ratio",
6454 		.data		= &sysctl_lowmem_reserve_ratio,
6455 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6456 		.mode		= 0644,
6457 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6458 	},
6459 #ifdef CONFIG_NUMA
6460 	{
6461 		.procname	= "numa_zonelist_order",
6462 		.data		= &numa_zonelist_order,
6463 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6464 		.mode		= 0644,
6465 		.proc_handler	= numa_zonelist_order_handler,
6466 	},
6467 	{
6468 		.procname	= "min_unmapped_ratio",
6469 		.data		= &sysctl_min_unmapped_ratio,
6470 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6471 		.mode		= 0644,
6472 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6473 		.extra1		= SYSCTL_ZERO,
6474 		.extra2		= SYSCTL_ONE_HUNDRED,
6475 	},
6476 	{
6477 		.procname	= "min_slab_ratio",
6478 		.data		= &sysctl_min_slab_ratio,
6479 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6480 		.mode		= 0644,
6481 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6482 		.extra1		= SYSCTL_ZERO,
6483 		.extra2		= SYSCTL_ONE_HUNDRED,
6484 	},
6485 #endif
6486 };
6487 
page_alloc_sysctl_init(void)6488 void __init page_alloc_sysctl_init(void)
6489 {
6490 	register_sysctl_init("vm", page_alloc_sysctl_table);
6491 }
6492 
6493 #ifdef CONFIG_CONTIG_ALLOC
6494 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)6495 static void alloc_contig_dump_pages(struct list_head *page_list)
6496 {
6497 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6498 
6499 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6500 		struct page *page;
6501 
6502 		dump_stack();
6503 		list_for_each_entry(page, page_list, lru)
6504 			dump_page(page, "migration failure");
6505 	}
6506 }
6507 
6508 /*
6509  * [start, end) must belong to a single zone.
6510  * @migratetype: using migratetype to filter the type of migration in
6511  *		trace_mm_alloc_contig_migrate_range_info.
6512  */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end,int migratetype)6513 static int __alloc_contig_migrate_range(struct compact_control *cc,
6514 		unsigned long start, unsigned long end, int migratetype)
6515 {
6516 	/* This function is based on compact_zone() from compaction.c. */
6517 	unsigned int nr_reclaimed;
6518 	unsigned long pfn = start;
6519 	unsigned int tries = 0;
6520 	int ret = 0;
6521 	struct migration_target_control mtc = {
6522 		.nid = zone_to_nid(cc->zone),
6523 		.gfp_mask = cc->gfp_mask,
6524 		.reason = MR_CONTIG_RANGE,
6525 	};
6526 	struct page *page;
6527 	unsigned long total_mapped = 0;
6528 	unsigned long total_migrated = 0;
6529 	unsigned long total_reclaimed = 0;
6530 
6531 	lru_cache_disable();
6532 
6533 	while (pfn < end || !list_empty(&cc->migratepages)) {
6534 		if (fatal_signal_pending(current)) {
6535 			ret = -EINTR;
6536 			break;
6537 		}
6538 
6539 		if (list_empty(&cc->migratepages)) {
6540 			cc->nr_migratepages = 0;
6541 			ret = isolate_migratepages_range(cc, pfn, end);
6542 			if (ret && ret != -EAGAIN)
6543 				break;
6544 			pfn = cc->migrate_pfn;
6545 			tries = 0;
6546 		} else if (++tries == 5) {
6547 			ret = -EBUSY;
6548 			break;
6549 		}
6550 
6551 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6552 							&cc->migratepages);
6553 		cc->nr_migratepages -= nr_reclaimed;
6554 
6555 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6556 			total_reclaimed += nr_reclaimed;
6557 			list_for_each_entry(page, &cc->migratepages, lru) {
6558 				struct folio *folio = page_folio(page);
6559 
6560 				total_mapped += folio_mapped(folio) *
6561 						folio_nr_pages(folio);
6562 			}
6563 		}
6564 
6565 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6566 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6567 
6568 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6569 			total_migrated += cc->nr_migratepages;
6570 
6571 		/*
6572 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6573 		 * to retry again over this error, so do the same here.
6574 		 */
6575 		if (ret == -ENOMEM)
6576 			break;
6577 	}
6578 
6579 	lru_cache_enable();
6580 	if (ret < 0) {
6581 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6582 			alloc_contig_dump_pages(&cc->migratepages);
6583 		putback_movable_pages(&cc->migratepages);
6584 	}
6585 
6586 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6587 						 total_migrated,
6588 						 total_reclaimed,
6589 						 total_mapped);
6590 	return (ret < 0) ? ret : 0;
6591 }
6592 
split_free_pages(struct list_head * list,gfp_t gfp_mask)6593 static void split_free_pages(struct list_head *list, gfp_t gfp_mask)
6594 {
6595 	int order;
6596 
6597 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6598 		struct page *page, *next;
6599 		int nr_pages = 1 << order;
6600 
6601 		list_for_each_entry_safe(page, next, &list[order], lru) {
6602 			int i;
6603 
6604 			post_alloc_hook(page, order, gfp_mask);
6605 			set_page_refcounted(page);
6606 			if (!order)
6607 				continue;
6608 
6609 			split_page(page, order);
6610 
6611 			/* Add all subpages to the order-0 head, in sequence. */
6612 			list_del(&page->lru);
6613 			for (i = 0; i < nr_pages; i++)
6614 				list_add_tail(&page[i].lru, &list[0]);
6615 		}
6616 	}
6617 }
6618 
__alloc_contig_verify_gfp_mask(gfp_t gfp_mask,gfp_t * gfp_cc_mask)6619 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask)
6620 {
6621 	const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
6622 	const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN |
6623 				  __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO;
6624 	const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
6625 
6626 	/*
6627 	 * We are given the range to allocate; node, mobility and placement
6628 	 * hints are irrelevant at this point. We'll simply ignore them.
6629 	 */
6630 	gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE |
6631 		      __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE);
6632 
6633 	/*
6634 	 * We only support most reclaim flags (but not NOFAIL/NORETRY), and
6635 	 * selected action flags.
6636 	 */
6637 	if (gfp_mask & ~(reclaim_mask | action_mask))
6638 		return -EINVAL;
6639 
6640 	/*
6641 	 * Flags to control page compaction/migration/reclaim, to free up our
6642 	 * page range. Migratable pages are movable, __GFP_MOVABLE is implied
6643 	 * for them.
6644 	 *
6645 	 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that
6646 	 * to not degrade callers.
6647 	 */
6648 	*gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) |
6649 			__GFP_MOVABLE | __GFP_RETRY_MAYFAIL;
6650 	return 0;
6651 }
6652 
6653 /**
6654  * alloc_contig_range() -- tries to allocate given range of pages
6655  * @start:	start PFN to allocate
6656  * @end:	one-past-the-last PFN to allocate
6657  * @migratetype:	migratetype of the underlying pageblocks (either
6658  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6659  *			in range must have the same migratetype and it must
6660  *			be either of the two.
6661  * @gfp_mask:	GFP mask. Node/zone/placement hints are ignored; only some
6662  *		action and reclaim modifiers are supported. Reclaim modifiers
6663  *		control allocation behavior during compaction/migration/reclaim.
6664  *
6665  * The PFN range does not have to be pageblock aligned. The PFN range must
6666  * belong to a single zone.
6667  *
6668  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6669  * pageblocks in the range.  Once isolated, the pageblocks should not
6670  * be modified by others.
6671  *
6672  * Return: zero on success or negative error code.  On success all
6673  * pages which PFN is in [start, end) are allocated for the caller and
6674  * need to be freed with free_contig_range().
6675  */
alloc_contig_range_noprof(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)6676 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6677 		       unsigned migratetype, gfp_t gfp_mask)
6678 {
6679 	unsigned long outer_start, outer_end;
6680 	int ret = 0;
6681 
6682 	struct compact_control cc = {
6683 		.nr_migratepages = 0,
6684 		.order = -1,
6685 		.zone = page_zone(pfn_to_page(start)),
6686 		.mode = MIGRATE_SYNC,
6687 		.ignore_skip_hint = true,
6688 		.no_set_skip_hint = true,
6689 		.alloc_contig = true,
6690 	};
6691 	INIT_LIST_HEAD(&cc.migratepages);
6692 
6693 	gfp_mask = current_gfp_context(gfp_mask);
6694 	if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask))
6695 		return -EINVAL;
6696 
6697 	/*
6698 	 * What we do here is we mark all pageblocks in range as
6699 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6700 	 * have different sizes, and due to the way page allocator
6701 	 * work, start_isolate_page_range() has special handlings for this.
6702 	 *
6703 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6704 	 * migrate the pages from an unaligned range (ie. pages that
6705 	 * we are interested in). This will put all the pages in
6706 	 * range back to page allocator as MIGRATE_ISOLATE.
6707 	 *
6708 	 * When this is done, we take the pages in range from page
6709 	 * allocator removing them from the buddy system.  This way
6710 	 * page allocator will never consider using them.
6711 	 *
6712 	 * This lets us mark the pageblocks back as
6713 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6714 	 * aligned range but not in the unaligned, original range are
6715 	 * put back to page allocator so that buddy can use them.
6716 	 */
6717 
6718 	ret = start_isolate_page_range(start, end, migratetype, 0);
6719 	if (ret)
6720 		goto done;
6721 
6722 	drain_all_pages(cc.zone);
6723 
6724 	/*
6725 	 * In case of -EBUSY, we'd like to know which page causes problem.
6726 	 * So, just fall through. test_pages_isolated() has a tracepoint
6727 	 * which will report the busy page.
6728 	 *
6729 	 * It is possible that busy pages could become available before
6730 	 * the call to test_pages_isolated, and the range will actually be
6731 	 * allocated.  So, if we fall through be sure to clear ret so that
6732 	 * -EBUSY is not accidentally used or returned to caller.
6733 	 */
6734 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6735 	if (ret && ret != -EBUSY)
6736 		goto done;
6737 
6738 	/*
6739 	 * When in-use hugetlb pages are migrated, they may simply be released
6740 	 * back into the free hugepage pool instead of being returned to the
6741 	 * buddy system.  After the migration of in-use huge pages is completed,
6742 	 * we will invoke replace_free_hugepage_folios() to ensure that these
6743 	 * hugepages are properly released to the buddy system.
6744 	 */
6745 	ret = replace_free_hugepage_folios(start, end);
6746 	if (ret)
6747 		goto done;
6748 
6749 	/*
6750 	 * Pages from [start, end) are within a pageblock_nr_pages
6751 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6752 	 * more, all pages in [start, end) are free in page allocator.
6753 	 * What we are going to do is to allocate all pages from
6754 	 * [start, end) (that is remove them from page allocator).
6755 	 *
6756 	 * The only problem is that pages at the beginning and at the
6757 	 * end of interesting range may be not aligned with pages that
6758 	 * page allocator holds, ie. they can be part of higher order
6759 	 * pages.  Because of this, we reserve the bigger range and
6760 	 * once this is done free the pages we are not interested in.
6761 	 *
6762 	 * We don't have to hold zone->lock here because the pages are
6763 	 * isolated thus they won't get removed from buddy.
6764 	 */
6765 	outer_start = find_large_buddy(start);
6766 
6767 	/* Make sure the range is really isolated. */
6768 	if (test_pages_isolated(outer_start, end, 0)) {
6769 		ret = -EBUSY;
6770 		goto done;
6771 	}
6772 
6773 	/* Grab isolated pages from freelists. */
6774 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6775 	if (!outer_end) {
6776 		ret = -EBUSY;
6777 		goto done;
6778 	}
6779 
6780 	if (!(gfp_mask & __GFP_COMP)) {
6781 		split_free_pages(cc.freepages, gfp_mask);
6782 
6783 		/* Free head and tail (if any) */
6784 		if (start != outer_start)
6785 			free_contig_range(outer_start, start - outer_start);
6786 		if (end != outer_end)
6787 			free_contig_range(end, outer_end - end);
6788 	} else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6789 		struct page *head = pfn_to_page(start);
6790 		int order = ilog2(end - start);
6791 
6792 		check_new_pages(head, order);
6793 		prep_new_page(head, order, gfp_mask, 0);
6794 		set_page_refcounted(head);
6795 	} else {
6796 		ret = -EINVAL;
6797 		WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6798 		     start, end, outer_start, outer_end);
6799 	}
6800 done:
6801 	undo_isolate_page_range(start, end, migratetype);
6802 	return ret;
6803 }
6804 EXPORT_SYMBOL(alloc_contig_range_noprof);
6805 
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)6806 static int __alloc_contig_pages(unsigned long start_pfn,
6807 				unsigned long nr_pages, gfp_t gfp_mask)
6808 {
6809 	unsigned long end_pfn = start_pfn + nr_pages;
6810 
6811 	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6812 				   gfp_mask);
6813 }
6814 
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)6815 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6816 				   unsigned long nr_pages)
6817 {
6818 	unsigned long i, end_pfn = start_pfn + nr_pages;
6819 	struct page *page;
6820 
6821 	for (i = start_pfn; i < end_pfn; i++) {
6822 		page = pfn_to_online_page(i);
6823 		if (!page)
6824 			return false;
6825 
6826 		if (page_zone(page) != z)
6827 			return false;
6828 
6829 		if (PageReserved(page))
6830 			return false;
6831 
6832 		if (PageHuge(page))
6833 			return false;
6834 	}
6835 	return true;
6836 }
6837 
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)6838 static bool zone_spans_last_pfn(const struct zone *zone,
6839 				unsigned long start_pfn, unsigned long nr_pages)
6840 {
6841 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6842 
6843 	return zone_spans_pfn(zone, last_pfn);
6844 }
6845 
6846 /**
6847  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6848  * @nr_pages:	Number of contiguous pages to allocate
6849  * @gfp_mask:	GFP mask. Node/zone/placement hints limit the search; only some
6850  *		action and reclaim modifiers are supported. Reclaim modifiers
6851  *		control allocation behavior during compaction/migration/reclaim.
6852  * @nid:	Target node
6853  * @nodemask:	Mask for other possible nodes
6854  *
6855  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6856  * on an applicable zonelist to find a contiguous pfn range which can then be
6857  * tried for allocation with alloc_contig_range(). This routine is intended
6858  * for allocation requests which can not be fulfilled with the buddy allocator.
6859  *
6860  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6861  * power of two, then allocated range is also guaranteed to be aligned to same
6862  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6863  *
6864  * Allocated pages can be freed with free_contig_range() or by manually calling
6865  * __free_page() on each allocated page.
6866  *
6867  * Return: pointer to contiguous pages on success, or NULL if not successful.
6868  */
alloc_contig_pages_noprof(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)6869 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6870 				 int nid, nodemask_t *nodemask)
6871 {
6872 	unsigned long ret, pfn, flags;
6873 	struct zonelist *zonelist;
6874 	struct zone *zone;
6875 	struct zoneref *z;
6876 
6877 	zonelist = node_zonelist(nid, gfp_mask);
6878 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6879 					gfp_zone(gfp_mask), nodemask) {
6880 		spin_lock_irqsave(&zone->lock, flags);
6881 
6882 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6883 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6884 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6885 				/*
6886 				 * We release the zone lock here because
6887 				 * alloc_contig_range() will also lock the zone
6888 				 * at some point. If there's an allocation
6889 				 * spinning on this lock, it may win the race
6890 				 * and cause alloc_contig_range() to fail...
6891 				 */
6892 				spin_unlock_irqrestore(&zone->lock, flags);
6893 				ret = __alloc_contig_pages(pfn, nr_pages,
6894 							gfp_mask);
6895 				if (!ret)
6896 					return pfn_to_page(pfn);
6897 				spin_lock_irqsave(&zone->lock, flags);
6898 			}
6899 			pfn += nr_pages;
6900 		}
6901 		spin_unlock_irqrestore(&zone->lock, flags);
6902 	}
6903 	return NULL;
6904 }
6905 #endif /* CONFIG_CONTIG_ALLOC */
6906 
free_contig_range(unsigned long pfn,unsigned long nr_pages)6907 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6908 {
6909 	unsigned long count = 0;
6910 	struct folio *folio = pfn_folio(pfn);
6911 
6912 	if (folio_test_large(folio)) {
6913 		int expected = folio_nr_pages(folio);
6914 
6915 		if (nr_pages == expected)
6916 			folio_put(folio);
6917 		else
6918 			WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6919 			     pfn, nr_pages, expected);
6920 		return;
6921 	}
6922 
6923 	for (; nr_pages--; pfn++) {
6924 		struct page *page = pfn_to_page(pfn);
6925 
6926 		count += page_count(page) != 1;
6927 		__free_page(page);
6928 	}
6929 	WARN(count != 0, "%lu pages are still in use!\n", count);
6930 }
6931 EXPORT_SYMBOL(free_contig_range);
6932 
6933 /*
6934  * Effectively disable pcplists for the zone by setting the high limit to 0
6935  * and draining all cpus. A concurrent page freeing on another CPU that's about
6936  * to put the page on pcplist will either finish before the drain and the page
6937  * will be drained, or observe the new high limit and skip the pcplist.
6938  *
6939  * Must be paired with a call to zone_pcp_enable().
6940  */
zone_pcp_disable(struct zone * zone)6941 void zone_pcp_disable(struct zone *zone)
6942 {
6943 	mutex_lock(&pcp_batch_high_lock);
6944 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6945 	__drain_all_pages(zone, true);
6946 }
6947 
zone_pcp_enable(struct zone * zone)6948 void zone_pcp_enable(struct zone *zone)
6949 {
6950 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6951 		zone->pageset_high_max, zone->pageset_batch);
6952 	mutex_unlock(&pcp_batch_high_lock);
6953 }
6954 
zone_pcp_reset(struct zone * zone)6955 void zone_pcp_reset(struct zone *zone)
6956 {
6957 	int cpu;
6958 	struct per_cpu_zonestat *pzstats;
6959 
6960 	if (zone->per_cpu_pageset != &boot_pageset) {
6961 		for_each_online_cpu(cpu) {
6962 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6963 			drain_zonestat(zone, pzstats);
6964 		}
6965 		free_percpu(zone->per_cpu_pageset);
6966 		zone->per_cpu_pageset = &boot_pageset;
6967 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6968 			free_percpu(zone->per_cpu_zonestats);
6969 			zone->per_cpu_zonestats = &boot_zonestats;
6970 		}
6971 	}
6972 }
6973 
6974 #ifdef CONFIG_MEMORY_HOTREMOVE
6975 /*
6976  * All pages in the range must be in a single zone, must not contain holes,
6977  * must span full sections, and must be isolated before calling this function.
6978  *
6979  * Returns the number of managed (non-PageOffline()) pages in the range: the
6980  * number of pages for which memory offlining code must adjust managed page
6981  * counters using adjust_managed_page_count().
6982  */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6983 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6984 		unsigned long end_pfn)
6985 {
6986 	unsigned long already_offline = 0, flags;
6987 	unsigned long pfn = start_pfn;
6988 	struct page *page;
6989 	struct zone *zone;
6990 	unsigned int order;
6991 
6992 	offline_mem_sections(pfn, end_pfn);
6993 	zone = page_zone(pfn_to_page(pfn));
6994 	spin_lock_irqsave(&zone->lock, flags);
6995 	while (pfn < end_pfn) {
6996 		page = pfn_to_page(pfn);
6997 		/*
6998 		 * The HWPoisoned page may be not in buddy system, and
6999 		 * page_count() is not 0.
7000 		 */
7001 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7002 			pfn++;
7003 			continue;
7004 		}
7005 		/*
7006 		 * At this point all remaining PageOffline() pages have a
7007 		 * reference count of 0 and can simply be skipped.
7008 		 */
7009 		if (PageOffline(page)) {
7010 			BUG_ON(page_count(page));
7011 			BUG_ON(PageBuddy(page));
7012 			already_offline++;
7013 			pfn++;
7014 			continue;
7015 		}
7016 
7017 		BUG_ON(page_count(page));
7018 		BUG_ON(!PageBuddy(page));
7019 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
7020 		order = buddy_order(page);
7021 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
7022 		pfn += (1 << order);
7023 	}
7024 	spin_unlock_irqrestore(&zone->lock, flags);
7025 
7026 	return end_pfn - start_pfn - already_offline;
7027 }
7028 #endif
7029 
7030 /*
7031  * This function returns a stable result only if called under zone lock.
7032  */
is_free_buddy_page(const struct page * page)7033 bool is_free_buddy_page(const struct page *page)
7034 {
7035 	unsigned long pfn = page_to_pfn(page);
7036 	unsigned int order;
7037 
7038 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
7039 		const struct page *head = page - (pfn & ((1 << order) - 1));
7040 
7041 		if (PageBuddy(head) &&
7042 		    buddy_order_unsafe(head) >= order)
7043 			break;
7044 	}
7045 
7046 	return order <= MAX_PAGE_ORDER;
7047 }
7048 EXPORT_SYMBOL(is_free_buddy_page);
7049 
7050 #ifdef CONFIG_MEMORY_FAILURE
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)7051 static inline void add_to_free_list(struct page *page, struct zone *zone,
7052 				    unsigned int order, int migratetype,
7053 				    bool tail)
7054 {
7055 	__add_to_free_list(page, zone, order, migratetype, tail);
7056 	account_freepages(zone, 1 << order, migratetype);
7057 }
7058 
7059 /*
7060  * Break down a higher-order page in sub-pages, and keep our target out of
7061  * buddy allocator.
7062  */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)7063 static void break_down_buddy_pages(struct zone *zone, struct page *page,
7064 				   struct page *target, int low, int high,
7065 				   int migratetype)
7066 {
7067 	unsigned long size = 1 << high;
7068 	struct page *current_buddy;
7069 
7070 	while (high > low) {
7071 		high--;
7072 		size >>= 1;
7073 
7074 		if (target >= &page[size]) {
7075 			current_buddy = page;
7076 			page = page + size;
7077 		} else {
7078 			current_buddy = page + size;
7079 		}
7080 
7081 		if (set_page_guard(zone, current_buddy, high))
7082 			continue;
7083 
7084 		add_to_free_list(current_buddy, zone, high, migratetype, false);
7085 		set_buddy_order(current_buddy, high);
7086 	}
7087 }
7088 
7089 /*
7090  * Take a page that will be marked as poisoned off the buddy allocator.
7091  */
take_page_off_buddy(struct page * page)7092 bool take_page_off_buddy(struct page *page)
7093 {
7094 	struct zone *zone = page_zone(page);
7095 	unsigned long pfn = page_to_pfn(page);
7096 	unsigned long flags;
7097 	unsigned int order;
7098 	bool ret = false;
7099 
7100 	spin_lock_irqsave(&zone->lock, flags);
7101 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
7102 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7103 		int page_order = buddy_order(page_head);
7104 
7105 		if (PageBuddy(page_head) && page_order >= order) {
7106 			unsigned long pfn_head = page_to_pfn(page_head);
7107 			int migratetype = get_pfnblock_migratetype(page_head,
7108 								   pfn_head);
7109 
7110 			del_page_from_free_list(page_head, zone, page_order,
7111 						migratetype);
7112 			break_down_buddy_pages(zone, page_head, page, 0,
7113 						page_order, migratetype);
7114 			SetPageHWPoisonTakenOff(page);
7115 			ret = true;
7116 			break;
7117 		}
7118 		if (page_count(page_head) > 0)
7119 			break;
7120 	}
7121 	spin_unlock_irqrestore(&zone->lock, flags);
7122 	return ret;
7123 }
7124 
7125 /*
7126  * Cancel takeoff done by take_page_off_buddy().
7127  */
put_page_back_buddy(struct page * page)7128 bool put_page_back_buddy(struct page *page)
7129 {
7130 	struct zone *zone = page_zone(page);
7131 	unsigned long flags;
7132 	bool ret = false;
7133 
7134 	spin_lock_irqsave(&zone->lock, flags);
7135 	if (put_page_testzero(page)) {
7136 		unsigned long pfn = page_to_pfn(page);
7137 		int migratetype = get_pfnblock_migratetype(page, pfn);
7138 
7139 		ClearPageHWPoisonTakenOff(page);
7140 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
7141 		if (TestClearPageHWPoison(page)) {
7142 			ret = true;
7143 		}
7144 	}
7145 	spin_unlock_irqrestore(&zone->lock, flags);
7146 
7147 	return ret;
7148 }
7149 #endif
7150 
7151 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)7152 bool has_managed_dma(void)
7153 {
7154 	struct pglist_data *pgdat;
7155 
7156 	for_each_online_pgdat(pgdat) {
7157 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
7158 
7159 		if (managed_zone(zone))
7160 			return true;
7161 	}
7162 	return false;
7163 }
7164 #endif /* CONFIG_ZONE_DMA */
7165 
7166 #ifdef CONFIG_UNACCEPTED_MEMORY
7167 
7168 static bool lazy_accept = true;
7169 
accept_memory_parse(char * p)7170 static int __init accept_memory_parse(char *p)
7171 {
7172 	if (!strcmp(p, "lazy")) {
7173 		lazy_accept = true;
7174 		return 0;
7175 	} else if (!strcmp(p, "eager")) {
7176 		lazy_accept = false;
7177 		return 0;
7178 	} else {
7179 		return -EINVAL;
7180 	}
7181 }
7182 early_param("accept_memory", accept_memory_parse);
7183 
page_contains_unaccepted(struct page * page,unsigned int order)7184 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7185 {
7186 	phys_addr_t start = page_to_phys(page);
7187 
7188 	return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
7189 }
7190 
__accept_page(struct zone * zone,unsigned long * flags,struct page * page)7191 static void __accept_page(struct zone *zone, unsigned long *flags,
7192 			  struct page *page)
7193 {
7194 	list_del(&page->lru);
7195 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7196 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
7197 	__ClearPageUnaccepted(page);
7198 	spin_unlock_irqrestore(&zone->lock, *flags);
7199 
7200 	accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
7201 
7202 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
7203 }
7204 
accept_page(struct page * page)7205 void accept_page(struct page *page)
7206 {
7207 	struct zone *zone = page_zone(page);
7208 	unsigned long flags;
7209 
7210 	spin_lock_irqsave(&zone->lock, flags);
7211 	if (!PageUnaccepted(page)) {
7212 		spin_unlock_irqrestore(&zone->lock, flags);
7213 		return;
7214 	}
7215 
7216 	/* Unlocks zone->lock */
7217 	__accept_page(zone, &flags, page);
7218 }
7219 
try_to_accept_memory_one(struct zone * zone)7220 static bool try_to_accept_memory_one(struct zone *zone)
7221 {
7222 	unsigned long flags;
7223 	struct page *page;
7224 
7225 	spin_lock_irqsave(&zone->lock, flags);
7226 	page = list_first_entry_or_null(&zone->unaccepted_pages,
7227 					struct page, lru);
7228 	if (!page) {
7229 		spin_unlock_irqrestore(&zone->lock, flags);
7230 		return false;
7231 	}
7232 
7233 	/* Unlocks zone->lock */
7234 	__accept_page(zone, &flags, page);
7235 
7236 	return true;
7237 }
7238 
cond_accept_memory(struct zone * zone,unsigned int order,int alloc_flags)7239 static bool cond_accept_memory(struct zone *zone, unsigned int order,
7240 			       int alloc_flags)
7241 {
7242 	long to_accept, wmark;
7243 	bool ret = false;
7244 
7245 	if (list_empty(&zone->unaccepted_pages))
7246 		return false;
7247 
7248 	/* Bailout, since try_to_accept_memory_one() needs to take a lock */
7249 	if (alloc_flags & ALLOC_TRYLOCK)
7250 		return false;
7251 
7252 	wmark = promo_wmark_pages(zone);
7253 
7254 	/*
7255 	 * Watermarks have not been initialized yet.
7256 	 *
7257 	 * Accepting one MAX_ORDER page to ensure progress.
7258 	 */
7259 	if (!wmark)
7260 		return try_to_accept_memory_one(zone);
7261 
7262 	/* How much to accept to get to promo watermark? */
7263 	to_accept = wmark -
7264 		    (zone_page_state(zone, NR_FREE_PAGES) -
7265 		    __zone_watermark_unusable_free(zone, order, 0) -
7266 		    zone_page_state(zone, NR_UNACCEPTED));
7267 
7268 	while (to_accept > 0) {
7269 		if (!try_to_accept_memory_one(zone))
7270 			break;
7271 		ret = true;
7272 		to_accept -= MAX_ORDER_NR_PAGES;
7273 	}
7274 
7275 	return ret;
7276 }
7277 
__free_unaccepted(struct page * page)7278 static bool __free_unaccepted(struct page *page)
7279 {
7280 	struct zone *zone = page_zone(page);
7281 	unsigned long flags;
7282 
7283 	if (!lazy_accept)
7284 		return false;
7285 
7286 	spin_lock_irqsave(&zone->lock, flags);
7287 	list_add_tail(&page->lru, &zone->unaccepted_pages);
7288 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7289 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7290 	__SetPageUnaccepted(page);
7291 	spin_unlock_irqrestore(&zone->lock, flags);
7292 
7293 	return true;
7294 }
7295 
7296 #else
7297 
page_contains_unaccepted(struct page * page,unsigned int order)7298 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7299 {
7300 	return false;
7301 }
7302 
cond_accept_memory(struct zone * zone,unsigned int order,int alloc_flags)7303 static bool cond_accept_memory(struct zone *zone, unsigned int order,
7304 			       int alloc_flags)
7305 {
7306 	return false;
7307 }
7308 
__free_unaccepted(struct page * page)7309 static bool __free_unaccepted(struct page *page)
7310 {
7311 	BUILD_BUG();
7312 	return false;
7313 }
7314 
7315 #endif /* CONFIG_UNACCEPTED_MEMORY */
7316 
7317 /**
7318  * alloc_pages_nolock - opportunistic reentrant allocation from any context
7319  * @nid: node to allocate from
7320  * @order: allocation order size
7321  *
7322  * Allocates pages of a given order from the given node. This is safe to
7323  * call from any context (from atomic, NMI, and also reentrant
7324  * allocator -> tracepoint -> alloc_pages_nolock_noprof).
7325  * Allocation is best effort and to be expected to fail easily so nobody should
7326  * rely on the success. Failures are not reported via warn_alloc().
7327  * See always fail conditions below.
7328  *
7329  * Return: allocated page or NULL on failure. NULL does not mean EBUSY or EAGAIN.
7330  * It means ENOMEM. There is no reason to call it again and expect !NULL.
7331  */
alloc_pages_nolock_noprof(int nid,unsigned int order)7332 struct page *alloc_pages_nolock_noprof(int nid, unsigned int order)
7333 {
7334 	/*
7335 	 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed.
7336 	 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd
7337 	 * is not safe in arbitrary context.
7338 	 *
7339 	 * These two are the conditions for gfpflags_allow_spinning() being true.
7340 	 *
7341 	 * Specify __GFP_NOWARN since failing alloc_pages_nolock() is not a reason
7342 	 * to warn. Also warn would trigger printk() which is unsafe from
7343 	 * various contexts. We cannot use printk_deferred_enter() to mitigate,
7344 	 * since the running context is unknown.
7345 	 *
7346 	 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below
7347 	 * is safe in any context. Also zeroing the page is mandatory for
7348 	 * BPF use cases.
7349 	 *
7350 	 * Though __GFP_NOMEMALLOC is not checked in the code path below,
7351 	 * specify it here to highlight that alloc_pages_nolock()
7352 	 * doesn't want to deplete reserves.
7353 	 */
7354 	gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC
7355 			| __GFP_ACCOUNT;
7356 	unsigned int alloc_flags = ALLOC_TRYLOCK;
7357 	struct alloc_context ac = { };
7358 	struct page *page;
7359 
7360 	/*
7361 	 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is
7362 	 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current
7363 	 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will
7364 	 * mark the task as the owner of another rt_spin_lock which will
7365 	 * confuse PI logic, so return immediately if called form hard IRQ or
7366 	 * NMI.
7367 	 *
7368 	 * Note, irqs_disabled() case is ok. This function can be called
7369 	 * from raw_spin_lock_irqsave region.
7370 	 */
7371 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
7372 		return NULL;
7373 	if (!pcp_allowed_order(order))
7374 		return NULL;
7375 
7376 	/* Bailout, since _deferred_grow_zone() needs to take a lock */
7377 	if (deferred_pages_enabled())
7378 		return NULL;
7379 
7380 	if (nid == NUMA_NO_NODE)
7381 		nid = numa_node_id();
7382 
7383 	prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac,
7384 			    &alloc_gfp, &alloc_flags);
7385 
7386 	/*
7387 	 * Best effort allocation from percpu free list.
7388 	 * If it's empty attempt to spin_trylock zone->lock.
7389 	 */
7390 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
7391 
7392 	/* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */
7393 
7394 	if (page)
7395 		set_page_refcounted(page);
7396 
7397 	if (memcg_kmem_online() && page &&
7398 	    unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) {
7399 		free_pages_nolock(page, order);
7400 		page = NULL;
7401 	}
7402 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
7403 	kmsan_alloc_page(page, order, alloc_gfp);
7404 	return page;
7405 }
7406