xref: /freebsd/sys/dev/mlx5/mlx5_en/mlx5_en_hw_tls_rx.c (revision 85af37e15958bd050093e6368afe6afe8e7a5ced)
1 /*-
2  * Copyright (c) 2021-2022 NVIDIA corporation & affiliates.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS `AS IS' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25 
26 #include "opt_kern_tls.h"
27 #include "opt_rss.h"
28 #include "opt_ratelimit.h"
29 
30 #include <dev/mlx5/mlx5_en/en.h>
31 
32 #include <dev/mlx5/crypto.h>
33 #include <dev/mlx5/tls.h>
34 
35 #include <dev/mlx5/fs.h>
36 #include <dev/mlx5/mlx5_core/fs_tcp.h>
37 
38 #include <sys/ktls.h>
39 #include <opencrypto/cryptodev.h>
40 
41 #ifdef KERN_TLS
42 
43 static if_snd_tag_free_t mlx5e_tls_rx_snd_tag_free;
44 static if_snd_tag_modify_t mlx5e_tls_rx_snd_tag_modify;
45 
46 static const struct if_snd_tag_sw mlx5e_tls_rx_snd_tag_sw = {
47 	.snd_tag_modify = mlx5e_tls_rx_snd_tag_modify,
48 	.snd_tag_free = mlx5e_tls_rx_snd_tag_free,
49 	.type = IF_SND_TAG_TYPE_TLS_RX
50 };
51 
52 MALLOC_DEFINE(M_MLX5E_TLS_RX, "MLX5E_TLS_RX", "MLX5 ethernet HW TLS RX");
53 
54 /* software TLS RX context */
55 struct mlx5_ifc_sw_tls_rx_cntx_bits {
56 	struct mlx5_ifc_tls_static_params_bits param;
57 	struct mlx5_ifc_tls_progress_params_bits progress;
58 	struct {
59 		uint8_t key_data[8][0x20];
60 		uint8_t key_len[0x20];
61 	} key;
62 };
63 
64 CTASSERT(MLX5_ST_SZ_BYTES(sw_tls_rx_cntx) <= sizeof(((struct mlx5e_tls_rx_tag *)NULL)->crypto_params));
65 CTASSERT(MLX5_ST_SZ_BYTES(mkc) == sizeof(((struct mlx5e_tx_umr_wqe *)NULL)->mkc));
66 
67 static const char *mlx5e_tls_rx_stats_desc[] = {
68 	MLX5E_TLS_RX_STATS(MLX5E_STATS_DESC)
69 };
70 
71 static void mlx5e_tls_rx_work(struct work_struct *);
72 static bool mlx5e_tls_rx_snd_tag_find_tcp_sn_and_tls_rcd(struct mlx5e_tls_rx_tag *,
73     uint32_t, uint32_t *, uint64_t *);
74 
75 CTASSERT((MLX5_FLD_SZ_BYTES(sw_tls_rx_cntx, param) % 16) == 0);
76 
77 static uint32_t
mlx5e_tls_rx_get_ch(struct mlx5e_priv * priv,uint32_t flowid,uint32_t flowtype)78 mlx5e_tls_rx_get_ch(struct mlx5e_priv *priv, uint32_t flowid, uint32_t flowtype)
79 {
80 	u32 ch;
81 #ifdef RSS
82 	u32 temp;
83 #endif
84 
85 	/* keep this code synced with mlx5e_select_queue() */
86 	ch = priv->params.num_channels;
87 #ifdef RSS
88 	if (rss_hash2bucket(flowid, flowtype, &temp) == 0)
89 		ch = temp % ch;
90 	else
91 #endif
92 		ch = (flowid % 128) % ch;
93 	return (ch);
94 }
95 
96 /*
97  * This function gets a pointer to an internal queue, IQ, based on the
98  * provided "flowid" and "flowtype". The IQ returned may in some rare
99  * cases not be activated or running, but this is all handled by the
100  * "mlx5e_iq_get_producer_index()" function.
101  *
102  * The idea behind this function is to spread the IQ traffic as much
103  * as possible and to avoid congestion on the same IQ when processing
104  * RX traffic.
105  */
106 static struct mlx5e_iq *
mlx5e_tls_rx_get_iq(struct mlx5e_priv * priv,uint32_t flowid,uint32_t flowtype)107 mlx5e_tls_rx_get_iq(struct mlx5e_priv *priv, uint32_t flowid, uint32_t flowtype)
108 {
109 	/*
110 	 * NOTE: The channels array is only freed at detach
111 	 * and it safe to return a pointer to the send tag
112 	 * inside the channels structure as long as we
113 	 * reference the priv.
114 	 */
115 	return (&priv->channel[mlx5e_tls_rx_get_ch(priv, flowid, flowtype)].iq);
116 }
117 
118 static void
mlx5e_tls_rx_send_static_parameters_cb(void * arg)119 mlx5e_tls_rx_send_static_parameters_cb(void *arg)
120 {
121 	struct mlx5e_tls_rx_tag *ptag;
122 
123 	ptag = (struct mlx5e_tls_rx_tag *)arg;
124 
125 	m_snd_tag_rele(&ptag->tag);
126 }
127 
128 /*
129  * This function sends the so-called TLS RX static parameters to the
130  * hardware. These parameters are temporarily stored in the
131  * "crypto_params" field of the TLS RX tag.  Most importantly this
132  * function sets the TCP sequence number (32-bit) and TLS record
133  * number (64-bit) where the decryption can resume.
134  *
135  * Zero is returned upon success. Else some error happend.
136  */
137 static int
mlx5e_tls_rx_send_static_parameters(struct mlx5e_iq * iq,struct mlx5e_tls_rx_tag * ptag)138 mlx5e_tls_rx_send_static_parameters(struct mlx5e_iq *iq, struct mlx5e_tls_rx_tag *ptag)
139 {
140 	const u32 ds_cnt = DIV_ROUND_UP(sizeof(struct mlx5e_tx_umr_wqe) +
141 	    MLX5_FLD_SZ_BYTES(sw_tls_rx_cntx, param), MLX5_SEND_WQE_DS);
142 	struct mlx5e_tx_umr_wqe *wqe;
143 	int pi;
144 
145 	mtx_lock(&iq->lock);
146 	pi = mlx5e_iq_get_producer_index(iq);
147 	if (pi < 0) {
148 		mtx_unlock(&iq->lock);
149 		return (-ENOMEM);
150 	}
151 	wqe = mlx5_wq_cyc_get_wqe(&iq->wq, pi);
152 
153 	memset(wqe, 0, sizeof(*wqe));
154 
155 	wqe->ctrl.opmod_idx_opcode = cpu_to_be32((iq->pc << 8) |
156 	    MLX5_OPCODE_UMR | (MLX5_OPCODE_MOD_UMR_TLS_TIR_STATIC_PARAMS << 24));
157 	wqe->ctrl.qpn_ds = cpu_to_be32((iq->sqn << 8) | ds_cnt);
158 	wqe->ctrl.imm = cpu_to_be32(ptag->tirn << 8);
159 	wqe->ctrl.fm_ce_se = MLX5_WQE_CTRL_CQ_UPDATE | MLX5_FENCE_MODE_INITIATOR_SMALL;
160 
161 	/* fill out UMR control segment */
162 	wqe->umr.flags = 0x80;	/* inline data */
163 	wqe->umr.bsf_octowords =
164 	    cpu_to_be16(MLX5_FLD_SZ_BYTES(sw_tls_rx_cntx, param) / 16);
165 
166 	/* copy in the static crypto parameters */
167 	memcpy(wqe + 1, MLX5_ADDR_OF(sw_tls_rx_cntx, ptag->crypto_params, param),
168 	    MLX5_FLD_SZ_BYTES(sw_tls_rx_cntx, param));
169 
170 	/* copy data for doorbell */
171 	memcpy(iq->doorbell.d32, &wqe->ctrl, sizeof(iq->doorbell.d32));
172 
173 	iq->data[pi].num_wqebbs = DIV_ROUND_UP(ds_cnt, MLX5_SEND_WQEBB_NUM_DS);
174 	iq->data[pi].callback = &mlx5e_tls_rx_send_static_parameters_cb;
175 	iq->data[pi].arg = ptag;
176 
177 	m_snd_tag_ref(&ptag->tag);
178 
179 	iq->pc += iq->data[pi].num_wqebbs;
180 
181 	mlx5e_iq_notify_hw(iq);
182 
183 	mtx_unlock(&iq->lock);
184 
185 	return (0);	/* success */
186 }
187 
188 static void
mlx5e_tls_rx_send_progress_parameters_cb(void * arg)189 mlx5e_tls_rx_send_progress_parameters_cb(void *arg)
190 {
191 	struct mlx5e_tls_rx_tag *ptag;
192 
193 	ptag = (struct mlx5e_tls_rx_tag *)arg;
194 
195 	complete(&ptag->progress_complete);
196 }
197 
198 CTASSERT(MLX5_FLD_SZ_BYTES(sw_tls_rx_cntx, progress) ==
199     sizeof(((struct mlx5e_tx_psv_wqe *)NULL)->psv));
200 
201 /*
202  * This function resets the state of the TIR context to start
203  * searching for a valid TLS header and is used only when allocating
204  * the TLS RX tag.
205  *
206  * Zero is returned upon success, else some error happened.
207  */
208 static int
mlx5e_tls_rx_send_progress_parameters_sync(struct mlx5e_iq * iq,struct mlx5e_tls_rx_tag * ptag)209 mlx5e_tls_rx_send_progress_parameters_sync(struct mlx5e_iq *iq,
210     struct mlx5e_tls_rx_tag *ptag)
211 {
212 	const u32 ds_cnt = DIV_ROUND_UP(sizeof(struct mlx5e_tx_psv_wqe),
213 	    MLX5_SEND_WQE_DS);
214 	struct mlx5e_priv *priv;
215 	struct mlx5e_tx_psv_wqe *wqe;
216 	int pi;
217 
218 	mtx_lock(&iq->lock);
219 	pi = mlx5e_iq_get_producer_index(iq);
220 	if (pi < 0) {
221 		mtx_unlock(&iq->lock);
222 		return (-ENOMEM);
223 	}
224 	wqe = mlx5_wq_cyc_get_wqe(&iq->wq, pi);
225 
226 	memset(wqe, 0, sizeof(*wqe));
227 
228 	wqe->ctrl.opmod_idx_opcode = cpu_to_be32((iq->pc << 8) |
229 	    MLX5_OPCODE_SET_PSV | (MLX5_OPCODE_MOD_PSV_TLS_TIR_PROGRESS_PARAMS << 24));
230 	wqe->ctrl.qpn_ds = cpu_to_be32((iq->sqn << 8) | ds_cnt);
231 	wqe->ctrl.fm_ce_se = MLX5_WQE_CTRL_CQ_UPDATE;
232 
233 	/* copy in the PSV control segment */
234 	memcpy(&wqe->psv, MLX5_ADDR_OF(sw_tls_rx_cntx, ptag->crypto_params, progress),
235 	    sizeof(wqe->psv));
236 
237 	/* copy data for doorbell */
238 	memcpy(iq->doorbell.d32, &wqe->ctrl, sizeof(iq->doorbell.d32));
239 
240 	iq->data[pi].num_wqebbs = DIV_ROUND_UP(ds_cnt, MLX5_SEND_WQEBB_NUM_DS);
241 	iq->data[pi].callback = &mlx5e_tls_rx_send_progress_parameters_cb;
242 	iq->data[pi].arg = ptag;
243 
244 	iq->pc += iq->data[pi].num_wqebbs;
245 
246 	init_completion(&ptag->progress_complete);
247 
248 	mlx5e_iq_notify_hw(iq);
249 
250 	mtx_unlock(&iq->lock);
251 
252 	while (1) {
253 		if (wait_for_completion_timeout(&ptag->progress_complete, hz) != 0)
254 			break;
255 		priv = container_of(iq, struct mlx5e_channel, iq)->priv;
256 		if (priv->mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR ||
257 		    pci_channel_offline(priv->mdev->pdev) != 0)
258 			return (-EWOULDBLOCK);
259 	}
260 
261 	return (0);	/* success */
262 }
263 
264 CTASSERT(MLX5E_TLS_RX_PROGRESS_BUFFER_SIZE >= MLX5_ST_SZ_BYTES(tls_progress_params));
265 CTASSERT(MLX5E_TLS_RX_PROGRESS_BUFFER_SIZE <= PAGE_SIZE);
266 
267 struct mlx5e_get_tls_progress_params_wqe {
268 	struct mlx5_wqe_ctrl_seg ctrl;
269 	struct mlx5_seg_get_psv	 psv;
270 };
271 
272 static void
mlx5e_tls_rx_receive_progress_parameters_cb(void * arg)273 mlx5e_tls_rx_receive_progress_parameters_cb(void *arg)
274 {
275 	struct mlx5e_tls_rx_tag *ptag;
276 	struct mlx5e_iq *iq;
277 	uint32_t tcp_curr_sn_he;
278 	uint32_t tcp_next_sn_he;
279 	uint64_t tls_rcd_num;
280 	void *buffer;
281 
282 	ptag = (struct mlx5e_tls_rx_tag *)arg;
283 	buffer = mlx5e_tls_rx_get_progress_buffer(ptag);
284 
285 	MLX5E_TLS_RX_TAG_LOCK(ptag);
286 
287 	ptag->tcp_resync_pending = 0;
288 
289 	switch (MLX5_GET(tls_progress_params, buffer, record_tracker_state)) {
290 	case MLX5E_TLS_RX_PROGRESS_PARAMS_RECORD_TRACKER_STATE_TRACKING:
291 		break;
292 	default:
293 		goto done;
294 	}
295 
296 	switch (MLX5_GET(tls_progress_params, buffer, auth_state)) {
297 	case MLX5E_TLS_RX_PROGRESS_PARAMS_AUTH_STATE_NO_OFFLOAD:
298 		break;
299 	default:
300 		goto done;
301 	}
302 
303 	tcp_curr_sn_he = MLX5_GET(tls_progress_params, buffer, hw_resync_tcp_sn);
304 
305 	if (mlx5e_tls_rx_snd_tag_find_tcp_sn_and_tls_rcd(ptag, tcp_curr_sn_he,
306 	    &tcp_next_sn_he, &tls_rcd_num)) {
307 
308 		MLX5_SET64(sw_tls_rx_cntx, ptag->crypto_params,
309 		    param.initial_record_number, tls_rcd_num);
310 		MLX5_SET(sw_tls_rx_cntx, ptag->crypto_params,
311 		    param.resync_tcp_sn, tcp_curr_sn_he);
312 
313 		iq = mlx5e_tls_rx_get_iq(
314 		    container_of(ptag->tls_rx, struct mlx5e_priv, tls_rx),
315 		    ptag->flowid, ptag->flowtype);
316 
317 		if (mlx5e_tls_rx_send_static_parameters(iq, ptag) != 0)
318 			MLX5E_TLS_RX_STAT_INC(ptag, rx_error, 1);
319 	}
320 done:
321 	MLX5E_TLS_RX_TAG_UNLOCK(ptag);
322 
323 	m_snd_tag_rele(&ptag->tag);
324 }
325 
326 /*
327  * This function queries the hardware for the current state of the TIR
328  * in question. It is typically called when encrypted data is received
329  * to re-establish hardware decryption of received TLS data.
330  *
331  * Zero is returned upon success, else some error happened.
332  */
333 static int
mlx5e_tls_rx_receive_progress_parameters(struct mlx5e_iq * iq,struct mlx5e_tls_rx_tag * ptag)334 mlx5e_tls_rx_receive_progress_parameters(struct mlx5e_iq *iq, struct mlx5e_tls_rx_tag *ptag)
335 {
336 	struct mlx5e_get_tls_progress_params_wqe *wqe;
337 	const u32 ds_cnt = DIV_ROUND_UP(sizeof(*wqe), MLX5_SEND_WQE_DS);
338 	u64 dma_address;
339 	int pi;
340 
341 	mtx_lock(&iq->lock);
342 	pi = mlx5e_iq_get_producer_index(iq);
343 	if (pi < 0) {
344 		mtx_unlock(&iq->lock);
345 		return (-ENOMEM);
346 	}
347 
348 	mlx5e_iq_load_memory_single(iq, pi,
349 	    mlx5e_tls_rx_get_progress_buffer(ptag),
350 	    MLX5E_TLS_RX_PROGRESS_BUFFER_SIZE,
351 	    &dma_address, BUS_DMASYNC_PREREAD);
352 
353 	wqe = mlx5_wq_cyc_get_wqe(&iq->wq, pi);
354 
355 	memset(wqe, 0, sizeof(*wqe));
356 
357 	wqe->ctrl.opmod_idx_opcode = cpu_to_be32((iq->pc << 8) |
358 	    MLX5_OPCODE_GET_PSV | (MLX5_OPCODE_MOD_PSV_TLS_TIR_PROGRESS_PARAMS << 24));
359 	wqe->ctrl.qpn_ds = cpu_to_be32((iq->sqn << 8) | ds_cnt);
360 	wqe->ctrl.fm_ce_se = MLX5_WQE_CTRL_CQ_UPDATE;
361 	wqe->psv.num_psv = 1 << 4;
362 	wqe->psv.l_key = iq->mkey_be;
363 	wqe->psv.psv_index[0] = cpu_to_be32(ptag->tirn);
364 	wqe->psv.va = cpu_to_be64(dma_address);
365 
366 	/* copy data for doorbell */
367 	memcpy(iq->doorbell.d32, &wqe->ctrl, sizeof(iq->doorbell.d32));
368 
369 	iq->data[pi].num_wqebbs = DIV_ROUND_UP(ds_cnt, MLX5_SEND_WQEBB_NUM_DS);
370 	iq->data[pi].callback = &mlx5e_tls_rx_receive_progress_parameters_cb;
371 	iq->data[pi].arg = ptag;
372 
373 	m_snd_tag_ref(&ptag->tag);
374 
375 	iq->pc += iq->data[pi].num_wqebbs;
376 
377 	mlx5e_iq_notify_hw(iq);
378 
379 	mtx_unlock(&iq->lock);
380 
381 	return (0);	/* success */
382 }
383 
384 /*
385  * This is the import function for TLS RX tags.
386  */
387 static int
mlx5e_tls_rx_tag_import(void * arg,void ** store,int cnt,int domain,int flags)388 mlx5e_tls_rx_tag_import(void *arg, void **store, int cnt, int domain, int flags)
389 {
390 	struct mlx5e_tls_rx_tag *ptag;
391 	struct mlx5_core_dev *mdev = arg;
392 	int i;
393 
394 	for (i = 0; i != cnt; i++) {
395 		ptag = malloc_domainset(sizeof(*ptag), M_MLX5E_TLS_RX,
396 		    mlx5_dev_domainset(mdev), flags | M_ZERO);
397 		mtx_init(&ptag->mtx, "mlx5-tls-rx-tag-mtx", NULL, MTX_DEF);
398 		INIT_WORK(&ptag->work, mlx5e_tls_rx_work);
399 		store[i] = ptag;
400 	}
401 	return (i);
402 }
403 
404 /*
405  * This is the release function for TLS RX tags.
406  */
407 static void
mlx5e_tls_rx_tag_release(void * arg,void ** store,int cnt)408 mlx5e_tls_rx_tag_release(void *arg, void **store, int cnt)
409 {
410 	struct mlx5e_tls_rx_tag *ptag;
411 	int i;
412 
413 	for (i = 0; i != cnt; i++) {
414 		ptag = store[i];
415 
416 		flush_work(&ptag->work);
417 		mtx_destroy(&ptag->mtx);
418 		free(ptag, M_MLX5E_TLS_RX);
419 	}
420 }
421 
422 /*
423  * This is a convenience function to free TLS RX tags. It resets some
424  * selected fields, updates the number of resources and returns the
425  * TLS RX tag to the UMA pool of free tags.
426  */
427 static void
mlx5e_tls_rx_tag_zfree(struct mlx5e_tls_rx_tag * ptag)428 mlx5e_tls_rx_tag_zfree(struct mlx5e_tls_rx_tag *ptag)
429 {
430 	/* make sure any unhandled taskqueue events are ignored */
431 	ptag->state = MLX5E_TLS_RX_ST_FREED;
432 
433 	/* reset some variables */
434 	ptag->dek_index = 0;
435 	ptag->dek_index_ok = 0;
436 	ptag->tirn = 0;
437 	ptag->flow_rule = NULL;
438 	ptag->tcp_resync_active = 0;
439 	ptag->tcp_resync_pending = 0;
440 
441 	/* avoid leaking keys */
442 	memset(ptag->crypto_params, 0, sizeof(ptag->crypto_params));
443 
444 	/* update number of resources in use */
445 	atomic_add_32(&ptag->tls_rx->num_resources, -1U);
446 
447 	/* return tag to UMA */
448 	uma_zfree(ptag->tls_rx->zone, ptag);
449 }
450 
451 /*
452  * This function enables TLS RX support for the given NIC, if all
453  * needed firmware capabilites are present.
454  */
455 int
mlx5e_tls_rx_init(struct mlx5e_priv * priv)456 mlx5e_tls_rx_init(struct mlx5e_priv *priv)
457 {
458 	struct mlx5e_tls_rx *ptls = &priv->tls_rx;
459 	struct sysctl_oid *node;
460 	uint32_t x;
461 
462 	if (MLX5_CAP_GEN(priv->mdev, tls_rx) == 0 ||
463 	    MLX5_CAP_GEN(priv->mdev, log_max_dek) == 0 ||
464 	    MLX5_CAP_FLOWTABLE_NIC_RX(priv->mdev, ft_field_support.outer_ip_version) == 0)
465 		return (0);
466 
467 	ptls->wq = create_singlethread_workqueue("mlx5-tls-rx-wq");
468 	if (ptls->wq == NULL)
469 		return (ENOMEM);
470 
471 	sysctl_ctx_init(&ptls->ctx);
472 
473 	snprintf(ptls->zname, sizeof(ptls->zname),
474 	    "mlx5_%u_tls_rx", device_get_unit(priv->mdev->pdev->dev.bsddev));
475 
476 	ptls->zone = uma_zcache_create(ptls->zname,
477 	    sizeof(struct mlx5e_tls_rx_tag), NULL, NULL, NULL, NULL,
478 	    mlx5e_tls_rx_tag_import, mlx5e_tls_rx_tag_release, priv->mdev,
479 	    UMA_ZONE_UNMANAGED);
480 
481 	/* shared between RX and TX TLS */
482 	ptls->max_resources = 1U << (MLX5_CAP_GEN(priv->mdev, log_max_dek) - 1);
483 
484 	for (x = 0; x != MLX5E_TLS_RX_STATS_NUM; x++)
485 		ptls->stats.arg[x] = counter_u64_alloc(M_WAITOK);
486 
487 	ptls->init = 1;
488 
489 	node = SYSCTL_ADD_NODE(&priv->sysctl_ctx,
490 	    SYSCTL_CHILDREN(priv->sysctl_ifnet), OID_AUTO,
491 	    "tls_rx", CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, "Hardware TLS receive offload");
492 	if (node == NULL)
493 		return (0);
494 
495 	mlx5e_create_counter_stats(&ptls->ctx,
496 	    SYSCTL_CHILDREN(node), "stats",
497 	    mlx5e_tls_rx_stats_desc, MLX5E_TLS_RX_STATS_NUM,
498 	    ptls->stats.arg);
499 
500 	return (0);
501 }
502 
503 /*
504  * This function disables TLS RX support for the given NIC.
505  */
506 void
mlx5e_tls_rx_cleanup(struct mlx5e_priv * priv)507 mlx5e_tls_rx_cleanup(struct mlx5e_priv *priv)
508 {
509 	struct mlx5e_tls_rx *ptls = &priv->tls_rx;
510 	uint32_t x;
511 
512 	if (ptls->init == 0)
513 		return;
514 
515 	ptls->init = 0;
516 	flush_workqueue(ptls->wq);
517 	sysctl_ctx_free(&ptls->ctx);
518 	uma_zdestroy(ptls->zone);
519 	destroy_workqueue(ptls->wq);
520 
521 	/* check if all resources are freed */
522 	MPASS(priv->tls_rx.num_resources == 0);
523 
524 	for (x = 0; x != MLX5E_TLS_RX_STATS_NUM; x++)
525 		counter_u64_free(ptls->stats.arg[x]);
526 }
527 
528 /*
529  * This function is used to serialize sleeping firmware operations
530  * needed in order to establish and destroy a TLS RX tag.
531  */
532 static void
mlx5e_tls_rx_work(struct work_struct * work)533 mlx5e_tls_rx_work(struct work_struct *work)
534 {
535 	struct mlx5e_tls_rx_tag *ptag;
536 	struct mlx5e_priv *priv;
537 	int err;
538 
539 	ptag = container_of(work, struct mlx5e_tls_rx_tag, work);
540 	priv = container_of(ptag->tls_rx, struct mlx5e_priv, tls_rx);
541 
542 	switch (ptag->state) {
543 	case MLX5E_TLS_RX_ST_INIT:
544 		/* try to allocate new TIR context */
545 		err = mlx5_tls_open_tir(priv->mdev, priv->tdn,
546 		    priv->channel[mlx5e_tls_rx_get_ch(priv, ptag->flowid, ptag->flowtype)].rqtn,
547 		    &ptag->tirn);
548 		if (err) {
549 			MLX5E_TLS_RX_STAT_INC(ptag, rx_error, 1);
550 			break;
551 		}
552 		MLX5_SET(sw_tls_rx_cntx, ptag->crypto_params, progress.pd, ptag->tirn);
553 
554 		/* try to allocate a DEK context ID */
555 		err = mlx5_encryption_key_create(priv->mdev, priv->pdn,
556 		    MLX5_GENERAL_OBJECT_TYPE_ENCRYPTION_KEY_TYPE_TLS,
557 		    MLX5_ADDR_OF(sw_tls_rx_cntx, ptag->crypto_params, key.key_data),
558 		    MLX5_GET(sw_tls_rx_cntx, ptag->crypto_params, key.key_len),
559 		    &ptag->dek_index);
560 		if (err) {
561 			MLX5E_TLS_RX_STAT_INC(ptag, rx_error, 1);
562 			break;
563 		}
564 
565 		MLX5_SET(sw_tls_rx_cntx, ptag->crypto_params, param.dek_index, ptag->dek_index);
566 
567 		ptag->dek_index_ok = 1;
568 
569 		MLX5E_TLS_RX_TAG_LOCK(ptag);
570 		if (ptag->state == MLX5E_TLS_RX_ST_INIT)
571 			ptag->state = MLX5E_TLS_RX_ST_SETUP;
572 		MLX5E_TLS_RX_TAG_UNLOCK(ptag);
573 		break;
574 
575 	case MLX5E_TLS_RX_ST_RELEASE:
576 		/* remove flow rule for incoming traffic, if any */
577 		if (ptag->flow_rule != NULL)
578 			mlx5e_accel_fs_del_inpcb(ptag->flow_rule);
579 
580 		/* try to destroy DEK context by ID */
581 		if (ptag->dek_index_ok)
582 			mlx5_encryption_key_destroy(priv->mdev, ptag->dek_index);
583 
584 		/* try to destroy TIR context by ID */
585 		if (ptag->tirn != 0)
586 			mlx5_tls_close_tir(priv->mdev, ptag->tirn);
587 
588 		/* free tag */
589 		mlx5e_tls_rx_tag_zfree(ptag);
590 		break;
591 
592 	default:
593 		break;
594 	}
595 }
596 
597 /*
598  * This function translates the crypto parameters into the format used
599  * by the firmware and hardware. Currently only AES-128 and AES-256 is
600  * supported for TLS v1.2 and TLS v1.3.
601  *
602  * Returns zero on success, else an error happened.
603  */
604 static int
mlx5e_tls_rx_set_params(void * ctx,struct inpcb * inp,const struct tls_session_params * en)605 mlx5e_tls_rx_set_params(void *ctx, struct inpcb *inp, const struct tls_session_params *en)
606 {
607 	uint32_t tcp_sn_he;
608 	uint64_t tls_sn_he;
609 
610 	MLX5_SET(sw_tls_rx_cntx, ctx, param.const_2, 2);
611 	if (en->tls_vminor == TLS_MINOR_VER_TWO)
612 		MLX5_SET(sw_tls_rx_cntx, ctx, param.tls_version, 2); /* v1.2 */
613 	else
614 		MLX5_SET(sw_tls_rx_cntx, ctx, param.tls_version, 3); /* v1.3 */
615 	MLX5_SET(sw_tls_rx_cntx, ctx, param.const_1, 1);
616 	MLX5_SET(sw_tls_rx_cntx, ctx, param.encryption_standard, 1); /* TLS */
617 
618 	/* copy the initial vector in place */
619 	switch (en->iv_len) {
620 	case MLX5_FLD_SZ_BYTES(sw_tls_rx_cntx, param.gcm_iv):
621 	case MLX5_FLD_SZ_BYTES(sw_tls_rx_cntx, param.gcm_iv) +
622 	     MLX5_FLD_SZ_BYTES(sw_tls_rx_cntx, param.implicit_iv):
623 		memcpy(MLX5_ADDR_OF(sw_tls_rx_cntx, ctx, param.gcm_iv),
624 		    en->iv, en->iv_len);
625 		break;
626 	default:
627 		return (EINVAL);
628 	}
629 
630 	if (en->cipher_key_len <= MLX5_FLD_SZ_BYTES(sw_tls_rx_cntx, key.key_data)) {
631 		memcpy(MLX5_ADDR_OF(sw_tls_rx_cntx, ctx, key.key_data),
632 		    en->cipher_key, en->cipher_key_len);
633 		MLX5_SET(sw_tls_rx_cntx, ctx, key.key_len, en->cipher_key_len);
634 	} else {
635 		return (EINVAL);
636 	}
637 
638 	if (__predict_false(inp == NULL ||
639 	    ktls_get_rx_sequence(inp, &tcp_sn_he, &tls_sn_he) != 0))
640 		return (EINVAL);
641 
642 	MLX5_SET64(sw_tls_rx_cntx, ctx, param.initial_record_number, tls_sn_he);
643 	MLX5_SET(sw_tls_rx_cntx, ctx, param.resync_tcp_sn, tcp_sn_he);
644 
645 	return (0);
646 }
647 
648 /* Verify zero default */
649 CTASSERT(MLX5E_TLS_RX_ST_INIT == 0);
650 
651 /*
652  * This function is responsible for allocating a TLS RX tag. It is a
653  * callback function invoked by the network stack.
654  *
655  * Returns zero on success else an error happened.
656  */
657 int
mlx5e_tls_rx_snd_tag_alloc(if_t ifp,union if_snd_tag_alloc_params * params,struct m_snd_tag ** ppmt)658 mlx5e_tls_rx_snd_tag_alloc(if_t ifp,
659     union if_snd_tag_alloc_params *params,
660     struct m_snd_tag **ppmt)
661 {
662 	struct mlx5e_iq *iq;
663 	struct mlx5e_priv *priv;
664 	struct mlx5e_tls_rx_tag *ptag;
665 	struct mlx5_flow_handle *flow_rule;
666 	const struct tls_session_params *en;
667 	uint32_t value;
668 	int error;
669 
670 	priv = if_getsoftc(ifp);
671 
672 	if (unlikely(priv->gone != 0 || priv->tls_rx.init == 0 ||
673 	    params->hdr.flowtype == M_HASHTYPE_NONE))
674 		return (EOPNOTSUPP);
675 
676 	/* allocate new tag from zone, if any */
677 	ptag = uma_zalloc(priv->tls_rx.zone, M_NOWAIT);
678 	if (ptag == NULL)
679 		return (ENOMEM);
680 
681 	/* sanity check default values */
682 	MPASS(ptag->dek_index == 0);
683 	MPASS(ptag->dek_index_ok == 0);
684 
685 	/* setup TLS RX tag */
686 	ptag->tls_rx = &priv->tls_rx;
687 	ptag->flowtype = params->hdr.flowtype;
688 	ptag->flowid = params->hdr.flowid;
689 
690 	value = atomic_fetchadd_32(&priv->tls_rx.num_resources, 1U);
691 
692 	/* check resource limits */
693 	if (value >= priv->tls_rx.max_resources) {
694 		error = ENOMEM;
695 		goto failure;
696 	}
697 
698 	en = &params->tls_rx.tls->params;
699 
700 	/* only TLS v1.2 and v1.3 is currently supported */
701 	if (en->tls_vmajor != TLS_MAJOR_VER_ONE ||
702 	    (en->tls_vminor != TLS_MINOR_VER_TWO
703 #ifdef TLS_MINOR_VER_THREE
704 	     && en->tls_vminor != TLS_MINOR_VER_THREE
705 #endif
706 	     )) {
707 		error = EPROTONOSUPPORT;
708 		goto failure;
709 	}
710 
711 	switch (en->cipher_algorithm) {
712 	case CRYPTO_AES_NIST_GCM_16:
713 		switch (en->cipher_key_len) {
714 		case 128 / 8:
715 			if (en->tls_vminor == TLS_MINOR_VER_TWO) {
716 				if (MLX5_CAP_TLS(priv->mdev, tls_1_2_aes_gcm_128) == 0) {
717 					error = EPROTONOSUPPORT;
718 					goto failure;
719 				}
720 			} else {
721 				if (MLX5_CAP_TLS(priv->mdev, tls_1_3_aes_gcm_128) == 0) {
722 					error = EPROTONOSUPPORT;
723 					goto failure;
724 				}
725 			}
726 			error = mlx5e_tls_rx_set_params(
727 			    ptag->crypto_params, params->tls_rx.inp, en);
728 			if (error)
729 				goto failure;
730 			break;
731 
732 		case 256 / 8:
733 			if (en->tls_vminor == TLS_MINOR_VER_TWO) {
734 				if (MLX5_CAP_TLS(priv->mdev, tls_1_2_aes_gcm_256) == 0) {
735 					error = EPROTONOSUPPORT;
736 					goto failure;
737 				}
738 			} else {
739 				if (MLX5_CAP_TLS(priv->mdev, tls_1_3_aes_gcm_256) == 0) {
740 					error = EPROTONOSUPPORT;
741 					goto failure;
742 				}
743 			}
744 			error = mlx5e_tls_rx_set_params(
745 			    ptag->crypto_params, params->tls_rx.inp, en);
746 			if (error)
747 				goto failure;
748 			break;
749 
750 		default:
751 			error = EINVAL;
752 			goto failure;
753 		}
754 		break;
755 	default:
756 		error = EPROTONOSUPPORT;
757 		goto failure;
758 	}
759 
760 	/* store pointer to mbuf tag */
761 	MPASS(ptag->tag.refcount == 0);
762 	m_snd_tag_init(&ptag->tag, ifp, &mlx5e_tls_rx_snd_tag_sw);
763 	*ppmt = &ptag->tag;
764 
765 	/* reset state */
766 	ptag->state = MLX5E_TLS_RX_ST_INIT;
767 
768 	queue_work(priv->tls_rx.wq, &ptag->work);
769 	flush_work(&ptag->work);
770 
771 	/* check that worker task completed successfully */
772 	MLX5E_TLS_RX_TAG_LOCK(ptag);
773 	if (ptag->state == MLX5E_TLS_RX_ST_SETUP) {
774 		ptag->state = MLX5E_TLS_RX_ST_READY;
775 		error = 0;
776 	} else {
777 		error = ENOMEM;
778 	}
779 	MLX5E_TLS_RX_TAG_UNLOCK(ptag);
780 
781 	if (unlikely(error))
782 		goto cleanup;
783 
784 	iq = mlx5e_tls_rx_get_iq(priv, ptag->flowid, ptag->flowtype);
785 
786 	/* establish connection between DEK and TIR */
787 	if (mlx5e_tls_rx_send_static_parameters(iq, ptag) != 0) {
788 		MLX5E_TLS_RX_STAT_INC(ptag, rx_error, 1);
789 		error = ENOMEM;
790 		goto cleanup;
791 	}
792 
793 	MLX5_SET(sw_tls_rx_cntx, ptag->crypto_params, progress.auth_state,
794 	    MLX5E_TLS_RX_PROGRESS_PARAMS_AUTH_STATE_NO_OFFLOAD);
795 	MLX5_SET(sw_tls_rx_cntx, ptag->crypto_params, progress.record_tracker_state,
796 	    MLX5E_TLS_RX_PROGRESS_PARAMS_RECORD_TRACKER_STATE_START);
797 
798 	/* reset state to all zeros */
799 	if (mlx5e_tls_rx_send_progress_parameters_sync(iq, ptag) != 0) {
800 		MLX5E_TLS_RX_STAT_INC(ptag, rx_error, 1);
801 		error = ENOMEM;
802 		goto cleanup;
803 	}
804 
805 	if (if_getpcp(ifp) != IFNET_PCP_NONE || params->tls_rx.vlan_id != 0) {
806 		/* create flow rule for TLS RX traffic (tagged) */
807 		flow_rule = mlx5e_accel_fs_add_inpcb(priv, params->tls_rx.inp,
808 		    ptag->tirn, MLX5_FS_DEFAULT_FLOW_TAG, params->tls_rx.vlan_id);
809 	} else {
810 		/* create flow rule for TLS RX traffic (untagged) */
811 		flow_rule = mlx5e_accel_fs_add_inpcb(priv, params->tls_rx.inp,
812 		    ptag->tirn, MLX5_FS_DEFAULT_FLOW_TAG, MLX5E_ACCEL_FS_ADD_INPCB_NO_VLAN);
813 	}
814 
815 	if (IS_ERR_OR_NULL(flow_rule)) {
816 		MLX5E_TLS_RX_STAT_INC(ptag, rx_error, 1);
817 		error = ENOMEM;
818 		goto cleanup;
819 	}
820 
821 	ptag->flow_rule = flow_rule;
822 
823 	return (0);
824 
825 cleanup:
826 	m_snd_tag_rele(&ptag->tag);
827 	return (error);
828 
829 failure:
830 	mlx5e_tls_rx_tag_zfree(ptag);
831 	return (error);
832 }
833 
834 
835 /*
836  * This function adds the TCP sequence number and TLS record number in
837  * host endian format to a small database. When TLS records have the
838  * same length, they are simply accumulated by counting instead of
839  * separated entries in the TLS database. The dimension of the
840  * database is such that it cannot store more than 1GByte of
841  * continuous TCP data to avoid issues with TCP sequence number wrap
842  * around. A record length of zero bytes has special meaning and means
843  * that resync completed and all data in the database can be
844  * discarded. This function is called after the TCP stack has
845  * re-assembled all TCP fragments due to out of order packet reception
846  * and all TCP sequence numbers should be sequential.
847  *
848  * This function returns true if a so-called TLS RX resync operation
849  * is in progress. Else no such operation is in progress.
850  */
851 static bool
mlx5e_tls_rx_snd_tag_add_tcp_sequence(struct mlx5e_tls_rx_tag * ptag,uint32_t tcp_sn_he,uint32_t len,uint64_t tls_rcd)852 mlx5e_tls_rx_snd_tag_add_tcp_sequence(struct mlx5e_tls_rx_tag *ptag,
853     uint32_t tcp_sn_he, uint32_t len, uint64_t tls_rcd)
854 {
855 	uint16_t i, j, n;
856 
857 	if (ptag->tcp_resync_active == 0 ||
858 	    ptag->tcp_resync_next != tcp_sn_he ||
859 	    len == 0) {
860 		/* start over again or terminate */
861 		ptag->tcp_resync_active = (len != 0);
862 		ptag->tcp_resync_len[0] = len;
863 		ptag->tcp_resync_num[0] = 1;
864 		ptag->tcp_resync_pc = (len != 0);
865 		ptag->tcp_resync_cc = 0;
866 		ptag->tcp_resync_start = tcp_sn_he;
867 		ptag->rcd_resync_start = tls_rcd;
868 	} else {
869 		i = (ptag->tcp_resync_pc - 1) & (MLX5E_TLS_RX_RESYNC_MAX - 1);
870 		n = ptag->tcp_resync_pc - ptag->tcp_resync_cc;
871 
872 		/* check if same length like last time */
873 		if (ptag->tcp_resync_len[i] == len &&
874 		    ptag->tcp_resync_num[i] != MLX5E_TLS_RX_NUM_MAX) {
875 			/* use existing entry */
876 			ptag->tcp_resync_num[i]++;
877 		} else if (n == MLX5E_TLS_RX_RESYNC_MAX) {
878 			j = ptag->tcp_resync_cc++ & (MLX5E_TLS_RX_RESYNC_MAX - 1);
879 			/* adjust starting TCP sequence number */
880 			ptag->rcd_resync_start += ptag->tcp_resync_num[j];
881 			ptag->tcp_resync_start += ptag->tcp_resync_len[j] * ptag->tcp_resync_num[j];
882 			i = ptag->tcp_resync_pc++ & (MLX5E_TLS_RX_RESYNC_MAX - 1);
883 			/* store new entry */
884 			ptag->tcp_resync_len[i] = len;
885 			ptag->tcp_resync_num[i] = 1;
886 		} else {
887 			i = ptag->tcp_resync_pc++ & (MLX5E_TLS_RX_RESYNC_MAX - 1);
888 			/* add new entry */
889 			ptag->tcp_resync_len[i] = len;
890 			ptag->tcp_resync_num[i] = 1;
891 		}
892 	}
893 
894 	/* store next TCP SN in host endian format */
895 	ptag->tcp_resync_next = tcp_sn_he + len;
896 
897 	return (ptag->tcp_resync_active);
898 }
899 
900 /*
901  * This function checks if the given TCP sequence number points to the
902  * beginning of a valid TLS header.
903  *
904  * Returns true if a match is found. Else false.
905  */
906 static bool
mlx5e_tls_rx_snd_tag_find_tcp_sn_and_tls_rcd(struct mlx5e_tls_rx_tag * ptag,uint32_t tcp_sn_he,uint32_t * p_next_tcp_sn_he,uint64_t * p_tls_rcd)907 mlx5e_tls_rx_snd_tag_find_tcp_sn_and_tls_rcd(struct mlx5e_tls_rx_tag *ptag,
908     uint32_t tcp_sn_he, uint32_t *p_next_tcp_sn_he, uint64_t *p_tls_rcd)
909 {
910 	uint16_t i, j;
911 	uint32_t off = 0;
912 	uint32_t rcd = 0;
913 	uint32_t delta;
914 	uint32_t leap;
915 
916 	for (i = ptag->tcp_resync_cc; i != ptag->tcp_resync_pc; i++) {
917 		delta = tcp_sn_he - off - ptag->tcp_resync_start;
918 
919 		/* check if subtraction went negative */
920 		if ((int32_t)delta < 0)
921 			break;
922 
923 		j = i & (MLX5E_TLS_RX_RESYNC_MAX - 1);
924 		leap = ptag->tcp_resync_len[j] * ptag->tcp_resync_num[j];
925 		if (delta < leap) {
926 			if ((delta % ptag->tcp_resync_len[j]) == 0) {
927 				*p_next_tcp_sn_he = tcp_sn_he +
928 				    ptag->tcp_resync_len[j];
929 				*p_tls_rcd = ptag->rcd_resync_start +
930 				    (uint64_t)rcd +
931 				    (uint64_t)(delta / ptag->tcp_resync_len[j]);
932 				return (true);		/* success */
933 			}
934 			break;	/* invalid offset */
935 		}
936 		rcd += ptag->tcp_resync_num[j];
937 		off += leap;
938 	}
939 	return (false);	/* not found */
940 }
941 
942 /*
943  * This is a callback function from the network stack to keep track of
944  * TLS RX TCP sequence numbers.
945  *
946  * Returns zero on success else an error happened.
947  */
948 static int
mlx5e_tls_rx_snd_tag_modify(struct m_snd_tag * pmt,union if_snd_tag_modify_params * params)949 mlx5e_tls_rx_snd_tag_modify(struct m_snd_tag *pmt, union if_snd_tag_modify_params *params)
950 {
951 	struct mlx5e_tls_rx_tag *ptag;
952 	struct mlx5e_priv *priv;
953 	struct mlx5e_iq *iq;
954 	int err;
955 
956 	ptag = container_of(pmt, struct mlx5e_tls_rx_tag, tag);
957 	priv = container_of(ptag->tls_rx, struct mlx5e_priv, tls_rx);
958 
959 	if (unlikely(priv->gone != 0))
960 		return (ENXIO);
961 
962 	iq = mlx5e_tls_rx_get_iq(priv, ptag->flowid, ptag->flowtype);
963 
964 	MLX5E_TLS_RX_TAG_LOCK(ptag);
965 
966 	if (mlx5e_tls_rx_snd_tag_add_tcp_sequence(ptag,
967 	    params->tls_rx.tls_hdr_tcp_sn,
968 	    params->tls_rx.tls_rec_length,
969 	    params->tls_rx.tls_seq_number) &&
970 	    ptag->tcp_resync_pending == 0) {
971 		err = mlx5e_tls_rx_receive_progress_parameters(iq, ptag);
972 		if (err != 0) {
973 			MLX5E_TLS_RX_STAT_INC(ptag, rx_resync_err, 1);
974 		} else {
975 			ptag->tcp_resync_pending = 1;
976 			MLX5E_TLS_RX_STAT_INC(ptag, rx_resync_ok, 1);
977 		}
978 	} else {
979 		err = 0;
980 	}
981 	MLX5E_TLS_RX_TAG_UNLOCK(ptag);
982 
983 	return (-err);
984 }
985 
986 /*
987  * This function frees a TLS RX tag in a non-blocking way.
988  */
989 static void
mlx5e_tls_rx_snd_tag_free(struct m_snd_tag * pmt)990 mlx5e_tls_rx_snd_tag_free(struct m_snd_tag *pmt)
991 {
992 	struct mlx5e_tls_rx_tag *ptag =
993 	    container_of(pmt, struct mlx5e_tls_rx_tag, tag);
994 	struct mlx5e_priv *priv;
995 
996 	MLX5E_TLS_RX_TAG_LOCK(ptag);
997 	ptag->state = MLX5E_TLS_RX_ST_RELEASE;
998 	MLX5E_TLS_RX_TAG_UNLOCK(ptag);
999 
1000 	priv = if_getsoftc(ptag->tag.ifp);
1001 	queue_work(priv->tls_rx.wq, &ptag->work);
1002 }
1003 
1004 #else
1005 
1006 int
mlx5e_tls_rx_init(struct mlx5e_priv * priv)1007 mlx5e_tls_rx_init(struct mlx5e_priv *priv)
1008 {
1009 
1010 	return (0);
1011 }
1012 
1013 void
mlx5e_tls_rx_cleanup(struct mlx5e_priv * priv)1014 mlx5e_tls_rx_cleanup(struct mlx5e_priv *priv)
1015 {
1016 	/* NOP */
1017 }
1018 
1019 #endif
1020