xref: /freebsd/contrib/llvm-project/llvm/include/llvm/IR/Type.h (revision 5f757f3ff9144b609b3c433dfd370cc6bdc191ad)
1  //===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file contains the declaration of the Type class.  For more "Type"
10  // stuff, look in DerivedTypes.h.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #ifndef LLVM_IR_TYPE_H
15  #define LLVM_IR_TYPE_H
16  
17  #include "llvm/ADT/ArrayRef.h"
18  #include "llvm/Support/CBindingWrapping.h"
19  #include "llvm/Support/Casting.h"
20  #include "llvm/Support/Compiler.h"
21  #include "llvm/Support/ErrorHandling.h"
22  #include "llvm/Support/TypeSize.h"
23  #include <cassert>
24  #include <cstdint>
25  #include <iterator>
26  
27  namespace llvm {
28  
29  class IntegerType;
30  struct fltSemantics;
31  class LLVMContext;
32  class PointerType;
33  class raw_ostream;
34  class StringRef;
35  template <typename PtrType> class SmallPtrSetImpl;
36  
37  /// The instances of the Type class are immutable: once they are created,
38  /// they are never changed.  Also note that only one instance of a particular
39  /// type is ever created.  Thus seeing if two types are equal is a matter of
40  /// doing a trivial pointer comparison. To enforce that no two equal instances
41  /// are created, Type instances can only be created via static factory methods
42  /// in class Type and in derived classes.  Once allocated, Types are never
43  /// free'd.
44  ///
45  class Type {
46  public:
47    //===--------------------------------------------------------------------===//
48    /// Definitions of all of the base types for the Type system.  Based on this
49    /// value, you can cast to a class defined in DerivedTypes.h.
50    /// Note: If you add an element to this, you need to add an element to the
51    /// Type::getPrimitiveType function, or else things will break!
52    /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
53    ///
54    enum TypeID {
55      // PrimitiveTypes
56      HalfTyID = 0,  ///< 16-bit floating point type
57      BFloatTyID,    ///< 16-bit floating point type (7-bit significand)
58      FloatTyID,     ///< 32-bit floating point type
59      DoubleTyID,    ///< 64-bit floating point type
60      X86_FP80TyID,  ///< 80-bit floating point type (X87)
61      FP128TyID,     ///< 128-bit floating point type (112-bit significand)
62      PPC_FP128TyID, ///< 128-bit floating point type (two 64-bits, PowerPC)
63      VoidTyID,      ///< type with no size
64      LabelTyID,     ///< Labels
65      MetadataTyID,  ///< Metadata
66      X86_MMXTyID,   ///< MMX vectors (64 bits, X86 specific)
67      X86_AMXTyID,   ///< AMX vectors (8192 bits, X86 specific)
68      TokenTyID,     ///< Tokens
69  
70      // Derived types... see DerivedTypes.h file.
71      IntegerTyID,        ///< Arbitrary bit width integers
72      FunctionTyID,       ///< Functions
73      PointerTyID,        ///< Pointers
74      StructTyID,         ///< Structures
75      ArrayTyID,          ///< Arrays
76      FixedVectorTyID,    ///< Fixed width SIMD vector type
77      ScalableVectorTyID, ///< Scalable SIMD vector type
78      TypedPointerTyID,   ///< Typed pointer used by some GPU targets
79      TargetExtTyID,      ///< Target extension type
80    };
81  
82  private:
83    /// This refers to the LLVMContext in which this type was uniqued.
84    LLVMContext &Context;
85  
86    TypeID   ID : 8;            // The current base type of this type.
87    unsigned SubclassData : 24; // Space for subclasses to store data.
88                                // Note that this should be synchronized with
89                                // MAX_INT_BITS value in IntegerType class.
90  
91  protected:
92    friend class LLVMContextImpl;
93  
94    explicit Type(LLVMContext &C, TypeID tid)
95      : Context(C), ID(tid), SubclassData(0) {}
96    ~Type() = default;
97  
98    unsigned getSubclassData() const { return SubclassData; }
99  
100    void setSubclassData(unsigned val) {
101      SubclassData = val;
102      // Ensure we don't have any accidental truncation.
103      assert(getSubclassData() == val && "Subclass data too large for field");
104    }
105  
106    /// Keeps track of how many Type*'s there are in the ContainedTys list.
107    unsigned NumContainedTys = 0;
108  
109    /// A pointer to the array of Types contained by this Type. For example, this
110    /// includes the arguments of a function type, the elements of a structure,
111    /// the pointee of a pointer, the element type of an array, etc. This pointer
112    /// may be 0 for types that don't contain other types (Integer, Double,
113    /// Float).
114    Type * const *ContainedTys = nullptr;
115  
116  public:
117    /// Print the current type.
118    /// Omit the type details if \p NoDetails == true.
119    /// E.g., let %st = type { i32, i16 }
120    /// When \p NoDetails is true, we only print %st.
121    /// Put differently, \p NoDetails prints the type as if
122    /// inlined with the operands when printing an instruction.
123    void print(raw_ostream &O, bool IsForDebug = false,
124               bool NoDetails = false) const;
125  
126    void dump() const;
127  
128    /// Return the LLVMContext in which this type was uniqued.
129    LLVMContext &getContext() const { return Context; }
130  
131    //===--------------------------------------------------------------------===//
132    // Accessors for working with types.
133    //
134  
135    /// Return the type id for the type. This will return one of the TypeID enum
136    /// elements defined above.
137    TypeID getTypeID() const { return ID; }
138  
139    /// Return true if this is 'void'.
140    bool isVoidTy() const { return getTypeID() == VoidTyID; }
141  
142    /// Return true if this is 'half', a 16-bit IEEE fp type.
143    bool isHalfTy() const { return getTypeID() == HalfTyID; }
144  
145    /// Return true if this is 'bfloat', a 16-bit bfloat type.
146    bool isBFloatTy() const { return getTypeID() == BFloatTyID; }
147  
148    /// Return true if this is a 16-bit float type.
149    bool is16bitFPTy() const {
150      return getTypeID() == BFloatTyID || getTypeID() == HalfTyID;
151    }
152  
153    /// Return true if this is 'float', a 32-bit IEEE fp type.
154    bool isFloatTy() const { return getTypeID() == FloatTyID; }
155  
156    /// Return true if this is 'double', a 64-bit IEEE fp type.
157    bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
158  
159    /// Return true if this is x86 long double.
160    bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
161  
162    /// Return true if this is 'fp128'.
163    bool isFP128Ty() const { return getTypeID() == FP128TyID; }
164  
165    /// Return true if this is powerpc long double.
166    bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
167  
168    /// Return true if this is a well-behaved IEEE-like type, which has a IEEE
169    /// compatible layout as defined by APFloat::isIEEE(), and does not have
170    /// non-IEEE values, such as x86_fp80's unnormal values.
171    bool isIEEELikeFPTy() const {
172      switch (getTypeID()) {
173      case DoubleTyID:
174      case FloatTyID:
175      case HalfTyID:
176      case BFloatTyID:
177      case FP128TyID:
178        return true;
179      default:
180        return false;
181      }
182    }
183  
184    /// Return true if this is one of the floating-point types
185    bool isFloatingPointTy() const {
186      return isIEEELikeFPTy() || getTypeID() == X86_FP80TyID ||
187             getTypeID() == PPC_FP128TyID;
188    }
189  
190    /// Returns true if this is a floating-point type that is an unevaluated sum
191    /// of multiple floating-point units.
192    /// An example of such a type is ppc_fp128, also known as double-double, which
193    /// consists of two IEEE 754 doubles.
194    bool isMultiUnitFPType() const {
195      return getTypeID() == PPC_FP128TyID;
196    }
197  
198    const fltSemantics &getFltSemantics() const;
199  
200    /// Return true if this is X86 MMX.
201    bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
202  
203    /// Return true if this is X86 AMX.
204    bool isX86_AMXTy() const { return getTypeID() == X86_AMXTyID; }
205  
206    /// Return true if this is a target extension type.
207    bool isTargetExtTy() const { return getTypeID() == TargetExtTyID; }
208  
209    /// Return true if this is a target extension type with a scalable layout.
210    bool isScalableTargetExtTy() const;
211  
212    /// Return true if this is a type whose size is a known multiple of vscale.
213    bool isScalableTy() const;
214  
215    /// Return true if this is a FP type or a vector of FP.
216    bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
217  
218    /// Return true if this is 'label'.
219    bool isLabelTy() const { return getTypeID() == LabelTyID; }
220  
221    /// Return true if this is 'metadata'.
222    bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
223  
224    /// Return true if this is 'token'.
225    bool isTokenTy() const { return getTypeID() == TokenTyID; }
226  
227    /// True if this is an instance of IntegerType.
228    bool isIntegerTy() const { return getTypeID() == IntegerTyID; }
229  
230    /// Return true if this is an IntegerType of the given width.
231    bool isIntegerTy(unsigned Bitwidth) const;
232  
233    /// Return true if this is an integer type or a vector of integer types.
234    bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
235  
236    /// Return true if this is an integer type or a vector of integer types of
237    /// the given width.
238    bool isIntOrIntVectorTy(unsigned BitWidth) const {
239      return getScalarType()->isIntegerTy(BitWidth);
240    }
241  
242    /// Return true if this is an integer type or a pointer type.
243    bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); }
244  
245    /// True if this is an instance of FunctionType.
246    bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
247  
248    /// True if this is an instance of StructType.
249    bool isStructTy() const { return getTypeID() == StructTyID; }
250  
251    /// True if this is an instance of ArrayType.
252    bool isArrayTy() const { return getTypeID() == ArrayTyID; }
253  
254    /// True if this is an instance of PointerType.
255    bool isPointerTy() const { return getTypeID() == PointerTyID; }
256  
257    /// True if this is an instance of an opaque PointerType.
258    LLVM_DEPRECATED("Use isPointerTy() instead", "isPointerTy")
259    bool isOpaquePointerTy() const { return isPointerTy(); };
260  
261    /// Return true if this is a pointer type or a vector of pointer types.
262    bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
263  
264    /// True if this is an instance of VectorType.
265    inline bool isVectorTy() const {
266      return getTypeID() == ScalableVectorTyID || getTypeID() == FixedVectorTyID;
267    }
268  
269    /// Return true if this type could be converted with a lossless BitCast to
270    /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the
271    /// same size only where no re-interpretation of the bits is done.
272    /// Determine if this type could be losslessly bitcast to Ty
273    bool canLosslesslyBitCastTo(Type *Ty) const;
274  
275    /// Return true if this type is empty, that is, it has no elements or all of
276    /// its elements are empty.
277    bool isEmptyTy() const;
278  
279    /// Return true if the type is "first class", meaning it is a valid type for a
280    /// Value.
281    bool isFirstClassType() const {
282      return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
283    }
284  
285    /// Return true if the type is a valid type for a register in codegen. This
286    /// includes all first-class types except struct and array types.
287    bool isSingleValueType() const {
288      return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() ||
289             isPointerTy() || isVectorTy() || isX86_AMXTy() || isTargetExtTy();
290    }
291  
292    /// Return true if the type is an aggregate type. This means it is valid as
293    /// the first operand of an insertvalue or extractvalue instruction. This
294    /// includes struct and array types, but does not include vector types.
295    bool isAggregateType() const {
296      return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
297    }
298  
299    /// Return true if it makes sense to take the size of this type. To get the
300    /// actual size for a particular target, it is reasonable to use the
301    /// DataLayout subsystem to do this.
302    bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const {
303      // If it's a primitive, it is always sized.
304      if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
305          getTypeID() == PointerTyID || getTypeID() == X86_MMXTyID ||
306          getTypeID() == X86_AMXTyID)
307        return true;
308      // If it is not something that can have a size (e.g. a function or label),
309      // it doesn't have a size.
310      if (getTypeID() != StructTyID && getTypeID() != ArrayTyID &&
311          !isVectorTy() && getTypeID() != TargetExtTyID)
312        return false;
313      // Otherwise we have to try harder to decide.
314      return isSizedDerivedType(Visited);
315    }
316  
317    /// Return the basic size of this type if it is a primitive type. These are
318    /// fixed by LLVM and are not target-dependent.
319    /// This will return zero if the type does not have a size or is not a
320    /// primitive type.
321    ///
322    /// If this is a scalable vector type, the scalable property will be set and
323    /// the runtime size will be a positive integer multiple of the base size.
324    ///
325    /// Note that this may not reflect the size of memory allocated for an
326    /// instance of the type or the number of bytes that are written when an
327    /// instance of the type is stored to memory. The DataLayout class provides
328    /// additional query functions to provide this information.
329    ///
330    TypeSize getPrimitiveSizeInBits() const LLVM_READONLY;
331  
332    /// If this is a vector type, return the getPrimitiveSizeInBits value for the
333    /// element type. Otherwise return the getPrimitiveSizeInBits value for this
334    /// type.
335    unsigned getScalarSizeInBits() const LLVM_READONLY;
336  
337    /// Return the width of the mantissa of this type. This is only valid on
338    /// floating-point types. If the FP type does not have a stable mantissa (e.g.
339    /// ppc long double), this method returns -1.
340    int getFPMantissaWidth() const;
341  
342    /// Return whether the type is IEEE compatible, as defined by the eponymous
343    /// method in APFloat.
344    bool isIEEE() const;
345  
346    /// If this is a vector type, return the element type, otherwise return
347    /// 'this'.
348    inline Type *getScalarType() const {
349      if (isVectorTy())
350        return getContainedType(0);
351      return const_cast<Type *>(this);
352    }
353  
354    //===--------------------------------------------------------------------===//
355    // Type Iteration support.
356    //
357    using subtype_iterator = Type * const *;
358  
359    subtype_iterator subtype_begin() const { return ContainedTys; }
360    subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
361    ArrayRef<Type*> subtypes() const {
362      return ArrayRef(subtype_begin(), subtype_end());
363    }
364  
365    using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>;
366  
367    subtype_reverse_iterator subtype_rbegin() const {
368      return subtype_reverse_iterator(subtype_end());
369    }
370    subtype_reverse_iterator subtype_rend() const {
371      return subtype_reverse_iterator(subtype_begin());
372    }
373  
374    /// This method is used to implement the type iterator (defined at the end of
375    /// the file). For derived types, this returns the types 'contained' in the
376    /// derived type.
377    Type *getContainedType(unsigned i) const {
378      assert(i < NumContainedTys && "Index out of range!");
379      return ContainedTys[i];
380    }
381  
382    /// Return the number of types in the derived type.
383    unsigned getNumContainedTypes() const { return NumContainedTys; }
384  
385    //===--------------------------------------------------------------------===//
386    // Helper methods corresponding to subclass methods.  This forces a cast to
387    // the specified subclass and calls its accessor.  "getArrayNumElements" (for
388    // example) is shorthand for cast<ArrayType>(Ty)->getNumElements().  This is
389    // only intended to cover the core methods that are frequently used, helper
390    // methods should not be added here.
391  
392    inline unsigned getIntegerBitWidth() const;
393  
394    inline Type *getFunctionParamType(unsigned i) const;
395    inline unsigned getFunctionNumParams() const;
396    inline bool isFunctionVarArg() const;
397  
398    inline StringRef getStructName() const;
399    inline unsigned getStructNumElements() const;
400    inline Type *getStructElementType(unsigned N) const;
401  
402    inline uint64_t getArrayNumElements() const;
403  
404    Type *getArrayElementType() const {
405      assert(getTypeID() == ArrayTyID);
406      return ContainedTys[0];
407    }
408  
409    inline StringRef getTargetExtName() const;
410  
411    /// Only use this method in code that is not reachable with opaque pointers,
412    /// or part of deprecated methods that will be removed as part of the opaque
413    /// pointers transition.
414    [[deprecated("Pointers no longer have element types")]]
415    Type *getNonOpaquePointerElementType() const {
416      llvm_unreachable("Pointers no longer have element types");
417    }
418  
419    /// Given vector type, change the element type,
420    /// whilst keeping the old number of elements.
421    /// For non-vectors simply returns \p EltTy.
422    inline Type *getWithNewType(Type *EltTy) const;
423  
424    /// Given an integer or vector type, change the lane bitwidth to NewBitwidth,
425    /// whilst keeping the old number of lanes.
426    inline Type *getWithNewBitWidth(unsigned NewBitWidth) const;
427  
428    /// Given scalar/vector integer type, returns a type with elements twice as
429    /// wide as in the original type. For vectors, preserves element count.
430    inline Type *getExtendedType() const;
431  
432    /// Get the address space of this pointer or pointer vector type.
433    inline unsigned getPointerAddressSpace() const;
434  
435    //===--------------------------------------------------------------------===//
436    // Static members exported by the Type class itself.  Useful for getting
437    // instances of Type.
438    //
439  
440    /// Return a type based on an identifier.
441    static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
442  
443    //===--------------------------------------------------------------------===//
444    // These are the builtin types that are always available.
445    //
446    static Type *getVoidTy(LLVMContext &C);
447    static Type *getLabelTy(LLVMContext &C);
448    static Type *getHalfTy(LLVMContext &C);
449    static Type *getBFloatTy(LLVMContext &C);
450    static Type *getFloatTy(LLVMContext &C);
451    static Type *getDoubleTy(LLVMContext &C);
452    static Type *getMetadataTy(LLVMContext &C);
453    static Type *getX86_FP80Ty(LLVMContext &C);
454    static Type *getFP128Ty(LLVMContext &C);
455    static Type *getPPC_FP128Ty(LLVMContext &C);
456    static Type *getX86_MMXTy(LLVMContext &C);
457    static Type *getX86_AMXTy(LLVMContext &C);
458    static Type *getTokenTy(LLVMContext &C);
459    static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
460    static IntegerType *getInt1Ty(LLVMContext &C);
461    static IntegerType *getInt8Ty(LLVMContext &C);
462    static IntegerType *getInt16Ty(LLVMContext &C);
463    static IntegerType *getInt32Ty(LLVMContext &C);
464    static IntegerType *getInt64Ty(LLVMContext &C);
465    static IntegerType *getInt128Ty(LLVMContext &C);
466    template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) {
467      int noOfBits = sizeof(ScalarTy) * CHAR_BIT;
468      if (std::is_integral<ScalarTy>::value) {
469        return (Type*) Type::getIntNTy(C, noOfBits);
470      } else if (std::is_floating_point<ScalarTy>::value) {
471        switch (noOfBits) {
472        case 32:
473          return Type::getFloatTy(C);
474        case 64:
475          return Type::getDoubleTy(C);
476        }
477      }
478      llvm_unreachable("Unsupported type in Type::getScalarTy");
479    }
480    static Type *getFloatingPointTy(LLVMContext &C, const fltSemantics &S);
481  
482    //===--------------------------------------------------------------------===//
483    // Convenience methods for getting pointer types.
484    //
485    static Type *getWasm_ExternrefTy(LLVMContext &C);
486    static Type *getWasm_FuncrefTy(LLVMContext &C);
487  
488    /// Return a pointer to the current type. This is equivalent to
489    /// PointerType::get(Foo, AddrSpace).
490    /// TODO: Remove this after opaque pointer transition is complete.
491    PointerType *getPointerTo(unsigned AddrSpace = 0) const;
492  
493  private:
494    /// Derived types like structures and arrays are sized iff all of the members
495    /// of the type are sized as well. Since asking for their size is relatively
496    /// uncommon, move this operation out-of-line.
497    bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const;
498  };
499  
500  // Printing of types.
501  inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
502    T.print(OS);
503    return OS;
504  }
505  
506  // allow isa<PointerType>(x) to work without DerivedTypes.h included.
507  template <> struct isa_impl<PointerType, Type> {
508    static inline bool doit(const Type &Ty) {
509      return Ty.getTypeID() == Type::PointerTyID;
510    }
511  };
512  
513  // Create wrappers for C Binding types (see CBindingWrapping.h).
514  DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)
515  
516  /* Specialized opaque type conversions.
517   */
518  inline Type **unwrap(LLVMTypeRef* Tys) {
519    return reinterpret_cast<Type**>(Tys);
520  }
521  
522  inline LLVMTypeRef *wrap(Type **Tys) {
523    return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys));
524  }
525  
526  } // end namespace llvm
527  
528  #endif // LLVM_IR_TYPE_H
529