1 //===- llvm/MC/MCInstrAnalysis.h - InstrDesc target hooks -------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the MCInstrAnalysis class which the MCTargetDescs can 10 // derive from to give additional information to MC. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_MC_MCINSTRANALYSIS_H 15 #define LLVM_MC_MCINSTRANALYSIS_H 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/MC/MCInst.h" 19 #include "llvm/MC/MCInstrDesc.h" 20 #include "llvm/MC/MCInstrInfo.h" 21 #include "llvm/MC/MCRegisterInfo.h" 22 #include <cstdint> 23 #include <vector> 24 25 namespace llvm { 26 27 class MCRegisterInfo; 28 class Triple; 29 30 class MCInstrAnalysis { 31 protected: 32 friend class Target; 33 34 const MCInstrInfo *Info; 35 36 public: MCInstrAnalysis(const MCInstrInfo * Info)37 MCInstrAnalysis(const MCInstrInfo *Info) : Info(Info) {} 38 virtual ~MCInstrAnalysis() = default; 39 40 /// Clear the internal state. See updateState for more information. resetState()41 virtual void resetState() {} 42 43 /// Update internal state with \p Inst at \p Addr. 44 /// 45 /// For some types of analyses, inspecting a single instruction is not 46 /// sufficient. Some examples are auipc/jalr pairs on RISC-V or adrp/ldr pairs 47 /// on AArch64. To support inspecting multiple instructions, targets may keep 48 /// track of an internal state while analysing instructions. Clients should 49 /// call updateState for every instruction which allows later calls to one of 50 /// the analysis functions to take previous instructions into account. 51 /// Whenever state becomes irrelevant (e.g., when starting to disassemble a 52 /// new function), clients should call resetState to clear it. updateState(const MCInst & Inst,uint64_t Addr)53 virtual void updateState(const MCInst &Inst, uint64_t Addr) {} 54 isBranch(const MCInst & Inst)55 virtual bool isBranch(const MCInst &Inst) const { 56 return Info->get(Inst.getOpcode()).isBranch(); 57 } 58 isConditionalBranch(const MCInst & Inst)59 virtual bool isConditionalBranch(const MCInst &Inst) const { 60 return Info->get(Inst.getOpcode()).isConditionalBranch(); 61 } 62 isUnconditionalBranch(const MCInst & Inst)63 virtual bool isUnconditionalBranch(const MCInst &Inst) const { 64 return Info->get(Inst.getOpcode()).isUnconditionalBranch(); 65 } 66 isIndirectBranch(const MCInst & Inst)67 virtual bool isIndirectBranch(const MCInst &Inst) const { 68 return Info->get(Inst.getOpcode()).isIndirectBranch(); 69 } 70 isCall(const MCInst & Inst)71 virtual bool isCall(const MCInst &Inst) const { 72 return Info->get(Inst.getOpcode()).isCall(); 73 } 74 isReturn(const MCInst & Inst)75 virtual bool isReturn(const MCInst &Inst) const { 76 return Info->get(Inst.getOpcode()).isReturn(); 77 } 78 isTerminator(const MCInst & Inst)79 virtual bool isTerminator(const MCInst &Inst) const { 80 return Info->get(Inst.getOpcode()).isTerminator(); 81 } 82 mayAffectControlFlow(const MCInst & Inst,const MCRegisterInfo & MCRI)83 virtual bool mayAffectControlFlow(const MCInst &Inst, 84 const MCRegisterInfo &MCRI) const { 85 if (isBranch(Inst) || isCall(Inst) || isReturn(Inst) || 86 isIndirectBranch(Inst)) 87 return true; 88 unsigned PC = MCRI.getProgramCounter(); 89 if (PC == 0) 90 return false; 91 return Info->get(Inst.getOpcode()).hasDefOfPhysReg(Inst, PC, MCRI); 92 } 93 94 /// Returns true if at least one of the register writes performed by 95 /// \param Inst implicitly clears the upper portion of all super-registers. 96 /// 97 /// Example: on X86-64, a write to EAX implicitly clears the upper half of 98 /// RAX. Also (still on x86) an XMM write perfomed by an AVX 128-bit 99 /// instruction implicitly clears the upper portion of the correspondent 100 /// YMM register. 101 /// 102 /// This method also updates an APInt which is used as mask of register 103 /// writes. There is one bit for every explicit/implicit write performed by 104 /// the instruction. If a write implicitly clears its super-registers, then 105 /// the corresponding bit is set (vic. the corresponding bit is cleared). 106 /// 107 /// The first bits in the APint are related to explicit writes. The remaining 108 /// bits are related to implicit writes. The sequence of writes follows the 109 /// machine operand sequence. For implicit writes, the sequence is defined by 110 /// the MCInstrDesc. 111 /// 112 /// The assumption is that the bit-width of the APInt is correctly set by 113 /// the caller. The default implementation conservatively assumes that none of 114 /// the writes clears the upper portion of a super-register. 115 virtual bool clearsSuperRegisters(const MCRegisterInfo &MRI, 116 const MCInst &Inst, 117 APInt &Writes) const; 118 119 /// Returns true if MI is a dependency breaking zero-idiom for the given 120 /// subtarget. 121 /// 122 /// Mask is used to identify input operands that have their dependency 123 /// broken. Each bit of the mask is associated with a specific input operand. 124 /// Bits associated with explicit input operands are laid out first in the 125 /// mask; implicit operands come after explicit operands. 126 /// 127 /// Dependencies are broken only for operands that have their corresponding bit 128 /// set. Operands that have their bit cleared, or that don't have a 129 /// corresponding bit in the mask don't have their dependency broken. Note 130 /// that Mask may not be big enough to describe all operands. The assumption 131 /// for operands that don't have a correspondent bit in the mask is that those 132 /// are still data dependent. 133 /// 134 /// The only exception to the rule is for when Mask has all zeroes. 135 /// A zero mask means: dependencies are broken for all explicit register 136 /// operands. isZeroIdiom(const MCInst & MI,APInt & Mask,unsigned CPUID)137 virtual bool isZeroIdiom(const MCInst &MI, APInt &Mask, 138 unsigned CPUID) const { 139 return false; 140 } 141 142 /// Returns true if MI is a dependency breaking instruction for the 143 /// subtarget associated with CPUID . 144 /// 145 /// The value computed by a dependency breaking instruction is not dependent 146 /// on the inputs. An example of dependency breaking instruction on X86 is 147 /// `XOR %eax, %eax`. 148 /// 149 /// If MI is a dependency breaking instruction for subtarget CPUID, then Mask 150 /// can be inspected to identify independent operands. 151 /// 152 /// Essentially, each bit of the mask corresponds to an input operand. 153 /// Explicit operands are laid out first in the mask; implicit operands follow 154 /// explicit operands. Bits are set for operands that are independent. 155 /// 156 /// Note that the number of bits in Mask may not be equivalent to the sum of 157 /// explicit and implicit operands in MI. Operands that don't have a 158 /// corresponding bit in Mask are assumed "not independente". 159 /// 160 /// The only exception is for when Mask is all zeroes. That means: explicit 161 /// input operands of MI are independent. isDependencyBreaking(const MCInst & MI,APInt & Mask,unsigned CPUID)162 virtual bool isDependencyBreaking(const MCInst &MI, APInt &Mask, 163 unsigned CPUID) const { 164 return isZeroIdiom(MI, Mask, CPUID); 165 } 166 167 /// Returns true if MI is a candidate for move elimination. 168 /// 169 /// Different subtargets may apply different constraints to optimizable 170 /// register moves. For example, on most X86 subtargets, a candidate for move 171 /// elimination cannot specify the same register for both source and 172 /// destination. isOptimizableRegisterMove(const MCInst & MI,unsigned CPUID)173 virtual bool isOptimizableRegisterMove(const MCInst &MI, 174 unsigned CPUID) const { 175 return false; 176 } 177 178 /// Given a branch instruction try to get the address the branch 179 /// targets. Return true on success, and the address in Target. 180 virtual bool 181 evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size, 182 uint64_t &Target) const; 183 184 /// Given an instruction tries to get the address of a memory operand. Returns 185 /// the address on success. 186 virtual std::optional<uint64_t> 187 evaluateMemoryOperandAddress(const MCInst &Inst, const MCSubtargetInfo *STI, 188 uint64_t Addr, uint64_t Size) const; 189 190 /// Given an instruction with a memory operand that could require relocation, 191 /// returns the offset within the instruction of that relocation. 192 virtual std::optional<uint64_t> 193 getMemoryOperandRelocationOffset(const MCInst &Inst, uint64_t Size) const; 194 195 /// Returns (PLT virtual address, GOT virtual address) pairs for PLT entries. 196 virtual std::vector<std::pair<uint64_t, uint64_t>> findPltEntries(uint64_t PltSectionVA,ArrayRef<uint8_t> PltContents,const Triple & TargetTriple)197 findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents, 198 const Triple &TargetTriple) const { 199 return {}; 200 } 201 }; 202 203 } // end namespace llvm 204 205 #endif // LLVM_MC_MCINSTRANALYSIS_H 206