1 //===- IteratedDominanceFrontier.h - Calculate IDF --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// Compute iterated dominance frontiers using a linear time algorithm.
10 ///
11 /// The algorithm used here is based on:
12 ///
13 /// Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
14 /// In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
15 /// Programming Languages
16 /// POPL '95. ACM, New York, NY, 62-73.
17 ///
18 /// It has been modified to not explicitly use the DJ graph data structure and
19 /// to directly compute pruned SSA using per-variable liveness information.
20 //
21 //===----------------------------------------------------------------------===//
22
23 #ifndef LLVM_SUPPORT_GENERICITERATEDDOMINANCEFRONTIER_H
24 #define LLVM_SUPPORT_GENERICITERATEDDOMINANCEFRONTIER_H
25
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/Support/GenericDomTree.h"
30 #include <queue>
31
32 namespace llvm {
33
34 namespace IDFCalculatorDetail {
35
36 /// Generic utility class used for getting the children of a basic block.
37 /// May be specialized if, for example, one wouldn't like to return nullpointer
38 /// successors.
39 template <class NodeTy, bool IsPostDom> struct ChildrenGetterTy {
40 using NodeRef = typename GraphTraits<NodeTy *>::NodeRef;
41 using ChildIteratorType = typename GraphTraits<NodeTy *>::ChildIteratorType;
42 using range = iterator_range<ChildIteratorType>;
43
44 range get(const NodeRef &N);
45 };
46
47 } // end of namespace IDFCalculatorDetail
48
49 /// Determine the iterated dominance frontier, given a set of defining
50 /// blocks, and optionally, a set of live-in blocks.
51 ///
52 /// In turn, the results can be used to place phi nodes.
53 ///
54 /// This algorithm is a linear time computation of Iterated Dominance Frontiers,
55 /// pruned using the live-in set.
56 /// By default, liveness is not used to prune the IDF computation.
57 /// The template parameters should be of a CFG block type.
58 template <class NodeTy, bool IsPostDom> class IDFCalculatorBase {
59 public:
60 using OrderedNodeTy =
61 std::conditional_t<IsPostDom, Inverse<NodeTy *>, NodeTy *>;
62 using ChildrenGetterTy =
63 IDFCalculatorDetail::ChildrenGetterTy<NodeTy, IsPostDom>;
64
IDFCalculatorBase(DominatorTreeBase<NodeTy,IsPostDom> & DT)65 IDFCalculatorBase(DominatorTreeBase<NodeTy, IsPostDom> &DT) : DT(DT) {}
66
IDFCalculatorBase(DominatorTreeBase<NodeTy,IsPostDom> & DT,const ChildrenGetterTy & C)67 IDFCalculatorBase(DominatorTreeBase<NodeTy, IsPostDom> &DT,
68 const ChildrenGetterTy &C)
69 : DT(DT), ChildrenGetter(C) {}
70
71 /// Give the IDF calculator the set of blocks in which the value is
72 /// defined. This is equivalent to the set of starting blocks it should be
73 /// calculating the IDF for (though later gets pruned based on liveness).
74 ///
75 /// Note: This set *must* live for the entire lifetime of the IDF calculator.
setDefiningBlocks(const SmallPtrSetImpl<NodeTy * > & Blocks)76 void setDefiningBlocks(const SmallPtrSetImpl<NodeTy *> &Blocks) {
77 DefBlocks = &Blocks;
78 }
79
80 /// Give the IDF calculator the set of blocks in which the value is
81 /// live on entry to the block. This is used to prune the IDF calculation to
82 /// not include blocks where any phi insertion would be dead.
83 ///
84 /// Note: This set *must* live for the entire lifetime of the IDF calculator.
setLiveInBlocks(const SmallPtrSetImpl<NodeTy * > & Blocks)85 void setLiveInBlocks(const SmallPtrSetImpl<NodeTy *> &Blocks) {
86 LiveInBlocks = &Blocks;
87 useLiveIn = true;
88 }
89
90 /// Reset the live-in block set to be empty, and tell the IDF
91 /// calculator to not use liveness anymore.
resetLiveInBlocks()92 void resetLiveInBlocks() {
93 LiveInBlocks = nullptr;
94 useLiveIn = false;
95 }
96
97 /// Calculate iterated dominance frontiers
98 ///
99 /// This uses the linear-time phi algorithm based on DJ-graphs mentioned in
100 /// the file-level comment. It performs DF->IDF pruning using the live-in
101 /// set, to avoid computing the IDF for blocks where an inserted PHI node
102 /// would be dead.
103 void calculate(SmallVectorImpl<NodeTy *> &IDFBlocks);
104
105 private:
106 DominatorTreeBase<NodeTy, IsPostDom> &DT;
107 ChildrenGetterTy ChildrenGetter;
108 bool useLiveIn = false;
109 const SmallPtrSetImpl<NodeTy *> *LiveInBlocks;
110 const SmallPtrSetImpl<NodeTy *> *DefBlocks;
111 };
112
113 //===----------------------------------------------------------------------===//
114 // Implementation.
115 //===----------------------------------------------------------------------===//
116
117 namespace IDFCalculatorDetail {
118
119 template <class NodeTy, bool IsPostDom>
120 typename ChildrenGetterTy<NodeTy, IsPostDom>::range
get(const NodeRef & N)121 ChildrenGetterTy<NodeTy, IsPostDom>::get(const NodeRef &N) {
122 using OrderedNodeTy =
123 typename IDFCalculatorBase<NodeTy, IsPostDom>::OrderedNodeTy;
124
125 return children<OrderedNodeTy>(N);
126 }
127
128 } // end of namespace IDFCalculatorDetail
129
130 template <class NodeTy, bool IsPostDom>
calculate(SmallVectorImpl<NodeTy * > & IDFBlocks)131 void IDFCalculatorBase<NodeTy, IsPostDom>::calculate(
132 SmallVectorImpl<NodeTy *> &IDFBlocks) {
133 // Use a priority queue keyed on dominator tree level so that inserted nodes
134 // are handled from the bottom of the dominator tree upwards. We also augment
135 // the level with a DFS number to ensure that the blocks are ordered in a
136 // deterministic way.
137 using DomTreeNodePair =
138 std::pair<DomTreeNodeBase<NodeTy> *, std::pair<unsigned, unsigned>>;
139 using IDFPriorityQueue =
140 std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
141 less_second>;
142
143 IDFPriorityQueue PQ;
144
145 DT.updateDFSNumbers();
146
147 SmallVector<DomTreeNodeBase<NodeTy> *, 32> Worklist;
148 SmallPtrSet<DomTreeNodeBase<NodeTy> *, 32> VisitedPQ;
149 SmallPtrSet<DomTreeNodeBase<NodeTy> *, 32> VisitedWorklist;
150
151 for (NodeTy *BB : *DefBlocks)
152 if (DomTreeNodeBase<NodeTy> *Node = DT.getNode(BB)) {
153 PQ.push({Node, std::make_pair(Node->getLevel(), Node->getDFSNumIn())});
154 VisitedWorklist.insert(Node);
155 }
156
157 while (!PQ.empty()) {
158 DomTreeNodePair RootPair = PQ.top();
159 PQ.pop();
160 DomTreeNodeBase<NodeTy> *Root = RootPair.first;
161 unsigned RootLevel = RootPair.second.first;
162
163 // Walk all dominator tree children of Root, inspecting their CFG edges with
164 // targets elsewhere on the dominator tree. Only targets whose level is at
165 // most Root's level are added to the iterated dominance frontier of the
166 // definition set.
167
168 assert(Worklist.empty());
169 Worklist.push_back(Root);
170
171 while (!Worklist.empty()) {
172 DomTreeNodeBase<NodeTy> *Node = Worklist.pop_back_val();
173 NodeTy *BB = Node->getBlock();
174 // Succ is the successor in the direction we are calculating IDF, so it is
175 // successor for IDF, and predecessor for Reverse IDF.
176 auto DoWork = [&](NodeTy *Succ) {
177 DomTreeNodeBase<NodeTy> *SuccNode = DT.getNode(Succ);
178
179 const unsigned SuccLevel = SuccNode->getLevel();
180 if (SuccLevel > RootLevel)
181 return;
182
183 if (!VisitedPQ.insert(SuccNode).second)
184 return;
185
186 NodeTy *SuccBB = SuccNode->getBlock();
187 if (useLiveIn && !LiveInBlocks->count(SuccBB))
188 return;
189
190 IDFBlocks.emplace_back(SuccBB);
191 if (!DefBlocks->count(SuccBB))
192 PQ.push(std::make_pair(
193 SuccNode, std::make_pair(SuccLevel, SuccNode->getDFSNumIn())));
194 };
195
196 for (auto *Succ : ChildrenGetter.get(BB))
197 DoWork(Succ);
198
199 for (auto DomChild : *Node) {
200 if (VisitedWorklist.insert(DomChild).second)
201 Worklist.push_back(DomChild);
202 }
203 }
204 }
205 }
206
207 } // end of namespace llvm
208
209 #endif
210