1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Support for Lite-On LTR501 and similar ambient light and proximity sensors.
4 *
5 * Copyright 2014 Peter Meerwald <pmeerw@pmeerw.net>
6 *
7 * 7-bit I2C slave address 0x23
8 *
9 * TODO: IR LED characteristics
10 */
11
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/i2c.h>
15 #include <linux/err.h>
16 #include <linux/delay.h>
17 #include <linux/regmap.h>
18 #include <linux/regulator/consumer.h>
19
20 #include <linux/iio/iio.h>
21 #include <linux/iio/events.h>
22 #include <linux/iio/sysfs.h>
23 #include <linux/iio/trigger_consumer.h>
24 #include <linux/iio/buffer.h>
25 #include <linux/iio/triggered_buffer.h>
26
27 #define LTR501_DRV_NAME "ltr501"
28
29 #define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */
30 #define LTR501_PS_CONTR 0x81 /* PS operation mode */
31 #define LTR501_PS_MEAS_RATE 0x84 /* measurement rate*/
32 #define LTR501_ALS_MEAS_RATE 0x85 /* ALS integ time, measurement rate*/
33 #define LTR501_PART_ID 0x86
34 #define LTR501_MANUFAC_ID 0x87
35 #define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */
36 #define LTR501_ALS_DATA1_UPPER 0x89 /* upper 8 bits of LTR501_ALS_DATA1 */
37 #define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */
38 #define LTR501_ALS_DATA0_UPPER 0x8b /* upper 8 bits of LTR501_ALS_DATA0 */
39 #define LTR501_ALS_PS_STATUS 0x8c
40 #define LTR501_PS_DATA 0x8d /* 16-bit, little endian */
41 #define LTR501_PS_DATA_UPPER 0x8e /* upper 8 bits of LTR501_PS_DATA */
42 #define LTR501_INTR 0x8f /* output mode, polarity, mode */
43 #define LTR501_PS_THRESH_UP 0x90 /* 11 bit, ps upper threshold */
44 #define LTR501_PS_THRESH_LOW 0x92 /* 11 bit, ps lower threshold */
45 #define LTR501_ALS_THRESH_UP 0x97 /* 16 bit, ALS upper threshold */
46 #define LTR501_ALS_THRESH_LOW 0x99 /* 16 bit, ALS lower threshold */
47 #define LTR501_INTR_PRST 0x9e /* ps thresh, als thresh */
48 #define LTR501_MAX_REG 0x9f
49
50 #define LTR501_ALS_CONTR_SW_RESET BIT(2)
51 #define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2))
52 #define LTR501_CONTR_PS_GAIN_SHIFT 2
53 #define LTR501_CONTR_ALS_GAIN_MASK BIT(3)
54 #define LTR501_CONTR_ACTIVE BIT(1)
55
56 #define LTR501_STATUS_ALS_INTR BIT(3)
57 #define LTR501_STATUS_ALS_RDY BIT(2)
58 #define LTR501_STATUS_PS_INTR BIT(1)
59 #define LTR501_STATUS_PS_RDY BIT(0)
60
61 #define LTR501_PS_DATA_MASK 0x7ff
62 #define LTR501_PS_THRESH_MASK 0x7ff
63 #define LTR501_ALS_THRESH_MASK 0xffff
64
65 #define LTR501_ALS_DEF_PERIOD 500000
66 #define LTR501_PS_DEF_PERIOD 100000
67
68 #define LTR501_REGMAP_NAME "ltr501_regmap"
69
70 #define LTR501_LUX_CONV(vis_coeff, vis_data, ir_coeff, ir_data) \
71 ((vis_coeff * vis_data) - (ir_coeff * ir_data))
72
73 static const int int_time_mapping[] = {100000, 50000, 200000, 400000};
74
75 static const struct reg_field reg_field_it =
76 REG_FIELD(LTR501_ALS_MEAS_RATE, 3, 4);
77 static const struct reg_field reg_field_als_intr =
78 REG_FIELD(LTR501_INTR, 1, 1);
79 static const struct reg_field reg_field_ps_intr =
80 REG_FIELD(LTR501_INTR, 0, 0);
81 static const struct reg_field reg_field_als_rate =
82 REG_FIELD(LTR501_ALS_MEAS_RATE, 0, 2);
83 static const struct reg_field reg_field_ps_rate =
84 REG_FIELD(LTR501_PS_MEAS_RATE, 0, 3);
85 static const struct reg_field reg_field_als_prst =
86 REG_FIELD(LTR501_INTR_PRST, 0, 3);
87 static const struct reg_field reg_field_ps_prst =
88 REG_FIELD(LTR501_INTR_PRST, 4, 7);
89
90 struct ltr501_samp_table {
91 int freq_val; /* repetition frequency in micro HZ*/
92 int time_val; /* repetition rate in micro seconds */
93 };
94
95 #define LTR501_RESERVED_GAIN -1
96
97 enum {
98 ltr501 = 0,
99 ltr559,
100 ltr301,
101 ltr303,
102 };
103
104 struct ltr501_gain {
105 int scale;
106 int uscale;
107 };
108
109 static const struct ltr501_gain ltr501_als_gain_tbl[] = {
110 {1, 0},
111 {0, 5000},
112 };
113
114 static const struct ltr501_gain ltr559_als_gain_tbl[] = {
115 {1, 0},
116 {0, 500000},
117 {0, 250000},
118 {0, 125000},
119 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
120 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
121 {0, 20000},
122 {0, 10000},
123 };
124
125 static const struct ltr501_gain ltr501_ps_gain_tbl[] = {
126 {1, 0},
127 {0, 250000},
128 {0, 125000},
129 {0, 62500},
130 };
131
132 static const struct ltr501_gain ltr559_ps_gain_tbl[] = {
133 {0, 62500}, /* x16 gain */
134 {0, 31250}, /* x32 gain */
135 {0, 15625}, /* bits X1 are for x64 gain */
136 {0, 15624},
137 };
138
139 struct ltr501_chip_info {
140 u8 partid;
141 const struct ltr501_gain *als_gain;
142 int als_gain_tbl_size;
143 const struct ltr501_gain *ps_gain;
144 int ps_gain_tbl_size;
145 u8 als_mode_active;
146 u8 als_gain_mask;
147 u8 als_gain_shift;
148 struct iio_chan_spec const *channels;
149 const int no_channels;
150 const struct iio_info *info;
151 const struct iio_info *info_no_irq;
152 };
153
154 struct ltr501_data {
155 struct i2c_client *client;
156 struct mutex lock_als, lock_ps;
157 const struct ltr501_chip_info *chip_info;
158 u8 als_contr, ps_contr;
159 int als_period, ps_period; /* period in micro seconds */
160 struct regmap *regmap;
161 struct regmap_field *reg_it;
162 struct regmap_field *reg_als_intr;
163 struct regmap_field *reg_ps_intr;
164 struct regmap_field *reg_als_rate;
165 struct regmap_field *reg_ps_rate;
166 struct regmap_field *reg_als_prst;
167 struct regmap_field *reg_ps_prst;
168 uint32_t near_level;
169 };
170
171 static const struct ltr501_samp_table ltr501_als_samp_table[] = {
172 {20000000, 50000}, {10000000, 100000},
173 {5000000, 200000}, {2000000, 500000},
174 {1000000, 1000000}, {500000, 2000000},
175 {500000, 2000000}, {500000, 2000000}
176 };
177
178 static const struct ltr501_samp_table ltr501_ps_samp_table[] = {
179 {20000000, 50000}, {14285714, 70000},
180 {10000000, 100000}, {5000000, 200000},
181 {2000000, 500000}, {1000000, 1000000},
182 {500000, 2000000}, {500000, 2000000},
183 {500000, 2000000}
184 };
185
ltr501_match_samp_freq(const struct ltr501_samp_table * tab,int len,int val,int val2)186 static int ltr501_match_samp_freq(const struct ltr501_samp_table *tab,
187 int len, int val, int val2)
188 {
189 int i, freq;
190
191 freq = val * 1000000 + val2;
192
193 for (i = 0; i < len; i++) {
194 if (tab[i].freq_val == freq)
195 return i;
196 }
197
198 return -EINVAL;
199 }
200
ltr501_als_read_samp_freq(const struct ltr501_data * data,int * val,int * val2)201 static int ltr501_als_read_samp_freq(const struct ltr501_data *data,
202 int *val, int *val2)
203 {
204 int ret, i;
205
206 ret = regmap_field_read(data->reg_als_rate, &i);
207 if (ret < 0)
208 return ret;
209
210 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
211 return -EINVAL;
212
213 *val = ltr501_als_samp_table[i].freq_val / 1000000;
214 *val2 = ltr501_als_samp_table[i].freq_val % 1000000;
215
216 return IIO_VAL_INT_PLUS_MICRO;
217 }
218
ltr501_ps_read_samp_freq(const struct ltr501_data * data,int * val,int * val2)219 static int ltr501_ps_read_samp_freq(const struct ltr501_data *data,
220 int *val, int *val2)
221 {
222 int ret, i;
223
224 ret = regmap_field_read(data->reg_ps_rate, &i);
225 if (ret < 0)
226 return ret;
227
228 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
229 return -EINVAL;
230
231 *val = ltr501_ps_samp_table[i].freq_val / 1000000;
232 *val2 = ltr501_ps_samp_table[i].freq_val % 1000000;
233
234 return IIO_VAL_INT_PLUS_MICRO;
235 }
236
ltr501_als_write_samp_freq(struct ltr501_data * data,int val,int val2)237 static int ltr501_als_write_samp_freq(struct ltr501_data *data,
238 int val, int val2)
239 {
240 int i, ret;
241
242 i = ltr501_match_samp_freq(ltr501_als_samp_table,
243 ARRAY_SIZE(ltr501_als_samp_table),
244 val, val2);
245
246 if (i < 0)
247 return i;
248
249 mutex_lock(&data->lock_als);
250 ret = regmap_field_write(data->reg_als_rate, i);
251 mutex_unlock(&data->lock_als);
252
253 return ret;
254 }
255
ltr501_ps_write_samp_freq(struct ltr501_data * data,int val,int val2)256 static int ltr501_ps_write_samp_freq(struct ltr501_data *data,
257 int val, int val2)
258 {
259 int i, ret;
260
261 i = ltr501_match_samp_freq(ltr501_ps_samp_table,
262 ARRAY_SIZE(ltr501_ps_samp_table),
263 val, val2);
264
265 if (i < 0)
266 return i;
267
268 mutex_lock(&data->lock_ps);
269 ret = regmap_field_write(data->reg_ps_rate, i);
270 mutex_unlock(&data->lock_ps);
271
272 return ret;
273 }
274
ltr501_als_read_samp_period(const struct ltr501_data * data,int * val)275 static int ltr501_als_read_samp_period(const struct ltr501_data *data, int *val)
276 {
277 int ret, i;
278
279 ret = regmap_field_read(data->reg_als_rate, &i);
280 if (ret < 0)
281 return ret;
282
283 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
284 return -EINVAL;
285
286 *val = ltr501_als_samp_table[i].time_val;
287
288 return IIO_VAL_INT;
289 }
290
ltr501_ps_read_samp_period(const struct ltr501_data * data,int * val)291 static int ltr501_ps_read_samp_period(const struct ltr501_data *data, int *val)
292 {
293 int ret, i;
294
295 ret = regmap_field_read(data->reg_ps_rate, &i);
296 if (ret < 0)
297 return ret;
298
299 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
300 return -EINVAL;
301
302 *val = ltr501_ps_samp_table[i].time_val;
303
304 return IIO_VAL_INT;
305 }
306
307 /* IR and visible spectrum coeff's are given in data sheet */
ltr501_calculate_lux(u16 vis_data,u16 ir_data)308 static unsigned long ltr501_calculate_lux(u16 vis_data, u16 ir_data)
309 {
310 unsigned long ratio, lux;
311
312 if (vis_data == 0)
313 return 0;
314
315 /* multiply numerator by 100 to avoid handling ratio < 1 */
316 ratio = DIV_ROUND_UP(ir_data * 100, ir_data + vis_data);
317
318 if (ratio < 45)
319 lux = LTR501_LUX_CONV(1774, vis_data, -1105, ir_data);
320 else if (ratio >= 45 && ratio < 64)
321 lux = LTR501_LUX_CONV(3772, vis_data, 1336, ir_data);
322 else if (ratio >= 64 && ratio < 85)
323 lux = LTR501_LUX_CONV(1690, vis_data, 169, ir_data);
324 else
325 lux = 0;
326
327 return lux / 1000;
328 }
329
ltr501_drdy(const struct ltr501_data * data,u8 drdy_mask)330 static int ltr501_drdy(const struct ltr501_data *data, u8 drdy_mask)
331 {
332 int tries = 100;
333 int ret, status;
334
335 while (tries--) {
336 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
337 if (ret < 0)
338 return ret;
339 if ((status & drdy_mask) == drdy_mask)
340 return 0;
341 msleep(25);
342 }
343
344 dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n");
345 return -EIO;
346 }
347
ltr501_set_it_time(struct ltr501_data * data,int it)348 static int ltr501_set_it_time(struct ltr501_data *data, int it)
349 {
350 int ret, i, index = -1, status;
351
352 for (i = 0; i < ARRAY_SIZE(int_time_mapping); i++) {
353 if (int_time_mapping[i] == it) {
354 index = i;
355 break;
356 }
357 }
358 /* Make sure integ time index is valid */
359 if (index < 0)
360 return -EINVAL;
361
362 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
363 if (ret < 0)
364 return ret;
365
366 if (status & LTR501_CONTR_ALS_GAIN_MASK) {
367 /*
368 * 200 ms and 400 ms integ time can only be
369 * used in dynamic range 1
370 */
371 if (index > 1)
372 return -EINVAL;
373 } else
374 /* 50 ms integ time can only be used in dynamic range 2 */
375 if (index == 1)
376 return -EINVAL;
377
378 return regmap_field_write(data->reg_it, index);
379 }
380
381 /* read int time in micro seconds */
ltr501_read_it_time(const struct ltr501_data * data,int * val,int * val2)382 static int ltr501_read_it_time(const struct ltr501_data *data,
383 int *val, int *val2)
384 {
385 int ret, index;
386
387 ret = regmap_field_read(data->reg_it, &index);
388 if (ret < 0)
389 return ret;
390
391 /* Make sure integ time index is valid */
392 if (index < 0 || index >= ARRAY_SIZE(int_time_mapping))
393 return -EINVAL;
394
395 *val2 = int_time_mapping[index];
396 *val = 0;
397
398 return IIO_VAL_INT_PLUS_MICRO;
399 }
400
ltr501_read_als(const struct ltr501_data * data,__le16 buf[2])401 static int ltr501_read_als(const struct ltr501_data *data, __le16 buf[2])
402 {
403 int ret;
404
405 ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY);
406 if (ret < 0)
407 return ret;
408 /* always read both ALS channels in given order */
409 return regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
410 buf, 2 * sizeof(__le16));
411 }
412
ltr501_read_ps(const struct ltr501_data * data)413 static int ltr501_read_ps(const struct ltr501_data *data)
414 {
415 __le16 status;
416 int ret;
417
418 ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY);
419 if (ret < 0)
420 return ret;
421
422 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
423 &status, sizeof(status));
424 if (ret < 0)
425 return ret;
426
427 return le16_to_cpu(status);
428 }
429
ltr501_read_intr_prst(const struct ltr501_data * data,enum iio_chan_type type,int * val2)430 static int ltr501_read_intr_prst(const struct ltr501_data *data,
431 enum iio_chan_type type,
432 int *val2)
433 {
434 int ret, samp_period, prst;
435
436 switch (type) {
437 case IIO_INTENSITY:
438 ret = regmap_field_read(data->reg_als_prst, &prst);
439 if (ret < 0)
440 return ret;
441
442 ret = ltr501_als_read_samp_period(data, &samp_period);
443
444 if (ret < 0)
445 return ret;
446 *val2 = samp_period * prst;
447 return IIO_VAL_INT_PLUS_MICRO;
448 case IIO_PROXIMITY:
449 ret = regmap_field_read(data->reg_ps_prst, &prst);
450 if (ret < 0)
451 return ret;
452
453 ret = ltr501_ps_read_samp_period(data, &samp_period);
454
455 if (ret < 0)
456 return ret;
457
458 *val2 = samp_period * prst;
459 return IIO_VAL_INT_PLUS_MICRO;
460 default:
461 return -EINVAL;
462 }
463
464 return -EINVAL;
465 }
466
ltr501_write_intr_prst(struct ltr501_data * data,enum iio_chan_type type,int val,int val2)467 static int ltr501_write_intr_prst(struct ltr501_data *data,
468 enum iio_chan_type type,
469 int val, int val2)
470 {
471 int ret, samp_period, new_val;
472 unsigned long period;
473
474 if (val < 0 || val2 < 0)
475 return -EINVAL;
476
477 /* period in microseconds */
478 period = ((val * 1000000) + val2);
479
480 switch (type) {
481 case IIO_INTENSITY:
482 ret = ltr501_als_read_samp_period(data, &samp_period);
483 if (ret < 0)
484 return ret;
485
486 /* period should be atleast equal to sampling period */
487 if (period < samp_period)
488 return -EINVAL;
489
490 new_val = DIV_ROUND_UP(period, samp_period);
491 if (new_val < 0 || new_val > 0x0f)
492 return -EINVAL;
493
494 mutex_lock(&data->lock_als);
495 ret = regmap_field_write(data->reg_als_prst, new_val);
496 mutex_unlock(&data->lock_als);
497 if (ret >= 0)
498 data->als_period = period;
499
500 return ret;
501 case IIO_PROXIMITY:
502 ret = ltr501_ps_read_samp_period(data, &samp_period);
503 if (ret < 0)
504 return ret;
505
506 /* period should be atleast equal to rate */
507 if (period < samp_period)
508 return -EINVAL;
509
510 new_val = DIV_ROUND_UP(period, samp_period);
511 if (new_val < 0 || new_val > 0x0f)
512 return -EINVAL;
513
514 mutex_lock(&data->lock_ps);
515 ret = regmap_field_write(data->reg_ps_prst, new_val);
516 mutex_unlock(&data->lock_ps);
517 if (ret >= 0)
518 data->ps_period = period;
519
520 return ret;
521 default:
522 return -EINVAL;
523 }
524
525 return -EINVAL;
526 }
527
ltr501_read_near_level(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)528 static ssize_t ltr501_read_near_level(struct iio_dev *indio_dev,
529 uintptr_t priv,
530 const struct iio_chan_spec *chan,
531 char *buf)
532 {
533 struct ltr501_data *data = iio_priv(indio_dev);
534
535 return sprintf(buf, "%u\n", data->near_level);
536 }
537
538 static const struct iio_chan_spec_ext_info ltr501_ext_info[] = {
539 {
540 .name = "nearlevel",
541 .shared = IIO_SEPARATE,
542 .read = ltr501_read_near_level,
543 },
544 { }
545 };
546
547 static const struct iio_event_spec ltr501_als_event_spec[] = {
548 {
549 .type = IIO_EV_TYPE_THRESH,
550 .dir = IIO_EV_DIR_RISING,
551 .mask_separate = BIT(IIO_EV_INFO_VALUE),
552 }, {
553 .type = IIO_EV_TYPE_THRESH,
554 .dir = IIO_EV_DIR_FALLING,
555 .mask_separate = BIT(IIO_EV_INFO_VALUE),
556 }, {
557 .type = IIO_EV_TYPE_THRESH,
558 .dir = IIO_EV_DIR_EITHER,
559 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
560 BIT(IIO_EV_INFO_PERIOD),
561 },
562
563 };
564
565 static const struct iio_event_spec ltr501_pxs_event_spec[] = {
566 {
567 .type = IIO_EV_TYPE_THRESH,
568 .dir = IIO_EV_DIR_RISING,
569 .mask_separate = BIT(IIO_EV_INFO_VALUE),
570 }, {
571 .type = IIO_EV_TYPE_THRESH,
572 .dir = IIO_EV_DIR_FALLING,
573 .mask_separate = BIT(IIO_EV_INFO_VALUE),
574 }, {
575 .type = IIO_EV_TYPE_THRESH,
576 .dir = IIO_EV_DIR_EITHER,
577 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
578 BIT(IIO_EV_INFO_PERIOD),
579 },
580 };
581
582 #define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared, \
583 _evspec, _evsize) { \
584 .type = IIO_INTENSITY, \
585 .modified = 1, \
586 .address = (_addr), \
587 .channel2 = (_mod), \
588 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
589 .info_mask_shared_by_type = (_shared), \
590 .scan_index = (_idx), \
591 .scan_type = { \
592 .sign = 'u', \
593 .realbits = 16, \
594 .storagebits = 16, \
595 .endianness = IIO_CPU, \
596 }, \
597 .event_spec = _evspec,\
598 .num_event_specs = _evsize,\
599 }
600
601 #define LTR501_LIGHT_CHANNEL() { \
602 .type = IIO_LIGHT, \
603 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
604 .scan_index = -1, \
605 }
606
607 static const struct iio_chan_spec ltr501_channels[] = {
608 LTR501_LIGHT_CHANNEL(),
609 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
610 ltr501_als_event_spec,
611 ARRAY_SIZE(ltr501_als_event_spec)),
612 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
613 BIT(IIO_CHAN_INFO_SCALE) |
614 BIT(IIO_CHAN_INFO_INT_TIME) |
615 BIT(IIO_CHAN_INFO_SAMP_FREQ),
616 NULL, 0),
617 {
618 .type = IIO_PROXIMITY,
619 .address = LTR501_PS_DATA,
620 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
621 BIT(IIO_CHAN_INFO_SCALE),
622 .scan_index = 2,
623 .scan_type = {
624 .sign = 'u',
625 .realbits = 11,
626 .storagebits = 16,
627 .endianness = IIO_CPU,
628 },
629 .event_spec = ltr501_pxs_event_spec,
630 .num_event_specs = ARRAY_SIZE(ltr501_pxs_event_spec),
631 .ext_info = ltr501_ext_info,
632 },
633 IIO_CHAN_SOFT_TIMESTAMP(3),
634 };
635
636 static const struct iio_chan_spec ltr301_channels[] = {
637 LTR501_LIGHT_CHANNEL(),
638 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
639 ltr501_als_event_spec,
640 ARRAY_SIZE(ltr501_als_event_spec)),
641 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
642 BIT(IIO_CHAN_INFO_SCALE) |
643 BIT(IIO_CHAN_INFO_INT_TIME) |
644 BIT(IIO_CHAN_INFO_SAMP_FREQ),
645 NULL, 0),
646 IIO_CHAN_SOFT_TIMESTAMP(2),
647 };
648
ltr501_read_info_raw(struct ltr501_data * data,struct iio_chan_spec const * chan,int * val)649 static int ltr501_read_info_raw(struct ltr501_data *data,
650 struct iio_chan_spec const *chan,
651 int *val)
652 {
653 __le16 buf[2];
654 int ret;
655
656 switch (chan->type) {
657 case IIO_INTENSITY:
658 mutex_lock(&data->lock_als);
659 ret = ltr501_read_als(data, buf);
660 mutex_unlock(&data->lock_als);
661 if (ret < 0)
662 return ret;
663 *val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ?
664 buf[0] : buf[1]);
665 return IIO_VAL_INT;
666 case IIO_PROXIMITY:
667 mutex_lock(&data->lock_ps);
668 ret = ltr501_read_ps(data);
669 mutex_unlock(&data->lock_ps);
670 if (ret < 0)
671 return ret;
672 *val = ret & LTR501_PS_DATA_MASK;
673 return IIO_VAL_INT;
674 default:
675 return -EINVAL;
676 }
677 }
678
ltr501_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)679 static int ltr501_read_raw(struct iio_dev *indio_dev,
680 struct iio_chan_spec const *chan,
681 int *val, int *val2, long mask)
682 {
683 struct ltr501_data *data = iio_priv(indio_dev);
684 __le16 buf[2];
685 int ret, i;
686
687 switch (mask) {
688 case IIO_CHAN_INFO_PROCESSED:
689 switch (chan->type) {
690 case IIO_LIGHT:
691 if (!iio_device_claim_direct(indio_dev))
692 return -EBUSY;
693
694 mutex_lock(&data->lock_als);
695 ret = ltr501_read_als(data, buf);
696 mutex_unlock(&data->lock_als);
697 iio_device_release_direct(indio_dev);
698 if (ret < 0)
699 return ret;
700 *val = ltr501_calculate_lux(le16_to_cpu(buf[1]),
701 le16_to_cpu(buf[0]));
702 return IIO_VAL_INT;
703 default:
704 return -EINVAL;
705 }
706 case IIO_CHAN_INFO_RAW:
707 if (!iio_device_claim_direct(indio_dev))
708 return -EBUSY;
709
710 ret = ltr501_read_info_raw(data, chan, val);
711
712 iio_device_release_direct(indio_dev);
713 return ret;
714
715 case IIO_CHAN_INFO_SCALE:
716 switch (chan->type) {
717 case IIO_INTENSITY:
718 i = (data->als_contr & data->chip_info->als_gain_mask)
719 >> data->chip_info->als_gain_shift;
720 *val = data->chip_info->als_gain[i].scale;
721 *val2 = data->chip_info->als_gain[i].uscale;
722 return IIO_VAL_INT_PLUS_MICRO;
723 case IIO_PROXIMITY:
724 i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >>
725 LTR501_CONTR_PS_GAIN_SHIFT;
726 *val = data->chip_info->ps_gain[i].scale;
727 *val2 = data->chip_info->ps_gain[i].uscale;
728 return IIO_VAL_INT_PLUS_MICRO;
729 default:
730 return -EINVAL;
731 }
732 case IIO_CHAN_INFO_INT_TIME:
733 switch (chan->type) {
734 case IIO_INTENSITY:
735 return ltr501_read_it_time(data, val, val2);
736 default:
737 return -EINVAL;
738 }
739 case IIO_CHAN_INFO_SAMP_FREQ:
740 switch (chan->type) {
741 case IIO_INTENSITY:
742 return ltr501_als_read_samp_freq(data, val, val2);
743 case IIO_PROXIMITY:
744 return ltr501_ps_read_samp_freq(data, val, val2);
745 default:
746 return -EINVAL;
747 }
748 }
749 return -EINVAL;
750 }
751
ltr501_get_gain_index(const struct ltr501_gain * gain,int size,int val,int val2)752 static int ltr501_get_gain_index(const struct ltr501_gain *gain, int size,
753 int val, int val2)
754 {
755 int i;
756
757 for (i = 0; i < size; i++)
758 if (val == gain[i].scale && val2 == gain[i].uscale)
759 return i;
760
761 return -1;
762 }
763
__ltr501_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)764 static int __ltr501_write_raw(struct iio_dev *indio_dev,
765 struct iio_chan_spec const *chan,
766 int val, int val2, long mask)
767 {
768 struct ltr501_data *data = iio_priv(indio_dev);
769 int i, ret, freq_val, freq_val2;
770 const struct ltr501_chip_info *info = data->chip_info;
771
772 switch (mask) {
773 case IIO_CHAN_INFO_SCALE:
774 switch (chan->type) {
775 case IIO_INTENSITY:
776 i = ltr501_get_gain_index(info->als_gain,
777 info->als_gain_tbl_size,
778 val, val2);
779 if (i < 0)
780 return -EINVAL;
781
782 data->als_contr &= ~info->als_gain_mask;
783 data->als_contr |= i << info->als_gain_shift;
784
785 return regmap_write(data->regmap, LTR501_ALS_CONTR,
786 data->als_contr);
787 case IIO_PROXIMITY:
788 i = ltr501_get_gain_index(info->ps_gain,
789 info->ps_gain_tbl_size,
790 val, val2);
791 if (i < 0)
792 return -EINVAL;
793
794 data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK;
795 data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT;
796
797 return regmap_write(data->regmap, LTR501_PS_CONTR,
798 data->ps_contr);
799 default:
800 return -EINVAL;
801 }
802
803 case IIO_CHAN_INFO_INT_TIME:
804 switch (chan->type) {
805 case IIO_INTENSITY:
806 if (val != 0)
807 return -EINVAL;
808
809 mutex_lock(&data->lock_als);
810 ret = ltr501_set_it_time(data, val2);
811 mutex_unlock(&data->lock_als);
812 return ret;
813 default:
814 return -EINVAL;
815 }
816
817 case IIO_CHAN_INFO_SAMP_FREQ:
818 switch (chan->type) {
819 case IIO_INTENSITY:
820 ret = ltr501_als_read_samp_freq(data, &freq_val,
821 &freq_val2);
822 if (ret < 0)
823 return ret;
824
825 ret = ltr501_als_write_samp_freq(data, val, val2);
826 if (ret < 0)
827 return ret;
828
829 /* update persistence count when changing frequency */
830 ret = ltr501_write_intr_prst(data, chan->type,
831 0, data->als_period);
832
833 if (ret < 0)
834 /* Do not ovewrite error */
835 ltr501_als_write_samp_freq(data, freq_val,
836 freq_val2);
837 return ret;
838 case IIO_PROXIMITY:
839 ret = ltr501_ps_read_samp_freq(data, &freq_val,
840 &freq_val2);
841 if (ret < 0)
842 return ret;
843
844 ret = ltr501_ps_write_samp_freq(data, val, val2);
845 if (ret < 0)
846 return ret;
847
848 /* update persistence count when changing frequency */
849 ret = ltr501_write_intr_prst(data, chan->type,
850 0, data->ps_period);
851
852 if (ret < 0)
853 /* Do not overwrite error */
854 ltr501_ps_write_samp_freq(data, freq_val,
855 freq_val2);
856 return ret;
857 default:
858 return -EINVAL;
859 }
860 default:
861 return -EINVAL;
862 }
863 }
864
ltr501_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)865 static int ltr501_write_raw(struct iio_dev *indio_dev,
866 struct iio_chan_spec const *chan,
867 int val, int val2, long mask)
868 {
869 int ret;
870
871 if (!iio_device_claim_direct(indio_dev))
872 return -EBUSY;
873
874 ret = __ltr501_write_raw(indio_dev, chan, val, val2, mask);
875
876 iio_device_release_direct(indio_dev);
877
878 return ret;
879 }
880
ltr501_read_thresh(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int * val,int * val2)881 static int ltr501_read_thresh(const struct iio_dev *indio_dev,
882 const struct iio_chan_spec *chan,
883 enum iio_event_type type,
884 enum iio_event_direction dir,
885 enum iio_event_info info,
886 int *val, int *val2)
887 {
888 const struct ltr501_data *data = iio_priv(indio_dev);
889 int ret, thresh_data;
890
891 switch (chan->type) {
892 case IIO_INTENSITY:
893 switch (dir) {
894 case IIO_EV_DIR_RISING:
895 ret = regmap_bulk_read(data->regmap,
896 LTR501_ALS_THRESH_UP,
897 &thresh_data, 2);
898 if (ret < 0)
899 return ret;
900 *val = thresh_data & LTR501_ALS_THRESH_MASK;
901 return IIO_VAL_INT;
902 case IIO_EV_DIR_FALLING:
903 ret = regmap_bulk_read(data->regmap,
904 LTR501_ALS_THRESH_LOW,
905 &thresh_data, 2);
906 if (ret < 0)
907 return ret;
908 *val = thresh_data & LTR501_ALS_THRESH_MASK;
909 return IIO_VAL_INT;
910 default:
911 return -EINVAL;
912 }
913 case IIO_PROXIMITY:
914 switch (dir) {
915 case IIO_EV_DIR_RISING:
916 ret = regmap_bulk_read(data->regmap,
917 LTR501_PS_THRESH_UP,
918 &thresh_data, 2);
919 if (ret < 0)
920 return ret;
921 *val = thresh_data & LTR501_PS_THRESH_MASK;
922 return IIO_VAL_INT;
923 case IIO_EV_DIR_FALLING:
924 ret = regmap_bulk_read(data->regmap,
925 LTR501_PS_THRESH_LOW,
926 &thresh_data, 2);
927 if (ret < 0)
928 return ret;
929 *val = thresh_data & LTR501_PS_THRESH_MASK;
930 return IIO_VAL_INT;
931 default:
932 return -EINVAL;
933 }
934 default:
935 return -EINVAL;
936 }
937
938 return -EINVAL;
939 }
940
ltr501_write_thresh(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int val,int val2)941 static int ltr501_write_thresh(struct iio_dev *indio_dev,
942 const struct iio_chan_spec *chan,
943 enum iio_event_type type,
944 enum iio_event_direction dir,
945 enum iio_event_info info,
946 int val, int val2)
947 {
948 struct ltr501_data *data = iio_priv(indio_dev);
949 int ret;
950
951 if (val < 0)
952 return -EINVAL;
953
954 switch (chan->type) {
955 case IIO_INTENSITY:
956 if (val > LTR501_ALS_THRESH_MASK)
957 return -EINVAL;
958 switch (dir) {
959 case IIO_EV_DIR_RISING:
960 mutex_lock(&data->lock_als);
961 ret = regmap_bulk_write(data->regmap,
962 LTR501_ALS_THRESH_UP,
963 &val, 2);
964 mutex_unlock(&data->lock_als);
965 return ret;
966 case IIO_EV_DIR_FALLING:
967 mutex_lock(&data->lock_als);
968 ret = regmap_bulk_write(data->regmap,
969 LTR501_ALS_THRESH_LOW,
970 &val, 2);
971 mutex_unlock(&data->lock_als);
972 return ret;
973 default:
974 return -EINVAL;
975 }
976 case IIO_PROXIMITY:
977 if (val > LTR501_PS_THRESH_MASK)
978 return -EINVAL;
979 switch (dir) {
980 case IIO_EV_DIR_RISING:
981 mutex_lock(&data->lock_ps);
982 ret = regmap_bulk_write(data->regmap,
983 LTR501_PS_THRESH_UP,
984 &val, 2);
985 mutex_unlock(&data->lock_ps);
986 return ret;
987 case IIO_EV_DIR_FALLING:
988 mutex_lock(&data->lock_ps);
989 ret = regmap_bulk_write(data->regmap,
990 LTR501_PS_THRESH_LOW,
991 &val, 2);
992 mutex_unlock(&data->lock_ps);
993 return ret;
994 default:
995 return -EINVAL;
996 }
997 default:
998 return -EINVAL;
999 }
1000
1001 return -EINVAL;
1002 }
1003
ltr501_read_event(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int * val,int * val2)1004 static int ltr501_read_event(struct iio_dev *indio_dev,
1005 const struct iio_chan_spec *chan,
1006 enum iio_event_type type,
1007 enum iio_event_direction dir,
1008 enum iio_event_info info,
1009 int *val, int *val2)
1010 {
1011 int ret;
1012
1013 switch (info) {
1014 case IIO_EV_INFO_VALUE:
1015 return ltr501_read_thresh(indio_dev, chan, type, dir,
1016 info, val, val2);
1017 case IIO_EV_INFO_PERIOD:
1018 ret = ltr501_read_intr_prst(iio_priv(indio_dev),
1019 chan->type, val2);
1020 *val = *val2 / 1000000;
1021 *val2 = *val2 % 1000000;
1022 return ret;
1023 default:
1024 return -EINVAL;
1025 }
1026
1027 return -EINVAL;
1028 }
1029
ltr501_write_event(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int val,int val2)1030 static int ltr501_write_event(struct iio_dev *indio_dev,
1031 const struct iio_chan_spec *chan,
1032 enum iio_event_type type,
1033 enum iio_event_direction dir,
1034 enum iio_event_info info,
1035 int val, int val2)
1036 {
1037 switch (info) {
1038 case IIO_EV_INFO_VALUE:
1039 if (val2 != 0)
1040 return -EINVAL;
1041 return ltr501_write_thresh(indio_dev, chan, type, dir,
1042 info, val, val2);
1043 case IIO_EV_INFO_PERIOD:
1044 return ltr501_write_intr_prst(iio_priv(indio_dev), chan->type,
1045 val, val2);
1046 default:
1047 return -EINVAL;
1048 }
1049
1050 return -EINVAL;
1051 }
1052
ltr501_read_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir)1053 static int ltr501_read_event_config(struct iio_dev *indio_dev,
1054 const struct iio_chan_spec *chan,
1055 enum iio_event_type type,
1056 enum iio_event_direction dir)
1057 {
1058 struct ltr501_data *data = iio_priv(indio_dev);
1059 int ret, status;
1060
1061 switch (chan->type) {
1062 case IIO_INTENSITY:
1063 ret = regmap_field_read(data->reg_als_intr, &status);
1064 if (ret < 0)
1065 return ret;
1066 return status;
1067 case IIO_PROXIMITY:
1068 ret = regmap_field_read(data->reg_ps_intr, &status);
1069 if (ret < 0)
1070 return ret;
1071 return status;
1072 default:
1073 return -EINVAL;
1074 }
1075
1076 return -EINVAL;
1077 }
1078
ltr501_write_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,bool state)1079 static int ltr501_write_event_config(struct iio_dev *indio_dev,
1080 const struct iio_chan_spec *chan,
1081 enum iio_event_type type,
1082 enum iio_event_direction dir, bool state)
1083 {
1084 struct ltr501_data *data = iio_priv(indio_dev);
1085 int ret;
1086
1087 switch (chan->type) {
1088 case IIO_INTENSITY:
1089 mutex_lock(&data->lock_als);
1090 ret = regmap_field_write(data->reg_als_intr, state);
1091 mutex_unlock(&data->lock_als);
1092 return ret;
1093 case IIO_PROXIMITY:
1094 mutex_lock(&data->lock_ps);
1095 ret = regmap_field_write(data->reg_ps_intr, state);
1096 mutex_unlock(&data->lock_ps);
1097 return ret;
1098 default:
1099 return -EINVAL;
1100 }
1101
1102 return -EINVAL;
1103 }
1104
ltr501_show_proximity_scale_avail(struct device * dev,struct device_attribute * attr,char * buf)1105 static ssize_t ltr501_show_proximity_scale_avail(struct device *dev,
1106 struct device_attribute *attr,
1107 char *buf)
1108 {
1109 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1110 const struct ltr501_chip_info *info = data->chip_info;
1111 ssize_t len = 0;
1112 int i;
1113
1114 for (i = 0; i < info->ps_gain_tbl_size; i++) {
1115 if (info->ps_gain[i].scale == LTR501_RESERVED_GAIN)
1116 continue;
1117 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1118 info->ps_gain[i].scale,
1119 info->ps_gain[i].uscale);
1120 }
1121
1122 buf[len - 1] = '\n';
1123
1124 return len;
1125 }
1126
ltr501_show_intensity_scale_avail(struct device * dev,struct device_attribute * attr,char * buf)1127 static ssize_t ltr501_show_intensity_scale_avail(struct device *dev,
1128 struct device_attribute *attr,
1129 char *buf)
1130 {
1131 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1132 const struct ltr501_chip_info *info = data->chip_info;
1133 ssize_t len = 0;
1134 int i;
1135
1136 for (i = 0; i < info->als_gain_tbl_size; i++) {
1137 if (info->als_gain[i].scale == LTR501_RESERVED_GAIN)
1138 continue;
1139 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1140 info->als_gain[i].scale,
1141 info->als_gain[i].uscale);
1142 }
1143
1144 buf[len - 1] = '\n';
1145
1146 return len;
1147 }
1148
1149 static IIO_CONST_ATTR_INT_TIME_AVAIL("0.05 0.1 0.2 0.4");
1150 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("20 10 5 2 1 0.5");
1151
1152 static IIO_DEVICE_ATTR(in_proximity_scale_available, S_IRUGO,
1153 ltr501_show_proximity_scale_avail, NULL, 0);
1154 static IIO_DEVICE_ATTR(in_intensity_scale_available, S_IRUGO,
1155 ltr501_show_intensity_scale_avail, NULL, 0);
1156
1157 static struct attribute *ltr501_attributes[] = {
1158 &iio_dev_attr_in_proximity_scale_available.dev_attr.attr,
1159 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1160 &iio_const_attr_integration_time_available.dev_attr.attr,
1161 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
1162 NULL
1163 };
1164
1165 static struct attribute *ltr301_attributes[] = {
1166 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1167 &iio_const_attr_integration_time_available.dev_attr.attr,
1168 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
1169 NULL
1170 };
1171
1172 static const struct attribute_group ltr501_attribute_group = {
1173 .attrs = ltr501_attributes,
1174 };
1175
1176 static const struct attribute_group ltr301_attribute_group = {
1177 .attrs = ltr301_attributes,
1178 };
1179
1180 static const struct iio_info ltr501_info_no_irq = {
1181 .read_raw = ltr501_read_raw,
1182 .write_raw = ltr501_write_raw,
1183 .attrs = <r501_attribute_group,
1184 };
1185
1186 static const struct iio_info ltr501_info = {
1187 .read_raw = ltr501_read_raw,
1188 .write_raw = ltr501_write_raw,
1189 .attrs = <r501_attribute_group,
1190 .read_event_value = <r501_read_event,
1191 .write_event_value = <r501_write_event,
1192 .read_event_config = <r501_read_event_config,
1193 .write_event_config = <r501_write_event_config,
1194 };
1195
1196 static const struct iio_info ltr301_info_no_irq = {
1197 .read_raw = ltr501_read_raw,
1198 .write_raw = ltr501_write_raw,
1199 .attrs = <r301_attribute_group,
1200 };
1201
1202 static const struct iio_info ltr301_info = {
1203 .read_raw = ltr501_read_raw,
1204 .write_raw = ltr501_write_raw,
1205 .attrs = <r301_attribute_group,
1206 .read_event_value = <r501_read_event,
1207 .write_event_value = <r501_write_event,
1208 .read_event_config = <r501_read_event_config,
1209 .write_event_config = <r501_write_event_config,
1210 };
1211
1212 static const struct ltr501_chip_info ltr501_chip_info_tbl[] = {
1213 [ltr501] = {
1214 .partid = 0x08,
1215 .als_gain = ltr501_als_gain_tbl,
1216 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1217 .ps_gain = ltr501_ps_gain_tbl,
1218 .ps_gain_tbl_size = ARRAY_SIZE(ltr501_ps_gain_tbl),
1219 .als_mode_active = BIT(0) | BIT(1),
1220 .als_gain_mask = BIT(3),
1221 .als_gain_shift = 3,
1222 .info = <r501_info,
1223 .info_no_irq = <r501_info_no_irq,
1224 .channels = ltr501_channels,
1225 .no_channels = ARRAY_SIZE(ltr501_channels),
1226 },
1227 [ltr559] = {
1228 .partid = 0x09,
1229 .als_gain = ltr559_als_gain_tbl,
1230 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl),
1231 .ps_gain = ltr559_ps_gain_tbl,
1232 .ps_gain_tbl_size = ARRAY_SIZE(ltr559_ps_gain_tbl),
1233 .als_mode_active = BIT(0),
1234 .als_gain_mask = BIT(2) | BIT(3) | BIT(4),
1235 .als_gain_shift = 2,
1236 .info = <r501_info,
1237 .info_no_irq = <r501_info_no_irq,
1238 .channels = ltr501_channels,
1239 .no_channels = ARRAY_SIZE(ltr501_channels),
1240 },
1241 [ltr301] = {
1242 .partid = 0x08,
1243 .als_gain = ltr501_als_gain_tbl,
1244 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1245 .als_mode_active = BIT(0) | BIT(1),
1246 .als_gain_mask = BIT(3),
1247 .als_gain_shift = 3,
1248 .info = <r301_info,
1249 .info_no_irq = <r301_info_no_irq,
1250 .channels = ltr301_channels,
1251 .no_channels = ARRAY_SIZE(ltr301_channels),
1252 },
1253 [ltr303] = {
1254 .partid = 0x0A,
1255 .als_gain = ltr559_als_gain_tbl,
1256 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl),
1257 .als_mode_active = BIT(0),
1258 .als_gain_mask = BIT(2) | BIT(3) | BIT(4),
1259 .als_gain_shift = 2,
1260 .info = <r301_info,
1261 .info_no_irq = <r301_info_no_irq,
1262 .channels = ltr301_channels,
1263 .no_channels = ARRAY_SIZE(ltr301_channels),
1264 },
1265 };
1266
ltr501_write_contr(struct ltr501_data * data,u8 als_val,u8 ps_val)1267 static int ltr501_write_contr(struct ltr501_data *data, u8 als_val, u8 ps_val)
1268 {
1269 int ret;
1270
1271 ret = regmap_write(data->regmap, LTR501_ALS_CONTR, als_val);
1272 if (ret < 0)
1273 return ret;
1274
1275 return regmap_write(data->regmap, LTR501_PS_CONTR, ps_val);
1276 }
1277
ltr501_trigger_handler(int irq,void * p)1278 static irqreturn_t ltr501_trigger_handler(int irq, void *p)
1279 {
1280 struct iio_poll_func *pf = p;
1281 struct iio_dev *indio_dev = pf->indio_dev;
1282 struct ltr501_data *data = iio_priv(indio_dev);
1283 struct {
1284 u16 channels[3];
1285 aligned_s64 ts;
1286 } scan;
1287 __le16 als_buf[2];
1288 u8 mask = 0;
1289 int j = 0;
1290 int ret, psdata;
1291
1292 memset(&scan, 0, sizeof(scan));
1293
1294 /* figure out which data needs to be ready */
1295 if (test_bit(0, indio_dev->active_scan_mask) ||
1296 test_bit(1, indio_dev->active_scan_mask))
1297 mask |= LTR501_STATUS_ALS_RDY;
1298 if (test_bit(2, indio_dev->active_scan_mask))
1299 mask |= LTR501_STATUS_PS_RDY;
1300
1301 ret = ltr501_drdy(data, mask);
1302 if (ret < 0)
1303 goto done;
1304
1305 if (mask & LTR501_STATUS_ALS_RDY) {
1306 ret = regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
1307 als_buf, sizeof(als_buf));
1308 if (ret < 0)
1309 goto done;
1310 if (test_bit(0, indio_dev->active_scan_mask))
1311 scan.channels[j++] = le16_to_cpu(als_buf[1]);
1312 if (test_bit(1, indio_dev->active_scan_mask))
1313 scan.channels[j++] = le16_to_cpu(als_buf[0]);
1314 }
1315
1316 if (mask & LTR501_STATUS_PS_RDY) {
1317 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
1318 &psdata, 2);
1319 if (ret < 0)
1320 goto done;
1321 scan.channels[j++] = psdata & LTR501_PS_DATA_MASK;
1322 }
1323
1324 iio_push_to_buffers_with_timestamp(indio_dev, &scan,
1325 iio_get_time_ns(indio_dev));
1326
1327 done:
1328 iio_trigger_notify_done(indio_dev->trig);
1329
1330 return IRQ_HANDLED;
1331 }
1332
ltr501_interrupt_handler(int irq,void * private)1333 static irqreturn_t ltr501_interrupt_handler(int irq, void *private)
1334 {
1335 struct iio_dev *indio_dev = private;
1336 struct ltr501_data *data = iio_priv(indio_dev);
1337 int ret, status;
1338
1339 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
1340 if (ret < 0) {
1341 dev_err(&data->client->dev,
1342 "irq read int reg failed\n");
1343 return IRQ_HANDLED;
1344 }
1345
1346 if (status & LTR501_STATUS_ALS_INTR)
1347 iio_push_event(indio_dev,
1348 IIO_UNMOD_EVENT_CODE(IIO_INTENSITY, 0,
1349 IIO_EV_TYPE_THRESH,
1350 IIO_EV_DIR_EITHER),
1351 iio_get_time_ns(indio_dev));
1352
1353 if (status & LTR501_STATUS_PS_INTR)
1354 iio_push_event(indio_dev,
1355 IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
1356 IIO_EV_TYPE_THRESH,
1357 IIO_EV_DIR_EITHER),
1358 iio_get_time_ns(indio_dev));
1359
1360 return IRQ_HANDLED;
1361 }
1362
ltr501_init(struct ltr501_data * data)1363 static int ltr501_init(struct ltr501_data *data)
1364 {
1365 int ret, status;
1366
1367 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
1368 if (ret < 0)
1369 return ret;
1370
1371 data->als_contr = status | data->chip_info->als_mode_active;
1372
1373 ret = regmap_read(data->regmap, LTR501_PS_CONTR, &status);
1374 if (ret < 0)
1375 return ret;
1376
1377 data->ps_contr = status | LTR501_CONTR_ACTIVE;
1378
1379 ret = ltr501_read_intr_prst(data, IIO_INTENSITY, &data->als_period);
1380 if (ret < 0)
1381 return ret;
1382
1383 ret = ltr501_read_intr_prst(data, IIO_PROXIMITY, &data->ps_period);
1384 if (ret < 0)
1385 return ret;
1386
1387 return ltr501_write_contr(data, data->als_contr, data->ps_contr);
1388 }
1389
ltr501_is_volatile_reg(struct device * dev,unsigned int reg)1390 static bool ltr501_is_volatile_reg(struct device *dev, unsigned int reg)
1391 {
1392 switch (reg) {
1393 case LTR501_ALS_DATA1:
1394 case LTR501_ALS_DATA1_UPPER:
1395 case LTR501_ALS_DATA0:
1396 case LTR501_ALS_DATA0_UPPER:
1397 case LTR501_ALS_PS_STATUS:
1398 case LTR501_PS_DATA:
1399 case LTR501_PS_DATA_UPPER:
1400 return true;
1401 default:
1402 return false;
1403 }
1404 }
1405
1406 static const struct regmap_config ltr501_regmap_config = {
1407 .name = LTR501_REGMAP_NAME,
1408 .reg_bits = 8,
1409 .val_bits = 8,
1410 .max_register = LTR501_MAX_REG,
1411 .cache_type = REGCACHE_RBTREE,
1412 .volatile_reg = ltr501_is_volatile_reg,
1413 };
1414
ltr501_powerdown(struct ltr501_data * data)1415 static int ltr501_powerdown(struct ltr501_data *data)
1416 {
1417 return ltr501_write_contr(data, data->als_contr &
1418 ~data->chip_info->als_mode_active,
1419 data->ps_contr & ~LTR501_CONTR_ACTIVE);
1420 }
1421
ltr501_probe(struct i2c_client * client)1422 static int ltr501_probe(struct i2c_client *client)
1423 {
1424 const struct i2c_device_id *id = i2c_client_get_device_id(client);
1425 static const char * const regulator_names[] = { "vdd", "vddio" };
1426 struct ltr501_data *data;
1427 struct iio_dev *indio_dev;
1428 struct regmap *regmap;
1429 const void *ddata = NULL;
1430 int partid, chip_idx;
1431 const char *name;
1432 int ret;
1433
1434 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
1435 if (!indio_dev)
1436 return -ENOMEM;
1437
1438 regmap = devm_regmap_init_i2c(client, <r501_regmap_config);
1439 if (IS_ERR(regmap)) {
1440 dev_err(&client->dev, "Regmap initialization failed.\n");
1441 return PTR_ERR(regmap);
1442 }
1443
1444 data = iio_priv(indio_dev);
1445 i2c_set_clientdata(client, indio_dev);
1446 data->client = client;
1447 data->regmap = regmap;
1448 mutex_init(&data->lock_als);
1449 mutex_init(&data->lock_ps);
1450
1451 ret = devm_regulator_bulk_get_enable(&client->dev,
1452 ARRAY_SIZE(regulator_names),
1453 regulator_names);
1454 if (ret)
1455 return dev_err_probe(&client->dev, ret,
1456 "Failed to get regulators\n");
1457
1458 data->reg_it = devm_regmap_field_alloc(&client->dev, regmap,
1459 reg_field_it);
1460 if (IS_ERR(data->reg_it)) {
1461 dev_err(&client->dev, "Integ time reg field init failed.\n");
1462 return PTR_ERR(data->reg_it);
1463 }
1464
1465 data->reg_als_intr = devm_regmap_field_alloc(&client->dev, regmap,
1466 reg_field_als_intr);
1467 if (IS_ERR(data->reg_als_intr)) {
1468 dev_err(&client->dev, "ALS intr mode reg field init failed\n");
1469 return PTR_ERR(data->reg_als_intr);
1470 }
1471
1472 data->reg_ps_intr = devm_regmap_field_alloc(&client->dev, regmap,
1473 reg_field_ps_intr);
1474 if (IS_ERR(data->reg_ps_intr)) {
1475 dev_err(&client->dev, "PS intr mode reg field init failed.\n");
1476 return PTR_ERR(data->reg_ps_intr);
1477 }
1478
1479 data->reg_als_rate = devm_regmap_field_alloc(&client->dev, regmap,
1480 reg_field_als_rate);
1481 if (IS_ERR(data->reg_als_rate)) {
1482 dev_err(&client->dev, "ALS samp rate field init failed.\n");
1483 return PTR_ERR(data->reg_als_rate);
1484 }
1485
1486 data->reg_ps_rate = devm_regmap_field_alloc(&client->dev, regmap,
1487 reg_field_ps_rate);
1488 if (IS_ERR(data->reg_ps_rate)) {
1489 dev_err(&client->dev, "PS samp rate field init failed.\n");
1490 return PTR_ERR(data->reg_ps_rate);
1491 }
1492
1493 data->reg_als_prst = devm_regmap_field_alloc(&client->dev, regmap,
1494 reg_field_als_prst);
1495 if (IS_ERR(data->reg_als_prst)) {
1496 dev_err(&client->dev, "ALS prst reg field init failed\n");
1497 return PTR_ERR(data->reg_als_prst);
1498 }
1499
1500 data->reg_ps_prst = devm_regmap_field_alloc(&client->dev, regmap,
1501 reg_field_ps_prst);
1502 if (IS_ERR(data->reg_ps_prst)) {
1503 dev_err(&client->dev, "PS prst reg field init failed.\n");
1504 return PTR_ERR(data->reg_ps_prst);
1505 }
1506
1507 ret = regmap_read(data->regmap, LTR501_PART_ID, &partid);
1508 if (ret < 0)
1509 return ret;
1510
1511 if (id) {
1512 name = id->name;
1513 chip_idx = id->driver_data;
1514 } else {
1515 name = iio_get_acpi_device_name_and_data(&client->dev, &ddata);
1516 chip_idx = (intptr_t)ddata;
1517 }
1518 if (!name)
1519 return -ENODEV;
1520
1521 data->chip_info = <r501_chip_info_tbl[chip_idx];
1522
1523 if ((partid >> 4) != data->chip_info->partid)
1524 return -ENODEV;
1525
1526 if (device_property_read_u32(&client->dev, "proximity-near-level",
1527 &data->near_level))
1528 data->near_level = 0;
1529
1530 indio_dev->info = data->chip_info->info;
1531 indio_dev->channels = data->chip_info->channels;
1532 indio_dev->num_channels = data->chip_info->no_channels;
1533 indio_dev->name = name;
1534 indio_dev->modes = INDIO_DIRECT_MODE;
1535
1536 ret = ltr501_init(data);
1537 if (ret < 0)
1538 return ret;
1539
1540 if (client->irq > 0) {
1541 ret = devm_request_threaded_irq(&client->dev, client->irq,
1542 NULL, ltr501_interrupt_handler,
1543 IRQF_TRIGGER_FALLING |
1544 IRQF_ONESHOT,
1545 "ltr501_thresh_event",
1546 indio_dev);
1547 if (ret) {
1548 dev_err(&client->dev, "request irq (%d) failed\n",
1549 client->irq);
1550 return ret;
1551 }
1552 } else {
1553 indio_dev->info = data->chip_info->info_no_irq;
1554 }
1555
1556 ret = iio_triggered_buffer_setup(indio_dev, NULL,
1557 ltr501_trigger_handler, NULL);
1558 if (ret)
1559 goto powerdown_on_error;
1560
1561 ret = iio_device_register(indio_dev);
1562 if (ret)
1563 goto error_unreg_buffer;
1564
1565 return 0;
1566
1567 error_unreg_buffer:
1568 iio_triggered_buffer_cleanup(indio_dev);
1569 powerdown_on_error:
1570 ltr501_powerdown(data);
1571 return ret;
1572 }
1573
ltr501_remove(struct i2c_client * client)1574 static void ltr501_remove(struct i2c_client *client)
1575 {
1576 struct iio_dev *indio_dev = i2c_get_clientdata(client);
1577
1578 iio_device_unregister(indio_dev);
1579 iio_triggered_buffer_cleanup(indio_dev);
1580 ltr501_powerdown(iio_priv(indio_dev));
1581 }
1582
ltr501_suspend(struct device * dev)1583 static int ltr501_suspend(struct device *dev)
1584 {
1585 struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1586 to_i2c_client(dev)));
1587 return ltr501_powerdown(data);
1588 }
1589
ltr501_resume(struct device * dev)1590 static int ltr501_resume(struct device *dev)
1591 {
1592 struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1593 to_i2c_client(dev)));
1594
1595 return ltr501_write_contr(data, data->als_contr,
1596 data->ps_contr);
1597 }
1598
1599 static DEFINE_SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume);
1600
1601 static const struct acpi_device_id ltr_acpi_match[] = {
1602 { "LTER0301", ltr301 },
1603 /* https://www.catalog.update.microsoft.com/Search.aspx?q=lter0303 */
1604 { "LTER0303", ltr303 },
1605 { }
1606 };
1607 MODULE_DEVICE_TABLE(acpi, ltr_acpi_match);
1608
1609 static const struct i2c_device_id ltr501_id[] = {
1610 { "ltr501", ltr501 },
1611 { "ltr559", ltr559 },
1612 { "ltr301", ltr301 },
1613 { "ltr303", ltr303 },
1614 { }
1615 };
1616 MODULE_DEVICE_TABLE(i2c, ltr501_id);
1617
1618 static const struct of_device_id ltr501_of_match[] = {
1619 { .compatible = "liteon,ltr501", },
1620 { .compatible = "liteon,ltr559", },
1621 { .compatible = "liteon,ltr301", },
1622 { .compatible = "liteon,ltr303", },
1623 { }
1624 };
1625 MODULE_DEVICE_TABLE(of, ltr501_of_match);
1626
1627 static struct i2c_driver ltr501_driver = {
1628 .driver = {
1629 .name = LTR501_DRV_NAME,
1630 .of_match_table = ltr501_of_match,
1631 .pm = pm_sleep_ptr(<r501_pm_ops),
1632 .acpi_match_table = ltr_acpi_match,
1633 },
1634 .probe = ltr501_probe,
1635 .remove = ltr501_remove,
1636 .id_table = ltr501_id,
1637 };
1638
1639 module_i2c_driver(ltr501_driver);
1640
1641 MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>");
1642 MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver");
1643 MODULE_LICENSE("GPL");
1644