xref: /freebsd/contrib/llvm-project/llvm/include/llvm/Support/TargetOpcodes.def (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1//===-- llvm/Support/TargetOpcodes.def - Target Indep Opcodes ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the target independent instruction opcodes.
10//
11//===----------------------------------------------------------------------===//
12
13// NOTE: NO INCLUDE GUARD DESIRED!
14
15/// HANDLE_TARGET_OPCODE defines an opcode and its associated enum value.
16///
17#ifndef HANDLE_TARGET_OPCODE
18#define HANDLE_TARGET_OPCODE(OPC, NUM)
19#endif
20
21/// HANDLE_TARGET_OPCODE_MARKER defines an alternative identifier for an opcode.
22///
23#ifndef HANDLE_TARGET_OPCODE_MARKER
24#define HANDLE_TARGET_OPCODE_MARKER(IDENT, OPC)
25#endif
26
27/// Every instruction defined here must also appear in Target.td.
28///
29HANDLE_TARGET_OPCODE(PHI)
30HANDLE_TARGET_OPCODE(INLINEASM)
31HANDLE_TARGET_OPCODE(INLINEASM_BR)
32HANDLE_TARGET_OPCODE(CFI_INSTRUCTION)
33HANDLE_TARGET_OPCODE(EH_LABEL)
34HANDLE_TARGET_OPCODE(GC_LABEL)
35HANDLE_TARGET_OPCODE(ANNOTATION_LABEL)
36
37/// KILL - This instruction is a noop that is used only to adjust the
38/// liveness of registers. This can be useful when dealing with
39/// sub-registers.
40HANDLE_TARGET_OPCODE(KILL)
41
42/// EXTRACT_SUBREG - This instruction takes two operands: a register
43/// that has subregisters, and a subregister index. It returns the
44/// extracted subregister value. This is commonly used to implement
45/// truncation operations on target architectures which support it.
46HANDLE_TARGET_OPCODE(EXTRACT_SUBREG)
47
48/// INSERT_SUBREG - This instruction takes three operands: a register that
49/// has subregisters, a register providing an insert value, and a
50/// subregister index. It returns the value of the first register with the
51/// value of the second register inserted. The first register is often
52/// defined by an IMPLICIT_DEF, because it is commonly used to implement
53/// anyext operations on target architectures which support it.
54HANDLE_TARGET_OPCODE(INSERT_SUBREG)
55
56/// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
57HANDLE_TARGET_OPCODE(IMPLICIT_DEF)
58
59/// SUBREG_TO_REG - Assert the value of bits in a super register.
60/// The result of this instruction is the value of the second operand inserted
61/// into the subregister specified by the third operand. All other bits are
62/// assumed to be equal to the bits in the immediate integer constant in the
63/// first operand. This instruction just communicates information; No code
64/// should be generated.
65/// This is typically used after an instruction where the write to a subregister
66/// implicitly cleared the bits in the super registers.
67HANDLE_TARGET_OPCODE(SUBREG_TO_REG)
68
69/// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
70/// register-to-register copy into a specific register class. This is only
71/// used between instruction selection and MachineInstr creation, before
72/// virtual registers have been created for all the instructions, and it's
73/// only needed in cases where the register classes implied by the
74/// instructions are insufficient. It is emitted as a COPY MachineInstr.
75HANDLE_TARGET_OPCODE(COPY_TO_REGCLASS)
76
77/// DBG_VALUE - a mapping of the llvm.dbg.value intrinsic
78HANDLE_TARGET_OPCODE(DBG_VALUE)
79
80/// DBG_VALUE - a mapping of the llvm.dbg.value intrinsic with a variadic
81/// list of locations
82HANDLE_TARGET_OPCODE(DBG_VALUE_LIST)
83
84/// DBG_INSTR_REF - A mapping of llvm.dbg.value referring to the instruction
85/// that defines the value, rather than a virtual register.
86HANDLE_TARGET_OPCODE(DBG_INSTR_REF)
87
88/// DBG_PHI - remainder of a PHI, identifies a program point where values
89/// merge under control flow.
90HANDLE_TARGET_OPCODE(DBG_PHI)
91
92/// DBG_LABEL - a mapping of the llvm.dbg.label intrinsic
93HANDLE_TARGET_OPCODE(DBG_LABEL)
94
95/// REG_SEQUENCE - This variadic instruction is used to form a register that
96/// represents a consecutive sequence of sub-registers. It's used as a
97/// register coalescing / allocation aid and must be eliminated before code
98/// emission.
99// In SDNode form, the first operand encodes the register class created by
100// the REG_SEQUENCE, while each subsequent pair names a vreg + subreg index
101// pair.  Once it has been lowered to a MachineInstr, the regclass operand
102// is no longer present.
103/// e.g. v1027 = REG_SEQUENCE v1024, 3, v1025, 4, v1026, 5
104/// After register coalescing references of v1024 should be replace with
105/// v1027:3, v1025 with v1027:4, etc.
106HANDLE_TARGET_OPCODE(REG_SEQUENCE)
107
108/// COPY - Target-independent register copy. This instruction can also be
109/// used to copy between subregisters of virtual registers.
110HANDLE_TARGET_OPCODE(COPY)
111
112/// BUNDLE - This instruction represents an instruction bundle. Instructions
113/// which immediately follow a BUNDLE instruction which are marked with
114/// 'InsideBundle' flag are inside the bundle.
115HANDLE_TARGET_OPCODE(BUNDLE)
116
117/// Lifetime markers.
118HANDLE_TARGET_OPCODE(LIFETIME_START)
119HANDLE_TARGET_OPCODE(LIFETIME_END)
120
121/// Pseudo probe
122HANDLE_TARGET_OPCODE(PSEUDO_PROBE)
123
124/// Arithmetic fence.
125HANDLE_TARGET_OPCODE(ARITH_FENCE)
126
127/// A Stackmap instruction captures the location of live variables at its
128/// position in the instruction stream. It is followed by a shadow of bytes
129/// that must lie within the function and not contain another stackmap.
130HANDLE_TARGET_OPCODE(STACKMAP)
131
132/// FEntry all - This is a marker instruction which gets translated into a raw fentry call.
133HANDLE_TARGET_OPCODE(FENTRY_CALL)
134
135/// Patchable call instruction - this instruction represents a call to a
136/// constant address, followed by a series of NOPs. It is intended to
137/// support optimizations for dynamic languages (such as javascript) that
138/// rewrite calls to runtimes with more efficient code sequences.
139/// This also implies a stack map.
140HANDLE_TARGET_OPCODE(PATCHPOINT)
141
142/// This pseudo-instruction loads the stack guard value. Targets which need
143/// to prevent the stack guard value or address from being spilled to the
144/// stack should override TargetLowering::emitLoadStackGuardNode and
145/// additionally expand this pseudo after register allocation.
146HANDLE_TARGET_OPCODE(LOAD_STACK_GUARD)
147
148/// These are used to support call sites that must have the stack adjusted
149/// before the call (e.g. to initialize an argument passed by value).
150/// See llvm.call.preallocated.{setup,arg} in the LangRef for more details.
151HANDLE_TARGET_OPCODE(PREALLOCATED_SETUP)
152HANDLE_TARGET_OPCODE(PREALLOCATED_ARG)
153
154/// Call instruction with associated vm state for deoptimization and list
155/// of live pointers for relocation by the garbage collector.  It is
156/// intended to support garbage collection with fully precise relocating
157/// collectors and deoptimizations in either the callee or caller.
158HANDLE_TARGET_OPCODE(STATEPOINT)
159
160/// Instruction that records the offset of a local stack allocation passed to
161/// llvm.localescape. It has two arguments: the symbol for the label and the
162/// frame index of the local stack allocation.
163HANDLE_TARGET_OPCODE(LOCAL_ESCAPE)
164
165/// Wraps a machine instruction which can fault, bundled with associated
166/// information on how to handle such a fault.
167/// For example loading instruction that may page fault, bundled with associated
168/// information on how to handle such a page fault.  It is intended to support
169/// "zero cost" null checks in managed languages by allowing LLVM to fold
170/// comparisons into existing memory operations.
171HANDLE_TARGET_OPCODE(FAULTING_OP)
172
173/// Precedes a machine instruction to add patchability constraints.  An
174/// instruction after PATCHABLE_OP has to either have a minimum
175/// size or be preceded with a nop of that size.  The first operand is
176/// an immediate denoting the minimum size of the following instruction.
177HANDLE_TARGET_OPCODE(PATCHABLE_OP)
178
179/// This is a marker instruction which gets translated into a nop sled, useful
180/// for inserting instrumentation instructions at runtime.
181HANDLE_TARGET_OPCODE(PATCHABLE_FUNCTION_ENTER)
182
183/// Wraps a return instruction and its operands to enable adding nop sleds
184/// either before or after the return. The nop sleds are useful for inserting
185/// instrumentation instructions at runtime.
186/// The patch here replaces the return instruction.
187HANDLE_TARGET_OPCODE(PATCHABLE_RET)
188
189/// This is a marker instruction which gets translated into a nop sled, useful
190/// for inserting instrumentation instructions at runtime.
191/// The patch here prepends the return instruction.
192/// The same thing as in x86_64 is not possible for ARM because it has multiple
193/// return instructions. Furthermore, CPU allows parametrized and even
194/// conditional return instructions. In the current ARM implementation we are
195/// making use of the fact that currently LLVM doesn't seem to generate
196/// conditional return instructions.
197/// On ARM, the same instruction can be used for popping multiple registers
198/// from the stack and returning (it just pops pc register too), and LLVM
199/// generates it sometimes. So we can't insert the sled between this stack
200/// adjustment and the return without splitting the original instruction into 2
201/// instructions. So on ARM, rather than jumping into the exit trampoline, we
202/// call it, it does the tracing, preserves the stack and returns.
203HANDLE_TARGET_OPCODE(PATCHABLE_FUNCTION_EXIT)
204
205/// Wraps a tail call instruction and its operands to enable adding nop sleds
206/// either before or after the tail exit. We use this as a disambiguation from
207/// PATCHABLE_RET which specifically only works for return instructions.
208HANDLE_TARGET_OPCODE(PATCHABLE_TAIL_CALL)
209
210/// Wraps a logging call and its arguments with nop sleds. At runtime, this can
211/// be patched to insert instrumentation instructions.
212HANDLE_TARGET_OPCODE(PATCHABLE_EVENT_CALL)
213
214/// Wraps a typed logging call and its argument with nop sleds. At runtime, this
215/// can be patched to insert instrumentation instructions.
216HANDLE_TARGET_OPCODE(PATCHABLE_TYPED_EVENT_CALL)
217
218HANDLE_TARGET_OPCODE(ICALL_BRANCH_FUNNEL)
219
220// This is a fence with the singlethread scope. It represents a compiler memory
221// barrier, but does not correspond to any generated instruction.
222HANDLE_TARGET_OPCODE(MEMBARRIER)
223
224// Provides information about what jump table the following indirect branch is
225// using.
226HANDLE_TARGET_OPCODE(JUMP_TABLE_DEBUG_INFO)
227
228HANDLE_TARGET_OPCODE(CONVERGENCECTRL_ENTRY)
229HANDLE_TARGET_OPCODE(CONVERGENCECTRL_ANCHOR)
230HANDLE_TARGET_OPCODE(CONVERGENCECTRL_LOOP)
231HANDLE_TARGET_OPCODE(CONVERGENCECTRL_GLUE)
232
233/// The following generic opcodes are not supposed to appear after ISel.
234/// This is something we might want to relax, but for now, this is convenient
235/// to produce diagnostics.
236
237/// Instructions which should not exist past instruction selection, but do not
238/// generate code. These instructions only act as optimization hints.
239HANDLE_TARGET_OPCODE(G_ASSERT_SEXT)
240HANDLE_TARGET_OPCODE(G_ASSERT_ZEXT)
241HANDLE_TARGET_OPCODE(G_ASSERT_ALIGN)
242HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPTIMIZATION_HINT_START,
243                            G_ASSERT_SEXT)
244HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPTIMIZATION_HINT_END,
245                            G_ASSERT_ALIGN)
246
247/// Generic ADD instruction. This is an integer add.
248HANDLE_TARGET_OPCODE(G_ADD)
249HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPCODE_START, G_ADD)
250
251/// Generic SUB instruction. This is an integer sub.
252HANDLE_TARGET_OPCODE(G_SUB)
253
254// Generic multiply instruction.
255HANDLE_TARGET_OPCODE(G_MUL)
256
257// Generic signed division instruction.
258HANDLE_TARGET_OPCODE(G_SDIV)
259
260// Generic unsigned division instruction.
261HANDLE_TARGET_OPCODE(G_UDIV)
262
263// Generic signed remainder instruction.
264HANDLE_TARGET_OPCODE(G_SREM)
265
266// Generic unsigned remainder instruction.
267HANDLE_TARGET_OPCODE(G_UREM)
268
269// Generic signed divrem instruction.
270HANDLE_TARGET_OPCODE(G_SDIVREM)
271
272// Generic unsigned divrem instruction.
273HANDLE_TARGET_OPCODE(G_UDIVREM)
274
275/// Generic bitwise and instruction.
276HANDLE_TARGET_OPCODE(G_AND)
277
278/// Generic bitwise or instruction.
279HANDLE_TARGET_OPCODE(G_OR)
280
281/// Generic bitwise exclusive-or instruction.
282HANDLE_TARGET_OPCODE(G_XOR)
283
284
285HANDLE_TARGET_OPCODE(G_IMPLICIT_DEF)
286
287/// Generic PHI instruction with types.
288HANDLE_TARGET_OPCODE(G_PHI)
289
290/// Generic instruction to materialize the address of an alloca or other
291/// stack-based object.
292HANDLE_TARGET_OPCODE(G_FRAME_INDEX)
293
294/// Generic reference to global value.
295HANDLE_TARGET_OPCODE(G_GLOBAL_VALUE)
296
297/// Generic ptrauth-signed reference to global value.
298HANDLE_TARGET_OPCODE(G_PTRAUTH_GLOBAL_VALUE)
299
300/// Generic instruction to materialize the address of an object in the constant
301/// pool.
302HANDLE_TARGET_OPCODE(G_CONSTANT_POOL)
303
304/// Generic instruction to extract blocks of bits from the register given
305/// (typically a sub-register COPY after instruction selection).
306HANDLE_TARGET_OPCODE(G_EXTRACT)
307
308HANDLE_TARGET_OPCODE(G_UNMERGE_VALUES)
309
310/// Generic instruction to insert blocks of bits from the registers given into
311/// the source.
312HANDLE_TARGET_OPCODE(G_INSERT)
313
314/// Generic instruction to paste a variable number of components together into a
315/// larger register.
316HANDLE_TARGET_OPCODE(G_MERGE_VALUES)
317
318/// Generic instruction to create a vector value from a number of scalar
319/// components.
320HANDLE_TARGET_OPCODE(G_BUILD_VECTOR)
321
322/// Generic instruction to create a vector value from a number of scalar
323/// components, which have types larger than the result vector elt type.
324HANDLE_TARGET_OPCODE(G_BUILD_VECTOR_TRUNC)
325
326/// Generic instruction to create a vector by concatenating multiple vectors.
327HANDLE_TARGET_OPCODE(G_CONCAT_VECTORS)
328
329/// Generic pointer to int conversion.
330HANDLE_TARGET_OPCODE(G_PTRTOINT)
331
332/// Generic int to pointer conversion.
333HANDLE_TARGET_OPCODE(G_INTTOPTR)
334
335/// Generic bitcast. The source and destination types must be different, or a
336/// COPY is the relevant instruction.
337HANDLE_TARGET_OPCODE(G_BITCAST)
338
339/// Generic freeze.
340HANDLE_TARGET_OPCODE(G_FREEZE)
341
342/// Constant folding barrier.
343HANDLE_TARGET_OPCODE(G_CONSTANT_FOLD_BARRIER)
344
345// INTRINSIC fptrunc_round intrinsic.
346HANDLE_TARGET_OPCODE(G_INTRINSIC_FPTRUNC_ROUND)
347
348/// INTRINSIC trunc intrinsic.
349HANDLE_TARGET_OPCODE(G_INTRINSIC_TRUNC)
350
351/// INTRINSIC round intrinsic.
352HANDLE_TARGET_OPCODE(G_INTRINSIC_ROUND)
353
354/// INTRINSIC round to integer intrinsic.
355HANDLE_TARGET_OPCODE(G_INTRINSIC_LRINT)
356
357/// INTRINSIC long round to integer intrinsic.
358HANDLE_TARGET_OPCODE(G_INTRINSIC_LLRINT)
359
360/// INTRINSIC roundeven intrinsic.
361HANDLE_TARGET_OPCODE(G_INTRINSIC_ROUNDEVEN)
362
363/// INTRINSIC readcyclecounter
364HANDLE_TARGET_OPCODE(G_READCYCLECOUNTER)
365
366/// INTRINSIC readsteadycounter
367HANDLE_TARGET_OPCODE(G_READSTEADYCOUNTER)
368
369/// Generic load (including anyext load)
370HANDLE_TARGET_OPCODE(G_LOAD)
371
372/// Generic signext load
373HANDLE_TARGET_OPCODE(G_SEXTLOAD)
374
375/// Generic zeroext load
376HANDLE_TARGET_OPCODE(G_ZEXTLOAD)
377
378/// Generic indexed load (including anyext load)
379HANDLE_TARGET_OPCODE(G_INDEXED_LOAD)
380
381/// Generic indexed signext load
382HANDLE_TARGET_OPCODE(G_INDEXED_SEXTLOAD)
383
384/// Generic indexed zeroext load
385HANDLE_TARGET_OPCODE(G_INDEXED_ZEXTLOAD)
386
387/// Generic store.
388HANDLE_TARGET_OPCODE(G_STORE)
389
390/// Generic indexed store.
391HANDLE_TARGET_OPCODE(G_INDEXED_STORE)
392
393/// Generic atomic cmpxchg with internal success check.
394HANDLE_TARGET_OPCODE(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
395
396/// Generic atomic cmpxchg.
397HANDLE_TARGET_OPCODE(G_ATOMIC_CMPXCHG)
398
399/// Generic atomicrmw.
400HANDLE_TARGET_OPCODE(G_ATOMICRMW_XCHG)
401HANDLE_TARGET_OPCODE(G_ATOMICRMW_ADD)
402HANDLE_TARGET_OPCODE(G_ATOMICRMW_SUB)
403HANDLE_TARGET_OPCODE(G_ATOMICRMW_AND)
404HANDLE_TARGET_OPCODE(G_ATOMICRMW_NAND)
405HANDLE_TARGET_OPCODE(G_ATOMICRMW_OR)
406HANDLE_TARGET_OPCODE(G_ATOMICRMW_XOR)
407HANDLE_TARGET_OPCODE(G_ATOMICRMW_MAX)
408HANDLE_TARGET_OPCODE(G_ATOMICRMW_MIN)
409HANDLE_TARGET_OPCODE(G_ATOMICRMW_UMAX)
410HANDLE_TARGET_OPCODE(G_ATOMICRMW_UMIN)
411HANDLE_TARGET_OPCODE(G_ATOMICRMW_FADD)
412HANDLE_TARGET_OPCODE(G_ATOMICRMW_FSUB)
413HANDLE_TARGET_OPCODE(G_ATOMICRMW_FMAX)
414HANDLE_TARGET_OPCODE(G_ATOMICRMW_FMIN)
415HANDLE_TARGET_OPCODE(G_ATOMICRMW_UINC_WRAP)
416HANDLE_TARGET_OPCODE(G_ATOMICRMW_UDEC_WRAP)
417
418// Marker for start of Generic AtomicRMW opcodes
419HANDLE_TARGET_OPCODE_MARKER(GENERIC_ATOMICRMW_OP_START, G_ATOMICRMW_XCHG)
420
421// Marker for end of Generic AtomicRMW opcodes
422HANDLE_TARGET_OPCODE_MARKER(GENERIC_ATOMICRMW_OP_END, G_ATOMICRMW_UDEC_WRAP)
423
424// Generic atomic fence
425HANDLE_TARGET_OPCODE(G_FENCE)
426
427/// Generic prefetch
428HANDLE_TARGET_OPCODE(G_PREFETCH)
429
430/// Generic conditional branch instruction.
431HANDLE_TARGET_OPCODE(G_BRCOND)
432
433/// Generic indirect branch instruction.
434HANDLE_TARGET_OPCODE(G_BRINDIRECT)
435
436/// Begin an invoke region marker.
437HANDLE_TARGET_OPCODE(G_INVOKE_REGION_START)
438
439/// Generic intrinsic use (without side effects).
440HANDLE_TARGET_OPCODE(G_INTRINSIC)
441
442/// Generic intrinsic use (with side effects).
443HANDLE_TARGET_OPCODE(G_INTRINSIC_W_SIDE_EFFECTS)
444
445/// Generic intrinsic use (without side effects).
446HANDLE_TARGET_OPCODE(G_INTRINSIC_CONVERGENT)
447
448/// Generic intrinsic use (with side effects).
449HANDLE_TARGET_OPCODE(G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS)
450
451/// Generic extension allowing rubbish in high bits.
452HANDLE_TARGET_OPCODE(G_ANYEXT)
453
454/// Generic instruction to discard the high bits of a register. This differs
455/// from (G_EXTRACT val, 0) on its action on vectors: G_TRUNC will truncate
456/// each element individually, G_EXTRACT will typically discard the high
457/// elements of the vector.
458HANDLE_TARGET_OPCODE(G_TRUNC)
459
460/// Generic integer constant.
461HANDLE_TARGET_OPCODE(G_CONSTANT)
462
463/// Generic floating constant.
464HANDLE_TARGET_OPCODE(G_FCONSTANT)
465
466/// Generic va_start instruction. Stores to its one pointer operand.
467HANDLE_TARGET_OPCODE(G_VASTART)
468
469/// Generic va_arg instruction. Stores to its one pointer operand.
470HANDLE_TARGET_OPCODE(G_VAARG)
471
472// Generic sign extend
473HANDLE_TARGET_OPCODE(G_SEXT)
474HANDLE_TARGET_OPCODE(G_SEXT_INREG)
475
476// Generic zero extend
477HANDLE_TARGET_OPCODE(G_ZEXT)
478
479// Generic left-shift
480HANDLE_TARGET_OPCODE(G_SHL)
481
482// Generic logical right-shift
483HANDLE_TARGET_OPCODE(G_LSHR)
484
485// Generic arithmetic right-shift
486HANDLE_TARGET_OPCODE(G_ASHR)
487
488// Generic funnel left shift
489HANDLE_TARGET_OPCODE(G_FSHL)
490
491// Generic funnel right shift
492HANDLE_TARGET_OPCODE(G_FSHR)
493
494// Generic right rotate
495HANDLE_TARGET_OPCODE(G_ROTR)
496
497// Generic left rotate
498HANDLE_TARGET_OPCODE(G_ROTL)
499
500/// Generic integer-base comparison, also applicable to vectors of integers.
501HANDLE_TARGET_OPCODE(G_ICMP)
502
503/// Generic floating-point comparison, also applicable to vectors.
504HANDLE_TARGET_OPCODE(G_FCMP)
505
506/// Generic signed 3-way comparison.
507HANDLE_TARGET_OPCODE(G_SCMP)
508
509/// Generic unsigned 3-way comparison.
510HANDLE_TARGET_OPCODE(G_UCMP)
511
512/// Generic select.
513HANDLE_TARGET_OPCODE(G_SELECT)
514
515/// Generic unsigned add instruction, consuming the normal operands and
516/// producing the result and a carry flag.
517HANDLE_TARGET_OPCODE(G_UADDO)
518
519/// Generic unsigned add instruction, consuming the normal operands plus a carry
520/// flag, and similarly producing the result and a carry flag.
521HANDLE_TARGET_OPCODE(G_UADDE)
522
523/// Generic unsigned sub instruction, consuming the normal operands and
524/// producing the result and a carry flag.
525HANDLE_TARGET_OPCODE(G_USUBO)
526
527/// Generic unsigned subtract instruction, consuming the normal operands plus a
528/// carry flag, and similarly producing the result and a carry flag.
529HANDLE_TARGET_OPCODE(G_USUBE)
530
531/// Generic signed add instruction, producing the result and a signed overflow
532/// flag.
533HANDLE_TARGET_OPCODE(G_SADDO)
534
535/// Generic signed add instruction, consuming the normal operands plus a carry
536/// flag, and similarly producing the result and a carry flag.
537HANDLE_TARGET_OPCODE(G_SADDE)
538
539/// Generic signed subtract instruction, producing the result and a signed
540/// overflow flag.
541HANDLE_TARGET_OPCODE(G_SSUBO)
542
543/// Generic signed sub instruction, consuming the normal operands plus a carry
544/// flag, and similarly producing the result and a carry flag.
545HANDLE_TARGET_OPCODE(G_SSUBE)
546
547/// Generic unsigned multiply instruction, producing the result and a signed
548/// overflow flag.
549HANDLE_TARGET_OPCODE(G_UMULO)
550
551/// Generic signed multiply instruction, producing the result and a signed
552/// overflow flag.
553HANDLE_TARGET_OPCODE(G_SMULO)
554
555// Multiply two numbers at twice the incoming bit width (unsigned) and return
556// the high half of the result.
557HANDLE_TARGET_OPCODE(G_UMULH)
558
559// Multiply two numbers at twice the incoming bit width (signed) and return
560// the high half of the result.
561HANDLE_TARGET_OPCODE(G_SMULH)
562
563/// Generic saturating unsigned addition.
564HANDLE_TARGET_OPCODE(G_UADDSAT)
565
566/// Generic saturating signed addition.
567HANDLE_TARGET_OPCODE(G_SADDSAT)
568
569/// Generic saturating unsigned subtraction.
570HANDLE_TARGET_OPCODE(G_USUBSAT)
571
572/// Generic saturating signed subtraction.
573HANDLE_TARGET_OPCODE(G_SSUBSAT)
574
575/// Generic saturating unsigned left shift.
576HANDLE_TARGET_OPCODE(G_USHLSAT)
577
578/// Generic saturating signed left shift.
579HANDLE_TARGET_OPCODE(G_SSHLSAT)
580
581// Perform signed fixed point multiplication
582HANDLE_TARGET_OPCODE(G_SMULFIX)
583
584// Perform unsigned fixed point multiplication
585HANDLE_TARGET_OPCODE(G_UMULFIX)
586
587// Perform signed, saturating fixed point multiplication
588HANDLE_TARGET_OPCODE(G_SMULFIXSAT)
589
590// Perform unsigned, saturating fixed point multiplication
591HANDLE_TARGET_OPCODE(G_UMULFIXSAT)
592
593// Perform signed fixed point division
594HANDLE_TARGET_OPCODE(G_SDIVFIX)
595
596// Perform unsigned fixed point division
597HANDLE_TARGET_OPCODE(G_UDIVFIX)
598
599// Perform signed, saturating fixed point division
600HANDLE_TARGET_OPCODE(G_SDIVFIXSAT)
601
602// Perform unsigned, saturating fixed point division
603HANDLE_TARGET_OPCODE(G_UDIVFIXSAT)
604
605/// Generic FP addition.
606HANDLE_TARGET_OPCODE(G_FADD)
607
608/// Generic FP subtraction.
609HANDLE_TARGET_OPCODE(G_FSUB)
610
611/// Generic FP multiplication.
612HANDLE_TARGET_OPCODE(G_FMUL)
613
614/// Generic FMA multiplication. Behaves like llvm fma intrinsic
615HANDLE_TARGET_OPCODE(G_FMA)
616
617/// Generic FP multiply and add. Behaves as separate fmul and fadd.
618HANDLE_TARGET_OPCODE(G_FMAD)
619
620/// Generic FP division.
621HANDLE_TARGET_OPCODE(G_FDIV)
622
623/// Generic FP remainder.
624HANDLE_TARGET_OPCODE(G_FREM)
625
626/// Generic FP exponentiation.
627HANDLE_TARGET_OPCODE(G_FPOW)
628
629/// Generic FP exponentiation, with an integer exponent.
630HANDLE_TARGET_OPCODE(G_FPOWI)
631
632/// Generic base-e exponential of a value.
633HANDLE_TARGET_OPCODE(G_FEXP)
634
635/// Generic base-2 exponential of a value.
636HANDLE_TARGET_OPCODE(G_FEXP2)
637
638/// Generic base-10 exponential of a value.
639HANDLE_TARGET_OPCODE(G_FEXP10)
640
641/// Floating point base-e logarithm of a value.
642HANDLE_TARGET_OPCODE(G_FLOG)
643
644/// Floating point base-2 logarithm of a value.
645HANDLE_TARGET_OPCODE(G_FLOG2)
646
647/// Floating point base-10 logarithm of a value.
648HANDLE_TARGET_OPCODE(G_FLOG10)
649
650/// Floating point x * 2^n
651HANDLE_TARGET_OPCODE(G_FLDEXP)
652
653/// Floating point extract fraction and exponent.
654HANDLE_TARGET_OPCODE(G_FFREXP)
655
656/// Generic FP negation.
657HANDLE_TARGET_OPCODE(G_FNEG)
658
659/// Generic FP extension.
660HANDLE_TARGET_OPCODE(G_FPEXT)
661
662/// Generic float to signed-int conversion
663HANDLE_TARGET_OPCODE(G_FPTRUNC)
664
665/// Generic float to signed-int conversion
666HANDLE_TARGET_OPCODE(G_FPTOSI)
667
668/// Generic float to unsigned-int conversion
669HANDLE_TARGET_OPCODE(G_FPTOUI)
670
671/// Generic signed-int to float conversion
672HANDLE_TARGET_OPCODE(G_SITOFP)
673
674/// Generic unsigned-int to float conversion
675HANDLE_TARGET_OPCODE(G_UITOFP)
676
677/// Generic FP absolute value.
678HANDLE_TARGET_OPCODE(G_FABS)
679
680/// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This does
681/// not require that X and Y have the same type, just that they are both
682/// floating point. X and the result must have the same type.  FCOPYSIGN(f32,
683/// f64) is allowed.
684HANDLE_TARGET_OPCODE(G_FCOPYSIGN)
685
686/// Generic test for floating-point class.
687HANDLE_TARGET_OPCODE(G_IS_FPCLASS)
688
689/// Generic FP canonicalize value.
690HANDLE_TARGET_OPCODE(G_FCANONICALIZE)
691
692/// FP min/max matching libm's fmin/fmax
693HANDLE_TARGET_OPCODE(G_FMINNUM)
694HANDLE_TARGET_OPCODE(G_FMAXNUM)
695
696/// FP min/max matching IEEE-754 2008's minnum/maxnum semantics.
697HANDLE_TARGET_OPCODE(G_FMINNUM_IEEE)
698HANDLE_TARGET_OPCODE(G_FMAXNUM_IEEE)
699
700/// FP min/max matching IEEE-754 2018 draft semantics.
701HANDLE_TARGET_OPCODE(G_FMINIMUM)
702HANDLE_TARGET_OPCODE(G_FMAXIMUM)
703
704/// Access to FP environment.
705HANDLE_TARGET_OPCODE(G_GET_FPENV)
706HANDLE_TARGET_OPCODE(G_SET_FPENV)
707HANDLE_TARGET_OPCODE(G_RESET_FPENV)
708HANDLE_TARGET_OPCODE(G_GET_FPMODE)
709HANDLE_TARGET_OPCODE(G_SET_FPMODE)
710HANDLE_TARGET_OPCODE(G_RESET_FPMODE)
711
712/// Generic pointer offset
713HANDLE_TARGET_OPCODE(G_PTR_ADD)
714
715/// Clear the specified bits in a pointer.
716HANDLE_TARGET_OPCODE(G_PTRMASK)
717
718/// Generic signed integer minimum.
719HANDLE_TARGET_OPCODE(G_SMIN)
720
721/// Generic signed integer maximum.
722HANDLE_TARGET_OPCODE(G_SMAX)
723
724/// Generic unsigned integer maximum.
725HANDLE_TARGET_OPCODE(G_UMIN)
726
727/// Generic unsigned integer maximum.
728HANDLE_TARGET_OPCODE(G_UMAX)
729
730/// Generic integer absolute value.
731HANDLE_TARGET_OPCODE(G_ABS)
732
733HANDLE_TARGET_OPCODE(G_LROUND)
734HANDLE_TARGET_OPCODE(G_LLROUND)
735
736/// Generic BRANCH instruction. This is an unconditional branch.
737HANDLE_TARGET_OPCODE(G_BR)
738
739/// Generic branch to jump table entry.
740HANDLE_TARGET_OPCODE(G_BRJT)
741
742/// Generic vscale.
743HANDLE_TARGET_OPCODE(G_VSCALE)
744
745/// Generic insert subvector.
746HANDLE_TARGET_OPCODE(G_INSERT_SUBVECTOR)
747
748/// Generic extract subvector.
749HANDLE_TARGET_OPCODE(G_EXTRACT_SUBVECTOR)
750
751/// Generic insertelement.
752HANDLE_TARGET_OPCODE(G_INSERT_VECTOR_ELT)
753
754/// Generic extractelement.
755HANDLE_TARGET_OPCODE(G_EXTRACT_VECTOR_ELT)
756
757/// Generic shufflevector.
758HANDLE_TARGET_OPCODE(G_SHUFFLE_VECTOR)
759
760/// Generic splatvector.
761HANDLE_TARGET_OPCODE(G_SPLAT_VECTOR)
762
763/// Generic masked compress.
764HANDLE_TARGET_OPCODE(G_VECTOR_COMPRESS)
765
766/// Generic count trailing zeroes.
767HANDLE_TARGET_OPCODE(G_CTTZ)
768
769/// Same as above, undefined for zero inputs.
770HANDLE_TARGET_OPCODE(G_CTTZ_ZERO_UNDEF)
771
772/// Generic count leading zeroes.
773HANDLE_TARGET_OPCODE(G_CTLZ)
774
775/// Same as above, undefined for zero inputs.
776HANDLE_TARGET_OPCODE(G_CTLZ_ZERO_UNDEF)
777
778/// Generic count bits.
779HANDLE_TARGET_OPCODE(G_CTPOP)
780
781/// Generic byte swap.
782HANDLE_TARGET_OPCODE(G_BSWAP)
783
784/// Generic bit reverse.
785HANDLE_TARGET_OPCODE(G_BITREVERSE)
786
787/// Floating point ceil.
788HANDLE_TARGET_OPCODE(G_FCEIL)
789
790/// Floating point cosine.
791HANDLE_TARGET_OPCODE(G_FCOS)
792
793/// Floating point sine.
794HANDLE_TARGET_OPCODE(G_FSIN)
795
796/// Floating point tangent.
797HANDLE_TARGET_OPCODE(G_FTAN)
798
799/// Floating point arccosine.
800HANDLE_TARGET_OPCODE(G_FACOS)
801
802/// Floating point arcsine.
803HANDLE_TARGET_OPCODE(G_FASIN)
804
805/// Floating point arctangent.
806HANDLE_TARGET_OPCODE(G_FATAN)
807
808/// Floating point hyperbolic cosine.
809HANDLE_TARGET_OPCODE(G_FCOSH)
810
811/// Floating point hyperbolic sine.
812HANDLE_TARGET_OPCODE(G_FSINH)
813
814/// Floating point hyperbolic tangent.
815HANDLE_TARGET_OPCODE(G_FTANH)
816
817/// Floating point square root.
818HANDLE_TARGET_OPCODE(G_FSQRT)
819
820/// Floating point floor.
821HANDLE_TARGET_OPCODE(G_FFLOOR)
822
823/// Floating point round to next integer.
824HANDLE_TARGET_OPCODE(G_FRINT)
825
826/// Floating point round to nearest integer.
827HANDLE_TARGET_OPCODE(G_FNEARBYINT)
828
829/// Generic AddressSpaceCast.
830HANDLE_TARGET_OPCODE(G_ADDRSPACE_CAST)
831
832/// Generic block address
833HANDLE_TARGET_OPCODE(G_BLOCK_ADDR)
834
835/// Generic jump table address
836HANDLE_TARGET_OPCODE(G_JUMP_TABLE)
837
838/// Generic dynamic stack allocation.
839HANDLE_TARGET_OPCODE(G_DYN_STACKALLOC)
840
841/// Generic stack pointer save.
842HANDLE_TARGET_OPCODE(G_STACKSAVE)
843
844/// Generic stack pointer restore.
845HANDLE_TARGET_OPCODE(G_STACKRESTORE)
846
847/// Strict floating point instructions.
848HANDLE_TARGET_OPCODE(G_STRICT_FADD)
849HANDLE_TARGET_OPCODE(G_STRICT_FSUB)
850HANDLE_TARGET_OPCODE(G_STRICT_FMUL)
851HANDLE_TARGET_OPCODE(G_STRICT_FDIV)
852HANDLE_TARGET_OPCODE(G_STRICT_FREM)
853HANDLE_TARGET_OPCODE(G_STRICT_FMA)
854HANDLE_TARGET_OPCODE(G_STRICT_FSQRT)
855HANDLE_TARGET_OPCODE(G_STRICT_FLDEXP)
856
857/// read_register intrinsic
858HANDLE_TARGET_OPCODE(G_READ_REGISTER)
859
860/// write_register intrinsic
861HANDLE_TARGET_OPCODE(G_WRITE_REGISTER)
862
863/// llvm.memcpy intrinsic
864HANDLE_TARGET_OPCODE(G_MEMCPY)
865
866/// llvm.memcpy.inline intrinsic
867HANDLE_TARGET_OPCODE(G_MEMCPY_INLINE)
868
869/// llvm.memmove intrinsic
870HANDLE_TARGET_OPCODE(G_MEMMOVE)
871
872/// llvm.memset intrinsic
873HANDLE_TARGET_OPCODE(G_MEMSET)
874HANDLE_TARGET_OPCODE(G_BZERO)
875
876/// llvm.trap, llvm.debugtrap and llvm.ubsantrap intrinsics
877HANDLE_TARGET_OPCODE(G_TRAP)
878HANDLE_TARGET_OPCODE(G_DEBUGTRAP)
879HANDLE_TARGET_OPCODE(G_UBSANTRAP)
880
881/// Vector reductions
882HANDLE_TARGET_OPCODE(G_VECREDUCE_SEQ_FADD)
883HANDLE_TARGET_OPCODE(G_VECREDUCE_SEQ_FMUL)
884HANDLE_TARGET_OPCODE(G_VECREDUCE_FADD)
885HANDLE_TARGET_OPCODE(G_VECREDUCE_FMUL)
886HANDLE_TARGET_OPCODE(G_VECREDUCE_FMAX)
887HANDLE_TARGET_OPCODE(G_VECREDUCE_FMIN)
888HANDLE_TARGET_OPCODE(G_VECREDUCE_FMAXIMUM)
889HANDLE_TARGET_OPCODE(G_VECREDUCE_FMINIMUM)
890HANDLE_TARGET_OPCODE(G_VECREDUCE_ADD)
891HANDLE_TARGET_OPCODE(G_VECREDUCE_MUL)
892HANDLE_TARGET_OPCODE(G_VECREDUCE_AND)
893HANDLE_TARGET_OPCODE(G_VECREDUCE_OR)
894HANDLE_TARGET_OPCODE(G_VECREDUCE_XOR)
895HANDLE_TARGET_OPCODE(G_VECREDUCE_SMAX)
896HANDLE_TARGET_OPCODE(G_VECREDUCE_SMIN)
897HANDLE_TARGET_OPCODE(G_VECREDUCE_UMAX)
898HANDLE_TARGET_OPCODE(G_VECREDUCE_UMIN)
899
900HANDLE_TARGET_OPCODE(G_SBFX)
901HANDLE_TARGET_OPCODE(G_UBFX)
902
903/// Marker for the end of the generic opcode.
904/// This is used to check if an opcode is in the range of the
905/// generic opcodes.
906HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPCODE_END, G_UBFX)
907
908/// BUILTIN_OP_END - This must be the last enum value in this list.
909/// The target-specific post-isel opcode values start here.
910HANDLE_TARGET_OPCODE_MARKER(GENERIC_OP_END, PRE_ISEL_GENERIC_OPCODE_END)
911