1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28 * Copyright 2020 Joyent, Inc.
29 * Copyright (c) 2014 Nexenta Systems, Inc. All rights reserved.
30 * Copyright 2025 Oxide Computer Company
31 */
32
33 #include <mdb/mdb_modapi.h>
34 #include <mdb/mdb_target.h>
35 #include <mdb/mdb_argvec.h>
36 #include <mdb/mdb_string.h>
37 #include <mdb/mdb_stdlib.h>
38 #include <mdb/mdb_err.h>
39 #include <mdb/mdb_debug.h>
40 #include <mdb/mdb_fmt.h>
41 #include <mdb/mdb_ctf.h>
42 #include <mdb/mdb_ctf_impl.h>
43 #include <mdb/mdb.h>
44 #include <mdb/mdb_tab.h>
45
46 #include <sys/isa_defs.h>
47 #include <sys/param.h>
48 #include <sys/sysmacros.h>
49 #include <netinet/in.h>
50 #include <strings.h>
51 #include <libctf.h>
52 #include <ctype.h>
53
54 typedef struct holeinfo {
55 ulong_t hi_offset; /* expected offset */
56 uchar_t hi_isunion; /* represents a union */
57 } holeinfo_t;
58
59 typedef struct printarg {
60 mdb_tgt_t *pa_tgt; /* current target */
61 mdb_tgt_t *pa_realtgt; /* real target (for -i) */
62 mdb_tgt_t *pa_immtgt; /* immediate target (for -i) */
63 mdb_tgt_as_t pa_as; /* address space to use for i/o */
64 mdb_tgt_addr_t pa_addr; /* base address for i/o */
65 ulong_t pa_armemlim; /* limit on array elements to print */
66 ulong_t pa_arstrlim; /* limit on array chars to print */
67 const char *pa_delim; /* element delimiter string */
68 const char *pa_prefix; /* element prefix string */
69 const char *pa_suffix; /* element suffix string */
70 holeinfo_t *pa_holes; /* hole detection information */
71 int pa_nholes; /* size of holes array */
72 int pa_flags; /* formatting flags (see below) */
73 int pa_depth; /* previous depth */
74 int pa_nest; /* array nesting depth */
75 int pa_tab; /* tabstop width */
76 uint_t pa_maxdepth; /* Limit max depth */
77 uint_t pa_nooutdepth; /* don't print output past this depth */
78 } printarg_t;
79
80 #define PA_SHOWTYPE 0x001 /* print type name */
81 #define PA_SHOWBASETYPE 0x002 /* print base type name */
82 #define PA_SHOWNAME 0x004 /* print member name */
83 #define PA_SHOWADDR 0x008 /* print address */
84 #define PA_SHOWVAL 0x010 /* print value */
85 #define PA_SHOWHOLES 0x020 /* print holes in structs */
86 #define PA_INTHEX 0x040 /* print integer values in hex */
87 #define PA_INTDEC 0x080 /* print integer values in decimal */
88 #define PA_NOSYMBOLIC 0x100 /* don't print ptrs as func+offset */
89
90 #define IS_CHAR(e) \
91 (((e).cte_format & (CTF_INT_CHAR | CTF_INT_SIGNED)) == \
92 (CTF_INT_CHAR | CTF_INT_SIGNED) && (e).cte_bits == NBBY)
93
94 #define COMPOSITE_MASK ((1 << CTF_K_STRUCT) | \
95 (1 << CTF_K_UNION) | (1 << CTF_K_ARRAY))
96 #define IS_COMPOSITE(k) (((1 << k) & COMPOSITE_MASK) != 0)
97
98 #define SOU_MASK ((1 << CTF_K_STRUCT) | (1 << CTF_K_UNION))
99 #define IS_SOU(k) (((1 << k) & SOU_MASK) != 0)
100
101 #define MEMBER_DELIM_ERR -1
102 #define MEMBER_DELIM_DONE 0
103 #define MEMBER_DELIM_PTR 1
104 #define MEMBER_DELIM_DOT 2
105 #define MEMBER_DELIM_LBR 3
106
107 typedef int printarg_f(const char *, const char *,
108 mdb_ctf_id_t, mdb_ctf_id_t, ulong_t, printarg_t *);
109
110 static int elt_print(const char *, mdb_ctf_id_t, mdb_ctf_id_t, ulong_t, int,
111 void *);
112 static void print_close_sou(printarg_t *, int);
113
114 /*
115 * Given an address, look up the symbol ID of the specified symbol in its
116 * containing module. We only support lookups for exact matches.
117 */
118 static const char *
addr_to_sym(mdb_tgt_t * t,uintptr_t addr,char * name,size_t namelen,GElf_Sym * symp,mdb_syminfo_t * sip)119 addr_to_sym(mdb_tgt_t *t, uintptr_t addr, char *name, size_t namelen,
120 GElf_Sym *symp, mdb_syminfo_t *sip)
121 {
122 const mdb_map_t *mp;
123 const char *p;
124
125 if (mdb_tgt_lookup_by_addr(t, addr, MDB_TGT_SYM_EXACT, name,
126 namelen, NULL, NULL) == -1)
127 return (NULL); /* address does not exactly match a symbol */
128
129 if ((p = strrsplit(name, '`')) != NULL) {
130 if (mdb_tgt_lookup_by_name(t, name, p, symp, sip) == -1)
131 return (NULL);
132 return (p);
133 }
134
135 if ((mp = mdb_tgt_addr_to_map(t, addr)) == NULL)
136 return (NULL); /* address does not fall within a mapping */
137
138 if (mdb_tgt_lookup_by_name(t, mp->map_name, name, symp, sip) == -1)
139 return (NULL);
140
141 return (name);
142 }
143
144 /*
145 * This lets dcmds be a little fancy with their processing of type arguments
146 * while still treating them more or less as a single argument.
147 * For example, if a command is invokes like this:
148 *
149 * ::<dcmd> proc_t ...
150 *
151 * this function will just copy "proc_t" into the provided buffer. If the
152 * command is instead invoked like this:
153 *
154 * ::<dcmd> struct proc ...
155 *
156 * this function will place the string "struct proc" into the provided buffer
157 * and increment the caller's argv and argc. This allows the caller to still
158 * treat the type argument logically as it would an other atomic argument.
159 */
160 int
args_to_typename(int * argcp,const mdb_arg_t ** argvp,char * buf,size_t len)161 args_to_typename(int *argcp, const mdb_arg_t **argvp, char *buf, size_t len)
162 {
163 int argc = *argcp;
164 const mdb_arg_t *argv = *argvp;
165
166 if (argc < 1 || argv->a_type != MDB_TYPE_STRING)
167 return (DCMD_USAGE);
168
169 if (strcmp(argv->a_un.a_str, "struct") == 0 ||
170 strcmp(argv->a_un.a_str, "enum") == 0 ||
171 strcmp(argv->a_un.a_str, "union") == 0) {
172 if (argc <= 1) {
173 mdb_warn("%s is not a valid type\n", argv->a_un.a_str);
174 return (DCMD_ABORT);
175 }
176
177 if (argv[1].a_type != MDB_TYPE_STRING)
178 return (DCMD_USAGE);
179
180 (void) mdb_snprintf(buf, len, "%s %s",
181 argv[0].a_un.a_str, argv[1].a_un.a_str);
182
183 *argcp = argc - 1;
184 *argvp = argv + 1;
185 } else {
186 (void) mdb_snprintf(buf, len, "%s", argv[0].a_un.a_str);
187 }
188
189 return (0);
190 }
191
192 /*ARGSUSED*/
193 int
cmd_sizeof(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)194 cmd_sizeof(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
195 {
196 mdb_ctf_id_t id;
197 char tn[MDB_SYM_NAMLEN];
198 int ret;
199
200 if (flags & DCMD_ADDRSPEC)
201 return (DCMD_USAGE);
202
203 if ((ret = args_to_typename(&argc, &argv, tn, sizeof (tn))) != 0)
204 return (ret);
205
206 if (argc != 1)
207 return (DCMD_USAGE);
208
209 if (mdb_ctf_lookup_by_name(tn, &id) != 0) {
210 mdb_warn("failed to look up type %s", tn);
211 return (DCMD_ERR);
212 }
213
214 if (flags & DCMD_PIPE_OUT)
215 mdb_printf("%#lr\n", mdb_ctf_type_size(id));
216 else
217 mdb_printf("sizeof (%s) = %#lr\n", tn, mdb_ctf_type_size(id));
218
219 return (DCMD_OK);
220 }
221
222 int
cmd_sizeof_tab(mdb_tab_cookie_t * mcp,uint_t flags,int argc,const mdb_arg_t * argv)223 cmd_sizeof_tab(mdb_tab_cookie_t *mcp, uint_t flags, int argc,
224 const mdb_arg_t *argv)
225 {
226 char tn[MDB_SYM_NAMLEN];
227 int ret;
228
229 if (argc == 0 && !(flags & DCMD_TAB_SPACE))
230 return (0);
231
232 if (argc == 0 && (flags & DCMD_TAB_SPACE))
233 return (mdb_tab_complete_type(mcp, NULL, MDB_TABC_NOPOINT));
234
235 if ((ret = mdb_tab_typename(&argc, &argv, tn, sizeof (tn))) < 0)
236 return (ret);
237
238 if (argc == 1)
239 return (mdb_tab_complete_type(mcp, tn, MDB_TABC_NOPOINT));
240
241 return (0);
242 }
243
244 /*ARGSUSED*/
245 int
cmd_offsetof(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)246 cmd_offsetof(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
247 {
248 const char *member;
249 mdb_ctf_id_t id;
250 ulong_t off;
251 char tn[MDB_SYM_NAMLEN];
252 ssize_t sz;
253 int ret;
254
255 if (flags & DCMD_ADDRSPEC)
256 return (DCMD_USAGE);
257
258 if ((ret = args_to_typename(&argc, &argv, tn, sizeof (tn))) != 0)
259 return (ret);
260
261 if (argc != 2 || argv[1].a_type != MDB_TYPE_STRING)
262 return (DCMD_USAGE);
263
264 if (mdb_ctf_lookup_by_name(tn, &id) != 0) {
265 mdb_warn("failed to look up type %s", tn);
266 return (DCMD_ERR);
267 }
268
269 member = argv[1].a_un.a_str;
270
271 if (mdb_ctf_member_info(id, member, &off, &id) != 0) {
272 mdb_warn("failed to find member %s of type %s", member, tn);
273 return (DCMD_ERR);
274 }
275
276 if (flags & DCMD_PIPE_OUT) {
277 if (off % NBBY != 0) {
278 mdb_warn("member %s of type %s is not byte-aligned\n",
279 member, tn);
280 return (DCMD_ERR);
281 }
282 mdb_printf("%#lr", off / NBBY);
283 return (DCMD_OK);
284 }
285
286 mdb_printf("offsetof (%s, %s) = %#lr",
287 tn, member, off / NBBY);
288 if (off % NBBY != 0)
289 mdb_printf(".%lr", off % NBBY);
290
291 if ((sz = mdb_ctf_type_size(id)) > 0)
292 mdb_printf(", sizeof (...->%s) = %#lr", member, sz);
293
294 mdb_printf("\n");
295
296 return (DCMD_OK);
297 }
298
299 /*ARGSUSED*/
300 static int
enum_prefix_scan_cb(const char * name,int value,void * arg)301 enum_prefix_scan_cb(const char *name, int value, void *arg)
302 {
303 char *str = arg;
304
305 /*
306 * This function is called with every name in the enum. We make
307 * "arg" be the common prefix, if any.
308 */
309 if (str[0] == 0) {
310 if (strlcpy(arg, name, MDB_SYM_NAMLEN) >= MDB_SYM_NAMLEN)
311 return (1);
312 return (0);
313 }
314
315 while (*name == *str) {
316 if (*str == 0) {
317 if (str != arg) {
318 str--; /* don't smother a name completely */
319 }
320 break;
321 }
322 name++;
323 str++;
324 }
325 *str = 0;
326
327 return (str == arg); /* only continue if prefix is non-empty */
328 }
329
330 struct enum_p2_info {
331 intmax_t e_value; /* value we're processing */
332 char *e_buf; /* buffer for holding names */
333 size_t e_size; /* size of buffer */
334 size_t e_prefix; /* length of initial prefix */
335 uint_t e_allprefix; /* apply prefix to first guy, too */
336 uint_t e_bits; /* bits seen */
337 uint8_t e_found; /* have we seen anything? */
338 uint8_t e_first; /* does buf contain the first one? */
339 uint8_t e_zero; /* have we seen a zero value? */
340 };
341
342 static int
enum_p2_cb(const char * name,int bit_arg,void * arg)343 enum_p2_cb(const char *name, int bit_arg, void *arg)
344 {
345 struct enum_p2_info *eiip = arg;
346 uintmax_t bit = bit_arg;
347
348 if (bit != 0 && !ISP2(bit))
349 return (1); /* non-power-of-2; abort processing */
350
351 if ((bit == 0 && eiip->e_zero) ||
352 (bit != 0 && (eiip->e_bits & bit) != 0)) {
353 return (0); /* already seen this value */
354 }
355
356 if (bit == 0)
357 eiip->e_zero = 1;
358 else
359 eiip->e_bits |= bit;
360
361 if (eiip->e_buf != NULL && (eiip->e_value & bit) != 0) {
362 char *buf = eiip->e_buf;
363 size_t prefix = eiip->e_prefix;
364
365 if (eiip->e_found) {
366 (void) strlcat(buf, "|", eiip->e_size);
367
368 if (eiip->e_first && !eiip->e_allprefix && prefix > 0) {
369 char c1 = buf[prefix];
370 char c2 = buf[prefix + 1];
371 buf[prefix] = '{';
372 buf[prefix + 1] = 0;
373 mdb_printf("%s", buf);
374 buf[prefix] = c1;
375 buf[prefix + 1] = c2;
376 mdb_printf("%s", buf + prefix);
377 } else {
378 mdb_printf("%s", buf);
379 }
380
381 }
382 /* skip the common prefix as necessary */
383 if ((eiip->e_found || eiip->e_allprefix) &&
384 strlen(name) > prefix)
385 name += prefix;
386
387 (void) strlcpy(eiip->e_buf, name, eiip->e_size);
388 eiip->e_first = !eiip->e_found;
389 eiip->e_found = 1;
390 }
391 return (0);
392 }
393
394 static int
enum_is_p2(mdb_ctf_id_t id)395 enum_is_p2(mdb_ctf_id_t id)
396 {
397 struct enum_p2_info eii;
398 bzero(&eii, sizeof (eii));
399
400 return (mdb_ctf_type_kind(id) == CTF_K_ENUM &&
401 mdb_ctf_enum_iter(id, enum_p2_cb, &eii) == 0 &&
402 eii.e_bits != 0);
403 }
404
405 static int
enum_value_print_p2(mdb_ctf_id_t id,intmax_t value,uint_t allprefix)406 enum_value_print_p2(mdb_ctf_id_t id, intmax_t value, uint_t allprefix)
407 {
408 struct enum_p2_info eii;
409 char prefix[MDB_SYM_NAMLEN + 2];
410 intmax_t missed;
411
412 bzero(&eii, sizeof (eii));
413
414 eii.e_value = value;
415 eii.e_buf = prefix;
416 eii.e_size = sizeof (prefix);
417 eii.e_allprefix = allprefix;
418
419 prefix[0] = 0;
420 if (mdb_ctf_enum_iter(id, enum_prefix_scan_cb, prefix) == 0)
421 eii.e_prefix = strlen(prefix);
422
423 if (mdb_ctf_enum_iter(id, enum_p2_cb, &eii) != 0 || eii.e_bits == 0)
424 return (-1);
425
426 missed = (value & ~(intmax_t)eii.e_bits);
427
428 if (eii.e_found) {
429 /* push out any final value, with a | if we missed anything */
430 if (!eii.e_first)
431 (void) strlcat(prefix, "}", sizeof (prefix));
432 if (missed != 0)
433 (void) strlcat(prefix, "|", sizeof (prefix));
434
435 mdb_printf("%s", prefix);
436 }
437
438 if (!eii.e_found || missed) {
439 mdb_printf("%#llx", missed);
440 }
441
442 return (0);
443 }
444
445 struct enum_cbinfo {
446 uint_t e_flags;
447 const char *e_string; /* NULL for value searches */
448 size_t e_prefix;
449 intmax_t e_value;
450 uint_t e_found;
451 mdb_ctf_id_t e_id;
452 };
453 #define E_PRETTY 0x01
454 #define E_HEX 0x02
455 #define E_SEARCH_STRING 0x04
456 #define E_SEARCH_VALUE 0x08
457 #define E_ELIDE_PREFIX 0x10
458
459 static void
enum_print(struct enum_cbinfo * info,const char * name,int value)460 enum_print(struct enum_cbinfo *info, const char *name, int value)
461 {
462 uint_t flags = info->e_flags;
463 uint_t elide_prefix = (info->e_flags & E_ELIDE_PREFIX);
464
465 if (name != NULL && info->e_prefix && strlen(name) > info->e_prefix)
466 name += info->e_prefix;
467
468 if (flags & E_PRETTY) {
469 uint_t indent = 5 + ((flags & E_HEX) ? 8 : 11);
470
471 mdb_printf((flags & E_HEX)? "%8x " : "%11d ", value);
472 (void) mdb_inc_indent(indent);
473 if (name != NULL) {
474 mdb_iob_puts(mdb.m_out, name);
475 } else {
476 (void) enum_value_print_p2(info->e_id, value,
477 elide_prefix);
478 }
479 (void) mdb_dec_indent(indent);
480 mdb_printf("\n");
481 } else {
482 mdb_printf("%#r\n", value);
483 }
484 }
485
486 static int
enum_cb(const char * name,int value,void * arg)487 enum_cb(const char *name, int value, void *arg)
488 {
489 struct enum_cbinfo *info = arg;
490 uint_t flags = info->e_flags;
491
492 if (flags & E_SEARCH_STRING) {
493 if (strcmp(name, info->e_string) != 0)
494 return (0);
495
496 } else if (flags & E_SEARCH_VALUE) {
497 if (value != info->e_value)
498 return (0);
499 }
500
501 enum_print(info, name, value);
502
503 info->e_found = 1;
504 return (0);
505 }
506
507 void
enum_help(void)508 enum_help(void)
509 {
510 mdb_printf("%s",
511 "Without an address and name, print all values for the enumeration \"enum\".\n"
512 "With an address, look up a particular value in \"enum\". With a name, look\n"
513 "up a particular name in \"enum\".\n");
514
515 (void) mdb_dec_indent(2);
516 mdb_printf("\n%<b>OPTIONS%</b>\n");
517 (void) mdb_inc_indent(2);
518
519 mdb_printf("%s",
520 " -e remove common prefixes from enum names\n"
521 " -x report enum values in hexadecimal\n");
522 }
523
524 /*ARGSUSED*/
525 int
cmd_enum(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)526 cmd_enum(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
527 {
528 struct enum_cbinfo info;
529
530 char type[MDB_SYM_NAMLEN + sizeof ("enum ")];
531 char tn2[MDB_SYM_NAMLEN + sizeof ("enum ")];
532 char prefix[MDB_SYM_NAMLEN];
533 mdb_ctf_id_t id;
534 mdb_ctf_id_t idr;
535
536 int i;
537 intmax_t search = 0;
538 uint_t isp2;
539
540 info.e_flags = (flags & DCMD_PIPE_OUT)? 0 : E_PRETTY;
541 info.e_string = NULL;
542 info.e_value = 0;
543 info.e_found = 0;
544
545 i = mdb_getopts(argc, argv,
546 'e', MDB_OPT_SETBITS, E_ELIDE_PREFIX, &info.e_flags,
547 'x', MDB_OPT_SETBITS, E_HEX, &info.e_flags,
548 NULL);
549
550 argc -= i;
551 argv += i;
552
553 if ((i = args_to_typename(&argc, &argv, type, MDB_SYM_NAMLEN)) != 0)
554 return (i);
555
556 if (strchr(type, ' ') == NULL) {
557 /*
558 * Check as an enumeration tag first, and fall back
559 * to checking for a typedef. Yes, this means that
560 * anonymous enumerations whose typedefs conflict with
561 * an enum tag can't be accessed. Don't do that.
562 */
563 (void) mdb_snprintf(tn2, sizeof (tn2), "enum %s", type);
564
565 if (mdb_ctf_lookup_by_name(tn2, &id) == 0) {
566 (void) strcpy(type, tn2);
567 } else if (mdb_ctf_lookup_by_name(type, &id) != 0) {
568 mdb_warn("types '%s', '%s'", tn2, type);
569 return (DCMD_ERR);
570 }
571 } else {
572 if (mdb_ctf_lookup_by_name(type, &id) != 0) {
573 mdb_warn("'%s'", type);
574 return (DCMD_ERR);
575 }
576 }
577
578 /* resolve it, and make sure we're looking at an enumeration */
579 if (mdb_ctf_type_resolve(id, &idr) == -1) {
580 mdb_warn("unable to resolve '%s'", type);
581 return (DCMD_ERR);
582 }
583 if (mdb_ctf_type_kind(idr) != CTF_K_ENUM) {
584 mdb_warn("'%s': not an enumeration\n", type);
585 return (DCMD_ERR);
586 }
587
588 info.e_id = idr;
589
590 if (argc > 2)
591 return (DCMD_USAGE);
592
593 if (argc == 2) {
594 if (flags & DCMD_ADDRSPEC) {
595 mdb_warn("may only specify one of: name, address\n");
596 return (DCMD_USAGE);
597 }
598
599 if (argv[1].a_type == MDB_TYPE_STRING) {
600 info.e_flags |= E_SEARCH_STRING;
601 info.e_string = argv[1].a_un.a_str;
602 } else if (argv[1].a_type == MDB_TYPE_IMMEDIATE) {
603 info.e_flags |= E_SEARCH_VALUE;
604 search = argv[1].a_un.a_val;
605 } else {
606 return (DCMD_USAGE);
607 }
608 }
609
610 if (flags & DCMD_ADDRSPEC) {
611 info.e_flags |= E_SEARCH_VALUE;
612 search = mdb_get_dot();
613 }
614
615 if (info.e_flags & E_SEARCH_VALUE) {
616 if ((int)search != search) {
617 mdb_warn("value '%lld' out of enumeration range\n",
618 search);
619 }
620 info.e_value = search;
621 }
622
623 isp2 = enum_is_p2(idr);
624 if (isp2)
625 info.e_flags |= E_HEX;
626
627 if (DCMD_HDRSPEC(flags) && (info.e_flags & E_PRETTY)) {
628 if (info.e_flags & E_HEX)
629 mdb_printf("%<u>%8s %-64s%</u>\n", "VALUE", "NAME");
630 else
631 mdb_printf("%<u>%11s %-64s%</u>\n", "VALUE", "NAME");
632 }
633
634 /* if the enum is a power-of-two one, process it that way */
635 if ((info.e_flags & E_SEARCH_VALUE) && isp2) {
636 enum_print(&info, NULL, info.e_value);
637 return (DCMD_OK);
638 }
639
640 prefix[0] = 0;
641 if ((info.e_flags & E_ELIDE_PREFIX) &&
642 mdb_ctf_enum_iter(id, enum_prefix_scan_cb, prefix) == 0)
643 info.e_prefix = strlen(prefix);
644
645 if (mdb_ctf_enum_iter(idr, enum_cb, &info) == -1) {
646 mdb_warn("cannot walk '%s' as enum", type);
647 return (DCMD_ERR);
648 }
649
650 if (info.e_found == 0 &&
651 (info.e_flags & (E_SEARCH_STRING | E_SEARCH_VALUE)) != 0) {
652 if (info.e_flags & E_SEARCH_STRING)
653 mdb_warn("name \"%s\" not in '%s'\n", info.e_string,
654 type);
655 else
656 mdb_warn("value %#lld not in '%s'\n", info.e_value,
657 type);
658
659 return (DCMD_ERR);
660 }
661
662 return (DCMD_OK);
663 }
664
665 static int
setup_vcb(const char * name,uintptr_t addr)666 setup_vcb(const char *name, uintptr_t addr)
667 {
668 const char *p;
669 mdb_var_t *v;
670
671 if ((v = mdb_nv_lookup(&mdb.m_nv, name)) == NULL) {
672 if ((p = strbadid(name)) != NULL) {
673 mdb_warn("'%c' may not be used in a variable "
674 "name\n", *p);
675 return (DCMD_ABORT);
676 }
677
678 if ((v = mdb_nv_insert(&mdb.m_nv, name, NULL, addr, 0)) == NULL)
679 return (DCMD_ERR);
680 } else {
681 if (v->v_flags & MDB_NV_RDONLY) {
682 mdb_warn("variable %s is read-only\n", name);
683 return (DCMD_ABORT);
684 }
685 }
686
687 /*
688 * If there already exists a vcb for this variable, we may be
689 * calling the dcmd in a loop. We only create a vcb for this
690 * variable on the first invocation.
691 */
692 if (mdb_vcb_find(v, mdb.m_frame) == NULL)
693 mdb_vcb_insert(mdb_vcb_create(v), mdb.m_frame);
694
695 return (0);
696 }
697
698 /*ARGSUSED*/
699 int
cmd_list(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)700 cmd_list(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
701 {
702 int offset;
703 uintptr_t a, tmp;
704 int ret;
705
706 if (!(flags & DCMD_ADDRSPEC) || argc == 0)
707 return (DCMD_USAGE);
708
709 if (argv->a_type != MDB_TYPE_STRING) {
710 /*
711 * We are being given a raw offset in lieu of a type and
712 * member; confirm the number of arguments and argument
713 * type.
714 */
715 if (argc != 1 || argv->a_type != MDB_TYPE_IMMEDIATE)
716 return (DCMD_USAGE);
717
718 offset = argv->a_un.a_val;
719
720 argv++;
721 argc--;
722
723 if (offset % sizeof (uintptr_t)) {
724 mdb_warn("offset must fall on a word boundary\n");
725 return (DCMD_ABORT);
726 }
727 } else {
728 const char *member;
729 char buf[MDB_SYM_NAMLEN];
730 int ret;
731
732 ret = args_to_typename(&argc, &argv, buf, sizeof (buf));
733 if (ret != 0)
734 return (ret);
735
736 argv++;
737 argc--;
738
739 /*
740 * If we make it here, we were provided a type name. We should
741 * only continue if we still have arguments left (e.g. member
742 * name and potentially a variable name).
743 */
744 if (argc == 0)
745 return (DCMD_USAGE);
746
747 member = argv->a_un.a_str;
748 offset = mdb_ctf_offsetof_by_name(buf, member);
749 if (offset == -1)
750 return (DCMD_ABORT);
751
752 argv++;
753 argc--;
754
755 if (offset % (sizeof (uintptr_t)) != 0) {
756 mdb_warn("%s is not a word-aligned member\n", member);
757 return (DCMD_ABORT);
758 }
759 }
760
761 /*
762 * If we have any unchewed arguments, a variable name must be present.
763 */
764 if (argc == 1) {
765 if (argv->a_type != MDB_TYPE_STRING)
766 return (DCMD_USAGE);
767
768 if ((ret = setup_vcb(argv->a_un.a_str, addr)) != 0)
769 return (ret);
770
771 } else if (argc != 0) {
772 return (DCMD_USAGE);
773 }
774
775 a = addr;
776
777 do {
778 mdb_printf("%lr\n", a);
779
780 if (mdb_vread(&tmp, sizeof (tmp), a + offset) == -1) {
781 mdb_warn("failed to read next pointer from object %p",
782 a);
783 return (DCMD_ERR);
784 }
785
786 a = tmp;
787 } while (a != addr && a != 0);
788
789 return (DCMD_OK);
790 }
791
792 int
cmd_array(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)793 cmd_array(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
794 {
795 mdb_ctf_id_t id;
796 ssize_t elemsize = 0;
797 char tn[MDB_SYM_NAMLEN];
798 int ret, nelem = -1;
799
800 mdb_tgt_t *t = mdb.m_target;
801 GElf_Sym sym;
802 mdb_ctf_arinfo_t ar;
803 mdb_syminfo_t s_info;
804
805 if (!(flags & DCMD_ADDRSPEC))
806 return (DCMD_USAGE);
807
808 if (argc >= 2) {
809 ret = args_to_typename(&argc, &argv, tn, sizeof (tn));
810 if (ret != 0)
811 return (ret);
812
813 if (argc == 1) /* unquoted compound type without count */
814 return (DCMD_USAGE);
815
816 if (mdb_ctf_lookup_by_name(tn, &id) != 0) {
817 mdb_warn("failed to look up type %s", tn);
818 return (DCMD_ABORT);
819 }
820
821 nelem = (int)mdb_argtoull(&argv[1]);
822
823 elemsize = mdb_ctf_type_size(id);
824 } else if (addr_to_sym(t, addr, tn, sizeof (tn), &sym, &s_info)
825 != NULL && mdb_ctf_lookup_by_symbol(&sym, &s_info, &id)
826 == 0 && mdb_ctf_type_kind(id) == CTF_K_ARRAY &&
827 mdb_ctf_array_info(id, &ar) != -1) {
828 elemsize = mdb_ctf_type_size(id) / ar.mta_nelems;
829 nelem = ar.mta_nelems;
830 } else {
831 mdb_warn("no symbol information for %a", addr);
832 return (DCMD_ERR);
833 }
834
835 if (argc == 3 || argc == 1) {
836 if (argv[argc - 1].a_type != MDB_TYPE_STRING)
837 return (DCMD_USAGE);
838
839 if ((ret = setup_vcb(argv[argc - 1].a_un.a_str, addr)) != 0)
840 return (ret);
841
842 } else if (argc > 3) {
843 return (DCMD_USAGE);
844 }
845
846 for (; nelem > 0; nelem--) {
847 mdb_printf("%lr\n", addr);
848 addr = addr + elemsize;
849 }
850
851 return (DCMD_OK);
852 }
853
854 /*
855 * This is a shared implementation to determine if we should treat a type as a
856 * bitfield. The parameters are the CTF encoding and the bit offset of the
857 * integer. This also exists in mdb_print.c. We consider something a bitfield
858 * if:
859 *
860 * o The type is more than 8 bytes. This is a bit of a historical choice from
861 * mdb and is a stranger one. The normal integer handling code generally
862 * doesn't handle integers more than 64-bits in size. Of course neither does
863 * the bitfield code...
864 * o The bit count is not a multiple of 8.
865 * o The size in bytes is not a power of 2.
866 * o The offset is not a multiple of 8.
867 */
868 boolean_t
is_bitfield(const ctf_encoding_t * ep,ulong_t off)869 is_bitfield(const ctf_encoding_t *ep, ulong_t off)
870 {
871 size_t bsize = ep->cte_bits / NBBY;
872 return (bsize > 8 || (ep->cte_bits % NBBY) != 0 ||
873 (bsize & (bsize - 1)) != 0 || (off % NBBY) != 0);
874 }
875
876 /*
877 * Print an integer bitfield in hexadecimal by reading the enclosing byte(s)
878 * and then shifting and masking the data in the lower bits of a uint64_t.
879 */
880 static int
print_bitfield(ulong_t off,printarg_t * pap,ctf_encoding_t * ep)881 print_bitfield(ulong_t off, printarg_t *pap, ctf_encoding_t *ep)
882 {
883 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
884 uint64_t mask = (1ULL << ep->cte_bits) - 1;
885 uint64_t value = 0;
886 uint8_t *buf = (uint8_t *)&value;
887 uint8_t shift;
888 const char *format;
889
890 /*
891 * Our bitfield may straddle a byte boundary. We explicitly take the
892 * offset of the bitfield within its byte into account when determining
893 * the overall amount of data to copy and mask off from the underlying
894 * data.
895 */
896 uint_t nbits = ep->cte_bits + (off % NBBY);
897 size_t size = P2ROUNDUP(nbits, NBBY) / NBBY;
898
899 if (!(pap->pa_flags & PA_SHOWVAL))
900 return (0);
901
902 if (ep->cte_bits > sizeof (value) * NBBY - 1) {
903 mdb_printf("??? (invalid bitfield size %u)", ep->cte_bits);
904 return (0);
905 }
906
907 if (size > sizeof (value)) {
908 mdb_printf("??? (total bitfield too large after alignment");
909 return (0);
910 }
911
912 /*
913 * On big-endian machines, we need to adjust the buf pointer to refer
914 * to the lowest 'size' bytes in 'value', and we need shift based on
915 * the offset from the end of the data, not the offset of the start.
916 */
917 #ifdef _BIG_ENDIAN
918 buf += sizeof (value) - size;
919 off += ep->cte_bits;
920 #endif
921
922 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, buf, size, addr) != size) {
923 mdb_warn("failed to read %lu bytes at %llx",
924 (ulong_t)size, addr);
925 return (1);
926 }
927
928 shift = off % NBBY;
929
930 /*
931 * Offsets are counted from opposite ends on little- and
932 * big-endian machines.
933 */
934 #ifdef _BIG_ENDIAN
935 shift = NBBY - shift;
936 #endif
937
938 /*
939 * If the bits we want do not begin on a byte boundary, shift the data
940 * right so that the value is in the lowest 'cte_bits' of 'value'.
941 */
942 if (off % NBBY != 0)
943 value >>= shift;
944 value &= mask;
945
946 /*
947 * We default to printing signed bitfields as decimals,
948 * and unsigned bitfields in hexadecimal. If they specify
949 * hexadecimal, we treat the field as unsigned.
950 */
951 if ((pap->pa_flags & PA_INTHEX) ||
952 !(ep->cte_format & CTF_INT_SIGNED)) {
953 format = (pap->pa_flags & PA_INTDEC)? "%#llu" : "%#llx";
954 } else {
955 int sshift = sizeof (value) * NBBY - ep->cte_bits;
956
957 /* sign-extend value, and print as a signed decimal */
958 value = ((int64_t)value << sshift) >> sshift;
959 format = "%#lld";
960 }
961 mdb_printf(format, value);
962
963 return (0);
964 }
965
966 /*
967 * We want to print an escaped char as e.g. '\0'. We don't use mdb_fmt_print()
968 * as it won't get auto-wrap right here (although even now, we don't include any
969 * trailing comma).
970 */
971 static int
print_char_val(mdb_tgt_addr_t addr,printarg_t * pap)972 print_char_val(mdb_tgt_addr_t addr, printarg_t *pap)
973 {
974 char cval;
975 char *s;
976
977 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &cval, 1, addr) != 1)
978 return (1);
979
980 if (mdb.m_flags & MDB_FL_ADB)
981 s = strchr2adb(&cval, 1);
982 else
983 s = strchr2esc(&cval, 1);
984
985 mdb_printf("'%s'", s);
986 strfree(s);
987 return (0);
988 }
989
990 /*
991 * Print out a character or integer value. We use some simple heuristics,
992 * described below, to determine the appropriate radix to use for output.
993 */
994 static int
print_int_val(const char * type,ctf_encoding_t * ep,ulong_t off,printarg_t * pap)995 print_int_val(const char *type, ctf_encoding_t *ep, ulong_t off,
996 printarg_t *pap)
997 {
998 static const char *const sformat[] = { "%#d", "%#d", "%#d", "%#lld" };
999 static const char *const uformat[] = { "%#u", "%#u", "%#u", "%#llu" };
1000 static const char *const xformat[] = { "%#x", "%#x", "%#x", "%#llx" };
1001
1002 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1003 const char *const *fsp;
1004 size_t size;
1005
1006 union {
1007 uint64_t i8;
1008 uint32_t i4;
1009 uint16_t i2;
1010 uint8_t i1;
1011 time_t t;
1012 ipaddr_t I;
1013 } u;
1014
1015 if (!(pap->pa_flags & PA_SHOWVAL))
1016 return (0);
1017
1018 if (ep->cte_format & CTF_INT_VARARGS) {
1019 mdb_printf("...\n");
1020 return (0);
1021 }
1022
1023 size = ep->cte_bits / NBBY;
1024 if (is_bitfield(ep, off)) {
1025 return (print_bitfield(off, pap, ep));
1026 }
1027
1028 if (IS_CHAR(*ep))
1029 return (print_char_val(addr, pap));
1030
1031 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.i8, size, addr) != size) {
1032 mdb_warn("failed to read %lu bytes at %llx",
1033 (ulong_t)size, addr);
1034 return (1);
1035 }
1036
1037 /*
1038 * We pretty-print some integer based types. time_t values are
1039 * printed as a calendar date and time, and IPv4 addresses as human
1040 * readable dotted quads.
1041 */
1042 if (!(pap->pa_flags & (PA_INTHEX | PA_INTDEC))) {
1043 if (strcmp(type, "time_t") == 0 && u.t != 0) {
1044 mdb_printf("%Y", u.t);
1045 return (0);
1046 }
1047 if (strcmp(type, "ipaddr_t") == 0 ||
1048 strcmp(type, "in_addr_t") == 0) {
1049 mdb_printf("%I", u.I);
1050 return (0);
1051 }
1052 }
1053
1054 /*
1055 * The default format is hexadecimal.
1056 */
1057 if (!(pap->pa_flags & PA_INTDEC))
1058 fsp = xformat;
1059 else if (ep->cte_format & CTF_INT_SIGNED)
1060 fsp = sformat;
1061 else
1062 fsp = uformat;
1063
1064 switch (size) {
1065 case sizeof (uint8_t):
1066 mdb_printf(fsp[0], u.i1);
1067 break;
1068 case sizeof (uint16_t):
1069 mdb_printf(fsp[1], u.i2);
1070 break;
1071 case sizeof (uint32_t):
1072 mdb_printf(fsp[2], u.i4);
1073 break;
1074 case sizeof (uint64_t):
1075 mdb_printf(fsp[3], u.i8);
1076 break;
1077 }
1078 return (0);
1079 }
1080
1081 /*ARGSUSED*/
1082 static int
print_int(const char * type,const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,printarg_t * pap)1083 print_int(const char *type, const char *name, mdb_ctf_id_t id,
1084 mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1085 {
1086 ctf_encoding_t e;
1087
1088 if (!(pap->pa_flags & PA_SHOWVAL))
1089 return (0);
1090
1091 if (mdb_ctf_type_encoding(base, &e) != 0) {
1092 mdb_printf("??? (%s)", mdb_strerror(errno));
1093 return (0);
1094 }
1095
1096 return (print_int_val(type, &e, off, pap));
1097 }
1098
1099 /*
1100 * Print out a floating point value. We only provide support for floats in
1101 * the ANSI-C float, double, and long double formats.
1102 */
1103 /*ARGSUSED*/
1104 static int
print_float(const char * type,const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,printarg_t * pap)1105 print_float(const char *type, const char *name, mdb_ctf_id_t id,
1106 mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1107 {
1108 #ifndef _KMDB
1109 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1110 ctf_encoding_t e;
1111
1112 union {
1113 float f;
1114 double d;
1115 long double ld;
1116 } u;
1117
1118 if (!(pap->pa_flags & PA_SHOWVAL))
1119 return (0);
1120
1121 if (mdb_ctf_type_encoding(base, &e) == 0) {
1122 if (e.cte_format == CTF_FP_SINGLE &&
1123 e.cte_bits == sizeof (float) * NBBY) {
1124 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.f,
1125 sizeof (u.f), addr) != sizeof (u.f)) {
1126 mdb_warn("failed to read float at %llx", addr);
1127 return (1);
1128 }
1129 mdb_printf("%s", doubletos(u.f, 7, 'e'));
1130
1131 } else if (e.cte_format == CTF_FP_DOUBLE &&
1132 e.cte_bits == sizeof (double) * NBBY) {
1133 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.d,
1134 sizeof (u.d), addr) != sizeof (u.d)) {
1135 mdb_warn("failed to read float at %llx", addr);
1136 return (1);
1137 }
1138 mdb_printf("%s", doubletos(u.d, 7, 'e'));
1139
1140 } else if (e.cte_format == CTF_FP_LDOUBLE &&
1141 e.cte_bits == sizeof (long double) * NBBY) {
1142 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.ld,
1143 sizeof (u.ld), addr) != sizeof (u.ld)) {
1144 mdb_warn("failed to read float at %llx", addr);
1145 return (1);
1146 }
1147 mdb_printf("%s", longdoubletos(&u.ld, 16, 'e'));
1148
1149 } else {
1150 mdb_printf("??? (unsupported FP format %u / %u bits\n",
1151 e.cte_format, e.cte_bits);
1152 }
1153 } else
1154 mdb_printf("??? (%s)", mdb_strerror(errno));
1155 #else
1156 mdb_printf("<FLOAT>");
1157 #endif
1158 return (0);
1159 }
1160
1161
1162 /*
1163 * Print out a pointer value as a symbol name + offset or a hexadecimal value.
1164 * If the pointer itself is a char *, we attempt to read a bit of the data
1165 * referenced by the pointer and display it if it is a printable ASCII string.
1166 */
1167 /*ARGSUSED*/
1168 static int
print_ptr(const char * type,const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,printarg_t * pap)1169 print_ptr(const char *type, const char *name, mdb_ctf_id_t id,
1170 mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1171 {
1172 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1173 ctf_encoding_t e;
1174 uintptr_t value;
1175 char buf[256];
1176 ssize_t len;
1177
1178 if (!(pap->pa_flags & PA_SHOWVAL))
1179 return (0);
1180
1181 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as,
1182 &value, sizeof (value), addr) != sizeof (value)) {
1183 mdb_warn("failed to read %s pointer at %llx", name, addr);
1184 return (1);
1185 }
1186
1187 if (pap->pa_flags & PA_NOSYMBOLIC) {
1188 mdb_printf("%#lx", value);
1189 return (0);
1190 }
1191
1192 mdb_printf("%a", value);
1193
1194 if (value == 0 || strcmp(type, "caddr_t") == 0)
1195 return (0);
1196
1197 if (mdb_ctf_type_kind(base) == CTF_K_POINTER &&
1198 mdb_ctf_type_reference(base, &base) != -1 &&
1199 mdb_ctf_type_resolve(base, &base) != -1 &&
1200 mdb_ctf_type_encoding(base, &e) == 0 && IS_CHAR(e)) {
1201 if ((len = mdb_tgt_readstr(pap->pa_realtgt, pap->pa_as,
1202 buf, sizeof (buf), value)) >= 0 && strisprint(buf)) {
1203 if (len == sizeof (buf))
1204 (void) strabbr(buf, sizeof (buf));
1205 mdb_printf(" \"%s\"", buf);
1206 }
1207 }
1208
1209 return (0);
1210 }
1211
1212
1213 /*
1214 * Print out a fixed-size array. We special-case arrays of characters
1215 * and attempt to print them out as ASCII strings if possible. For other
1216 * arrays, we iterate over a maximum of pa_armemlim members and call
1217 * mdb_ctf_type_visit() again on each element to print its value.
1218 */
1219 /*ARGSUSED*/
1220 static int
print_array(const char * type,const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,printarg_t * pap)1221 print_array(const char *type, const char *name, mdb_ctf_id_t id,
1222 mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1223 {
1224 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1225 printarg_t pa = *pap;
1226 ssize_t eltsize;
1227 mdb_ctf_arinfo_t r;
1228 ctf_encoding_t e;
1229 uint_t i, kind, limit;
1230 int d, sou;
1231 char buf[8];
1232 char *str;
1233
1234 if (!(pap->pa_flags & PA_SHOWVAL))
1235 return (0);
1236
1237 if (pap->pa_depth == pap->pa_maxdepth) {
1238 mdb_printf("[ ... ]");
1239 return (0);
1240 }
1241
1242 /*
1243 * Determine the base type and size of the array's content. If this
1244 * fails, we cannot print anything and just give up.
1245 */
1246 if (mdb_ctf_array_info(base, &r) == -1 ||
1247 mdb_ctf_type_resolve(r.mta_contents, &base) == -1 ||
1248 (eltsize = mdb_ctf_type_size(base)) == -1) {
1249 mdb_printf("[ ??? ] (%s)", mdb_strerror(errno));
1250 return (0);
1251 }
1252
1253 /*
1254 * Read a few bytes and determine if the content appears to be
1255 * printable ASCII characters. If so, read the entire array and
1256 * attempt to display it as a string if it is printable.
1257 */
1258 if ((pap->pa_arstrlim == MDB_ARR_NOLIMIT ||
1259 r.mta_nelems <= pap->pa_arstrlim) &&
1260 mdb_ctf_type_encoding(base, &e) == 0 && IS_CHAR(e) &&
1261 mdb_tgt_readstr(pap->pa_tgt, pap->pa_as, buf,
1262 MIN(sizeof (buf), r.mta_nelems), addr) > 0 && strisprint(buf)) {
1263
1264 str = mdb_alloc(r.mta_nelems + 1, UM_SLEEP | UM_GC);
1265 str[r.mta_nelems] = '\0';
1266
1267 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, str,
1268 r.mta_nelems, addr) != r.mta_nelems) {
1269 mdb_warn("failed to read char array at %llx", addr);
1270 return (1);
1271 }
1272
1273 if (strisprint(str)) {
1274 mdb_printf("[ \"%s\" ]", str);
1275 return (0);
1276 }
1277 }
1278
1279 if (pap->pa_armemlim != MDB_ARR_NOLIMIT)
1280 limit = MIN(r.mta_nelems, pap->pa_armemlim);
1281 else
1282 limit = r.mta_nelems;
1283
1284 if (limit == 0) {
1285 mdb_printf("[ ... ]");
1286 return (0);
1287 }
1288
1289 kind = mdb_ctf_type_kind(base);
1290 sou = IS_COMPOSITE(kind);
1291
1292 pa.pa_addr = addr; /* set base address to start of array */
1293 pa.pa_maxdepth = pa.pa_maxdepth - pa.pa_depth - 1;
1294 pa.pa_nest += pa.pa_depth + 1; /* nesting level is current depth + 1 */
1295 pa.pa_depth = 0; /* reset depth to 0 for new scope */
1296 pa.pa_prefix = NULL;
1297
1298 if (sou) {
1299 pa.pa_delim = "\n";
1300 mdb_printf("[\n");
1301 } else {
1302 pa.pa_flags &= ~(PA_SHOWTYPE | PA_SHOWNAME | PA_SHOWADDR);
1303 pa.pa_delim = ", ";
1304 mdb_printf("[ ");
1305 }
1306
1307 for (i = 0; i < limit; i++, pa.pa_addr += eltsize) {
1308 if (i == limit - 1 && !sou) {
1309 if (limit < r.mta_nelems)
1310 pa.pa_delim = ", ... ]";
1311 else
1312 pa.pa_delim = " ]";
1313 }
1314
1315 if (mdb_ctf_type_visit(r.mta_contents, elt_print, &pa) == -1) {
1316 mdb_warn("failed to print array data");
1317 return (1);
1318 }
1319 }
1320
1321 if (sou) {
1322 for (d = pa.pa_depth - 1; d >= 0; d--)
1323 print_close_sou(&pa, d);
1324
1325 if (limit < r.mta_nelems) {
1326 mdb_printf("%*s... ]",
1327 (pap->pa_depth + pap->pa_nest) * pap->pa_tab, "");
1328 } else {
1329 mdb_printf("%*s]",
1330 (pap->pa_depth + pap->pa_nest) * pap->pa_tab, "");
1331 }
1332 }
1333
1334 /* copy the hole array info, since it may have been grown */
1335 pap->pa_holes = pa.pa_holes;
1336 pap->pa_nholes = pa.pa_nholes;
1337
1338 return (0);
1339 }
1340
1341 /*
1342 * Print out a struct or union header. We need only print the open brace
1343 * because mdb_ctf_type_visit() itself will automatically recurse through
1344 * all members of the given struct or union.
1345 */
1346 /*ARGSUSED*/
1347 static int
print_sou(const char * type,const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,printarg_t * pap)1348 print_sou(const char *type, const char *name, mdb_ctf_id_t id,
1349 mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1350 {
1351 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1352
1353 /*
1354 * We have pretty-printing for some structures where displaying
1355 * structure contents has no value.
1356 */
1357 if (pap->pa_flags & PA_SHOWVAL) {
1358 if (strcmp(type, "in6_addr_t") == 0 ||
1359 strcmp(type, "struct in6_addr") == 0) {
1360 in6_addr_t in6addr;
1361
1362 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &in6addr,
1363 sizeof (in6addr), addr) != sizeof (in6addr)) {
1364 mdb_warn("failed to read %s pointer at %llx",
1365 name, addr);
1366 return (1);
1367 }
1368 mdb_printf("%N", &in6addr);
1369 /*
1370 * Don't print anything further down in the
1371 * structure.
1372 */
1373 pap->pa_nooutdepth = pap->pa_depth;
1374 return (0);
1375 }
1376 if (strcmp(type, "struct in_addr") == 0) {
1377 in_addr_t inaddr;
1378
1379 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &inaddr,
1380 sizeof (inaddr), addr) != sizeof (inaddr)) {
1381 mdb_warn("failed to read %s pointer at %llx",
1382 name, addr);
1383 return (1);
1384 }
1385 mdb_printf("%I", inaddr);
1386 pap->pa_nooutdepth = pap->pa_depth;
1387 return (0);
1388 }
1389 }
1390
1391 if (pap->pa_depth == pap->pa_maxdepth)
1392 mdb_printf("{ ... }");
1393 else
1394 mdb_printf("{");
1395 pap->pa_delim = "\n";
1396 return (0);
1397 }
1398
1399 /*
1400 * Print an enum value. We attempt to convert the value to the corresponding
1401 * enum name and print that if possible.
1402 */
1403 /*ARGSUSED*/
1404 static int
print_enum(const char * type,const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,printarg_t * pap)1405 print_enum(const char *type, const char *name, mdb_ctf_id_t id,
1406 mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1407 {
1408 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1409 const char *ename;
1410 int value;
1411 int isp2 = enum_is_p2(base);
1412 int flags = pap->pa_flags | (isp2 ? PA_INTHEX : 0);
1413
1414 if (!(flags & PA_SHOWVAL))
1415 return (0);
1416
1417 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as,
1418 &value, sizeof (value), addr) != sizeof (value)) {
1419 mdb_warn("failed to read %s integer at %llx", name, addr);
1420 return (1);
1421 }
1422
1423 if (flags & PA_INTHEX)
1424 mdb_printf("%#x", value);
1425 else
1426 mdb_printf("%#d", value);
1427
1428 (void) mdb_inc_indent(8);
1429 mdb_printf(" (");
1430
1431 if (!isp2 || enum_value_print_p2(base, value, 0) != 0) {
1432 ename = mdb_ctf_enum_name(base, value);
1433 if (ename == NULL) {
1434 ename = "???";
1435 }
1436 mdb_printf("%s", ename);
1437 }
1438 mdb_printf(")");
1439 (void) mdb_dec_indent(8);
1440
1441 return (0);
1442 }
1443
1444 /*
1445 * This will only get called if the structure isn't found in any available CTF
1446 * data.
1447 */
1448 /*ARGSUSED*/
1449 static int
print_tag(const char * type,const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,printarg_t * pap)1450 print_tag(const char *type, const char *name, mdb_ctf_id_t id,
1451 mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1452 {
1453 char basename[MDB_SYM_NAMLEN];
1454
1455 if (pap->pa_flags & PA_SHOWVAL)
1456 mdb_printf("; ");
1457
1458 if (mdb_ctf_type_name(base, basename, sizeof (basename)) != NULL)
1459 mdb_printf("<forward declaration of %s>", basename);
1460 else
1461 mdb_printf("<forward declaration of unknown type>");
1462
1463 return (0);
1464 }
1465
1466 static void
print_hole(printarg_t * pap,int depth,ulong_t off,ulong_t endoff)1467 print_hole(printarg_t *pap, int depth, ulong_t off, ulong_t endoff)
1468 {
1469 ulong_t bits = endoff - off;
1470 ulong_t size = bits / NBBY;
1471 ctf_encoding_t e;
1472
1473 static const char *const name = "<<HOLE>>";
1474 char type[MDB_SYM_NAMLEN];
1475
1476 int bitfield =
1477 (off % NBBY != 0 ||
1478 bits % NBBY != 0 ||
1479 size > 8 ||
1480 (size & (size - 1)) != 0);
1481
1482 ASSERT(off < endoff);
1483
1484 if (bits > NBBY * sizeof (uint64_t)) {
1485 ulong_t end;
1486
1487 /*
1488 * The hole is larger than the largest integer type. To
1489 * handle this, we split up the hole at 8-byte-aligned
1490 * boundaries, recursing to print each subsection. For
1491 * normal C structures, we'll loop at most twice.
1492 */
1493 for (; off < endoff; off = end) {
1494 end = P2END(off, NBBY * sizeof (uint64_t));
1495 if (end > endoff)
1496 end = endoff;
1497
1498 ASSERT((end - off) <= NBBY * sizeof (uint64_t));
1499 print_hole(pap, depth, off, end);
1500 }
1501 ASSERT(end == endoff);
1502
1503 return;
1504 }
1505
1506 if (bitfield)
1507 (void) mdb_snprintf(type, sizeof (type), "unsigned");
1508 else
1509 (void) mdb_snprintf(type, sizeof (type), "uint%d_t", bits);
1510
1511 if (pap->pa_flags & (PA_SHOWTYPE | PA_SHOWNAME | PA_SHOWADDR))
1512 mdb_printf("%*s", (depth + pap->pa_nest) * pap->pa_tab, "");
1513
1514 if (pap->pa_flags & PA_SHOWADDR) {
1515 if (off % NBBY == 0)
1516 mdb_printf("%llx ", pap->pa_addr + off / NBBY);
1517 else
1518 mdb_printf("%llx.%lx ",
1519 pap->pa_addr + off / NBBY, off % NBBY);
1520 }
1521
1522 if (pap->pa_flags & PA_SHOWTYPE)
1523 mdb_printf("%s ", type);
1524
1525 if (pap->pa_flags & PA_SHOWNAME)
1526 mdb_printf("%s", name);
1527
1528 if (bitfield && (pap->pa_flags & PA_SHOWTYPE))
1529 mdb_printf(" :%d", bits);
1530
1531 mdb_printf("%s ", (pap->pa_flags & PA_SHOWVAL)? " =" : "");
1532
1533 /*
1534 * We fake up a ctf_encoding_t, and use print_int_val() to print
1535 * the value. Holes are always processed as unsigned integers.
1536 */
1537 bzero(&e, sizeof (e));
1538 e.cte_format = 0;
1539 e.cte_offset = 0;
1540 e.cte_bits = bits;
1541
1542 if (print_int_val(type, &e, off, pap) != 0)
1543 mdb_iob_discard(mdb.m_out);
1544 else
1545 mdb_iob_puts(mdb.m_out, pap->pa_delim);
1546 }
1547
1548 /*
1549 * The print_close_sou() function is called for each structure or union
1550 * which has been completed. For structures, we detect and print any holes
1551 * before printing the closing brace.
1552 */
1553 static void
print_close_sou(printarg_t * pap,int newdepth)1554 print_close_sou(printarg_t *pap, int newdepth)
1555 {
1556 int d = newdepth + pap->pa_nest;
1557
1558 if ((pap->pa_flags & PA_SHOWHOLES) && !pap->pa_holes[d].hi_isunion) {
1559 ulong_t end = pap->pa_holes[d + 1].hi_offset;
1560 ulong_t expected = pap->pa_holes[d].hi_offset;
1561
1562 if (end < expected)
1563 print_hole(pap, newdepth + 1, end, expected);
1564 }
1565 /* if the struct is an array element, print a comma after the } */
1566 mdb_printf("%*s}%s\n", d * pap->pa_tab, "",
1567 (newdepth == 0 && pap->pa_nest > 0)? "," : "");
1568 }
1569
1570 static printarg_f *const printfuncs[] = {
1571 print_int, /* CTF_K_INTEGER */
1572 print_float, /* CTF_K_FLOAT */
1573 print_ptr, /* CTF_K_POINTER */
1574 print_array, /* CTF_K_ARRAY */
1575 print_ptr, /* CTF_K_FUNCTION */
1576 print_sou, /* CTF_K_STRUCT */
1577 print_sou, /* CTF_K_UNION */
1578 print_enum, /* CTF_K_ENUM */
1579 print_tag /* CTF_K_FORWARD */
1580 };
1581
1582 /*
1583 * The elt_print function is used as the mdb_ctf_type_visit callback. For
1584 * each element, we print an appropriate name prefix and then call the
1585 * print subroutine for this type class in the array above.
1586 */
1587 static int
elt_print(const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,int depth,void * data)1588 elt_print(const char *name, mdb_ctf_id_t id, mdb_ctf_id_t base,
1589 ulong_t off, int depth, void *data)
1590 {
1591 char type[MDB_SYM_NAMLEN + sizeof (" <<12345678...>>")];
1592 int kind, rc, d;
1593 printarg_t *pap = data;
1594
1595 for (d = pap->pa_depth - 1; d >= depth; d--) {
1596 if (d < pap->pa_nooutdepth)
1597 print_close_sou(pap, d);
1598 }
1599
1600 /*
1601 * Reset pa_nooutdepth if we've come back out of the structure we
1602 * didn't want to print.
1603 */
1604 if (depth <= pap->pa_nooutdepth)
1605 pap->pa_nooutdepth = (uint_t)-1;
1606
1607 if (depth > pap->pa_maxdepth || depth > pap->pa_nooutdepth)
1608 return (0);
1609
1610 if (!mdb_ctf_type_valid(base) ||
1611 (kind = mdb_ctf_type_kind(base)) == -1)
1612 return (-1); /* errno is set for us */
1613
1614 if (mdb_ctf_type_name(id, type, MDB_SYM_NAMLEN) == NULL)
1615 (void) strcpy(type, "(?)");
1616
1617 if (pap->pa_flags & PA_SHOWBASETYPE) {
1618 /*
1619 * If basetype is different and informative, concatenate
1620 * <<basetype>> (or <<baset...>> if it doesn't fit)
1621 *
1622 * We just use the end of the buffer to store the type name, and
1623 * only connect it up if that's necessary.
1624 */
1625
1626 char *type_end = type + strlen(type);
1627 char *basetype;
1628 size_t sz;
1629
1630 (void) strlcat(type, " <<", sizeof (type));
1631
1632 basetype = type + strlen(type);
1633 sz = sizeof (type) - (basetype - type);
1634
1635 *type_end = '\0'; /* restore the end of type for strcmp() */
1636
1637 if (mdb_ctf_type_name(base, basetype, sz) != NULL &&
1638 strcmp(basetype, type) != 0 &&
1639 strcmp(basetype, "struct ") != 0 &&
1640 strcmp(basetype, "enum ") != 0 &&
1641 strcmp(basetype, "union ") != 0) {
1642 type_end[0] = ' '; /* reconnect */
1643 if (strlcat(type, ">>", sizeof (type)) >= sizeof (type))
1644 (void) strlcpy(
1645 type + sizeof (type) - 6, "...>>", 6);
1646 }
1647 }
1648
1649 if (pap->pa_flags & PA_SHOWHOLES) {
1650 ctf_encoding_t e;
1651 ssize_t nsize;
1652 ulong_t newoff;
1653 holeinfo_t *hole;
1654 int extra = IS_COMPOSITE(kind)? 1 : 0;
1655
1656 /*
1657 * grow the hole array, if necessary
1658 */
1659 if (pap->pa_nest + depth + extra >= pap->pa_nholes) {
1660 int new = MAX(MAX(8, pap->pa_nholes * 2),
1661 pap->pa_nest + depth + extra + 1);
1662
1663 holeinfo_t *nhi = mdb_zalloc(
1664 sizeof (*nhi) * new, UM_NOSLEEP | UM_GC);
1665
1666 bcopy(pap->pa_holes, nhi,
1667 pap->pa_nholes * sizeof (*nhi));
1668
1669 pap->pa_holes = nhi;
1670 pap->pa_nholes = new;
1671 }
1672
1673 hole = &pap->pa_holes[depth + pap->pa_nest];
1674
1675 if (depth != 0 && off > hole->hi_offset)
1676 print_hole(pap, depth, hole->hi_offset, off);
1677
1678 /* compute the next expected offset */
1679 if (kind == CTF_K_INTEGER &&
1680 mdb_ctf_type_encoding(base, &e) == 0)
1681 newoff = off + e.cte_bits;
1682 else if ((nsize = mdb_ctf_type_size(base)) >= 0)
1683 newoff = off + nsize * NBBY;
1684 else {
1685 /* something bad happened, disable hole checking */
1686 newoff = -1UL; /* ULONG_MAX */
1687 }
1688
1689 hole->hi_offset = newoff;
1690
1691 if (IS_COMPOSITE(kind)) {
1692 hole->hi_isunion = (kind == CTF_K_UNION);
1693 hole++;
1694 hole->hi_offset = off;
1695 }
1696 }
1697
1698 if (pap->pa_flags & (PA_SHOWTYPE | PA_SHOWNAME | PA_SHOWADDR))
1699 mdb_printf("%*s", (depth + pap->pa_nest) * pap->pa_tab, "");
1700
1701 if (pap->pa_flags & PA_SHOWADDR) {
1702 if (off % NBBY == 0)
1703 mdb_printf("%llx ", pap->pa_addr + off / NBBY);
1704 else
1705 mdb_printf("%llx.%lx ",
1706 pap->pa_addr + off / NBBY, off % NBBY);
1707 }
1708
1709 if ((pap->pa_flags & PA_SHOWTYPE)) {
1710 mdb_printf("%s", type);
1711 /*
1712 * We want to avoid printing a trailing space when
1713 * dealing with pointers in a structure, so we end
1714 * up with:
1715 *
1716 * label_t *t_onfault = 0
1717 *
1718 * If depth is zero, always print the trailing space unless
1719 * we also have a prefix.
1720 */
1721 if (type[strlen(type) - 1] != '*' ||
1722 (depth == 0 && (!(pap->pa_flags & PA_SHOWNAME) ||
1723 pap->pa_prefix == NULL)))
1724 mdb_printf(" ");
1725 }
1726
1727 if (pap->pa_flags & PA_SHOWNAME) {
1728 if (pap->pa_prefix != NULL && depth <= 1)
1729 mdb_printf("%s%s", pap->pa_prefix,
1730 (depth == 0) ? "" : pap->pa_suffix);
1731
1732 /*
1733 * Figure out if we're printing an anonymous struct or union. If
1734 * so, indicate that this is anonymous.
1735 */
1736 if (depth != 0 && *name == '\0' && (kind == CTF_K_STRUCT ||
1737 kind == CTF_K_UNION)) {
1738 name = "<anon>";
1739 }
1740
1741 mdb_printf("%s", name);
1742 }
1743
1744 if ((pap->pa_flags & PA_SHOWTYPE) && kind == CTF_K_INTEGER) {
1745 ctf_encoding_t e;
1746
1747 if (mdb_ctf_type_encoding(base, &e) == 0) {
1748 ulong_t bits = e.cte_bits;
1749 ulong_t size = bits / NBBY;
1750
1751 if (bits % NBBY != 0 ||
1752 off % NBBY != 0 ||
1753 size > 8 ||
1754 size != mdb_ctf_type_size(base))
1755 mdb_printf(" :%d", bits);
1756 }
1757 }
1758
1759 if (depth != 0 ||
1760 ((pap->pa_flags & PA_SHOWNAME) && pap->pa_prefix != NULL))
1761 mdb_printf("%s ", pap->pa_flags & PA_SHOWVAL ? " =" : "");
1762
1763 if (depth == 0 && pap->pa_prefix != NULL)
1764 name = pap->pa_prefix;
1765
1766 pap->pa_depth = depth;
1767 if (kind <= CTF_K_UNKNOWN || kind >= CTF_K_TYPEDEF) {
1768 mdb_warn("unknown ctf for %s type %s kind %d\n",
1769 name, type, kind);
1770 return (-1);
1771 }
1772 rc = printfuncs[kind - 1](type, name, id, base, off, pap);
1773
1774 if (rc != 0)
1775 mdb_iob_discard(mdb.m_out);
1776 else
1777 mdb_iob_puts(mdb.m_out, pap->pa_delim);
1778
1779 return (rc);
1780 }
1781
1782 /*
1783 * Special semantics for pipelines.
1784 */
1785 static int
pipe_print(mdb_ctf_id_t id,ulong_t off,void * data)1786 pipe_print(mdb_ctf_id_t id, ulong_t off, void *data)
1787 {
1788 printarg_t *pap = data;
1789 size_t size;
1790 static const char *const fsp[] = { "%#r", "%#r", "%#r", "%#llr" };
1791 uintptr_t value;
1792 uintptr_t addr = pap->pa_addr + off / NBBY;
1793 mdb_ctf_id_t base;
1794 int enum_value;
1795 ctf_encoding_t e;
1796
1797 union {
1798 uint64_t i8;
1799 uint32_t i4;
1800 uint16_t i2;
1801 uint8_t i1;
1802 } u;
1803
1804 if (mdb_ctf_type_resolve(id, &base) == -1) {
1805 mdb_warn("could not resolve type");
1806 return (-1);
1807 }
1808
1809 /*
1810 * If the user gives -a, then always print out the address of the
1811 * member.
1812 */
1813 if ((pap->pa_flags & PA_SHOWADDR)) {
1814 mdb_printf("%#lr\n", addr);
1815 return (0);
1816 }
1817
1818 again:
1819 switch (mdb_ctf_type_kind(base)) {
1820 case CTF_K_POINTER:
1821 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as,
1822 &value, sizeof (value), addr) != sizeof (value)) {
1823 mdb_warn("failed to read pointer at %p", addr);
1824 return (-1);
1825 }
1826 mdb_printf("%#lr\n", value);
1827 break;
1828
1829 case CTF_K_ENUM:
1830 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &enum_value,
1831 sizeof (enum_value), addr) != sizeof (enum_value)) {
1832 mdb_warn("failed to read enum at %llx", addr);
1833 return (-1);
1834 }
1835 mdb_printf("%#r\n", enum_value);
1836 break;
1837
1838 case CTF_K_INTEGER:
1839 if (mdb_ctf_type_encoding(base, &e) != 0) {
1840 mdb_warn("could not get type encoding\n");
1841 return (-1);
1842 }
1843
1844 /*
1845 * For immediate values, we just print out the value.
1846 */
1847 size = e.cte_bits / NBBY;
1848 if (is_bitfield(&e, off)) {
1849 return (print_bitfield(off, pap, &e));
1850 }
1851
1852 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.i8, size,
1853 addr) != (size_t)size) {
1854 mdb_warn("failed to read %lu bytes at %p",
1855 (ulong_t)size, pap->pa_addr);
1856 return (-1);
1857 }
1858
1859 switch (size) {
1860 case sizeof (uint8_t):
1861 mdb_printf(fsp[0], u.i1);
1862 break;
1863 case sizeof (uint16_t):
1864 mdb_printf(fsp[1], u.i2);
1865 break;
1866 case sizeof (uint32_t):
1867 mdb_printf(fsp[2], u.i4);
1868 break;
1869 case sizeof (uint64_t):
1870 mdb_printf(fsp[3], u.i8);
1871 break;
1872 }
1873 mdb_printf("\n");
1874 break;
1875
1876 case CTF_K_FUNCTION:
1877 case CTF_K_FLOAT:
1878 case CTF_K_ARRAY:
1879 case CTF_K_UNKNOWN:
1880 case CTF_K_STRUCT:
1881 case CTF_K_UNION:
1882 case CTF_K_FORWARD:
1883 /*
1884 * For these types, always print the address of the member
1885 */
1886 mdb_printf("%#lr\n", addr);
1887 break;
1888
1889 default:
1890 mdb_warn("unknown type %d", mdb_ctf_type_kind(base));
1891 break;
1892 }
1893
1894 return (0);
1895 }
1896
1897 static int
parse_delimiter(char ** strp)1898 parse_delimiter(char **strp)
1899 {
1900 switch (**strp) {
1901 case '\0':
1902 return (MEMBER_DELIM_DONE);
1903
1904 case '.':
1905 *strp = *strp + 1;
1906 return (MEMBER_DELIM_DOT);
1907
1908 case '[':
1909 *strp = *strp + 1;
1910 return (MEMBER_DELIM_LBR);
1911
1912 case '-':
1913 *strp = *strp + 1;
1914 if (**strp == '>') {
1915 *strp = *strp + 1;
1916 return (MEMBER_DELIM_PTR);
1917 }
1918 *strp = *strp - 1;
1919 /*FALLTHROUGH*/
1920 default:
1921 return (MEMBER_DELIM_ERR);
1922 }
1923 }
1924
1925 static int
deref(printarg_t * pap,size_t size)1926 deref(printarg_t *pap, size_t size)
1927 {
1928 uint32_t a32;
1929 mdb_tgt_as_t as = pap->pa_as;
1930 mdb_tgt_addr_t *ap = &pap->pa_addr;
1931
1932 if (size == sizeof (mdb_tgt_addr_t)) {
1933 if (mdb_tgt_aread(mdb.m_target, as, ap, size, *ap) == -1) {
1934 mdb_warn("could not dereference pointer %llx\n", *ap);
1935 return (-1);
1936 }
1937 } else {
1938 if (mdb_tgt_aread(mdb.m_target, as, &a32, size, *ap) == -1) {
1939 mdb_warn("could not dereference pointer %x\n", *ap);
1940 return (-1);
1941 }
1942
1943 *ap = (mdb_tgt_addr_t)a32;
1944 }
1945
1946 /*
1947 * We've dereferenced at least once, we must be on the real
1948 * target. If we were in the immediate target, reset to the real
1949 * target; it's reset as needed when we return to the print
1950 * routines.
1951 */
1952 if (pap->pa_tgt == pap->pa_immtgt)
1953 pap->pa_tgt = pap->pa_realtgt;
1954
1955 return (0);
1956 }
1957
1958 static int
parse_member(printarg_t * pap,const char * str,mdb_ctf_id_t id,mdb_ctf_id_t * idp,ulong_t * offp,int * last_deref)1959 parse_member(printarg_t *pap, const char *str, mdb_ctf_id_t id,
1960 mdb_ctf_id_t *idp, ulong_t *offp, int *last_deref)
1961 {
1962 int delim;
1963 char member[64];
1964 char buf[128];
1965 uint_t index;
1966 char *start = (char *)str;
1967 char *end;
1968 ulong_t off = 0;
1969 mdb_ctf_arinfo_t ar;
1970 mdb_ctf_id_t rid;
1971 int kind;
1972 ssize_t size;
1973 int non_array = FALSE;
1974
1975 /*
1976 * id always has the unresolved type for printing error messages
1977 * that include the type; rid always has the resolved type for
1978 * use in mdb_ctf_* calls. It is possible for this command to fail,
1979 * however, if the resolved type is in the parent and it is currently
1980 * unavailable. Note that we also can't print out the name of the
1981 * type, since that would also rely on looking up the resolved name.
1982 */
1983 if (mdb_ctf_type_resolve(id, &rid) != 0) {
1984 mdb_warn("failed to resolve type");
1985 return (-1);
1986 }
1987
1988 delim = parse_delimiter(&start);
1989 /*
1990 * If the user fails to specify an initial delimiter, guess -> for
1991 * pointer types and . for non-pointer types.
1992 */
1993 if (delim == MEMBER_DELIM_ERR)
1994 delim = (mdb_ctf_type_kind(rid) == CTF_K_POINTER) ?
1995 MEMBER_DELIM_PTR : MEMBER_DELIM_DOT;
1996
1997 *last_deref = FALSE;
1998
1999 while (delim != MEMBER_DELIM_DONE) {
2000 switch (delim) {
2001 case MEMBER_DELIM_PTR:
2002 kind = mdb_ctf_type_kind(rid);
2003 if (kind != CTF_K_POINTER) {
2004 mdb_warn("%s is not a pointer type\n",
2005 mdb_ctf_type_name(id, buf, sizeof (buf)));
2006 return (-1);
2007 }
2008
2009 size = mdb_ctf_type_size(id);
2010 if (deref(pap, size) != 0)
2011 return (-1);
2012
2013 (void) mdb_ctf_type_reference(rid, &id);
2014 (void) mdb_ctf_type_resolve(id, &rid);
2015
2016 off = 0;
2017 break;
2018
2019 case MEMBER_DELIM_DOT:
2020 kind = mdb_ctf_type_kind(rid);
2021 if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) {
2022 mdb_warn("%s is not a struct or union type\n",
2023 mdb_ctf_type_name(id, buf, sizeof (buf)));
2024 return (-1);
2025 }
2026 break;
2027
2028 case MEMBER_DELIM_LBR:
2029 end = strchr(start, ']');
2030 if (end == NULL) {
2031 mdb_warn("no trailing ']'\n");
2032 return (-1);
2033 }
2034
2035 (void) mdb_snprintf(member, end - start + 1, "%s",
2036 start);
2037
2038 index = mdb_strtoull(member);
2039
2040 switch (mdb_ctf_type_kind(rid)) {
2041 case CTF_K_POINTER:
2042 size = mdb_ctf_type_size(rid);
2043
2044 if (deref(pap, size) != 0)
2045 return (-1);
2046
2047 (void) mdb_ctf_type_reference(rid, &id);
2048 (void) mdb_ctf_type_resolve(id, &rid);
2049
2050 size = mdb_ctf_type_size(id);
2051 if (size <= 0) {
2052 mdb_warn("cannot dereference void "
2053 "type\n");
2054 return (-1);
2055 }
2056
2057 pap->pa_addr += index * size;
2058 off = 0;
2059
2060 if (index == 0 && non_array)
2061 *last_deref = TRUE;
2062 break;
2063
2064 case CTF_K_ARRAY:
2065 (void) mdb_ctf_array_info(rid, &ar);
2066
2067 if (index >= ar.mta_nelems) {
2068 mdb_warn("index %r is outside of "
2069 "array bounds [0 .. %r]\n",
2070 index, ar.mta_nelems - 1);
2071 }
2072
2073 id = ar.mta_contents;
2074 (void) mdb_ctf_type_resolve(id, &rid);
2075
2076 size = mdb_ctf_type_size(id);
2077 if (size <= 0) {
2078 mdb_warn("cannot dereference void "
2079 "type\n");
2080 return (-1);
2081 }
2082
2083 pap->pa_addr += index * size;
2084 off = 0;
2085 break;
2086
2087 default:
2088 mdb_warn("cannot index into non-array, "
2089 "non-pointer type\n");
2090 return (-1);
2091 }
2092
2093 start = end + 1;
2094 delim = parse_delimiter(&start);
2095 continue;
2096
2097 case MEMBER_DELIM_ERR:
2098 default:
2099 mdb_warn("'%c' is not a valid delimiter\n", *start);
2100 return (-1);
2101 }
2102
2103 *last_deref = FALSE;
2104 non_array = TRUE;
2105
2106 /*
2107 * Find the end of the member name; assume that a member
2108 * name is at least one character long.
2109 */
2110 for (end = start + 1; isalnum(*end) || *end == '_'; end++)
2111 continue;
2112
2113 (void) mdb_snprintf(member, end - start + 1, "%s", start);
2114
2115 if (mdb_ctf_member_info(rid, member, &off, &id) != 0) {
2116 mdb_warn("failed to find member %s of %s", member,
2117 mdb_ctf_type_name(id, buf, sizeof (buf)));
2118 return (-1);
2119 }
2120 (void) mdb_ctf_type_resolve(id, &rid);
2121
2122 pap->pa_addr += off / NBBY;
2123
2124 start = end;
2125 delim = parse_delimiter(&start);
2126 }
2127
2128 *idp = id;
2129 *offp = off;
2130
2131 return (0);
2132 }
2133
2134 static int
cmd_print_tab_common(mdb_tab_cookie_t * mcp,uint_t flags,int argc,const mdb_arg_t * argv)2135 cmd_print_tab_common(mdb_tab_cookie_t *mcp, uint_t flags, int argc,
2136 const mdb_arg_t *argv)
2137 {
2138 char tn[MDB_SYM_NAMLEN];
2139 char member[64];
2140 int delim, kind;
2141 int ret = 0;
2142 mdb_ctf_id_t id, rid;
2143 mdb_ctf_arinfo_t ar;
2144 char *start, *end;
2145 ulong_t dul;
2146
2147 if (argc == 0 && !(flags & DCMD_TAB_SPACE))
2148 return (0);
2149
2150 if (argc == 0 && (flags & DCMD_TAB_SPACE))
2151 return (mdb_tab_complete_type(mcp, NULL, MDB_TABC_NOPOINT |
2152 MDB_TABC_NOARRAY));
2153
2154 if ((ret = mdb_tab_typename(&argc, &argv, tn, sizeof (tn))) < 0)
2155 return (ret);
2156
2157 if (argc == 1 && (!(flags & DCMD_TAB_SPACE) || ret == 1))
2158 return (mdb_tab_complete_type(mcp, tn, MDB_TABC_NOPOINT |
2159 MDB_TABC_NOARRAY));
2160
2161 if (argc == 1 && (flags & DCMD_TAB_SPACE))
2162 return (mdb_tab_complete_member(mcp, tn, NULL));
2163
2164 /*
2165 * This is the reason that tab completion was created. We're going to go
2166 * along and walk the delimiters until we find something a member that
2167 * we don't recognize, at which point we'll try and tab complete it.
2168 * Note that ::print takes multiple args, so this is going to operate on
2169 * whatever the last arg that we have is.
2170 */
2171 if (mdb_ctf_lookup_by_name(tn, &id) != 0)
2172 return (1);
2173
2174 (void) mdb_ctf_type_resolve(id, &rid);
2175 start = (char *)argv[argc-1].a_un.a_str;
2176 delim = parse_delimiter(&start);
2177
2178 /*
2179 * If we hit the case where we actually have no delimiters, than we need
2180 * to make sure that we properly set up the fields the loops would.
2181 */
2182 if (delim == MEMBER_DELIM_DONE)
2183 (void) mdb_snprintf(member, sizeof (member), "%s", start);
2184
2185 while (delim != MEMBER_DELIM_DONE) {
2186 switch (delim) {
2187 case MEMBER_DELIM_PTR:
2188 kind = mdb_ctf_type_kind(rid);
2189 if (kind != CTF_K_POINTER)
2190 return (1);
2191
2192 (void) mdb_ctf_type_reference(rid, &id);
2193 (void) mdb_ctf_type_resolve(id, &rid);
2194 break;
2195 case MEMBER_DELIM_DOT:
2196 kind = mdb_ctf_type_kind(rid);
2197 if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
2198 return (1);
2199 break;
2200 case MEMBER_DELIM_LBR:
2201 end = strchr(start, ']');
2202 /*
2203 * We're not going to try and tab complete the indexes
2204 * here. So for now, punt on it. Also, we're not going
2205 * to try and validate you're within the bounds, just
2206 * that you get the type you asked for.
2207 */
2208 if (end == NULL)
2209 return (1);
2210
2211 switch (mdb_ctf_type_kind(rid)) {
2212 case CTF_K_POINTER:
2213 (void) mdb_ctf_type_reference(rid, &id);
2214 (void) mdb_ctf_type_resolve(id, &rid);
2215 break;
2216 case CTF_K_ARRAY:
2217 (void) mdb_ctf_array_info(rid, &ar);
2218 id = ar.mta_contents;
2219 (void) mdb_ctf_type_resolve(id, &rid);
2220 break;
2221 default:
2222 return (1);
2223 }
2224
2225 start = end + 1;
2226 delim = parse_delimiter(&start);
2227 break;
2228 case MEMBER_DELIM_ERR:
2229 default:
2230 break;
2231 }
2232
2233 for (end = start + 1; isalnum(*end) || *end == '_'; end++)
2234 continue;
2235
2236 (void) mdb_snprintf(member, end - start + 1, start);
2237
2238 /*
2239 * We are going to try to resolve this name as a member. There
2240 * are a few two different questions that we need to answer. The
2241 * first is do we recognize this member. The second is are we at
2242 * the end of the string. If we encounter a member that we don't
2243 * recognize before the end, then we have to error out and can't
2244 * complete it. But if there are no more delimiters then we can
2245 * try and complete it.
2246 */
2247 ret = mdb_ctf_member_info(rid, member, &dul, &id);
2248 start = end;
2249 delim = parse_delimiter(&start);
2250 if (ret != 0 && errno == EMDB_CTFNOMEMB) {
2251 if (delim != MEMBER_DELIM_DONE)
2252 return (1);
2253 continue;
2254 } else if (ret != 0)
2255 return (1);
2256
2257 if (delim == MEMBER_DELIM_DONE)
2258 return (mdb_tab_complete_member_by_id(mcp, rid,
2259 member));
2260
2261 (void) mdb_ctf_type_resolve(id, &rid);
2262 }
2263
2264 /*
2265 * If we've reached here, then we need to try and tab complete the last
2266 * field, which is currently member, based on the ctf type id that we
2267 * already have in rid.
2268 */
2269 return (mdb_tab_complete_member_by_id(mcp, rid, member));
2270 }
2271
2272 int
cmd_print_tab(mdb_tab_cookie_t * mcp,uint_t flags,int argc,const mdb_arg_t * argv)2273 cmd_print_tab(mdb_tab_cookie_t *mcp, uint_t flags, int argc,
2274 const mdb_arg_t *argv)
2275 {
2276 int i, dummy;
2277
2278 /*
2279 * This getopts is only here to make the tab completion work better when
2280 * including options in the ::print arguments. None of the values should
2281 * be used. This should only be updated with additional arguments, if
2282 * they are added to cmd_print.
2283 */
2284 i = mdb_getopts(argc, argv,
2285 'a', MDB_OPT_SETBITS, PA_SHOWADDR, &dummy,
2286 'C', MDB_OPT_SETBITS, TRUE, &dummy,
2287 'c', MDB_OPT_UINTPTR, &dummy,
2288 'd', MDB_OPT_SETBITS, PA_INTDEC, &dummy,
2289 'h', MDB_OPT_SETBITS, PA_SHOWHOLES, &dummy,
2290 'i', MDB_OPT_SETBITS, TRUE, &dummy,
2291 'L', MDB_OPT_SETBITS, TRUE, &dummy,
2292 'l', MDB_OPT_UINTPTR, &dummy,
2293 'n', MDB_OPT_SETBITS, PA_NOSYMBOLIC, &dummy,
2294 'p', MDB_OPT_SETBITS, TRUE, &dummy,
2295 's', MDB_OPT_UINTPTR, &dummy,
2296 'T', MDB_OPT_SETBITS, PA_SHOWTYPE | PA_SHOWBASETYPE, &dummy,
2297 't', MDB_OPT_SETBITS, PA_SHOWTYPE, &dummy,
2298 'x', MDB_OPT_SETBITS, PA_INTHEX, &dummy,
2299 NULL);
2300
2301 argc -= i;
2302 argv += i;
2303
2304 return (cmd_print_tab_common(mcp, flags, argc, argv));
2305 }
2306
2307 /*
2308 * Recursively descend a print a given data structure. We create a struct of
2309 * the relevant print arguments and then call mdb_ctf_type_visit() to do the
2310 * traversal, using elt_print() as the callback for each element.
2311 */
2312 /*ARGSUSED*/
2313 int
cmd_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2314 cmd_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2315 {
2316 uintptr_t opt_c = MDB_ARR_NOLIMIT, opt_l = MDB_ARR_NOLIMIT;
2317 uint_t opt_C = FALSE, opt_L = FALSE, opt_p = FALSE, opt_i = FALSE;
2318 uintptr_t opt_s = (uintptr_t)-1ul;
2319 int uflags = (flags & DCMD_ADDRSPEC) ? PA_SHOWVAL : 0;
2320 mdb_ctf_id_t id;
2321 int err = DCMD_OK;
2322
2323 mdb_tgt_t *t = mdb.m_target;
2324 printarg_t pa;
2325 int d, i;
2326
2327 char s_name[MDB_SYM_NAMLEN];
2328 mdb_syminfo_t s_info;
2329 GElf_Sym sym;
2330
2331 /*
2332 * If a new option is added, make sure the getopts above in
2333 * cmd_print_tab is also updated.
2334 */
2335 i = mdb_getopts(argc, argv,
2336 'a', MDB_OPT_SETBITS, PA_SHOWADDR, &uflags,
2337 'C', MDB_OPT_SETBITS, TRUE, &opt_C,
2338 'c', MDB_OPT_UINTPTR, &opt_c,
2339 'd', MDB_OPT_SETBITS, PA_INTDEC, &uflags,
2340 'h', MDB_OPT_SETBITS, PA_SHOWHOLES, &uflags,
2341 'i', MDB_OPT_SETBITS, TRUE, &opt_i,
2342 'L', MDB_OPT_SETBITS, TRUE, &opt_L,
2343 'l', MDB_OPT_UINTPTR, &opt_l,
2344 'n', MDB_OPT_SETBITS, PA_NOSYMBOLIC, &uflags,
2345 'p', MDB_OPT_SETBITS, TRUE, &opt_p,
2346 's', MDB_OPT_UINTPTR, &opt_s,
2347 'T', MDB_OPT_SETBITS, PA_SHOWTYPE | PA_SHOWBASETYPE, &uflags,
2348 't', MDB_OPT_SETBITS, PA_SHOWTYPE, &uflags,
2349 'x', MDB_OPT_SETBITS, PA_INTHEX, &uflags,
2350 NULL);
2351
2352 if (uflags & PA_INTHEX)
2353 uflags &= ~PA_INTDEC; /* -x and -d are mutually exclusive */
2354
2355 uflags |= PA_SHOWNAME;
2356
2357 if (opt_p && opt_i) {
2358 mdb_warn("-p and -i options are incompatible\n");
2359 return (DCMD_ERR);
2360 }
2361
2362 argc -= i;
2363 argv += i;
2364
2365 if (argc != 0 && argv->a_type == MDB_TYPE_STRING) {
2366 const char *t_name = s_name;
2367 int ret;
2368
2369 if (strchr("+-", argv->a_un.a_str[0]) != NULL)
2370 return (DCMD_USAGE);
2371
2372 if ((ret = args_to_typename(&argc, &argv, s_name,
2373 sizeof (s_name))) != 0)
2374 return (ret);
2375
2376 if (mdb_ctf_lookup_by_name(t_name, &id) != 0) {
2377 if (!(flags & DCMD_ADDRSPEC) || opt_i ||
2378 addr_to_sym(t, addr, s_name, sizeof (s_name),
2379 &sym, &s_info) == NULL ||
2380 mdb_ctf_lookup_by_symbol(&sym, &s_info, &id) != 0) {
2381
2382 mdb_warn("failed to look up type %s", t_name);
2383 return (DCMD_ABORT);
2384 }
2385 } else {
2386 argc--;
2387 argv++;
2388 }
2389
2390 } else if (!(flags & DCMD_ADDRSPEC) || opt_i) {
2391 return (DCMD_USAGE);
2392
2393 } else if (addr_to_sym(t, addr, s_name, sizeof (s_name),
2394 &sym, &s_info) == NULL) {
2395 mdb_warn("no symbol information for %a", addr);
2396 return (DCMD_ERR);
2397
2398 } else if (mdb_ctf_lookup_by_symbol(&sym, &s_info, &id) != 0) {
2399 mdb_warn("no type data available for %a [%u]", addr,
2400 s_info.sym_id);
2401 return (DCMD_ERR);
2402 }
2403
2404 pa.pa_tgt = mdb.m_target;
2405 pa.pa_realtgt = pa.pa_tgt;
2406 pa.pa_immtgt = NULL;
2407 pa.pa_as = opt_p ? MDB_TGT_AS_PHYS : MDB_TGT_AS_VIRT;
2408 pa.pa_armemlim = mdb.m_armemlim;
2409 pa.pa_arstrlim = mdb.m_arstrlim;
2410 pa.pa_delim = "\n";
2411 pa.pa_flags = uflags;
2412 pa.pa_nest = 0;
2413 pa.pa_tab = 4;
2414 pa.pa_prefix = NULL;
2415 pa.pa_suffix = NULL;
2416 pa.pa_holes = NULL;
2417 pa.pa_nholes = 0;
2418 pa.pa_depth = 0;
2419 pa.pa_maxdepth = opt_s;
2420 pa.pa_nooutdepth = (uint_t)-1;
2421
2422 if ((flags & DCMD_ADDRSPEC) && !opt_i)
2423 pa.pa_addr = opt_p ? mdb_get_dot() : addr;
2424 else
2425 pa.pa_addr = 0;
2426
2427 if (opt_i) {
2428 const char *vargv[2];
2429 uintmax_t dot = mdb_get_dot();
2430 size_t outsize = mdb_ctf_type_size(id);
2431 vargv[0] = (const char *)˙
2432 vargv[1] = (const char *)&outsize;
2433 pa.pa_immtgt = mdb_tgt_create(mdb_value_tgt_create,
2434 0, 2, vargv);
2435 pa.pa_tgt = pa.pa_immtgt;
2436 }
2437
2438 if (opt_c != MDB_ARR_NOLIMIT)
2439 pa.pa_arstrlim = opt_c;
2440 if (opt_C)
2441 pa.pa_arstrlim = MDB_ARR_NOLIMIT;
2442 if (opt_l != MDB_ARR_NOLIMIT)
2443 pa.pa_armemlim = opt_l;
2444 if (opt_L)
2445 pa.pa_armemlim = MDB_ARR_NOLIMIT;
2446
2447 if (argc > 0) {
2448 for (i = 0; i < argc; i++) {
2449 mdb_ctf_id_t mid;
2450 int last_deref;
2451 ulong_t off;
2452 int kind;
2453 char buf[MDB_SYM_NAMLEN];
2454
2455 mdb_tgt_t *oldtgt = pa.pa_tgt;
2456 mdb_tgt_as_t oldas = pa.pa_as;
2457 mdb_tgt_addr_t oldaddr = pa.pa_addr;
2458
2459 if (argv->a_type == MDB_TYPE_STRING) {
2460 const char *member = argv[i].a_un.a_str;
2461 mdb_ctf_id_t rid;
2462
2463 if (parse_member(&pa, member, id, &mid,
2464 &off, &last_deref) != 0) {
2465 err = DCMD_ABORT;
2466 goto out;
2467 }
2468
2469 /*
2470 * If the member string ends with a "[0]"
2471 * (last_deref * is true) and the type is a
2472 * structure or union, * print "->" rather
2473 * than "[0]." in elt_print.
2474 */
2475 (void) mdb_ctf_type_resolve(mid, &rid);
2476 kind = mdb_ctf_type_kind(rid);
2477 if (last_deref && IS_SOU(kind)) {
2478 char *end;
2479 (void) mdb_snprintf(buf, sizeof (buf),
2480 "%s", member);
2481 end = strrchr(buf, '[');
2482 *end = '\0';
2483 pa.pa_suffix = "->";
2484 member = &buf[0];
2485 } else if (IS_SOU(kind)) {
2486 pa.pa_suffix = ".";
2487 } else {
2488 pa.pa_suffix = "";
2489 }
2490
2491 pa.pa_prefix = member;
2492 } else {
2493 ulong_t moff;
2494
2495 moff = (ulong_t)argv[i].a_un.a_val;
2496
2497 if (mdb_ctf_offset_to_name(id, moff * NBBY,
2498 buf, sizeof (buf), 0, &mid, &off) == -1) {
2499 mdb_warn("invalid offset %lx\n", moff);
2500 err = DCMD_ABORT;
2501 goto out;
2502 }
2503
2504 pa.pa_prefix = buf;
2505 pa.pa_addr += moff - off / NBBY;
2506 pa.pa_suffix = strlen(buf) == 0 ? "" : ".";
2507 }
2508
2509 off %= NBBY;
2510 if (flags & DCMD_PIPE_OUT) {
2511 if (pipe_print(mid, off, &pa) != 0) {
2512 mdb_warn("failed to print type");
2513 err = DCMD_ERR;
2514 goto out;
2515 }
2516 } else if (off != 0) {
2517 mdb_ctf_id_t base;
2518 (void) mdb_ctf_type_resolve(mid, &base);
2519
2520 if (elt_print("", mid, base, off, 0,
2521 &pa) != 0) {
2522 mdb_warn("failed to print type");
2523 err = DCMD_ERR;
2524 goto out;
2525 }
2526 } else {
2527 if (mdb_ctf_type_visit(mid, elt_print,
2528 &pa) == -1) {
2529 mdb_warn("failed to print type");
2530 err = DCMD_ERR;
2531 goto out;
2532 }
2533
2534 for (d = pa.pa_depth - 1; d >= 0; d--)
2535 print_close_sou(&pa, d);
2536 }
2537
2538 pa.pa_depth = 0;
2539 pa.pa_tgt = oldtgt;
2540 pa.pa_as = oldas;
2541 pa.pa_addr = oldaddr;
2542 pa.pa_delim = "\n";
2543 }
2544
2545 } else if (flags & DCMD_PIPE_OUT) {
2546 if (pipe_print(id, 0, &pa) != 0) {
2547 mdb_warn("failed to print type");
2548 err = DCMD_ERR;
2549 goto out;
2550 }
2551 } else {
2552 if (mdb_ctf_type_visit(id, elt_print, &pa) == -1) {
2553 mdb_warn("failed to print type");
2554 err = DCMD_ERR;
2555 goto out;
2556 }
2557
2558 for (d = pa.pa_depth - 1; d >= 0; d--)
2559 print_close_sou(&pa, d);
2560 }
2561
2562 mdb_set_dot(addr + mdb_ctf_type_size(id));
2563 err = DCMD_OK;
2564 out:
2565 if (pa.pa_immtgt)
2566 mdb_tgt_destroy(pa.pa_immtgt);
2567 return (err);
2568 }
2569
2570 void
print_help(void)2571 print_help(void)
2572 {
2573 mdb_printf(
2574 "-a show address of object\n"
2575 "-C unlimit the length of character arrays\n"
2576 "-c limit limit the length of character arrays\n"
2577 "-d output values in decimal\n"
2578 "-h print holes in structures\n"
2579 "-i interpret address as data of the given type\n"
2580 "-L unlimit the length of standard arrays\n"
2581 "-l limit limit the length of standard arrays\n"
2582 "-n don't print pointers as symbol offsets\n"
2583 "-p interpret address as a physical memory address\n"
2584 "-s depth limit the recursion depth\n"
2585 "-T show type and <<base type>> of object\n"
2586 "-t show type of object\n"
2587 "-x output values in hexadecimal\n"
2588 "\n"
2589 "type may be omitted if the C type of addr can be inferred.\n"
2590 "\n"
2591 "Members may be specified with standard C syntax using the\n"
2592 "array indexing operator \"[index]\", structure member\n"
2593 "operator \".\", or structure pointer operator \"->\".\n"
2594 "\n"
2595 "Offsets must use the $[ expression ] syntax\n");
2596 }
2597
2598 static int
printf_signed(mdb_ctf_id_t id,uintptr_t addr,ulong_t off,char * fmt,boolean_t sign)2599 printf_signed(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt,
2600 boolean_t sign)
2601 {
2602 size_t size;
2603 mdb_ctf_id_t base;
2604 ctf_encoding_t e;
2605
2606 union {
2607 uint64_t ui8;
2608 uint32_t ui4;
2609 uint16_t ui2;
2610 uint8_t ui1;
2611 int64_t i8;
2612 int32_t i4;
2613 int16_t i2;
2614 int8_t i1;
2615 } u;
2616
2617 if (mdb_ctf_type_resolve(id, &base) == -1) {
2618 mdb_warn("could not resolve type");
2619 return (DCMD_ABORT);
2620 }
2621
2622 switch (mdb_ctf_type_kind(base)) {
2623 case CTF_K_ENUM:
2624 e.cte_format = CTF_INT_SIGNED;
2625 e.cte_offset = 0;
2626 e.cte_bits = mdb_ctf_type_size(id) * NBBY;
2627 break;
2628 case CTF_K_INTEGER:
2629 if (mdb_ctf_type_encoding(base, &e) != 0) {
2630 mdb_warn("could not get type encoding");
2631 return (DCMD_ABORT);
2632 }
2633 break;
2634 default:
2635 mdb_warn("expected integer type\n");
2636 return (DCMD_ABORT);
2637 }
2638
2639 if (sign)
2640 sign = e.cte_format & CTF_INT_SIGNED;
2641
2642 size = e.cte_bits / NBBY;
2643
2644 /*
2645 * Check to see if our life has been complicated by the presence of
2646 * a bitfield. If it has, we will print it using logic that is only
2647 * slightly different than that found in print_bitfield(), above. (In
2648 * particular, see the comments there for an explanation of the
2649 * endianness differences in this code.)
2650 */
2651 if (is_bitfield(&e, off)) {
2652 uint64_t mask = (1ULL << e.cte_bits) - 1;
2653 uint64_t value = 0;
2654 uint8_t *buf = (uint8_t *)&value;
2655 uint8_t shift;
2656 uint_t nbits;
2657
2658 /*
2659 * Our bitfield may straddle a byte boundary. We explicitly take
2660 * the offset of the bitfield within its byte into account when
2661 * determining the overall amount of data to copy and mask off
2662 * from the underlying data.
2663 */
2664 nbits = e.cte_bits + (off % NBBY);
2665 size = P2ROUNDUP(nbits, NBBY) / NBBY;
2666
2667 if (e.cte_bits > sizeof (value) * NBBY - 1) {
2668 mdb_printf("invalid bitfield size %u", e.cte_bits);
2669 return (DCMD_ABORT);
2670 }
2671
2672 /*
2673 * Our bitfield may straddle a byte boundary, if so, the
2674 * calculation of size may not correctly capture that. However,
2675 * off is relative to the entire bitfield, so we first have to
2676 * make that relative to the byte.
2677 */
2678 if ((off % NBBY) + e.cte_bits > NBBY * size) {
2679 size++;
2680 }
2681
2682 if (size > sizeof (value)) {
2683 mdb_warn("??? (total bitfield too large after "
2684 "alignment\n");
2685 return (DCMD_ABORT);
2686 }
2687
2688 #ifdef _BIG_ENDIAN
2689 buf += sizeof (value) - size;
2690 off += e.cte_bits;
2691 #endif
2692
2693 if (mdb_vread(buf, size, addr) == -1) {
2694 mdb_warn("failed to read %lu bytes at %p", size, addr);
2695 return (DCMD_ERR);
2696 }
2697
2698 shift = off % NBBY;
2699 #ifdef _BIG_ENDIAN
2700 shift = NBBY - shift;
2701 #endif
2702
2703 /*
2704 * If we have a bit offset within the byte, shift it down.
2705 */
2706 if (off % NBBY != 0)
2707 value >>= shift;
2708 value &= mask;
2709
2710 if (sign) {
2711 int sshift = sizeof (value) * NBBY - e.cte_bits;
2712 value = ((int64_t)value << sshift) >> sshift;
2713 }
2714
2715 mdb_printf(fmt, value);
2716 return (0);
2717 }
2718
2719 if (mdb_vread(&u.i8, size, addr) == -1) {
2720 mdb_warn("failed to read %lu bytes at %p", (ulong_t)size, addr);
2721 return (DCMD_ERR);
2722 }
2723
2724 switch (size) {
2725 case sizeof (uint8_t):
2726 mdb_printf(fmt, (uint64_t)(sign ? u.i1 : u.ui1));
2727 break;
2728 case sizeof (uint16_t):
2729 mdb_printf(fmt, (uint64_t)(sign ? u.i2 : u.ui2));
2730 break;
2731 case sizeof (uint32_t):
2732 mdb_printf(fmt, (uint64_t)(sign ? u.i4 : u.ui4));
2733 break;
2734 case sizeof (uint64_t):
2735 mdb_printf(fmt, (uint64_t)(sign ? u.i8 : u.ui8));
2736 break;
2737 }
2738
2739 return (0);
2740 }
2741
2742 static int
printf_int(mdb_ctf_id_t id,uintptr_t addr,ulong_t off,char * fmt)2743 printf_int(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2744 {
2745 return (printf_signed(id, addr, off, fmt, B_TRUE));
2746 }
2747
2748 static int
printf_uint(mdb_ctf_id_t id,uintptr_t addr,ulong_t off,char * fmt)2749 printf_uint(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2750 {
2751 return (printf_signed(id, addr, off, fmt, B_FALSE));
2752 }
2753
2754 /*ARGSUSED*/
2755 static int
printf_uint32(mdb_ctf_id_t id,uintptr_t addr,ulong_t off,char * fmt)2756 printf_uint32(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2757 {
2758 mdb_ctf_id_t base;
2759 ctf_encoding_t e;
2760 uint32_t value;
2761
2762 if (mdb_ctf_type_resolve(id, &base) == -1) {
2763 mdb_warn("could not resolve type\n");
2764 return (DCMD_ABORT);
2765 }
2766
2767 if (mdb_ctf_type_kind(base) != CTF_K_INTEGER ||
2768 mdb_ctf_type_encoding(base, &e) != 0 ||
2769 e.cte_bits / NBBY != sizeof (value)) {
2770 mdb_warn("expected 32-bit integer type\n");
2771 return (DCMD_ABORT);
2772 }
2773
2774 if (mdb_vread(&value, sizeof (value), addr) == -1) {
2775 mdb_warn("failed to read 32-bit value at %p", addr);
2776 return (DCMD_ERR);
2777 }
2778
2779 mdb_printf(fmt, value);
2780
2781 return (0);
2782 }
2783
2784 /*ARGSUSED*/
2785 static int
printf_ptr(mdb_ctf_id_t id,uintptr_t addr,ulong_t off,char * fmt)2786 printf_ptr(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2787 {
2788 uintptr_t value;
2789 mdb_ctf_id_t base;
2790
2791 if (mdb_ctf_type_resolve(id, &base) == -1) {
2792 mdb_warn("could not resolve type\n");
2793 return (DCMD_ABORT);
2794 }
2795
2796 if (mdb_ctf_type_kind(base) != CTF_K_POINTER) {
2797 mdb_warn("expected pointer type\n");
2798 return (DCMD_ABORT);
2799 }
2800
2801 if (mdb_vread(&value, sizeof (value), addr) == -1) {
2802 mdb_warn("failed to read pointer at %llx", addr);
2803 return (DCMD_ERR);
2804 }
2805
2806 mdb_printf(fmt, value);
2807
2808 return (0);
2809 }
2810
2811 /*ARGSUSED*/
2812 static int
printf_string(mdb_ctf_id_t id,uintptr_t addr,ulong_t off,char * fmt)2813 printf_string(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2814 {
2815 mdb_ctf_id_t base;
2816 mdb_ctf_arinfo_t r;
2817 char buf[1024];
2818 ssize_t size;
2819
2820 if (mdb_ctf_type_resolve(id, &base) == -1) {
2821 mdb_warn("could not resolve type");
2822 return (DCMD_ABORT);
2823 }
2824
2825 if (mdb_ctf_type_kind(base) == CTF_K_POINTER) {
2826 uintptr_t value;
2827
2828 if (mdb_vread(&value, sizeof (value), addr) == -1) {
2829 mdb_warn("failed to read pointer at %llx", addr);
2830 return (DCMD_ERR);
2831 }
2832
2833 if (mdb_readstr(buf, sizeof (buf) - 1, value) < 0) {
2834 mdb_warn("failed to read string at %llx", value);
2835 return (DCMD_ERR);
2836 }
2837
2838 mdb_printf(fmt, buf);
2839 return (0);
2840 }
2841
2842 if (mdb_ctf_type_kind(base) == CTF_K_ENUM) {
2843 const char *strval;
2844 int value;
2845
2846 if (mdb_vread(&value, sizeof (value), addr) == -1) {
2847 mdb_warn("failed to read pointer at %llx", addr);
2848 return (DCMD_ERR);
2849 }
2850
2851 if ((strval = mdb_ctf_enum_name(id, value))) {
2852 mdb_printf(fmt, strval);
2853 } else {
2854 (void) mdb_snprintf(buf, sizeof (buf), "<%d>", value);
2855 mdb_printf(fmt, buf);
2856 }
2857
2858 return (0);
2859 }
2860
2861 if (mdb_ctf_type_kind(base) != CTF_K_ARRAY) {
2862 mdb_warn("exepected pointer or array type\n");
2863 return (DCMD_ABORT);
2864 }
2865
2866 if (mdb_ctf_array_info(base, &r) == -1 ||
2867 mdb_ctf_type_resolve(r.mta_contents, &base) == -1 ||
2868 (size = mdb_ctf_type_size(base)) == -1) {
2869 mdb_warn("can't determine array type");
2870 return (DCMD_ABORT);
2871 }
2872
2873 if (size != 1) {
2874 mdb_warn("string format specifier requires "
2875 "an array of characters\n");
2876 return (DCMD_ABORT);
2877 }
2878
2879 bzero(buf, sizeof (buf));
2880
2881 if (r.mta_nelems != 0) {
2882 const size_t read_sz = MIN(r.mta_nelems, sizeof (buf) - 1);
2883 if (mdb_vread(buf, read_sz, addr) == -1) {
2884 mdb_warn("failed to read array at %p", addr);
2885 return (DCMD_ERR);
2886 }
2887 } else {
2888 /*
2889 * If the element count is zero, assume that the input is a
2890 * flexible length array which is NUL terminated.
2891 */
2892 if (mdb_readstr(buf, sizeof (buf), addr) < 0) {
2893 mdb_warn("failed to read string at %llx", addr);
2894 return (DCMD_ERR);
2895 }
2896 }
2897
2898 mdb_printf(fmt, buf);
2899
2900 return (0);
2901 }
2902
2903 /*ARGSUSED*/
2904 static int
printf_ipv6(mdb_ctf_id_t id,uintptr_t addr,ulong_t off,char * fmt)2905 printf_ipv6(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2906 {
2907 mdb_ctf_id_t base;
2908 mdb_ctf_id_t ipv6_type, ipv6_base;
2909 in6_addr_t ipv6;
2910
2911 if (mdb_ctf_lookup_by_name("in6_addr_t", &ipv6_type) == -1) {
2912 mdb_warn("could not resolve in6_addr_t type\n");
2913 return (DCMD_ABORT);
2914 }
2915
2916 if (mdb_ctf_type_resolve(id, &base) == -1) {
2917 mdb_warn("could not resolve type\n");
2918 return (DCMD_ABORT);
2919 }
2920
2921 if (mdb_ctf_type_resolve(ipv6_type, &ipv6_base) == -1) {
2922 mdb_warn("could not resolve in6_addr_t type\n");
2923 return (DCMD_ABORT);
2924 }
2925
2926 if (mdb_ctf_type_cmp(base, ipv6_base) != 0) {
2927 mdb_warn("requires argument of type in6_addr_t\n");
2928 return (DCMD_ABORT);
2929 }
2930
2931 if (mdb_vread(&ipv6, sizeof (ipv6), addr) == -1) {
2932 mdb_warn("couldn't read in6_addr_t at %p", addr);
2933 return (DCMD_ERR);
2934 }
2935
2936 mdb_printf(fmt, &ipv6);
2937
2938 return (0);
2939 }
2940
2941 /*
2942 * To validate the format string specified to ::printf, we run the format
2943 * string through a very simple state machine that restricts us to a subset
2944 * of mdb_printf() functionality.
2945 */
2946 enum {
2947 PRINTF_NOFMT = 1, /* no current format specifier */
2948 PRINTF_PERC, /* processed '%' */
2949 PRINTF_FMT, /* processing format specifier */
2950 PRINTF_LEFT, /* processed '-', expecting width */
2951 PRINTF_WIDTH, /* processing width */
2952 PRINTF_QUES /* processed '?', expecting format */
2953 };
2954
2955 int
cmd_printf_tab(mdb_tab_cookie_t * mcp,uint_t flags,int argc,const mdb_arg_t * argv)2956 cmd_printf_tab(mdb_tab_cookie_t *mcp, uint_t flags, int argc,
2957 const mdb_arg_t *argv)
2958 {
2959 int ii;
2960 char *f;
2961
2962 /*
2963 * If argc doesn't have more than what should be the format string,
2964 * ignore it.
2965 */
2966 if (argc <= 1)
2967 return (0);
2968
2969 /*
2970 * Because we aren't leveraging the lex and yacc engine, we have to
2971 * manually walk the arguments to find both the first and last
2972 * open/close quote of the format string.
2973 */
2974 f = strchr(argv[0].a_un.a_str, '"');
2975 if (f == NULL)
2976 return (0);
2977
2978 f = strchr(f + 1, '"');
2979 if (f != NULL) {
2980 ii = 0;
2981 } else {
2982 for (ii = 1; ii < argc; ii++) {
2983 if (argv[ii].a_type != MDB_TYPE_STRING)
2984 continue;
2985 f = strchr(argv[ii].a_un.a_str, '"');
2986 if (f != NULL)
2987 break;
2988 }
2989 /* Never found */
2990 if (ii == argc)
2991 return (0);
2992 }
2993
2994 ii++;
2995 argc -= ii;
2996 argv += ii;
2997
2998 return (cmd_print_tab_common(mcp, flags, argc, argv));
2999 }
3000
3001 int
cmd_printf(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3002 cmd_printf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3003 {
3004 char type[MDB_SYM_NAMLEN];
3005 int i, nfmts = 0, ret;
3006 mdb_ctf_id_t id;
3007 const char *fmt, *member;
3008 char **fmts, *last, *dest, f;
3009 int (**funcs)(mdb_ctf_id_t, uintptr_t, ulong_t, char *);
3010 int state = PRINTF_NOFMT;
3011 printarg_t pa;
3012
3013 if (!(flags & DCMD_ADDRSPEC))
3014 return (DCMD_USAGE);
3015
3016 bzero(&pa, sizeof (pa));
3017 pa.pa_as = MDB_TGT_AS_VIRT;
3018 pa.pa_realtgt = pa.pa_tgt = mdb.m_target;
3019
3020 if (argc == 0 || argv[0].a_type != MDB_TYPE_STRING) {
3021 mdb_warn("expected a format string\n");
3022 return (DCMD_USAGE);
3023 }
3024
3025 /*
3026 * Our first argument is a format string; rip it apart and run it
3027 * through our state machine to validate that our input is within the
3028 * subset of mdb_printf() format strings that we allow.
3029 */
3030 fmt = argv[0].a_un.a_str;
3031 /*
3032 * 'dest' must be large enough to hold a copy of the format string,
3033 * plus a NUL and up to 2 additional characters for each conversion
3034 * in the format string. This gives us a bloat factor of 5/2 ~= 3.
3035 * e.g. "%d" (strlen of 2) --> "%lld\0" (need 5 bytes)
3036 */
3037 dest = mdb_zalloc(strlen(fmt) * 3, UM_SLEEP | UM_GC);
3038 fmts = mdb_zalloc(strlen(fmt) * sizeof (char *), UM_SLEEP | UM_GC);
3039 funcs = mdb_zalloc(strlen(fmt) * sizeof (void *), UM_SLEEP | UM_GC);
3040 last = dest;
3041
3042 for (i = 0; fmt[i] != '\0'; i++) {
3043 *dest++ = f = fmt[i];
3044
3045 switch (state) {
3046 case PRINTF_NOFMT:
3047 state = f == '%' ? PRINTF_PERC : PRINTF_NOFMT;
3048 break;
3049
3050 case PRINTF_PERC:
3051 state = f == '-' ? PRINTF_LEFT :
3052 f >= '0' && f <= '9' ? PRINTF_WIDTH :
3053 f == '?' ? PRINTF_QUES :
3054 f == '%' ? PRINTF_NOFMT : PRINTF_FMT;
3055 break;
3056
3057 case PRINTF_LEFT:
3058 state = f >= '0' && f <= '9' ? PRINTF_WIDTH :
3059 f == '?' ? PRINTF_QUES : PRINTF_FMT;
3060 break;
3061
3062 case PRINTF_WIDTH:
3063 state = f >= '0' && f <= '9' ? PRINTF_WIDTH :
3064 PRINTF_FMT;
3065 break;
3066
3067 case PRINTF_QUES:
3068 state = PRINTF_FMT;
3069 break;
3070 }
3071
3072 if (state != PRINTF_FMT)
3073 continue;
3074
3075 dest--;
3076
3077 /*
3078 * Now check that we have one of our valid format characters.
3079 */
3080 switch (f) {
3081 case 'a':
3082 case 'A':
3083 case 'p':
3084 funcs[nfmts] = printf_ptr;
3085 break;
3086
3087 case 'd':
3088 case 'q':
3089 case 'R':
3090 funcs[nfmts] = printf_int;
3091 *dest++ = 'l';
3092 *dest++ = 'l';
3093 break;
3094
3095 case 'I':
3096 funcs[nfmts] = printf_uint32;
3097 break;
3098
3099 case 'N':
3100 funcs[nfmts] = printf_ipv6;
3101 break;
3102
3103 case 'H':
3104 case 'o':
3105 case 'r':
3106 case 'u':
3107 case 'x':
3108 case 'X':
3109 funcs[nfmts] = printf_uint;
3110 *dest++ = 'l';
3111 *dest++ = 'l';
3112 break;
3113
3114 case 's':
3115 funcs[nfmts] = printf_string;
3116 break;
3117
3118 case 'Y':
3119 funcs[nfmts] = sizeof (time_t) == sizeof (int) ?
3120 printf_uint32 : printf_uint;
3121 break;
3122
3123 default:
3124 mdb_warn("illegal format string at or near "
3125 "'%c' (position %d)\n", f, i + 1);
3126 return (DCMD_ABORT);
3127 }
3128
3129 *dest++ = f;
3130 *dest++ = '\0';
3131 fmts[nfmts++] = last;
3132 last = dest;
3133 state = PRINTF_NOFMT;
3134 }
3135
3136 argc--;
3137 argv++;
3138
3139 /*
3140 * Now we expect a type name.
3141 */
3142 if ((ret = args_to_typename(&argc, &argv, type, sizeof (type))) != 0)
3143 return (ret);
3144
3145 argv++;
3146 argc--;
3147
3148 if (mdb_ctf_lookup_by_name(type, &id) != 0) {
3149 mdb_warn("failed to look up type %s", type);
3150 return (DCMD_ABORT);
3151 }
3152
3153 if (argc == 0) {
3154 mdb_warn("at least one member must be specified\n");
3155 return (DCMD_USAGE);
3156 }
3157
3158 if (argc != nfmts) {
3159 mdb_warn("%s format specifiers (found %d, expected %d)\n",
3160 argc > nfmts ? "missing" : "extra", nfmts, argc);
3161 return (DCMD_ABORT);
3162 }
3163
3164 for (i = 0; i < argc; i++) {
3165 mdb_ctf_id_t mid;
3166 ulong_t off;
3167 int ignored;
3168
3169 if (argv[i].a_type != MDB_TYPE_STRING) {
3170 mdb_warn("expected only type member arguments\n");
3171 return (DCMD_ABORT);
3172 }
3173
3174 if (strcmp((member = argv[i].a_un.a_str), ".") == 0) {
3175 /*
3176 * We allow "." to be specified to denote the current
3177 * value of dot.
3178 */
3179 if (funcs[i] != printf_ptr && funcs[i] != printf_uint &&
3180 funcs[i] != printf_int) {
3181 mdb_warn("expected integer or pointer format "
3182 "specifier for '.'\n");
3183 return (DCMD_ABORT);
3184 }
3185
3186 mdb_printf(fmts[i], mdb_get_dot());
3187 continue;
3188 }
3189
3190 pa.pa_addr = addr;
3191
3192 if (parse_member(&pa, member, id, &mid, &off, &ignored) != 0)
3193 return (DCMD_ABORT);
3194
3195 if ((ret = funcs[i](mid, pa.pa_addr, off, fmts[i])) != 0) {
3196 mdb_warn("failed to print member '%s'\n", member);
3197 return (ret);
3198 }
3199 }
3200
3201 mdb_printf("%s", last);
3202 mdb_set_dot(addr + mdb_ctf_type_size(id));
3203
3204 return (DCMD_OK);
3205 }
3206
3207 static char _mdb_printf_help[] =
3208 "The format string argument is a printf(3C)-like format string that is a\n"
3209 "subset of the format strings supported by mdb_printf(). The type argument\n"
3210 "is the name of a type to be used to interpret the memory referenced by dot.\n"
3211 "The member should either be a field in the specified structure, or the\n"
3212 "special member '.', denoting the value of dot (and treated as a pointer).\n"
3213 "The number of members must match the number of format specifiers in the\n"
3214 "format string.\n"
3215 "\n"
3216 "The following format specifiers are recognized by ::printf:\n"
3217 "\n"
3218 " %% Prints the '%' symbol.\n"
3219 " %a Prints the member in symbolic form.\n"
3220 " %d Prints the member as a decimal integer. If the member is a signed\n"
3221 " integer type, the output will be signed.\n"
3222 " %H Prints the member as a human-readable size.\n"
3223 " %I Prints the member as an IPv4 address (must be 32-bit integer type).\n"
3224 " %N Prints the member as an IPv6 address (must be of type in6_addr_t).\n"
3225 " %o Prints the member as an unsigned octal integer.\n"
3226 " %p Prints the member as a pointer, in hexadecimal.\n"
3227 " %q Prints the member in signed octal. Honk if you ever use this!\n"
3228 " %r Prints the member as an unsigned value in the current output radix.\n"
3229 " %R Prints the member as a signed value in the current output radix.\n"
3230 " %s Prints the member as a string (requires a pointer or an array of\n"
3231 " characters).\n"
3232 " %u Prints the member as an unsigned decimal integer.\n"
3233 " %x Prints the member in hexadecimal.\n"
3234 " %X Prints the member in hexadecimal, using the characters A-F as the\n"
3235 " digits for the values 10-15.\n"
3236 " %Y Prints the member as a time_t as the string "
3237 "'year month day HH:MM:SS'.\n"
3238 "\n"
3239 "The following field width specifiers are recognized by ::printf:\n"
3240 "\n"
3241 " %n Field width is set to the specified decimal value.\n"
3242 " %? Field width is set to the maximum width of a hexadecimal pointer\n"
3243 " value. This is 8 in an ILP32 environment, and 16 in an LP64\n"
3244 " environment.\n"
3245 "\n"
3246 "The following flag specifers are recognized by ::printf:\n"
3247 "\n"
3248 " %- Left-justify the output within the specified field width. If the\n"
3249 " width of the output is less than the specified field width, the\n"
3250 " output will be padded with blanks on the right-hand side. Without\n"
3251 " %-, values are right-justified by default.\n"
3252 "\n"
3253 " %0 Zero-fill the output field if the output is right-justified and the\n"
3254 " width of the output is less than the specified field width. Without\n"
3255 " %0, right-justified values are prepended with blanks in order to\n"
3256 " fill the field.\n"
3257 "\n"
3258 "Examples: \n"
3259 "\n"
3260 " ::walk proc | "
3261 "::printf \"%-6d %s\\n\" proc_t p_pidp->pid_id p_user.u_psargs\n"
3262 " ::walk thread | "
3263 "::printf \"%?p %3d %a\\n\" kthread_t . t_pri t_startpc\n"
3264 " ::walk zone | "
3265 "::printf \"%-40s %20s\\n\" zone_t zone_name zone_nodename\n"
3266 " ::walk ire | "
3267 "::printf \"%Y %I\\n\" ire_t ire_create_time ire_u.ire4_u.ire4_addr\n"
3268 "\n";
3269
3270 void
printf_help(void)3271 printf_help(void)
3272 {
3273 mdb_printf("%s", _mdb_printf_help);
3274 }
3275