1 /*
2 * MD5 hash implementation and interface functions
3 * Copyright (c) 2003-2005, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9 #include "includes.h"
10
11 #include "common.h"
12 #include "md5.h"
13 #include "md5_i.h"
14 #include "crypto.h"
15
16
17 static void MD5Transform(u32 buf[4], u32 const in[16]);
18
19
20 typedef struct MD5Context MD5_CTX;
21
22
23 /**
24 * md5_vector - MD5 hash for data vector
25 * @num_elem: Number of elements in the data vector
26 * @addr: Pointers to the data areas
27 * @len: Lengths of the data blocks
28 * @mac: Buffer for the hash
29 * Returns: 0 on success, -1 of failure
30 */
md5_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)31 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
32 {
33 MD5_CTX ctx;
34 size_t i;
35
36 if (TEST_FAIL())
37 return -1;
38
39 MD5Init(&ctx);
40 for (i = 0; i < num_elem; i++)
41 MD5Update(&ctx, addr[i], len[i]);
42 MD5Final(mac, &ctx);
43 return 0;
44 }
45
46
47 /* ===== start - public domain MD5 implementation ===== */
48 /*
49 * This code implements the MD5 message-digest algorithm.
50 * The algorithm is due to Ron Rivest. This code was
51 * written by Colin Plumb in 1993, no copyright is claimed.
52 * This code is in the public domain; do with it what you wish.
53 *
54 * Equivalent code is available from RSA Data Security, Inc.
55 * This code has been tested against that, and is equivalent,
56 * except that you don't need to include two pages of legalese
57 * with every copy.
58 *
59 * To compute the message digest of a chunk of bytes, declare an
60 * MD5Context structure, pass it to MD5Init, call MD5Update as
61 * needed on buffers full of bytes, and then call MD5Final, which
62 * will fill a supplied 16-byte array with the digest.
63 */
64
65 #ifndef WORDS_BIGENDIAN
66 #define byteReverse(buf, len) /* Nothing */
67 #else
68 /*
69 * Note: this code is harmless on little-endian machines.
70 */
byteReverse(unsigned char * buf,unsigned longs)71 static void byteReverse(unsigned char *buf, unsigned longs)
72 {
73 u32 t;
74 do {
75 t = (u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
76 ((unsigned) buf[1] << 8 | buf[0]);
77 *(u32 *) buf = t;
78 buf += 4;
79 } while (--longs);
80 }
81 #endif
82
83 /*
84 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
85 * initialization constants.
86 */
MD5Init(struct MD5Context * ctx)87 void MD5Init(struct MD5Context *ctx)
88 {
89 ctx->buf[0] = 0x67452301;
90 ctx->buf[1] = 0xefcdab89;
91 ctx->buf[2] = 0x98badcfe;
92 ctx->buf[3] = 0x10325476;
93
94 ctx->bits[0] = 0;
95 ctx->bits[1] = 0;
96 }
97
98 /*
99 * Update context to reflect the concatenation of another buffer full
100 * of bytes.
101 */
MD5Update(struct MD5Context * ctx,unsigned char const * buf,unsigned len)102 void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
103 {
104 u32 t;
105
106 /* Update bitcount */
107
108 t = ctx->bits[0];
109 if ((ctx->bits[0] = t + ((u32) len << 3)) < t)
110 ctx->bits[1]++; /* Carry from low to high */
111 ctx->bits[1] += len >> 29;
112
113 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
114
115 /* Handle any leading odd-sized chunks */
116
117 if (t) {
118 unsigned char *p = (unsigned char *) ctx->in + t;
119
120 t = 64 - t;
121 if (len < t) {
122 os_memcpy(p, buf, len);
123 return;
124 }
125 os_memcpy(p, buf, t);
126 byteReverse(ctx->in, 16);
127 MD5Transform(ctx->buf, (u32 *) ctx->in);
128 buf += t;
129 len -= t;
130 }
131 /* Process data in 64-byte chunks */
132
133 while (len >= 64) {
134 os_memcpy(ctx->in, buf, 64);
135 byteReverse(ctx->in, 16);
136 MD5Transform(ctx->buf, (u32 *) ctx->in);
137 buf += 64;
138 len -= 64;
139 }
140
141 /* Handle any remaining bytes of data. */
142
143 os_memcpy(ctx->in, buf, len);
144 }
145
146 /*
147 * Final wrapup - pad to 64-byte boundary with the bit pattern
148 * 1 0* (64-bit count of bits processed, MSB-first)
149 */
MD5Final(unsigned char digest[16],struct MD5Context * ctx)150 void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
151 {
152 unsigned count;
153 unsigned char *p;
154
155 /* Compute number of bytes mod 64 */
156 count = (ctx->bits[0] >> 3) & 0x3F;
157
158 /* Set the first char of padding to 0x80. This is safe since there is
159 always at least one byte free */
160 p = ctx->in + count;
161 *p++ = 0x80;
162
163 /* Bytes of padding needed to make 64 bytes */
164 count = 64 - 1 - count;
165
166 /* Pad out to 56 mod 64 */
167 if (count < 8) {
168 /* Two lots of padding: Pad the first block to 64 bytes */
169 os_memset(p, 0, count);
170 byteReverse(ctx->in, 16);
171 MD5Transform(ctx->buf, (u32 *) ctx->in);
172
173 /* Now fill the next block with 56 bytes */
174 os_memset(ctx->in, 0, 56);
175 } else {
176 /* Pad block to 56 bytes */
177 os_memset(p, 0, count - 8);
178 }
179 byteReverse(ctx->in, 14);
180
181 /* Append length in bits and transform */
182 ((u32 *) aliasing_hide_typecast(ctx->in, u32))[14] = ctx->bits[0];
183 ((u32 *) aliasing_hide_typecast(ctx->in, u32))[15] = ctx->bits[1];
184
185 MD5Transform(ctx->buf, (u32 *) ctx->in);
186 byteReverse((unsigned char *) ctx->buf, 4);
187 os_memcpy(digest, ctx->buf, 16);
188 os_memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */
189 }
190
191 /* The four core functions - F1 is optimized somewhat */
192
193 /* #define F1(x, y, z) (x & y | ~x & z) */
194 #define F1(x, y, z) (z ^ (x & (y ^ z)))
195 #define F2(x, y, z) F1(z, x, y)
196 #define F3(x, y, z) (x ^ y ^ z)
197 #define F4(x, y, z) (y ^ (x | ~z))
198
199 /* This is the central step in the MD5 algorithm. */
200 #define MD5STEP(f, w, x, y, z, data, s) \
201 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
202
203 /*
204 * The core of the MD5 algorithm, this alters an existing MD5 hash to
205 * reflect the addition of 16 longwords of new data. MD5Update blocks
206 * the data and converts bytes into longwords for this routine.
207 */
MD5Transform(u32 buf[4],u32 const in[16])208 static void MD5Transform(u32 buf[4], u32 const in[16])
209 {
210 register u32 a, b, c, d;
211
212 a = buf[0];
213 b = buf[1];
214 c = buf[2];
215 d = buf[3];
216
217 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
218 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
219 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
220 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
221 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
222 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
223 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
224 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
225 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
226 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
227 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
228 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
229 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
230 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
231 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
232 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
233
234 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
235 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
236 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
237 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
238 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
239 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
240 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
241 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
242 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
243 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
244 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
245 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
246 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
247 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
248 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
249 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
250
251 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
252 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
253 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
254 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
255 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
256 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
257 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
258 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
259 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
260 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
261 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
262 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
263 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
264 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
265 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
266 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
267
268 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
269 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
270 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
271 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
272 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
273 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
274 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
275 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
276 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
277 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
278 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
279 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
280 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
281 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
282 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
283 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
284
285 buf[0] += a;
286 buf[1] += b;
287 buf[2] += c;
288 buf[3] += d;
289 }
290 /* ===== end - public domain MD5 implementation ===== */
291