xref: /freebsd/contrib/llvm-project/llvm/include/llvm/Bitcode/BitcodeWriter.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- llvm/Bitcode/BitcodeWriter.h - Bitcode writers -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This header defines interfaces to write LLVM bitcode files/streams.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_BITCODE_BITCODEWRITER_H
14 #define LLVM_BITCODE_BITCODEWRITER_H
15 
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/IR/ModuleSummaryIndex.h"
18 #include "llvm/MC/StringTableBuilder.h"
19 #include "llvm/Support/Allocator.h"
20 #include "llvm/Support/MemoryBufferRef.h"
21 #include <map>
22 #include <memory>
23 #include <string>
24 #include <vector>
25 
26 namespace llvm {
27 
28 class BitstreamWriter;
29 class Module;
30 class raw_ostream;
31 
32 class BitcodeWriter {
33   std::unique_ptr<BitstreamWriter> Stream;
34 
35   StringTableBuilder StrtabBuilder{StringTableBuilder::RAW};
36 
37   // Owns any strings created by the irsymtab writer until we create the
38   // string table.
39   BumpPtrAllocator Alloc;
40 
41   bool WroteStrtab = false, WroteSymtab = false;
42 
43   void writeBlob(unsigned Block, unsigned Record, StringRef Blob);
44 
45   std::vector<Module *> Mods;
46 
47 public:
48   /// Create a BitcodeWriter that writes to Buffer.
49   BitcodeWriter(SmallVectorImpl<char> &Buffer);
50   BitcodeWriter(raw_ostream &FS);
51 
52   ~BitcodeWriter();
53 
54   /// Attempt to write a symbol table to the bitcode file. This must be called
55   /// at most once after all modules have been written.
56   ///
57   /// A reader does not require a symbol table to interpret a bitcode file;
58   /// the symbol table is needed only to improve link-time performance. So
59   /// this function may decide not to write a symbol table. It may so decide
60   /// if, for example, the target is unregistered or the IR is malformed.
61   void writeSymtab();
62 
63   /// Write the bitcode file's string table. This must be called exactly once
64   /// after all modules and the optional symbol table have been written.
65   void writeStrtab();
66 
67   /// Copy the string table for another module into this bitcode file. This
68   /// should be called after copying the module itself into the bitcode file.
69   void copyStrtab(StringRef Strtab);
70 
71   /// Write the specified module to the buffer specified at construction time.
72   ///
73   /// If \c ShouldPreserveUseListOrder, encode the use-list order for each \a
74   /// Value in \c M.  These will be reconstructed exactly when \a M is
75   /// deserialized.
76   ///
77   /// If \c Index is supplied, the bitcode will contain the summary index
78   /// (currently for use in ThinLTO optimization).
79   ///
80   /// \p GenerateHash enables hashing the Module and including the hash in the
81   /// bitcode (currently for use in ThinLTO incremental build).
82   ///
83   /// If \p ModHash is non-null, when GenerateHash is true, the resulting
84   /// hash is written into ModHash. When GenerateHash is false, that value
85   /// is used as the hash instead of computing from the generated bitcode.
86   /// Can be used to produce the same module hash for a minimized bitcode
87   /// used just for the thin link as in the regular full bitcode that will
88   /// be used in the backend.
89   void writeModule(const Module &M, bool ShouldPreserveUseListOrder = false,
90                    const ModuleSummaryIndex *Index = nullptr,
91                    bool GenerateHash = false, ModuleHash *ModHash = nullptr);
92 
93   /// Write the specified thin link bitcode file (i.e., the minimized bitcode
94   /// file) to the buffer specified at construction time. The thin link
95   /// bitcode file is used for thin link, and it only contains the necessary
96   /// information for thin link.
97   ///
98   /// ModHash is for use in ThinLTO incremental build, generated while the
99   /// IR bitcode file writing.
100   void writeThinLinkBitcode(const Module &M, const ModuleSummaryIndex &Index,
101                             const ModuleHash &ModHash);
102 
103   void writeIndex(
104       const ModuleSummaryIndex *Index,
105       const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex,
106       const GVSummaryPtrSet *DecSummaries);
107 };
108 
109 /// Write the specified module to the specified raw output stream.
110 ///
111 /// For streams where it matters, the given stream should be in "binary"
112 /// mode.
113 ///
114 /// If \c ShouldPreserveUseListOrder, encode the use-list order for each \a
115 /// Value in \c M.  These will be reconstructed exactly when \a M is
116 /// deserialized.
117 ///
118 /// If \c Index is supplied, the bitcode will contain the summary index
119 /// (currently for use in ThinLTO optimization).
120 ///
121 /// \p GenerateHash enables hashing the Module and including the hash in the
122 /// bitcode (currently for use in ThinLTO incremental build).
123 ///
124 /// If \p ModHash is non-null, when GenerateHash is true, the resulting
125 /// hash is written into ModHash. When GenerateHash is false, that value
126 /// is used as the hash instead of computing from the generated bitcode.
127 /// Can be used to produce the same module hash for a minimized bitcode
128 /// used just for the thin link as in the regular full bitcode that will
129 /// be used in the backend.
130 void WriteBitcodeToFile(const Module &M, raw_ostream &Out,
131                         bool ShouldPreserveUseListOrder = false,
132                         const ModuleSummaryIndex *Index = nullptr,
133                         bool GenerateHash = false,
134                         ModuleHash *ModHash = nullptr);
135 
136 /// Write the specified thin link bitcode file (i.e., the minimized bitcode
137 /// file) to the given raw output stream, where it will be written in a new
138 /// bitcode block. The thin link bitcode file is used for thin link, and it
139 /// only contains the necessary information for thin link.
140 ///
141 /// ModHash is for use in ThinLTO incremental build, generated while the IR
142 /// bitcode file writing.
143 void writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
144                                 const ModuleSummaryIndex &Index,
145                                 const ModuleHash &ModHash);
146 
147 /// Write the specified module summary index to the given raw output stream,
148 /// where it will be written in a new bitcode block. This is used when
149 /// writing the combined index file for ThinLTO. When writing a subset of the
150 /// index for a distributed backend, provide the \p ModuleToSummariesForIndex
151 /// map. \p DecSummaries specifies the set of summaries for which the
152 /// corresponding value should be imported as a declaration (prototype).
153 void writeIndexToFile(const ModuleSummaryIndex &Index, raw_ostream &Out,
154                       const std::map<std::string, GVSummaryMapTy>
155                           *ModuleToSummariesForIndex = nullptr,
156                       const GVSummaryPtrSet *DecSummaries = nullptr);
157 
158 /// If EmbedBitcode is set, save a copy of the llvm IR as data in the
159 ///  __LLVM,__bitcode section (.llvmbc on non-MacOS).
160 /// If available, pass the serialized module via the Buf parameter. If not,
161 /// pass an empty (default-initialized) MemoryBufferRef, and the serialization
162 /// will be handled by this API. The same behavior happens if the provided Buf
163 /// is not bitcode (i.e. if it's invalid data or even textual LLVM assembly).
164 /// If EmbedCmdline is set, the command line is also exported in
165 /// the corresponding section (__LLVM,_cmdline / .llvmcmd) - even if CmdArgs
166 /// were empty.
167 void embedBitcodeInModule(Module &M, MemoryBufferRef Buf, bool EmbedBitcode,
168                           bool EmbedCmdline,
169                           const std::vector<uint8_t> &CmdArgs);
170 
171 } // end namespace llvm
172 
173 #endif // LLVM_BITCODE_BITCODEWRITER_H
174