1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
23 *
24 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
25 * Copyright 2016 Toomas Soome <tsoome@me.com>
26 */
27
28 /*
29 * lofi (loopback file) driver - allows you to attach a file to a device,
30 * which can then be accessed through that device. The simple model is that
31 * you tell lofi to open a file, and then use the block device you get as
32 * you would any block device. lofi translates access to the block device
33 * into I/O on the underlying file. This is mostly useful for
34 * mounting images of filesystems.
35 *
36 * lofi is controlled through /dev/lofictl - this is the only device exported
37 * during attach, and is instance number 0. lofiadm communicates with lofi
38 * through ioctls on this device. When a file is attached to lofi, block and
39 * character devices are exported in /dev/lofi and /dev/rlofi. These devices
40 * are identified by lofi instance number, and the instance number is also used
41 * as the name in /dev/lofi.
42 *
43 * Virtual disks, or, labeled lofi, implements virtual disk support to
44 * support partition table and related tools. Such mappings will cause
45 * block and character devices to be exported in /dev/dsk and /dev/rdsk
46 * directories.
47 *
48 * To support virtual disks, the instance number space is divided to two
49 * parts, upper part for instance number and lower part for minor number
50 * space to identify partitions and slices. The virtual disk support is
51 * implemented by stacking cmlb module. For virtual disks, the partition
52 * related ioctl calls are routed to cmlb module. Compression and encryption
53 * is not supported for virtual disks.
54 *
55 * Mapped devices are tracked with state structures handled with
56 * ddi_soft_state(9F) for simplicity.
57 *
58 * A file attached to lofi is opened when attached and not closed until
59 * explicitly detached from lofi. This seems more sensible than deferring
60 * the open until the /dev/lofi device is opened, for a number of reasons.
61 * One is that any failure is likely to be noticed by the person (or script)
62 * running lofiadm. Another is that it would be a security problem if the
63 * file was replaced by another one after being added but before being opened.
64 *
65 * The only hard part about lofi is the ioctls. In order to support things
66 * like 'newfs' on a lofi device, it needs to support certain disk ioctls.
67 * So it has to fake disk geometry and partition information. More may need
68 * to be faked if your favorite utility doesn't work and you think it should
69 * (fdformat doesn't work because it really wants to know the type of floppy
70 * controller to talk to, and that didn't seem easy to fake. Or possibly even
71 * necessary, since we have mkfs_pcfs now).
72 *
73 * Normally, a lofi device cannot be detached if it is open (i.e. busy). To
74 * support simulation of hotplug events, an optional force flag is provided.
75 * If a lofi device is open when a force detach is requested, then the
76 * underlying file is closed and any subsequent operations return EIO. When the
77 * device is closed for the last time, it will be cleaned up at that time. In
78 * addition, the DKIOCSTATE ioctl will return DKIO_DEV_GONE when the device is
79 * detached but not removed.
80 *
81 * Known problems:
82 *
83 * UFS logging. Mounting a UFS filesystem image "logging"
84 * works for basic copy testing but wedges during a build of ON through
85 * that image. Some deadlock in lufs holding the log mutex and then
86 * getting stuck on a buf. So for now, don't do that.
87 *
88 * Direct I/O. Since the filesystem data is being cached in the buffer
89 * cache, _and_ again in the underlying filesystem, it's tempting to
90 * enable direct I/O on the underlying file. Don't, because that deadlocks.
91 * I think to fix the cache-twice problem we might need filesystem support.
92 *
93 * Interesting things to do:
94 *
95 * Allow multiple files for each device. A poor-man's metadisk, basically.
96 *
97 * Pass-through ioctls on block devices. You can (though it's not
98 * documented), give lofi a block device as a file name. Then we shouldn't
99 * need to fake a geometry, however, it may be relevant if you're replacing
100 * metadisk, or using lofi to get crypto.
101 * It makes sense to do lofiadm -c aes -a /dev/dsk/c0t0d0s4 /dev/lofi/1
102 * and then in /etc/vfstab have an entry for /dev/lofi/1 as /export/home.
103 * In fact this even makes sense if you have lofi "above" metadisk.
104 *
105 * Encryption:
106 * Each lofi device can have its own symmetric key and cipher.
107 * They are passed to us by lofiadm(1m) in the correct format for use
108 * with the misc/kcf crypto_* routines.
109 *
110 * Each block has its own IV, that is calculated in lofi_blk_mech(), based
111 * on the "master" key held in the lsp and the block number of the buffer.
112 */
113
114 #include <sys/types.h>
115 #include <netinet/in.h>
116 #include <sys/sysmacros.h>
117 #include <sys/uio.h>
118 #include <sys/kmem.h>
119 #include <sys/cred.h>
120 #include <sys/mman.h>
121 #include <sys/errno.h>
122 #include <sys/aio_req.h>
123 #include <sys/stat.h>
124 #include <sys/file.h>
125 #include <sys/modctl.h>
126 #include <sys/conf.h>
127 #include <sys/debug.h>
128 #include <sys/vnode.h>
129 #include <sys/lofi.h>
130 #include <sys/fcntl.h>
131 #include <sys/pathname.h>
132 #include <sys/filio.h>
133 #include <sys/fdio.h>
134 #include <sys/open.h>
135 #include <sys/disp.h>
136 #include <vm/seg_map.h>
137 #include <sys/ddi.h>
138 #include <sys/sunddi.h>
139 #include <sys/zmod.h>
140 #include <sys/id_space.h>
141 #include <sys/mkdev.h>
142 #include <sys/crypto/common.h>
143 #include <sys/crypto/api.h>
144 #include <sys/rctl.h>
145 #include <sys/vtoc.h>
146 #include <sys/scsi/scsi.h> /* for DTYPE_DIRECT */
147 #include <sys/scsi/impl/uscsi.h>
148 #include <sys/sysevent/dev.h>
149 #include <LzmaDec.h>
150
151 /*
152 * The basis for CRYOFF is derived from usr/src/uts/common/sys/fs/ufs_fs.h.
153 * Crypto metadata, if it exists, is located at the end of the boot block
154 * (BBOFF + BBSIZE, which is SBOFF). The super block and everything after
155 * is offset by the size of the crypto metadata which is handled by
156 * lsp->ls_crypto_offset.
157 */
158 #define CRYOFF ((off_t)8192)
159
160 #define NBLOCKS_PROP_NAME "Nblocks"
161 #define SIZE_PROP_NAME "Size"
162 #define ZONE_PROP_NAME "zone"
163
164 #define SETUP_C_DATA(cd, buf, len) \
165 (cd).cd_format = CRYPTO_DATA_RAW; \
166 (cd).cd_offset = 0; \
167 (cd).cd_miscdata = NULL; \
168 (cd).cd_length = (len); \
169 (cd).cd_raw.iov_base = (buf); \
170 (cd).cd_raw.iov_len = (len);
171
172 #define UIO_CHECK(uio) \
173 if (((uio)->uio_loffset % DEV_BSIZE) != 0 || \
174 ((uio)->uio_resid % DEV_BSIZE) != 0) { \
175 return (EINVAL); \
176 }
177
178 #define DEVFS_CHANNEL "devfsadm_event_channel"
179 #define LOFI_TIMEOUT 30
180 static evchan_t *lofi_chan;
181 static kmutex_t lofi_chan_lock;
182 static kcondvar_t lofi_chan_cv;
183 static nvlist_t *lofi_devlink_cache;
184
185 static void *lofi_statep;
186 static kmutex_t lofi_lock; /* state lock */
187 static id_space_t *lofi_id; /* lofi ID values */
188 static list_t lofi_list;
189 static zone_key_t lofi_zone_key;
190
191 /*
192 * Because lofi_taskq_nthreads limits the actual swamping of the device, the
193 * maxalloc parameter (lofi_taskq_maxalloc) should be tuned conservatively
194 * high. If we want to be assured that the underlying device is always busy,
195 * we must be sure that the number of bytes enqueued when the number of
196 * enqueued tasks exceeds maxalloc is sufficient to keep the device busy for
197 * the duration of the sleep time in taskq_ent_alloc(). That is, lofi should
198 * set maxalloc to be the maximum throughput (in bytes per second) of the
199 * underlying device divided by the minimum I/O size. We assume a realistic
200 * maximum throughput of one hundred megabytes per second; we set maxalloc on
201 * the lofi task queue to be 104857600 divided by DEV_BSIZE.
202 */
203 static int lofi_taskq_maxalloc = 104857600 / DEV_BSIZE;
204 static int lofi_taskq_nthreads = 4; /* # of taskq threads per device */
205
206 const char lofi_crypto_magic[6] = LOFI_CRYPTO_MAGIC;
207
208 /*
209 * To avoid decompressing data in a compressed segment multiple times
210 * when accessing small parts of a segment's data, we cache and reuse
211 * the uncompressed segment's data.
212 *
213 * A single cached segment is sufficient to avoid lots of duplicate
214 * segment decompress operations. A small cache size also reduces the
215 * memory footprint.
216 *
217 * lofi_max_comp_cache is the maximum number of decompressed data segments
218 * cached for each compressed lofi image. It can be set to 0 to disable
219 * caching.
220 */
221
222 uint32_t lofi_max_comp_cache = 1;
223
224 static int gzip_decompress(void *src, size_t srclen, void *dst,
225 size_t *destlen, int level);
226
227 static int lzma_decompress(void *src, size_t srclen, void *dst,
228 size_t *dstlen, int level);
229
230 lofi_compress_info_t lofi_compress_table[LOFI_COMPRESS_FUNCTIONS] = {
231 {gzip_decompress, NULL, 6, "gzip"}, /* default */
232 {gzip_decompress, NULL, 6, "gzip-6"},
233 {gzip_decompress, NULL, 9, "gzip-9"},
234 {lzma_decompress, NULL, 0, "lzma"}
235 };
236
237 static void lofi_strategy_task(void *);
238 static int lofi_tg_rdwr(dev_info_t *, uchar_t, void *, diskaddr_t,
239 size_t, void *);
240 static int lofi_tg_getinfo(dev_info_t *, int, void *, void *);
241
242 struct cmlb_tg_ops lofi_tg_ops = {
243 TG_DK_OPS_VERSION_1,
244 lofi_tg_rdwr,
245 lofi_tg_getinfo
246 };
247
248 /*ARGSUSED*/
249 static void
SzAlloc(void * p,size_t size)250 *SzAlloc(void *p, size_t size)
251 {
252 return (kmem_alloc(size, KM_SLEEP));
253 }
254
255 /*ARGSUSED*/
256 static void
SzFree(void * p,void * address,size_t size)257 SzFree(void *p, void *address, size_t size)
258 {
259 kmem_free(address, size);
260 }
261
262 static ISzAlloc g_Alloc = { SzAlloc, SzFree };
263
264 /*
265 * Free data referenced by the linked list of cached uncompressed
266 * segments.
267 */
268 static void
lofi_free_comp_cache(struct lofi_state * lsp)269 lofi_free_comp_cache(struct lofi_state *lsp)
270 {
271 struct lofi_comp_cache *lc;
272
273 while ((lc = list_remove_head(&lsp->ls_comp_cache)) != NULL) {
274 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
275 kmem_free(lc, sizeof (struct lofi_comp_cache));
276 lsp->ls_comp_cache_count--;
277 }
278 ASSERT(lsp->ls_comp_cache_count == 0);
279 }
280
281 static int
is_opened(struct lofi_state * lsp)282 is_opened(struct lofi_state *lsp)
283 {
284 int i;
285 boolean_t last = B_TRUE;
286
287 ASSERT(MUTEX_HELD(&lofi_lock));
288 for (i = 0; i < LOFI_PART_MAX; i++) {
289 if (lsp->ls_open_lyr[i]) {
290 last = B_FALSE;
291 break;
292 }
293 }
294
295 for (i = 0; last && (i < OTYP_LYR); i++) {
296 if (lsp->ls_open_reg[i]) {
297 last = B_FALSE;
298 }
299 }
300
301 return (!last);
302 }
303
304 static void
lofi_free_crypto(struct lofi_state * lsp)305 lofi_free_crypto(struct lofi_state *lsp)
306 {
307 ASSERT(MUTEX_HELD(&lofi_lock));
308
309 if (lsp->ls_crypto_enabled) {
310 /*
311 * Clean up the crypto state so that it doesn't hang around
312 * in memory after we are done with it.
313 */
314 if (lsp->ls_key.ck_data != NULL) {
315 bzero(lsp->ls_key.ck_data,
316 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
317 kmem_free(lsp->ls_key.ck_data,
318 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
319 lsp->ls_key.ck_data = NULL;
320 lsp->ls_key.ck_length = 0;
321 }
322
323 if (lsp->ls_mech.cm_param != NULL) {
324 kmem_free(lsp->ls_mech.cm_param,
325 lsp->ls_mech.cm_param_len);
326 lsp->ls_mech.cm_param = NULL;
327 lsp->ls_mech.cm_param_len = 0;
328 }
329
330 if (lsp->ls_iv_mech.cm_param != NULL) {
331 kmem_free(lsp->ls_iv_mech.cm_param,
332 lsp->ls_iv_mech.cm_param_len);
333 lsp->ls_iv_mech.cm_param = NULL;
334 lsp->ls_iv_mech.cm_param_len = 0;
335 }
336
337 mutex_destroy(&lsp->ls_crypto_lock);
338 }
339 }
340
341 /* ARGSUSED */
342 static int
lofi_tg_rdwr(dev_info_t * dip,uchar_t cmd,void * bufaddr,diskaddr_t start,size_t length,void * tg_cookie)343 lofi_tg_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr, diskaddr_t start,
344 size_t length, void *tg_cookie)
345 {
346 struct lofi_state *lsp;
347 buf_t *bp;
348 int instance;
349 int rv = 0;
350
351 instance = ddi_get_instance(dip);
352 if (instance == 0) /* control node does not have disk */
353 return (ENXIO);
354
355 lsp = ddi_get_soft_state(lofi_statep, instance);
356
357 if (lsp == NULL)
358 return (ENXIO);
359
360 if (cmd != TG_READ && cmd != TG_WRITE)
361 return (EINVAL);
362
363 /*
364 * Make sure the mapping is set up by checking lsp->ls_vp_ready.
365 */
366 mutex_enter(&lsp->ls_vp_lock);
367 while (lsp->ls_vp_ready == B_FALSE)
368 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
369 mutex_exit(&lsp->ls_vp_lock);
370
371 if (P2PHASE(length, (1U << lsp->ls_lbshift)) != 0) {
372 /* We can only transfer whole blocks at a time! */
373 return (EINVAL);
374 }
375
376 bp = getrbuf(KM_SLEEP);
377
378 if (cmd == TG_READ) {
379 bp->b_flags = B_READ;
380 } else {
381 if (lsp->ls_readonly == B_TRUE) {
382 freerbuf(bp);
383 return (EROFS);
384 }
385 bp->b_flags = B_WRITE;
386 }
387
388 bp->b_un.b_addr = bufaddr;
389 bp->b_bcount = length;
390 bp->b_lblkno = start;
391 bp->b_private = NULL;
392 bp->b_edev = lsp->ls_dev;
393
394 if (lsp->ls_kstat) {
395 mutex_enter(lsp->ls_kstat->ks_lock);
396 kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat));
397 mutex_exit(lsp->ls_kstat->ks_lock);
398 }
399 (void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP);
400 (void) biowait(bp);
401
402 rv = geterror(bp);
403 freerbuf(bp);
404 return (rv);
405 }
406
407 /*
408 * Get device geometry info for cmlb.
409 *
410 * We have mapped disk image as virtual block device and have to report
411 * physical/virtual geometry to cmlb.
412 *
413 * So we have two principal cases:
414 * 1. Uninitialised image without any existing labels,
415 * for this case we fabricate the data based on mapped image.
416 * 2. Image with existing label information.
417 * Since we have no information how the image was created (it may be
418 * dump from some physical device), we need to rely on label information
419 * from image, or we get "corrupted label" errors.
420 * NOTE: label can be MBR, MBR+SMI, GPT
421 */
422 static int
lofi_tg_getinfo(dev_info_t * dip,int cmd,void * arg,void * tg_cookie)423 lofi_tg_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie)
424 {
425 struct lofi_state *lsp;
426 int instance;
427 int ashift;
428
429 _NOTE(ARGUNUSED(tg_cookie));
430 instance = ddi_get_instance(dip);
431 if (instance == 0) /* control device has no storage */
432 return (ENXIO);
433
434 lsp = ddi_get_soft_state(lofi_statep, instance);
435
436 if (lsp == NULL)
437 return (ENXIO);
438
439 /*
440 * Make sure the mapping is set up by checking lsp->ls_vp_ready.
441 *
442 * When mapping is created, new lofi instance is created and
443 * lofi_attach() will call cmlb_attach() as part of the procedure
444 * to set the mapping up. This chain of events will happen in
445 * the same thread.
446 * Since cmlb_attach() will call lofi_tg_getinfo to get
447 * capacity, we return error on that call if cookie is set,
448 * otherwise lofi_attach will be stuck as the mapping is not yet
449 * finalized and lofi is not yet ready.
450 * Note, such error is not fatal for cmlb, as the label setup
451 * will be finalized when cmlb_validate() is called.
452 */
453 mutex_enter(&lsp->ls_vp_lock);
454 if (tg_cookie != NULL && lsp->ls_vp_ready == B_FALSE) {
455 mutex_exit(&lsp->ls_vp_lock);
456 return (ENXIO);
457 }
458 while (lsp->ls_vp_ready == B_FALSE)
459 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
460 mutex_exit(&lsp->ls_vp_lock);
461
462 ashift = lsp->ls_lbshift;
463
464 switch (cmd) {
465 case TG_GETPHYGEOM: {
466 cmlb_geom_t *geomp = arg;
467
468 geomp->g_capacity =
469 (lsp->ls_vp_size - lsp->ls_crypto_offset) >> ashift;
470 geomp->g_nsect = lsp->ls_dkg.dkg_nsect;
471 geomp->g_nhead = lsp->ls_dkg.dkg_nhead;
472 geomp->g_acyl = lsp->ls_dkg.dkg_acyl;
473 geomp->g_ncyl = lsp->ls_dkg.dkg_ncyl;
474 geomp->g_secsize = (1U << ashift);
475 geomp->g_intrlv = lsp->ls_dkg.dkg_intrlv;
476 geomp->g_rpm = lsp->ls_dkg.dkg_rpm;
477 return (0);
478 }
479
480 case TG_GETCAPACITY:
481 *(diskaddr_t *)arg =
482 (lsp->ls_vp_size - lsp->ls_crypto_offset) >> ashift;
483 return (0);
484
485 case TG_GETBLOCKSIZE:
486 *(uint32_t *)arg = (1U << ashift);
487 return (0);
488
489 case TG_GETATTR: {
490 tg_attribute_t *tgattr = arg;
491
492 tgattr->media_is_writable = !lsp->ls_readonly;
493 tgattr->media_is_solid_state = B_FALSE;
494 return (0);
495 }
496
497 default:
498 return (EINVAL);
499 }
500 }
501
502 static void
lofi_destroy(struct lofi_state * lsp,cred_t * credp)503 lofi_destroy(struct lofi_state *lsp, cred_t *credp)
504 {
505 int id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
506 int i;
507
508 ASSERT(MUTEX_HELD(&lofi_lock));
509
510 list_remove(&lofi_list, lsp);
511
512 lofi_free_crypto(lsp);
513
514 /*
515 * Free pre-allocated compressed buffers
516 */
517 if (lsp->ls_comp_bufs != NULL) {
518 for (i = 0; i < lofi_taskq_nthreads; i++) {
519 if (lsp->ls_comp_bufs[i].bufsize > 0)
520 kmem_free(lsp->ls_comp_bufs[i].buf,
521 lsp->ls_comp_bufs[i].bufsize);
522 }
523 kmem_free(lsp->ls_comp_bufs,
524 sizeof (struct compbuf) * lofi_taskq_nthreads);
525 }
526
527 if (lsp->ls_vp != NULL) {
528 (void) VOP_PUTPAGE(lsp->ls_vp, 0, 0, B_INVAL, credp, NULL);
529 (void) VOP_CLOSE(lsp->ls_vp, lsp->ls_openflag,
530 1, 0, credp, NULL);
531 VN_RELE(lsp->ls_vp);
532 }
533 if (lsp->ls_stacked_vp != lsp->ls_vp)
534 VN_RELE(lsp->ls_stacked_vp);
535
536 if (lsp->ls_taskq != NULL)
537 taskq_destroy(lsp->ls_taskq);
538
539 if (lsp->ls_kstat != NULL)
540 kstat_delete(lsp->ls_kstat);
541
542 /*
543 * Free cached decompressed segment data
544 */
545 lofi_free_comp_cache(lsp);
546 list_destroy(&lsp->ls_comp_cache);
547
548 if (lsp->ls_uncomp_seg_sz > 0) {
549 kmem_free(lsp->ls_comp_index_data, lsp->ls_comp_index_data_sz);
550 lsp->ls_uncomp_seg_sz = 0;
551 }
552
553 rctl_decr_lofi(lsp->ls_zone.zref_zone, 1);
554 zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI);
555
556 mutex_destroy(&lsp->ls_comp_cache_lock);
557 mutex_destroy(&lsp->ls_comp_bufs_lock);
558 mutex_destroy(&lsp->ls_kstat_lock);
559 mutex_destroy(&lsp->ls_vp_lock);
560 cv_destroy(&lsp->ls_vp_cv);
561 lsp->ls_vp_ready = B_FALSE;
562
563 ASSERT(ddi_get_soft_state(lofi_statep, id) == lsp);
564 (void) ndi_devi_offline(lsp->ls_dip, NDI_DEVI_REMOVE);
565 id_free(lofi_id, id);
566 }
567
568 static void
lofi_free_dev(struct lofi_state * lsp)569 lofi_free_dev(struct lofi_state *lsp)
570 {
571 ASSERT(MUTEX_HELD(&lofi_lock));
572
573 if (lsp->ls_cmlbhandle != NULL) {
574 cmlb_invalidate(lsp->ls_cmlbhandle, 0);
575 cmlb_detach(lsp->ls_cmlbhandle, 0);
576 cmlb_free_handle(&lsp->ls_cmlbhandle);
577 lsp->ls_cmlbhandle = NULL;
578 }
579 (void) ddi_prop_remove_all(lsp->ls_dip);
580 ddi_remove_minor_node(lsp->ls_dip, NULL);
581 }
582
583 /*ARGSUSED*/
584 static void
lofi_zone_shutdown(zoneid_t zoneid,void * arg)585 lofi_zone_shutdown(zoneid_t zoneid, void *arg)
586 {
587 struct lofi_state *lsp;
588 struct lofi_state *next;
589
590 mutex_enter(&lofi_lock);
591
592 for (lsp = list_head(&lofi_list); lsp != NULL; lsp = next) {
593
594 /* lofi_destroy() frees lsp */
595 next = list_next(&lofi_list, lsp);
596
597 if (lsp->ls_zone.zref_zone->zone_id != zoneid)
598 continue;
599
600 /*
601 * No in-zone processes are running, but something has this
602 * open. It's either a global zone process, or a lofi
603 * mount. In either case we set ls_cleanup so the last
604 * user destroys the device.
605 */
606 if (is_opened(lsp)) {
607 lsp->ls_cleanup = 1;
608 } else {
609 lofi_free_dev(lsp);
610 lofi_destroy(lsp, kcred);
611 }
612 }
613
614 mutex_exit(&lofi_lock);
615 }
616
617 /*ARGSUSED*/
618 static int
lofi_open(dev_t * devp,int flag,int otyp,struct cred * credp)619 lofi_open(dev_t *devp, int flag, int otyp, struct cred *credp)
620 {
621 int id;
622 minor_t part;
623 uint64_t mask;
624 diskaddr_t nblks;
625 diskaddr_t lba;
626 boolean_t ndelay;
627
628 struct lofi_state *lsp;
629
630 if (otyp >= OTYPCNT)
631 return (EINVAL);
632
633 ndelay = (flag & (FNDELAY | FNONBLOCK)) ? B_TRUE : B_FALSE;
634
635 /*
636 * lofiadm -a /dev/lofi/1 gets us here.
637 */
638 if (mutex_owner(&lofi_lock) == curthread)
639 return (EINVAL);
640
641 mutex_enter(&lofi_lock);
642
643 id = LOFI_MINOR2ID(getminor(*devp));
644 part = LOFI_PART(getminor(*devp));
645 mask = (1U << part);
646
647 /* master control device */
648 if (id == 0) {
649 mutex_exit(&lofi_lock);
650 return (0);
651 }
652
653 /* otherwise, the mapping should already exist */
654 lsp = ddi_get_soft_state(lofi_statep, id);
655 if (lsp == NULL) {
656 mutex_exit(&lofi_lock);
657 return (EINVAL);
658 }
659
660 if (lsp->ls_vp == NULL) {
661 mutex_exit(&lofi_lock);
662 return (ENXIO);
663 }
664
665 if (lsp->ls_readonly && (flag & FWRITE)) {
666 mutex_exit(&lofi_lock);
667 return (EROFS);
668 }
669
670 if ((lsp->ls_open_excl) & (mask)) {
671 mutex_exit(&lofi_lock);
672 return (EBUSY);
673 }
674
675 if (flag & FEXCL) {
676 if (lsp->ls_open_lyr[part]) {
677 mutex_exit(&lofi_lock);
678 return (EBUSY);
679 }
680 for (int i = 0; i < OTYP_LYR; i++) {
681 if (lsp->ls_open_reg[i] & mask) {
682 mutex_exit(&lofi_lock);
683 return (EBUSY);
684 }
685 }
686 }
687
688 if (lsp->ls_cmlbhandle != NULL) {
689 if (cmlb_validate(lsp->ls_cmlbhandle, 0, 0) != 0) {
690 /*
691 * non-blocking opens are allowed to succeed to
692 * support format and fdisk to create partitioning.
693 */
694 if (!ndelay) {
695 mutex_exit(&lofi_lock);
696 return (ENXIO);
697 }
698 } else if (cmlb_partinfo(lsp->ls_cmlbhandle, part, &nblks, &lba,
699 NULL, NULL, 0) == 0) {
700 if ((!nblks) && ((!ndelay) || (otyp != OTYP_CHR))) {
701 mutex_exit(&lofi_lock);
702 return (ENXIO);
703 }
704 } else if (!ndelay) {
705 mutex_exit(&lofi_lock);
706 return (ENXIO);
707 }
708 }
709
710 if (otyp == OTYP_LYR) {
711 lsp->ls_open_lyr[part]++;
712 } else {
713 lsp->ls_open_reg[otyp] |= mask;
714 }
715 if (flag & FEXCL) {
716 lsp->ls_open_excl |= mask;
717 }
718
719 mutex_exit(&lofi_lock);
720 return (0);
721 }
722
723 /*ARGSUSED*/
724 static int
lofi_close(dev_t dev,int flag,int otyp,struct cred * credp)725 lofi_close(dev_t dev, int flag, int otyp, struct cred *credp)
726 {
727 minor_t part;
728 int id;
729 uint64_t mask;
730 struct lofi_state *lsp;
731
732 id = LOFI_MINOR2ID(getminor(dev));
733 part = LOFI_PART(getminor(dev));
734 mask = (1U << part);
735
736 mutex_enter(&lofi_lock);
737 lsp = ddi_get_soft_state(lofi_statep, id);
738 if (lsp == NULL) {
739 mutex_exit(&lofi_lock);
740 return (EINVAL);
741 }
742
743 if (id == 0) {
744 mutex_exit(&lofi_lock);
745 return (0);
746 }
747
748 if (lsp->ls_open_excl & mask)
749 lsp->ls_open_excl &= ~mask;
750
751 if (otyp == OTYP_LYR) {
752 lsp->ls_open_lyr[part]--;
753 } else {
754 lsp->ls_open_reg[otyp] &= ~mask;
755 }
756
757 /*
758 * If we forcibly closed the underlying device (li_force), or
759 * asked for cleanup (li_cleanup), finish up if we're the last
760 * out of the door.
761 */
762 if (!is_opened(lsp) && (lsp->ls_cleanup || lsp->ls_vp == NULL)) {
763 lofi_free_dev(lsp);
764 lofi_destroy(lsp, credp);
765 }
766
767 mutex_exit(&lofi_lock);
768 return (0);
769 }
770
771 /*
772 * Sets the mechanism's initialization vector (IV) if one is needed.
773 * The IV is computed from the data block number. lsp->ls_mech is
774 * altered so that:
775 * lsp->ls_mech.cm_param_len is set to the IV len.
776 * lsp->ls_mech.cm_param is set to the IV.
777 */
778 static int
lofi_blk_mech(struct lofi_state * lsp,longlong_t lblkno)779 lofi_blk_mech(struct lofi_state *lsp, longlong_t lblkno)
780 {
781 int ret;
782 crypto_data_t cdata;
783 char *iv;
784 size_t iv_len;
785 size_t min;
786 void *data;
787 size_t datasz;
788
789 ASSERT(MUTEX_HELD(&lsp->ls_crypto_lock));
790
791 if (lsp == NULL)
792 return (CRYPTO_DEVICE_ERROR);
793
794 /* lsp->ls_mech.cm_param{_len} has already been set for static iv */
795 if (lsp->ls_iv_type == IVM_NONE) {
796 return (CRYPTO_SUCCESS);
797 }
798
799 /*
800 * if kmem already alloced from previous call and it's the same size
801 * we need now, just recycle it; allocate new kmem only if we have to
802 */
803 if (lsp->ls_mech.cm_param == NULL ||
804 lsp->ls_mech.cm_param_len != lsp->ls_iv_len) {
805 iv_len = lsp->ls_iv_len;
806 iv = kmem_zalloc(iv_len, KM_SLEEP);
807 } else {
808 iv_len = lsp->ls_mech.cm_param_len;
809 iv = lsp->ls_mech.cm_param;
810 bzero(iv, iv_len);
811 }
812
813 switch (lsp->ls_iv_type) {
814 case IVM_ENC_BLKNO:
815 /* iv is not static, lblkno changes each time */
816 data = &lblkno;
817 datasz = sizeof (lblkno);
818 break;
819 default:
820 data = 0;
821 datasz = 0;
822 break;
823 }
824
825 /*
826 * write blkno into the iv buffer padded on the left in case
827 * blkno ever grows bigger than its current longlong_t size
828 * or a variation other than blkno is used for the iv data
829 */
830 min = MIN(datasz, iv_len);
831 bcopy(data, iv + (iv_len - min), min);
832
833 /* encrypt the data in-place to get the IV */
834 SETUP_C_DATA(cdata, iv, iv_len);
835
836 ret = crypto_encrypt(&lsp->ls_iv_mech, &cdata, &lsp->ls_key,
837 NULL, NULL, NULL);
838 if (ret != CRYPTO_SUCCESS) {
839 cmn_err(CE_WARN, "failed to create iv for block %lld: (0x%x)",
840 lblkno, ret);
841 if (lsp->ls_mech.cm_param != iv)
842 kmem_free(iv, iv_len);
843
844 return (ret);
845 }
846
847 /* clean up the iv from the last computation */
848 if (lsp->ls_mech.cm_param != NULL && lsp->ls_mech.cm_param != iv)
849 kmem_free(lsp->ls_mech.cm_param, lsp->ls_mech.cm_param_len);
850
851 lsp->ls_mech.cm_param_len = iv_len;
852 lsp->ls_mech.cm_param = iv;
853
854 return (CRYPTO_SUCCESS);
855 }
856
857 /*
858 * Performs encryption and decryption of a chunk of data of size "len",
859 * one DEV_BSIZE block at a time. "len" is assumed to be a multiple of
860 * DEV_BSIZE.
861 */
862 static int
lofi_crypto(struct lofi_state * lsp,struct buf * bp,caddr_t plaintext,caddr_t ciphertext,size_t len,boolean_t op_encrypt)863 lofi_crypto(struct lofi_state *lsp, struct buf *bp, caddr_t plaintext,
864 caddr_t ciphertext, size_t len, boolean_t op_encrypt)
865 {
866 crypto_data_t cdata;
867 crypto_data_t wdata;
868 int ret;
869 longlong_t lblkno = bp->b_lblkno;
870
871 mutex_enter(&lsp->ls_crypto_lock);
872
873 /*
874 * though we could encrypt/decrypt entire "len" chunk of data, we need
875 * to break it into DEV_BSIZE pieces to capture blkno incrementing
876 */
877 SETUP_C_DATA(cdata, plaintext, len);
878 cdata.cd_length = DEV_BSIZE;
879 if (ciphertext != NULL) { /* not in-place crypto */
880 SETUP_C_DATA(wdata, ciphertext, len);
881 wdata.cd_length = DEV_BSIZE;
882 }
883
884 do {
885 ret = lofi_blk_mech(lsp, lblkno);
886 if (ret != CRYPTO_SUCCESS)
887 continue;
888
889 if (op_encrypt) {
890 ret = crypto_encrypt(&lsp->ls_mech, &cdata,
891 &lsp->ls_key, NULL,
892 ((ciphertext != NULL) ? &wdata : NULL), NULL);
893 } else {
894 ret = crypto_decrypt(&lsp->ls_mech, &cdata,
895 &lsp->ls_key, NULL,
896 ((ciphertext != NULL) ? &wdata : NULL), NULL);
897 }
898
899 cdata.cd_offset += DEV_BSIZE;
900 if (ciphertext != NULL)
901 wdata.cd_offset += DEV_BSIZE;
902 lblkno++;
903 } while (ret == CRYPTO_SUCCESS && cdata.cd_offset < len);
904
905 mutex_exit(&lsp->ls_crypto_lock);
906
907 if (ret != CRYPTO_SUCCESS) {
908 cmn_err(CE_WARN, "%s failed for block %lld: (0x%x)",
909 op_encrypt ? "crypto_encrypt()" : "crypto_decrypt()",
910 lblkno, ret);
911 }
912
913 return (ret);
914 }
915
916 #define RDWR_RAW 1
917 #define RDWR_BCOPY 2
918
919 static int
lofi_rdwr(caddr_t bufaddr,offset_t offset,struct buf * bp,struct lofi_state * lsp,size_t len,int method,caddr_t bcopy_locn)920 lofi_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
921 struct lofi_state *lsp, size_t len, int method, caddr_t bcopy_locn)
922 {
923 ssize_t resid;
924 int isread;
925 int error;
926
927 /*
928 * Handles reads/writes for both plain and encrypted lofi
929 * Note: offset is already shifted by lsp->ls_crypto_offset
930 * when it gets here.
931 */
932
933 isread = bp->b_flags & B_READ;
934 if (isread) {
935 if (method == RDWR_BCOPY) {
936 /* DO NOT update bp->b_resid for bcopy */
937 bcopy(bcopy_locn, bufaddr, len);
938 error = 0;
939 } else { /* RDWR_RAW */
940 error = vn_rdwr(UIO_READ, lsp->ls_vp, bufaddr, len,
941 offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
942 &resid);
943 bp->b_resid = resid;
944 }
945 if (lsp->ls_crypto_enabled && error == 0) {
946 if (lofi_crypto(lsp, bp, bufaddr, NULL, len,
947 B_FALSE) != CRYPTO_SUCCESS) {
948 /*
949 * XXX: original code didn't set residual
950 * back to len because no error was expected
951 * from bcopy() if encryption is not enabled
952 */
953 if (method != RDWR_BCOPY)
954 bp->b_resid = len;
955 error = EIO;
956 }
957 }
958 return (error);
959 } else {
960 void *iobuf = bufaddr;
961
962 if (lsp->ls_crypto_enabled) {
963 /* don't do in-place crypto to keep bufaddr intact */
964 iobuf = kmem_alloc(len, KM_SLEEP);
965 if (lofi_crypto(lsp, bp, bufaddr, iobuf, len,
966 B_TRUE) != CRYPTO_SUCCESS) {
967 kmem_free(iobuf, len);
968 if (method != RDWR_BCOPY)
969 bp->b_resid = len;
970 return (EIO);
971 }
972 }
973 if (method == RDWR_BCOPY) {
974 /* DO NOT update bp->b_resid for bcopy */
975 bcopy(iobuf, bcopy_locn, len);
976 error = 0;
977 } else { /* RDWR_RAW */
978 error = vn_rdwr(UIO_WRITE, lsp->ls_vp, iobuf, len,
979 offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
980 &resid);
981 bp->b_resid = resid;
982 }
983 if (lsp->ls_crypto_enabled) {
984 kmem_free(iobuf, len);
985 }
986 return (error);
987 }
988 }
989
990 static int
lofi_mapped_rdwr(caddr_t bufaddr,offset_t offset,struct buf * bp,struct lofi_state * lsp)991 lofi_mapped_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
992 struct lofi_state *lsp)
993 {
994 int error;
995 offset_t alignedoffset, mapoffset;
996 size_t xfersize;
997 int isread;
998 int smflags;
999 caddr_t mapaddr;
1000 size_t len;
1001 enum seg_rw srw;
1002 int save_error;
1003
1004 /*
1005 * Note: offset is already shifted by lsp->ls_crypto_offset
1006 * when it gets here.
1007 */
1008 if (lsp->ls_crypto_enabled)
1009 ASSERT(lsp->ls_vp_comp_size == lsp->ls_vp_size);
1010
1011 /*
1012 * segmap always gives us an 8K (MAXBSIZE) chunk, aligned on
1013 * an 8K boundary, but the buf transfer address may not be
1014 * aligned on more than a 512-byte boundary (we don't enforce
1015 * that even though we could). This matters since the initial
1016 * part of the transfer may not start at offset 0 within the
1017 * segmap'd chunk. So we have to compensate for that with
1018 * 'mapoffset'. Subsequent chunks always start off at the
1019 * beginning, and the last is capped by b_resid
1020 *
1021 * Visually, where "|" represents page map boundaries:
1022 * alignedoffset (mapaddr begins at this segmap boundary)
1023 * | offset (from beginning of file)
1024 * | | len
1025 * v v v
1026 * ===|====X========|====...======|========X====|====
1027 * /-------------...---------------/
1028 * ^ bp->b_bcount/bp->b_resid at start
1029 * /----/--------/----...------/--------/
1030 * ^ ^ ^ ^ ^
1031 * | | | | nth xfersize (<= MAXBSIZE)
1032 * | | 2nd thru n-1st xfersize (= MAXBSIZE)
1033 * | 1st xfersize (<= MAXBSIZE)
1034 * mapoffset (offset into 1st segmap, non-0 1st time, 0 thereafter)
1035 *
1036 * Notes: "alignedoffset" is "offset" rounded down to nearest
1037 * MAXBSIZE boundary. "len" is next page boundary of size
1038 * PAGESIZE after "alignedoffset".
1039 */
1040 mapoffset = offset & MAXBOFFSET;
1041 alignedoffset = offset - mapoffset;
1042 bp->b_resid = bp->b_bcount;
1043 isread = bp->b_flags & B_READ;
1044 srw = isread ? S_READ : S_WRITE;
1045 do {
1046 xfersize = MIN(lsp->ls_vp_comp_size - offset,
1047 MIN(MAXBSIZE - mapoffset, bp->b_resid));
1048 len = roundup(mapoffset + xfersize, PAGESIZE);
1049 mapaddr = segmap_getmapflt(segkmap, lsp->ls_vp,
1050 alignedoffset, MAXBSIZE, 1, srw);
1051 /*
1052 * Now fault in the pages. This lets us check
1053 * for errors before we reference mapaddr and
1054 * try to resolve the fault in bcopy (which would
1055 * panic instead). And this can easily happen,
1056 * particularly if you've lofi'd a file over NFS
1057 * and someone deletes the file on the server.
1058 */
1059 error = segmap_fault(kas.a_hat, segkmap, mapaddr,
1060 len, F_SOFTLOCK, srw);
1061 if (error) {
1062 (void) segmap_release(segkmap, mapaddr, 0);
1063 if (FC_CODE(error) == FC_OBJERR)
1064 error = FC_ERRNO(error);
1065 else
1066 error = EIO;
1067 break;
1068 }
1069 /* error may be non-zero for encrypted lofi */
1070 error = lofi_rdwr(bufaddr, 0, bp, lsp, xfersize,
1071 RDWR_BCOPY, mapaddr + mapoffset);
1072 if (error == 0) {
1073 bp->b_resid -= xfersize;
1074 bufaddr += xfersize;
1075 offset += xfersize;
1076 }
1077 smflags = 0;
1078 if (isread) {
1079 smflags |= SM_FREE;
1080 /*
1081 * If we're reading an entire page starting
1082 * at a page boundary, there's a good chance
1083 * we won't need it again. Put it on the
1084 * head of the freelist.
1085 */
1086 if (mapoffset == 0 && xfersize == MAXBSIZE)
1087 smflags |= SM_DONTNEED;
1088 } else {
1089 /*
1090 * Write back good pages, it is okay to
1091 * always release asynchronous here as we'll
1092 * follow with VOP_FSYNC for B_SYNC buffers.
1093 */
1094 if (error == 0)
1095 smflags |= SM_WRITE | SM_ASYNC;
1096 }
1097 (void) segmap_fault(kas.a_hat, segkmap, mapaddr,
1098 len, F_SOFTUNLOCK, srw);
1099 save_error = segmap_release(segkmap, mapaddr, smflags);
1100 if (error == 0)
1101 error = save_error;
1102 /* only the first map may start partial */
1103 mapoffset = 0;
1104 alignedoffset += MAXBSIZE;
1105 } while ((error == 0) && (bp->b_resid > 0) &&
1106 (offset < lsp->ls_vp_comp_size));
1107
1108 return (error);
1109 }
1110
1111 /*
1112 * Check if segment seg_index is present in the decompressed segment
1113 * data cache.
1114 *
1115 * Returns a pointer to the decompressed segment data cache entry if
1116 * found, and NULL when decompressed data for this segment is not yet
1117 * cached.
1118 */
1119 static struct lofi_comp_cache *
lofi_find_comp_data(struct lofi_state * lsp,uint64_t seg_index)1120 lofi_find_comp_data(struct lofi_state *lsp, uint64_t seg_index)
1121 {
1122 struct lofi_comp_cache *lc;
1123
1124 ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock));
1125
1126 for (lc = list_head(&lsp->ls_comp_cache); lc != NULL;
1127 lc = list_next(&lsp->ls_comp_cache, lc)) {
1128 if (lc->lc_index == seg_index) {
1129 /*
1130 * Decompressed segment data was found in the
1131 * cache.
1132 *
1133 * The cache uses an LRU replacement strategy;
1134 * move the entry to head of list.
1135 */
1136 list_remove(&lsp->ls_comp_cache, lc);
1137 list_insert_head(&lsp->ls_comp_cache, lc);
1138 return (lc);
1139 }
1140 }
1141 return (NULL);
1142 }
1143
1144 /*
1145 * Add the data for a decompressed segment at segment index
1146 * seg_index to the cache of the decompressed segments.
1147 *
1148 * Returns a pointer to the cache element structure in case
1149 * the data was added to the cache; returns NULL when the data
1150 * wasn't cached.
1151 */
1152 static struct lofi_comp_cache *
lofi_add_comp_data(struct lofi_state * lsp,uint64_t seg_index,uchar_t * data)1153 lofi_add_comp_data(struct lofi_state *lsp, uint64_t seg_index,
1154 uchar_t *data)
1155 {
1156 struct lofi_comp_cache *lc;
1157
1158 ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock));
1159
1160 while (lsp->ls_comp_cache_count > lofi_max_comp_cache) {
1161 lc = list_remove_tail(&lsp->ls_comp_cache);
1162 ASSERT(lc != NULL);
1163 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
1164 kmem_free(lc, sizeof (struct lofi_comp_cache));
1165 lsp->ls_comp_cache_count--;
1166 }
1167
1168 /*
1169 * Do not cache when disabled by tunable variable
1170 */
1171 if (lofi_max_comp_cache == 0)
1172 return (NULL);
1173
1174 /*
1175 * When the cache has not yet reached the maximum allowed
1176 * number of segments, allocate a new cache element.
1177 * Otherwise the cache is full; reuse the last list element
1178 * (LRU) for caching the decompressed segment data.
1179 *
1180 * The cache element for the new decompressed segment data is
1181 * added to the head of the list.
1182 */
1183 if (lsp->ls_comp_cache_count < lofi_max_comp_cache) {
1184 lc = kmem_alloc(sizeof (struct lofi_comp_cache), KM_SLEEP);
1185 lc->lc_data = NULL;
1186 list_insert_head(&lsp->ls_comp_cache, lc);
1187 lsp->ls_comp_cache_count++;
1188 } else {
1189 lc = list_remove_tail(&lsp->ls_comp_cache);
1190 if (lc == NULL)
1191 return (NULL);
1192 list_insert_head(&lsp->ls_comp_cache, lc);
1193 }
1194
1195 /*
1196 * Free old uncompressed segment data when reusing a cache
1197 * entry.
1198 */
1199 if (lc->lc_data != NULL)
1200 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
1201
1202 lc->lc_data = data;
1203 lc->lc_index = seg_index;
1204 return (lc);
1205 }
1206
1207
1208 /*ARGSUSED*/
1209 static int
gzip_decompress(void * src,size_t srclen,void * dst,size_t * dstlen,int level)1210 gzip_decompress(void *src, size_t srclen, void *dst,
1211 size_t *dstlen, int level)
1212 {
1213 ASSERT(*dstlen >= srclen);
1214
1215 if (z_uncompress(dst, dstlen, src, srclen) != Z_OK)
1216 return (-1);
1217 return (0);
1218 }
1219
1220 #define LZMA_HEADER_SIZE (LZMA_PROPS_SIZE + 8)
1221 /*ARGSUSED*/
1222 static int
lzma_decompress(void * src,size_t srclen,void * dst,size_t * dstlen,int level)1223 lzma_decompress(void *src, size_t srclen, void *dst,
1224 size_t *dstlen, int level)
1225 {
1226 size_t insizepure;
1227 void *actual_src;
1228 ELzmaStatus status;
1229
1230 insizepure = srclen - LZMA_HEADER_SIZE;
1231 actual_src = (void *)((Byte *)src + LZMA_HEADER_SIZE);
1232
1233 if (LzmaDecode((Byte *)dst, (size_t *)dstlen,
1234 (const Byte *)actual_src, &insizepure,
1235 (const Byte *)src, LZMA_PROPS_SIZE, LZMA_FINISH_ANY, &status,
1236 &g_Alloc) != SZ_OK) {
1237 return (-1);
1238 }
1239 return (0);
1240 }
1241
1242 /*
1243 * This is basically what strategy used to be before we found we
1244 * needed task queues.
1245 */
1246 static void
lofi_strategy_task(void * arg)1247 lofi_strategy_task(void *arg)
1248 {
1249 struct buf *bp = (struct buf *)arg;
1250 int error;
1251 int syncflag = 0;
1252 struct lofi_state *lsp;
1253 offset_t offset;
1254 caddr_t bufaddr;
1255 size_t len;
1256 size_t xfersize;
1257 boolean_t bufinited = B_FALSE;
1258
1259 lsp = ddi_get_soft_state(lofi_statep,
1260 LOFI_MINOR2ID(getminor(bp->b_edev)));
1261
1262 if (lsp == NULL) {
1263 error = ENXIO;
1264 goto errout;
1265 }
1266 if (lsp->ls_kstat) {
1267 mutex_enter(lsp->ls_kstat->ks_lock);
1268 kstat_waitq_to_runq(KSTAT_IO_PTR(lsp->ls_kstat));
1269 mutex_exit(lsp->ls_kstat->ks_lock);
1270 }
1271
1272 mutex_enter(&lsp->ls_vp_lock);
1273 lsp->ls_vp_iocount++;
1274 mutex_exit(&lsp->ls_vp_lock);
1275
1276 bp_mapin(bp);
1277 bufaddr = bp->b_un.b_addr;
1278 offset = (bp->b_lblkno + (diskaddr_t)(uintptr_t)bp->b_private)
1279 << lsp->ls_lbshift; /* offset within file */
1280 if (lsp->ls_crypto_enabled) {
1281 /* encrypted data really begins after crypto header */
1282 offset += lsp->ls_crypto_offset;
1283 }
1284 len = bp->b_bcount;
1285 bufinited = B_TRUE;
1286
1287 if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1288 error = EIO;
1289 goto errout;
1290 }
1291
1292 /*
1293 * If we're writing and the buffer was not B_ASYNC
1294 * we'll follow up with a VOP_FSYNC() to force any
1295 * asynchronous I/O to stable storage.
1296 */
1297 if (!(bp->b_flags & B_READ) && !(bp->b_flags & B_ASYNC))
1298 syncflag = FSYNC;
1299
1300 /*
1301 * We used to always use vn_rdwr here, but we cannot do that because
1302 * we might decide to read or write from the the underlying
1303 * file during this call, which would be a deadlock because
1304 * we have the rw_lock. So instead we page, unless it's not
1305 * mapable or it's a character device or it's an encrypted lofi.
1306 */
1307 if ((lsp->ls_vp->v_flag & VNOMAP) || (lsp->ls_vp->v_type == VCHR) ||
1308 lsp->ls_crypto_enabled) {
1309 error = lofi_rdwr(bufaddr, offset, bp, lsp, len, RDWR_RAW,
1310 NULL);
1311 } else if (lsp->ls_uncomp_seg_sz == 0) {
1312 error = lofi_mapped_rdwr(bufaddr, offset, bp, lsp);
1313 } else {
1314 uchar_t *compressed_seg = NULL, *cmpbuf;
1315 uchar_t *uncompressed_seg = NULL;
1316 lofi_compress_info_t *li;
1317 size_t oblkcount;
1318 ulong_t seglen;
1319 uint64_t sblkno, eblkno, cmpbytes;
1320 uint64_t uncompressed_seg_index;
1321 struct lofi_comp_cache *lc;
1322 offset_t sblkoff, eblkoff;
1323 u_offset_t salign, ealign;
1324 u_offset_t sdiff;
1325 uint32_t comp_data_sz;
1326 uint64_t i;
1327 int j;
1328
1329 /*
1330 * From here on we're dealing primarily with compressed files
1331 */
1332 ASSERT(!lsp->ls_crypto_enabled);
1333
1334 /*
1335 * Compressed files can only be read from and
1336 * not written to
1337 */
1338 if (!(bp->b_flags & B_READ)) {
1339 bp->b_resid = bp->b_bcount;
1340 error = EROFS;
1341 goto done;
1342 }
1343
1344 ASSERT(lsp->ls_comp_algorithm_index >= 0);
1345 li = &lofi_compress_table[lsp->ls_comp_algorithm_index];
1346 /*
1347 * Compute starting and ending compressed segment numbers
1348 * We use only bitwise operations avoiding division and
1349 * modulus because we enforce the compression segment size
1350 * to a power of 2
1351 */
1352 sblkno = offset >> lsp->ls_comp_seg_shift;
1353 sblkoff = offset & (lsp->ls_uncomp_seg_sz - 1);
1354 eblkno = (offset + bp->b_bcount) >> lsp->ls_comp_seg_shift;
1355 eblkoff = (offset + bp->b_bcount) & (lsp->ls_uncomp_seg_sz - 1);
1356
1357 /*
1358 * Check the decompressed segment cache.
1359 *
1360 * The cache is used only when the requested data
1361 * is within a segment. Requests that cross
1362 * segment boundaries bypass the cache.
1363 */
1364 if (sblkno == eblkno ||
1365 (sblkno + 1 == eblkno && eblkoff == 0)) {
1366 /*
1367 * Request doesn't cross a segment boundary,
1368 * now check the cache.
1369 */
1370 mutex_enter(&lsp->ls_comp_cache_lock);
1371 lc = lofi_find_comp_data(lsp, sblkno);
1372 if (lc != NULL) {
1373 /*
1374 * We've found the decompressed segment
1375 * data in the cache; reuse it.
1376 */
1377 bcopy(lc->lc_data + sblkoff, bufaddr,
1378 bp->b_bcount);
1379 mutex_exit(&lsp->ls_comp_cache_lock);
1380 bp->b_resid = 0;
1381 error = 0;
1382 goto done;
1383 }
1384 mutex_exit(&lsp->ls_comp_cache_lock);
1385 }
1386
1387 /*
1388 * Align start offset to block boundary for segmap
1389 */
1390 salign = lsp->ls_comp_seg_index[sblkno];
1391 sdiff = salign & (DEV_BSIZE - 1);
1392 salign -= sdiff;
1393 if (eblkno >= (lsp->ls_comp_index_sz - 1)) {
1394 /*
1395 * We're dealing with the last segment of
1396 * the compressed file -- the size of this
1397 * segment *may not* be the same as the
1398 * segment size for the file
1399 */
1400 eblkoff = (offset + bp->b_bcount) &
1401 (lsp->ls_uncomp_last_seg_sz - 1);
1402 ealign = lsp->ls_vp_comp_size;
1403 } else {
1404 ealign = lsp->ls_comp_seg_index[eblkno + 1];
1405 }
1406
1407 /*
1408 * Preserve original request paramaters
1409 */
1410 oblkcount = bp->b_bcount;
1411
1412 /*
1413 * Assign the calculated parameters
1414 */
1415 comp_data_sz = ealign - salign;
1416 bp->b_bcount = comp_data_sz;
1417
1418 /*
1419 * Buffers to hold compressed segments are pre-allocated
1420 * on a per-thread basis. Find a pre-allocated buffer
1421 * that is not currently in use and mark it for use.
1422 */
1423 mutex_enter(&lsp->ls_comp_bufs_lock);
1424 for (j = 0; j < lofi_taskq_nthreads; j++) {
1425 if (lsp->ls_comp_bufs[j].inuse == 0) {
1426 lsp->ls_comp_bufs[j].inuse = 1;
1427 break;
1428 }
1429 }
1430
1431 mutex_exit(&lsp->ls_comp_bufs_lock);
1432 ASSERT(j < lofi_taskq_nthreads);
1433
1434 /*
1435 * If the pre-allocated buffer size does not match
1436 * the size of the I/O request, re-allocate it with
1437 * the appropriate size
1438 */
1439 if (lsp->ls_comp_bufs[j].bufsize < bp->b_bcount) {
1440 if (lsp->ls_comp_bufs[j].bufsize > 0)
1441 kmem_free(lsp->ls_comp_bufs[j].buf,
1442 lsp->ls_comp_bufs[j].bufsize);
1443 lsp->ls_comp_bufs[j].buf = kmem_alloc(bp->b_bcount,
1444 KM_SLEEP);
1445 lsp->ls_comp_bufs[j].bufsize = bp->b_bcount;
1446 }
1447 compressed_seg = lsp->ls_comp_bufs[j].buf;
1448
1449 /*
1450 * Map in the calculated number of blocks
1451 */
1452 error = lofi_mapped_rdwr((caddr_t)compressed_seg, salign,
1453 bp, lsp);
1454
1455 bp->b_bcount = oblkcount;
1456 bp->b_resid = oblkcount;
1457 if (error != 0)
1458 goto done;
1459
1460 /*
1461 * decompress compressed blocks start
1462 */
1463 cmpbuf = compressed_seg + sdiff;
1464 for (i = sblkno; i <= eblkno; i++) {
1465 ASSERT(i < lsp->ls_comp_index_sz - 1);
1466 uchar_t *useg;
1467
1468 /*
1469 * The last segment is special in that it is
1470 * most likely not going to be the same
1471 * (uncompressed) size as the other segments.
1472 */
1473 if (i == (lsp->ls_comp_index_sz - 2)) {
1474 seglen = lsp->ls_uncomp_last_seg_sz;
1475 } else {
1476 seglen = lsp->ls_uncomp_seg_sz;
1477 }
1478
1479 /*
1480 * Each of the segment index entries contains
1481 * the starting block number for that segment.
1482 * The number of compressed bytes in a segment
1483 * is thus the difference between the starting
1484 * block number of this segment and the starting
1485 * block number of the next segment.
1486 */
1487 cmpbytes = lsp->ls_comp_seg_index[i + 1] -
1488 lsp->ls_comp_seg_index[i];
1489
1490 /*
1491 * The first byte in a compressed segment is a flag
1492 * that indicates whether this segment is compressed
1493 * at all.
1494 *
1495 * The variable 'useg' is used (instead of
1496 * uncompressed_seg) in this loop to keep a
1497 * reference to the uncompressed segment.
1498 *
1499 * N.B. If 'useg' is replaced with uncompressed_seg,
1500 * it leads to memory leaks and heap corruption in
1501 * corner cases where compressed segments lie
1502 * adjacent to uncompressed segments.
1503 */
1504 if (*cmpbuf == UNCOMPRESSED) {
1505 useg = cmpbuf + SEGHDR;
1506 } else {
1507 if (uncompressed_seg == NULL)
1508 uncompressed_seg =
1509 kmem_alloc(lsp->ls_uncomp_seg_sz,
1510 KM_SLEEP);
1511 useg = uncompressed_seg;
1512 uncompressed_seg_index = i;
1513
1514 if (li->l_decompress((cmpbuf + SEGHDR),
1515 (cmpbytes - SEGHDR), uncompressed_seg,
1516 &seglen, li->l_level) != 0) {
1517 error = EIO;
1518 goto done;
1519 }
1520 }
1521
1522 /*
1523 * Determine how much uncompressed data we
1524 * have to copy and copy it
1525 */
1526 xfersize = lsp->ls_uncomp_seg_sz - sblkoff;
1527 if (i == eblkno)
1528 xfersize -= (lsp->ls_uncomp_seg_sz - eblkoff);
1529
1530 bcopy((useg + sblkoff), bufaddr, xfersize);
1531
1532 cmpbuf += cmpbytes;
1533 bufaddr += xfersize;
1534 bp->b_resid -= xfersize;
1535 sblkoff = 0;
1536
1537 if (bp->b_resid == 0)
1538 break;
1539 } /* decompress compressed blocks ends */
1540
1541 /*
1542 * Skip to done if there is no uncompressed data to cache
1543 */
1544 if (uncompressed_seg == NULL)
1545 goto done;
1546
1547 /*
1548 * Add the data for the last decompressed segment to
1549 * the cache.
1550 *
1551 * In case the uncompressed segment data was added to (and
1552 * is referenced by) the cache, make sure we don't free it
1553 * here.
1554 */
1555 mutex_enter(&lsp->ls_comp_cache_lock);
1556 if ((lc = lofi_add_comp_data(lsp, uncompressed_seg_index,
1557 uncompressed_seg)) != NULL) {
1558 uncompressed_seg = NULL;
1559 }
1560 mutex_exit(&lsp->ls_comp_cache_lock);
1561
1562 done:
1563 if (compressed_seg != NULL) {
1564 mutex_enter(&lsp->ls_comp_bufs_lock);
1565 lsp->ls_comp_bufs[j].inuse = 0;
1566 mutex_exit(&lsp->ls_comp_bufs_lock);
1567 }
1568 if (uncompressed_seg != NULL)
1569 kmem_free(uncompressed_seg, lsp->ls_uncomp_seg_sz);
1570 } /* end of handling compressed files */
1571
1572 if ((error == 0) && (syncflag != 0))
1573 error = VOP_FSYNC(lsp->ls_vp, syncflag, kcred, NULL);
1574
1575 errout:
1576 if (bufinited && lsp->ls_kstat) {
1577 size_t n_done = bp->b_bcount - bp->b_resid;
1578 kstat_io_t *kioptr;
1579
1580 mutex_enter(lsp->ls_kstat->ks_lock);
1581 kioptr = KSTAT_IO_PTR(lsp->ls_kstat);
1582 if (bp->b_flags & B_READ) {
1583 kioptr->nread += n_done;
1584 kioptr->reads++;
1585 } else {
1586 kioptr->nwritten += n_done;
1587 kioptr->writes++;
1588 }
1589 kstat_runq_exit(kioptr);
1590 mutex_exit(lsp->ls_kstat->ks_lock);
1591 }
1592
1593 mutex_enter(&lsp->ls_vp_lock);
1594 if (--lsp->ls_vp_iocount == 0)
1595 cv_broadcast(&lsp->ls_vp_cv);
1596 mutex_exit(&lsp->ls_vp_lock);
1597
1598 bioerror(bp, error);
1599 biodone(bp);
1600 }
1601
1602 static int
lofi_strategy(struct buf * bp)1603 lofi_strategy(struct buf *bp)
1604 {
1605 struct lofi_state *lsp;
1606 offset_t offset;
1607 minor_t part;
1608 diskaddr_t p_lba;
1609 diskaddr_t p_nblks;
1610 int shift;
1611
1612 /*
1613 * We cannot just do I/O here, because the current thread
1614 * _might_ end up back in here because the underlying filesystem
1615 * wants a buffer, which eventually gets into bio_recycle and
1616 * might call into lofi to write out a delayed-write buffer.
1617 * This is bad if the filesystem above lofi is the same as below.
1618 *
1619 * We could come up with a complex strategy using threads to
1620 * do the I/O asynchronously, or we could use task queues. task
1621 * queues were incredibly easy so they win.
1622 */
1623
1624 lsp = ddi_get_soft_state(lofi_statep,
1625 LOFI_MINOR2ID(getminor(bp->b_edev)));
1626 part = LOFI_PART(getminor(bp->b_edev));
1627
1628 if (lsp == NULL) {
1629 bioerror(bp, ENXIO);
1630 biodone(bp);
1631 return (0);
1632 }
1633 shift = lsp->ls_lbshift;
1634
1635 p_lba = 0;
1636 p_nblks = lsp->ls_vp_size >> shift;
1637
1638 if (lsp->ls_cmlbhandle != NULL) {
1639 if (cmlb_partinfo(lsp->ls_cmlbhandle, part, &p_nblks, &p_lba,
1640 NULL, NULL, 0)) {
1641 bioerror(bp, ENXIO);
1642 biodone(bp);
1643 return (0);
1644 }
1645 }
1646
1647 /* start block past partition end? */
1648 if (bp->b_lblkno > p_nblks) {
1649 bioerror(bp, ENXIO);
1650 biodone(bp);
1651 return (0);
1652 }
1653
1654 offset = (bp->b_lblkno+p_lba) << shift; /* offset within file */
1655
1656 mutex_enter(&lsp->ls_vp_lock);
1657 if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1658 bioerror(bp, EIO);
1659 biodone(bp);
1660 mutex_exit(&lsp->ls_vp_lock);
1661 return (0);
1662 }
1663
1664 if (lsp->ls_crypto_enabled) {
1665 /* encrypted data really begins after crypto header */
1666 offset += lsp->ls_crypto_offset;
1667 }
1668
1669 /* make sure we will not pass the file or partition size */
1670 if (offset == lsp->ls_vp_size ||
1671 offset == (((p_lba + p_nblks) << shift) + lsp->ls_crypto_offset)) {
1672 /* EOF */
1673 if ((bp->b_flags & B_READ) != 0) {
1674 bp->b_resid = bp->b_bcount;
1675 bioerror(bp, 0);
1676 } else {
1677 /* writes should fail */
1678 bioerror(bp, ENXIO);
1679 }
1680 biodone(bp);
1681 mutex_exit(&lsp->ls_vp_lock);
1682 return (0);
1683 }
1684 if ((offset > lsp->ls_vp_size) ||
1685 (offset > (((p_lba + p_nblks) << shift) + lsp->ls_crypto_offset)) ||
1686 ((offset + bp->b_bcount) > ((p_lba + p_nblks) << shift))) {
1687 bioerror(bp, ENXIO);
1688 biodone(bp);
1689 mutex_exit(&lsp->ls_vp_lock);
1690 return (0);
1691 }
1692
1693 mutex_exit(&lsp->ls_vp_lock);
1694
1695 if (lsp->ls_kstat) {
1696 mutex_enter(lsp->ls_kstat->ks_lock);
1697 kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat));
1698 mutex_exit(lsp->ls_kstat->ks_lock);
1699 }
1700 bp->b_private = (void *)(uintptr_t)p_lba; /* partition start */
1701 (void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP);
1702 return (0);
1703 }
1704
1705 /*ARGSUSED2*/
1706 static int
lofi_read(dev_t dev,struct uio * uio,struct cred * credp)1707 lofi_read(dev_t dev, struct uio *uio, struct cred *credp)
1708 {
1709 if (getminor(dev) == 0)
1710 return (EINVAL);
1711 UIO_CHECK(uio);
1712 return (physio(lofi_strategy, NULL, dev, B_READ, minphys, uio));
1713 }
1714
1715 /*ARGSUSED2*/
1716 static int
lofi_write(dev_t dev,struct uio * uio,struct cred * credp)1717 lofi_write(dev_t dev, struct uio *uio, struct cred *credp)
1718 {
1719 if (getminor(dev) == 0)
1720 return (EINVAL);
1721 UIO_CHECK(uio);
1722 return (physio(lofi_strategy, NULL, dev, B_WRITE, minphys, uio));
1723 }
1724
1725 /*ARGSUSED2*/
1726 static int
lofi_aread(dev_t dev,struct aio_req * aio,struct cred * credp)1727 lofi_aread(dev_t dev, struct aio_req *aio, struct cred *credp)
1728 {
1729 if (getminor(dev) == 0)
1730 return (EINVAL);
1731 UIO_CHECK(aio->aio_uio);
1732 return (aphysio(lofi_strategy, anocancel, dev, B_READ, minphys, aio));
1733 }
1734
1735 /*ARGSUSED2*/
1736 static int
lofi_awrite(dev_t dev,struct aio_req * aio,struct cred * credp)1737 lofi_awrite(dev_t dev, struct aio_req *aio, struct cred *credp)
1738 {
1739 if (getminor(dev) == 0)
1740 return (EINVAL);
1741 UIO_CHECK(aio->aio_uio);
1742 return (aphysio(lofi_strategy, anocancel, dev, B_WRITE, minphys, aio));
1743 }
1744
1745 /*ARGSUSED*/
1746 static int
lofi_info(dev_info_t * dip,ddi_info_cmd_t infocmd,void * arg,void ** result)1747 lofi_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
1748 {
1749 struct lofi_state *lsp;
1750 dev_t dev = (dev_t)arg;
1751 int instance;
1752
1753 instance = LOFI_MINOR2ID(getminor(dev));
1754 switch (infocmd) {
1755 case DDI_INFO_DEVT2DEVINFO:
1756 lsp = ddi_get_soft_state(lofi_statep, instance);
1757 if (lsp == NULL)
1758 return (DDI_FAILURE);
1759 *result = lsp->ls_dip;
1760 return (DDI_SUCCESS);
1761 case DDI_INFO_DEVT2INSTANCE:
1762 *result = (void *) (intptr_t)instance;
1763 return (DDI_SUCCESS);
1764 }
1765 return (DDI_FAILURE);
1766 }
1767
1768 static int
lofi_create_minor_nodes(struct lofi_state * lsp,boolean_t labeled)1769 lofi_create_minor_nodes(struct lofi_state *lsp, boolean_t labeled)
1770 {
1771 int error = 0;
1772 int instance = ddi_get_instance(lsp->ls_dip);
1773
1774 if (labeled == B_TRUE) {
1775 cmlb_alloc_handle(&lsp->ls_cmlbhandle);
1776 error = cmlb_attach(lsp->ls_dip, &lofi_tg_ops, DTYPE_DIRECT,
1777 B_FALSE, B_FALSE, DDI_NT_BLOCK_CHAN,
1778 CMLB_CREATE_P0_MINOR_NODE, lsp->ls_cmlbhandle, (void *)1);
1779
1780 if (error != DDI_SUCCESS) {
1781 cmlb_free_handle(&lsp->ls_cmlbhandle);
1782 lsp->ls_cmlbhandle = NULL;
1783 error = ENXIO;
1784 }
1785 } else {
1786 /* create minor nodes */
1787 error = ddi_create_minor_node(lsp->ls_dip, LOFI_BLOCK_NODE,
1788 S_IFBLK, LOFI_ID2MINOR(instance), DDI_PSEUDO, 0);
1789 if (error == DDI_SUCCESS) {
1790 error = ddi_create_minor_node(lsp->ls_dip,
1791 LOFI_CHAR_NODE, S_IFCHR, LOFI_ID2MINOR(instance),
1792 DDI_PSEUDO, 0);
1793 if (error != DDI_SUCCESS) {
1794 ddi_remove_minor_node(lsp->ls_dip,
1795 LOFI_BLOCK_NODE);
1796 error = ENXIO;
1797 }
1798 } else
1799 error = ENXIO;
1800 }
1801 return (error);
1802 }
1803
1804 static int
lofi_zone_bind(struct lofi_state * lsp)1805 lofi_zone_bind(struct lofi_state *lsp)
1806 {
1807 int error = 0;
1808
1809 mutex_enter(&curproc->p_lock);
1810 if ((error = rctl_incr_lofi(curproc, curproc->p_zone, 1)) != 0) {
1811 mutex_exit(&curproc->p_lock);
1812 return (error);
1813 }
1814 mutex_exit(&curproc->p_lock);
1815
1816 if (ddi_prop_update_string(lsp->ls_dev, lsp->ls_dip, ZONE_PROP_NAME,
1817 (char *)curproc->p_zone->zone_name) != DDI_PROP_SUCCESS) {
1818 rctl_decr_lofi(curproc->p_zone, 1);
1819 error = EINVAL;
1820 } else {
1821 zone_init_ref(&lsp->ls_zone);
1822 zone_hold_ref(curzone, &lsp->ls_zone, ZONE_REF_LOFI);
1823 }
1824 return (error);
1825 }
1826
1827 static void
lofi_zone_unbind(struct lofi_state * lsp)1828 lofi_zone_unbind(struct lofi_state *lsp)
1829 {
1830 (void) ddi_prop_remove(DDI_DEV_T_NONE, lsp->ls_dip, ZONE_PROP_NAME);
1831 rctl_decr_lofi(curproc->p_zone, 1);
1832 zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI);
1833 }
1834
1835 static int
lofi_online_dev(dev_info_t * dip)1836 lofi_online_dev(dev_info_t *dip)
1837 {
1838 boolean_t labeled;
1839 int error;
1840 int instance = ddi_get_instance(dip);
1841 struct lofi_state *lsp;
1842
1843 labeled = B_FALSE;
1844 if (ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "labeled"))
1845 labeled = B_TRUE;
1846
1847 /* lsp alloc+init, soft state is freed in lofi_detach */
1848 error = ddi_soft_state_zalloc(lofi_statep, instance);
1849 if (error == DDI_FAILURE) {
1850 return (ENOMEM);
1851 }
1852
1853 lsp = ddi_get_soft_state(lofi_statep, instance);
1854 lsp->ls_dip = dip;
1855
1856 if ((error = lofi_zone_bind(lsp)) != 0)
1857 goto err;
1858
1859 cv_init(&lsp->ls_vp_cv, NULL, CV_DRIVER, NULL);
1860 mutex_init(&lsp->ls_comp_cache_lock, NULL, MUTEX_DRIVER, NULL);
1861 mutex_init(&lsp->ls_comp_bufs_lock, NULL, MUTEX_DRIVER, NULL);
1862 mutex_init(&lsp->ls_kstat_lock, NULL, MUTEX_DRIVER, NULL);
1863 mutex_init(&lsp->ls_vp_lock, NULL, MUTEX_DRIVER, NULL);
1864
1865 if ((error = lofi_create_minor_nodes(lsp, labeled)) != 0) {
1866 lofi_zone_unbind(lsp);
1867 goto lerr;
1868 }
1869
1870 /* driver handles kernel-issued IOCTLs */
1871 if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
1872 DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) {
1873 error = DDI_FAILURE;
1874 goto merr;
1875 }
1876
1877 lsp->ls_kstat = kstat_create_zone(LOFI_DRIVER_NAME, instance,
1878 NULL, "disk", KSTAT_TYPE_IO, 1, 0, getzoneid());
1879 if (lsp->ls_kstat == NULL) {
1880 (void) ddi_prop_remove(DDI_DEV_T_NONE, lsp->ls_dip,
1881 DDI_KERNEL_IOCTL);
1882 error = ENOMEM;
1883 goto merr;
1884 }
1885
1886 lsp->ls_kstat->ks_lock = &lsp->ls_kstat_lock;
1887 kstat_zone_add(lsp->ls_kstat, GLOBAL_ZONEID);
1888 kstat_install(lsp->ls_kstat);
1889 return (DDI_SUCCESS);
1890 merr:
1891 if (lsp->ls_cmlbhandle != NULL) {
1892 cmlb_detach(lsp->ls_cmlbhandle, 0);
1893 cmlb_free_handle(&lsp->ls_cmlbhandle);
1894 }
1895 ddi_remove_minor_node(dip, NULL);
1896 lofi_zone_unbind(lsp);
1897 lerr:
1898 mutex_destroy(&lsp->ls_comp_cache_lock);
1899 mutex_destroy(&lsp->ls_comp_bufs_lock);
1900 mutex_destroy(&lsp->ls_kstat_lock);
1901 mutex_destroy(&lsp->ls_vp_lock);
1902 cv_destroy(&lsp->ls_vp_cv);
1903 err:
1904 ddi_soft_state_free(lofi_statep, instance);
1905 return (error);
1906 }
1907
1908 /*ARGSUSED*/
1909 static int
lofi_dev_callback(sysevent_t * ev,void * cookie)1910 lofi_dev_callback(sysevent_t *ev, void *cookie)
1911 {
1912 nvlist_t *nvlist;
1913 char *class, *driver;
1914 char name[10];
1915 int32_t instance;
1916
1917 class = sysevent_get_class_name(ev);
1918 if (strcmp(class, EC_DEV_ADD) && strcmp(class, EC_DEV_REMOVE))
1919 return (0);
1920
1921 (void) sysevent_get_attr_list(ev, &nvlist);
1922 driver = fnvlist_lookup_string(nvlist, DEV_DRIVER_NAME);
1923 instance = fnvlist_lookup_int32(nvlist, DEV_INSTANCE);
1924
1925 if (strcmp(driver, LOFI_DRIVER_NAME) != 0) {
1926 fnvlist_free(nvlist);
1927 return (0);
1928 }
1929
1930 /*
1931 * insert or remove device info, then announce the change
1932 * via cv_broadcast.
1933 * This allows the MAP/UNMAP to monitor device change.
1934 */
1935 (void) snprintf(name, sizeof (name), "%d", instance);
1936 if (strcmp(class, EC_DEV_ADD) == 0) {
1937 mutex_enter(&lofi_chan_lock);
1938 fnvlist_add_nvlist(lofi_devlink_cache, name, nvlist);
1939 cv_broadcast(&lofi_chan_cv);
1940 mutex_exit(&lofi_chan_lock);
1941 } else if (strcmp(class, EC_DEV_REMOVE) == 0) {
1942 mutex_enter(&lofi_chan_lock);
1943 /* Can not use fnvlist_remove() as we can get ENOENT. */
1944 (void) nvlist_remove_all(lofi_devlink_cache, name);
1945 cv_broadcast(&lofi_chan_cv);
1946 mutex_exit(&lofi_chan_lock);
1947 }
1948
1949 fnvlist_free(nvlist);
1950 return (0);
1951 }
1952
1953 static int
lofi_attach(dev_info_t * dip,ddi_attach_cmd_t cmd)1954 lofi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
1955 {
1956 int rv;
1957 int instance = ddi_get_instance(dip);
1958 struct lofi_state *lsp;
1959
1960 if (cmd != DDI_ATTACH)
1961 return (DDI_FAILURE);
1962
1963 /*
1964 * Instance 0 is control instance, attaching control instance
1965 * will set the lofi up and ready.
1966 */
1967 if (instance == 0) {
1968 rv = ddi_soft_state_zalloc(lofi_statep, 0);
1969 if (rv == DDI_FAILURE) {
1970 return (DDI_FAILURE);
1971 }
1972 lsp = ddi_get_soft_state(lofi_statep, instance);
1973 rv = ddi_create_minor_node(dip, LOFI_CTL_NODE, S_IFCHR, 0,
1974 DDI_PSEUDO, 0);
1975 if (rv == DDI_FAILURE) {
1976 ddi_soft_state_free(lofi_statep, 0);
1977 return (DDI_FAILURE);
1978 }
1979 /* driver handles kernel-issued IOCTLs */
1980 if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
1981 DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) {
1982 ddi_remove_minor_node(dip, NULL);
1983 ddi_soft_state_free(lofi_statep, 0);
1984 return (DDI_FAILURE);
1985 }
1986
1987 rv = sysevent_evc_bind(DEVFS_CHANNEL, &lofi_chan,
1988 EVCH_CREAT | EVCH_HOLD_PEND);
1989 if (rv == 0) {
1990 rv = sysevent_evc_subscribe(lofi_chan, "lofi",
1991 EC_ALL, lofi_dev_callback, NULL, 0);
1992 rv |= sysevent_evc_subscribe(lofi_chan, "disk",
1993 EC_ALL, lofi_dev_callback, NULL, 0);
1994 } else
1995 lofi_chan = NULL;
1996 if (rv != 0) {
1997 if (lofi_chan != NULL)
1998 (void) sysevent_evc_unbind(lofi_chan);
1999 ddi_prop_remove_all(dip);
2000 ddi_remove_minor_node(dip, NULL);
2001 ddi_soft_state_free(lofi_statep, 0);
2002 return (DDI_FAILURE);
2003 }
2004 zone_key_create(&lofi_zone_key, NULL, lofi_zone_shutdown, NULL);
2005
2006 lsp->ls_dip = dip;
2007 } else {
2008 if (lofi_online_dev(dip) == DDI_FAILURE)
2009 return (DDI_FAILURE);
2010 }
2011
2012 ddi_report_dev(dip);
2013 return (DDI_SUCCESS);
2014 }
2015
2016 static int
lofi_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)2017 lofi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2018 {
2019 struct lofi_state *lsp;
2020 int instance = ddi_get_instance(dip);
2021
2022 if (cmd != DDI_DETACH)
2023 return (DDI_FAILURE);
2024
2025 /*
2026 * If the instance is not 0, release state.
2027 * The instance 0 is control device, we can not detach it
2028 * before other instances are detached.
2029 */
2030 if (instance != 0) {
2031 lsp = ddi_get_soft_state(lofi_statep, instance);
2032 if (lsp != NULL && lsp->ls_vp_ready == B_FALSE) {
2033 ddi_soft_state_free(lofi_statep, instance);
2034 return (DDI_SUCCESS);
2035 } else
2036 return (DDI_FAILURE);
2037 }
2038 mutex_enter(&lofi_lock);
2039
2040 if (!list_is_empty(&lofi_list)) {
2041 mutex_exit(&lofi_lock);
2042 return (DDI_FAILURE);
2043 }
2044
2045 ddi_remove_minor_node(dip, NULL);
2046 ddi_prop_remove_all(dip);
2047
2048 mutex_exit(&lofi_lock);
2049
2050 (void) sysevent_evc_unbind(lofi_chan);
2051 if (zone_key_delete(lofi_zone_key) != 0)
2052 cmn_err(CE_WARN, "failed to delete zone key");
2053
2054 ddi_soft_state_free(lofi_statep, 0);
2055
2056 return (DDI_SUCCESS);
2057 }
2058
2059 /*
2060 * With the addition of encryption, we must be careful that encryption key is
2061 * wiped before kernel's data structures are freed so it cannot accidentally
2062 * slip out to userland through uninitialized data elsewhere.
2063 */
2064 static void
free_lofi_ioctl(struct lofi_ioctl * klip)2065 free_lofi_ioctl(struct lofi_ioctl *klip)
2066 {
2067 /* Make sure this encryption key doesn't stick around */
2068 bzero(klip->li_key, sizeof (klip->li_key));
2069 kmem_free(klip, sizeof (struct lofi_ioctl));
2070 }
2071
2072 /*
2073 * These two functions simplify the rest of the ioctls that need to copyin/out
2074 * the lofi_ioctl structure.
2075 */
2076 int
copy_in_lofi_ioctl(const struct lofi_ioctl * ulip,struct lofi_ioctl ** klipp,int flag)2077 copy_in_lofi_ioctl(const struct lofi_ioctl *ulip, struct lofi_ioctl **klipp,
2078 int flag)
2079 {
2080 struct lofi_ioctl *klip;
2081 int error;
2082
2083 klip = *klipp = kmem_alloc(sizeof (struct lofi_ioctl), KM_SLEEP);
2084 error = ddi_copyin(ulip, klip, sizeof (struct lofi_ioctl), flag);
2085 if (error)
2086 goto err;
2087
2088 /* ensure NULL termination */
2089 klip->li_filename[MAXPATHLEN-1] = '\0';
2090 klip->li_devpath[MAXPATHLEN-1] = '\0';
2091 klip->li_algorithm[MAXALGLEN-1] = '\0';
2092 klip->li_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0';
2093 klip->li_iv_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0';
2094
2095 if (klip->li_id > L_MAXMIN32) {
2096 error = EINVAL;
2097 goto err;
2098 }
2099
2100 return (0);
2101
2102 err:
2103 free_lofi_ioctl(klip);
2104 return (error);
2105 }
2106
2107 int
copy_out_lofi_ioctl(const struct lofi_ioctl * klip,struct lofi_ioctl * ulip,int flag)2108 copy_out_lofi_ioctl(const struct lofi_ioctl *klip, struct lofi_ioctl *ulip,
2109 int flag)
2110 {
2111 int error;
2112
2113 /*
2114 * NOTE: Do NOT copy the crypto_key_t "back" to userland.
2115 * This ensures that an attacker can't trivially find the
2116 * key for a mapping just by issuing the ioctl.
2117 *
2118 * It can still be found by poking around in kmem with mdb(1),
2119 * but there is no point in making it easy when the info isn't
2120 * of any use in this direction anyway.
2121 *
2122 * Either way we don't actually have the raw key stored in
2123 * a form that we can get it anyway, since we just used it
2124 * to create a ctx template and didn't keep "the original".
2125 */
2126 error = ddi_copyout(klip, ulip, sizeof (struct lofi_ioctl), flag);
2127 if (error)
2128 return (EFAULT);
2129 return (0);
2130 }
2131
2132 static int
lofi_access(struct lofi_state * lsp)2133 lofi_access(struct lofi_state *lsp)
2134 {
2135 ASSERT(MUTEX_HELD(&lofi_lock));
2136 if (INGLOBALZONE(curproc) || lsp->ls_zone.zref_zone == curzone)
2137 return (0);
2138 return (EPERM);
2139 }
2140
2141 /*
2142 * Find the lofi state for the given filename. We compare by vnode to
2143 * allow the global zone visibility into NGZ lofi nodes.
2144 */
2145 static int
file_to_lofi_nocheck(char * filename,boolean_t readonly,struct lofi_state ** lspp)2146 file_to_lofi_nocheck(char *filename, boolean_t readonly,
2147 struct lofi_state **lspp)
2148 {
2149 struct lofi_state *lsp;
2150 vnode_t *vp = NULL;
2151 int err = 0;
2152 int rdfiles = 0;
2153
2154 ASSERT(MUTEX_HELD(&lofi_lock));
2155
2156 if ((err = lookupname(filename, UIO_SYSSPACE, FOLLOW,
2157 NULLVPP, &vp)) != 0)
2158 goto out;
2159
2160 if (vp->v_type == VREG) {
2161 vnode_t *realvp;
2162 if (VOP_REALVP(vp, &realvp, NULL) == 0) {
2163 VN_HOLD(realvp);
2164 VN_RELE(vp);
2165 vp = realvp;
2166 }
2167 }
2168
2169 for (lsp = list_head(&lofi_list); lsp != NULL;
2170 lsp = list_next(&lofi_list, lsp)) {
2171 if (lsp->ls_vp == vp) {
2172 if (lspp != NULL)
2173 *lspp = lsp;
2174 if (lsp->ls_readonly) {
2175 rdfiles++;
2176 /* Skip if '-r' is specified */
2177 if (readonly)
2178 continue;
2179 }
2180 goto out;
2181 }
2182 }
2183
2184 err = ENOENT;
2185
2186 /*
2187 * If a filename is given as an argument for lofi_unmap, we shouldn't
2188 * allow unmap if there are multiple read-only lofi devices associated
2189 * with this file.
2190 */
2191 if (lspp != NULL) {
2192 if (rdfiles == 1)
2193 err = 0;
2194 else if (rdfiles > 1)
2195 err = EBUSY;
2196 }
2197
2198 out:
2199 if (vp != NULL)
2200 VN_RELE(vp);
2201 return (err);
2202 }
2203
2204 /*
2205 * Find the minor for the given filename, checking the zone can access
2206 * it.
2207 */
2208 static int
file_to_lofi(char * filename,boolean_t readonly,struct lofi_state ** lspp)2209 file_to_lofi(char *filename, boolean_t readonly, struct lofi_state **lspp)
2210 {
2211 int err = 0;
2212
2213 ASSERT(MUTEX_HELD(&lofi_lock));
2214
2215 if ((err = file_to_lofi_nocheck(filename, readonly, lspp)) != 0)
2216 return (err);
2217
2218 if ((err = lofi_access(*lspp)) != 0)
2219 return (err);
2220
2221 return (0);
2222 }
2223
2224 /*
2225 * Fakes up a disk geometry based on the size of the file. This is needed
2226 * to support newfs on traditional lofi device, but also will provide
2227 * geometry hint for cmlb.
2228 */
2229 static void
fake_disk_geometry(struct lofi_state * lsp)2230 fake_disk_geometry(struct lofi_state *lsp)
2231 {
2232 u_offset_t dsize = lsp->ls_vp_size - lsp->ls_crypto_offset;
2233
2234 /* dk_geom - see dkio(7I) */
2235 /*
2236 * dkg_ncyl _could_ be set to one here (one big cylinder with gobs
2237 * of sectors), but that breaks programs like fdisk which want to
2238 * partition a disk by cylinder. With one cylinder, you can't create
2239 * an fdisk partition and put pcfs on it for testing (hard to pick
2240 * a number between one and one).
2241 *
2242 * The cheezy floppy test is an attempt to not have too few cylinders
2243 * for a small file, or so many on a big file that you waste space
2244 * for backup superblocks or cylinder group structures.
2245 */
2246 bzero(&lsp->ls_dkg, sizeof (lsp->ls_dkg));
2247 if (dsize < (2 * 1024 * 1024)) /* floppy? */
2248 lsp->ls_dkg.dkg_ncyl = dsize / (100 * 1024);
2249 else
2250 lsp->ls_dkg.dkg_ncyl = dsize / (300 * 1024);
2251 /* in case file file is < 100k */
2252 if (lsp->ls_dkg.dkg_ncyl == 0)
2253 lsp->ls_dkg.dkg_ncyl = 1;
2254
2255 lsp->ls_dkg.dkg_pcyl = lsp->ls_dkg.dkg_ncyl;
2256 lsp->ls_dkg.dkg_nhead = 1;
2257 lsp->ls_dkg.dkg_rpm = 7200;
2258
2259 lsp->ls_dkg.dkg_nsect = dsize /
2260 (lsp->ls_dkg.dkg_ncyl << lsp->ls_pbshift);
2261 }
2262
2263 /*
2264 * build vtoc - see dkio(7I)
2265 *
2266 * Fakes one big partition based on the size of the file. This is needed
2267 * because we allow newfs'ing the traditional lofi device and newfs will
2268 * do several disk ioctls to figure out the geometry and partition information.
2269 * It uses that information to determine the parameters to pass to mkfs.
2270 */
2271 static void
fake_disk_vtoc(struct lofi_state * lsp,struct vtoc * vt)2272 fake_disk_vtoc(struct lofi_state *lsp, struct vtoc *vt)
2273 {
2274 bzero(vt, sizeof (struct vtoc));
2275 vt->v_sanity = VTOC_SANE;
2276 vt->v_version = V_VERSION;
2277 (void) strncpy(vt->v_volume, LOFI_DRIVER_NAME,
2278 sizeof (vt->v_volume));
2279 vt->v_sectorsz = 1 << lsp->ls_pbshift;
2280 vt->v_nparts = 1;
2281 vt->v_part[0].p_tag = V_UNASSIGNED;
2282
2283 /*
2284 * A compressed file is read-only, other files can
2285 * be read-write
2286 */
2287 if (lsp->ls_uncomp_seg_sz > 0) {
2288 vt->v_part[0].p_flag = V_UNMNT | V_RONLY;
2289 } else {
2290 vt->v_part[0].p_flag = V_UNMNT;
2291 }
2292 vt->v_part[0].p_start = (daddr_t)0;
2293 /*
2294 * The partition size cannot just be the number of sectors, because
2295 * that might not end on a cylinder boundary. And if that's the case,
2296 * newfs/mkfs will print a scary warning. So just figure the size
2297 * based on the number of cylinders and sectors/cylinder.
2298 */
2299 vt->v_part[0].p_size = lsp->ls_dkg.dkg_pcyl *
2300 lsp->ls_dkg.dkg_nsect * lsp->ls_dkg.dkg_nhead;
2301 }
2302
2303 /*
2304 * build dk_cinfo - see dkio(7I)
2305 */
2306 static void
fake_disk_info(dev_t dev,struct dk_cinfo * ci)2307 fake_disk_info(dev_t dev, struct dk_cinfo *ci)
2308 {
2309 bzero(ci, sizeof (struct dk_cinfo));
2310 (void) strlcpy(ci->dki_cname, LOFI_DRIVER_NAME, sizeof (ci->dki_cname));
2311 ci->dki_ctype = DKC_SCSI_CCS;
2312 (void) strlcpy(ci->dki_dname, LOFI_DRIVER_NAME, sizeof (ci->dki_dname));
2313 ci->dki_unit = LOFI_MINOR2ID(getminor(dev));
2314 ci->dki_partition = LOFI_PART(getminor(dev));
2315 /*
2316 * newfs uses this to set maxcontig. Must not be < 16, or it
2317 * will be 0 when newfs multiplies it by DEV_BSIZE and divides
2318 * it by the block size. Then tunefs doesn't work because
2319 * maxcontig is 0.
2320 */
2321 ci->dki_maxtransfer = 16;
2322 }
2323
2324 /*
2325 * map in a compressed file
2326 *
2327 * Read in the header and the index that follows.
2328 *
2329 * The header is as follows -
2330 *
2331 * Signature (name of the compression algorithm)
2332 * Compression segment size (a multiple of 512)
2333 * Number of index entries
2334 * Size of the last block
2335 * The array containing the index entries
2336 *
2337 * The header information is always stored in
2338 * network byte order on disk.
2339 */
2340 static int
lofi_map_compressed_file(struct lofi_state * lsp,char * buf)2341 lofi_map_compressed_file(struct lofi_state *lsp, char *buf)
2342 {
2343 uint32_t index_sz, header_len, i;
2344 ssize_t resid;
2345 enum uio_rw rw;
2346 char *tbuf = buf;
2347 int error;
2348
2349 /* The signature has already been read */
2350 tbuf += sizeof (lsp->ls_comp_algorithm);
2351 bcopy(tbuf, &(lsp->ls_uncomp_seg_sz), sizeof (lsp->ls_uncomp_seg_sz));
2352 lsp->ls_uncomp_seg_sz = ntohl(lsp->ls_uncomp_seg_sz);
2353
2354 /*
2355 * The compressed segment size must be a power of 2
2356 */
2357 if (lsp->ls_uncomp_seg_sz < DEV_BSIZE ||
2358 !ISP2(lsp->ls_uncomp_seg_sz))
2359 return (EINVAL);
2360
2361 for (i = 0; !((lsp->ls_uncomp_seg_sz >> i) & 1); i++)
2362 ;
2363
2364 lsp->ls_comp_seg_shift = i;
2365
2366 tbuf += sizeof (lsp->ls_uncomp_seg_sz);
2367 bcopy(tbuf, &(lsp->ls_comp_index_sz), sizeof (lsp->ls_comp_index_sz));
2368 lsp->ls_comp_index_sz = ntohl(lsp->ls_comp_index_sz);
2369
2370 tbuf += sizeof (lsp->ls_comp_index_sz);
2371 bcopy(tbuf, &(lsp->ls_uncomp_last_seg_sz),
2372 sizeof (lsp->ls_uncomp_last_seg_sz));
2373 lsp->ls_uncomp_last_seg_sz = ntohl(lsp->ls_uncomp_last_seg_sz);
2374
2375 /*
2376 * Compute the total size of the uncompressed data
2377 * for use in fake_disk_geometry and other calculations.
2378 * Disk geometry has to be faked with respect to the
2379 * actual uncompressed data size rather than the
2380 * compressed file size.
2381 */
2382 lsp->ls_vp_size =
2383 (u_offset_t)(lsp->ls_comp_index_sz - 2) * lsp->ls_uncomp_seg_sz
2384 + lsp->ls_uncomp_last_seg_sz;
2385
2386 /*
2387 * Index size is rounded up to DEV_BSIZE for ease
2388 * of segmapping
2389 */
2390 index_sz = sizeof (*lsp->ls_comp_seg_index) * lsp->ls_comp_index_sz;
2391 header_len = sizeof (lsp->ls_comp_algorithm) +
2392 sizeof (lsp->ls_uncomp_seg_sz) +
2393 sizeof (lsp->ls_comp_index_sz) +
2394 sizeof (lsp->ls_uncomp_last_seg_sz);
2395 lsp->ls_comp_offbase = header_len + index_sz;
2396
2397 index_sz += header_len;
2398 index_sz = roundup(index_sz, DEV_BSIZE);
2399
2400 lsp->ls_comp_index_data = kmem_alloc(index_sz, KM_SLEEP);
2401 lsp->ls_comp_index_data_sz = index_sz;
2402
2403 /*
2404 * Read in the index -- this has a side-effect
2405 * of reading in the header as well
2406 */
2407 rw = UIO_READ;
2408 error = vn_rdwr(rw, lsp->ls_vp, lsp->ls_comp_index_data, index_sz,
2409 0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2410
2411 if (error != 0)
2412 return (error);
2413
2414 /* Skip the header, this is where the index really begins */
2415 lsp->ls_comp_seg_index =
2416 /*LINTED*/
2417 (uint64_t *)(lsp->ls_comp_index_data + header_len);
2418
2419 /*
2420 * Now recompute offsets in the index to account for
2421 * the header length
2422 */
2423 for (i = 0; i < lsp->ls_comp_index_sz; i++) {
2424 lsp->ls_comp_seg_index[i] = lsp->ls_comp_offbase +
2425 BE_64(lsp->ls_comp_seg_index[i]);
2426 }
2427
2428 return (error);
2429 }
2430
2431 static int
lofi_init_crypto(struct lofi_state * lsp,struct lofi_ioctl * klip)2432 lofi_init_crypto(struct lofi_state *lsp, struct lofi_ioctl *klip)
2433 {
2434 struct crypto_meta chead;
2435 char buf[DEV_BSIZE];
2436 ssize_t resid;
2437 char *marker;
2438 int error;
2439 int ret;
2440 int i;
2441
2442 if (!klip->li_crypto_enabled)
2443 return (0);
2444
2445 /*
2446 * All current algorithms have a max of 448 bits.
2447 */
2448 if (klip->li_iv_len > CRYPTO_BITS2BYTES(512))
2449 return (EINVAL);
2450
2451 if (CRYPTO_BITS2BYTES(klip->li_key_len) > sizeof (klip->li_key))
2452 return (EINVAL);
2453
2454 lsp->ls_crypto_enabled = klip->li_crypto_enabled;
2455
2456 mutex_init(&lsp->ls_crypto_lock, NULL, MUTEX_DRIVER, NULL);
2457
2458 lsp->ls_mech.cm_type = crypto_mech2id(klip->li_cipher);
2459 if (lsp->ls_mech.cm_type == CRYPTO_MECH_INVALID) {
2460 cmn_err(CE_WARN, "invalid cipher %s requested for %s",
2461 klip->li_cipher, klip->li_filename);
2462 return (EINVAL);
2463 }
2464
2465 /* this is just initialization here */
2466 lsp->ls_mech.cm_param = NULL;
2467 lsp->ls_mech.cm_param_len = 0;
2468
2469 lsp->ls_iv_type = klip->li_iv_type;
2470 lsp->ls_iv_mech.cm_type = crypto_mech2id(klip->li_iv_cipher);
2471 if (lsp->ls_iv_mech.cm_type == CRYPTO_MECH_INVALID) {
2472 cmn_err(CE_WARN, "invalid iv cipher %s requested"
2473 " for %s", klip->li_iv_cipher, klip->li_filename);
2474 return (EINVAL);
2475 }
2476
2477 /* iv mech must itself take a null iv */
2478 lsp->ls_iv_mech.cm_param = NULL;
2479 lsp->ls_iv_mech.cm_param_len = 0;
2480 lsp->ls_iv_len = klip->li_iv_len;
2481
2482 /*
2483 * Create ctx using li_cipher & the raw li_key after checking
2484 * that it isn't a weak key.
2485 */
2486 lsp->ls_key.ck_format = CRYPTO_KEY_RAW;
2487 lsp->ls_key.ck_length = klip->li_key_len;
2488 lsp->ls_key.ck_data = kmem_alloc(
2489 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length), KM_SLEEP);
2490 bcopy(klip->li_key, lsp->ls_key.ck_data,
2491 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
2492
2493 ret = crypto_key_check(&lsp->ls_mech, &lsp->ls_key);
2494 if (ret != CRYPTO_SUCCESS) {
2495 cmn_err(CE_WARN, "weak key check failed for cipher "
2496 "%s on file %s (0x%x)", klip->li_cipher,
2497 klip->li_filename, ret);
2498 return (EINVAL);
2499 }
2500
2501 error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE,
2502 CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2503 if (error != 0)
2504 return (error);
2505
2506 /*
2507 * This is the case where the header in the lofi image is already
2508 * initialized to indicate it is encrypted.
2509 */
2510 if (strncmp(buf, lofi_crypto_magic, sizeof (lofi_crypto_magic)) == 0) {
2511 /*
2512 * The encryption header information is laid out this way:
2513 * 6 bytes: hex "CFLOFI"
2514 * 2 bytes: version = 0 ... for now
2515 * 96 bytes: reserved1 (not implemented yet)
2516 * 4 bytes: data_sector = 2 ... for now
2517 * more... not implemented yet
2518 */
2519
2520 marker = buf;
2521
2522 /* copy the magic */
2523 bcopy(marker, lsp->ls_crypto.magic,
2524 sizeof (lsp->ls_crypto.magic));
2525 marker += sizeof (lsp->ls_crypto.magic);
2526
2527 /* read the encryption version number */
2528 bcopy(marker, &(lsp->ls_crypto.version),
2529 sizeof (lsp->ls_crypto.version));
2530 lsp->ls_crypto.version = ntohs(lsp->ls_crypto.version);
2531 marker += sizeof (lsp->ls_crypto.version);
2532
2533 /* read a chunk of reserved data */
2534 bcopy(marker, lsp->ls_crypto.reserved1,
2535 sizeof (lsp->ls_crypto.reserved1));
2536 marker += sizeof (lsp->ls_crypto.reserved1);
2537
2538 /* read block number where encrypted data begins */
2539 bcopy(marker, &(lsp->ls_crypto.data_sector),
2540 sizeof (lsp->ls_crypto.data_sector));
2541 lsp->ls_crypto.data_sector = ntohl(lsp->ls_crypto.data_sector);
2542 marker += sizeof (lsp->ls_crypto.data_sector);
2543
2544 /* and ignore the rest until it is implemented */
2545
2546 lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2547 return (0);
2548 }
2549
2550 /*
2551 * We've requested encryption, but no magic was found, so it must be
2552 * a new image.
2553 */
2554
2555 for (i = 0; i < sizeof (struct crypto_meta); i++) {
2556 if (buf[i] != '\0')
2557 return (EINVAL);
2558 }
2559
2560 marker = buf;
2561 bcopy(lofi_crypto_magic, marker, sizeof (lofi_crypto_magic));
2562 marker += sizeof (lofi_crypto_magic);
2563 chead.version = htons(LOFI_CRYPTO_VERSION);
2564 bcopy(&(chead.version), marker, sizeof (chead.version));
2565 marker += sizeof (chead.version);
2566 marker += sizeof (chead.reserved1);
2567 chead.data_sector = htonl(LOFI_CRYPTO_DATA_SECTOR);
2568 bcopy(&(chead.data_sector), marker, sizeof (chead.data_sector));
2569
2570 /* write the header */
2571 error = vn_rdwr(UIO_WRITE, lsp->ls_vp, buf, DEV_BSIZE,
2572 CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2573 if (error != 0)
2574 return (error);
2575
2576 /* fix things up so it looks like we read this info */
2577 bcopy(lofi_crypto_magic, lsp->ls_crypto.magic,
2578 sizeof (lofi_crypto_magic));
2579 lsp->ls_crypto.version = LOFI_CRYPTO_VERSION;
2580 lsp->ls_crypto.data_sector = LOFI_CRYPTO_DATA_SECTOR;
2581 lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2582 return (0);
2583 }
2584
2585 /*
2586 * Check to see if the passed in signature is a valid one. If it is
2587 * valid, return the index into lofi_compress_table.
2588 *
2589 * Return -1 if it is invalid
2590 */
2591 static int
lofi_compress_select(const char * signature)2592 lofi_compress_select(const char *signature)
2593 {
2594 int i;
2595
2596 for (i = 0; i < LOFI_COMPRESS_FUNCTIONS; i++) {
2597 if (strcmp(lofi_compress_table[i].l_name, signature) == 0)
2598 return (i);
2599 }
2600
2601 return (-1);
2602 }
2603
2604 static int
lofi_init_compress(struct lofi_state * lsp)2605 lofi_init_compress(struct lofi_state *lsp)
2606 {
2607 char buf[DEV_BSIZE];
2608 int compress_index;
2609 ssize_t resid;
2610 int error;
2611
2612 error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, 0, UIO_SYSSPACE,
2613 0, RLIM64_INFINITY, kcred, &resid);
2614
2615 if (error != 0)
2616 return (error);
2617
2618 if ((compress_index = lofi_compress_select(buf)) == -1)
2619 return (0);
2620
2621 /* compression and encryption are mutually exclusive */
2622 if (lsp->ls_crypto_enabled)
2623 return (ENOTSUP);
2624
2625 /* initialize compression info for compressed lofi */
2626 lsp->ls_comp_algorithm_index = compress_index;
2627 (void) strlcpy(lsp->ls_comp_algorithm,
2628 lofi_compress_table[compress_index].l_name,
2629 sizeof (lsp->ls_comp_algorithm));
2630
2631 /* Finally setup per-thread pre-allocated buffers */
2632 lsp->ls_comp_bufs = kmem_zalloc(lofi_taskq_nthreads *
2633 sizeof (struct compbuf), KM_SLEEP);
2634
2635 return (lofi_map_compressed_file(lsp, buf));
2636 }
2637
2638 /*
2639 * Allocate new or proposed id from lofi_id.
2640 *
2641 * Special cases for proposed id:
2642 * 0: not allowed, 0 is id for control device.
2643 * -1: allocate first usable id from lofi_id.
2644 * any other value is proposed value from userland
2645 *
2646 * returns DDI_SUCCESS or errno.
2647 */
2648 static int
lofi_alloc_id(int * idp)2649 lofi_alloc_id(int *idp)
2650 {
2651 int id, error = DDI_SUCCESS;
2652
2653 if (*idp == -1) {
2654 id = id_allocff_nosleep(lofi_id);
2655 if (id == -1) {
2656 error = EAGAIN;
2657 goto err;
2658 }
2659 } else if (*idp == 0) {
2660 error = EINVAL;
2661 goto err;
2662 } else if (*idp > ((1 << (L_BITSMINOR - LOFI_CMLB_SHIFT)) - 1)) {
2663 error = ERANGE;
2664 goto err;
2665 } else {
2666 if (ddi_get_soft_state(lofi_statep, *idp) != NULL) {
2667 error = EEXIST;
2668 goto err;
2669 }
2670
2671 id = id_alloc_specific_nosleep(lofi_id, *idp);
2672 if (id == -1) {
2673 error = EAGAIN;
2674 goto err;
2675 }
2676 }
2677 *idp = id;
2678 err:
2679 return (error);
2680 }
2681
2682 static int
lofi_create_dev(struct lofi_ioctl * klip)2683 lofi_create_dev(struct lofi_ioctl *klip)
2684 {
2685 dev_info_t *parent, *child;
2686 struct lofi_state *lsp = NULL;
2687 char namebuf[MAXNAMELEN];
2688 int error, circ;
2689
2690 /* get control device */
2691 lsp = ddi_get_soft_state(lofi_statep, 0);
2692 parent = ddi_get_parent(lsp->ls_dip);
2693
2694 if ((error = lofi_alloc_id((int *)&klip->li_id)))
2695 return (error);
2696
2697 (void) snprintf(namebuf, sizeof (namebuf), LOFI_DRIVER_NAME "@%d",
2698 klip->li_id);
2699
2700 ndi_devi_enter(parent, &circ);
2701 child = ndi_devi_findchild(parent, namebuf);
2702 ndi_devi_exit(parent, circ);
2703
2704 if (child == NULL) {
2705 child = ddi_add_child(parent, LOFI_DRIVER_NAME,
2706 (pnode_t)DEVI_SID_NODEID, klip->li_id);
2707 if ((error = ddi_prop_update_int(DDI_DEV_T_NONE, child,
2708 "instance", klip->li_id)) != DDI_PROP_SUCCESS)
2709 goto err;
2710
2711 if (klip->li_labeled == B_TRUE) {
2712 if ((error = ddi_prop_create(DDI_DEV_T_NONE, child,
2713 DDI_PROP_CANSLEEP, "labeled", 0, 0))
2714 != DDI_PROP_SUCCESS)
2715 goto err;
2716 }
2717
2718 if ((error = ndi_devi_online(child, NDI_ONLINE_ATTACH))
2719 != NDI_SUCCESS)
2720 goto err;
2721 } else {
2722 id_free(lofi_id, klip->li_id);
2723 error = EEXIST;
2724 return (error);
2725 }
2726
2727 goto done;
2728
2729 err:
2730 ddi_prop_remove_all(child);
2731 (void) ndi_devi_offline(child, NDI_DEVI_REMOVE);
2732 id_free(lofi_id, klip->li_id);
2733 done:
2734
2735 return (error);
2736 }
2737
2738 static void
lofi_create_inquiry(struct lofi_state * lsp,struct scsi_inquiry * inq)2739 lofi_create_inquiry(struct lofi_state *lsp, struct scsi_inquiry *inq)
2740 {
2741 char *p = NULL;
2742
2743 (void) strlcpy(inq->inq_vid, LOFI_DRIVER_NAME, sizeof (inq->inq_vid));
2744
2745 mutex_enter(&lsp->ls_vp_lock);
2746 if (lsp->ls_vp != NULL)
2747 p = strrchr(lsp->ls_vp->v_path, '/');
2748 if (p != NULL)
2749 (void) strncpy(inq->inq_pid, p + 1, sizeof (inq->inq_pid));
2750 mutex_exit(&lsp->ls_vp_lock);
2751 (void) strlcpy(inq->inq_revision, "1.0", sizeof (inq->inq_revision));
2752 }
2753
2754 /*
2755 * copy devlink name from event cache
2756 */
2757 static void
lofi_copy_devpath(struct lofi_ioctl * klip)2758 lofi_copy_devpath(struct lofi_ioctl *klip)
2759 {
2760 int error;
2761 char namebuf[MAXNAMELEN], *str;
2762 clock_t ticks;
2763 nvlist_t *nvl;
2764
2765 if (klip->li_labeled == B_TRUE)
2766 klip->li_devpath[0] = '\0';
2767 else {
2768 /* no need to wait for messages */
2769 (void) snprintf(klip->li_devpath, sizeof (klip->li_devpath),
2770 "/dev/" LOFI_CHAR_NAME "/%d", klip->li_id);
2771 return;
2772 }
2773
2774 (void) snprintf(namebuf, sizeof (namebuf), "%d", klip->li_id);
2775 ticks = ddi_get_lbolt() + LOFI_TIMEOUT * drv_usectohz(1000000);
2776
2777 nvl = NULL;
2778
2779 mutex_enter(&lofi_chan_lock);
2780 while (nvlist_lookup_nvlist(lofi_devlink_cache, namebuf, &nvl) != 0) {
2781 error = cv_timedwait(&lofi_chan_cv, &lofi_chan_lock, ticks);
2782 if (error == -1)
2783 break;
2784 }
2785
2786 if (nvl != NULL) {
2787 if (nvlist_lookup_string(nvl, DEV_NAME, &str) == 0) {
2788 (void) strlcpy(klip->li_devpath, str,
2789 sizeof (klip->li_devpath));
2790 }
2791 }
2792 mutex_exit(&lofi_chan_lock);
2793 }
2794
2795 /*
2796 * map a file to a minor number. Return the minor number.
2797 */
2798 static int
lofi_map_file(dev_t dev,struct lofi_ioctl * ulip,int pickminor,int * rvalp,struct cred * credp,int ioctl_flag)2799 lofi_map_file(dev_t dev, struct lofi_ioctl *ulip, int pickminor,
2800 int *rvalp, struct cred *credp, int ioctl_flag)
2801 {
2802 int id = -1;
2803 struct lofi_state *lsp = NULL;
2804 struct lofi_ioctl *klip;
2805 int error;
2806 struct vnode *vp = NULL;
2807 vattr_t vattr;
2808 int flag;
2809 char namebuf[MAXNAMELEN];
2810
2811 error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2812 if (error != 0)
2813 return (error);
2814
2815 mutex_enter(&lofi_lock);
2816
2817 if (file_to_lofi_nocheck(klip->li_filename, klip->li_readonly,
2818 NULL) == 0) {
2819 error = EBUSY;
2820 goto err;
2821 }
2822
2823 flag = FREAD | FWRITE | FOFFMAX | FEXCL;
2824 error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, &vp, 0, 0);
2825 if (error) {
2826 /* try read-only */
2827 flag &= ~FWRITE;
2828 error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0,
2829 &vp, 0, 0);
2830 if (error)
2831 goto err;
2832 }
2833
2834 if (!V_ISLOFIABLE(vp->v_type)) {
2835 error = EINVAL;
2836 goto err;
2837 }
2838
2839 vattr.va_mask = AT_SIZE;
2840 error = VOP_GETATTR(vp, &vattr, 0, credp, NULL);
2841 if (error)
2842 goto err;
2843
2844 /* the file needs to be a multiple of the block size */
2845 if ((vattr.va_size % DEV_BSIZE) != 0) {
2846 error = EINVAL;
2847 goto err;
2848 }
2849
2850 if (pickminor) {
2851 klip->li_id = (uint32_t)-1;
2852 }
2853 if ((error = lofi_create_dev(klip)) != 0)
2854 goto err;
2855
2856 id = klip->li_id;
2857 lsp = ddi_get_soft_state(lofi_statep, id);
2858 if (lsp == NULL)
2859 goto err;
2860
2861 /*
2862 * from this point lofi_destroy() is used to clean up on error
2863 * make sure the basic data is set
2864 */
2865 lsp->ls_dev = makedevice(getmajor(dev), LOFI_ID2MINOR(id));
2866
2867 list_create(&lsp->ls_comp_cache, sizeof (struct lofi_comp_cache),
2868 offsetof(struct lofi_comp_cache, lc_list));
2869
2870 /*
2871 * save open mode so file can be closed properly and vnode counts
2872 * updated correctly.
2873 */
2874 lsp->ls_openflag = flag;
2875
2876 lsp->ls_vp = vp;
2877 lsp->ls_stacked_vp = vp;
2878
2879 lsp->ls_vp_size = vattr.va_size;
2880 lsp->ls_vp_comp_size = lsp->ls_vp_size;
2881
2882 /*
2883 * Try to handle stacked lofs vnodes.
2884 */
2885 if (vp->v_type == VREG) {
2886 vnode_t *realvp;
2887
2888 if (VOP_REALVP(vp, &realvp, NULL) == 0) {
2889 /*
2890 * We need to use the realvp for uniqueness
2891 * checking, but keep the stacked vp for
2892 * LOFI_GET_FILENAME display.
2893 */
2894 VN_HOLD(realvp);
2895 lsp->ls_vp = realvp;
2896 }
2897 }
2898
2899 lsp->ls_lbshift = highbit(DEV_BSIZE) - 1;
2900 lsp->ls_pbshift = lsp->ls_lbshift;
2901
2902 lsp->ls_readonly = klip->li_readonly;
2903 lsp->ls_uncomp_seg_sz = 0;
2904 lsp->ls_comp_algorithm[0] = '\0';
2905 lsp->ls_crypto_offset = 0;
2906
2907 (void) snprintf(namebuf, sizeof (namebuf), "%s_taskq_%d",
2908 LOFI_DRIVER_NAME, id);
2909 lsp->ls_taskq = taskq_create_proc(namebuf, lofi_taskq_nthreads,
2910 minclsyspri, 1, lofi_taskq_maxalloc, curzone->zone_zsched, 0);
2911
2912 if ((error = lofi_init_crypto(lsp, klip)) != 0)
2913 goto err;
2914
2915 if ((error = lofi_init_compress(lsp)) != 0)
2916 goto err;
2917
2918 fake_disk_geometry(lsp);
2919
2920 if ((ddi_prop_update_int64(lsp->ls_dev, lsp->ls_dip, SIZE_PROP_NAME,
2921 lsp->ls_vp_size - lsp->ls_crypto_offset)) != DDI_PROP_SUCCESS) {
2922 error = EINVAL;
2923 goto err;
2924 }
2925
2926 if ((ddi_prop_update_int64(lsp->ls_dev, lsp->ls_dip, NBLOCKS_PROP_NAME,
2927 (lsp->ls_vp_size - lsp->ls_crypto_offset) / DEV_BSIZE))
2928 != DDI_PROP_SUCCESS) {
2929 error = EINVAL;
2930 goto err;
2931 }
2932
2933 list_insert_tail(&lofi_list, lsp);
2934 /*
2935 * Notify we are ready to rock.
2936 */
2937 mutex_enter(&lsp->ls_vp_lock);
2938 lsp->ls_vp_ready = B_TRUE;
2939 cv_broadcast(&lsp->ls_vp_cv);
2940 mutex_exit(&lsp->ls_vp_lock);
2941 mutex_exit(&lofi_lock);
2942
2943 lofi_copy_devpath(klip);
2944
2945 if (rvalp)
2946 *rvalp = id;
2947 (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2948 free_lofi_ioctl(klip);
2949 return (0);
2950
2951 err:
2952 if (lsp != NULL) {
2953 lofi_destroy(lsp, credp);
2954 } else {
2955 if (vp != NULL) {
2956 (void) VOP_PUTPAGE(vp, 0, 0, B_INVAL, credp, NULL);
2957 (void) VOP_CLOSE(vp, flag, 1, 0, credp, NULL);
2958 VN_RELE(vp);
2959 }
2960 }
2961
2962 mutex_exit(&lofi_lock);
2963 free_lofi_ioctl(klip);
2964 return (error);
2965 }
2966
2967 /*
2968 * unmap a file.
2969 */
2970 static int
lofi_unmap_file(struct lofi_ioctl * ulip,int byfilename,struct cred * credp,int ioctl_flag)2971 lofi_unmap_file(struct lofi_ioctl *ulip, int byfilename,
2972 struct cred *credp, int ioctl_flag)
2973 {
2974 struct lofi_state *lsp;
2975 struct lofi_ioctl *klip;
2976 nvlist_t *nvl = NULL;
2977 clock_t ticks;
2978 char name[MAXNAMELEN];
2979 int err;
2980
2981 err = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2982 if (err != 0)
2983 return (err);
2984
2985 mutex_enter(&lofi_lock);
2986 if (byfilename) {
2987 if ((err = file_to_lofi(klip->li_filename, klip->li_readonly,
2988 &lsp)) != 0) {
2989 mutex_exit(&lofi_lock);
2990 return (err);
2991 }
2992 } else if (klip->li_id == 0) {
2993 mutex_exit(&lofi_lock);
2994 free_lofi_ioctl(klip);
2995 return (ENXIO);
2996 } else {
2997 lsp = ddi_get_soft_state(lofi_statep, klip->li_id);
2998 }
2999
3000 if (lsp == NULL || lsp->ls_vp == NULL || lofi_access(lsp) != 0) {
3001 mutex_exit(&lofi_lock);
3002 free_lofi_ioctl(klip);
3003 return (ENXIO);
3004 }
3005
3006 klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
3007
3008 /*
3009 * If it's still held open, we'll do one of three things:
3010 *
3011 * If no flag is set, just return EBUSY.
3012 *
3013 * If the 'cleanup' flag is set, unmap and remove the device when
3014 * the last user finishes.
3015 *
3016 * If the 'force' flag is set, then we forcibly close the underlying
3017 * file. Subsequent operations will fail, and the DKIOCSTATE ioctl
3018 * will return DKIO_DEV_GONE. When the device is last closed, the
3019 * device will be cleaned up appropriately.
3020 *
3021 * This is complicated by the fact that we may have outstanding
3022 * dispatched I/Os. Rather than having a single mutex to serialize all
3023 * I/O, we keep a count of the number of outstanding I/O requests
3024 * (ls_vp_iocount), as well as a flag to indicate that no new I/Os
3025 * should be dispatched (ls_vp_closereq).
3026 *
3027 * We set the flag, wait for the number of outstanding I/Os to reach 0,
3028 * and then close the underlying vnode.
3029 */
3030 if (is_opened(lsp)) {
3031 if (klip->li_force) {
3032 mutex_enter(&lsp->ls_vp_lock);
3033 lsp->ls_vp_closereq = B_TRUE;
3034 /* wake up any threads waiting on dkiocstate */
3035 cv_broadcast(&lsp->ls_vp_cv);
3036 while (lsp->ls_vp_iocount > 0)
3037 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
3038 mutex_exit(&lsp->ls_vp_lock);
3039
3040 goto out;
3041 } else if (klip->li_cleanup) {
3042 lsp->ls_cleanup = 1;
3043 mutex_exit(&lofi_lock);
3044 free_lofi_ioctl(klip);
3045 return (0);
3046 }
3047
3048 mutex_exit(&lofi_lock);
3049 free_lofi_ioctl(klip);
3050 return (EBUSY);
3051 }
3052
3053 out:
3054 lofi_free_dev(lsp);
3055 lofi_destroy(lsp, credp);
3056
3057 /*
3058 * check the lofi_devlink_cache if device is really gone.
3059 * note: we just wait for timeout here and dont give error if
3060 * timer will expire. This check is to try to ensure the unmap is
3061 * really done when lofiadm -d completes.
3062 * Since lofi_lock is held, also hopefully the lofiadm -a calls
3063 * wont interfere the the unmap.
3064 */
3065 (void) snprintf(name, sizeof (name), "%d", klip->li_id);
3066 ticks = ddi_get_lbolt() + LOFI_TIMEOUT * drv_usectohz(1000000);
3067 mutex_enter(&lofi_chan_lock);
3068 while (nvlist_lookup_nvlist(lofi_devlink_cache, name, &nvl) == 0) {
3069 err = cv_timedwait(&lofi_chan_cv, &lofi_chan_lock, ticks);
3070 if (err == -1)
3071 break;
3072 }
3073 mutex_exit(&lofi_chan_lock);
3074
3075 mutex_exit(&lofi_lock);
3076 (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3077 free_lofi_ioctl(klip);
3078 return (0);
3079 }
3080
3081 /*
3082 * get the filename given the minor number, or the minor number given
3083 * the name.
3084 */
3085 /*ARGSUSED*/
3086 static int
lofi_get_info(dev_t dev,struct lofi_ioctl * ulip,int which,struct cred * credp,int ioctl_flag)3087 lofi_get_info(dev_t dev, struct lofi_ioctl *ulip, int which,
3088 struct cred *credp, int ioctl_flag)
3089 {
3090 struct lofi_ioctl *klip;
3091 struct lofi_state *lsp;
3092 int error;
3093
3094 error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
3095 if (error != 0)
3096 return (error);
3097
3098 switch (which) {
3099 case LOFI_GET_FILENAME:
3100 if (klip->li_id == 0) {
3101 free_lofi_ioctl(klip);
3102 return (EINVAL);
3103 }
3104
3105 mutex_enter(&lofi_lock);
3106 lsp = ddi_get_soft_state(lofi_statep, klip->li_id);
3107 if (lsp == NULL || lofi_access(lsp) != 0) {
3108 mutex_exit(&lofi_lock);
3109 free_lofi_ioctl(klip);
3110 return (ENXIO);
3111 }
3112
3113 /*
3114 * This may fail if, for example, we're trying to look
3115 * up a zoned NFS path from the global zone.
3116 */
3117 if (vnodetopath(NULL, lsp->ls_stacked_vp, klip->li_filename,
3118 sizeof (klip->li_filename), CRED()) != 0) {
3119 (void) strlcpy(klip->li_filename, "?",
3120 sizeof (klip->li_filename));
3121 }
3122
3123 klip->li_readonly = lsp->ls_readonly;
3124 klip->li_labeled = lsp->ls_cmlbhandle != NULL;
3125
3126 (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
3127 sizeof (klip->li_algorithm));
3128 klip->li_crypto_enabled = lsp->ls_crypto_enabled;
3129 mutex_exit(&lofi_lock);
3130
3131 lofi_copy_devpath(klip);
3132 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3133 free_lofi_ioctl(klip);
3134 return (error);
3135 case LOFI_GET_MINOR:
3136 mutex_enter(&lofi_lock);
3137 error = file_to_lofi(klip->li_filename,
3138 klip->li_readonly, &lsp);
3139 if (error != 0) {
3140 mutex_exit(&lofi_lock);
3141 free_lofi_ioctl(klip);
3142 return (error);
3143 }
3144 klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
3145
3146 klip->li_readonly = lsp->ls_readonly;
3147 klip->li_labeled = lsp->ls_cmlbhandle != NULL;
3148 mutex_exit(&lofi_lock);
3149
3150 lofi_copy_devpath(klip);
3151 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3152
3153 free_lofi_ioctl(klip);
3154 return (error);
3155 case LOFI_CHECK_COMPRESSED:
3156 mutex_enter(&lofi_lock);
3157 error = file_to_lofi(klip->li_filename,
3158 klip->li_readonly, &lsp);
3159 if (error != 0) {
3160 mutex_exit(&lofi_lock);
3161 free_lofi_ioctl(klip);
3162 return (error);
3163 }
3164
3165 klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
3166 (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
3167 sizeof (klip->li_algorithm));
3168
3169 mutex_exit(&lofi_lock);
3170 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3171 free_lofi_ioctl(klip);
3172 return (error);
3173 default:
3174 free_lofi_ioctl(klip);
3175 return (EINVAL);
3176 }
3177 }
3178
3179 static int
uscsi_is_inquiry(intptr_t arg,int flag,union scsi_cdb * cdb,struct uscsi_cmd * uscmd)3180 uscsi_is_inquiry(intptr_t arg, int flag, union scsi_cdb *cdb,
3181 struct uscsi_cmd *uscmd)
3182 {
3183 int rval;
3184
3185 #ifdef _MULTI_DATAMODEL
3186 switch (ddi_model_convert_from(flag & FMODELS)) {
3187 case DDI_MODEL_ILP32: {
3188 struct uscsi_cmd32 ucmd32;
3189
3190 if (ddi_copyin((void *)arg, &ucmd32, sizeof (ucmd32), flag)) {
3191 rval = EFAULT;
3192 goto err;
3193 }
3194 uscsi_cmd32touscsi_cmd((&ucmd32), uscmd);
3195 break;
3196 }
3197 case DDI_MODEL_NONE:
3198 if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) {
3199 rval = EFAULT;
3200 goto err;
3201 }
3202 break;
3203 default:
3204 rval = EFAULT;
3205 goto err;
3206 }
3207 #else
3208 if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) {
3209 rval = EFAULT;
3210 goto err;
3211 }
3212 #endif /* _MULTI_DATAMODEL */
3213 if (ddi_copyin(uscmd->uscsi_cdb, cdb, uscmd->uscsi_cdblen, flag)) {
3214 rval = EFAULT;
3215 goto err;
3216 }
3217 if (cdb->scc_cmd == SCMD_INQUIRY) {
3218 return (0);
3219 }
3220 err:
3221 return (rval);
3222 }
3223
3224 static int
lofi_ioctl(dev_t dev,int cmd,intptr_t arg,int flag,cred_t * credp,int * rvalp)3225 lofi_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp,
3226 int *rvalp)
3227 {
3228 int error;
3229 enum dkio_state dkstate;
3230 struct lofi_state *lsp;
3231 int id;
3232
3233 id = LOFI_MINOR2ID(getminor(dev));
3234
3235 /* lofi ioctls only apply to the master device */
3236 if (id == 0) {
3237 struct lofi_ioctl *lip = (struct lofi_ioctl *)arg;
3238
3239 /*
3240 * the query command only need read-access - i.e., normal
3241 * users are allowed to do those on the ctl device as
3242 * long as they can open it read-only.
3243 */
3244 switch (cmd) {
3245 case LOFI_MAP_FILE:
3246 if ((flag & FWRITE) == 0)
3247 return (EPERM);
3248 return (lofi_map_file(dev, lip, 1, rvalp, credp, flag));
3249 case LOFI_MAP_FILE_MINOR:
3250 if ((flag & FWRITE) == 0)
3251 return (EPERM);
3252 return (lofi_map_file(dev, lip, 0, rvalp, credp, flag));
3253 case LOFI_UNMAP_FILE:
3254 if ((flag & FWRITE) == 0)
3255 return (EPERM);
3256 return (lofi_unmap_file(lip, 1, credp, flag));
3257 case LOFI_UNMAP_FILE_MINOR:
3258 if ((flag & FWRITE) == 0)
3259 return (EPERM);
3260 return (lofi_unmap_file(lip, 0, credp, flag));
3261 case LOFI_GET_FILENAME:
3262 return (lofi_get_info(dev, lip, LOFI_GET_FILENAME,
3263 credp, flag));
3264 case LOFI_GET_MINOR:
3265 return (lofi_get_info(dev, lip, LOFI_GET_MINOR,
3266 credp, flag));
3267
3268 /*
3269 * This API made limited sense when this value was fixed
3270 * at LOFI_MAX_FILES. However, its use to iterate
3271 * across all possible devices in lofiadm means we don't
3272 * want to return L_MAXMIN, but the highest
3273 * *allocated* id.
3274 */
3275 case LOFI_GET_MAXMINOR:
3276 id = 0;
3277
3278 mutex_enter(&lofi_lock);
3279
3280 for (lsp = list_head(&lofi_list); lsp != NULL;
3281 lsp = list_next(&lofi_list, lsp)) {
3282 int i;
3283 if (lofi_access(lsp) != 0)
3284 continue;
3285
3286 i = ddi_get_instance(lsp->ls_dip);
3287 if (i > id)
3288 id = i;
3289 }
3290
3291 mutex_exit(&lofi_lock);
3292
3293 error = ddi_copyout(&id, &lip->li_id,
3294 sizeof (id), flag);
3295 if (error)
3296 return (EFAULT);
3297 return (0);
3298
3299 case LOFI_CHECK_COMPRESSED:
3300 return (lofi_get_info(dev, lip, LOFI_CHECK_COMPRESSED,
3301 credp, flag));
3302 default:
3303 return (EINVAL);
3304 }
3305 }
3306
3307 mutex_enter(&lofi_lock);
3308 lsp = ddi_get_soft_state(lofi_statep, id);
3309 if (lsp == NULL || lsp->ls_vp_closereq) {
3310 mutex_exit(&lofi_lock);
3311 return (ENXIO);
3312 }
3313 mutex_exit(&lofi_lock);
3314
3315 if (ddi_prop_exists(DDI_DEV_T_ANY, lsp->ls_dip, DDI_PROP_DONTPASS,
3316 "labeled") == 1) {
3317 error = cmlb_ioctl(lsp->ls_cmlbhandle, dev, cmd, arg, flag,
3318 credp, rvalp, 0);
3319 if (error != ENOTTY)
3320 return (error);
3321 }
3322
3323 /*
3324 * We explicitly allow DKIOCSTATE, but all other ioctls should fail with
3325 * EIO as if the device was no longer present.
3326 */
3327 if (lsp->ls_vp == NULL && cmd != DKIOCSTATE)
3328 return (EIO);
3329
3330 /* these are for faking out utilities like newfs */
3331 switch (cmd) {
3332 case DKIOCGMEDIAINFO:
3333 case DKIOCGMEDIAINFOEXT: {
3334 struct dk_minfo_ext media_info;
3335 int shift = lsp->ls_lbshift;
3336 int size;
3337
3338 if (cmd == DKIOCGMEDIAINFOEXT) {
3339 media_info.dki_pbsize = 1U << lsp->ls_pbshift;
3340 size = sizeof (struct dk_minfo_ext);
3341 } else {
3342 size = sizeof (struct dk_minfo);
3343 }
3344
3345 media_info.dki_media_type = DK_FIXED_DISK;
3346 media_info.dki_lbsize = 1U << shift;
3347 media_info.dki_capacity =
3348 (lsp->ls_vp_size - lsp->ls_crypto_offset) >> shift;
3349
3350 if (ddi_copyout(&media_info, (void *)arg, size, flag))
3351 return (EFAULT);
3352 return (0);
3353 }
3354 case DKIOCREMOVABLE: {
3355 int i = 0;
3356 if (ddi_copyout(&i, (caddr_t)arg, sizeof (int), flag))
3357 return (EFAULT);
3358 return (0);
3359 }
3360
3361 case DKIOCGVTOC: {
3362 struct vtoc vt;
3363 fake_disk_vtoc(lsp, &vt);
3364
3365 switch (ddi_model_convert_from(flag & FMODELS)) {
3366 case DDI_MODEL_ILP32: {
3367 struct vtoc32 vtoc32;
3368
3369 vtoctovtoc32(vt, vtoc32);
3370 if (ddi_copyout(&vtoc32, (void *)arg,
3371 sizeof (struct vtoc32), flag))
3372 return (EFAULT);
3373 break;
3374 }
3375
3376 case DDI_MODEL_NONE:
3377 if (ddi_copyout(&vt, (void *)arg,
3378 sizeof (struct vtoc), flag))
3379 return (EFAULT);
3380 break;
3381 }
3382 return (0);
3383 }
3384 case DKIOCINFO: {
3385 struct dk_cinfo ci;
3386 fake_disk_info(dev, &ci);
3387 if (ddi_copyout(&ci, (void *)arg, sizeof (ci), flag))
3388 return (EFAULT);
3389 return (0);
3390 }
3391 case DKIOCG_VIRTGEOM:
3392 case DKIOCG_PHYGEOM:
3393 case DKIOCGGEOM:
3394 error = ddi_copyout(&lsp->ls_dkg, (void *)arg,
3395 sizeof (struct dk_geom), flag);
3396 if (error)
3397 return (EFAULT);
3398 return (0);
3399 case DKIOCSTATE:
3400 /*
3401 * Normally, lofi devices are always in the INSERTED state. If
3402 * a device is forcefully unmapped, then the device transitions
3403 * to the DKIO_DEV_GONE state.
3404 */
3405 if (ddi_copyin((void *)arg, &dkstate, sizeof (dkstate),
3406 flag) != 0)
3407 return (EFAULT);
3408
3409 mutex_enter(&lsp->ls_vp_lock);
3410 lsp->ls_vp_iocount++;
3411 while (((dkstate == DKIO_INSERTED && lsp->ls_vp != NULL) ||
3412 (dkstate == DKIO_DEV_GONE && lsp->ls_vp == NULL)) &&
3413 !lsp->ls_vp_closereq) {
3414 /*
3415 * By virtue of having the device open, we know that
3416 * 'lsp' will remain valid when we return.
3417 */
3418 if (!cv_wait_sig(&lsp->ls_vp_cv,
3419 &lsp->ls_vp_lock)) {
3420 lsp->ls_vp_iocount--;
3421 cv_broadcast(&lsp->ls_vp_cv);
3422 mutex_exit(&lsp->ls_vp_lock);
3423 return (EINTR);
3424 }
3425 }
3426
3427 dkstate = (!lsp->ls_vp_closereq && lsp->ls_vp != NULL ?
3428 DKIO_INSERTED : DKIO_DEV_GONE);
3429 lsp->ls_vp_iocount--;
3430 cv_broadcast(&lsp->ls_vp_cv);
3431 mutex_exit(&lsp->ls_vp_lock);
3432
3433 if (ddi_copyout(&dkstate, (void *)arg,
3434 sizeof (dkstate), flag) != 0)
3435 return (EFAULT);
3436 return (0);
3437 case USCSICMD: {
3438 struct uscsi_cmd uscmd;
3439 union scsi_cdb cdb;
3440
3441 if (uscsi_is_inquiry(arg, flag, &cdb, &uscmd) == 0) {
3442 struct scsi_inquiry inq = {0};
3443
3444 lofi_create_inquiry(lsp, &inq);
3445 if (ddi_copyout(&inq, uscmd.uscsi_bufaddr,
3446 uscmd.uscsi_buflen, flag) != 0)
3447 return (EFAULT);
3448 return (0);
3449 } else if (cdb.scc_cmd == SCMD_READ_CAPACITY) {
3450 struct scsi_capacity capacity;
3451
3452 capacity.capacity =
3453 BE_32((lsp->ls_vp_size - lsp->ls_crypto_offset) >>
3454 lsp->ls_lbshift);
3455 capacity.lbasize = BE_32(1 << lsp->ls_lbshift);
3456 if (ddi_copyout(&capacity, uscmd.uscsi_bufaddr,
3457 uscmd.uscsi_buflen, flag) != 0)
3458 return (EFAULT);
3459 return (0);
3460 }
3461
3462 uscmd.uscsi_rqstatus = 0xff;
3463 #ifdef _MULTI_DATAMODEL
3464 switch (ddi_model_convert_from(flag & FMODELS)) {
3465 case DDI_MODEL_ILP32: {
3466 struct uscsi_cmd32 ucmd32;
3467 uscsi_cmdtouscsi_cmd32((&uscmd), (&ucmd32));
3468 if (ddi_copyout(&ucmd32, (void *)arg, sizeof (ucmd32),
3469 flag) != 0)
3470 return (EFAULT);
3471 break;
3472 }
3473 case DDI_MODEL_NONE:
3474 if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd),
3475 flag) != 0)
3476 return (EFAULT);
3477 break;
3478 default:
3479 return (EFAULT);
3480 }
3481 #else
3482 if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd), flag) != 0)
3483 return (EFAULT);
3484 #endif /* _MULTI_DATAMODEL */
3485 return (0);
3486 }
3487 default:
3488 #ifdef DEBUG
3489 cmn_err(CE_WARN, "lofi_ioctl: %d is not implemented\n", cmd);
3490 #endif /* DEBUG */
3491 return (ENOTTY);
3492 }
3493 }
3494
3495 static int
lofi_prop_op(dev_t dev,dev_info_t * dip,ddi_prop_op_t prop_op,int mod_flags,char * name,caddr_t valuep,int * lengthp)3496 lofi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
3497 char *name, caddr_t valuep, int *lengthp)
3498 {
3499 struct lofi_state *lsp;
3500
3501 lsp = ddi_get_soft_state(lofi_statep, ddi_get_instance(dip));
3502 if (lsp == NULL) {
3503 return (ddi_prop_op(dev, dip, prop_op, mod_flags,
3504 name, valuep, lengthp));
3505 }
3506
3507 return (cmlb_prop_op(lsp->ls_cmlbhandle, dev, dip, prop_op, mod_flags,
3508 name, valuep, lengthp, LOFI_PART(getminor(dev)), NULL));
3509 }
3510
3511 static struct cb_ops lofi_cb_ops = {
3512 lofi_open, /* open */
3513 lofi_close, /* close */
3514 lofi_strategy, /* strategy */
3515 nodev, /* print */
3516 nodev, /* dump */
3517 lofi_read, /* read */
3518 lofi_write, /* write */
3519 lofi_ioctl, /* ioctl */
3520 nodev, /* devmap */
3521 nodev, /* mmap */
3522 nodev, /* segmap */
3523 nochpoll, /* poll */
3524 lofi_prop_op, /* prop_op */
3525 0, /* streamtab */
3526 D_64BIT | D_NEW | D_MP, /* Driver compatibility flag */
3527 CB_REV,
3528 lofi_aread,
3529 lofi_awrite
3530 };
3531
3532 static struct dev_ops lofi_ops = {
3533 DEVO_REV, /* devo_rev, */
3534 0, /* refcnt */
3535 lofi_info, /* info */
3536 nulldev, /* identify */
3537 nulldev, /* probe */
3538 lofi_attach, /* attach */
3539 lofi_detach, /* detach */
3540 nodev, /* reset */
3541 &lofi_cb_ops, /* driver operations */
3542 NULL, /* no bus operations */
3543 NULL, /* power */
3544 ddi_quiesce_not_needed, /* quiesce */
3545 };
3546
3547 static struct modldrv modldrv = {
3548 &mod_driverops,
3549 "loopback file driver",
3550 &lofi_ops,
3551 };
3552
3553 static struct modlinkage modlinkage = {
3554 MODREV_1,
3555 &modldrv,
3556 NULL
3557 };
3558
3559 int
_init(void)3560 _init(void)
3561 {
3562 int error;
3563
3564 list_create(&lofi_list, sizeof (struct lofi_state),
3565 offsetof(struct lofi_state, ls_list));
3566
3567 error = ddi_soft_state_init((void **)&lofi_statep,
3568 sizeof (struct lofi_state), 0);
3569 if (error) {
3570 list_destroy(&lofi_list);
3571 return (error);
3572 }
3573
3574 /*
3575 * The minor number is stored as id << LOFI_CMLB_SHIFT as
3576 * we need to reserve space for cmlb minor numbers.
3577 * This will leave out 4096 id values on 32bit kernel, which should
3578 * still suffice.
3579 */
3580 lofi_id = id_space_create("lofi_id", 1,
3581 (1 << (L_BITSMINOR - LOFI_CMLB_SHIFT)));
3582
3583 if (lofi_id == NULL) {
3584 ddi_soft_state_fini((void **)&lofi_statep);
3585 list_destroy(&lofi_list);
3586 return (DDI_FAILURE);
3587 }
3588
3589 mutex_init(&lofi_lock, NULL, MUTEX_DRIVER, NULL);
3590 mutex_init(&lofi_chan_lock, NULL, MUTEX_DRIVER, NULL);
3591 cv_init(&lofi_chan_cv, NULL, CV_DRIVER, NULL);
3592 error = nvlist_alloc(&lofi_devlink_cache, NV_UNIQUE_NAME, KM_SLEEP);
3593
3594 if (error == 0)
3595 error = mod_install(&modlinkage);
3596 if (error) {
3597 id_space_destroy(lofi_id);
3598 if (lofi_devlink_cache != NULL)
3599 nvlist_free(lofi_devlink_cache);
3600 mutex_destroy(&lofi_chan_lock);
3601 cv_destroy(&lofi_chan_cv);
3602 mutex_destroy(&lofi_lock);
3603 ddi_soft_state_fini((void **)&lofi_statep);
3604 list_destroy(&lofi_list);
3605 }
3606
3607 return (error);
3608 }
3609
3610 int
_fini(void)3611 _fini(void)
3612 {
3613 int error;
3614
3615 mutex_enter(&lofi_lock);
3616
3617 if (!list_is_empty(&lofi_list)) {
3618 mutex_exit(&lofi_lock);
3619 return (EBUSY);
3620 }
3621
3622 mutex_exit(&lofi_lock);
3623
3624 error = mod_remove(&modlinkage);
3625 if (error)
3626 return (error);
3627
3628 mutex_enter(&lofi_chan_lock);
3629 nvlist_free(lofi_devlink_cache);
3630 lofi_devlink_cache = NULL;
3631 mutex_exit(&lofi_chan_lock);
3632
3633 mutex_destroy(&lofi_chan_lock);
3634 cv_destroy(&lofi_chan_cv);
3635 mutex_destroy(&lofi_lock);
3636 id_space_destroy(lofi_id);
3637 ddi_soft_state_fini((void **)&lofi_statep);
3638 list_destroy(&lofi_list);
3639
3640 return (error);
3641 }
3642
3643 int
_info(struct modinfo * modinfop)3644 _info(struct modinfo *modinfop)
3645 {
3646 return (mod_info(&modlinkage, modinfop));
3647 }
3648