1 //===- llvm/CodeGen/MachineFunction.h ---------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code for a function. This class contains a list of 10 // MachineBasicBlock instances that make up the current compiled function. 11 // 12 // This class also contains pointers to various classes which hold 13 // target-specific information about the generated code. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #ifndef LLVM_CODEGEN_MACHINEFUNCTION_H 18 #define LLVM_CODEGEN_MACHINEFUNCTION_H 19 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/GraphTraits.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/ilist.h" 25 #include "llvm/ADT/iterator.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/IR/EHPersonalities.h" 30 #include "llvm/Support/Allocator.h" 31 #include "llvm/Support/ArrayRecycler.h" 32 #include "llvm/Support/AtomicOrdering.h" 33 #include "llvm/Support/Compiler.h" 34 #include "llvm/Support/Recycler.h" 35 #include "llvm/Target/TargetOptions.h" 36 #include <bitset> 37 #include <cassert> 38 #include <cstdint> 39 #include <memory> 40 #include <utility> 41 #include <variant> 42 #include <vector> 43 44 namespace llvm { 45 46 class BasicBlock; 47 class BlockAddress; 48 class DataLayout; 49 class DebugLoc; 50 struct DenormalMode; 51 class DIExpression; 52 class DILocalVariable; 53 class DILocation; 54 class Function; 55 class GISelChangeObserver; 56 class GlobalValue; 57 class LLVMTargetMachine; 58 class MachineConstantPool; 59 class MachineFrameInfo; 60 class MachineFunction; 61 class MachineJumpTableInfo; 62 class MachineModuleInfo; 63 class MachineRegisterInfo; 64 class MCContext; 65 class MCInstrDesc; 66 class MCSymbol; 67 class MCSection; 68 class Pass; 69 class PseudoSourceValueManager; 70 class raw_ostream; 71 class SlotIndexes; 72 class StringRef; 73 class TargetRegisterClass; 74 class TargetSubtargetInfo; 75 struct WasmEHFuncInfo; 76 struct WinEHFuncInfo; 77 78 template <> struct ilist_alloc_traits<MachineBasicBlock> { 79 void deleteNode(MachineBasicBlock *MBB); 80 }; 81 82 template <> struct ilist_callback_traits<MachineBasicBlock> { 83 void addNodeToList(MachineBasicBlock* N); 84 void removeNodeFromList(MachineBasicBlock* N); 85 86 template <class Iterator> 87 void transferNodesFromList(ilist_callback_traits &OldList, Iterator, Iterator) { 88 assert(this == &OldList && "never transfer MBBs between functions"); 89 } 90 }; 91 92 /// MachineFunctionInfo - This class can be derived from and used by targets to 93 /// hold private target-specific information for each MachineFunction. Objects 94 /// of type are accessed/created with MF::getInfo and destroyed when the 95 /// MachineFunction is destroyed. 96 struct MachineFunctionInfo { 97 virtual ~MachineFunctionInfo(); 98 99 /// Factory function: default behavior is to call new using the 100 /// supplied allocator. 101 /// 102 /// This function can be overridden in a derive class. 103 template <typename FuncInfoTy, typename SubtargetTy = TargetSubtargetInfo> 104 static FuncInfoTy *create(BumpPtrAllocator &Allocator, const Function &F, 105 const SubtargetTy *STI) { 106 return new (Allocator.Allocate<FuncInfoTy>()) FuncInfoTy(F, STI); 107 } 108 109 template <typename Ty> 110 static Ty *create(BumpPtrAllocator &Allocator, const Ty &MFI) { 111 return new (Allocator.Allocate<Ty>()) Ty(MFI); 112 } 113 114 /// Make a functionally equivalent copy of this MachineFunctionInfo in \p MF. 115 /// This requires remapping MachineBasicBlock references from the original 116 /// parent to values in the new function. Targets may assume that virtual 117 /// register and frame index values are preserved in the new function. 118 virtual MachineFunctionInfo * 119 clone(BumpPtrAllocator &Allocator, MachineFunction &DestMF, 120 const DenseMap<MachineBasicBlock *, MachineBasicBlock *> &Src2DstMBB) 121 const { 122 return nullptr; 123 } 124 }; 125 126 /// Properties which a MachineFunction may have at a given point in time. 127 /// Each of these has checking code in the MachineVerifier, and passes can 128 /// require that a property be set. 129 class MachineFunctionProperties { 130 // Possible TODO: Allow targets to extend this (perhaps by allowing the 131 // constructor to specify the size of the bit vector) 132 // Possible TODO: Allow requiring the negative (e.g. VRegsAllocated could be 133 // stated as the negative of "has vregs" 134 135 public: 136 // The properties are stated in "positive" form; i.e. a pass could require 137 // that the property hold, but not that it does not hold. 138 139 // Property descriptions: 140 // IsSSA: True when the machine function is in SSA form and virtual registers 141 // have a single def. 142 // NoPHIs: The machine function does not contain any PHI instruction. 143 // TracksLiveness: True when tracking register liveness accurately. 144 // While this property is set, register liveness information in basic block 145 // live-in lists and machine instruction operands (e.g. implicit defs) is 146 // accurate, kill flags are conservatively accurate (kill flag correctly 147 // indicates the last use of a register, an operand without kill flag may or 148 // may not be the last use of a register). This means it can be used to 149 // change the code in ways that affect the values in registers, for example 150 // by the register scavenger. 151 // When this property is cleared at a very late time, liveness is no longer 152 // reliable. 153 // NoVRegs: The machine function does not use any virtual registers. 154 // Legalized: In GlobalISel: the MachineLegalizer ran and all pre-isel generic 155 // instructions have been legalized; i.e., all instructions are now one of: 156 // - generic and always legal (e.g., COPY) 157 // - target-specific 158 // - legal pre-isel generic instructions. 159 // RegBankSelected: In GlobalISel: the RegBankSelect pass ran and all generic 160 // virtual registers have been assigned to a register bank. 161 // Selected: In GlobalISel: the InstructionSelect pass ran and all pre-isel 162 // generic instructions have been eliminated; i.e., all instructions are now 163 // target-specific or non-pre-isel generic instructions (e.g., COPY). 164 // Since only pre-isel generic instructions can have generic virtual register 165 // operands, this also means that all generic virtual registers have been 166 // constrained to virtual registers (assigned to register classes) and that 167 // all sizes attached to them have been eliminated. 168 // TiedOpsRewritten: The twoaddressinstruction pass will set this flag, it 169 // means that tied-def have been rewritten to meet the RegConstraint. 170 // FailsVerification: Means that the function is not expected to pass machine 171 // verification. This can be set by passes that introduce known problems that 172 // have not been fixed yet. 173 // TracksDebugUserValues: Without this property enabled, debug instructions 174 // such as DBG_VALUE are allowed to reference virtual registers even if those 175 // registers do not have a definition. With the property enabled virtual 176 // registers must only be used if they have a definition. This property 177 // allows earlier passes in the pipeline to skip updates of `DBG_VALUE` 178 // instructions to save compile time. 179 enum class Property : unsigned { 180 IsSSA, 181 NoPHIs, 182 TracksLiveness, 183 NoVRegs, 184 FailedISel, 185 Legalized, 186 RegBankSelected, 187 Selected, 188 TiedOpsRewritten, 189 FailsVerification, 190 TracksDebugUserValues, 191 LastProperty = TracksDebugUserValues, 192 }; 193 194 bool hasProperty(Property P) const { 195 return Properties[static_cast<unsigned>(P)]; 196 } 197 198 MachineFunctionProperties &set(Property P) { 199 Properties.set(static_cast<unsigned>(P)); 200 return *this; 201 } 202 203 MachineFunctionProperties &reset(Property P) { 204 Properties.reset(static_cast<unsigned>(P)); 205 return *this; 206 } 207 208 /// Reset all the properties. 209 MachineFunctionProperties &reset() { 210 Properties.reset(); 211 return *this; 212 } 213 214 MachineFunctionProperties &set(const MachineFunctionProperties &MFP) { 215 Properties |= MFP.Properties; 216 return *this; 217 } 218 219 MachineFunctionProperties &reset(const MachineFunctionProperties &MFP) { 220 Properties &= ~MFP.Properties; 221 return *this; 222 } 223 224 // Returns true if all properties set in V (i.e. required by a pass) are set 225 // in this. 226 bool verifyRequiredProperties(const MachineFunctionProperties &V) const { 227 return (Properties | ~V.Properties).all(); 228 } 229 230 /// Print the MachineFunctionProperties in human-readable form. 231 void print(raw_ostream &OS) const; 232 233 private: 234 std::bitset<static_cast<unsigned>(Property::LastProperty) + 1> Properties; 235 }; 236 237 struct SEHHandler { 238 /// Filter or finally function. Null indicates a catch-all. 239 const Function *FilterOrFinally; 240 241 /// Address of block to recover at. Null for a finally handler. 242 const BlockAddress *RecoverBA; 243 }; 244 245 /// This structure is used to retain landing pad info for the current function. 246 struct LandingPadInfo { 247 MachineBasicBlock *LandingPadBlock; // Landing pad block. 248 SmallVector<MCSymbol *, 1> BeginLabels; // Labels prior to invoke. 249 SmallVector<MCSymbol *, 1> EndLabels; // Labels after invoke. 250 SmallVector<SEHHandler, 1> SEHHandlers; // SEH handlers active at this lpad. 251 MCSymbol *LandingPadLabel = nullptr; // Label at beginning of landing pad. 252 std::vector<int> TypeIds; // List of type ids (filters negative). 253 254 explicit LandingPadInfo(MachineBasicBlock *MBB) 255 : LandingPadBlock(MBB) {} 256 }; 257 258 class LLVM_EXTERNAL_VISIBILITY MachineFunction { 259 Function &F; 260 const LLVMTargetMachine &Target; 261 const TargetSubtargetInfo *STI; 262 MCContext &Ctx; 263 MachineModuleInfo &MMI; 264 265 // RegInfo - Information about each register in use in the function. 266 MachineRegisterInfo *RegInfo; 267 268 // Used to keep track of target-specific per-machine-function information for 269 // the target implementation. 270 MachineFunctionInfo *MFInfo; 271 272 // Keep track of objects allocated on the stack. 273 MachineFrameInfo *FrameInfo; 274 275 // Keep track of constants which are spilled to memory 276 MachineConstantPool *ConstantPool; 277 278 // Keep track of jump tables for switch instructions 279 MachineJumpTableInfo *JumpTableInfo; 280 281 // Keep track of the function section. 282 MCSection *Section = nullptr; 283 284 // Catchpad unwind destination info for wasm EH. 285 // Keeps track of Wasm exception handling related data. This will be null for 286 // functions that aren't using a wasm EH personality. 287 WasmEHFuncInfo *WasmEHInfo = nullptr; 288 289 // Keeps track of Windows exception handling related data. This will be null 290 // for functions that aren't using a funclet-based EH personality. 291 WinEHFuncInfo *WinEHInfo = nullptr; 292 293 // Function-level unique numbering for MachineBasicBlocks. When a 294 // MachineBasicBlock is inserted into a MachineFunction is it automatically 295 // numbered and this vector keeps track of the mapping from ID's to MBB's. 296 std::vector<MachineBasicBlock*> MBBNumbering; 297 298 // Pool-allocate MachineFunction-lifetime and IR objects. 299 BumpPtrAllocator Allocator; 300 301 // Allocation management for instructions in function. 302 Recycler<MachineInstr> InstructionRecycler; 303 304 // Allocation management for operand arrays on instructions. 305 ArrayRecycler<MachineOperand> OperandRecycler; 306 307 // Allocation management for basic blocks in function. 308 Recycler<MachineBasicBlock> BasicBlockRecycler; 309 310 // List of machine basic blocks in function 311 using BasicBlockListType = ilist<MachineBasicBlock>; 312 BasicBlockListType BasicBlocks; 313 314 /// FunctionNumber - This provides a unique ID for each function emitted in 315 /// this translation unit. 316 /// 317 unsigned FunctionNumber; 318 319 /// Alignment - The alignment of the function. 320 Align Alignment; 321 322 /// ExposesReturnsTwice - True if the function calls setjmp or related 323 /// functions with attribute "returns twice", but doesn't have 324 /// the attribute itself. 325 /// This is used to limit optimizations which cannot reason 326 /// about the control flow of such functions. 327 bool ExposesReturnsTwice = false; 328 329 /// True if the function includes any inline assembly. 330 bool HasInlineAsm = false; 331 332 /// True if any WinCFI instruction have been emitted in this function. 333 bool HasWinCFI = false; 334 335 /// Current high-level properties of the IR of the function (e.g. is in SSA 336 /// form or whether registers have been allocated) 337 MachineFunctionProperties Properties; 338 339 // Allocation management for pseudo source values. 340 std::unique_ptr<PseudoSourceValueManager> PSVManager; 341 342 /// List of moves done by a function's prolog. Used to construct frame maps 343 /// by debug and exception handling consumers. 344 std::vector<MCCFIInstruction> FrameInstructions; 345 346 /// List of basic blocks immediately following calls to _setjmp. Used to 347 /// construct a table of valid longjmp targets for Windows Control Flow Guard. 348 std::vector<MCSymbol *> LongjmpTargets; 349 350 /// List of basic blocks that are the target of catchrets. Used to construct 351 /// a table of valid targets for Windows EHCont Guard. 352 std::vector<MCSymbol *> CatchretTargets; 353 354 /// \name Exception Handling 355 /// \{ 356 357 /// List of LandingPadInfo describing the landing pad information. 358 std::vector<LandingPadInfo> LandingPads; 359 360 /// Map a landing pad's EH symbol to the call site indexes. 361 DenseMap<MCSymbol*, SmallVector<unsigned, 4>> LPadToCallSiteMap; 362 363 /// Map a landing pad to its index. 364 DenseMap<const MachineBasicBlock *, unsigned> WasmLPadToIndexMap; 365 366 /// Map of invoke call site index values to associated begin EH_LABEL. 367 DenseMap<MCSymbol*, unsigned> CallSiteMap; 368 369 /// CodeView label annotations. 370 std::vector<std::pair<MCSymbol *, MDNode *>> CodeViewAnnotations; 371 372 bool CallsEHReturn = false; 373 bool CallsUnwindInit = false; 374 bool HasEHCatchret = false; 375 bool HasEHScopes = false; 376 bool HasEHFunclets = false; 377 bool IsOutlined = false; 378 379 /// BBID to assign to the next basic block of this function. 380 unsigned NextBBID = 0; 381 382 /// Section Type for basic blocks, only relevant with basic block sections. 383 BasicBlockSection BBSectionsType = BasicBlockSection::None; 384 385 /// List of C++ TypeInfo used. 386 std::vector<const GlobalValue *> TypeInfos; 387 388 /// List of typeids encoding filters used. 389 std::vector<unsigned> FilterIds; 390 391 /// List of the indices in FilterIds corresponding to filter terminators. 392 std::vector<unsigned> FilterEnds; 393 394 EHPersonality PersonalityTypeCache = EHPersonality::Unknown; 395 396 /// \} 397 398 /// Clear all the members of this MachineFunction, but the ones used 399 /// to initialize again the MachineFunction. 400 /// More specifically, this deallocates all the dynamically allocated 401 /// objects and get rid of all the XXXInfo data structure, but keep 402 /// unchanged the references to Fn, Target, MMI, and FunctionNumber. 403 void clear(); 404 /// Allocate and initialize the different members. 405 /// In particular, the XXXInfo data structure. 406 /// \pre Fn, Target, MMI, and FunctionNumber are properly set. 407 void init(); 408 409 public: 410 /// Description of the location of a variable whose Address is valid and 411 /// unchanging during function execution. The Address may be: 412 /// * A stack index, which can be negative for fixed stack objects. 413 /// * A MCRegister, whose entry value contains the address of the variable. 414 class VariableDbgInfo { 415 std::variant<int, MCRegister> Address; 416 417 public: 418 const DILocalVariable *Var; 419 const DIExpression *Expr; 420 const DILocation *Loc; 421 422 VariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr, 423 int Slot, const DILocation *Loc) 424 : Address(Slot), Var(Var), Expr(Expr), Loc(Loc) {} 425 426 VariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr, 427 MCRegister EntryValReg, const DILocation *Loc) 428 : Address(EntryValReg), Var(Var), Expr(Expr), Loc(Loc) {} 429 430 /// Return true if this variable is in a stack slot. 431 bool inStackSlot() const { return std::holds_alternative<int>(Address); } 432 433 /// Return true if this variable is in the entry value of a register. 434 bool inEntryValueRegister() const { 435 return std::holds_alternative<MCRegister>(Address); 436 } 437 438 /// Returns the stack slot of this variable, assuming `inStackSlot()` is 439 /// true. 440 int getStackSlot() const { return std::get<int>(Address); } 441 442 /// Returns the MCRegister of this variable, assuming 443 /// `inEntryValueRegister()` is true. 444 MCRegister getEntryValueRegister() const { 445 return std::get<MCRegister>(Address); 446 } 447 448 /// Updates the stack slot of this variable, assuming `inStackSlot()` is 449 /// true. 450 void updateStackSlot(int NewSlot) { 451 assert(inStackSlot()); 452 Address = NewSlot; 453 } 454 }; 455 456 class Delegate { 457 virtual void anchor(); 458 459 public: 460 virtual ~Delegate() = default; 461 /// Callback after an insertion. This should not modify the MI directly. 462 virtual void MF_HandleInsertion(MachineInstr &MI) = 0; 463 /// Callback before a removal. This should not modify the MI directly. 464 virtual void MF_HandleRemoval(MachineInstr &MI) = 0; 465 /// Callback before changing MCInstrDesc. This should not modify the MI 466 /// directly. 467 virtual void MF_HandleChangeDesc(MachineInstr &MI, const MCInstrDesc &TID) { 468 return; 469 } 470 }; 471 472 /// Structure used to represent pair of argument number after call lowering 473 /// and register used to transfer that argument. 474 /// For now we support only cases when argument is transferred through one 475 /// register. 476 struct ArgRegPair { 477 Register Reg; 478 uint16_t ArgNo; 479 ArgRegPair(Register R, unsigned Arg) : Reg(R), ArgNo(Arg) { 480 assert(Arg < (1 << 16) && "Arg out of range"); 481 } 482 }; 483 484 struct CallSiteInfo { 485 /// Vector of call argument and its forwarding register. 486 SmallVector<ArgRegPair, 1> ArgRegPairs; 487 }; 488 489 private: 490 Delegate *TheDelegate = nullptr; 491 GISelChangeObserver *Observer = nullptr; 492 493 using CallSiteInfoMap = DenseMap<const MachineInstr *, CallSiteInfo>; 494 /// Map a call instruction to call site arguments forwarding info. 495 CallSiteInfoMap CallSitesInfo; 496 497 /// A helper function that returns call site info for a give call 498 /// instruction if debug entry value support is enabled. 499 CallSiteInfoMap::iterator getCallSiteInfo(const MachineInstr *MI); 500 501 // Callbacks for insertion and removal. 502 void handleInsertion(MachineInstr &MI); 503 void handleRemoval(MachineInstr &MI); 504 friend struct ilist_traits<MachineInstr>; 505 506 public: 507 // Need to be accessed from MachineInstr::setDesc. 508 void handleChangeDesc(MachineInstr &MI, const MCInstrDesc &TID); 509 510 using VariableDbgInfoMapTy = SmallVector<VariableDbgInfo, 4>; 511 VariableDbgInfoMapTy VariableDbgInfos; 512 513 /// A count of how many instructions in the function have had numbers 514 /// assigned to them. Used for debug value tracking, to determine the 515 /// next instruction number. 516 unsigned DebugInstrNumberingCount = 0; 517 518 /// Set value of DebugInstrNumberingCount field. Avoid using this unless 519 /// you're deserializing this data. 520 void setDebugInstrNumberingCount(unsigned Num); 521 522 /// Pair of instruction number and operand number. 523 using DebugInstrOperandPair = std::pair<unsigned, unsigned>; 524 525 /// Replacement definition for a debug instruction reference. Made up of a 526 /// source instruction / operand pair, destination pair, and a qualifying 527 /// subregister indicating what bits in the operand make up the substitution. 528 // For example, a debug user 529 /// of %1: 530 /// %0:gr32 = someinst, debug-instr-number 1 531 /// %1:gr16 = %0.some_16_bit_subreg, debug-instr-number 2 532 /// Would receive the substitution {{2, 0}, {1, 0}, $subreg}, where $subreg is 533 /// the subregister number for some_16_bit_subreg. 534 class DebugSubstitution { 535 public: 536 DebugInstrOperandPair Src; ///< Source instruction / operand pair. 537 DebugInstrOperandPair Dest; ///< Replacement instruction / operand pair. 538 unsigned Subreg; ///< Qualifier for which part of Dest is read. 539 540 DebugSubstitution(const DebugInstrOperandPair &Src, 541 const DebugInstrOperandPair &Dest, unsigned Subreg) 542 : Src(Src), Dest(Dest), Subreg(Subreg) {} 543 544 /// Order only by source instruction / operand pair: there should never 545 /// be duplicate entries for the same source in any collection. 546 bool operator<(const DebugSubstitution &Other) const { 547 return Src < Other.Src; 548 } 549 }; 550 551 /// Debug value substitutions: a collection of DebugSubstitution objects, 552 /// recording changes in where a value is defined. For example, when one 553 /// instruction is substituted for another. Keeping a record allows recovery 554 /// of variable locations after compilation finishes. 555 SmallVector<DebugSubstitution, 8> DebugValueSubstitutions; 556 557 /// Location of a PHI instruction that is also a debug-info variable value, 558 /// for the duration of register allocation. Loaded by the PHI-elimination 559 /// pass, and emitted as DBG_PHI instructions during VirtRegRewriter, with 560 /// maintenance applied by intermediate passes that edit registers (such as 561 /// coalescing and the allocator passes). 562 class DebugPHIRegallocPos { 563 public: 564 MachineBasicBlock *MBB; ///< Block where this PHI was originally located. 565 Register Reg; ///< VReg where the control-flow-merge happens. 566 unsigned SubReg; ///< Optional subreg qualifier within Reg. 567 DebugPHIRegallocPos(MachineBasicBlock *MBB, Register Reg, unsigned SubReg) 568 : MBB(MBB), Reg(Reg), SubReg(SubReg) {} 569 }; 570 571 /// Map of debug instruction numbers to the position of their PHI instructions 572 /// during register allocation. See DebugPHIRegallocPos. 573 DenseMap<unsigned, DebugPHIRegallocPos> DebugPHIPositions; 574 575 /// Flag for whether this function contains DBG_VALUEs (false) or 576 /// DBG_INSTR_REF (true). 577 bool UseDebugInstrRef = false; 578 579 /// Create a substitution between one <instr,operand> value to a different, 580 /// new value. 581 void makeDebugValueSubstitution(DebugInstrOperandPair, DebugInstrOperandPair, 582 unsigned SubReg = 0); 583 584 /// Create substitutions for any tracked values in \p Old, to point at 585 /// \p New. Needed when we re-create an instruction during optimization, 586 /// which has the same signature (i.e., def operands in the same place) but 587 /// a modified instruction type, flags, or otherwise. An example: X86 moves 588 /// are sometimes transformed into equivalent LEAs. 589 /// If the two instructions are not the same opcode, limit which operands to 590 /// examine for substitutions to the first N operands by setting 591 /// \p MaxOperand. 592 void substituteDebugValuesForInst(const MachineInstr &Old, MachineInstr &New, 593 unsigned MaxOperand = UINT_MAX); 594 595 /// Find the underlying defining instruction / operand for a COPY instruction 596 /// while in SSA form. Copies do not actually define values -- they move them 597 /// between registers. Labelling a COPY-like instruction with an instruction 598 /// number is to be avoided as it makes value numbers non-unique later in 599 /// compilation. This method follows the definition chain for any sequence of 600 /// COPY-like instructions to find whatever non-COPY-like instruction defines 601 /// the copied value; or for parameters, creates a DBG_PHI on entry. 602 /// May insert instructions into the entry block! 603 /// \p MI The copy-like instruction to salvage. 604 /// \p DbgPHICache A container to cache already-solved COPYs. 605 /// \returns An instruction/operand pair identifying the defining value. 606 DebugInstrOperandPair 607 salvageCopySSA(MachineInstr &MI, 608 DenseMap<Register, DebugInstrOperandPair> &DbgPHICache); 609 610 DebugInstrOperandPair salvageCopySSAImpl(MachineInstr &MI); 611 612 /// Finalise any partially emitted debug instructions. These are DBG_INSTR_REF 613 /// instructions where we only knew the vreg of the value they use, not the 614 /// instruction that defines that vreg. Once isel finishes, we should have 615 /// enough information for every DBG_INSTR_REF to point at an instruction 616 /// (or DBG_PHI). 617 void finalizeDebugInstrRefs(); 618 619 /// Determine whether, in the current machine configuration, we should use 620 /// instruction referencing or not. 621 bool shouldUseDebugInstrRef() const; 622 623 /// Returns true if the function's variable locations are tracked with 624 /// instruction referencing. 625 bool useDebugInstrRef() const; 626 627 /// Set whether this function will use instruction referencing or not. 628 void setUseDebugInstrRef(bool UseInstrRef); 629 630 /// A reserved operand number representing the instructions memory operand, 631 /// for instructions that have a stack spill fused into them. 632 const static unsigned int DebugOperandMemNumber; 633 634 MachineFunction(Function &F, const LLVMTargetMachine &Target, 635 const TargetSubtargetInfo &STI, unsigned FunctionNum, 636 MachineModuleInfo &MMI); 637 MachineFunction(const MachineFunction &) = delete; 638 MachineFunction &operator=(const MachineFunction &) = delete; 639 ~MachineFunction(); 640 641 /// Reset the instance as if it was just created. 642 void reset() { 643 clear(); 644 init(); 645 } 646 647 /// Reset the currently registered delegate - otherwise assert. 648 void resetDelegate(Delegate *delegate) { 649 assert(TheDelegate == delegate && 650 "Only the current delegate can perform reset!"); 651 TheDelegate = nullptr; 652 } 653 654 /// Set the delegate. resetDelegate must be called before attempting 655 /// to set. 656 void setDelegate(Delegate *delegate) { 657 assert(delegate && !TheDelegate && 658 "Attempted to set delegate to null, or to change it without " 659 "first resetting it!"); 660 661 TheDelegate = delegate; 662 } 663 664 void setObserver(GISelChangeObserver *O) { Observer = O; } 665 666 GISelChangeObserver *getObserver() const { return Observer; } 667 668 MachineModuleInfo &getMMI() const { return MMI; } 669 MCContext &getContext() const { return Ctx; } 670 671 /// Returns the Section this function belongs to. 672 MCSection *getSection() const { return Section; } 673 674 /// Indicates the Section this function belongs to. 675 void setSection(MCSection *S) { Section = S; } 676 677 PseudoSourceValueManager &getPSVManager() const { return *PSVManager; } 678 679 /// Return the DataLayout attached to the Module associated to this MF. 680 const DataLayout &getDataLayout() const; 681 682 /// Return the LLVM function that this machine code represents 683 Function &getFunction() { return F; } 684 685 /// Return the LLVM function that this machine code represents 686 const Function &getFunction() const { return F; } 687 688 /// getName - Return the name of the corresponding LLVM function. 689 StringRef getName() const; 690 691 /// getFunctionNumber - Return a unique ID for the current function. 692 unsigned getFunctionNumber() const { return FunctionNumber; } 693 694 /// Returns true if this function has basic block sections enabled. 695 bool hasBBSections() const { 696 return (BBSectionsType == BasicBlockSection::All || 697 BBSectionsType == BasicBlockSection::List || 698 BBSectionsType == BasicBlockSection::Preset); 699 } 700 701 /// Returns true if basic block labels are to be generated for this function. 702 bool hasBBLabels() const { 703 return BBSectionsType == BasicBlockSection::Labels; 704 } 705 706 void setBBSectionsType(BasicBlockSection V) { BBSectionsType = V; } 707 708 /// Assign IsBeginSection IsEndSection fields for basic blocks in this 709 /// function. 710 void assignBeginEndSections(); 711 712 /// getTarget - Return the target machine this machine code is compiled with 713 const LLVMTargetMachine &getTarget() const { return Target; } 714 715 /// getSubtarget - Return the subtarget for which this machine code is being 716 /// compiled. 717 const TargetSubtargetInfo &getSubtarget() const { return *STI; } 718 719 /// getSubtarget - This method returns a pointer to the specified type of 720 /// TargetSubtargetInfo. In debug builds, it verifies that the object being 721 /// returned is of the correct type. 722 template<typename STC> const STC &getSubtarget() const { 723 return *static_cast<const STC *>(STI); 724 } 725 726 /// getRegInfo - Return information about the registers currently in use. 727 MachineRegisterInfo &getRegInfo() { return *RegInfo; } 728 const MachineRegisterInfo &getRegInfo() const { return *RegInfo; } 729 730 /// getFrameInfo - Return the frame info object for the current function. 731 /// This object contains information about objects allocated on the stack 732 /// frame of the current function in an abstract way. 733 MachineFrameInfo &getFrameInfo() { return *FrameInfo; } 734 const MachineFrameInfo &getFrameInfo() const { return *FrameInfo; } 735 736 /// getJumpTableInfo - Return the jump table info object for the current 737 /// function. This object contains information about jump tables in the 738 /// current function. If the current function has no jump tables, this will 739 /// return null. 740 const MachineJumpTableInfo *getJumpTableInfo() const { return JumpTableInfo; } 741 MachineJumpTableInfo *getJumpTableInfo() { return JumpTableInfo; } 742 743 /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it 744 /// does already exist, allocate one. 745 MachineJumpTableInfo *getOrCreateJumpTableInfo(unsigned JTEntryKind); 746 747 /// getConstantPool - Return the constant pool object for the current 748 /// function. 749 MachineConstantPool *getConstantPool() { return ConstantPool; } 750 const MachineConstantPool *getConstantPool() const { return ConstantPool; } 751 752 /// getWasmEHFuncInfo - Return information about how the current function uses 753 /// Wasm exception handling. Returns null for functions that don't use wasm 754 /// exception handling. 755 const WasmEHFuncInfo *getWasmEHFuncInfo() const { return WasmEHInfo; } 756 WasmEHFuncInfo *getWasmEHFuncInfo() { return WasmEHInfo; } 757 758 /// getWinEHFuncInfo - Return information about how the current function uses 759 /// Windows exception handling. Returns null for functions that don't use 760 /// funclets for exception handling. 761 const WinEHFuncInfo *getWinEHFuncInfo() const { return WinEHInfo; } 762 WinEHFuncInfo *getWinEHFuncInfo() { return WinEHInfo; } 763 764 /// getAlignment - Return the alignment of the function. 765 Align getAlignment() const { return Alignment; } 766 767 /// setAlignment - Set the alignment of the function. 768 void setAlignment(Align A) { Alignment = A; } 769 770 /// ensureAlignment - Make sure the function is at least A bytes aligned. 771 void ensureAlignment(Align A) { 772 if (Alignment < A) 773 Alignment = A; 774 } 775 776 /// exposesReturnsTwice - Returns true if the function calls setjmp or 777 /// any other similar functions with attribute "returns twice" without 778 /// having the attribute itself. 779 bool exposesReturnsTwice() const { 780 return ExposesReturnsTwice; 781 } 782 783 /// setCallsSetJmp - Set a flag that indicates if there's a call to 784 /// a "returns twice" function. 785 void setExposesReturnsTwice(bool B) { 786 ExposesReturnsTwice = B; 787 } 788 789 /// Returns true if the function contains any inline assembly. 790 bool hasInlineAsm() const { 791 return HasInlineAsm; 792 } 793 794 /// Set a flag that indicates that the function contains inline assembly. 795 void setHasInlineAsm(bool B) { 796 HasInlineAsm = B; 797 } 798 799 bool hasWinCFI() const { 800 return HasWinCFI; 801 } 802 void setHasWinCFI(bool v) { HasWinCFI = v; } 803 804 /// True if this function needs frame moves for debug or exceptions. 805 bool needsFrameMoves() const; 806 807 /// Get the function properties 808 const MachineFunctionProperties &getProperties() const { return Properties; } 809 MachineFunctionProperties &getProperties() { return Properties; } 810 811 /// getInfo - Keep track of various per-function pieces of information for 812 /// backends that would like to do so. 813 /// 814 template<typename Ty> 815 Ty *getInfo() { 816 return static_cast<Ty*>(MFInfo); 817 } 818 819 template<typename Ty> 820 const Ty *getInfo() const { 821 return static_cast<const Ty *>(MFInfo); 822 } 823 824 template <typename Ty> Ty *cloneInfo(const Ty &Old) { 825 assert(!MFInfo); 826 MFInfo = Ty::template create<Ty>(Allocator, Old); 827 return static_cast<Ty *>(MFInfo); 828 } 829 830 /// Initialize the target specific MachineFunctionInfo 831 void initTargetMachineFunctionInfo(const TargetSubtargetInfo &STI); 832 833 MachineFunctionInfo *cloneInfoFrom( 834 const MachineFunction &OrigMF, 835 const DenseMap<MachineBasicBlock *, MachineBasicBlock *> &Src2DstMBB) { 836 assert(!MFInfo && "new function already has MachineFunctionInfo"); 837 if (!OrigMF.MFInfo) 838 return nullptr; 839 return OrigMF.MFInfo->clone(Allocator, *this, Src2DstMBB); 840 } 841 842 /// Returns the denormal handling type for the default rounding mode of the 843 /// function. 844 DenormalMode getDenormalMode(const fltSemantics &FPType) const; 845 846 /// getBlockNumbered - MachineBasicBlocks are automatically numbered when they 847 /// are inserted into the machine function. The block number for a machine 848 /// basic block can be found by using the MBB::getNumber method, this method 849 /// provides the inverse mapping. 850 MachineBasicBlock *getBlockNumbered(unsigned N) const { 851 assert(N < MBBNumbering.size() && "Illegal block number"); 852 assert(MBBNumbering[N] && "Block was removed from the machine function!"); 853 return MBBNumbering[N]; 854 } 855 856 /// Should we be emitting segmented stack stuff for the function 857 bool shouldSplitStack() const; 858 859 /// getNumBlockIDs - Return the number of MBB ID's allocated. 860 unsigned getNumBlockIDs() const { return (unsigned)MBBNumbering.size(); } 861 862 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and 863 /// recomputes them. This guarantees that the MBB numbers are sequential, 864 /// dense, and match the ordering of the blocks within the function. If a 865 /// specific MachineBasicBlock is specified, only that block and those after 866 /// it are renumbered. 867 void RenumberBlocks(MachineBasicBlock *MBBFrom = nullptr); 868 869 /// print - Print out the MachineFunction in a format suitable for debugging 870 /// to the specified stream. 871 void print(raw_ostream &OS, const SlotIndexes* = nullptr) const; 872 873 /// viewCFG - This function is meant for use from the debugger. You can just 874 /// say 'call F->viewCFG()' and a ghostview window should pop up from the 875 /// program, displaying the CFG of the current function with the code for each 876 /// basic block inside. This depends on there being a 'dot' and 'gv' program 877 /// in your path. 878 void viewCFG() const; 879 880 /// viewCFGOnly - This function is meant for use from the debugger. It works 881 /// just like viewCFG, but it does not include the contents of basic blocks 882 /// into the nodes, just the label. If you are only interested in the CFG 883 /// this can make the graph smaller. 884 /// 885 void viewCFGOnly() const; 886 887 /// dump - Print the current MachineFunction to cerr, useful for debugger use. 888 void dump() const; 889 890 /// Run the current MachineFunction through the machine code verifier, useful 891 /// for debugger use. 892 /// \returns true if no problems were found. 893 bool verify(Pass *p = nullptr, const char *Banner = nullptr, 894 bool AbortOnError = true) const; 895 896 /// Run the current MachineFunction through the machine code verifier, useful 897 /// for debugger use. 898 /// \returns true if no problems were found. 899 bool verify(LiveIntervals *LiveInts, SlotIndexes *Indexes, 900 const char *Banner = nullptr, bool AbortOnError = true) const; 901 902 // Provide accessors for the MachineBasicBlock list... 903 using iterator = BasicBlockListType::iterator; 904 using const_iterator = BasicBlockListType::const_iterator; 905 using const_reverse_iterator = BasicBlockListType::const_reverse_iterator; 906 using reverse_iterator = BasicBlockListType::reverse_iterator; 907 908 /// Support for MachineBasicBlock::getNextNode(). 909 static BasicBlockListType MachineFunction::* 910 getSublistAccess(MachineBasicBlock *) { 911 return &MachineFunction::BasicBlocks; 912 } 913 914 /// addLiveIn - Add the specified physical register as a live-in value and 915 /// create a corresponding virtual register for it. 916 Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC); 917 918 //===--------------------------------------------------------------------===// 919 // BasicBlock accessor functions. 920 // 921 iterator begin() { return BasicBlocks.begin(); } 922 const_iterator begin() const { return BasicBlocks.begin(); } 923 iterator end () { return BasicBlocks.end(); } 924 const_iterator end () const { return BasicBlocks.end(); } 925 926 reverse_iterator rbegin() { return BasicBlocks.rbegin(); } 927 const_reverse_iterator rbegin() const { return BasicBlocks.rbegin(); } 928 reverse_iterator rend () { return BasicBlocks.rend(); } 929 const_reverse_iterator rend () const { return BasicBlocks.rend(); } 930 931 unsigned size() const { return (unsigned)BasicBlocks.size();} 932 bool empty() const { return BasicBlocks.empty(); } 933 const MachineBasicBlock &front() const { return BasicBlocks.front(); } 934 MachineBasicBlock &front() { return BasicBlocks.front(); } 935 const MachineBasicBlock & back() const { return BasicBlocks.back(); } 936 MachineBasicBlock & back() { return BasicBlocks.back(); } 937 938 void push_back (MachineBasicBlock *MBB) { BasicBlocks.push_back (MBB); } 939 void push_front(MachineBasicBlock *MBB) { BasicBlocks.push_front(MBB); } 940 void insert(iterator MBBI, MachineBasicBlock *MBB) { 941 BasicBlocks.insert(MBBI, MBB); 942 } 943 void splice(iterator InsertPt, iterator MBBI) { 944 BasicBlocks.splice(InsertPt, BasicBlocks, MBBI); 945 } 946 void splice(iterator InsertPt, MachineBasicBlock *MBB) { 947 BasicBlocks.splice(InsertPt, BasicBlocks, MBB); 948 } 949 void splice(iterator InsertPt, iterator MBBI, iterator MBBE) { 950 BasicBlocks.splice(InsertPt, BasicBlocks, MBBI, MBBE); 951 } 952 953 void remove(iterator MBBI) { BasicBlocks.remove(MBBI); } 954 void remove(MachineBasicBlock *MBBI) { BasicBlocks.remove(MBBI); } 955 void erase(iterator MBBI) { BasicBlocks.erase(MBBI); } 956 void erase(MachineBasicBlock *MBBI) { BasicBlocks.erase(MBBI); } 957 958 template <typename Comp> 959 void sort(Comp comp) { 960 BasicBlocks.sort(comp); 961 } 962 963 /// Return the number of \p MachineInstrs in this \p MachineFunction. 964 unsigned getInstructionCount() const { 965 unsigned InstrCount = 0; 966 for (const MachineBasicBlock &MBB : BasicBlocks) 967 InstrCount += MBB.size(); 968 return InstrCount; 969 } 970 971 //===--------------------------------------------------------------------===// 972 // Internal functions used to automatically number MachineBasicBlocks 973 974 /// Adds the MBB to the internal numbering. Returns the unique number 975 /// assigned to the MBB. 976 unsigned addToMBBNumbering(MachineBasicBlock *MBB) { 977 MBBNumbering.push_back(MBB); 978 return (unsigned)MBBNumbering.size()-1; 979 } 980 981 /// removeFromMBBNumbering - Remove the specific machine basic block from our 982 /// tracker, this is only really to be used by the MachineBasicBlock 983 /// implementation. 984 void removeFromMBBNumbering(unsigned N) { 985 assert(N < MBBNumbering.size() && "Illegal basic block #"); 986 MBBNumbering[N] = nullptr; 987 } 988 989 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead 990 /// of `new MachineInstr'. 991 MachineInstr *CreateMachineInstr(const MCInstrDesc &MCID, DebugLoc DL, 992 bool NoImplicit = false); 993 994 /// Create a new MachineInstr which is a copy of \p Orig, identical in all 995 /// ways except the instruction has no parent, prev, or next. Bundling flags 996 /// are reset. 997 /// 998 /// Note: Clones a single instruction, not whole instruction bundles. 999 /// Does not perform target specific adjustments; consider using 1000 /// TargetInstrInfo::duplicate() instead. 1001 MachineInstr *CloneMachineInstr(const MachineInstr *Orig); 1002 1003 /// Clones instruction or the whole instruction bundle \p Orig and insert 1004 /// into \p MBB before \p InsertBefore. 1005 /// 1006 /// Note: Does not perform target specific adjustments; consider using 1007 /// TargetInstrInfo::duplicate() intead. 1008 MachineInstr & 1009 cloneMachineInstrBundle(MachineBasicBlock &MBB, 1010 MachineBasicBlock::iterator InsertBefore, 1011 const MachineInstr &Orig); 1012 1013 /// DeleteMachineInstr - Delete the given MachineInstr. 1014 void deleteMachineInstr(MachineInstr *MI); 1015 1016 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this 1017 /// instead of `new MachineBasicBlock'. Sets `MachineBasicBlock::BBID` if 1018 /// basic-block-sections is enabled for the function. 1019 MachineBasicBlock * 1020 CreateMachineBasicBlock(const BasicBlock *BB = nullptr, 1021 std::optional<UniqueBBID> BBID = std::nullopt); 1022 1023 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. 1024 void deleteMachineBasicBlock(MachineBasicBlock *MBB); 1025 1026 /// getMachineMemOperand - Allocate a new MachineMemOperand. 1027 /// MachineMemOperands are owned by the MachineFunction and need not be 1028 /// explicitly deallocated. 1029 MachineMemOperand *getMachineMemOperand( 1030 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, 1031 Align base_alignment, const AAMDNodes &AAInfo = AAMDNodes(), 1032 const MDNode *Ranges = nullptr, SyncScope::ID SSID = SyncScope::System, 1033 AtomicOrdering Ordering = AtomicOrdering::NotAtomic, 1034 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic); 1035 MachineMemOperand *getMachineMemOperand( 1036 MachinePointerInfo PtrInfo, MachineMemOperand::Flags F, LocationSize Size, 1037 Align BaseAlignment, const AAMDNodes &AAInfo = AAMDNodes(), 1038 const MDNode *Ranges = nullptr, SyncScope::ID SSID = SyncScope::System, 1039 AtomicOrdering Ordering = AtomicOrdering::NotAtomic, 1040 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic); 1041 MachineMemOperand *getMachineMemOperand( 1042 MachinePointerInfo PtrInfo, MachineMemOperand::Flags F, uint64_t Size, 1043 Align BaseAlignment, const AAMDNodes &AAInfo = AAMDNodes(), 1044 const MDNode *Ranges = nullptr, SyncScope::ID SSID = SyncScope::System, 1045 AtomicOrdering Ordering = AtomicOrdering::NotAtomic, 1046 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic) { 1047 return getMachineMemOperand(PtrInfo, F, LocationSize::precise(Size), 1048 BaseAlignment, AAInfo, Ranges, SSID, Ordering, 1049 FailureOrdering); 1050 } 1051 1052 /// getMachineMemOperand - Allocate a new MachineMemOperand by copying 1053 /// an existing one, adjusting by an offset and using the given size. 1054 /// MachineMemOperands are owned by the MachineFunction and need not be 1055 /// explicitly deallocated. 1056 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 1057 int64_t Offset, LLT Ty); 1058 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 1059 int64_t Offset, LocationSize Size) { 1060 return getMachineMemOperand( 1061 MMO, Offset, 1062 !Size.hasValue() ? LLT() 1063 : Size.isScalable() 1064 ? LLT::scalable_vector(1, 8 * Size.getValue().getKnownMinValue()) 1065 : LLT::scalar(8 * Size.getValue().getKnownMinValue())); 1066 } 1067 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 1068 int64_t Offset, uint64_t Size) { 1069 return getMachineMemOperand(MMO, Offset, LocationSize::precise(Size)); 1070 } 1071 1072 /// getMachineMemOperand - Allocate a new MachineMemOperand by copying 1073 /// an existing one, replacing only the MachinePointerInfo and size. 1074 /// MachineMemOperands are owned by the MachineFunction and need not be 1075 /// explicitly deallocated. 1076 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 1077 const MachinePointerInfo &PtrInfo, 1078 LocationSize Size); 1079 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 1080 const MachinePointerInfo &PtrInfo, 1081 LLT Ty); 1082 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 1083 const MachinePointerInfo &PtrInfo, 1084 uint64_t Size) { 1085 return getMachineMemOperand(MMO, PtrInfo, LocationSize::precise(Size)); 1086 } 1087 1088 /// Allocate a new MachineMemOperand by copying an existing one, 1089 /// replacing only AliasAnalysis information. MachineMemOperands are owned 1090 /// by the MachineFunction and need not be explicitly deallocated. 1091 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 1092 const AAMDNodes &AAInfo); 1093 1094 /// Allocate a new MachineMemOperand by copying an existing one, 1095 /// replacing the flags. MachineMemOperands are owned 1096 /// by the MachineFunction and need not be explicitly deallocated. 1097 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 1098 MachineMemOperand::Flags Flags); 1099 1100 using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity; 1101 1102 /// Allocate an array of MachineOperands. This is only intended for use by 1103 /// internal MachineInstr functions. 1104 MachineOperand *allocateOperandArray(OperandCapacity Cap) { 1105 return OperandRecycler.allocate(Cap, Allocator); 1106 } 1107 1108 /// Dellocate an array of MachineOperands and recycle the memory. This is 1109 /// only intended for use by internal MachineInstr functions. 1110 /// Cap must be the same capacity that was used to allocate the array. 1111 void deallocateOperandArray(OperandCapacity Cap, MachineOperand *Array) { 1112 OperandRecycler.deallocate(Cap, Array); 1113 } 1114 1115 /// Allocate and initialize a register mask with @p NumRegister bits. 1116 uint32_t *allocateRegMask(); 1117 1118 ArrayRef<int> allocateShuffleMask(ArrayRef<int> Mask); 1119 1120 /// Allocate and construct an extra info structure for a `MachineInstr`. 1121 /// 1122 /// This is allocated on the function's allocator and so lives the life of 1123 /// the function. 1124 MachineInstr::ExtraInfo *createMIExtraInfo( 1125 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol = nullptr, 1126 MCSymbol *PostInstrSymbol = nullptr, MDNode *HeapAllocMarker = nullptr, 1127 MDNode *PCSections = nullptr, uint32_t CFIType = 0, 1128 MDNode *MMRAs = nullptr); 1129 1130 /// Allocate a string and populate it with the given external symbol name. 1131 const char *createExternalSymbolName(StringRef Name); 1132 1133 //===--------------------------------------------------------------------===// 1134 // Label Manipulation. 1135 1136 /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. 1137 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 1138 /// normal 'L' label is returned. 1139 MCSymbol *getJTISymbol(unsigned JTI, MCContext &Ctx, 1140 bool isLinkerPrivate = false) const; 1141 1142 /// getPICBaseSymbol - Return a function-local symbol to represent the PIC 1143 /// base. 1144 MCSymbol *getPICBaseSymbol() const; 1145 1146 /// Returns a reference to a list of cfi instructions in the function's 1147 /// prologue. Used to construct frame maps for debug and exception handling 1148 /// comsumers. 1149 const std::vector<MCCFIInstruction> &getFrameInstructions() const { 1150 return FrameInstructions; 1151 } 1152 1153 [[nodiscard]] unsigned addFrameInst(const MCCFIInstruction &Inst); 1154 1155 /// Returns a reference to a list of symbols immediately following calls to 1156 /// _setjmp in the function. Used to construct the longjmp target table used 1157 /// by Windows Control Flow Guard. 1158 const std::vector<MCSymbol *> &getLongjmpTargets() const { 1159 return LongjmpTargets; 1160 } 1161 1162 /// Add the specified symbol to the list of valid longjmp targets for Windows 1163 /// Control Flow Guard. 1164 void addLongjmpTarget(MCSymbol *Target) { LongjmpTargets.push_back(Target); } 1165 1166 /// Returns a reference to a list of symbols that we have catchrets. 1167 /// Used to construct the catchret target table used by Windows EHCont Guard. 1168 const std::vector<MCSymbol *> &getCatchretTargets() const { 1169 return CatchretTargets; 1170 } 1171 1172 /// Add the specified symbol to the list of valid catchret targets for Windows 1173 /// EHCont Guard. 1174 void addCatchretTarget(MCSymbol *Target) { 1175 CatchretTargets.push_back(Target); 1176 } 1177 1178 /// \name Exception Handling 1179 /// \{ 1180 1181 bool callsEHReturn() const { return CallsEHReturn; } 1182 void setCallsEHReturn(bool b) { CallsEHReturn = b; } 1183 1184 bool callsUnwindInit() const { return CallsUnwindInit; } 1185 void setCallsUnwindInit(bool b) { CallsUnwindInit = b; } 1186 1187 bool hasEHCatchret() const { return HasEHCatchret; } 1188 void setHasEHCatchret(bool V) { HasEHCatchret = V; } 1189 1190 bool hasEHScopes() const { return HasEHScopes; } 1191 void setHasEHScopes(bool V) { HasEHScopes = V; } 1192 1193 bool hasEHFunclets() const { return HasEHFunclets; } 1194 void setHasEHFunclets(bool V) { HasEHFunclets = V; } 1195 1196 bool isOutlined() const { return IsOutlined; } 1197 void setIsOutlined(bool V) { IsOutlined = V; } 1198 1199 /// Find or create an LandingPadInfo for the specified MachineBasicBlock. 1200 LandingPadInfo &getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad); 1201 1202 /// Return a reference to the landing pad info for the current function. 1203 const std::vector<LandingPadInfo> &getLandingPads() const { 1204 return LandingPads; 1205 } 1206 1207 /// Provide the begin and end labels of an invoke style call and associate it 1208 /// with a try landing pad block. 1209 void addInvoke(MachineBasicBlock *LandingPad, 1210 MCSymbol *BeginLabel, MCSymbol *EndLabel); 1211 1212 /// Add a new panding pad, and extract the exception handling information from 1213 /// the landingpad instruction. Returns the label ID for the landing pad 1214 /// entry. 1215 MCSymbol *addLandingPad(MachineBasicBlock *LandingPad); 1216 1217 /// Return the type id for the specified typeinfo. This is function wide. 1218 unsigned getTypeIDFor(const GlobalValue *TI); 1219 1220 /// Return the id of the filter encoded by TyIds. This is function wide. 1221 int getFilterIDFor(ArrayRef<unsigned> TyIds); 1222 1223 /// Map the landing pad's EH symbol to the call site indexes. 1224 void setCallSiteLandingPad(MCSymbol *Sym, ArrayRef<unsigned> Sites); 1225 1226 /// Return if there is any wasm exception handling. 1227 bool hasAnyWasmLandingPadIndex() const { 1228 return !WasmLPadToIndexMap.empty(); 1229 } 1230 1231 /// Map the landing pad to its index. Used for Wasm exception handling. 1232 void setWasmLandingPadIndex(const MachineBasicBlock *LPad, unsigned Index) { 1233 WasmLPadToIndexMap[LPad] = Index; 1234 } 1235 1236 /// Returns true if the landing pad has an associate index in wasm EH. 1237 bool hasWasmLandingPadIndex(const MachineBasicBlock *LPad) const { 1238 return WasmLPadToIndexMap.count(LPad); 1239 } 1240 1241 /// Get the index in wasm EH for a given landing pad. 1242 unsigned getWasmLandingPadIndex(const MachineBasicBlock *LPad) const { 1243 assert(hasWasmLandingPadIndex(LPad)); 1244 return WasmLPadToIndexMap.lookup(LPad); 1245 } 1246 1247 bool hasAnyCallSiteLandingPad() const { 1248 return !LPadToCallSiteMap.empty(); 1249 } 1250 1251 /// Get the call site indexes for a landing pad EH symbol. 1252 SmallVectorImpl<unsigned> &getCallSiteLandingPad(MCSymbol *Sym) { 1253 assert(hasCallSiteLandingPad(Sym) && 1254 "missing call site number for landing pad!"); 1255 return LPadToCallSiteMap[Sym]; 1256 } 1257 1258 /// Return true if the landing pad Eh symbol has an associated call site. 1259 bool hasCallSiteLandingPad(MCSymbol *Sym) { 1260 return !LPadToCallSiteMap[Sym].empty(); 1261 } 1262 1263 bool hasAnyCallSiteLabel() const { 1264 return !CallSiteMap.empty(); 1265 } 1266 1267 /// Map the begin label for a call site. 1268 void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site) { 1269 CallSiteMap[BeginLabel] = Site; 1270 } 1271 1272 /// Get the call site number for a begin label. 1273 unsigned getCallSiteBeginLabel(MCSymbol *BeginLabel) const { 1274 assert(hasCallSiteBeginLabel(BeginLabel) && 1275 "Missing call site number for EH_LABEL!"); 1276 return CallSiteMap.lookup(BeginLabel); 1277 } 1278 1279 /// Return true if the begin label has a call site number associated with it. 1280 bool hasCallSiteBeginLabel(MCSymbol *BeginLabel) const { 1281 return CallSiteMap.count(BeginLabel); 1282 } 1283 1284 /// Record annotations associated with a particular label. 1285 void addCodeViewAnnotation(MCSymbol *Label, MDNode *MD) { 1286 CodeViewAnnotations.push_back({Label, MD}); 1287 } 1288 1289 ArrayRef<std::pair<MCSymbol *, MDNode *>> getCodeViewAnnotations() const { 1290 return CodeViewAnnotations; 1291 } 1292 1293 /// Return a reference to the C++ typeinfo for the current function. 1294 const std::vector<const GlobalValue *> &getTypeInfos() const { 1295 return TypeInfos; 1296 } 1297 1298 /// Return a reference to the typeids encoding filters used in the current 1299 /// function. 1300 const std::vector<unsigned> &getFilterIds() const { 1301 return FilterIds; 1302 } 1303 1304 /// \} 1305 1306 /// Collect information used to emit debugging information of a variable in a 1307 /// stack slot. 1308 void setVariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr, 1309 int Slot, const DILocation *Loc) { 1310 VariableDbgInfos.emplace_back(Var, Expr, Slot, Loc); 1311 } 1312 1313 /// Collect information used to emit debugging information of a variable in 1314 /// the entry value of a register. 1315 void setVariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr, 1316 MCRegister Reg, const DILocation *Loc) { 1317 VariableDbgInfos.emplace_back(Var, Expr, Reg, Loc); 1318 } 1319 1320 VariableDbgInfoMapTy &getVariableDbgInfo() { return VariableDbgInfos; } 1321 const VariableDbgInfoMapTy &getVariableDbgInfo() const { 1322 return VariableDbgInfos; 1323 } 1324 1325 /// Returns the collection of variables for which we have debug info and that 1326 /// have been assigned a stack slot. 1327 auto getInStackSlotVariableDbgInfo() { 1328 return make_filter_range(getVariableDbgInfo(), [](auto &VarInfo) { 1329 return VarInfo.inStackSlot(); 1330 }); 1331 } 1332 1333 /// Returns the collection of variables for which we have debug info and that 1334 /// have been assigned a stack slot. 1335 auto getInStackSlotVariableDbgInfo() const { 1336 return make_filter_range(getVariableDbgInfo(), [](const auto &VarInfo) { 1337 return VarInfo.inStackSlot(); 1338 }); 1339 } 1340 1341 /// Returns the collection of variables for which we have debug info and that 1342 /// have been assigned an entry value register. 1343 auto getEntryValueVariableDbgInfo() const { 1344 return make_filter_range(getVariableDbgInfo(), [](const auto &VarInfo) { 1345 return VarInfo.inEntryValueRegister(); 1346 }); 1347 } 1348 1349 /// Start tracking the arguments passed to the call \p CallI. 1350 void addCallSiteInfo(const MachineInstr *CallI, CallSiteInfo &&CallInfo) { 1351 assert(CallI->isCandidateForCallSiteEntry()); 1352 bool Inserted = 1353 CallSitesInfo.try_emplace(CallI, std::move(CallInfo)).second; 1354 (void)Inserted; 1355 assert(Inserted && "Call site info not unique"); 1356 } 1357 1358 const CallSiteInfoMap &getCallSitesInfo() const { 1359 return CallSitesInfo; 1360 } 1361 1362 /// Following functions update call site info. They should be called before 1363 /// removing, replacing or copying call instruction. 1364 1365 /// Erase the call site info for \p MI. It is used to remove a call 1366 /// instruction from the instruction stream. 1367 void eraseCallSiteInfo(const MachineInstr *MI); 1368 /// Copy the call site info from \p Old to \ New. Its usage is when we are 1369 /// making a copy of the instruction that will be inserted at different point 1370 /// of the instruction stream. 1371 void copyCallSiteInfo(const MachineInstr *Old, 1372 const MachineInstr *New); 1373 1374 /// Move the call site info from \p Old to \New call site info. This function 1375 /// is used when we are replacing one call instruction with another one to 1376 /// the same callee. 1377 void moveCallSiteInfo(const MachineInstr *Old, 1378 const MachineInstr *New); 1379 1380 unsigned getNewDebugInstrNum() { 1381 return ++DebugInstrNumberingCount; 1382 } 1383 }; 1384 1385 //===--------------------------------------------------------------------===// 1386 // GraphTraits specializations for function basic block graphs (CFGs) 1387 //===--------------------------------------------------------------------===// 1388 1389 // Provide specializations of GraphTraits to be able to treat a 1390 // machine function as a graph of machine basic blocks... these are 1391 // the same as the machine basic block iterators, except that the root 1392 // node is implicitly the first node of the function. 1393 // 1394 template <> struct GraphTraits<MachineFunction*> : 1395 public GraphTraits<MachineBasicBlock*> { 1396 static NodeRef getEntryNode(MachineFunction *F) { return &F->front(); } 1397 1398 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 1399 using nodes_iterator = pointer_iterator<MachineFunction::iterator>; 1400 1401 static nodes_iterator nodes_begin(MachineFunction *F) { 1402 return nodes_iterator(F->begin()); 1403 } 1404 1405 static nodes_iterator nodes_end(MachineFunction *F) { 1406 return nodes_iterator(F->end()); 1407 } 1408 1409 static unsigned size (MachineFunction *F) { return F->size(); } 1410 }; 1411 template <> struct GraphTraits<const MachineFunction*> : 1412 public GraphTraits<const MachineBasicBlock*> { 1413 static NodeRef getEntryNode(const MachineFunction *F) { return &F->front(); } 1414 1415 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 1416 using nodes_iterator = pointer_iterator<MachineFunction::const_iterator>; 1417 1418 static nodes_iterator nodes_begin(const MachineFunction *F) { 1419 return nodes_iterator(F->begin()); 1420 } 1421 1422 static nodes_iterator nodes_end (const MachineFunction *F) { 1423 return nodes_iterator(F->end()); 1424 } 1425 1426 static unsigned size (const MachineFunction *F) { 1427 return F->size(); 1428 } 1429 }; 1430 1431 // Provide specializations of GraphTraits to be able to treat a function as a 1432 // graph of basic blocks... and to walk it in inverse order. Inverse order for 1433 // a function is considered to be when traversing the predecessor edges of a BB 1434 // instead of the successor edges. 1435 // 1436 template <> struct GraphTraits<Inverse<MachineFunction*>> : 1437 public GraphTraits<Inverse<MachineBasicBlock*>> { 1438 static NodeRef getEntryNode(Inverse<MachineFunction *> G) { 1439 return &G.Graph->front(); 1440 } 1441 }; 1442 template <> struct GraphTraits<Inverse<const MachineFunction*>> : 1443 public GraphTraits<Inverse<const MachineBasicBlock*>> { 1444 static NodeRef getEntryNode(Inverse<const MachineFunction *> G) { 1445 return &G.Graph->front(); 1446 } 1447 }; 1448 1449 void verifyMachineFunction(const std::string &Banner, 1450 const MachineFunction &MF); 1451 1452 } // end namespace llvm 1453 1454 #endif // LLVM_CODEGEN_MACHINEFUNCTION_H 1455