1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides a simple and efficient mechanism for performing general
10 // tree-based pattern matches on the LLVM IR. The power of these routines is
11 // that it allows you to write concise patterns that are expressive and easy to
12 // understand. The other major advantage of this is that it allows you to
13 // trivially capture/bind elements in the pattern to variables. For example,
14 // you can do something like this:
15 //
16 // Value *Exp = ...
17 // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
18 // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19 // m_And(m_Value(Y), m_ConstantInt(C2))))) {
20 // ... Pattern is matched and variables are bound ...
21 // }
22 //
23 // This is primarily useful to things like the instruction combiner, but can
24 // also be useful for static analysis tools or code generators.
25 //
26 //===----------------------------------------------------------------------===//
27
28 #ifndef LLVM_IR_PATTERNMATCH_H
29 #define LLVM_IR_PATTERNMATCH_H
30
31 #include "llvm/ADT/APFloat.h"
32 #include "llvm/ADT/APInt.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/Support/Casting.h"
44 #include <cstdint>
45
46 namespace llvm {
47 namespace PatternMatch {
48
match(Val * V,const Pattern & P)49 template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50 return const_cast<Pattern &>(P).match(V);
51 }
52
match(ArrayRef<int> Mask,const Pattern & P)53 template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) {
54 return const_cast<Pattern &>(P).match(Mask);
55 }
56
57 template <typename SubPattern_t> struct OneUse_match {
58 SubPattern_t SubPattern;
59
OneUse_matchOneUse_match60 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
61
matchOneUse_match62 template <typename OpTy> bool match(OpTy *V) {
63 return V->hasOneUse() && SubPattern.match(V);
64 }
65 };
66
m_OneUse(const T & SubPattern)67 template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
68 return SubPattern;
69 }
70
71 template <typename SubPattern_t> struct AllowReassoc_match {
72 SubPattern_t SubPattern;
73
AllowReassoc_matchAllowReassoc_match74 AllowReassoc_match(const SubPattern_t &SP) : SubPattern(SP) {}
75
matchAllowReassoc_match76 template <typename OpTy> bool match(OpTy *V) {
77 auto *I = dyn_cast<FPMathOperator>(V);
78 return I && I->hasAllowReassoc() && SubPattern.match(I);
79 }
80 };
81
82 template <typename T>
m_AllowReassoc(const T & SubPattern)83 inline AllowReassoc_match<T> m_AllowReassoc(const T &SubPattern) {
84 return SubPattern;
85 }
86
87 template <typename Class> struct class_match {
matchclass_match88 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
89 };
90
91 /// Match an arbitrary value and ignore it.
m_Value()92 inline class_match<Value> m_Value() { return class_match<Value>(); }
93
94 /// Match an arbitrary unary operation and ignore it.
m_UnOp()95 inline class_match<UnaryOperator> m_UnOp() {
96 return class_match<UnaryOperator>();
97 }
98
99 /// Match an arbitrary binary operation and ignore it.
m_BinOp()100 inline class_match<BinaryOperator> m_BinOp() {
101 return class_match<BinaryOperator>();
102 }
103
104 /// Matches any compare instruction and ignore it.
m_Cmp()105 inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
106
107 struct undef_match {
checkundef_match108 static bool check(const Value *V) {
109 if (isa<UndefValue>(V))
110 return true;
111
112 const auto *CA = dyn_cast<ConstantAggregate>(V);
113 if (!CA)
114 return false;
115
116 SmallPtrSet<const ConstantAggregate *, 8> Seen;
117 SmallVector<const ConstantAggregate *, 8> Worklist;
118
119 // Either UndefValue, PoisonValue, or an aggregate that only contains
120 // these is accepted by matcher.
121 // CheckValue returns false if CA cannot satisfy this constraint.
122 auto CheckValue = [&](const ConstantAggregate *CA) {
123 for (const Value *Op : CA->operand_values()) {
124 if (isa<UndefValue>(Op))
125 continue;
126
127 const auto *CA = dyn_cast<ConstantAggregate>(Op);
128 if (!CA)
129 return false;
130 if (Seen.insert(CA).second)
131 Worklist.emplace_back(CA);
132 }
133
134 return true;
135 };
136
137 if (!CheckValue(CA))
138 return false;
139
140 while (!Worklist.empty()) {
141 if (!CheckValue(Worklist.pop_back_val()))
142 return false;
143 }
144 return true;
145 }
matchundef_match146 template <typename ITy> bool match(ITy *V) { return check(V); }
147 };
148
149 /// Match an arbitrary undef constant. This matches poison as well.
150 /// If this is an aggregate and contains a non-aggregate element that is
151 /// neither undef nor poison, the aggregate is not matched.
m_Undef()152 inline auto m_Undef() { return undef_match(); }
153
154 /// Match an arbitrary UndefValue constant.
m_UndefValue()155 inline class_match<UndefValue> m_UndefValue() {
156 return class_match<UndefValue>();
157 }
158
159 /// Match an arbitrary poison constant.
m_Poison()160 inline class_match<PoisonValue> m_Poison() {
161 return class_match<PoisonValue>();
162 }
163
164 /// Match an arbitrary Constant and ignore it.
m_Constant()165 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
166
167 /// Match an arbitrary ConstantInt and ignore it.
m_ConstantInt()168 inline class_match<ConstantInt> m_ConstantInt() {
169 return class_match<ConstantInt>();
170 }
171
172 /// Match an arbitrary ConstantFP and ignore it.
m_ConstantFP()173 inline class_match<ConstantFP> m_ConstantFP() {
174 return class_match<ConstantFP>();
175 }
176
177 struct constantexpr_match {
matchconstantexpr_match178 template <typename ITy> bool match(ITy *V) {
179 auto *C = dyn_cast<Constant>(V);
180 return C && (isa<ConstantExpr>(C) || C->containsConstantExpression());
181 }
182 };
183
184 /// Match a constant expression or a constant that contains a constant
185 /// expression.
m_ConstantExpr()186 inline constantexpr_match m_ConstantExpr() { return constantexpr_match(); }
187
188 /// Match an arbitrary basic block value and ignore it.
m_BasicBlock()189 inline class_match<BasicBlock> m_BasicBlock() {
190 return class_match<BasicBlock>();
191 }
192
193 /// Inverting matcher
194 template <typename Ty> struct match_unless {
195 Ty M;
196
match_unlessmatch_unless197 match_unless(const Ty &Matcher) : M(Matcher) {}
198
matchmatch_unless199 template <typename ITy> bool match(ITy *V) { return !M.match(V); }
200 };
201
202 /// Match if the inner matcher does *NOT* match.
m_Unless(const Ty & M)203 template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
204 return match_unless<Ty>(M);
205 }
206
207 /// Matching combinators
208 template <typename LTy, typename RTy> struct match_combine_or {
209 LTy L;
210 RTy R;
211
match_combine_ormatch_combine_or212 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
213
matchmatch_combine_or214 template <typename ITy> bool match(ITy *V) {
215 if (L.match(V))
216 return true;
217 if (R.match(V))
218 return true;
219 return false;
220 }
221 };
222
223 template <typename LTy, typename RTy> struct match_combine_and {
224 LTy L;
225 RTy R;
226
match_combine_andmatch_combine_and227 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
228
matchmatch_combine_and229 template <typename ITy> bool match(ITy *V) {
230 if (L.match(V))
231 if (R.match(V))
232 return true;
233 return false;
234 }
235 };
236
237 /// Combine two pattern matchers matching L || R
238 template <typename LTy, typename RTy>
m_CombineOr(const LTy & L,const RTy & R)239 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
240 return match_combine_or<LTy, RTy>(L, R);
241 }
242
243 /// Combine two pattern matchers matching L && R
244 template <typename LTy, typename RTy>
m_CombineAnd(const LTy & L,const RTy & R)245 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
246 return match_combine_and<LTy, RTy>(L, R);
247 }
248
249 struct apint_match {
250 const APInt *&Res;
251 bool AllowPoison;
252
apint_matchapint_match253 apint_match(const APInt *&Res, bool AllowPoison)
254 : Res(Res), AllowPoison(AllowPoison) {}
255
matchapint_match256 template <typename ITy> bool match(ITy *V) {
257 if (auto *CI = dyn_cast<ConstantInt>(V)) {
258 Res = &CI->getValue();
259 return true;
260 }
261 if (V->getType()->isVectorTy())
262 if (const auto *C = dyn_cast<Constant>(V))
263 if (auto *CI =
264 dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowPoison))) {
265 Res = &CI->getValue();
266 return true;
267 }
268 return false;
269 }
270 };
271 // Either constexpr if or renaming ConstantFP::getValueAPF to
272 // ConstantFP::getValue is needed to do it via single template
273 // function for both apint/apfloat.
274 struct apfloat_match {
275 const APFloat *&Res;
276 bool AllowPoison;
277
apfloat_matchapfloat_match278 apfloat_match(const APFloat *&Res, bool AllowPoison)
279 : Res(Res), AllowPoison(AllowPoison) {}
280
matchapfloat_match281 template <typename ITy> bool match(ITy *V) {
282 if (auto *CI = dyn_cast<ConstantFP>(V)) {
283 Res = &CI->getValueAPF();
284 return true;
285 }
286 if (V->getType()->isVectorTy())
287 if (const auto *C = dyn_cast<Constant>(V))
288 if (auto *CI =
289 dyn_cast_or_null<ConstantFP>(C->getSplatValue(AllowPoison))) {
290 Res = &CI->getValueAPF();
291 return true;
292 }
293 return false;
294 }
295 };
296
297 /// Match a ConstantInt or splatted ConstantVector, binding the
298 /// specified pointer to the contained APInt.
m_APInt(const APInt * & Res)299 inline apint_match m_APInt(const APInt *&Res) {
300 // Forbid poison by default to maintain previous behavior.
301 return apint_match(Res, /* AllowPoison */ false);
302 }
303
304 /// Match APInt while allowing poison in splat vector constants.
m_APIntAllowPoison(const APInt * & Res)305 inline apint_match m_APIntAllowPoison(const APInt *&Res) {
306 return apint_match(Res, /* AllowPoison */ true);
307 }
308
309 /// Match APInt while forbidding poison in splat vector constants.
m_APIntForbidPoison(const APInt * & Res)310 inline apint_match m_APIntForbidPoison(const APInt *&Res) {
311 return apint_match(Res, /* AllowPoison */ false);
312 }
313
314 /// Match a ConstantFP or splatted ConstantVector, binding the
315 /// specified pointer to the contained APFloat.
m_APFloat(const APFloat * & Res)316 inline apfloat_match m_APFloat(const APFloat *&Res) {
317 // Forbid undefs by default to maintain previous behavior.
318 return apfloat_match(Res, /* AllowPoison */ false);
319 }
320
321 /// Match APFloat while allowing poison in splat vector constants.
m_APFloatAllowPoison(const APFloat * & Res)322 inline apfloat_match m_APFloatAllowPoison(const APFloat *&Res) {
323 return apfloat_match(Res, /* AllowPoison */ true);
324 }
325
326 /// Match APFloat while forbidding poison in splat vector constants.
m_APFloatForbidPoison(const APFloat * & Res)327 inline apfloat_match m_APFloatForbidPoison(const APFloat *&Res) {
328 return apfloat_match(Res, /* AllowPoison */ false);
329 }
330
331 template <int64_t Val> struct constantint_match {
matchconstantint_match332 template <typename ITy> bool match(ITy *V) {
333 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
334 const APInt &CIV = CI->getValue();
335 if (Val >= 0)
336 return CIV == static_cast<uint64_t>(Val);
337 // If Val is negative, and CI is shorter than it, truncate to the right
338 // number of bits. If it is larger, then we have to sign extend. Just
339 // compare their negated values.
340 return -CIV == -Val;
341 }
342 return false;
343 }
344 };
345
346 /// Match a ConstantInt with a specific value.
m_ConstantInt()347 template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
348 return constantint_match<Val>();
349 }
350
351 /// This helper class is used to match constant scalars, vector splats,
352 /// and fixed width vectors that satisfy a specified predicate.
353 /// For fixed width vector constants, poison elements are ignored if AllowPoison
354 /// is true.
355 template <typename Predicate, typename ConstantVal, bool AllowPoison>
356 struct cstval_pred_ty : public Predicate {
357 const Constant **Res = nullptr;
match_implcstval_pred_ty358 template <typename ITy> bool match_impl(ITy *V) {
359 if (const auto *CV = dyn_cast<ConstantVal>(V))
360 return this->isValue(CV->getValue());
361 if (const auto *VTy = dyn_cast<VectorType>(V->getType())) {
362 if (const auto *C = dyn_cast<Constant>(V)) {
363 if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue()))
364 return this->isValue(CV->getValue());
365
366 // Number of elements of a scalable vector unknown at compile time
367 auto *FVTy = dyn_cast<FixedVectorType>(VTy);
368 if (!FVTy)
369 return false;
370
371 // Non-splat vector constant: check each element for a match.
372 unsigned NumElts = FVTy->getNumElements();
373 assert(NumElts != 0 && "Constant vector with no elements?");
374 bool HasNonPoisonElements = false;
375 for (unsigned i = 0; i != NumElts; ++i) {
376 Constant *Elt = C->getAggregateElement(i);
377 if (!Elt)
378 return false;
379 if (AllowPoison && isa<PoisonValue>(Elt))
380 continue;
381 auto *CV = dyn_cast<ConstantVal>(Elt);
382 if (!CV || !this->isValue(CV->getValue()))
383 return false;
384 HasNonPoisonElements = true;
385 }
386 return HasNonPoisonElements;
387 }
388 }
389 return false;
390 }
391
matchcstval_pred_ty392 template <typename ITy> bool match(ITy *V) {
393 if (this->match_impl(V)) {
394 if (Res)
395 *Res = cast<Constant>(V);
396 return true;
397 }
398 return false;
399 }
400 };
401
402 /// specialization of cstval_pred_ty for ConstantInt
403 template <typename Predicate, bool AllowPoison = true>
404 using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt, AllowPoison>;
405
406 /// specialization of cstval_pred_ty for ConstantFP
407 template <typename Predicate>
408 using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP,
409 /*AllowPoison=*/true>;
410
411 /// This helper class is used to match scalar and vector constants that
412 /// satisfy a specified predicate, and bind them to an APInt.
413 template <typename Predicate> struct api_pred_ty : public Predicate {
414 const APInt *&Res;
415
api_pred_tyapi_pred_ty416 api_pred_ty(const APInt *&R) : Res(R) {}
417
matchapi_pred_ty418 template <typename ITy> bool match(ITy *V) {
419 if (const auto *CI = dyn_cast<ConstantInt>(V))
420 if (this->isValue(CI->getValue())) {
421 Res = &CI->getValue();
422 return true;
423 }
424 if (V->getType()->isVectorTy())
425 if (const auto *C = dyn_cast<Constant>(V))
426 if (auto *CI = dyn_cast_or_null<ConstantInt>(
427 C->getSplatValue(/*AllowPoison=*/true)))
428 if (this->isValue(CI->getValue())) {
429 Res = &CI->getValue();
430 return true;
431 }
432
433 return false;
434 }
435 };
436
437 /// This helper class is used to match scalar and vector constants that
438 /// satisfy a specified predicate, and bind them to an APFloat.
439 /// Poison is allowed in splat vector constants.
440 template <typename Predicate> struct apf_pred_ty : public Predicate {
441 const APFloat *&Res;
442
apf_pred_tyapf_pred_ty443 apf_pred_ty(const APFloat *&R) : Res(R) {}
444
matchapf_pred_ty445 template <typename ITy> bool match(ITy *V) {
446 if (const auto *CI = dyn_cast<ConstantFP>(V))
447 if (this->isValue(CI->getValue())) {
448 Res = &CI->getValue();
449 return true;
450 }
451 if (V->getType()->isVectorTy())
452 if (const auto *C = dyn_cast<Constant>(V))
453 if (auto *CI = dyn_cast_or_null<ConstantFP>(
454 C->getSplatValue(/* AllowPoison */ true)))
455 if (this->isValue(CI->getValue())) {
456 Res = &CI->getValue();
457 return true;
458 }
459
460 return false;
461 }
462 };
463
464 ///////////////////////////////////////////////////////////////////////////////
465 //
466 // Encapsulate constant value queries for use in templated predicate matchers.
467 // This allows checking if constants match using compound predicates and works
468 // with vector constants, possibly with relaxed constraints. For example, ignore
469 // undef values.
470 //
471 ///////////////////////////////////////////////////////////////////////////////
472
473 template <typename APTy> struct custom_checkfn {
474 function_ref<bool(const APTy &)> CheckFn;
isValuecustom_checkfn475 bool isValue(const APTy &C) { return CheckFn(C); }
476 };
477
478 /// Match an integer or vector where CheckFn(ele) for each element is true.
479 /// For vectors, poison elements are assumed to match.
480 inline cst_pred_ty<custom_checkfn<APInt>>
m_CheckedInt(function_ref<bool (const APInt &)> CheckFn)481 m_CheckedInt(function_ref<bool(const APInt &)> CheckFn) {
482 return cst_pred_ty<custom_checkfn<APInt>>{{CheckFn}};
483 }
484
485 inline cst_pred_ty<custom_checkfn<APInt>>
m_CheckedInt(const Constant * & V,function_ref<bool (const APInt &)> CheckFn)486 m_CheckedInt(const Constant *&V, function_ref<bool(const APInt &)> CheckFn) {
487 return cst_pred_ty<custom_checkfn<APInt>>{{CheckFn}, &V};
488 }
489
490 /// Match a float or vector where CheckFn(ele) for each element is true.
491 /// For vectors, poison elements are assumed to match.
492 inline cstfp_pred_ty<custom_checkfn<APFloat>>
m_CheckedFp(function_ref<bool (const APFloat &)> CheckFn)493 m_CheckedFp(function_ref<bool(const APFloat &)> CheckFn) {
494 return cstfp_pred_ty<custom_checkfn<APFloat>>{{CheckFn}};
495 }
496
497 inline cstfp_pred_ty<custom_checkfn<APFloat>>
m_CheckedFp(const Constant * & V,function_ref<bool (const APFloat &)> CheckFn)498 m_CheckedFp(const Constant *&V, function_ref<bool(const APFloat &)> CheckFn) {
499 return cstfp_pred_ty<custom_checkfn<APFloat>>{{CheckFn}, &V};
500 }
501
502 struct is_any_apint {
isValueis_any_apint503 bool isValue(const APInt &C) { return true; }
504 };
505 /// Match an integer or vector with any integral constant.
506 /// For vectors, this includes constants with undefined elements.
m_AnyIntegralConstant()507 inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
508 return cst_pred_ty<is_any_apint>();
509 }
510
511 struct is_shifted_mask {
isValueis_shifted_mask512 bool isValue(const APInt &C) { return C.isShiftedMask(); }
513 };
514
m_ShiftedMask()515 inline cst_pred_ty<is_shifted_mask> m_ShiftedMask() {
516 return cst_pred_ty<is_shifted_mask>();
517 }
518
519 struct is_all_ones {
isValueis_all_ones520 bool isValue(const APInt &C) { return C.isAllOnes(); }
521 };
522 /// Match an integer or vector with all bits set.
523 /// For vectors, this includes constants with undefined elements.
m_AllOnes()524 inline cst_pred_ty<is_all_ones> m_AllOnes() {
525 return cst_pred_ty<is_all_ones>();
526 }
527
m_AllOnesForbidPoison()528 inline cst_pred_ty<is_all_ones, false> m_AllOnesForbidPoison() {
529 return cst_pred_ty<is_all_ones, false>();
530 }
531
532 struct is_maxsignedvalue {
isValueis_maxsignedvalue533 bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
534 };
535 /// Match an integer or vector with values having all bits except for the high
536 /// bit set (0x7f...).
537 /// For vectors, this includes constants with undefined elements.
m_MaxSignedValue()538 inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
539 return cst_pred_ty<is_maxsignedvalue>();
540 }
m_MaxSignedValue(const APInt * & V)541 inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
542 return V;
543 }
544
545 struct is_negative {
isValueis_negative546 bool isValue(const APInt &C) { return C.isNegative(); }
547 };
548 /// Match an integer or vector of negative values.
549 /// For vectors, this includes constants with undefined elements.
m_Negative()550 inline cst_pred_ty<is_negative> m_Negative() {
551 return cst_pred_ty<is_negative>();
552 }
m_Negative(const APInt * & V)553 inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { return V; }
554
555 struct is_nonnegative {
isValueis_nonnegative556 bool isValue(const APInt &C) { return C.isNonNegative(); }
557 };
558 /// Match an integer or vector of non-negative values.
559 /// For vectors, this includes constants with undefined elements.
m_NonNegative()560 inline cst_pred_ty<is_nonnegative> m_NonNegative() {
561 return cst_pred_ty<is_nonnegative>();
562 }
m_NonNegative(const APInt * & V)563 inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { return V; }
564
565 struct is_strictlypositive {
isValueis_strictlypositive566 bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
567 };
568 /// Match an integer or vector of strictly positive values.
569 /// For vectors, this includes constants with undefined elements.
m_StrictlyPositive()570 inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() {
571 return cst_pred_ty<is_strictlypositive>();
572 }
m_StrictlyPositive(const APInt * & V)573 inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) {
574 return V;
575 }
576
577 struct is_nonpositive {
isValueis_nonpositive578 bool isValue(const APInt &C) { return C.isNonPositive(); }
579 };
580 /// Match an integer or vector of non-positive values.
581 /// For vectors, this includes constants with undefined elements.
m_NonPositive()582 inline cst_pred_ty<is_nonpositive> m_NonPositive() {
583 return cst_pred_ty<is_nonpositive>();
584 }
m_NonPositive(const APInt * & V)585 inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
586
587 struct is_one {
isValueis_one588 bool isValue(const APInt &C) { return C.isOne(); }
589 };
590 /// Match an integer 1 or a vector with all elements equal to 1.
591 /// For vectors, this includes constants with undefined elements.
m_One()592 inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
593
594 struct is_zero_int {
isValueis_zero_int595 bool isValue(const APInt &C) { return C.isZero(); }
596 };
597 /// Match an integer 0 or a vector with all elements equal to 0.
598 /// For vectors, this includes constants with undefined elements.
m_ZeroInt()599 inline cst_pred_ty<is_zero_int> m_ZeroInt() {
600 return cst_pred_ty<is_zero_int>();
601 }
602
603 struct is_zero {
matchis_zero604 template <typename ITy> bool match(ITy *V) {
605 auto *C = dyn_cast<Constant>(V);
606 // FIXME: this should be able to do something for scalable vectors
607 return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
608 }
609 };
610 /// Match any null constant or a vector with all elements equal to 0.
611 /// For vectors, this includes constants with undefined elements.
m_Zero()612 inline is_zero m_Zero() { return is_zero(); }
613
614 struct is_power2 {
isValueis_power2615 bool isValue(const APInt &C) { return C.isPowerOf2(); }
616 };
617 /// Match an integer or vector power-of-2.
618 /// For vectors, this includes constants with undefined elements.
m_Power2()619 inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
m_Power2(const APInt * & V)620 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
621
622 struct is_negated_power2 {
isValueis_negated_power2623 bool isValue(const APInt &C) { return C.isNegatedPowerOf2(); }
624 };
625 /// Match a integer or vector negated power-of-2.
626 /// For vectors, this includes constants with undefined elements.
m_NegatedPower2()627 inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
628 return cst_pred_ty<is_negated_power2>();
629 }
m_NegatedPower2(const APInt * & V)630 inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
631 return V;
632 }
633
634 struct is_negated_power2_or_zero {
isValueis_negated_power2_or_zero635 bool isValue(const APInt &C) { return !C || C.isNegatedPowerOf2(); }
636 };
637 /// Match a integer or vector negated power-of-2.
638 /// For vectors, this includes constants with undefined elements.
m_NegatedPower2OrZero()639 inline cst_pred_ty<is_negated_power2_or_zero> m_NegatedPower2OrZero() {
640 return cst_pred_ty<is_negated_power2_or_zero>();
641 }
642 inline api_pred_ty<is_negated_power2_or_zero>
m_NegatedPower2OrZero(const APInt * & V)643 m_NegatedPower2OrZero(const APInt *&V) {
644 return V;
645 }
646
647 struct is_power2_or_zero {
isValueis_power2_or_zero648 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
649 };
650 /// Match an integer or vector of 0 or power-of-2 values.
651 /// For vectors, this includes constants with undefined elements.
m_Power2OrZero()652 inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
653 return cst_pred_ty<is_power2_or_zero>();
654 }
m_Power2OrZero(const APInt * & V)655 inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
656 return V;
657 }
658
659 struct is_sign_mask {
isValueis_sign_mask660 bool isValue(const APInt &C) { return C.isSignMask(); }
661 };
662 /// Match an integer or vector with only the sign bit(s) set.
663 /// For vectors, this includes constants with undefined elements.
m_SignMask()664 inline cst_pred_ty<is_sign_mask> m_SignMask() {
665 return cst_pred_ty<is_sign_mask>();
666 }
667
668 struct is_lowbit_mask {
isValueis_lowbit_mask669 bool isValue(const APInt &C) { return C.isMask(); }
670 };
671 /// Match an integer or vector with only the low bit(s) set.
672 /// For vectors, this includes constants with undefined elements.
m_LowBitMask()673 inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
674 return cst_pred_ty<is_lowbit_mask>();
675 }
m_LowBitMask(const APInt * & V)676 inline api_pred_ty<is_lowbit_mask> m_LowBitMask(const APInt *&V) { return V; }
677
678 struct is_lowbit_mask_or_zero {
isValueis_lowbit_mask_or_zero679 bool isValue(const APInt &C) { return !C || C.isMask(); }
680 };
681 /// Match an integer or vector with only the low bit(s) set.
682 /// For vectors, this includes constants with undefined elements.
m_LowBitMaskOrZero()683 inline cst_pred_ty<is_lowbit_mask_or_zero> m_LowBitMaskOrZero() {
684 return cst_pred_ty<is_lowbit_mask_or_zero>();
685 }
m_LowBitMaskOrZero(const APInt * & V)686 inline api_pred_ty<is_lowbit_mask_or_zero> m_LowBitMaskOrZero(const APInt *&V) {
687 return V;
688 }
689
690 struct icmp_pred_with_threshold {
691 ICmpInst::Predicate Pred;
692 const APInt *Thr;
isValueicmp_pred_with_threshold693 bool isValue(const APInt &C) { return ICmpInst::compare(C, *Thr, Pred); }
694 };
695 /// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
696 /// to Threshold. For vectors, this includes constants with undefined elements.
697 inline cst_pred_ty<icmp_pred_with_threshold>
m_SpecificInt_ICMP(ICmpInst::Predicate Predicate,const APInt & Threshold)698 m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
699 cst_pred_ty<icmp_pred_with_threshold> P;
700 P.Pred = Predicate;
701 P.Thr = &Threshold;
702 return P;
703 }
704
705 struct is_nan {
isValueis_nan706 bool isValue(const APFloat &C) { return C.isNaN(); }
707 };
708 /// Match an arbitrary NaN constant. This includes quiet and signalling nans.
709 /// For vectors, this includes constants with undefined elements.
m_NaN()710 inline cstfp_pred_ty<is_nan> m_NaN() { return cstfp_pred_ty<is_nan>(); }
711
712 struct is_nonnan {
isValueis_nonnan713 bool isValue(const APFloat &C) { return !C.isNaN(); }
714 };
715 /// Match a non-NaN FP constant.
716 /// For vectors, this includes constants with undefined elements.
m_NonNaN()717 inline cstfp_pred_ty<is_nonnan> m_NonNaN() {
718 return cstfp_pred_ty<is_nonnan>();
719 }
720
721 struct is_inf {
isValueis_inf722 bool isValue(const APFloat &C) { return C.isInfinity(); }
723 };
724 /// Match a positive or negative infinity FP constant.
725 /// For vectors, this includes constants with undefined elements.
m_Inf()726 inline cstfp_pred_ty<is_inf> m_Inf() { return cstfp_pred_ty<is_inf>(); }
727
728 struct is_noninf {
isValueis_noninf729 bool isValue(const APFloat &C) { return !C.isInfinity(); }
730 };
731 /// Match a non-infinity FP constant, i.e. finite or NaN.
732 /// For vectors, this includes constants with undefined elements.
m_NonInf()733 inline cstfp_pred_ty<is_noninf> m_NonInf() {
734 return cstfp_pred_ty<is_noninf>();
735 }
736
737 struct is_finite {
isValueis_finite738 bool isValue(const APFloat &C) { return C.isFinite(); }
739 };
740 /// Match a finite FP constant, i.e. not infinity or NaN.
741 /// For vectors, this includes constants with undefined elements.
m_Finite()742 inline cstfp_pred_ty<is_finite> m_Finite() {
743 return cstfp_pred_ty<is_finite>();
744 }
m_Finite(const APFloat * & V)745 inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; }
746
747 struct is_finitenonzero {
isValueis_finitenonzero748 bool isValue(const APFloat &C) { return C.isFiniteNonZero(); }
749 };
750 /// Match a finite non-zero FP constant.
751 /// For vectors, this includes constants with undefined elements.
m_FiniteNonZero()752 inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() {
753 return cstfp_pred_ty<is_finitenonzero>();
754 }
m_FiniteNonZero(const APFloat * & V)755 inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) {
756 return V;
757 }
758
759 struct is_any_zero_fp {
isValueis_any_zero_fp760 bool isValue(const APFloat &C) { return C.isZero(); }
761 };
762 /// Match a floating-point negative zero or positive zero.
763 /// For vectors, this includes constants with undefined elements.
m_AnyZeroFP()764 inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
765 return cstfp_pred_ty<is_any_zero_fp>();
766 }
767
768 struct is_pos_zero_fp {
isValueis_pos_zero_fp769 bool isValue(const APFloat &C) { return C.isPosZero(); }
770 };
771 /// Match a floating-point positive zero.
772 /// For vectors, this includes constants with undefined elements.
m_PosZeroFP()773 inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
774 return cstfp_pred_ty<is_pos_zero_fp>();
775 }
776
777 struct is_neg_zero_fp {
isValueis_neg_zero_fp778 bool isValue(const APFloat &C) { return C.isNegZero(); }
779 };
780 /// Match a floating-point negative zero.
781 /// For vectors, this includes constants with undefined elements.
m_NegZeroFP()782 inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
783 return cstfp_pred_ty<is_neg_zero_fp>();
784 }
785
786 struct is_non_zero_fp {
isValueis_non_zero_fp787 bool isValue(const APFloat &C) { return C.isNonZero(); }
788 };
789 /// Match a floating-point non-zero.
790 /// For vectors, this includes constants with undefined elements.
m_NonZeroFP()791 inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() {
792 return cstfp_pred_ty<is_non_zero_fp>();
793 }
794
795 ///////////////////////////////////////////////////////////////////////////////
796
797 template <typename Class> struct bind_ty {
798 Class *&VR;
799
bind_tybind_ty800 bind_ty(Class *&V) : VR(V) {}
801
matchbind_ty802 template <typename ITy> bool match(ITy *V) {
803 if (auto *CV = dyn_cast<Class>(V)) {
804 VR = CV;
805 return true;
806 }
807 return false;
808 }
809 };
810
811 /// Match a value, capturing it if we match.
m_Value(Value * & V)812 inline bind_ty<Value> m_Value(Value *&V) { return V; }
m_Value(const Value * & V)813 inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
814
815 /// Match an instruction, capturing it if we match.
m_Instruction(Instruction * & I)816 inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
817 /// Match a unary operator, capturing it if we match.
m_UnOp(UnaryOperator * & I)818 inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; }
819 /// Match a binary operator, capturing it if we match.
m_BinOp(BinaryOperator * & I)820 inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
821 /// Match a with overflow intrinsic, capturing it if we match.
m_WithOverflowInst(WithOverflowInst * & I)822 inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) {
823 return I;
824 }
825 inline bind_ty<const WithOverflowInst>
m_WithOverflowInst(const WithOverflowInst * & I)826 m_WithOverflowInst(const WithOverflowInst *&I) {
827 return I;
828 }
829
830 /// Match an UndefValue, capturing the value if we match.
m_UndefValue(UndefValue * & U)831 inline bind_ty<UndefValue> m_UndefValue(UndefValue *&U) { return U; }
832
833 /// Match a Constant, capturing the value if we match.
m_Constant(Constant * & C)834 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
835
836 /// Match a ConstantInt, capturing the value if we match.
m_ConstantInt(ConstantInt * & CI)837 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
838
839 /// Match a ConstantFP, capturing the value if we match.
m_ConstantFP(ConstantFP * & C)840 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
841
842 /// Match a ConstantExpr, capturing the value if we match.
m_ConstantExpr(ConstantExpr * & C)843 inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; }
844
845 /// Match a basic block value, capturing it if we match.
m_BasicBlock(BasicBlock * & V)846 inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
m_BasicBlock(const BasicBlock * & V)847 inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
848 return V;
849 }
850
851 /// Match an arbitrary immediate Constant and ignore it.
852 inline match_combine_and<class_match<Constant>,
853 match_unless<constantexpr_match>>
m_ImmConstant()854 m_ImmConstant() {
855 return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr()));
856 }
857
858 /// Match an immediate Constant, capturing the value if we match.
859 inline match_combine_and<bind_ty<Constant>,
860 match_unless<constantexpr_match>>
m_ImmConstant(Constant * & C)861 m_ImmConstant(Constant *&C) {
862 return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr()));
863 }
864
865 /// Match a specified Value*.
866 struct specificval_ty {
867 const Value *Val;
868
specificval_tyspecificval_ty869 specificval_ty(const Value *V) : Val(V) {}
870
matchspecificval_ty871 template <typename ITy> bool match(ITy *V) { return V == Val; }
872 };
873
874 /// Match if we have a specific specified value.
m_Specific(const Value * V)875 inline specificval_ty m_Specific(const Value *V) { return V; }
876
877 /// Stores a reference to the Value *, not the Value * itself,
878 /// thus can be used in commutative matchers.
879 template <typename Class> struct deferredval_ty {
880 Class *const &Val;
881
deferredval_tydeferredval_ty882 deferredval_ty(Class *const &V) : Val(V) {}
883
matchdeferredval_ty884 template <typename ITy> bool match(ITy *const V) { return V == Val; }
885 };
886
887 /// Like m_Specific(), but works if the specific value to match is determined
888 /// as part of the same match() expression. For example:
889 /// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will
890 /// bind X before the pattern match starts.
891 /// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against
892 /// whichever value m_Value(X) populated.
m_Deferred(Value * const & V)893 inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
m_Deferred(const Value * const & V)894 inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
895 return V;
896 }
897
898 /// Match a specified floating point value or vector of all elements of
899 /// that value.
900 struct specific_fpval {
901 double Val;
902
specific_fpvalspecific_fpval903 specific_fpval(double V) : Val(V) {}
904
matchspecific_fpval905 template <typename ITy> bool match(ITy *V) {
906 if (const auto *CFP = dyn_cast<ConstantFP>(V))
907 return CFP->isExactlyValue(Val);
908 if (V->getType()->isVectorTy())
909 if (const auto *C = dyn_cast<Constant>(V))
910 if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
911 return CFP->isExactlyValue(Val);
912 return false;
913 }
914 };
915
916 /// Match a specific floating point value or vector with all elements
917 /// equal to the value.
m_SpecificFP(double V)918 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
919
920 /// Match a float 1.0 or vector with all elements equal to 1.0.
m_FPOne()921 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
922
923 struct bind_const_intval_ty {
924 uint64_t &VR;
925
bind_const_intval_tybind_const_intval_ty926 bind_const_intval_ty(uint64_t &V) : VR(V) {}
927
matchbind_const_intval_ty928 template <typename ITy> bool match(ITy *V) {
929 if (const auto *CV = dyn_cast<ConstantInt>(V))
930 if (CV->getValue().ule(UINT64_MAX)) {
931 VR = CV->getZExtValue();
932 return true;
933 }
934 return false;
935 }
936 };
937
938 /// Match a specified integer value or vector of all elements of that
939 /// value.
940 template <bool AllowPoison> struct specific_intval {
941 const APInt &Val;
942
specific_intvalspecific_intval943 specific_intval(const APInt &V) : Val(V) {}
944
matchspecific_intval945 template <typename ITy> bool match(ITy *V) {
946 const auto *CI = dyn_cast<ConstantInt>(V);
947 if (!CI && V->getType()->isVectorTy())
948 if (const auto *C = dyn_cast<Constant>(V))
949 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowPoison));
950
951 return CI && APInt::isSameValue(CI->getValue(), Val);
952 }
953 };
954
955 template <bool AllowPoison> struct specific_intval64 {
956 uint64_t Val;
957
specific_intval64specific_intval64958 specific_intval64(uint64_t V) : Val(V) {}
959
matchspecific_intval64960 template <typename ITy> bool match(ITy *V) {
961 const auto *CI = dyn_cast<ConstantInt>(V);
962 if (!CI && V->getType()->isVectorTy())
963 if (const auto *C = dyn_cast<Constant>(V))
964 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowPoison));
965
966 return CI && CI->getValue() == Val;
967 }
968 };
969
970 /// Match a specific integer value or vector with all elements equal to
971 /// the value.
m_SpecificInt(const APInt & V)972 inline specific_intval<false> m_SpecificInt(const APInt &V) {
973 return specific_intval<false>(V);
974 }
975
m_SpecificInt(uint64_t V)976 inline specific_intval64<false> m_SpecificInt(uint64_t V) {
977 return specific_intval64<false>(V);
978 }
979
m_SpecificIntAllowPoison(const APInt & V)980 inline specific_intval<true> m_SpecificIntAllowPoison(const APInt &V) {
981 return specific_intval<true>(V);
982 }
983
m_SpecificIntAllowPoison(uint64_t V)984 inline specific_intval64<true> m_SpecificIntAllowPoison(uint64_t V) {
985 return specific_intval64<true>(V);
986 }
987
988 /// Match a ConstantInt and bind to its value. This does not match
989 /// ConstantInts wider than 64-bits.
m_ConstantInt(uint64_t & V)990 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
991
992 /// Match a specified basic block value.
993 struct specific_bbval {
994 BasicBlock *Val;
995
specific_bbvalspecific_bbval996 specific_bbval(BasicBlock *Val) : Val(Val) {}
997
matchspecific_bbval998 template <typename ITy> bool match(ITy *V) {
999 const auto *BB = dyn_cast<BasicBlock>(V);
1000 return BB && BB == Val;
1001 }
1002 };
1003
1004 /// Match a specific basic block value.
m_SpecificBB(BasicBlock * BB)1005 inline specific_bbval m_SpecificBB(BasicBlock *BB) {
1006 return specific_bbval(BB);
1007 }
1008
1009 /// A commutative-friendly version of m_Specific().
m_Deferred(BasicBlock * const & BB)1010 inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
1011 return BB;
1012 }
1013 inline deferredval_ty<const BasicBlock>
m_Deferred(const BasicBlock * const & BB)1014 m_Deferred(const BasicBlock *const &BB) {
1015 return BB;
1016 }
1017
1018 //===----------------------------------------------------------------------===//
1019 // Matcher for any binary operator.
1020 //
1021 template <typename LHS_t, typename RHS_t, bool Commutable = false>
1022 struct AnyBinaryOp_match {
1023 LHS_t L;
1024 RHS_t R;
1025
1026 // The evaluation order is always stable, regardless of Commutability.
1027 // The LHS is always matched first.
AnyBinaryOp_matchAnyBinaryOp_match1028 AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1029
matchAnyBinaryOp_match1030 template <typename OpTy> bool match(OpTy *V) {
1031 if (auto *I = dyn_cast<BinaryOperator>(V))
1032 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
1033 (Commutable && L.match(I->getOperand(1)) &&
1034 R.match(I->getOperand(0)));
1035 return false;
1036 }
1037 };
1038
1039 template <typename LHS, typename RHS>
m_BinOp(const LHS & L,const RHS & R)1040 inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
1041 return AnyBinaryOp_match<LHS, RHS>(L, R);
1042 }
1043
1044 //===----------------------------------------------------------------------===//
1045 // Matcher for any unary operator.
1046 // TODO fuse unary, binary matcher into n-ary matcher
1047 //
1048 template <typename OP_t> struct AnyUnaryOp_match {
1049 OP_t X;
1050
AnyUnaryOp_matchAnyUnaryOp_match1051 AnyUnaryOp_match(const OP_t &X) : X(X) {}
1052
matchAnyUnaryOp_match1053 template <typename OpTy> bool match(OpTy *V) {
1054 if (auto *I = dyn_cast<UnaryOperator>(V))
1055 return X.match(I->getOperand(0));
1056 return false;
1057 }
1058 };
1059
m_UnOp(const OP_t & X)1060 template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) {
1061 return AnyUnaryOp_match<OP_t>(X);
1062 }
1063
1064 //===----------------------------------------------------------------------===//
1065 // Matchers for specific binary operators.
1066 //
1067
1068 template <typename LHS_t, typename RHS_t, unsigned Opcode,
1069 bool Commutable = false>
1070 struct BinaryOp_match {
1071 LHS_t L;
1072 RHS_t R;
1073
1074 // The evaluation order is always stable, regardless of Commutability.
1075 // The LHS is always matched first.
BinaryOp_matchBinaryOp_match1076 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1077
matchBinaryOp_match1078 template <typename OpTy> inline bool match(unsigned Opc, OpTy *V) {
1079 if (V->getValueID() == Value::InstructionVal + Opc) {
1080 auto *I = cast<BinaryOperator>(V);
1081 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
1082 (Commutable && L.match(I->getOperand(1)) &&
1083 R.match(I->getOperand(0)));
1084 }
1085 return false;
1086 }
1087
matchBinaryOp_match1088 template <typename OpTy> bool match(OpTy *V) { return match(Opcode, V); }
1089 };
1090
1091 template <typename LHS, typename RHS>
m_Add(const LHS & L,const RHS & R)1092 inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
1093 const RHS &R) {
1094 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
1095 }
1096
1097 template <typename LHS, typename RHS>
m_FAdd(const LHS & L,const RHS & R)1098 inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
1099 const RHS &R) {
1100 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
1101 }
1102
1103 template <typename LHS, typename RHS>
m_Sub(const LHS & L,const RHS & R)1104 inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
1105 const RHS &R) {
1106 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
1107 }
1108
1109 template <typename LHS, typename RHS>
m_FSub(const LHS & L,const RHS & R)1110 inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
1111 const RHS &R) {
1112 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
1113 }
1114
1115 template <typename Op_t> struct FNeg_match {
1116 Op_t X;
1117
FNeg_matchFNeg_match1118 FNeg_match(const Op_t &Op) : X(Op) {}
matchFNeg_match1119 template <typename OpTy> bool match(OpTy *V) {
1120 auto *FPMO = dyn_cast<FPMathOperator>(V);
1121 if (!FPMO)
1122 return false;
1123
1124 if (FPMO->getOpcode() == Instruction::FNeg)
1125 return X.match(FPMO->getOperand(0));
1126
1127 if (FPMO->getOpcode() == Instruction::FSub) {
1128 if (FPMO->hasNoSignedZeros()) {
1129 // With 'nsz', any zero goes.
1130 if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
1131 return false;
1132 } else {
1133 // Without 'nsz', we need fsub -0.0, X exactly.
1134 if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
1135 return false;
1136 }
1137
1138 return X.match(FPMO->getOperand(1));
1139 }
1140
1141 return false;
1142 }
1143 };
1144
1145 /// Match 'fneg X' as 'fsub -0.0, X'.
m_FNeg(const OpTy & X)1146 template <typename OpTy> inline FNeg_match<OpTy> m_FNeg(const OpTy &X) {
1147 return FNeg_match<OpTy>(X);
1148 }
1149
1150 /// Match 'fneg X' as 'fsub +-0.0, X'.
1151 template <typename RHS>
1152 inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
m_FNegNSZ(const RHS & X)1153 m_FNegNSZ(const RHS &X) {
1154 return m_FSub(m_AnyZeroFP(), X);
1155 }
1156
1157 template <typename LHS, typename RHS>
m_Mul(const LHS & L,const RHS & R)1158 inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
1159 const RHS &R) {
1160 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
1161 }
1162
1163 template <typename LHS, typename RHS>
m_FMul(const LHS & L,const RHS & R)1164 inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
1165 const RHS &R) {
1166 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
1167 }
1168
1169 template <typename LHS, typename RHS>
m_UDiv(const LHS & L,const RHS & R)1170 inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
1171 const RHS &R) {
1172 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
1173 }
1174
1175 template <typename LHS, typename RHS>
m_SDiv(const LHS & L,const RHS & R)1176 inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
1177 const RHS &R) {
1178 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
1179 }
1180
1181 template <typename LHS, typename RHS>
m_FDiv(const LHS & L,const RHS & R)1182 inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
1183 const RHS &R) {
1184 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
1185 }
1186
1187 template <typename LHS, typename RHS>
m_URem(const LHS & L,const RHS & R)1188 inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
1189 const RHS &R) {
1190 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
1191 }
1192
1193 template <typename LHS, typename RHS>
m_SRem(const LHS & L,const RHS & R)1194 inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
1195 const RHS &R) {
1196 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
1197 }
1198
1199 template <typename LHS, typename RHS>
m_FRem(const LHS & L,const RHS & R)1200 inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
1201 const RHS &R) {
1202 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
1203 }
1204
1205 template <typename LHS, typename RHS>
m_And(const LHS & L,const RHS & R)1206 inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
1207 const RHS &R) {
1208 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
1209 }
1210
1211 template <typename LHS, typename RHS>
m_Or(const LHS & L,const RHS & R)1212 inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
1213 const RHS &R) {
1214 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
1215 }
1216
1217 template <typename LHS, typename RHS>
m_Xor(const LHS & L,const RHS & R)1218 inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
1219 const RHS &R) {
1220 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
1221 }
1222
1223 template <typename LHS, typename RHS>
m_Shl(const LHS & L,const RHS & R)1224 inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
1225 const RHS &R) {
1226 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
1227 }
1228
1229 template <typename LHS, typename RHS>
m_LShr(const LHS & L,const RHS & R)1230 inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
1231 const RHS &R) {
1232 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
1233 }
1234
1235 template <typename LHS, typename RHS>
m_AShr(const LHS & L,const RHS & R)1236 inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
1237 const RHS &R) {
1238 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
1239 }
1240
1241 template <typename LHS_t, typename RHS_t, unsigned Opcode,
1242 unsigned WrapFlags = 0, bool Commutable = false>
1243 struct OverflowingBinaryOp_match {
1244 LHS_t L;
1245 RHS_t R;
1246
OverflowingBinaryOp_matchOverflowingBinaryOp_match1247 OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
1248 : L(LHS), R(RHS) {}
1249
matchOverflowingBinaryOp_match1250 template <typename OpTy> bool match(OpTy *V) {
1251 if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
1252 if (Op->getOpcode() != Opcode)
1253 return false;
1254 if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) &&
1255 !Op->hasNoUnsignedWrap())
1256 return false;
1257 if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) &&
1258 !Op->hasNoSignedWrap())
1259 return false;
1260 return (L.match(Op->getOperand(0)) && R.match(Op->getOperand(1))) ||
1261 (Commutable && L.match(Op->getOperand(1)) &&
1262 R.match(Op->getOperand(0)));
1263 }
1264 return false;
1265 }
1266 };
1267
1268 template <typename LHS, typename RHS>
1269 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1270 OverflowingBinaryOperator::NoSignedWrap>
m_NSWAdd(const LHS & L,const RHS & R)1271 m_NSWAdd(const LHS &L, const RHS &R) {
1272 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1273 OverflowingBinaryOperator::NoSignedWrap>(L,
1274 R);
1275 }
1276 template <typename LHS, typename RHS>
1277 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1278 OverflowingBinaryOperator::NoSignedWrap>
m_NSWSub(const LHS & L,const RHS & R)1279 m_NSWSub(const LHS &L, const RHS &R) {
1280 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1281 OverflowingBinaryOperator::NoSignedWrap>(L,
1282 R);
1283 }
1284 template <typename LHS, typename RHS>
1285 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1286 OverflowingBinaryOperator::NoSignedWrap>
m_NSWMul(const LHS & L,const RHS & R)1287 m_NSWMul(const LHS &L, const RHS &R) {
1288 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1289 OverflowingBinaryOperator::NoSignedWrap>(L,
1290 R);
1291 }
1292 template <typename LHS, typename RHS>
1293 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1294 OverflowingBinaryOperator::NoSignedWrap>
m_NSWShl(const LHS & L,const RHS & R)1295 m_NSWShl(const LHS &L, const RHS &R) {
1296 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1297 OverflowingBinaryOperator::NoSignedWrap>(L,
1298 R);
1299 }
1300
1301 template <typename LHS, typename RHS>
1302 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1303 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWAdd(const LHS & L,const RHS & R)1304 m_NUWAdd(const LHS &L, const RHS &R) {
1305 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1306 OverflowingBinaryOperator::NoUnsignedWrap>(
1307 L, R);
1308 }
1309
1310 template <typename LHS, typename RHS>
1311 inline OverflowingBinaryOp_match<
1312 LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap, true>
m_c_NUWAdd(const LHS & L,const RHS & R)1313 m_c_NUWAdd(const LHS &L, const RHS &R) {
1314 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1315 OverflowingBinaryOperator::NoUnsignedWrap,
1316 true>(L, R);
1317 }
1318
1319 template <typename LHS, typename RHS>
1320 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1321 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWSub(const LHS & L,const RHS & R)1322 m_NUWSub(const LHS &L, const RHS &R) {
1323 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1324 OverflowingBinaryOperator::NoUnsignedWrap>(
1325 L, R);
1326 }
1327 template <typename LHS, typename RHS>
1328 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1329 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWMul(const LHS & L,const RHS & R)1330 m_NUWMul(const LHS &L, const RHS &R) {
1331 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1332 OverflowingBinaryOperator::NoUnsignedWrap>(
1333 L, R);
1334 }
1335 template <typename LHS, typename RHS>
1336 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1337 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWShl(const LHS & L,const RHS & R)1338 m_NUWShl(const LHS &L, const RHS &R) {
1339 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1340 OverflowingBinaryOperator::NoUnsignedWrap>(
1341 L, R);
1342 }
1343
1344 template <typename LHS_t, typename RHS_t, bool Commutable = false>
1345 struct SpecificBinaryOp_match
1346 : public BinaryOp_match<LHS_t, RHS_t, 0, Commutable> {
1347 unsigned Opcode;
1348
SpecificBinaryOp_matchSpecificBinaryOp_match1349 SpecificBinaryOp_match(unsigned Opcode, const LHS_t &LHS, const RHS_t &RHS)
1350 : BinaryOp_match<LHS_t, RHS_t, 0, Commutable>(LHS, RHS), Opcode(Opcode) {}
1351
matchSpecificBinaryOp_match1352 template <typename OpTy> bool match(OpTy *V) {
1353 return BinaryOp_match<LHS_t, RHS_t, 0, Commutable>::match(Opcode, V);
1354 }
1355 };
1356
1357 /// Matches a specific opcode.
1358 template <typename LHS, typename RHS>
m_BinOp(unsigned Opcode,const LHS & L,const RHS & R)1359 inline SpecificBinaryOp_match<LHS, RHS> m_BinOp(unsigned Opcode, const LHS &L,
1360 const RHS &R) {
1361 return SpecificBinaryOp_match<LHS, RHS>(Opcode, L, R);
1362 }
1363
1364 template <typename LHS, typename RHS, bool Commutable = false>
1365 struct DisjointOr_match {
1366 LHS L;
1367 RHS R;
1368
DisjointOr_matchDisjointOr_match1369 DisjointOr_match(const LHS &L, const RHS &R) : L(L), R(R) {}
1370
matchDisjointOr_match1371 template <typename OpTy> bool match(OpTy *V) {
1372 if (auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) {
1373 assert(PDI->getOpcode() == Instruction::Or && "Only or can be disjoint");
1374 if (!PDI->isDisjoint())
1375 return false;
1376 return (L.match(PDI->getOperand(0)) && R.match(PDI->getOperand(1))) ||
1377 (Commutable && L.match(PDI->getOperand(1)) &&
1378 R.match(PDI->getOperand(0)));
1379 }
1380 return false;
1381 }
1382 };
1383
1384 template <typename LHS, typename RHS>
m_DisjointOr(const LHS & L,const RHS & R)1385 inline DisjointOr_match<LHS, RHS> m_DisjointOr(const LHS &L, const RHS &R) {
1386 return DisjointOr_match<LHS, RHS>(L, R);
1387 }
1388
1389 template <typename LHS, typename RHS>
m_c_DisjointOr(const LHS & L,const RHS & R)1390 inline DisjointOr_match<LHS, RHS, true> m_c_DisjointOr(const LHS &L,
1391 const RHS &R) {
1392 return DisjointOr_match<LHS, RHS, true>(L, R);
1393 }
1394
1395 /// Match either "add" or "or disjoint".
1396 template <typename LHS, typename RHS>
1397 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Add>,
1398 DisjointOr_match<LHS, RHS>>
m_AddLike(const LHS & L,const RHS & R)1399 m_AddLike(const LHS &L, const RHS &R) {
1400 return m_CombineOr(m_Add(L, R), m_DisjointOr(L, R));
1401 }
1402
1403 /// Match either "add nsw" or "or disjoint"
1404 template <typename LHS, typename RHS>
1405 inline match_combine_or<
1406 OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1407 OverflowingBinaryOperator::NoSignedWrap>,
1408 DisjointOr_match<LHS, RHS>>
m_NSWAddLike(const LHS & L,const RHS & R)1409 m_NSWAddLike(const LHS &L, const RHS &R) {
1410 return m_CombineOr(m_NSWAdd(L, R), m_DisjointOr(L, R));
1411 }
1412
1413 /// Match either "add nuw" or "or disjoint"
1414 template <typename LHS, typename RHS>
1415 inline match_combine_or<
1416 OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1417 OverflowingBinaryOperator::NoUnsignedWrap>,
1418 DisjointOr_match<LHS, RHS>>
m_NUWAddLike(const LHS & L,const RHS & R)1419 m_NUWAddLike(const LHS &L, const RHS &R) {
1420 return m_CombineOr(m_NUWAdd(L, R), m_DisjointOr(L, R));
1421 }
1422
1423 //===----------------------------------------------------------------------===//
1424 // Class that matches a group of binary opcodes.
1425 //
1426 template <typename LHS_t, typename RHS_t, typename Predicate,
1427 bool Commutable = false>
1428 struct BinOpPred_match : Predicate {
1429 LHS_t L;
1430 RHS_t R;
1431
BinOpPred_matchBinOpPred_match1432 BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1433
matchBinOpPred_match1434 template <typename OpTy> bool match(OpTy *V) {
1435 if (auto *I = dyn_cast<Instruction>(V))
1436 return this->isOpType(I->getOpcode()) &&
1437 ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
1438 (Commutable && L.match(I->getOperand(1)) &&
1439 R.match(I->getOperand(0))));
1440 return false;
1441 }
1442 };
1443
1444 struct is_shift_op {
isOpTypeis_shift_op1445 bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
1446 };
1447
1448 struct is_right_shift_op {
isOpTypeis_right_shift_op1449 bool isOpType(unsigned Opcode) {
1450 return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
1451 }
1452 };
1453
1454 struct is_logical_shift_op {
isOpTypeis_logical_shift_op1455 bool isOpType(unsigned Opcode) {
1456 return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
1457 }
1458 };
1459
1460 struct is_bitwiselogic_op {
isOpTypeis_bitwiselogic_op1461 bool isOpType(unsigned Opcode) {
1462 return Instruction::isBitwiseLogicOp(Opcode);
1463 }
1464 };
1465
1466 struct is_idiv_op {
isOpTypeis_idiv_op1467 bool isOpType(unsigned Opcode) {
1468 return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
1469 }
1470 };
1471
1472 struct is_irem_op {
isOpTypeis_irem_op1473 bool isOpType(unsigned Opcode) {
1474 return Opcode == Instruction::SRem || Opcode == Instruction::URem;
1475 }
1476 };
1477
1478 /// Matches shift operations.
1479 template <typename LHS, typename RHS>
m_Shift(const LHS & L,const RHS & R)1480 inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
1481 const RHS &R) {
1482 return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
1483 }
1484
1485 /// Matches logical shift operations.
1486 template <typename LHS, typename RHS>
m_Shr(const LHS & L,const RHS & R)1487 inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
1488 const RHS &R) {
1489 return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
1490 }
1491
1492 /// Matches logical shift operations.
1493 template <typename LHS, typename RHS>
1494 inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
m_LogicalShift(const LHS & L,const RHS & R)1495 m_LogicalShift(const LHS &L, const RHS &R) {
1496 return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
1497 }
1498
1499 /// Matches bitwise logic operations.
1500 template <typename LHS, typename RHS>
1501 inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
m_BitwiseLogic(const LHS & L,const RHS & R)1502 m_BitwiseLogic(const LHS &L, const RHS &R) {
1503 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
1504 }
1505
1506 /// Matches bitwise logic operations in either order.
1507 template <typename LHS, typename RHS>
1508 inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op, true>
m_c_BitwiseLogic(const LHS & L,const RHS & R)1509 m_c_BitwiseLogic(const LHS &L, const RHS &R) {
1510 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op, true>(L, R);
1511 }
1512
1513 /// Matches integer division operations.
1514 template <typename LHS, typename RHS>
m_IDiv(const LHS & L,const RHS & R)1515 inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
1516 const RHS &R) {
1517 return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
1518 }
1519
1520 /// Matches integer remainder operations.
1521 template <typename LHS, typename RHS>
m_IRem(const LHS & L,const RHS & R)1522 inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
1523 const RHS &R) {
1524 return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
1525 }
1526
1527 //===----------------------------------------------------------------------===//
1528 // Class that matches exact binary ops.
1529 //
1530 template <typename SubPattern_t> struct Exact_match {
1531 SubPattern_t SubPattern;
1532
Exact_matchExact_match1533 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1534
matchExact_match1535 template <typename OpTy> bool match(OpTy *V) {
1536 if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1537 return PEO->isExact() && SubPattern.match(V);
1538 return false;
1539 }
1540 };
1541
m_Exact(const T & SubPattern)1542 template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1543 return SubPattern;
1544 }
1545
1546 //===----------------------------------------------------------------------===//
1547 // Matchers for CmpInst classes
1548 //
1549
1550 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1551 bool Commutable = false>
1552 struct CmpClass_match {
1553 PredicateTy *Predicate;
1554 LHS_t L;
1555 RHS_t R;
1556
1557 // The evaluation order is always stable, regardless of Commutability.
1558 // The LHS is always matched first.
CmpClass_matchCmpClass_match1559 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1560 : Predicate(&Pred), L(LHS), R(RHS) {}
CmpClass_matchCmpClass_match1561 CmpClass_match(const LHS_t &LHS, const RHS_t &RHS)
1562 : Predicate(nullptr), L(LHS), R(RHS) {}
1563
matchCmpClass_match1564 template <typename OpTy> bool match(OpTy *V) {
1565 if (auto *I = dyn_cast<Class>(V)) {
1566 if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
1567 if (Predicate)
1568 *Predicate = I->getPredicate();
1569 return true;
1570 } else if (Commutable && L.match(I->getOperand(1)) &&
1571 R.match(I->getOperand(0))) {
1572 if (Predicate)
1573 *Predicate = I->getSwappedPredicate();
1574 return true;
1575 }
1576 }
1577 return false;
1578 }
1579 };
1580
1581 template <typename LHS, typename RHS>
1582 inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
m_Cmp(CmpInst::Predicate & Pred,const LHS & L,const RHS & R)1583 m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1584 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1585 }
1586
1587 template <typename LHS, typename RHS>
1588 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
m_ICmp(ICmpInst::Predicate & Pred,const LHS & L,const RHS & R)1589 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1590 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1591 }
1592
1593 template <typename LHS, typename RHS>
1594 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
m_FCmp(FCmpInst::Predicate & Pred,const LHS & L,const RHS & R)1595 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1596 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1597 }
1598
1599 template <typename LHS, typename RHS>
1600 inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
m_Cmp(const LHS & L,const RHS & R)1601 m_Cmp(const LHS &L, const RHS &R) {
1602 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(L, R);
1603 }
1604
1605 template <typename LHS, typename RHS>
1606 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
m_ICmp(const LHS & L,const RHS & R)1607 m_ICmp(const LHS &L, const RHS &R) {
1608 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(L, R);
1609 }
1610
1611 template <typename LHS, typename RHS>
1612 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
m_FCmp(const LHS & L,const RHS & R)1613 m_FCmp(const LHS &L, const RHS &R) {
1614 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(L, R);
1615 }
1616
1617 // Same as CmpClass, but instead of saving Pred as out output variable, match a
1618 // specific input pred for equality.
1619 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy>
1620 struct SpecificCmpClass_match {
1621 const PredicateTy Predicate;
1622 LHS_t L;
1623 RHS_t R;
1624
SpecificCmpClass_matchSpecificCmpClass_match1625 SpecificCmpClass_match(PredicateTy Pred, const LHS_t &LHS, const RHS_t &RHS)
1626 : Predicate(Pred), L(LHS), R(RHS) {}
1627
matchSpecificCmpClass_match1628 template <typename OpTy> bool match(OpTy *V) {
1629 if (auto *I = dyn_cast<Class>(V))
1630 return I->getPredicate() == Predicate && L.match(I->getOperand(0)) &&
1631 R.match(I->getOperand(1));
1632 return false;
1633 }
1634 };
1635
1636 template <typename LHS, typename RHS>
1637 inline SpecificCmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
m_SpecificCmp(CmpInst::Predicate MatchPred,const LHS & L,const RHS & R)1638 m_SpecificCmp(CmpInst::Predicate MatchPred, const LHS &L, const RHS &R) {
1639 return SpecificCmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(
1640 MatchPred, L, R);
1641 }
1642
1643 template <typename LHS, typename RHS>
1644 inline SpecificCmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
m_SpecificICmp(ICmpInst::Predicate MatchPred,const LHS & L,const RHS & R)1645 m_SpecificICmp(ICmpInst::Predicate MatchPred, const LHS &L, const RHS &R) {
1646 return SpecificCmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(
1647 MatchPred, L, R);
1648 }
1649
1650 template <typename LHS, typename RHS>
1651 inline SpecificCmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
m_SpecificFCmp(FCmpInst::Predicate MatchPred,const LHS & L,const RHS & R)1652 m_SpecificFCmp(FCmpInst::Predicate MatchPred, const LHS &L, const RHS &R) {
1653 return SpecificCmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(
1654 MatchPred, L, R);
1655 }
1656
1657 //===----------------------------------------------------------------------===//
1658 // Matchers for instructions with a given opcode and number of operands.
1659 //
1660
1661 /// Matches instructions with Opcode and three operands.
1662 template <typename T0, unsigned Opcode> struct OneOps_match {
1663 T0 Op1;
1664
OneOps_matchOneOps_match1665 OneOps_match(const T0 &Op1) : Op1(Op1) {}
1666
matchOneOps_match1667 template <typename OpTy> bool match(OpTy *V) {
1668 if (V->getValueID() == Value::InstructionVal + Opcode) {
1669 auto *I = cast<Instruction>(V);
1670 return Op1.match(I->getOperand(0));
1671 }
1672 return false;
1673 }
1674 };
1675
1676 /// Matches instructions with Opcode and three operands.
1677 template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1678 T0 Op1;
1679 T1 Op2;
1680
TwoOps_matchTwoOps_match1681 TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1682
matchTwoOps_match1683 template <typename OpTy> bool match(OpTy *V) {
1684 if (V->getValueID() == Value::InstructionVal + Opcode) {
1685 auto *I = cast<Instruction>(V);
1686 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1687 }
1688 return false;
1689 }
1690 };
1691
1692 /// Matches instructions with Opcode and three operands.
1693 template <typename T0, typename T1, typename T2, unsigned Opcode>
1694 struct ThreeOps_match {
1695 T0 Op1;
1696 T1 Op2;
1697 T2 Op3;
1698
ThreeOps_matchThreeOps_match1699 ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1700 : Op1(Op1), Op2(Op2), Op3(Op3) {}
1701
matchThreeOps_match1702 template <typename OpTy> bool match(OpTy *V) {
1703 if (V->getValueID() == Value::InstructionVal + Opcode) {
1704 auto *I = cast<Instruction>(V);
1705 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1706 Op3.match(I->getOperand(2));
1707 }
1708 return false;
1709 }
1710 };
1711
1712 /// Matches instructions with Opcode and any number of operands
1713 template <unsigned Opcode, typename... OperandTypes> struct AnyOps_match {
1714 std::tuple<OperandTypes...> Operands;
1715
AnyOps_matchAnyOps_match1716 AnyOps_match(const OperandTypes &...Ops) : Operands(Ops...) {}
1717
1718 // Operand matching works by recursively calling match_operands, matching the
1719 // operands left to right. The first version is called for each operand but
1720 // the last, for which the second version is called. The second version of
1721 // match_operands is also used to match each individual operand.
1722 template <int Idx, int Last>
match_operandsAnyOps_match1723 std::enable_if_t<Idx != Last, bool> match_operands(const Instruction *I) {
1724 return match_operands<Idx, Idx>(I) && match_operands<Idx + 1, Last>(I);
1725 }
1726
1727 template <int Idx, int Last>
match_operandsAnyOps_match1728 std::enable_if_t<Idx == Last, bool> match_operands(const Instruction *I) {
1729 return std::get<Idx>(Operands).match(I->getOperand(Idx));
1730 }
1731
matchAnyOps_match1732 template <typename OpTy> bool match(OpTy *V) {
1733 if (V->getValueID() == Value::InstructionVal + Opcode) {
1734 auto *I = cast<Instruction>(V);
1735 return I->getNumOperands() == sizeof...(OperandTypes) &&
1736 match_operands<0, sizeof...(OperandTypes) - 1>(I);
1737 }
1738 return false;
1739 }
1740 };
1741
1742 /// Matches SelectInst.
1743 template <typename Cond, typename LHS, typename RHS>
1744 inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
m_Select(const Cond & C,const LHS & L,const RHS & R)1745 m_Select(const Cond &C, const LHS &L, const RHS &R) {
1746 return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1747 }
1748
1749 /// This matches a select of two constants, e.g.:
1750 /// m_SelectCst<-1, 0>(m_Value(V))
1751 template <int64_t L, int64_t R, typename Cond>
1752 inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1753 Instruction::Select>
m_SelectCst(const Cond & C)1754 m_SelectCst(const Cond &C) {
1755 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1756 }
1757
1758 /// Matches FreezeInst.
1759 template <typename OpTy>
m_Freeze(const OpTy & Op)1760 inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) {
1761 return OneOps_match<OpTy, Instruction::Freeze>(Op);
1762 }
1763
1764 /// Matches InsertElementInst.
1765 template <typename Val_t, typename Elt_t, typename Idx_t>
1766 inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
m_InsertElt(const Val_t & Val,const Elt_t & Elt,const Idx_t & Idx)1767 m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1768 return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1769 Val, Elt, Idx);
1770 }
1771
1772 /// Matches ExtractElementInst.
1773 template <typename Val_t, typename Idx_t>
1774 inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
m_ExtractElt(const Val_t & Val,const Idx_t & Idx)1775 m_ExtractElt(const Val_t &Val, const Idx_t &Idx) {
1776 return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1777 }
1778
1779 /// Matches shuffle.
1780 template <typename T0, typename T1, typename T2> struct Shuffle_match {
1781 T0 Op1;
1782 T1 Op2;
1783 T2 Mask;
1784
Shuffle_matchShuffle_match1785 Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask)
1786 : Op1(Op1), Op2(Op2), Mask(Mask) {}
1787
matchShuffle_match1788 template <typename OpTy> bool match(OpTy *V) {
1789 if (auto *I = dyn_cast<ShuffleVectorInst>(V)) {
1790 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1791 Mask.match(I->getShuffleMask());
1792 }
1793 return false;
1794 }
1795 };
1796
1797 struct m_Mask {
1798 ArrayRef<int> &MaskRef;
m_Maskm_Mask1799 m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
matchm_Mask1800 bool match(ArrayRef<int> Mask) {
1801 MaskRef = Mask;
1802 return true;
1803 }
1804 };
1805
1806 struct m_ZeroMask {
matchm_ZeroMask1807 bool match(ArrayRef<int> Mask) {
1808 return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; });
1809 }
1810 };
1811
1812 struct m_SpecificMask {
1813 ArrayRef<int> &MaskRef;
m_SpecificMaskm_SpecificMask1814 m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
matchm_SpecificMask1815 bool match(ArrayRef<int> Mask) { return MaskRef == Mask; }
1816 };
1817
1818 struct m_SplatOrPoisonMask {
1819 int &SplatIndex;
m_SplatOrPoisonMaskm_SplatOrPoisonMask1820 m_SplatOrPoisonMask(int &SplatIndex) : SplatIndex(SplatIndex) {}
matchm_SplatOrPoisonMask1821 bool match(ArrayRef<int> Mask) {
1822 const auto *First = find_if(Mask, [](int Elem) { return Elem != -1; });
1823 if (First == Mask.end())
1824 return false;
1825 SplatIndex = *First;
1826 return all_of(Mask,
1827 [First](int Elem) { return Elem == *First || Elem == -1; });
1828 }
1829 };
1830
1831 template <typename PointerOpTy, typename OffsetOpTy> struct PtrAdd_match {
1832 PointerOpTy PointerOp;
1833 OffsetOpTy OffsetOp;
1834
PtrAdd_matchPtrAdd_match1835 PtrAdd_match(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp)
1836 : PointerOp(PointerOp), OffsetOp(OffsetOp) {}
1837
matchPtrAdd_match1838 template <typename OpTy> bool match(OpTy *V) {
1839 auto *GEP = dyn_cast<GEPOperator>(V);
1840 return GEP && GEP->getSourceElementType()->isIntegerTy(8) &&
1841 PointerOp.match(GEP->getPointerOperand()) &&
1842 OffsetOp.match(GEP->idx_begin()->get());
1843 }
1844 };
1845
1846 /// Matches ShuffleVectorInst independently of mask value.
1847 template <typename V1_t, typename V2_t>
1848 inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>
m_Shuffle(const V1_t & v1,const V2_t & v2)1849 m_Shuffle(const V1_t &v1, const V2_t &v2) {
1850 return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2);
1851 }
1852
1853 template <typename V1_t, typename V2_t, typename Mask_t>
1854 inline Shuffle_match<V1_t, V2_t, Mask_t>
m_Shuffle(const V1_t & v1,const V2_t & v2,const Mask_t & mask)1855 m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) {
1856 return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask);
1857 }
1858
1859 /// Matches LoadInst.
1860 template <typename OpTy>
m_Load(const OpTy & Op)1861 inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1862 return OneOps_match<OpTy, Instruction::Load>(Op);
1863 }
1864
1865 /// Matches StoreInst.
1866 template <typename ValueOpTy, typename PointerOpTy>
1867 inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
m_Store(const ValueOpTy & ValueOp,const PointerOpTy & PointerOp)1868 m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1869 return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1870 PointerOp);
1871 }
1872
1873 /// Matches GetElementPtrInst.
1874 template <typename... OperandTypes>
m_GEP(const OperandTypes &...Ops)1875 inline auto m_GEP(const OperandTypes &...Ops) {
1876 return AnyOps_match<Instruction::GetElementPtr, OperandTypes...>(Ops...);
1877 }
1878
1879 /// Matches GEP with i8 source element type
1880 template <typename PointerOpTy, typename OffsetOpTy>
1881 inline PtrAdd_match<PointerOpTy, OffsetOpTy>
m_PtrAdd(const PointerOpTy & PointerOp,const OffsetOpTy & OffsetOp)1882 m_PtrAdd(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp) {
1883 return PtrAdd_match<PointerOpTy, OffsetOpTy>(PointerOp, OffsetOp);
1884 }
1885
1886 //===----------------------------------------------------------------------===//
1887 // Matchers for CastInst classes
1888 //
1889
1890 template <typename Op_t, unsigned Opcode> struct CastOperator_match {
1891 Op_t Op;
1892
CastOperator_matchCastOperator_match1893 CastOperator_match(const Op_t &OpMatch) : Op(OpMatch) {}
1894
matchCastOperator_match1895 template <typename OpTy> bool match(OpTy *V) {
1896 if (auto *O = dyn_cast<Operator>(V))
1897 return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1898 return false;
1899 }
1900 };
1901
1902 template <typename Op_t, typename Class> struct CastInst_match {
1903 Op_t Op;
1904
CastInst_matchCastInst_match1905 CastInst_match(const Op_t &OpMatch) : Op(OpMatch) {}
1906
matchCastInst_match1907 template <typename OpTy> bool match(OpTy *V) {
1908 if (auto *I = dyn_cast<Class>(V))
1909 return Op.match(I->getOperand(0));
1910 return false;
1911 }
1912 };
1913
1914 template <typename Op_t> struct PtrToIntSameSize_match {
1915 const DataLayout &DL;
1916 Op_t Op;
1917
PtrToIntSameSize_matchPtrToIntSameSize_match1918 PtrToIntSameSize_match(const DataLayout &DL, const Op_t &OpMatch)
1919 : DL(DL), Op(OpMatch) {}
1920
matchPtrToIntSameSize_match1921 template <typename OpTy> bool match(OpTy *V) {
1922 if (auto *O = dyn_cast<Operator>(V))
1923 return O->getOpcode() == Instruction::PtrToInt &&
1924 DL.getTypeSizeInBits(O->getType()) ==
1925 DL.getTypeSizeInBits(O->getOperand(0)->getType()) &&
1926 Op.match(O->getOperand(0));
1927 return false;
1928 }
1929 };
1930
1931 template <typename Op_t> struct NNegZExt_match {
1932 Op_t Op;
1933
NNegZExt_matchNNegZExt_match1934 NNegZExt_match(const Op_t &OpMatch) : Op(OpMatch) {}
1935
matchNNegZExt_match1936 template <typename OpTy> bool match(OpTy *V) {
1937 if (auto *I = dyn_cast<ZExtInst>(V))
1938 return I->hasNonNeg() && Op.match(I->getOperand(0));
1939 return false;
1940 }
1941 };
1942
1943 template <typename Op_t, unsigned WrapFlags = 0> struct NoWrapTrunc_match {
1944 Op_t Op;
1945
NoWrapTrunc_matchNoWrapTrunc_match1946 NoWrapTrunc_match(const Op_t &OpMatch) : Op(OpMatch) {}
1947
matchNoWrapTrunc_match1948 template <typename OpTy> bool match(OpTy *V) {
1949 if (auto *I = dyn_cast<TruncInst>(V))
1950 return (I->getNoWrapKind() & WrapFlags) == WrapFlags &&
1951 Op.match(I->getOperand(0));
1952 return false;
1953 }
1954 };
1955
1956 /// Matches BitCast.
1957 template <typename OpTy>
1958 inline CastOperator_match<OpTy, Instruction::BitCast>
m_BitCast(const OpTy & Op)1959 m_BitCast(const OpTy &Op) {
1960 return CastOperator_match<OpTy, Instruction::BitCast>(Op);
1961 }
1962
1963 template <typename Op_t> struct ElementWiseBitCast_match {
1964 Op_t Op;
1965
ElementWiseBitCast_matchElementWiseBitCast_match1966 ElementWiseBitCast_match(const Op_t &OpMatch) : Op(OpMatch) {}
1967
matchElementWiseBitCast_match1968 template <typename OpTy> bool match(OpTy *V) {
1969 auto *I = dyn_cast<BitCastInst>(V);
1970 if (!I)
1971 return false;
1972 Type *SrcType = I->getSrcTy();
1973 Type *DstType = I->getType();
1974 // Make sure the bitcast doesn't change between scalar and vector and
1975 // doesn't change the number of vector elements.
1976 if (SrcType->isVectorTy() != DstType->isVectorTy())
1977 return false;
1978 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcType);
1979 SrcVecTy && SrcVecTy->getElementCount() !=
1980 cast<VectorType>(DstType)->getElementCount())
1981 return false;
1982 return Op.match(I->getOperand(0));
1983 }
1984 };
1985
1986 template <typename OpTy>
m_ElementWiseBitCast(const OpTy & Op)1987 inline ElementWiseBitCast_match<OpTy> m_ElementWiseBitCast(const OpTy &Op) {
1988 return ElementWiseBitCast_match<OpTy>(Op);
1989 }
1990
1991 /// Matches PtrToInt.
1992 template <typename OpTy>
1993 inline CastOperator_match<OpTy, Instruction::PtrToInt>
m_PtrToInt(const OpTy & Op)1994 m_PtrToInt(const OpTy &Op) {
1995 return CastOperator_match<OpTy, Instruction::PtrToInt>(Op);
1996 }
1997
1998 template <typename OpTy>
m_PtrToIntSameSize(const DataLayout & DL,const OpTy & Op)1999 inline PtrToIntSameSize_match<OpTy> m_PtrToIntSameSize(const DataLayout &DL,
2000 const OpTy &Op) {
2001 return PtrToIntSameSize_match<OpTy>(DL, Op);
2002 }
2003
2004 /// Matches IntToPtr.
2005 template <typename OpTy>
2006 inline CastOperator_match<OpTy, Instruction::IntToPtr>
m_IntToPtr(const OpTy & Op)2007 m_IntToPtr(const OpTy &Op) {
2008 return CastOperator_match<OpTy, Instruction::IntToPtr>(Op);
2009 }
2010
2011 /// Matches Trunc.
2012 template <typename OpTy>
m_Trunc(const OpTy & Op)2013 inline CastInst_match<OpTy, TruncInst> m_Trunc(const OpTy &Op) {
2014 return CastInst_match<OpTy, TruncInst>(Op);
2015 }
2016
2017 /// Matches trunc nuw.
2018 template <typename OpTy>
2019 inline NoWrapTrunc_match<OpTy, TruncInst::NoUnsignedWrap>
m_NUWTrunc(const OpTy & Op)2020 m_NUWTrunc(const OpTy &Op) {
2021 return NoWrapTrunc_match<OpTy, TruncInst::NoUnsignedWrap>(Op);
2022 }
2023
2024 /// Matches trunc nsw.
2025 template <typename OpTy>
2026 inline NoWrapTrunc_match<OpTy, TruncInst::NoSignedWrap>
m_NSWTrunc(const OpTy & Op)2027 m_NSWTrunc(const OpTy &Op) {
2028 return NoWrapTrunc_match<OpTy, TruncInst::NoSignedWrap>(Op);
2029 }
2030
2031 template <typename OpTy>
2032 inline match_combine_or<CastInst_match<OpTy, TruncInst>, OpTy>
m_TruncOrSelf(const OpTy & Op)2033 m_TruncOrSelf(const OpTy &Op) {
2034 return m_CombineOr(m_Trunc(Op), Op);
2035 }
2036
2037 /// Matches SExt.
2038 template <typename OpTy>
m_SExt(const OpTy & Op)2039 inline CastInst_match<OpTy, SExtInst> m_SExt(const OpTy &Op) {
2040 return CastInst_match<OpTy, SExtInst>(Op);
2041 }
2042
2043 /// Matches ZExt.
2044 template <typename OpTy>
m_ZExt(const OpTy & Op)2045 inline CastInst_match<OpTy, ZExtInst> m_ZExt(const OpTy &Op) {
2046 return CastInst_match<OpTy, ZExtInst>(Op);
2047 }
2048
2049 template <typename OpTy>
m_NNegZExt(const OpTy & Op)2050 inline NNegZExt_match<OpTy> m_NNegZExt(const OpTy &Op) {
2051 return NNegZExt_match<OpTy>(Op);
2052 }
2053
2054 template <typename OpTy>
2055 inline match_combine_or<CastInst_match<OpTy, ZExtInst>, OpTy>
m_ZExtOrSelf(const OpTy & Op)2056 m_ZExtOrSelf(const OpTy &Op) {
2057 return m_CombineOr(m_ZExt(Op), Op);
2058 }
2059
2060 template <typename OpTy>
2061 inline match_combine_or<CastInst_match<OpTy, SExtInst>, OpTy>
m_SExtOrSelf(const OpTy & Op)2062 m_SExtOrSelf(const OpTy &Op) {
2063 return m_CombineOr(m_SExt(Op), Op);
2064 }
2065
2066 /// Match either "sext" or "zext nneg".
2067 template <typename OpTy>
2068 inline match_combine_or<CastInst_match<OpTy, SExtInst>, NNegZExt_match<OpTy>>
m_SExtLike(const OpTy & Op)2069 m_SExtLike(const OpTy &Op) {
2070 return m_CombineOr(m_SExt(Op), m_NNegZExt(Op));
2071 }
2072
2073 template <typename OpTy>
2074 inline match_combine_or<CastInst_match<OpTy, ZExtInst>,
2075 CastInst_match<OpTy, SExtInst>>
m_ZExtOrSExt(const OpTy & Op)2076 m_ZExtOrSExt(const OpTy &Op) {
2077 return m_CombineOr(m_ZExt(Op), m_SExt(Op));
2078 }
2079
2080 template <typename OpTy>
2081 inline match_combine_or<match_combine_or<CastInst_match<OpTy, ZExtInst>,
2082 CastInst_match<OpTy, SExtInst>>,
2083 OpTy>
m_ZExtOrSExtOrSelf(const OpTy & Op)2084 m_ZExtOrSExtOrSelf(const OpTy &Op) {
2085 return m_CombineOr(m_ZExtOrSExt(Op), Op);
2086 }
2087
2088 template <typename OpTy>
m_UIToFP(const OpTy & Op)2089 inline CastInst_match<OpTy, UIToFPInst> m_UIToFP(const OpTy &Op) {
2090 return CastInst_match<OpTy, UIToFPInst>(Op);
2091 }
2092
2093 template <typename OpTy>
m_SIToFP(const OpTy & Op)2094 inline CastInst_match<OpTy, SIToFPInst> m_SIToFP(const OpTy &Op) {
2095 return CastInst_match<OpTy, SIToFPInst>(Op);
2096 }
2097
2098 template <typename OpTy>
m_FPToUI(const OpTy & Op)2099 inline CastInst_match<OpTy, FPToUIInst> m_FPToUI(const OpTy &Op) {
2100 return CastInst_match<OpTy, FPToUIInst>(Op);
2101 }
2102
2103 template <typename OpTy>
m_FPToSI(const OpTy & Op)2104 inline CastInst_match<OpTy, FPToSIInst> m_FPToSI(const OpTy &Op) {
2105 return CastInst_match<OpTy, FPToSIInst>(Op);
2106 }
2107
2108 template <typename OpTy>
m_FPTrunc(const OpTy & Op)2109 inline CastInst_match<OpTy, FPTruncInst> m_FPTrunc(const OpTy &Op) {
2110 return CastInst_match<OpTy, FPTruncInst>(Op);
2111 }
2112
2113 template <typename OpTy>
m_FPExt(const OpTy & Op)2114 inline CastInst_match<OpTy, FPExtInst> m_FPExt(const OpTy &Op) {
2115 return CastInst_match<OpTy, FPExtInst>(Op);
2116 }
2117
2118 //===----------------------------------------------------------------------===//
2119 // Matchers for control flow.
2120 //
2121
2122 struct br_match {
2123 BasicBlock *&Succ;
2124
br_matchbr_match2125 br_match(BasicBlock *&Succ) : Succ(Succ) {}
2126
matchbr_match2127 template <typename OpTy> bool match(OpTy *V) {
2128 if (auto *BI = dyn_cast<BranchInst>(V))
2129 if (BI->isUnconditional()) {
2130 Succ = BI->getSuccessor(0);
2131 return true;
2132 }
2133 return false;
2134 }
2135 };
2136
m_UnconditionalBr(BasicBlock * & Succ)2137 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
2138
2139 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
2140 struct brc_match {
2141 Cond_t Cond;
2142 TrueBlock_t T;
2143 FalseBlock_t F;
2144
brc_matchbrc_match2145 brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
2146 : Cond(C), T(t), F(f) {}
2147
matchbrc_match2148 template <typename OpTy> bool match(OpTy *V) {
2149 if (auto *BI = dyn_cast<BranchInst>(V))
2150 if (BI->isConditional() && Cond.match(BI->getCondition()))
2151 return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
2152 return false;
2153 }
2154 };
2155
2156 template <typename Cond_t>
2157 inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
m_Br(const Cond_t & C,BasicBlock * & T,BasicBlock * & F)2158 m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
2159 return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
2160 C, m_BasicBlock(T), m_BasicBlock(F));
2161 }
2162
2163 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
2164 inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
m_Br(const Cond_t & C,const TrueBlock_t & T,const FalseBlock_t & F)2165 m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
2166 return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
2167 }
2168
2169 //===----------------------------------------------------------------------===//
2170 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
2171 //
2172
2173 template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
2174 bool Commutable = false>
2175 struct MaxMin_match {
2176 using PredType = Pred_t;
2177 LHS_t L;
2178 RHS_t R;
2179
2180 // The evaluation order is always stable, regardless of Commutability.
2181 // The LHS is always matched first.
MaxMin_matchMaxMin_match2182 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
2183
matchMaxMin_match2184 template <typename OpTy> bool match(OpTy *V) {
2185 if (auto *II = dyn_cast<IntrinsicInst>(V)) {
2186 Intrinsic::ID IID = II->getIntrinsicID();
2187 if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) ||
2188 (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) ||
2189 (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) ||
2190 (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) {
2191 Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
2192 return (L.match(LHS) && R.match(RHS)) ||
2193 (Commutable && L.match(RHS) && R.match(LHS));
2194 }
2195 }
2196 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
2197 auto *SI = dyn_cast<SelectInst>(V);
2198 if (!SI)
2199 return false;
2200 auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
2201 if (!Cmp)
2202 return false;
2203 // At this point we have a select conditioned on a comparison. Check that
2204 // it is the values returned by the select that are being compared.
2205 auto *TrueVal = SI->getTrueValue();
2206 auto *FalseVal = SI->getFalseValue();
2207 auto *LHS = Cmp->getOperand(0);
2208 auto *RHS = Cmp->getOperand(1);
2209 if ((TrueVal != LHS || FalseVal != RHS) &&
2210 (TrueVal != RHS || FalseVal != LHS))
2211 return false;
2212 typename CmpInst_t::Predicate Pred =
2213 LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
2214 // Does "(x pred y) ? x : y" represent the desired max/min operation?
2215 if (!Pred_t::match(Pred))
2216 return false;
2217 // It does! Bind the operands.
2218 return (L.match(LHS) && R.match(RHS)) ||
2219 (Commutable && L.match(RHS) && R.match(LHS));
2220 }
2221 };
2222
2223 /// Helper class for identifying signed max predicates.
2224 struct smax_pred_ty {
matchsmax_pred_ty2225 static bool match(ICmpInst::Predicate Pred) {
2226 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
2227 }
2228 };
2229
2230 /// Helper class for identifying signed min predicates.
2231 struct smin_pred_ty {
matchsmin_pred_ty2232 static bool match(ICmpInst::Predicate Pred) {
2233 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
2234 }
2235 };
2236
2237 /// Helper class for identifying unsigned max predicates.
2238 struct umax_pred_ty {
matchumax_pred_ty2239 static bool match(ICmpInst::Predicate Pred) {
2240 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
2241 }
2242 };
2243
2244 /// Helper class for identifying unsigned min predicates.
2245 struct umin_pred_ty {
matchumin_pred_ty2246 static bool match(ICmpInst::Predicate Pred) {
2247 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
2248 }
2249 };
2250
2251 /// Helper class for identifying ordered max predicates.
2252 struct ofmax_pred_ty {
matchofmax_pred_ty2253 static bool match(FCmpInst::Predicate Pred) {
2254 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
2255 }
2256 };
2257
2258 /// Helper class for identifying ordered min predicates.
2259 struct ofmin_pred_ty {
matchofmin_pred_ty2260 static bool match(FCmpInst::Predicate Pred) {
2261 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
2262 }
2263 };
2264
2265 /// Helper class for identifying unordered max predicates.
2266 struct ufmax_pred_ty {
matchufmax_pred_ty2267 static bool match(FCmpInst::Predicate Pred) {
2268 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
2269 }
2270 };
2271
2272 /// Helper class for identifying unordered min predicates.
2273 struct ufmin_pred_ty {
matchufmin_pred_ty2274 static bool match(FCmpInst::Predicate Pred) {
2275 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
2276 }
2277 };
2278
2279 template <typename LHS, typename RHS>
m_SMax(const LHS & L,const RHS & R)2280 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
2281 const RHS &R) {
2282 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
2283 }
2284
2285 template <typename LHS, typename RHS>
m_SMin(const LHS & L,const RHS & R)2286 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
2287 const RHS &R) {
2288 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
2289 }
2290
2291 template <typename LHS, typename RHS>
m_UMax(const LHS & L,const RHS & R)2292 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
2293 const RHS &R) {
2294 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
2295 }
2296
2297 template <typename LHS, typename RHS>
m_UMin(const LHS & L,const RHS & R)2298 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
2299 const RHS &R) {
2300 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
2301 }
2302
2303 template <typename LHS, typename RHS>
2304 inline match_combine_or<
2305 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>,
2306 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>,
2307 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>,
2308 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>>
m_MaxOrMin(const LHS & L,const RHS & R)2309 m_MaxOrMin(const LHS &L, const RHS &R) {
2310 return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)),
2311 m_CombineOr(m_UMax(L, R), m_UMin(L, R)));
2312 }
2313
2314 /// Match an 'ordered' floating point maximum function.
2315 /// Floating point has one special value 'NaN'. Therefore, there is no total
2316 /// order. However, if we can ignore the 'NaN' value (for example, because of a
2317 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
2318 /// semantics. In the presence of 'NaN' we have to preserve the original
2319 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
2320 ///
2321 /// max(L, R) iff L and R are not NaN
2322 /// m_OrdFMax(L, R) = R iff L or R are NaN
2323 template <typename LHS, typename RHS>
m_OrdFMax(const LHS & L,const RHS & R)2324 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
2325 const RHS &R) {
2326 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
2327 }
2328
2329 /// Match an 'ordered' floating point minimum function.
2330 /// Floating point has one special value 'NaN'. Therefore, there is no total
2331 /// order. However, if we can ignore the 'NaN' value (for example, because of a
2332 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
2333 /// semantics. In the presence of 'NaN' we have to preserve the original
2334 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
2335 ///
2336 /// min(L, R) iff L and R are not NaN
2337 /// m_OrdFMin(L, R) = R iff L or R are NaN
2338 template <typename LHS, typename RHS>
m_OrdFMin(const LHS & L,const RHS & R)2339 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
2340 const RHS &R) {
2341 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
2342 }
2343
2344 /// Match an 'unordered' floating point maximum function.
2345 /// Floating point has one special value 'NaN'. Therefore, there is no total
2346 /// order. However, if we can ignore the 'NaN' value (for example, because of a
2347 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
2348 /// semantics. In the presence of 'NaN' we have to preserve the original
2349 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
2350 ///
2351 /// max(L, R) iff L and R are not NaN
2352 /// m_UnordFMax(L, R) = L iff L or R are NaN
2353 template <typename LHS, typename RHS>
2354 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
m_UnordFMax(const LHS & L,const RHS & R)2355 m_UnordFMax(const LHS &L, const RHS &R) {
2356 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
2357 }
2358
2359 /// Match an 'unordered' floating point minimum function.
2360 /// Floating point has one special value 'NaN'. Therefore, there is no total
2361 /// order. However, if we can ignore the 'NaN' value (for example, because of a
2362 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
2363 /// semantics. In the presence of 'NaN' we have to preserve the original
2364 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
2365 ///
2366 /// min(L, R) iff L and R are not NaN
2367 /// m_UnordFMin(L, R) = L iff L or R are NaN
2368 template <typename LHS, typename RHS>
2369 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
m_UnordFMin(const LHS & L,const RHS & R)2370 m_UnordFMin(const LHS &L, const RHS &R) {
2371 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
2372 }
2373
2374 /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
2375 /// NOTE: we first match the 'Not' (by matching '-1'),
2376 /// and only then match the inner matcher!
2377 template <typename ValTy>
2378 inline BinaryOp_match<cst_pred_ty<is_all_ones>, ValTy, Instruction::Xor, true>
m_Not(const ValTy & V)2379 m_Not(const ValTy &V) {
2380 return m_c_Xor(m_AllOnes(), V);
2381 }
2382
2383 template <typename ValTy>
2384 inline BinaryOp_match<cst_pred_ty<is_all_ones, false>, ValTy, Instruction::Xor,
2385 true>
m_NotForbidPoison(const ValTy & V)2386 m_NotForbidPoison(const ValTy &V) {
2387 return m_c_Xor(m_AllOnesForbidPoison(), V);
2388 }
2389
2390 //===----------------------------------------------------------------------===//
2391 // Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b
2392 // Note that S might be matched to other instructions than AddInst.
2393 //
2394
2395 template <typename LHS_t, typename RHS_t, typename Sum_t>
2396 struct UAddWithOverflow_match {
2397 LHS_t L;
2398 RHS_t R;
2399 Sum_t S;
2400
UAddWithOverflow_matchUAddWithOverflow_match2401 UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
2402 : L(L), R(R), S(S) {}
2403
matchUAddWithOverflow_match2404 template <typename OpTy> bool match(OpTy *V) {
2405 Value *ICmpLHS, *ICmpRHS;
2406 ICmpInst::Predicate Pred;
2407 if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
2408 return false;
2409
2410 Value *AddLHS, *AddRHS;
2411 auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
2412
2413 // (a + b) u< a, (a + b) u< b
2414 if (Pred == ICmpInst::ICMP_ULT)
2415 if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
2416 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
2417
2418 // a >u (a + b), b >u (a + b)
2419 if (Pred == ICmpInst::ICMP_UGT)
2420 if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
2421 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
2422
2423 Value *Op1;
2424 auto XorExpr = m_OneUse(m_Not(m_Value(Op1)));
2425 // (~a) <u b
2426 if (Pred == ICmpInst::ICMP_ULT) {
2427 if (XorExpr.match(ICmpLHS))
2428 return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS);
2429 }
2430 // b > u (~a)
2431 if (Pred == ICmpInst::ICMP_UGT) {
2432 if (XorExpr.match(ICmpRHS))
2433 return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS);
2434 }
2435
2436 // Match special-case for increment-by-1.
2437 if (Pred == ICmpInst::ICMP_EQ) {
2438 // (a + 1) == 0
2439 // (1 + a) == 0
2440 if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
2441 (m_One().match(AddLHS) || m_One().match(AddRHS)))
2442 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
2443 // 0 == (a + 1)
2444 // 0 == (1 + a)
2445 if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
2446 (m_One().match(AddLHS) || m_One().match(AddRHS)))
2447 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
2448 }
2449
2450 return false;
2451 }
2452 };
2453
2454 /// Match an icmp instruction checking for unsigned overflow on addition.
2455 ///
2456 /// S is matched to the addition whose result is being checked for overflow, and
2457 /// L and R are matched to the LHS and RHS of S.
2458 template <typename LHS_t, typename RHS_t, typename Sum_t>
2459 UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
m_UAddWithOverflow(const LHS_t & L,const RHS_t & R,const Sum_t & S)2460 m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
2461 return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
2462 }
2463
2464 template <typename Opnd_t> struct Argument_match {
2465 unsigned OpI;
2466 Opnd_t Val;
2467
Argument_matchArgument_match2468 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
2469
matchArgument_match2470 template <typename OpTy> bool match(OpTy *V) {
2471 // FIXME: Should likely be switched to use `CallBase`.
2472 if (const auto *CI = dyn_cast<CallInst>(V))
2473 return Val.match(CI->getArgOperand(OpI));
2474 return false;
2475 }
2476 };
2477
2478 /// Match an argument.
2479 template <unsigned OpI, typename Opnd_t>
m_Argument(const Opnd_t & Op)2480 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
2481 return Argument_match<Opnd_t>(OpI, Op);
2482 }
2483
2484 /// Intrinsic matchers.
2485 struct IntrinsicID_match {
2486 unsigned ID;
2487
IntrinsicID_matchIntrinsicID_match2488 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
2489
matchIntrinsicID_match2490 template <typename OpTy> bool match(OpTy *V) {
2491 if (const auto *CI = dyn_cast<CallInst>(V))
2492 if (const auto *F = CI->getCalledFunction())
2493 return F->getIntrinsicID() == ID;
2494 return false;
2495 }
2496 };
2497
2498 /// Intrinsic matches are combinations of ID matchers, and argument
2499 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
2500 /// them with lower arity matchers. Here's some convenient typedefs for up to
2501 /// several arguments, and more can be added as needed
2502 template <typename T0 = void, typename T1 = void, typename T2 = void,
2503 typename T3 = void, typename T4 = void, typename T5 = void,
2504 typename T6 = void, typename T7 = void, typename T8 = void,
2505 typename T9 = void, typename T10 = void>
2506 struct m_Intrinsic_Ty;
2507 template <typename T0> struct m_Intrinsic_Ty<T0> {
2508 using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
2509 };
2510 template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
2511 using Ty =
2512 match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
2513 };
2514 template <typename T0, typename T1, typename T2>
2515 struct m_Intrinsic_Ty<T0, T1, T2> {
2516 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
2517 Argument_match<T2>>;
2518 };
2519 template <typename T0, typename T1, typename T2, typename T3>
2520 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
2521 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
2522 Argument_match<T3>>;
2523 };
2524
2525 template <typename T0, typename T1, typename T2, typename T3, typename T4>
2526 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> {
2527 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty,
2528 Argument_match<T4>>;
2529 };
2530
2531 template <typename T0, typename T1, typename T2, typename T3, typename T4,
2532 typename T5>
2533 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> {
2534 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty,
2535 Argument_match<T5>>;
2536 };
2537
2538 /// Match intrinsic calls like this:
2539 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
2540 template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
2541 return IntrinsicID_match(IntrID);
2542 }
2543
2544 /// Matches MaskedLoad Intrinsic.
2545 template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
2546 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
2547 m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
2548 const Opnd3 &Op3) {
2549 return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3);
2550 }
2551
2552 /// Matches MaskedGather Intrinsic.
2553 template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
2554 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
2555 m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
2556 const Opnd3 &Op3) {
2557 return m_Intrinsic<Intrinsic::masked_gather>(Op0, Op1, Op2, Op3);
2558 }
2559
2560 template <Intrinsic::ID IntrID, typename T0>
2561 inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
2562 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
2563 }
2564
2565 template <Intrinsic::ID IntrID, typename T0, typename T1>
2566 inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
2567 const T1 &Op1) {
2568 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
2569 }
2570
2571 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
2572 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
2573 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
2574 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
2575 }
2576
2577 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2578 typename T3>
2579 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
2580 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
2581 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
2582 }
2583
2584 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2585 typename T3, typename T4>
2586 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty
2587 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2588 const T4 &Op4) {
2589 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3),
2590 m_Argument<4>(Op4));
2591 }
2592
2593 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2594 typename T3, typename T4, typename T5>
2595 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty
2596 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2597 const T4 &Op4, const T5 &Op5) {
2598 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4),
2599 m_Argument<5>(Op5));
2600 }
2601
2602 // Helper intrinsic matching specializations.
2603 template <typename Opnd0>
2604 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
2605 return m_Intrinsic<Intrinsic::bitreverse>(Op0);
2606 }
2607
2608 template <typename Opnd0>
2609 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
2610 return m_Intrinsic<Intrinsic::bswap>(Op0);
2611 }
2612
2613 template <typename Opnd0>
2614 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
2615 return m_Intrinsic<Intrinsic::fabs>(Op0);
2616 }
2617
2618 template <typename Opnd0>
2619 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
2620 return m_Intrinsic<Intrinsic::canonicalize>(Op0);
2621 }
2622
2623 template <typename Opnd0, typename Opnd1>
2624 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
2625 const Opnd1 &Op1) {
2626 return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
2627 }
2628
2629 template <typename Opnd0, typename Opnd1>
2630 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
2631 const Opnd1 &Op1) {
2632 return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
2633 }
2634
2635 template <typename Opnd0, typename Opnd1, typename Opnd2>
2636 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2637 m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2638 return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2);
2639 }
2640
2641 template <typename Opnd0, typename Opnd1, typename Opnd2>
2642 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2643 m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2644 return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2);
2645 }
2646
2647 template <typename Opnd0>
2648 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_Sqrt(const Opnd0 &Op0) {
2649 return m_Intrinsic<Intrinsic::sqrt>(Op0);
2650 }
2651
2652 template <typename Opnd0, typename Opnd1>
2653 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_CopySign(const Opnd0 &Op0,
2654 const Opnd1 &Op1) {
2655 return m_Intrinsic<Intrinsic::copysign>(Op0, Op1);
2656 }
2657
2658 template <typename Opnd0>
2659 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_VecReverse(const Opnd0 &Op0) {
2660 return m_Intrinsic<Intrinsic::vector_reverse>(Op0);
2661 }
2662
2663 //===----------------------------------------------------------------------===//
2664 // Matchers for two-operands operators with the operators in either order
2665 //
2666
2667 /// Matches a BinaryOperator with LHS and RHS in either order.
2668 template <typename LHS, typename RHS>
2669 inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
2670 return AnyBinaryOp_match<LHS, RHS, true>(L, R);
2671 }
2672
2673 /// Matches an ICmp with a predicate over LHS and RHS in either order.
2674 /// Swaps the predicate if operands are commuted.
2675 template <typename LHS, typename RHS>
2676 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
2677 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
2678 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
2679 R);
2680 }
2681
2682 template <typename LHS, typename RHS>
2683 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
2684 m_c_ICmp(const LHS &L, const RHS &R) {
2685 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(L, R);
2686 }
2687
2688 /// Matches a specific opcode with LHS and RHS in either order.
2689 template <typename LHS, typename RHS>
2690 inline SpecificBinaryOp_match<LHS, RHS, true>
2691 m_c_BinOp(unsigned Opcode, const LHS &L, const RHS &R) {
2692 return SpecificBinaryOp_match<LHS, RHS, true>(Opcode, L, R);
2693 }
2694
2695 /// Matches a Add with LHS and RHS in either order.
2696 template <typename LHS, typename RHS>
2697 inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
2698 const RHS &R) {
2699 return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
2700 }
2701
2702 /// Matches a Mul with LHS and RHS in either order.
2703 template <typename LHS, typename RHS>
2704 inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
2705 const RHS &R) {
2706 return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
2707 }
2708
2709 /// Matches an And with LHS and RHS in either order.
2710 template <typename LHS, typename RHS>
2711 inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
2712 const RHS &R) {
2713 return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
2714 }
2715
2716 /// Matches an Or with LHS and RHS in either order.
2717 template <typename LHS, typename RHS>
2718 inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
2719 const RHS &R) {
2720 return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2721 }
2722
2723 /// Matches an Xor with LHS and RHS in either order.
2724 template <typename LHS, typename RHS>
2725 inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
2726 const RHS &R) {
2727 return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
2728 }
2729
2730 /// Matches a 'Neg' as 'sub 0, V'.
2731 template <typename ValTy>
2732 inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
2733 m_Neg(const ValTy &V) {
2734 return m_Sub(m_ZeroInt(), V);
2735 }
2736
2737 /// Matches a 'Neg' as 'sub nsw 0, V'.
2738 template <typename ValTy>
2739 inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy,
2740 Instruction::Sub,
2741 OverflowingBinaryOperator::NoSignedWrap>
2742 m_NSWNeg(const ValTy &V) {
2743 return m_NSWSub(m_ZeroInt(), V);
2744 }
2745
2746 /// Matches an SMin with LHS and RHS in either order.
2747 template <typename LHS, typename RHS>
2748 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
2749 m_c_SMin(const LHS &L, const RHS &R) {
2750 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
2751 }
2752 /// Matches an SMax with LHS and RHS in either order.
2753 template <typename LHS, typename RHS>
2754 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
2755 m_c_SMax(const LHS &L, const RHS &R) {
2756 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
2757 }
2758 /// Matches a UMin with LHS and RHS in either order.
2759 template <typename LHS, typename RHS>
2760 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
2761 m_c_UMin(const LHS &L, const RHS &R) {
2762 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
2763 }
2764 /// Matches a UMax with LHS and RHS in either order.
2765 template <typename LHS, typename RHS>
2766 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
2767 m_c_UMax(const LHS &L, const RHS &R) {
2768 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
2769 }
2770
2771 template <typename LHS, typename RHS>
2772 inline match_combine_or<
2773 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>,
2774 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>,
2775 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>,
2776 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>>
2777 m_c_MaxOrMin(const LHS &L, const RHS &R) {
2778 return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)),
2779 m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R)));
2780 }
2781
2782 template <Intrinsic::ID IntrID, typename T0, typename T1>
2783 inline match_combine_or<typename m_Intrinsic_Ty<T0, T1>::Ty,
2784 typename m_Intrinsic_Ty<T1, T0>::Ty>
2785 m_c_Intrinsic(const T0 &Op0, const T1 &Op1) {
2786 return m_CombineOr(m_Intrinsic<IntrID>(Op0, Op1),
2787 m_Intrinsic<IntrID>(Op1, Op0));
2788 }
2789
2790 /// Matches FAdd with LHS and RHS in either order.
2791 template <typename LHS, typename RHS>
2792 inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
2793 m_c_FAdd(const LHS &L, const RHS &R) {
2794 return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
2795 }
2796
2797 /// Matches FMul with LHS and RHS in either order.
2798 template <typename LHS, typename RHS>
2799 inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
2800 m_c_FMul(const LHS &L, const RHS &R) {
2801 return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
2802 }
2803
2804 template <typename Opnd_t> struct Signum_match {
2805 Opnd_t Val;
2806 Signum_match(const Opnd_t &V) : Val(V) {}
2807
2808 template <typename OpTy> bool match(OpTy *V) {
2809 unsigned TypeSize = V->getType()->getScalarSizeInBits();
2810 if (TypeSize == 0)
2811 return false;
2812
2813 unsigned ShiftWidth = TypeSize - 1;
2814 Value *OpL = nullptr, *OpR = nullptr;
2815
2816 // This is the representation of signum we match:
2817 //
2818 // signum(x) == (x >> 63) | (-x >>u 63)
2819 //
2820 // An i1 value is its own signum, so it's correct to match
2821 //
2822 // signum(x) == (x >> 0) | (-x >>u 0)
2823 //
2824 // for i1 values.
2825
2826 auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
2827 auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
2828 auto Signum = m_Or(LHS, RHS);
2829
2830 return Signum.match(V) && OpL == OpR && Val.match(OpL);
2831 }
2832 };
2833
2834 /// Matches a signum pattern.
2835 ///
2836 /// signum(x) =
2837 /// x > 0 -> 1
2838 /// x == 0 -> 0
2839 /// x < 0 -> -1
2840 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
2841 return Signum_match<Val_t>(V);
2842 }
2843
2844 template <int Ind, typename Opnd_t> struct ExtractValue_match {
2845 Opnd_t Val;
2846 ExtractValue_match(const Opnd_t &V) : Val(V) {}
2847
2848 template <typename OpTy> bool match(OpTy *V) {
2849 if (auto *I = dyn_cast<ExtractValueInst>(V)) {
2850 // If Ind is -1, don't inspect indices
2851 if (Ind != -1 &&
2852 !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind))
2853 return false;
2854 return Val.match(I->getAggregateOperand());
2855 }
2856 return false;
2857 }
2858 };
2859
2860 /// Match a single index ExtractValue instruction.
2861 /// For example m_ExtractValue<1>(...)
2862 template <int Ind, typename Val_t>
2863 inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) {
2864 return ExtractValue_match<Ind, Val_t>(V);
2865 }
2866
2867 /// Match an ExtractValue instruction with any index.
2868 /// For example m_ExtractValue(...)
2869 template <typename Val_t>
2870 inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) {
2871 return ExtractValue_match<-1, Val_t>(V);
2872 }
2873
2874 /// Matcher for a single index InsertValue instruction.
2875 template <int Ind, typename T0, typename T1> struct InsertValue_match {
2876 T0 Op0;
2877 T1 Op1;
2878
2879 InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {}
2880
2881 template <typename OpTy> bool match(OpTy *V) {
2882 if (auto *I = dyn_cast<InsertValueInst>(V)) {
2883 return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) &&
2884 I->getNumIndices() == 1 && Ind == I->getIndices()[0];
2885 }
2886 return false;
2887 }
2888 };
2889
2890 /// Matches a single index InsertValue instruction.
2891 template <int Ind, typename Val_t, typename Elt_t>
2892 inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val,
2893 const Elt_t &Elt) {
2894 return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt);
2895 }
2896
2897 /// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or
2898 /// the constant expression
2899 /// `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>`
2900 /// under the right conditions determined by DataLayout.
2901 struct VScaleVal_match {
2902 template <typename ITy> bool match(ITy *V) {
2903 if (m_Intrinsic<Intrinsic::vscale>().match(V))
2904 return true;
2905
2906 Value *Ptr;
2907 if (m_PtrToInt(m_Value(Ptr)).match(V)) {
2908 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
2909 auto *DerefTy =
2910 dyn_cast<ScalableVectorType>(GEP->getSourceElementType());
2911 if (GEP->getNumIndices() == 1 && DerefTy &&
2912 DerefTy->getElementType()->isIntegerTy(8) &&
2913 m_Zero().match(GEP->getPointerOperand()) &&
2914 m_SpecificInt(1).match(GEP->idx_begin()->get()))
2915 return true;
2916 }
2917 }
2918
2919 return false;
2920 }
2921 };
2922
2923 inline VScaleVal_match m_VScale() {
2924 return VScaleVal_match();
2925 }
2926
2927 template <typename LHS, typename RHS, unsigned Opcode, bool Commutable = false>
2928 struct LogicalOp_match {
2929 LHS L;
2930 RHS R;
2931
2932 LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {}
2933
2934 template <typename T> bool match(T *V) {
2935 auto *I = dyn_cast<Instruction>(V);
2936 if (!I || !I->getType()->isIntOrIntVectorTy(1))
2937 return false;
2938
2939 if (I->getOpcode() == Opcode) {
2940 auto *Op0 = I->getOperand(0);
2941 auto *Op1 = I->getOperand(1);
2942 return (L.match(Op0) && R.match(Op1)) ||
2943 (Commutable && L.match(Op1) && R.match(Op0));
2944 }
2945
2946 if (auto *Select = dyn_cast<SelectInst>(I)) {
2947 auto *Cond = Select->getCondition();
2948 auto *TVal = Select->getTrueValue();
2949 auto *FVal = Select->getFalseValue();
2950
2951 // Don't match a scalar select of bool vectors.
2952 // Transforms expect a single type for operands if this matches.
2953 if (Cond->getType() != Select->getType())
2954 return false;
2955
2956 if (Opcode == Instruction::And) {
2957 auto *C = dyn_cast<Constant>(FVal);
2958 if (C && C->isNullValue())
2959 return (L.match(Cond) && R.match(TVal)) ||
2960 (Commutable && L.match(TVal) && R.match(Cond));
2961 } else {
2962 assert(Opcode == Instruction::Or);
2963 auto *C = dyn_cast<Constant>(TVal);
2964 if (C && C->isOneValue())
2965 return (L.match(Cond) && R.match(FVal)) ||
2966 (Commutable && L.match(FVal) && R.match(Cond));
2967 }
2968 }
2969
2970 return false;
2971 }
2972 };
2973
2974 /// Matches L && R either in the form of L & R or L ? R : false.
2975 /// Note that the latter form is poison-blocking.
2976 template <typename LHS, typename RHS>
2977 inline LogicalOp_match<LHS, RHS, Instruction::And> m_LogicalAnd(const LHS &L,
2978 const RHS &R) {
2979 return LogicalOp_match<LHS, RHS, Instruction::And>(L, R);
2980 }
2981
2982 /// Matches L && R where L and R are arbitrary values.
2983 inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); }
2984
2985 /// Matches L && R with LHS and RHS in either order.
2986 template <typename LHS, typename RHS>
2987 inline LogicalOp_match<LHS, RHS, Instruction::And, true>
2988 m_c_LogicalAnd(const LHS &L, const RHS &R) {
2989 return LogicalOp_match<LHS, RHS, Instruction::And, true>(L, R);
2990 }
2991
2992 /// Matches L || R either in the form of L | R or L ? true : R.
2993 /// Note that the latter form is poison-blocking.
2994 template <typename LHS, typename RHS>
2995 inline LogicalOp_match<LHS, RHS, Instruction::Or> m_LogicalOr(const LHS &L,
2996 const RHS &R) {
2997 return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R);
2998 }
2999
3000 /// Matches L || R where L and R are arbitrary values.
3001 inline auto m_LogicalOr() { return m_LogicalOr(m_Value(), m_Value()); }
3002
3003 /// Matches L || R with LHS and RHS in either order.
3004 template <typename LHS, typename RHS>
3005 inline LogicalOp_match<LHS, RHS, Instruction::Or, true>
3006 m_c_LogicalOr(const LHS &L, const RHS &R) {
3007 return LogicalOp_match<LHS, RHS, Instruction::Or, true>(L, R);
3008 }
3009
3010 /// Matches either L && R or L || R,
3011 /// either one being in the either binary or logical form.
3012 /// Note that the latter form is poison-blocking.
3013 template <typename LHS, typename RHS, bool Commutable = false>
3014 inline auto m_LogicalOp(const LHS &L, const RHS &R) {
3015 return m_CombineOr(
3016 LogicalOp_match<LHS, RHS, Instruction::And, Commutable>(L, R),
3017 LogicalOp_match<LHS, RHS, Instruction::Or, Commutable>(L, R));
3018 }
3019
3020 /// Matches either L && R or L || R where L and R are arbitrary values.
3021 inline auto m_LogicalOp() { return m_LogicalOp(m_Value(), m_Value()); }
3022
3023 /// Matches either L && R or L || R with LHS and RHS in either order.
3024 template <typename LHS, typename RHS>
3025 inline auto m_c_LogicalOp(const LHS &L, const RHS &R) {
3026 return m_LogicalOp<LHS, RHS, /*Commutable=*/true>(L, R);
3027 }
3028
3029 } // end namespace PatternMatch
3030 } // end namespace llvm
3031
3032 #endif // LLVM_IR_PATTERNMATCH_H
3033