xref: /freebsd/contrib/llvm-project/llvm/include/llvm/Analysis/ScalarEvolution.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The ScalarEvolution class is an LLVM pass which can be used to analyze and
10 // categorize scalar expressions in loops.  It specializes in recognizing
11 // general induction variables, representing them with the abstract and opaque
12 // SCEV class.  Given this analysis, trip counts of loops and other important
13 // properties can be obtained.
14 //
15 // This analysis is primarily useful for induction variable substitution and
16 // strength reduction.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
21 #define LLVM_ANALYSIS_SCALAREVOLUTION_H
22 
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/DenseMapInfo.h"
27 #include "llvm/ADT/FoldingSet.h"
28 #include "llvm/ADT/PointerIntPair.h"
29 #include "llvm/ADT/SetVector.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/IR/ConstantRange.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/PassManager.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/IR/ValueMap.h"
38 #include "llvm/Pass.h"
39 #include <cassert>
40 #include <cstdint>
41 #include <memory>
42 #include <optional>
43 #include <utility>
44 
45 namespace llvm {
46 
47 class OverflowingBinaryOperator;
48 class AssumptionCache;
49 class BasicBlock;
50 class Constant;
51 class ConstantInt;
52 class DataLayout;
53 class DominatorTree;
54 class Function;
55 class GEPOperator;
56 class Instruction;
57 class LLVMContext;
58 class Loop;
59 class LoopInfo;
60 class raw_ostream;
61 class ScalarEvolution;
62 class SCEVAddRecExpr;
63 class SCEVUnknown;
64 class StructType;
65 class TargetLibraryInfo;
66 class Type;
67 class Value;
68 enum SCEVTypes : unsigned short;
69 
70 extern bool VerifySCEV;
71 
72 /// This class represents an analyzed expression in the program.  These are
73 /// opaque objects that the client is not allowed to do much with directly.
74 ///
75 class SCEV : public FoldingSetNode {
76   friend struct FoldingSetTrait<SCEV>;
77 
78   /// A reference to an Interned FoldingSetNodeID for this node.  The
79   /// ScalarEvolution's BumpPtrAllocator holds the data.
80   FoldingSetNodeIDRef FastID;
81 
82   // The SCEV baseclass this node corresponds to
83   const SCEVTypes SCEVType;
84 
85 protected:
86   // Estimated complexity of this node's expression tree size.
87   const unsigned short ExpressionSize;
88 
89   /// This field is initialized to zero and may be used in subclasses to store
90   /// miscellaneous information.
91   unsigned short SubclassData = 0;
92 
93 public:
94   /// NoWrapFlags are bitfield indices into SubclassData.
95   ///
96   /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
97   /// no-signed-wrap <NSW> properties, which are derived from the IR
98   /// operator. NSW is a misnomer that we use to mean no signed overflow or
99   /// underflow.
100   ///
101   /// AddRec expressions may have a no-self-wraparound <NW> property if, in
102   /// the integer domain, abs(step) * max-iteration(loop) <=
103   /// unsigned-max(bitwidth).  This means that the recurrence will never reach
104   /// its start value if the step is non-zero.  Computing the same value on
105   /// each iteration is not considered wrapping, and recurrences with step = 0
106   /// are trivially <NW>.  <NW> is independent of the sign of step and the
107   /// value the add recurrence starts with.
108   ///
109   /// Note that NUW and NSW are also valid properties of a recurrence, and
110   /// either implies NW. For convenience, NW will be set for a recurrence
111   /// whenever either NUW or NSW are set.
112   ///
113   /// We require that the flag on a SCEV apply to the entire scope in which
114   /// that SCEV is defined.  A SCEV's scope is set of locations dominated by
115   /// a defining location, which is in turn described by the following rules:
116   /// * A SCEVUnknown is at the point of definition of the Value.
117   /// * A SCEVConstant is defined at all points.
118   /// * A SCEVAddRec is defined starting with the header of the associated
119   ///   loop.
120   /// * All other SCEVs are defined at the earlest point all operands are
121   ///   defined.
122   ///
123   /// The above rules describe a maximally hoisted form (without regards to
124   /// potential control dependence).  A SCEV is defined anywhere a
125   /// corresponding instruction could be defined in said maximally hoisted
126   /// form.  Note that SCEVUDivExpr (currently the only expression type which
127   /// can trap) can be defined per these rules in regions where it would trap
128   /// at runtime.  A SCEV being defined does not require the existence of any
129   /// instruction within the defined scope.
130   enum NoWrapFlags {
131     FlagAnyWrap = 0,    // No guarantee.
132     FlagNW = (1 << 0),  // No self-wrap.
133     FlagNUW = (1 << 1), // No unsigned wrap.
134     FlagNSW = (1 << 2), // No signed wrap.
135     NoWrapMask = (1 << 3) - 1
136   };
137 
138   explicit SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
139                 unsigned short ExpressionSize)
140       : FastID(ID), SCEVType(SCEVTy), ExpressionSize(ExpressionSize) {}
141   SCEV(const SCEV &) = delete;
142   SCEV &operator=(const SCEV &) = delete;
143 
144   SCEVTypes getSCEVType() const { return SCEVType; }
145 
146   /// Return the LLVM type of this SCEV expression.
147   Type *getType() const;
148 
149   /// Return operands of this SCEV expression.
150   ArrayRef<const SCEV *> operands() const;
151 
152   /// Return true if the expression is a constant zero.
153   bool isZero() const;
154 
155   /// Return true if the expression is a constant one.
156   bool isOne() const;
157 
158   /// Return true if the expression is a constant all-ones value.
159   bool isAllOnesValue() const;
160 
161   /// Return true if the specified scev is negated, but not a constant.
162   bool isNonConstantNegative() const;
163 
164   // Returns estimated size of the mathematical expression represented by this
165   // SCEV. The rules of its calculation are following:
166   // 1) Size of a SCEV without operands (like constants and SCEVUnknown) is 1;
167   // 2) Size SCEV with operands Op1, Op2, ..., OpN is calculated by formula:
168   //    (1 + Size(Op1) + ... + Size(OpN)).
169   // This value gives us an estimation of time we need to traverse through this
170   // SCEV and all its operands recursively. We may use it to avoid performing
171   // heavy transformations on SCEVs of excessive size for sake of saving the
172   // compilation time.
173   unsigned short getExpressionSize() const {
174     return ExpressionSize;
175   }
176 
177   /// Print out the internal representation of this scalar to the specified
178   /// stream.  This should really only be used for debugging purposes.
179   void print(raw_ostream &OS) const;
180 
181   /// This method is used for debugging.
182   void dump() const;
183 };
184 
185 // Specialize FoldingSetTrait for SCEV to avoid needing to compute
186 // temporary FoldingSetNodeID values.
187 template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
188   static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; }
189 
190   static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash,
191                      FoldingSetNodeID &TempID) {
192     return ID == X.FastID;
193   }
194 
195   static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
196     return X.FastID.ComputeHash();
197   }
198 };
199 
200 inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
201   S.print(OS);
202   return OS;
203 }
204 
205 /// An object of this class is returned by queries that could not be answered.
206 /// For example, if you ask for the number of iterations of a linked-list
207 /// traversal loop, you will get one of these.  None of the standard SCEV
208 /// operations are valid on this class, it is just a marker.
209 struct SCEVCouldNotCompute : public SCEV {
210   SCEVCouldNotCompute();
211 
212   /// Methods for support type inquiry through isa, cast, and dyn_cast:
213   static bool classof(const SCEV *S);
214 };
215 
216 /// This class represents an assumption made using SCEV expressions which can
217 /// be checked at run-time.
218 class SCEVPredicate : public FoldingSetNode {
219   friend struct FoldingSetTrait<SCEVPredicate>;
220 
221   /// A reference to an Interned FoldingSetNodeID for this node.  The
222   /// ScalarEvolution's BumpPtrAllocator holds the data.
223   FoldingSetNodeIDRef FastID;
224 
225 public:
226   enum SCEVPredicateKind { P_Union, P_Compare, P_Wrap };
227 
228 protected:
229   SCEVPredicateKind Kind;
230   ~SCEVPredicate() = default;
231   SCEVPredicate(const SCEVPredicate &) = default;
232   SCEVPredicate &operator=(const SCEVPredicate &) = default;
233 
234 public:
235   SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
236 
237   SCEVPredicateKind getKind() const { return Kind; }
238 
239   /// Returns the estimated complexity of this predicate.  This is roughly
240   /// measured in the number of run-time checks required.
241   virtual unsigned getComplexity() const { return 1; }
242 
243   /// Returns true if the predicate is always true. This means that no
244   /// assumptions were made and nothing needs to be checked at run-time.
245   virtual bool isAlwaysTrue() const = 0;
246 
247   /// Returns true if this predicate implies \p N.
248   virtual bool implies(const SCEVPredicate *N) const = 0;
249 
250   /// Prints a textual representation of this predicate with an indentation of
251   /// \p Depth.
252   virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
253 };
254 
255 inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
256   P.print(OS);
257   return OS;
258 }
259 
260 // Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
261 // temporary FoldingSetNodeID values.
262 template <>
263 struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> {
264   static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
265     ID = X.FastID;
266   }
267 
268   static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
269                      unsigned IDHash, FoldingSetNodeID &TempID) {
270     return ID == X.FastID;
271   }
272 
273   static unsigned ComputeHash(const SCEVPredicate &X,
274                               FoldingSetNodeID &TempID) {
275     return X.FastID.ComputeHash();
276   }
277 };
278 
279 /// This class represents an assumption that the expression LHS Pred RHS
280 /// evaluates to true, and this can be checked at run-time.
281 class SCEVComparePredicate final : public SCEVPredicate {
282   /// We assume that LHS Pred RHS is true.
283   const ICmpInst::Predicate Pred;
284   const SCEV *LHS;
285   const SCEV *RHS;
286 
287 public:
288   SCEVComparePredicate(const FoldingSetNodeIDRef ID,
289                        const ICmpInst::Predicate Pred,
290                        const SCEV *LHS, const SCEV *RHS);
291 
292   /// Implementation of the SCEVPredicate interface
293   bool implies(const SCEVPredicate *N) const override;
294   void print(raw_ostream &OS, unsigned Depth = 0) const override;
295   bool isAlwaysTrue() const override;
296 
297   ICmpInst::Predicate getPredicate() const { return Pred; }
298 
299   /// Returns the left hand side of the predicate.
300   const SCEV *getLHS() const { return LHS; }
301 
302   /// Returns the right hand side of the predicate.
303   const SCEV *getRHS() const { return RHS; }
304 
305   /// Methods for support type inquiry through isa, cast, and dyn_cast:
306   static bool classof(const SCEVPredicate *P) {
307     return P->getKind() == P_Compare;
308   }
309 };
310 
311 /// This class represents an assumption made on an AddRec expression. Given an
312 /// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
313 /// flags (defined below) in the first X iterations of the loop, where X is a
314 /// SCEV expression returned by getPredicatedBackedgeTakenCount).
315 ///
316 /// Note that this does not imply that X is equal to the backedge taken
317 /// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
318 /// predicated backedge taken count of X, we only guarantee that {0,+,1} has
319 /// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
320 /// have more than X iterations.
321 class SCEVWrapPredicate final : public SCEVPredicate {
322 public:
323   /// Similar to SCEV::NoWrapFlags, but with slightly different semantics
324   /// for FlagNUSW. The increment is considered to be signed, and a + b
325   /// (where b is the increment) is considered to wrap if:
326   ///    zext(a + b) != zext(a) + sext(b)
327   ///
328   /// If Signed is a function that takes an n-bit tuple and maps to the
329   /// integer domain as the tuples value interpreted as twos complement,
330   /// and Unsigned a function that takes an n-bit tuple and maps to the
331   /// integer domain as the base two value of input tuple, then a + b
332   /// has IncrementNUSW iff:
333   ///
334   /// 0 <= Unsigned(a) + Signed(b) < 2^n
335   ///
336   /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
337   ///
338   /// Note that the IncrementNUSW flag is not commutative: if base + inc
339   /// has IncrementNUSW, then inc + base doesn't neccessarily have this
340   /// property. The reason for this is that this is used for sign/zero
341   /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
342   /// assumed. A {base,+,inc} expression is already non-commutative with
343   /// regards to base and inc, since it is interpreted as:
344   ///     (((base + inc) + inc) + inc) ...
345   enum IncrementWrapFlags {
346     IncrementAnyWrap = 0,     // No guarantee.
347     IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
348     IncrementNSSW = (1 << 1), // No signed with signed increment wrap
349                               // (equivalent with SCEV::NSW)
350     IncrementNoWrapMask = (1 << 2) - 1
351   };
352 
353   /// Convenient IncrementWrapFlags manipulation methods.
354   [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
355   clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
356              SCEVWrapPredicate::IncrementWrapFlags OffFlags) {
357     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
358     assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
359            "Invalid flags value!");
360     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
361   }
362 
363   [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
364   maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) {
365     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
366     assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
367 
368     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
369   }
370 
371   [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
372   setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
373            SCEVWrapPredicate::IncrementWrapFlags OnFlags) {
374     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
375     assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
376            "Invalid flags value!");
377 
378     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
379   }
380 
381   /// Returns the set of SCEVWrapPredicate no wrap flags implied by a
382   /// SCEVAddRecExpr.
383   [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
384   getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);
385 
386 private:
387   const SCEVAddRecExpr *AR;
388   IncrementWrapFlags Flags;
389 
390 public:
391   explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
392                              const SCEVAddRecExpr *AR,
393                              IncrementWrapFlags Flags);
394 
395   /// Returns the set assumed no overflow flags.
396   IncrementWrapFlags getFlags() const { return Flags; }
397 
398   /// Implementation of the SCEVPredicate interface
399   const SCEVAddRecExpr *getExpr() const;
400   bool implies(const SCEVPredicate *N) const override;
401   void print(raw_ostream &OS, unsigned Depth = 0) const override;
402   bool isAlwaysTrue() const override;
403 
404   /// Methods for support type inquiry through isa, cast, and dyn_cast:
405   static bool classof(const SCEVPredicate *P) {
406     return P->getKind() == P_Wrap;
407   }
408 };
409 
410 /// This class represents a composition of other SCEV predicates, and is the
411 /// class that most clients will interact with.  This is equivalent to a
412 /// logical "AND" of all the predicates in the union.
413 ///
414 /// NB! Unlike other SCEVPredicate sub-classes this class does not live in the
415 /// ScalarEvolution::Preds folding set.  This is why the \c add function is sound.
416 class SCEVUnionPredicate final : public SCEVPredicate {
417 private:
418   using PredicateMap =
419       DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>;
420 
421   /// Vector with references to all predicates in this union.
422   SmallVector<const SCEVPredicate *, 16> Preds;
423 
424   /// Adds a predicate to this union.
425   void add(const SCEVPredicate *N);
426 
427 public:
428   SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds);
429 
430   const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
431     return Preds;
432   }
433 
434   /// Implementation of the SCEVPredicate interface
435   bool isAlwaysTrue() const override;
436   bool implies(const SCEVPredicate *N) const override;
437   void print(raw_ostream &OS, unsigned Depth) const override;
438 
439   /// We estimate the complexity of a union predicate as the size number of
440   /// predicates in the union.
441   unsigned getComplexity() const override { return Preds.size(); }
442 
443   /// Methods for support type inquiry through isa, cast, and dyn_cast:
444   static bool classof(const SCEVPredicate *P) {
445     return P->getKind() == P_Union;
446   }
447 };
448 
449 /// The main scalar evolution driver. Because client code (intentionally)
450 /// can't do much with the SCEV objects directly, they must ask this class
451 /// for services.
452 class ScalarEvolution {
453   friend class ScalarEvolutionsTest;
454 
455 public:
456   /// An enum describing the relationship between a SCEV and a loop.
457   enum LoopDisposition {
458     LoopVariant,   ///< The SCEV is loop-variant (unknown).
459     LoopInvariant, ///< The SCEV is loop-invariant.
460     LoopComputable ///< The SCEV varies predictably with the loop.
461   };
462 
463   /// An enum describing the relationship between a SCEV and a basic block.
464   enum BlockDisposition {
465     DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
466     DominatesBlock,        ///< The SCEV dominates the block.
467     ProperlyDominatesBlock ///< The SCEV properly dominates the block.
468   };
469 
470   /// Convenient NoWrapFlags manipulation that hides enum casts and is
471   /// visible in the ScalarEvolution name space.
472   [[nodiscard]] static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags,
473                                                    int Mask) {
474     return (SCEV::NoWrapFlags)(Flags & Mask);
475   }
476   [[nodiscard]] static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
477                                                   SCEV::NoWrapFlags OnFlags) {
478     return (SCEV::NoWrapFlags)(Flags | OnFlags);
479   }
480   [[nodiscard]] static SCEV::NoWrapFlags
481   clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
482     return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
483   }
484   [[nodiscard]] static bool hasFlags(SCEV::NoWrapFlags Flags,
485                                      SCEV::NoWrapFlags TestFlags) {
486     return TestFlags == maskFlags(Flags, TestFlags);
487   };
488 
489   ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
490                   DominatorTree &DT, LoopInfo &LI);
491   ScalarEvolution(ScalarEvolution &&Arg);
492   ~ScalarEvolution();
493 
494   LLVMContext &getContext() const { return F.getContext(); }
495 
496   /// Test if values of the given type are analyzable within the SCEV
497   /// framework. This primarily includes integer types, and it can optionally
498   /// include pointer types if the ScalarEvolution class has access to
499   /// target-specific information.
500   bool isSCEVable(Type *Ty) const;
501 
502   /// Return the size in bits of the specified type, for which isSCEVable must
503   /// return true.
504   uint64_t getTypeSizeInBits(Type *Ty) const;
505 
506   /// Return a type with the same bitwidth as the given type and which
507   /// represents how SCEV will treat the given type, for which isSCEVable must
508   /// return true. For pointer types, this is the pointer-sized integer type.
509   Type *getEffectiveSCEVType(Type *Ty) const;
510 
511   // Returns a wider type among {Ty1, Ty2}.
512   Type *getWiderType(Type *Ty1, Type *Ty2) const;
513 
514   /// Return true if there exists a point in the program at which both
515   /// A and B could be operands to the same instruction.
516   /// SCEV expressions are generally assumed to correspond to instructions
517   /// which could exists in IR.  In general, this requires that there exists
518   /// a use point in the program where all operands dominate the use.
519   ///
520   /// Example:
521   /// loop {
522   ///   if
523   ///     loop { v1 = load @global1; }
524   ///   else
525   ///     loop { v2 = load @global2; }
526   /// }
527   /// No SCEV with operand V1, and v2 can exist in this program.
528   bool instructionCouldExistWithOperands(const SCEV *A, const SCEV *B);
529 
530   /// Return true if the SCEV is a scAddRecExpr or it contains
531   /// scAddRecExpr. The result will be cached in HasRecMap.
532   bool containsAddRecurrence(const SCEV *S);
533 
534   /// Is operation \p BinOp between \p LHS and \p RHS provably does not have
535   /// a signed/unsigned overflow (\p Signed)? If \p CtxI is specified, the
536   /// no-overflow fact should be true in the context of this instruction.
537   bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
538                        const SCEV *LHS, const SCEV *RHS,
539                        const Instruction *CtxI = nullptr);
540 
541   /// Parse NSW/NUW flags from add/sub/mul IR binary operation \p Op into
542   /// SCEV no-wrap flags, and deduce flag[s] that aren't known yet.
543   /// Does not mutate the original instruction. Returns std::nullopt if it could
544   /// not deduce more precise flags than the instruction already has, otherwise
545   /// returns proven flags.
546   std::optional<SCEV::NoWrapFlags>
547   getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator *OBO);
548 
549   /// Notify this ScalarEvolution that \p User directly uses SCEVs in \p Ops.
550   void registerUser(const SCEV *User, ArrayRef<const SCEV *> Ops);
551 
552   /// Return true if the SCEV expression contains an undef value.
553   bool containsUndefs(const SCEV *S) const;
554 
555   /// Return true if the SCEV expression contains a Value that has been
556   /// optimised out and is now a nullptr.
557   bool containsErasedValue(const SCEV *S) const;
558 
559   /// Return a SCEV expression for the full generality of the specified
560   /// expression.
561   const SCEV *getSCEV(Value *V);
562 
563   /// Return an existing SCEV for V if there is one, otherwise return nullptr.
564   const SCEV *getExistingSCEV(Value *V);
565 
566   const SCEV *getConstant(ConstantInt *V);
567   const SCEV *getConstant(const APInt &Val);
568   const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
569   const SCEV *getLosslessPtrToIntExpr(const SCEV *Op, unsigned Depth = 0);
570   const SCEV *getPtrToIntExpr(const SCEV *Op, Type *Ty);
571   const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
572   const SCEV *getVScale(Type *Ty);
573   const SCEV *getElementCount(Type *Ty, ElementCount EC);
574   const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
575   const SCEV *getZeroExtendExprImpl(const SCEV *Op, Type *Ty,
576                                     unsigned Depth = 0);
577   const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
578   const SCEV *getSignExtendExprImpl(const SCEV *Op, Type *Ty,
579                                     unsigned Depth = 0);
580   const SCEV *getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty);
581   const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
582   const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
583                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
584                          unsigned Depth = 0);
585   const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
586                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
587                          unsigned Depth = 0) {
588     SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
589     return getAddExpr(Ops, Flags, Depth);
590   }
591   const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
592                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
593                          unsigned Depth = 0) {
594     SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
595     return getAddExpr(Ops, Flags, Depth);
596   }
597   const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
598                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
599                          unsigned Depth = 0);
600   const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
601                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
602                          unsigned Depth = 0) {
603     SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
604     return getMulExpr(Ops, Flags, Depth);
605   }
606   const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
607                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
608                          unsigned Depth = 0) {
609     SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
610     return getMulExpr(Ops, Flags, Depth);
611   }
612   const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
613   const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
614   const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS);
615   const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L,
616                             SCEV::NoWrapFlags Flags);
617   const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
618                             const Loop *L, SCEV::NoWrapFlags Flags);
619   const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
620                             const Loop *L, SCEV::NoWrapFlags Flags) {
621     SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
622     return getAddRecExpr(NewOp, L, Flags);
623   }
624 
625   /// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some
626   /// Predicates. If successful return these <AddRecExpr, Predicates>;
627   /// The function is intended to be called from PSCEV (the caller will decide
628   /// whether to actually add the predicates and carry out the rewrites).
629   std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
630   createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI);
631 
632   /// Returns an expression for a GEP
633   ///
634   /// \p GEP The GEP. The indices contained in the GEP itself are ignored,
635   /// instead we use IndexExprs.
636   /// \p IndexExprs The expressions for the indices.
637   const SCEV *getGEPExpr(GEPOperator *GEP,
638                          const SmallVectorImpl<const SCEV *> &IndexExprs);
639   const SCEV *getAbsExpr(const SCEV *Op, bool IsNSW);
640   const SCEV *getMinMaxExpr(SCEVTypes Kind,
641                             SmallVectorImpl<const SCEV *> &Operands);
642   const SCEV *getSequentialMinMaxExpr(SCEVTypes Kind,
643                                       SmallVectorImpl<const SCEV *> &Operands);
644   const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
645   const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
646   const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
647   const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
648   const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
649   const SCEV *getSMinExpr(SmallVectorImpl<const SCEV *> &Operands);
650   const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS,
651                           bool Sequential = false);
652   const SCEV *getUMinExpr(SmallVectorImpl<const SCEV *> &Operands,
653                           bool Sequential = false);
654   const SCEV *getUnknown(Value *V);
655   const SCEV *getCouldNotCompute();
656 
657   /// Return a SCEV for the constant 0 of a specific type.
658   const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
659 
660   /// Return a SCEV for the constant 1 of a specific type.
661   const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
662 
663   /// Return a SCEV for the constant \p Power of two.
664   const SCEV *getPowerOfTwo(Type *Ty, unsigned Power) {
665     assert(Power < getTypeSizeInBits(Ty) && "Power out of range");
666     return getConstant(APInt::getOneBitSet(getTypeSizeInBits(Ty), Power));
667   }
668 
669   /// Return a SCEV for the constant -1 of a specific type.
670   const SCEV *getMinusOne(Type *Ty) {
671     return getConstant(Ty, -1, /*isSigned=*/true);
672   }
673 
674   /// Return an expression for a TypeSize.
675   const SCEV *getSizeOfExpr(Type *IntTy, TypeSize Size);
676 
677   /// Return an expression for the alloc size of AllocTy that is type IntTy
678   const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
679 
680   /// Return an expression for the store size of StoreTy that is type IntTy
681   const SCEV *getStoreSizeOfExpr(Type *IntTy, Type *StoreTy);
682 
683   /// Return an expression for offsetof on the given field with type IntTy
684   const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
685 
686   /// Return the SCEV object corresponding to -V.
687   const SCEV *getNegativeSCEV(const SCEV *V,
688                               SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
689 
690   /// Return the SCEV object corresponding to ~V.
691   const SCEV *getNotSCEV(const SCEV *V);
692 
693   /// Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
694   ///
695   /// If the LHS and RHS are pointers which don't share a common base
696   /// (according to getPointerBase()), this returns a SCEVCouldNotCompute.
697   /// To compute the difference between two unrelated pointers, you can
698   /// explicitly convert the arguments using getPtrToIntExpr(), for pointer
699   /// types that support it.
700   const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
701                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
702                            unsigned Depth = 0);
703 
704   /// Compute ceil(N / D). N and D are treated as unsigned values.
705   ///
706   /// Since SCEV doesn't have native ceiling division, this generates a
707   /// SCEV expression of the following form:
708   ///
709   /// umin(N, 1) + floor((N - umin(N, 1)) / D)
710   ///
711   /// A denominator of zero or poison is handled the same way as getUDivExpr().
712   const SCEV *getUDivCeilSCEV(const SCEV *N, const SCEV *D);
713 
714   /// Return a SCEV corresponding to a conversion of the input value to the
715   /// specified type.  If the type must be extended, it is zero extended.
716   const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
717                                       unsigned Depth = 0);
718 
719   /// Return a SCEV corresponding to a conversion of the input value to the
720   /// specified type.  If the type must be extended, it is sign extended.
721   const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty,
722                                       unsigned Depth = 0);
723 
724   /// Return a SCEV corresponding to a conversion of the input value to the
725   /// specified type.  If the type must be extended, it is zero extended.  The
726   /// conversion must not be narrowing.
727   const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
728 
729   /// Return a SCEV corresponding to a conversion of the input value to the
730   /// specified type.  If the type must be extended, it is sign extended.  The
731   /// conversion must not be narrowing.
732   const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
733 
734   /// Return a SCEV corresponding to a conversion of the input value to the
735   /// specified type. If the type must be extended, it is extended with
736   /// unspecified bits. The conversion must not be narrowing.
737   const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
738 
739   /// Return a SCEV corresponding to a conversion of the input value to the
740   /// specified type.  The conversion must not be widening.
741   const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
742 
743   /// Promote the operands to the wider of the types using zero-extension, and
744   /// then perform a umax operation with them.
745   const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
746 
747   /// Promote the operands to the wider of the types using zero-extension, and
748   /// then perform a umin operation with them.
749   const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS,
750                                          bool Sequential = false);
751 
752   /// Promote the operands to the wider of the types using zero-extension, and
753   /// then perform a umin operation with them. N-ary function.
754   const SCEV *getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,
755                                          bool Sequential = false);
756 
757   /// Transitively follow the chain of pointer-type operands until reaching a
758   /// SCEV that does not have a single pointer operand. This returns a
759   /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
760   /// cases do exist.
761   const SCEV *getPointerBase(const SCEV *V);
762 
763   /// Compute an expression equivalent to S - getPointerBase(S).
764   const SCEV *removePointerBase(const SCEV *S);
765 
766   /// Return a SCEV expression for the specified value at the specified scope
767   /// in the program.  The L value specifies a loop nest to evaluate the
768   /// expression at, where null is the top-level or a specified loop is
769   /// immediately inside of the loop.
770   ///
771   /// This method can be used to compute the exit value for a variable defined
772   /// in a loop by querying what the value will hold in the parent loop.
773   ///
774   /// In the case that a relevant loop exit value cannot be computed, the
775   /// original value V is returned.
776   const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
777 
778   /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
779   const SCEV *getSCEVAtScope(Value *V, const Loop *L);
780 
781   /// Test whether entry to the loop is protected by a conditional between LHS
782   /// and RHS.  This is used to help avoid max expressions in loop trip
783   /// counts, and to eliminate casts.
784   bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
785                                 const SCEV *LHS, const SCEV *RHS);
786 
787   /// Test whether entry to the basic block is protected by a conditional
788   /// between LHS and RHS.
789   bool isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
790                                       ICmpInst::Predicate Pred, const SCEV *LHS,
791                                       const SCEV *RHS);
792 
793   /// Test whether the backedge of the loop is protected by a conditional
794   /// between LHS and RHS.  This is used to eliminate casts.
795   bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
796                                    const SCEV *LHS, const SCEV *RHS);
797 
798   /// A version of getTripCountFromExitCount below which always picks an
799   /// evaluation type which can not result in overflow.
800   const SCEV *getTripCountFromExitCount(const SCEV *ExitCount);
801 
802   /// Convert from an "exit count" (i.e. "backedge taken count") to a "trip
803   /// count".  A "trip count" is the number of times the header of the loop
804   /// will execute if an exit is taken after the specified number of backedges
805   /// have been taken.  (e.g. TripCount = ExitCount + 1).  Note that the
806   /// expression can overflow if ExitCount = UINT_MAX.  If EvalTy is not wide
807   /// enough to hold the result without overflow, result unsigned wraps with
808   /// 2s-complement semantics.  ex: EC = 255 (i8), TC = 0 (i8)
809   const SCEV *getTripCountFromExitCount(const SCEV *ExitCount, Type *EvalTy,
810                                         const Loop *L);
811 
812   /// Returns the exact trip count of the loop if we can compute it, and
813   /// the result is a small constant.  '0' is used to represent an unknown
814   /// or non-constant trip count.  Note that a trip count is simply one more
815   /// than the backedge taken count for the loop.
816   unsigned getSmallConstantTripCount(const Loop *L);
817 
818   /// Return the exact trip count for this loop if we exit through ExitingBlock.
819   /// '0' is used to represent an unknown or non-constant trip count.  Note
820   /// that a trip count is simply one more than the backedge taken count for
821   /// the same exit.
822   /// This "trip count" assumes that control exits via ExitingBlock. More
823   /// precisely, it is the number of times that control will reach ExitingBlock
824   /// before taking the branch. For loops with multiple exits, it may not be
825   /// the number times that the loop header executes if the loop exits
826   /// prematurely via another branch.
827   unsigned getSmallConstantTripCount(const Loop *L,
828                                      const BasicBlock *ExitingBlock);
829 
830   /// Returns the upper bound of the loop trip count as a normal unsigned
831   /// value.
832   /// Returns 0 if the trip count is unknown or not constant.
833   unsigned getSmallConstantMaxTripCount(const Loop *L);
834 
835   /// Returns the largest constant divisor of the trip count as a normal
836   /// unsigned value, if possible. This means that the actual trip count is
837   /// always a multiple of the returned value. Returns 1 if the trip count is
838   /// unknown or not guaranteed to be the multiple of a constant., Will also
839   /// return 1 if the trip count is very large (>= 2^32).
840   /// Note that the argument is an exit count for loop L, NOT a trip count.
841   unsigned getSmallConstantTripMultiple(const Loop *L,
842                                         const SCEV *ExitCount);
843 
844   /// Returns the largest constant divisor of the trip count of the
845   /// loop.  Will return 1 if no trip count could be computed, or if a
846   /// divisor could not be found.
847   unsigned getSmallConstantTripMultiple(const Loop *L);
848 
849   /// Returns the largest constant divisor of the trip count of this loop as a
850   /// normal unsigned value, if possible. This means that the actual trip
851   /// count is always a multiple of the returned value (don't forget the trip
852   /// count could very well be zero as well!). As explained in the comments
853   /// for getSmallConstantTripCount, this assumes that control exits the loop
854   /// via ExitingBlock.
855   unsigned getSmallConstantTripMultiple(const Loop *L,
856                                         const BasicBlock *ExitingBlock);
857 
858   /// The terms "backedge taken count" and "exit count" are used
859   /// interchangeably to refer to the number of times the backedge of a loop
860   /// has executed before the loop is exited.
861   enum ExitCountKind {
862     /// An expression exactly describing the number of times the backedge has
863     /// executed when a loop is exited.
864     Exact,
865     /// A constant which provides an upper bound on the exact trip count.
866     ConstantMaximum,
867     /// An expression which provides an upper bound on the exact trip count.
868     SymbolicMaximum,
869   };
870 
871   /// Return the number of times the backedge executes before the given exit
872   /// would be taken; if not exactly computable, return SCEVCouldNotCompute.
873   /// For a single exit loop, this value is equivelent to the result of
874   /// getBackedgeTakenCount.  The loop is guaranteed to exit (via *some* exit)
875   /// before the backedge is executed (ExitCount + 1) times.  Note that there
876   /// is no guarantee about *which* exit is taken on the exiting iteration.
877   const SCEV *getExitCount(const Loop *L, const BasicBlock *ExitingBlock,
878                            ExitCountKind Kind = Exact);
879 
880   /// If the specified loop has a predictable backedge-taken count, return it,
881   /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is
882   /// the number of times the loop header will be branched to from within the
883   /// loop, assuming there are no abnormal exists like exception throws. This is
884   /// one less than the trip count of the loop, since it doesn't count the first
885   /// iteration, when the header is branched to from outside the loop.
886   ///
887   /// Note that it is not valid to call this method on a loop without a
888   /// loop-invariant backedge-taken count (see
889   /// hasLoopInvariantBackedgeTakenCount).
890   const SCEV *getBackedgeTakenCount(const Loop *L, ExitCountKind Kind = Exact);
891 
892   /// Similar to getBackedgeTakenCount, except it will add a set of
893   /// SCEV predicates to Predicates that are required to be true in order for
894   /// the answer to be correct. Predicates can be checked with run-time
895   /// checks and can be used to perform loop versioning.
896   const SCEV *getPredicatedBackedgeTakenCount(const Loop *L,
897                                               SmallVector<const SCEVPredicate *, 4> &Predicates);
898 
899   /// When successful, this returns a SCEVConstant that is greater than or equal
900   /// to (i.e. a "conservative over-approximation") of the value returend by
901   /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the
902   /// SCEVCouldNotCompute object.
903   const SCEV *getConstantMaxBackedgeTakenCount(const Loop *L) {
904     return getBackedgeTakenCount(L, ConstantMaximum);
905   }
906 
907   /// When successful, this returns a SCEV that is greater than or equal
908   /// to (i.e. a "conservative over-approximation") of the value returend by
909   /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the
910   /// SCEVCouldNotCompute object.
911   const SCEV *getSymbolicMaxBackedgeTakenCount(const Loop *L) {
912     return getBackedgeTakenCount(L, SymbolicMaximum);
913   }
914 
915   /// Similar to getSymbolicMaxBackedgeTakenCount, except it will add a set of
916   /// SCEV predicates to Predicates that are required to be true in order for
917   /// the answer to be correct. Predicates can be checked with run-time
918   /// checks and can be used to perform loop versioning.
919   const SCEV *getPredicatedSymbolicMaxBackedgeTakenCount(
920       const Loop *L, SmallVector<const SCEVPredicate *, 4> &Predicates);
921 
922   /// Return true if the backedge taken count is either the value returned by
923   /// getConstantMaxBackedgeTakenCount or zero.
924   bool isBackedgeTakenCountMaxOrZero(const Loop *L);
925 
926   /// Return true if the specified loop has an analyzable loop-invariant
927   /// backedge-taken count.
928   bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
929 
930   // This method should be called by the client when it made any change that
931   // would invalidate SCEV's answers, and the client wants to remove all loop
932   // information held internally by ScalarEvolution. This is intended to be used
933   // when the alternative to forget a loop is too expensive (i.e. large loop
934   // bodies).
935   void forgetAllLoops();
936 
937   /// This method should be called by the client when it has changed a loop in
938   /// a way that may effect ScalarEvolution's ability to compute a trip count,
939   /// or if the loop is deleted.  This call is potentially expensive for large
940   /// loop bodies.
941   void forgetLoop(const Loop *L);
942 
943   // This method invokes forgetLoop for the outermost loop of the given loop
944   // \p L, making ScalarEvolution forget about all this subtree. This needs to
945   // be done whenever we make a transform that may affect the parameters of the
946   // outer loop, such as exit counts for branches.
947   void forgetTopmostLoop(const Loop *L);
948 
949   /// This method should be called by the client when it has changed a value
950   /// in a way that may effect its value, or which may disconnect it from a
951   /// def-use chain linking it to a loop.
952   void forgetValue(Value *V);
953 
954   /// Forget LCSSA phi node V of loop L to which a new predecessor was added,
955   /// such that it may no longer be trivial.
956   void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V);
957 
958   /// Called when the client has changed the disposition of values in
959   /// this loop.
960   ///
961   /// We don't have a way to invalidate per-loop dispositions. Clear and
962   /// recompute is simpler.
963   void forgetLoopDispositions();
964 
965   /// Called when the client has changed the disposition of values in
966   /// a loop or block.
967   ///
968   /// We don't have a way to invalidate per-loop/per-block dispositions. Clear
969   /// and recompute is simpler.
970   void forgetBlockAndLoopDispositions(Value *V = nullptr);
971 
972   /// Determine the minimum number of zero bits that S is guaranteed to end in
973   /// (at every loop iteration).  It is, at the same time, the minimum number
974   /// of times S is divisible by 2.  For example, given {4,+,8} it returns 2.
975   /// If S is guaranteed to be 0, it returns the bitwidth of S.
976   uint32_t getMinTrailingZeros(const SCEV *S);
977 
978   /// Returns the max constant multiple of S.
979   APInt getConstantMultiple(const SCEV *S);
980 
981   // Returns the max constant multiple of S. If S is exactly 0, return 1.
982   APInt getNonZeroConstantMultiple(const SCEV *S);
983 
984   /// Determine the unsigned range for a particular SCEV.
985   /// NOTE: This returns a copy of the reference returned by getRangeRef.
986   ConstantRange getUnsignedRange(const SCEV *S) {
987     return getRangeRef(S, HINT_RANGE_UNSIGNED);
988   }
989 
990   /// Determine the min of the unsigned range for a particular SCEV.
991   APInt getUnsignedRangeMin(const SCEV *S) {
992     return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMin();
993   }
994 
995   /// Determine the max of the unsigned range for a particular SCEV.
996   APInt getUnsignedRangeMax(const SCEV *S) {
997     return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMax();
998   }
999 
1000   /// Determine the signed range for a particular SCEV.
1001   /// NOTE: This returns a copy of the reference returned by getRangeRef.
1002   ConstantRange getSignedRange(const SCEV *S) {
1003     return getRangeRef(S, HINT_RANGE_SIGNED);
1004   }
1005 
1006   /// Determine the min of the signed range for a particular SCEV.
1007   APInt getSignedRangeMin(const SCEV *S) {
1008     return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMin();
1009   }
1010 
1011   /// Determine the max of the signed range for a particular SCEV.
1012   APInt getSignedRangeMax(const SCEV *S) {
1013     return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMax();
1014   }
1015 
1016   /// Test if the given expression is known to be negative.
1017   bool isKnownNegative(const SCEV *S);
1018 
1019   /// Test if the given expression is known to be positive.
1020   bool isKnownPositive(const SCEV *S);
1021 
1022   /// Test if the given expression is known to be non-negative.
1023   bool isKnownNonNegative(const SCEV *S);
1024 
1025   /// Test if the given expression is known to be non-positive.
1026   bool isKnownNonPositive(const SCEV *S);
1027 
1028   /// Test if the given expression is known to be non-zero.
1029   bool isKnownNonZero(const SCEV *S);
1030 
1031   /// Splits SCEV expression \p S into two SCEVs. One of them is obtained from
1032   /// \p S by substitution of all AddRec sub-expression related to loop \p L
1033   /// with initial value of that SCEV. The second is obtained from \p S by
1034   /// substitution of all AddRec sub-expressions related to loop \p L with post
1035   /// increment of this AddRec in the loop \p L. In both cases all other AddRec
1036   /// sub-expressions (not related to \p L) remain the same.
1037   /// If the \p S contains non-invariant unknown SCEV the function returns
1038   /// CouldNotCompute SCEV in both values of std::pair.
1039   /// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1
1040   /// the function returns pair:
1041   /// first = {0, +, 1}<L2>
1042   /// second = {1, +, 1}<L1> + {0, +, 1}<L2>
1043   /// We can see that for the first AddRec sub-expression it was replaced with
1044   /// 0 (initial value) for the first element and to {1, +, 1}<L1> (post
1045   /// increment value) for the second one. In both cases AddRec expression
1046   /// related to L2 remains the same.
1047   std::pair<const SCEV *, const SCEV *> SplitIntoInitAndPostInc(const Loop *L,
1048                                                                 const SCEV *S);
1049 
1050   /// We'd like to check the predicate on every iteration of the most dominated
1051   /// loop between loops used in LHS and RHS.
1052   /// To do this we use the following list of steps:
1053   /// 1. Collect set S all loops on which either LHS or RHS depend.
1054   /// 2. If S is non-empty
1055   /// a. Let PD be the element of S which is dominated by all other elements.
1056   /// b. Let E(LHS) be value of LHS on entry of PD.
1057   ///    To get E(LHS), we should just take LHS and replace all AddRecs that are
1058   ///    attached to PD on with their entry values.
1059   ///    Define E(RHS) in the same way.
1060   /// c. Let B(LHS) be value of L on backedge of PD.
1061   ///    To get B(LHS), we should just take LHS and replace all AddRecs that are
1062   ///    attached to PD on with their backedge values.
1063   ///    Define B(RHS) in the same way.
1064   /// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD,
1065   ///    so we can assert on that.
1066   /// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) &&
1067   ///                   isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS))
1068   bool isKnownViaInduction(ICmpInst::Predicate Pred, const SCEV *LHS,
1069                            const SCEV *RHS);
1070 
1071   /// Test if the given expression is known to satisfy the condition described
1072   /// by Pred, LHS, and RHS.
1073   bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
1074                         const SCEV *RHS);
1075 
1076   /// Check whether the condition described by Pred, LHS, and RHS is true or
1077   /// false. If we know it, return the evaluation of this condition. If neither
1078   /// is proved, return std::nullopt.
1079   std::optional<bool> evaluatePredicate(ICmpInst::Predicate Pred,
1080                                         const SCEV *LHS, const SCEV *RHS);
1081 
1082   /// Test if the given expression is known to satisfy the condition described
1083   /// by Pred, LHS, and RHS in the given Context.
1084   bool isKnownPredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
1085                           const SCEV *RHS, const Instruction *CtxI);
1086 
1087   /// Check whether the condition described by Pred, LHS, and RHS is true or
1088   /// false in the given \p Context. If we know it, return the evaluation of
1089   /// this condition. If neither is proved, return std::nullopt.
1090   std::optional<bool> evaluatePredicateAt(ICmpInst::Predicate Pred,
1091                                           const SCEV *LHS, const SCEV *RHS,
1092                                           const Instruction *CtxI);
1093 
1094   /// Test if the condition described by Pred, LHS, RHS is known to be true on
1095   /// every iteration of the loop of the recurrency LHS.
1096   bool isKnownOnEveryIteration(ICmpInst::Predicate Pred,
1097                                const SCEVAddRecExpr *LHS, const SCEV *RHS);
1098 
1099   /// Information about the number of loop iterations for which a loop exit's
1100   /// branch condition evaluates to the not-taken path.  This is a temporary
1101   /// pair of exact and max expressions that are eventually summarized in
1102   /// ExitNotTakenInfo and BackedgeTakenInfo.
1103   struct ExitLimit {
1104     const SCEV *ExactNotTaken; // The exit is not taken exactly this many times
1105     const SCEV *ConstantMaxNotTaken; // The exit is not taken at most this many
1106                                      // times
1107     const SCEV *SymbolicMaxNotTaken;
1108 
1109     // Not taken either exactly ConstantMaxNotTaken or zero times
1110     bool MaxOrZero = false;
1111 
1112     /// A set of predicate guards for this ExitLimit. The result is only valid
1113     /// if all of the predicates in \c Predicates evaluate to 'true' at
1114     /// run-time.
1115     SmallPtrSet<const SCEVPredicate *, 4> Predicates;
1116 
1117     void addPredicate(const SCEVPredicate *P) {
1118       assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!");
1119       Predicates.insert(P);
1120     }
1121 
1122     /// Construct either an exact exit limit from a constant, or an unknown
1123     /// one from a SCEVCouldNotCompute.  No other types of SCEVs are allowed
1124     /// as arguments and asserts enforce that internally.
1125     /*implicit*/ ExitLimit(const SCEV *E);
1126 
1127     ExitLimit(
1128         const SCEV *E, const SCEV *ConstantMaxNotTaken,
1129         const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
1130         ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList =
1131             std::nullopt);
1132 
1133     ExitLimit(const SCEV *E, const SCEV *ConstantMaxNotTaken,
1134               const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
1135               const SmallPtrSetImpl<const SCEVPredicate *> &PredSet);
1136 
1137     /// Test whether this ExitLimit contains any computed information, or
1138     /// whether it's all SCEVCouldNotCompute values.
1139     bool hasAnyInfo() const {
1140       return !isa<SCEVCouldNotCompute>(ExactNotTaken) ||
1141              !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken);
1142     }
1143 
1144     /// Test whether this ExitLimit contains all information.
1145     bool hasFullInfo() const {
1146       return !isa<SCEVCouldNotCompute>(ExactNotTaken);
1147     }
1148   };
1149 
1150   /// Compute the number of times the backedge of the specified loop will
1151   /// execute if its exit condition were a conditional branch of ExitCond.
1152   ///
1153   /// \p ControlsOnlyExit is true if ExitCond directly controls the only exit
1154   /// branch. In this case, we can assume that the loop exits only if the
1155   /// condition is true and can infer that failing to meet the condition prior
1156   /// to integer wraparound results in undefined behavior.
1157   ///
1158   /// If \p AllowPredicates is set, this call will try to use a minimal set of
1159   /// SCEV predicates in order to return an exact answer.
1160   ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond,
1161                                      bool ExitIfTrue, bool ControlsOnlyExit,
1162                                      bool AllowPredicates = false);
1163 
1164   /// A predicate is said to be monotonically increasing if may go from being
1165   /// false to being true as the loop iterates, but never the other way
1166   /// around.  A predicate is said to be monotonically decreasing if may go
1167   /// from being true to being false as the loop iterates, but never the other
1168   /// way around.
1169   enum MonotonicPredicateType {
1170     MonotonicallyIncreasing,
1171     MonotonicallyDecreasing
1172   };
1173 
1174   /// If, for all loop invariant X, the predicate "LHS `Pred` X" is
1175   /// monotonically increasing or decreasing, returns
1176   /// Some(MonotonicallyIncreasing) and Some(MonotonicallyDecreasing)
1177   /// respectively. If we could not prove either of these facts, returns
1178   /// std::nullopt.
1179   std::optional<MonotonicPredicateType>
1180   getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
1181                             ICmpInst::Predicate Pred);
1182 
1183   struct LoopInvariantPredicate {
1184     ICmpInst::Predicate Pred;
1185     const SCEV *LHS;
1186     const SCEV *RHS;
1187 
1188     LoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
1189                            const SCEV *RHS)
1190         : Pred(Pred), LHS(LHS), RHS(RHS) {}
1191   };
1192   /// If the result of the predicate LHS `Pred` RHS is loop invariant with
1193   /// respect to L, return a LoopInvariantPredicate with LHS and RHS being
1194   /// invariants, available at L's entry. Otherwise, return std::nullopt.
1195   std::optional<LoopInvariantPredicate>
1196   getLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
1197                             const SCEV *RHS, const Loop *L,
1198                             const Instruction *CtxI = nullptr);
1199 
1200   /// If the result of the predicate LHS `Pred` RHS is loop invariant with
1201   /// respect to L at given Context during at least first MaxIter iterations,
1202   /// return a LoopInvariantPredicate with LHS and RHS being invariants,
1203   /// available at L's entry. Otherwise, return std::nullopt. The predicate
1204   /// should be the loop's exit condition.
1205   std::optional<LoopInvariantPredicate>
1206   getLoopInvariantExitCondDuringFirstIterations(ICmpInst::Predicate Pred,
1207                                                 const SCEV *LHS,
1208                                                 const SCEV *RHS, const Loop *L,
1209                                                 const Instruction *CtxI,
1210                                                 const SCEV *MaxIter);
1211 
1212   std::optional<LoopInvariantPredicate>
1213   getLoopInvariantExitCondDuringFirstIterationsImpl(
1214       ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
1215       const Instruction *CtxI, const SCEV *MaxIter);
1216 
1217   /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
1218   /// iff any changes were made. If the operands are provably equal or
1219   /// unequal, LHS and RHS are set to the same value and Pred is set to either
1220   /// ICMP_EQ or ICMP_NE.
1221   bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, const SCEV *&LHS,
1222                             const SCEV *&RHS, unsigned Depth = 0);
1223 
1224   /// Return the "disposition" of the given SCEV with respect to the given
1225   /// loop.
1226   LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
1227 
1228   /// Return true if the value of the given SCEV is unchanging in the
1229   /// specified loop.
1230   bool isLoopInvariant(const SCEV *S, const Loop *L);
1231 
1232   /// Determine if the SCEV can be evaluated at loop's entry. It is true if it
1233   /// doesn't depend on a SCEVUnknown of an instruction which is dominated by
1234   /// the header of loop L.
1235   bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L);
1236 
1237   /// Return true if the given SCEV changes value in a known way in the
1238   /// specified loop.  This property being true implies that the value is
1239   /// variant in the loop AND that we can emit an expression to compute the
1240   /// value of the expression at any particular loop iteration.
1241   bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
1242 
1243   /// Return the "disposition" of the given SCEV with respect to the given
1244   /// block.
1245   BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
1246 
1247   /// Return true if elements that makes up the given SCEV dominate the
1248   /// specified basic block.
1249   bool dominates(const SCEV *S, const BasicBlock *BB);
1250 
1251   /// Return true if elements that makes up the given SCEV properly dominate
1252   /// the specified basic block.
1253   bool properlyDominates(const SCEV *S, const BasicBlock *BB);
1254 
1255   /// Test whether the given SCEV has Op as a direct or indirect operand.
1256   bool hasOperand(const SCEV *S, const SCEV *Op) const;
1257 
1258   /// Return the size of an element read or written by Inst.
1259   const SCEV *getElementSize(Instruction *Inst);
1260 
1261   void print(raw_ostream &OS) const;
1262   void verify() const;
1263   bool invalidate(Function &F, const PreservedAnalyses &PA,
1264                   FunctionAnalysisManager::Invalidator &Inv);
1265 
1266   /// Return the DataLayout associated with the module this SCEV instance is
1267   /// operating on.
1268   const DataLayout &getDataLayout() const { return DL; }
1269 
1270   const SCEVPredicate *getEqualPredicate(const SCEV *LHS, const SCEV *RHS);
1271   const SCEVPredicate *getComparePredicate(ICmpInst::Predicate Pred,
1272                                            const SCEV *LHS, const SCEV *RHS);
1273 
1274   const SCEVPredicate *
1275   getWrapPredicate(const SCEVAddRecExpr *AR,
1276                    SCEVWrapPredicate::IncrementWrapFlags AddedFlags);
1277 
1278   /// Re-writes the SCEV according to the Predicates in \p A.
1279   const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
1280                                     const SCEVPredicate &A);
1281   /// Tries to convert the \p S expression to an AddRec expression,
1282   /// adding additional predicates to \p Preds as required.
1283   const SCEVAddRecExpr *convertSCEVToAddRecWithPredicates(
1284       const SCEV *S, const Loop *L,
1285       SmallPtrSetImpl<const SCEVPredicate *> &Preds);
1286 
1287   /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a
1288   /// constant, and std::nullopt if it isn't.
1289   ///
1290   /// This is intended to be a cheaper version of getMinusSCEV.  We can be
1291   /// frugal here since we just bail out of actually constructing and
1292   /// canonicalizing an expression in the cases where the result isn't going
1293   /// to be a constant.
1294   std::optional<APInt> computeConstantDifference(const SCEV *LHS,
1295                                                  const SCEV *RHS);
1296 
1297   /// Update no-wrap flags of an AddRec. This may drop the cached info about
1298   /// this AddRec (such as range info) in case if new flags may potentially
1299   /// sharpen it.
1300   void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags);
1301 
1302   class LoopGuards {
1303     DenseMap<const SCEV *, const SCEV *> RewriteMap;
1304     bool PreserveNUW = false;
1305     bool PreserveNSW = false;
1306     ScalarEvolution &SE;
1307 
1308     LoopGuards(ScalarEvolution &SE) : SE(SE) {}
1309 
1310   public:
1311     /// Collect rewrite map for loop guards for loop \p L, together with flags
1312     /// indicating if NUW and NSW can be preserved during rewriting.
1313     static LoopGuards collect(const Loop *L, ScalarEvolution &SE);
1314 
1315     /// Try to apply the collected loop guards to \p Expr.
1316     const SCEV *rewrite(const SCEV *Expr) const;
1317   };
1318 
1319   /// Try to apply information from loop guards for \p L to \p Expr.
1320   const SCEV *applyLoopGuards(const SCEV *Expr, const Loop *L);
1321   const SCEV *applyLoopGuards(const SCEV *Expr, const LoopGuards &Guards);
1322 
1323   /// Return true if the loop has no abnormal exits. That is, if the loop
1324   /// is not infinite, it must exit through an explicit edge in the CFG.
1325   /// (As opposed to either a) throwing out of the function or b) entering a
1326   /// well defined infinite loop in some callee.)
1327   bool loopHasNoAbnormalExits(const Loop *L) {
1328     return getLoopProperties(L).HasNoAbnormalExits;
1329   }
1330 
1331   /// Return true if this loop is finite by assumption.  That is,
1332   /// to be infinite, it must also be undefined.
1333   bool loopIsFiniteByAssumption(const Loop *L);
1334 
1335   /// Return the set of Values that, if poison, will definitively result in S
1336   /// being poison as well. The returned set may be incomplete, i.e. there can
1337   /// be additional Values that also result in S being poison.
1338   void getPoisonGeneratingValues(SmallPtrSetImpl<const Value *> &Result,
1339                                  const SCEV *S);
1340 
1341   /// Check whether it is poison-safe to represent the expression S using the
1342   /// instruction I. If such a replacement is performed, the poison flags of
1343   /// instructions in DropPoisonGeneratingInsts must be dropped.
1344   bool canReuseInstruction(
1345       const SCEV *S, Instruction *I,
1346       SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts);
1347 
1348   class FoldID {
1349     const SCEV *Op = nullptr;
1350     const Type *Ty = nullptr;
1351     unsigned short C;
1352 
1353   public:
1354     FoldID(SCEVTypes C, const SCEV *Op, const Type *Ty) : Op(Op), Ty(Ty), C(C) {
1355       assert(Op);
1356       assert(Ty);
1357     }
1358 
1359     FoldID(unsigned short C) : C(C) {}
1360 
1361     unsigned computeHash() const {
1362       return detail::combineHashValue(
1363           C, detail::combineHashValue(reinterpret_cast<uintptr_t>(Op),
1364                                       reinterpret_cast<uintptr_t>(Ty)));
1365     }
1366 
1367     bool operator==(const FoldID &RHS) const {
1368       return std::tie(Op, Ty, C) == std::tie(RHS.Op, RHS.Ty, RHS.C);
1369     }
1370   };
1371 
1372 private:
1373   /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
1374   /// Value is deleted.
1375   class SCEVCallbackVH final : public CallbackVH {
1376     ScalarEvolution *SE;
1377 
1378     void deleted() override;
1379     void allUsesReplacedWith(Value *New) override;
1380 
1381   public:
1382     SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
1383   };
1384 
1385   friend class SCEVCallbackVH;
1386   friend class SCEVExpander;
1387   friend class SCEVUnknown;
1388 
1389   /// The function we are analyzing.
1390   Function &F;
1391 
1392   /// Data layout of the module.
1393   const DataLayout &DL;
1394 
1395   /// Does the module have any calls to the llvm.experimental.guard intrinsic
1396   /// at all?  If this is false, we avoid doing work that will only help if
1397   /// thare are guards present in the IR.
1398   bool HasGuards;
1399 
1400   /// The target library information for the target we are targeting.
1401   TargetLibraryInfo &TLI;
1402 
1403   /// The tracker for \@llvm.assume intrinsics in this function.
1404   AssumptionCache &AC;
1405 
1406   /// The dominator tree.
1407   DominatorTree &DT;
1408 
1409   /// The loop information for the function we are currently analyzing.
1410   LoopInfo &LI;
1411 
1412   /// This SCEV is used to represent unknown trip counts and things.
1413   std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
1414 
1415   /// The type for HasRecMap.
1416   using HasRecMapType = DenseMap<const SCEV *, bool>;
1417 
1418   /// This is a cache to record whether a SCEV contains any scAddRecExpr.
1419   HasRecMapType HasRecMap;
1420 
1421   /// The type for ExprValueMap.
1422   using ValueSetVector = SmallSetVector<Value *, 4>;
1423   using ExprValueMapType = DenseMap<const SCEV *, ValueSetVector>;
1424 
1425   /// ExprValueMap -- This map records the original values from which
1426   /// the SCEV expr is generated from.
1427   ExprValueMapType ExprValueMap;
1428 
1429   /// The type for ValueExprMap.
1430   using ValueExprMapType =
1431       DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *>>;
1432 
1433   /// This is a cache of the values we have analyzed so far.
1434   ValueExprMapType ValueExprMap;
1435 
1436   /// This is a cache for expressions that got folded to a different existing
1437   /// SCEV.
1438   DenseMap<FoldID, const SCEV *> FoldCache;
1439   DenseMap<const SCEV *, SmallVector<FoldID, 2>> FoldCacheUser;
1440 
1441   /// Mark predicate values currently being processed by isImpliedCond.
1442   SmallPtrSet<const Value *, 6> PendingLoopPredicates;
1443 
1444   /// Mark SCEVUnknown Phis currently being processed by getRangeRef.
1445   SmallPtrSet<const PHINode *, 6> PendingPhiRanges;
1446 
1447   /// Mark SCEVUnknown Phis currently being processed by getRangeRefIter.
1448   SmallPtrSet<const PHINode *, 6> PendingPhiRangesIter;
1449 
1450   // Mark SCEVUnknown Phis currently being processed by isImpliedViaMerge.
1451   SmallPtrSet<const PHINode *, 6> PendingMerges;
1452 
1453   /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
1454   /// conditions dominating the backedge of a loop.
1455   bool WalkingBEDominatingConds = false;
1456 
1457   /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
1458   /// predicate by splitting it into a set of independent predicates.
1459   bool ProvingSplitPredicate = false;
1460 
1461   /// Memoized values for the getConstantMultiple
1462   DenseMap<const SCEV *, APInt> ConstantMultipleCache;
1463 
1464   /// Return the Value set from which the SCEV expr is generated.
1465   ArrayRef<Value *> getSCEVValues(const SCEV *S);
1466 
1467   /// Private helper method for the getConstantMultiple method.
1468   APInt getConstantMultipleImpl(const SCEV *S);
1469 
1470   /// Information about the number of times a particular loop exit may be
1471   /// reached before exiting the loop.
1472   struct ExitNotTakenInfo {
1473     PoisoningVH<BasicBlock> ExitingBlock;
1474     const SCEV *ExactNotTaken;
1475     const SCEV *ConstantMaxNotTaken;
1476     const SCEV *SymbolicMaxNotTaken;
1477     SmallPtrSet<const SCEVPredicate *, 4> Predicates;
1478 
1479     explicit ExitNotTakenInfo(
1480         PoisoningVH<BasicBlock> ExitingBlock, const SCEV *ExactNotTaken,
1481         const SCEV *ConstantMaxNotTaken, const SCEV *SymbolicMaxNotTaken,
1482         const SmallPtrSet<const SCEVPredicate *, 4> &Predicates)
1483         : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken),
1484           ConstantMaxNotTaken(ConstantMaxNotTaken),
1485           SymbolicMaxNotTaken(SymbolicMaxNotTaken), Predicates(Predicates) {}
1486 
1487     bool hasAlwaysTruePredicate() const {
1488       return Predicates.empty();
1489     }
1490   };
1491 
1492   /// Information about the backedge-taken count of a loop. This currently
1493   /// includes an exact count and a maximum count.
1494   ///
1495   class BackedgeTakenInfo {
1496     friend class ScalarEvolution;
1497 
1498     /// A list of computable exits and their not-taken counts.  Loops almost
1499     /// never have more than one computable exit.
1500     SmallVector<ExitNotTakenInfo, 1> ExitNotTaken;
1501 
1502     /// Expression indicating the least constant maximum backedge-taken count of
1503     /// the loop that is known, or a SCEVCouldNotCompute. This expression is
1504     /// only valid if the redicates associated with all loop exits are true.
1505     const SCEV *ConstantMax = nullptr;
1506 
1507     /// Indicating if \c ExitNotTaken has an element for every exiting block in
1508     /// the loop.
1509     bool IsComplete = false;
1510 
1511     /// Expression indicating the least maximum backedge-taken count of the loop
1512     /// that is known, or a SCEVCouldNotCompute. Lazily computed on first query.
1513     const SCEV *SymbolicMax = nullptr;
1514 
1515     /// True iff the backedge is taken either exactly Max or zero times.
1516     bool MaxOrZero = false;
1517 
1518     bool isComplete() const { return IsComplete; }
1519     const SCEV *getConstantMax() const { return ConstantMax; }
1520 
1521   public:
1522     BackedgeTakenInfo() = default;
1523     BackedgeTakenInfo(BackedgeTakenInfo &&) = default;
1524     BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default;
1525 
1526     using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>;
1527 
1528     /// Initialize BackedgeTakenInfo from a list of exact exit counts.
1529     BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts, bool IsComplete,
1530                       const SCEV *ConstantMax, bool MaxOrZero);
1531 
1532     /// Test whether this BackedgeTakenInfo contains any computed information,
1533     /// or whether it's all SCEVCouldNotCompute values.
1534     bool hasAnyInfo() const {
1535       return !ExitNotTaken.empty() ||
1536              !isa<SCEVCouldNotCompute>(getConstantMax());
1537     }
1538 
1539     /// Test whether this BackedgeTakenInfo contains complete information.
1540     bool hasFullInfo() const { return isComplete(); }
1541 
1542     /// Return an expression indicating the exact *backedge-taken*
1543     /// count of the loop if it is known or SCEVCouldNotCompute
1544     /// otherwise.  If execution makes it to the backedge on every
1545     /// iteration (i.e. there are no abnormal exists like exception
1546     /// throws and thread exits) then this is the number of times the
1547     /// loop header will execute minus one.
1548     ///
1549     /// If the SCEV predicate associated with the answer can be different
1550     /// from AlwaysTrue, we must add a (non null) Predicates argument.
1551     /// The SCEV predicate associated with the answer will be added to
1552     /// Predicates. A run-time check needs to be emitted for the SCEV
1553     /// predicate in order for the answer to be valid.
1554     ///
1555     /// Note that we should always know if we need to pass a predicate
1556     /// argument or not from the way the ExitCounts vector was computed.
1557     /// If we allowed SCEV predicates to be generated when populating this
1558     /// vector, this information can contain them and therefore a
1559     /// SCEVPredicate argument should be added to getExact.
1560     const SCEV *getExact(const Loop *L, ScalarEvolution *SE,
1561                          SmallVector<const SCEVPredicate *, 4> *Predicates = nullptr) const;
1562 
1563     /// Return the number of times this loop exit may fall through to the back
1564     /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
1565     /// this block before this number of iterations, but may exit via another
1566     /// block.
1567     const SCEV *getExact(const BasicBlock *ExitingBlock,
1568                          ScalarEvolution *SE) const;
1569 
1570     /// Get the constant max backedge taken count for the loop.
1571     const SCEV *getConstantMax(ScalarEvolution *SE) const;
1572 
1573     /// Get the constant max backedge taken count for the particular loop exit.
1574     const SCEV *getConstantMax(const BasicBlock *ExitingBlock,
1575                                ScalarEvolution *SE) const;
1576 
1577     /// Get the symbolic max backedge taken count for the loop.
1578     const SCEV *
1579     getSymbolicMax(const Loop *L, ScalarEvolution *SE,
1580                    SmallVector<const SCEVPredicate *, 4> *Predicates = nullptr);
1581 
1582     /// Get the symbolic max backedge taken count for the particular loop exit.
1583     const SCEV *getSymbolicMax(const BasicBlock *ExitingBlock,
1584                                ScalarEvolution *SE) const;
1585 
1586     /// Return true if the number of times this backedge is taken is either the
1587     /// value returned by getConstantMax or zero.
1588     bool isConstantMaxOrZero(ScalarEvolution *SE) const;
1589   };
1590 
1591   /// Cache the backedge-taken count of the loops for this function as they
1592   /// are computed.
1593   DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
1594 
1595   /// Cache the predicated backedge-taken count of the loops for this
1596   /// function as they are computed.
1597   DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
1598 
1599   /// Loops whose backedge taken counts directly use this non-constant SCEV.
1600   DenseMap<const SCEV *, SmallPtrSet<PointerIntPair<const Loop *, 1, bool>, 4>>
1601       BECountUsers;
1602 
1603   /// This map contains entries for all of the PHI instructions that we
1604   /// attempt to compute constant evolutions for.  This allows us to avoid
1605   /// potentially expensive recomputation of these properties.  An instruction
1606   /// maps to null if we are unable to compute its exit value.
1607   DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue;
1608 
1609   /// This map contains entries for all the expressions that we attempt to
1610   /// compute getSCEVAtScope information for, which can be expensive in
1611   /// extreme cases.
1612   DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1613       ValuesAtScopes;
1614 
1615   /// Reverse map for invalidation purposes: Stores of which SCEV and which
1616   /// loop this is the value-at-scope of.
1617   DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1618       ValuesAtScopesUsers;
1619 
1620   /// Memoized computeLoopDisposition results.
1621   DenseMap<const SCEV *,
1622            SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
1623       LoopDispositions;
1624 
1625   struct LoopProperties {
1626     /// Set to true if the loop contains no instruction that can abnormally exit
1627     /// the loop (i.e. via throwing an exception, by terminating the thread
1628     /// cleanly or by infinite looping in a called function).  Strictly
1629     /// speaking, the last one is not leaving the loop, but is identical to
1630     /// leaving the loop for reasoning about undefined behavior.
1631     bool HasNoAbnormalExits;
1632 
1633     /// Set to true if the loop contains no instruction that can have side
1634     /// effects (i.e. via throwing an exception, volatile or atomic access).
1635     bool HasNoSideEffects;
1636   };
1637 
1638   /// Cache for \c getLoopProperties.
1639   DenseMap<const Loop *, LoopProperties> LoopPropertiesCache;
1640 
1641   /// Return a \c LoopProperties instance for \p L, creating one if necessary.
1642   LoopProperties getLoopProperties(const Loop *L);
1643 
1644   bool loopHasNoSideEffects(const Loop *L) {
1645     return getLoopProperties(L).HasNoSideEffects;
1646   }
1647 
1648   /// Compute a LoopDisposition value.
1649   LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
1650 
1651   /// Memoized computeBlockDisposition results.
1652   DenseMap<
1653       const SCEV *,
1654       SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
1655       BlockDispositions;
1656 
1657   /// Compute a BlockDisposition value.
1658   BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
1659 
1660   /// Stores all SCEV that use a given SCEV as its direct operand.
1661   DenseMap<const SCEV *, SmallPtrSet<const SCEV *, 8> > SCEVUsers;
1662 
1663   /// Memoized results from getRange
1664   DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
1665 
1666   /// Memoized results from getRange
1667   DenseMap<const SCEV *, ConstantRange> SignedRanges;
1668 
1669   /// Used to parameterize getRange
1670   enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
1671 
1672   /// Set the memoized range for the given SCEV.
1673   const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
1674                                 ConstantRange CR) {
1675     DenseMap<const SCEV *, ConstantRange> &Cache =
1676         Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
1677 
1678     auto Pair = Cache.insert_or_assign(S, std::move(CR));
1679     return Pair.first->second;
1680   }
1681 
1682   /// Determine the range for a particular SCEV.
1683   /// NOTE: This returns a reference to an entry in a cache. It must be
1684   /// copied if its needed for longer.
1685   const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint,
1686                                    unsigned Depth = 0);
1687 
1688   /// Determine the range for a particular SCEV, but evaluates ranges for
1689   /// operands iteratively first.
1690   const ConstantRange &getRangeRefIter(const SCEV *S, RangeSignHint Hint);
1691 
1692   /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Step}.
1693   /// Helper for \c getRange.
1694   ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Step,
1695                                     const APInt &MaxBECount);
1696 
1697   /// Determines the range for the affine non-self-wrapping SCEVAddRecExpr {\p
1698   /// Start,+,\p Step}<nw>.
1699   ConstantRange getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr *AddRec,
1700                                                   const SCEV *MaxBECount,
1701                                                   unsigned BitWidth,
1702                                                   RangeSignHint SignHint);
1703 
1704   /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
1705   /// Step} by "factoring out" a ternary expression from the add recurrence.
1706   /// Helper called by \c getRange.
1707   ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Step,
1708                                      const APInt &MaxBECount);
1709 
1710   /// If the unknown expression U corresponds to a simple recurrence, return
1711   /// a constant range which represents the entire recurrence.  Note that
1712   /// *add* recurrences with loop invariant steps aren't represented by
1713   /// SCEVUnknowns and thus don't use this mechanism.
1714   ConstantRange getRangeForUnknownRecurrence(const SCEVUnknown *U);
1715 
1716   /// We know that there is no SCEV for the specified value.  Analyze the
1717   /// expression recursively.
1718   const SCEV *createSCEV(Value *V);
1719 
1720   /// We know that there is no SCEV for the specified value. Create a new SCEV
1721   /// for \p V iteratively.
1722   const SCEV *createSCEVIter(Value *V);
1723   /// Collect operands of \p V for which SCEV expressions should be constructed
1724   /// first. Returns a SCEV directly if it can be constructed trivially for \p
1725   /// V.
1726   const SCEV *getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops);
1727 
1728   /// Provide the special handling we need to analyze PHI SCEVs.
1729   const SCEV *createNodeForPHI(PHINode *PN);
1730 
1731   /// Helper function called from createNodeForPHI.
1732   const SCEV *createAddRecFromPHI(PHINode *PN);
1733 
1734   /// A helper function for createAddRecFromPHI to handle simple cases.
1735   const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV,
1736                                             Value *StartValueV);
1737 
1738   /// Helper function called from createNodeForPHI.
1739   const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
1740 
1741   /// Provide special handling for a select-like instruction (currently this
1742   /// is either a select instruction or a phi node).  \p Ty is the type of the
1743   /// instruction being processed, that is assumed equivalent to
1744   /// "Cond ? TrueVal : FalseVal".
1745   std::optional<const SCEV *>
1746   createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, ICmpInst *Cond,
1747                                                Value *TrueVal, Value *FalseVal);
1748 
1749   /// See if we can model this select-like instruction via umin_seq expression.
1750   const SCEV *createNodeForSelectOrPHIViaUMinSeq(Value *I, Value *Cond,
1751                                                  Value *TrueVal,
1752                                                  Value *FalseVal);
1753 
1754   /// Given a value \p V, which is a select-like instruction (currently this is
1755   /// either a select instruction or a phi node), which is assumed equivalent to
1756   ///   Cond ? TrueVal : FalseVal
1757   /// see if we can model it as a SCEV expression.
1758   const SCEV *createNodeForSelectOrPHI(Value *V, Value *Cond, Value *TrueVal,
1759                                        Value *FalseVal);
1760 
1761   /// Provide the special handling we need to analyze GEP SCEVs.
1762   const SCEV *createNodeForGEP(GEPOperator *GEP);
1763 
1764   /// Implementation code for getSCEVAtScope; called at most once for each
1765   /// SCEV+Loop pair.
1766   const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
1767 
1768   /// Return the BackedgeTakenInfo for the given loop, lazily computing new
1769   /// values if the loop hasn't been analyzed yet. The returned result is
1770   /// guaranteed not to be predicated.
1771   BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
1772 
1773   /// Similar to getBackedgeTakenInfo, but will add predicates as required
1774   /// with the purpose of returning complete information.
1775   BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
1776 
1777   /// Compute the number of times the specified loop will iterate.
1778   /// If AllowPredicates is set, we will create new SCEV predicates as
1779   /// necessary in order to return an exact answer.
1780   BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
1781                                               bool AllowPredicates = false);
1782 
1783   /// Compute the number of times the backedge of the specified loop will
1784   /// execute if it exits via the specified block. If AllowPredicates is set,
1785   /// this call will try to use a minimal set of SCEV predicates in order to
1786   /// return an exact answer.
1787   ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
1788                              bool IsOnlyExit, bool AllowPredicates = false);
1789 
1790   // Helper functions for computeExitLimitFromCond to avoid exponential time
1791   // complexity.
1792 
1793   class ExitLimitCache {
1794     // It may look like we need key on the whole (L, ExitIfTrue,
1795     // ControlsOnlyExit, AllowPredicates) tuple, but recursive calls to
1796     // computeExitLimitFromCondCached from computeExitLimitFromCondImpl only
1797     // vary the in \c ExitCond and \c ControlsOnlyExit parameters.  We remember
1798     // the initial values of the other values to assert our assumption.
1799     SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap;
1800 
1801     const Loop *L;
1802     bool ExitIfTrue;
1803     bool AllowPredicates;
1804 
1805   public:
1806     ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates)
1807         : L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {}
1808 
1809     std::optional<ExitLimit> find(const Loop *L, Value *ExitCond,
1810                                   bool ExitIfTrue, bool ControlsOnlyExit,
1811                                   bool AllowPredicates);
1812 
1813     void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue,
1814                 bool ControlsOnlyExit, bool AllowPredicates,
1815                 const ExitLimit &EL);
1816   };
1817 
1818   using ExitLimitCacheTy = ExitLimitCache;
1819 
1820   ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache,
1821                                            const Loop *L, Value *ExitCond,
1822                                            bool ExitIfTrue,
1823                                            bool ControlsOnlyExit,
1824                                            bool AllowPredicates);
1825   ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L,
1826                                          Value *ExitCond, bool ExitIfTrue,
1827                                          bool ControlsOnlyExit,
1828                                          bool AllowPredicates);
1829   std::optional<ScalarEvolution::ExitLimit> computeExitLimitFromCondFromBinOp(
1830       ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
1831       bool ControlsOnlyExit, bool AllowPredicates);
1832 
1833   /// Compute the number of times the backedge of the specified loop will
1834   /// execute if its exit condition were a conditional branch of the ICmpInst
1835   /// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try
1836   /// to use a minimal set of SCEV predicates in order to return an exact
1837   /// answer.
1838   ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond,
1839                                      bool ExitIfTrue,
1840                                      bool IsSubExpr,
1841                                      bool AllowPredicates = false);
1842 
1843   /// Variant of previous which takes the components representing an ICmp
1844   /// as opposed to the ICmpInst itself.  Note that the prior version can
1845   /// return more precise results in some cases and is preferred when caller
1846   /// has a materialized ICmp.
1847   ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst::Predicate Pred,
1848                                      const SCEV *LHS, const SCEV *RHS,
1849                                      bool IsSubExpr,
1850                                      bool AllowPredicates = false);
1851 
1852   /// Compute the number of times the backedge of the specified loop will
1853   /// execute if its exit condition were a switch with a single exiting case
1854   /// to ExitingBB.
1855   ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L,
1856                                                  SwitchInst *Switch,
1857                                                  BasicBlock *ExitingBB,
1858                                                  bool IsSubExpr);
1859 
1860   /// Compute the exit limit of a loop that is controlled by a
1861   /// "(IV >> 1) != 0" type comparison.  We cannot compute the exact trip
1862   /// count in these cases (since SCEV has no way of expressing them), but we
1863   /// can still sometimes compute an upper bound.
1864   ///
1865   /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
1866   /// RHS`.
1867   ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L,
1868                                          ICmpInst::Predicate Pred);
1869 
1870   /// If the loop is known to execute a constant number of times (the
1871   /// condition evolves only from constants), try to evaluate a few iterations
1872   /// of the loop until we get the exit condition gets a value of ExitWhen
1873   /// (true or false).  If we cannot evaluate the exit count of the loop,
1874   /// return CouldNotCompute.
1875   const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond,
1876                                            bool ExitWhen);
1877 
1878   /// Return the number of times an exit condition comparing the specified
1879   /// value to zero will execute.  If not computable, return CouldNotCompute.
1880   /// If AllowPredicates is set, this call will try to use a minimal set of
1881   /// SCEV predicates in order to return an exact answer.
1882   ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
1883                          bool AllowPredicates = false);
1884 
1885   /// Return the number of times an exit condition checking the specified
1886   /// value for nonzero will execute.  If not computable, return
1887   /// CouldNotCompute.
1888   ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
1889 
1890   /// Return the number of times an exit condition containing the specified
1891   /// less-than comparison will execute.  If not computable, return
1892   /// CouldNotCompute.
1893   ///
1894   /// \p isSigned specifies whether the less-than is signed.
1895   ///
1896   /// \p ControlsOnlyExit is true when the LHS < RHS condition directly controls
1897   /// the branch (loops exits only if condition is true). In this case, we can
1898   /// use NoWrapFlags to skip overflow checks.
1899   ///
1900   /// If \p AllowPredicates is set, this call will try to use a minimal set of
1901   /// SCEV predicates in order to return an exact answer.
1902   ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
1903                              bool isSigned, bool ControlsOnlyExit,
1904                              bool AllowPredicates = false);
1905 
1906   ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
1907                                 bool isSigned, bool IsSubExpr,
1908                                 bool AllowPredicates = false);
1909 
1910   /// Return a predecessor of BB (which may not be an immediate predecessor)
1911   /// which has exactly one successor from which BB is reachable, or null if
1912   /// no such block is found.
1913   std::pair<const BasicBlock *, const BasicBlock *>
1914   getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) const;
1915 
1916   /// Test whether the condition described by Pred, LHS, and RHS is true
1917   /// whenever the given FoundCondValue value evaluates to true in given
1918   /// Context. If Context is nullptr, then the found predicate is true
1919   /// everywhere. LHS and FoundLHS may have different type width.
1920   bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
1921                      const Value *FoundCondValue, bool Inverse,
1922                      const Instruction *Context = nullptr);
1923 
1924   /// Test whether the condition described by Pred, LHS, and RHS is true
1925   /// whenever the given FoundCondValue value evaluates to true in given
1926   /// Context. If Context is nullptr, then the found predicate is true
1927   /// everywhere. LHS and FoundLHS must have same type width.
1928   bool isImpliedCondBalancedTypes(ICmpInst::Predicate Pred, const SCEV *LHS,
1929                                   const SCEV *RHS,
1930                                   ICmpInst::Predicate FoundPred,
1931                                   const SCEV *FoundLHS, const SCEV *FoundRHS,
1932                                   const Instruction *CtxI);
1933 
1934   /// Test whether the condition described by Pred, LHS, and RHS is true
1935   /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
1936   /// true in given Context. If Context is nullptr, then the found predicate is
1937   /// true everywhere.
1938   bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
1939                      ICmpInst::Predicate FoundPred, const SCEV *FoundLHS,
1940                      const SCEV *FoundRHS,
1941                      const Instruction *Context = nullptr);
1942 
1943   /// Test whether the condition described by Pred, LHS, and RHS is true
1944   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1945   /// true in given Context. If Context is nullptr, then the found predicate is
1946   /// true everywhere.
1947   bool isImpliedCondOperands(ICmpInst::Predicate Pred, const SCEV *LHS,
1948                              const SCEV *RHS, const SCEV *FoundLHS,
1949                              const SCEV *FoundRHS,
1950                              const Instruction *Context = nullptr);
1951 
1952   /// Test whether the condition described by Pred, LHS, and RHS is true
1953   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1954   /// true. Here LHS is an operation that includes FoundLHS as one of its
1955   /// arguments.
1956   bool isImpliedViaOperations(ICmpInst::Predicate Pred,
1957                               const SCEV *LHS, const SCEV *RHS,
1958                               const SCEV *FoundLHS, const SCEV *FoundRHS,
1959                               unsigned Depth = 0);
1960 
1961   /// Test whether the condition described by Pred, LHS, and RHS is true.
1962   /// Use only simple non-recursive types of checks, such as range analysis etc.
1963   bool isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
1964                                        const SCEV *LHS, const SCEV *RHS);
1965 
1966   /// Test whether the condition described by Pred, LHS, and RHS is true
1967   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1968   /// true.
1969   bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS,
1970                                    const SCEV *RHS, const SCEV *FoundLHS,
1971                                    const SCEV *FoundRHS);
1972 
1973   /// Test whether the condition described by Pred, LHS, and RHS is true
1974   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1975   /// true.  Utility function used by isImpliedCondOperands.  Tries to get
1976   /// cases like "X `sgt` 0 => X - 1 `sgt` -1".
1977   bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, const SCEV *LHS,
1978                                       const SCEV *RHS,
1979                                       ICmpInst::Predicate FoundPred,
1980                                       const SCEV *FoundLHS,
1981                                       const SCEV *FoundRHS);
1982 
1983   /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
1984   /// by a call to @llvm.experimental.guard in \p BB.
1985   bool isImpliedViaGuard(const BasicBlock *BB, ICmpInst::Predicate Pred,
1986                          const SCEV *LHS, const SCEV *RHS);
1987 
1988   /// Test whether the condition described by Pred, LHS, and RHS is true
1989   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1990   /// true.
1991   ///
1992   /// This routine tries to rule out certain kinds of integer overflow, and
1993   /// then tries to reason about arithmetic properties of the predicates.
1994   bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
1995                                           const SCEV *LHS, const SCEV *RHS,
1996                                           const SCEV *FoundLHS,
1997                                           const SCEV *FoundRHS);
1998 
1999   /// Test whether the condition described by Pred, LHS, and RHS is true
2000   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2001   /// true.
2002   ///
2003   /// This routine tries to weaken the known condition basing on fact that
2004   /// FoundLHS is an AddRec.
2005   bool isImpliedCondOperandsViaAddRecStart(ICmpInst::Predicate Pred,
2006                                            const SCEV *LHS, const SCEV *RHS,
2007                                            const SCEV *FoundLHS,
2008                                            const SCEV *FoundRHS,
2009                                            const Instruction *CtxI);
2010 
2011   /// Test whether the condition described by Pred, LHS, and RHS is true
2012   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2013   /// true.
2014   ///
2015   /// This routine tries to figure out predicate for Phis which are SCEVUnknown
2016   /// if it is true for every possible incoming value from their respective
2017   /// basic blocks.
2018   bool isImpliedViaMerge(ICmpInst::Predicate Pred,
2019                          const SCEV *LHS, const SCEV *RHS,
2020                          const SCEV *FoundLHS, const SCEV *FoundRHS,
2021                          unsigned Depth);
2022 
2023   /// Test whether the condition described by Pred, LHS, and RHS is true
2024   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2025   /// true.
2026   ///
2027   /// This routine tries to reason about shifts.
2028   bool isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, const SCEV *LHS,
2029                                      const SCEV *RHS, const SCEV *FoundLHS,
2030                                      const SCEV *FoundRHS);
2031 
2032   /// If we know that the specified Phi is in the header of its containing
2033   /// loop, we know the loop executes a constant number of times, and the PHI
2034   /// node is just a recurrence involving constants, fold it.
2035   Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs,
2036                                               const Loop *L);
2037 
2038   /// Test if the given expression is known to satisfy the condition described
2039   /// by Pred and the known constant ranges of LHS and RHS.
2040   bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,
2041                                          const SCEV *LHS, const SCEV *RHS);
2042 
2043   /// Try to prove the condition described by "LHS Pred RHS" by ruling out
2044   /// integer overflow.
2045   ///
2046   /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
2047   /// positive.
2048   bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS,
2049                                      const SCEV *RHS);
2050 
2051   /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
2052   /// prove them individually.
2053   bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
2054                                     const SCEV *RHS);
2055 
2056   /// Try to match the Expr as "(L + R)<Flags>".
2057   bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
2058                       SCEV::NoWrapFlags &Flags);
2059 
2060   /// Forget predicated/non-predicated backedge taken counts for the given loop.
2061   void forgetBackedgeTakenCounts(const Loop *L, bool Predicated);
2062 
2063   /// Drop memoized information for all \p SCEVs.
2064   void forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs);
2065 
2066   /// Helper for forgetMemoizedResults.
2067   void forgetMemoizedResultsImpl(const SCEV *S);
2068 
2069   /// Iterate over instructions in \p Worklist and their users. Erase entries
2070   /// from ValueExprMap and collect SCEV expressions in \p ToForget
2071   void visitAndClearUsers(SmallVectorImpl<Instruction *> &Worklist,
2072                           SmallPtrSetImpl<Instruction *> &Visited,
2073                           SmallVectorImpl<const SCEV *> &ToForget);
2074 
2075   /// Erase Value from ValueExprMap and ExprValueMap.
2076   void eraseValueFromMap(Value *V);
2077 
2078   /// Insert V to S mapping into ValueExprMap and ExprValueMap.
2079   void insertValueToMap(Value *V, const SCEV *S);
2080 
2081   /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
2082   /// pointer.
2083   bool checkValidity(const SCEV *S) const;
2084 
2085   /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
2086   /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is
2087   /// equivalent to proving no signed (resp. unsigned) wrap in
2088   /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
2089   /// (resp. `SCEVZeroExtendExpr`).
2090   template <typename ExtendOpTy>
2091   bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
2092                                  const Loop *L);
2093 
2094   /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
2095   SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
2096 
2097   /// Try to prove NSW on \p AR by proving facts about conditions known  on
2098   /// entry and backedge.
2099   SCEV::NoWrapFlags proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR);
2100 
2101   /// Try to prove NUW on \p AR by proving facts about conditions known on
2102   /// entry and backedge.
2103   SCEV::NoWrapFlags proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR);
2104 
2105   std::optional<MonotonicPredicateType>
2106   getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
2107                                 ICmpInst::Predicate Pred);
2108 
2109   /// Return SCEV no-wrap flags that can be proven based on reasoning about
2110   /// how poison produced from no-wrap flags on this value (e.g. a nuw add)
2111   /// would trigger undefined behavior on overflow.
2112   SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
2113 
2114   /// Return a scope which provides an upper bound on the defining scope of
2115   /// 'S'. Specifically, return the first instruction in said bounding scope.
2116   /// Return nullptr if the scope is trivial (function entry).
2117   /// (See scope definition rules associated with flag discussion above)
2118   const Instruction *getNonTrivialDefiningScopeBound(const SCEV *S);
2119 
2120   /// Return a scope which provides an upper bound on the defining scope for
2121   /// a SCEV with the operands in Ops.  The outparam Precise is set if the
2122   /// bound found is a precise bound (i.e. must be the defining scope.)
2123   const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
2124                                            bool &Precise);
2125 
2126   /// Wrapper around the above for cases which don't care if the bound
2127   /// is precise.
2128   const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops);
2129 
2130   /// Given two instructions in the same function, return true if we can
2131   /// prove B must execute given A executes.
2132   bool isGuaranteedToTransferExecutionTo(const Instruction *A,
2133                                          const Instruction *B);
2134 
2135   /// Return true if the SCEV corresponding to \p I is never poison.  Proving
2136   /// this is more complex than proving that just \p I is never poison, since
2137   /// SCEV commons expressions across control flow, and you can have cases
2138   /// like:
2139   ///
2140   ///   idx0 = a + b;
2141   ///   ptr[idx0] = 100;
2142   ///   if (<condition>) {
2143   ///     idx1 = a +nsw b;
2144   ///     ptr[idx1] = 200;
2145   ///   }
2146   ///
2147   /// where the SCEV expression (+ a b) is guaranteed to not be poison (and
2148   /// hence not sign-overflow) only if "<condition>" is true.  Since both
2149   /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
2150   /// it is not okay to annotate (+ a b) with <nsw> in the above example.
2151   bool isSCEVExprNeverPoison(const Instruction *I);
2152 
2153   /// This is like \c isSCEVExprNeverPoison but it specifically works for
2154   /// instructions that will get mapped to SCEV add recurrences.  Return true
2155   /// if \p I will never generate poison under the assumption that \p I is an
2156   /// add recurrence on the loop \p L.
2157   bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
2158 
2159   /// Similar to createAddRecFromPHI, but with the additional flexibility of
2160   /// suggesting runtime overflow checks in case casts are encountered.
2161   /// If successful, the analysis records that for this loop, \p SymbolicPHI,
2162   /// which is the UnknownSCEV currently representing the PHI, can be rewritten
2163   /// into an AddRec, assuming some predicates; The function then returns the
2164   /// AddRec and the predicates as a pair, and caches this pair in
2165   /// PredicatedSCEVRewrites.
2166   /// If the analysis is not successful, a mapping from the \p SymbolicPHI to
2167   /// itself (with no predicates) is recorded, and a nullptr with an empty
2168   /// predicates vector is returned as a pair.
2169   std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2170   createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI);
2171 
2172   /// Compute the maximum backedge count based on the range of values
2173   /// permitted by Start, End, and Stride. This is for loops of the form
2174   /// {Start, +, Stride} LT End.
2175   ///
2176   /// Preconditions:
2177   /// * the induction variable is known to be positive.
2178   /// * the induction variable is assumed not to overflow (i.e. either it
2179   ///   actually doesn't, or we'd have to immediately execute UB)
2180   /// We *don't* assert these preconditions so please be careful.
2181   const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride,
2182                                      const SCEV *End, unsigned BitWidth,
2183                                      bool IsSigned);
2184 
2185   /// Verify if an linear IV with positive stride can overflow when in a
2186   /// less-than comparison, knowing the invariant term of the comparison,
2187   /// the stride.
2188   bool canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
2189 
2190   /// Verify if an linear IV with negative stride can overflow when in a
2191   /// greater-than comparison, knowing the invariant term of the comparison,
2192   /// the stride.
2193   bool canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
2194 
2195   /// Get add expr already created or create a new one.
2196   const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2197                                  SCEV::NoWrapFlags Flags);
2198 
2199   /// Get mul expr already created or create a new one.
2200   const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2201                                  SCEV::NoWrapFlags Flags);
2202 
2203   // Get addrec expr already created or create a new one.
2204   const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2205                                     const Loop *L, SCEV::NoWrapFlags Flags);
2206 
2207   /// Return x if \p Val is f(x) where f is a 1-1 function.
2208   const SCEV *stripInjectiveFunctions(const SCEV *Val) const;
2209 
2210   /// Find all of the loops transitively used in \p S, and fill \p LoopsUsed.
2211   /// A loop is considered "used" by an expression if it contains
2212   /// an add rec on said loop.
2213   void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed);
2214 
2215   /// Try to match the pattern generated by getURemExpr(A, B). If successful,
2216   /// Assign A and B to LHS and RHS, respectively.
2217   bool matchURem(const SCEV *Expr, const SCEV *&LHS, const SCEV *&RHS);
2218 
2219   /// Look for a SCEV expression with type `SCEVType` and operands `Ops` in
2220   /// `UniqueSCEVs`.  Return if found, else nullptr.
2221   SCEV *findExistingSCEVInCache(SCEVTypes SCEVType, ArrayRef<const SCEV *> Ops);
2222 
2223   /// Get reachable blocks in this function, making limited use of SCEV
2224   /// reasoning about conditions.
2225   void getReachableBlocks(SmallPtrSetImpl<BasicBlock *> &Reachable,
2226                           Function &F);
2227 
2228   /// Return the given SCEV expression with a new set of operands.
2229   /// This preserves the origial nowrap flags.
2230   const SCEV *getWithOperands(const SCEV *S,
2231                               SmallVectorImpl<const SCEV *> &NewOps);
2232 
2233   FoldingSet<SCEV> UniqueSCEVs;
2234   FoldingSet<SCEVPredicate> UniquePreds;
2235   BumpPtrAllocator SCEVAllocator;
2236 
2237   /// This maps loops to a list of addrecs that directly use said loop.
2238   DenseMap<const Loop *, SmallVector<const SCEVAddRecExpr *, 4>> LoopUsers;
2239 
2240   /// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression
2241   /// they can be rewritten into under certain predicates.
2242   DenseMap<std::pair<const SCEVUnknown *, const Loop *>,
2243            std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2244       PredicatedSCEVRewrites;
2245 
2246   /// Set of AddRecs for which proving NUW via an induction has already been
2247   /// tried.
2248   SmallPtrSet<const SCEVAddRecExpr *, 16> UnsignedWrapViaInductionTried;
2249 
2250   /// Set of AddRecs for which proving NSW via an induction has already been
2251   /// tried.
2252   SmallPtrSet<const SCEVAddRecExpr *, 16> SignedWrapViaInductionTried;
2253 
2254   /// The head of a linked list of all SCEVUnknown values that have been
2255   /// allocated. This is used by releaseMemory to locate them all and call
2256   /// their destructors.
2257   SCEVUnknown *FirstUnknown = nullptr;
2258 };
2259 
2260 /// Analysis pass that exposes the \c ScalarEvolution for a function.
2261 class ScalarEvolutionAnalysis
2262     : public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
2263   friend AnalysisInfoMixin<ScalarEvolutionAnalysis>;
2264 
2265   static AnalysisKey Key;
2266 
2267 public:
2268   using Result = ScalarEvolution;
2269 
2270   ScalarEvolution run(Function &F, FunctionAnalysisManager &AM);
2271 };
2272 
2273 /// Verifier pass for the \c ScalarEvolutionAnalysis results.
2274 class ScalarEvolutionVerifierPass
2275     : public PassInfoMixin<ScalarEvolutionVerifierPass> {
2276 public:
2277   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
2278   static bool isRequired() { return true; }
2279 };
2280 
2281 /// Printer pass for the \c ScalarEvolutionAnalysis results.
2282 class ScalarEvolutionPrinterPass
2283     : public PassInfoMixin<ScalarEvolutionPrinterPass> {
2284   raw_ostream &OS;
2285 
2286 public:
2287   explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
2288 
2289   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
2290 
2291   static bool isRequired() { return true; }
2292 };
2293 
2294 class ScalarEvolutionWrapperPass : public FunctionPass {
2295   std::unique_ptr<ScalarEvolution> SE;
2296 
2297 public:
2298   static char ID;
2299 
2300   ScalarEvolutionWrapperPass();
2301 
2302   ScalarEvolution &getSE() { return *SE; }
2303   const ScalarEvolution &getSE() const { return *SE; }
2304 
2305   bool runOnFunction(Function &F) override;
2306   void releaseMemory() override;
2307   void getAnalysisUsage(AnalysisUsage &AU) const override;
2308   void print(raw_ostream &OS, const Module * = nullptr) const override;
2309   void verifyAnalysis() const override;
2310 };
2311 
2312 /// An interface layer with SCEV used to manage how we see SCEV expressions
2313 /// for values in the context of existing predicates. We can add new
2314 /// predicates, but we cannot remove them.
2315 ///
2316 /// This layer has multiple purposes:
2317 ///   - provides a simple interface for SCEV versioning.
2318 ///   - guarantees that the order of transformations applied on a SCEV
2319 ///     expression for a single Value is consistent across two different
2320 ///     getSCEV calls. This means that, for example, once we've obtained
2321 ///     an AddRec expression for a certain value through expression
2322 ///     rewriting, we will continue to get an AddRec expression for that
2323 ///     Value.
2324 ///   - lowers the number of expression rewrites.
2325 class PredicatedScalarEvolution {
2326 public:
2327   PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L);
2328 
2329   const SCEVPredicate &getPredicate() const;
2330 
2331   /// Returns the SCEV expression of V, in the context of the current SCEV
2332   /// predicate.  The order of transformations applied on the expression of V
2333   /// returned by ScalarEvolution is guaranteed to be preserved, even when
2334   /// adding new predicates.
2335   const SCEV *getSCEV(Value *V);
2336 
2337   /// Get the (predicated) backedge count for the analyzed loop.
2338   const SCEV *getBackedgeTakenCount();
2339 
2340   /// Get the (predicated) symbolic max backedge count for the analyzed loop.
2341   const SCEV *getSymbolicMaxBackedgeTakenCount();
2342 
2343   /// Adds a new predicate.
2344   void addPredicate(const SCEVPredicate &Pred);
2345 
2346   /// Attempts to produce an AddRecExpr for V by adding additional SCEV
2347   /// predicates. If we can't transform the expression into an AddRecExpr we
2348   /// return nullptr and not add additional SCEV predicates to the current
2349   /// context.
2350   const SCEVAddRecExpr *getAsAddRec(Value *V);
2351 
2352   /// Proves that V doesn't overflow by adding SCEV predicate.
2353   void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
2354 
2355   /// Returns true if we've proved that V doesn't wrap by means of a SCEV
2356   /// predicate.
2357   bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
2358 
2359   /// Returns the ScalarEvolution analysis used.
2360   ScalarEvolution *getSE() const { return &SE; }
2361 
2362   /// We need to explicitly define the copy constructor because of FlagsMap.
2363   PredicatedScalarEvolution(const PredicatedScalarEvolution &);
2364 
2365   /// Print the SCEV mappings done by the Predicated Scalar Evolution.
2366   /// The printed text is indented by \p Depth.
2367   void print(raw_ostream &OS, unsigned Depth) const;
2368 
2369   /// Check if \p AR1 and \p AR2 are equal, while taking into account
2370   /// Equal predicates in Preds.
2371   bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1,
2372                                 const SCEVAddRecExpr *AR2) const;
2373 
2374 private:
2375   /// Increments the version number of the predicate.  This needs to be called
2376   /// every time the SCEV predicate changes.
2377   void updateGeneration();
2378 
2379   /// Holds a SCEV and the version number of the SCEV predicate used to
2380   /// perform the rewrite of the expression.
2381   using RewriteEntry = std::pair<unsigned, const SCEV *>;
2382 
2383   /// Maps a SCEV to the rewrite result of that SCEV at a certain version
2384   /// number. If this number doesn't match the current Generation, we will
2385   /// need to do a rewrite. To preserve the transformation order of previous
2386   /// rewrites, we will rewrite the previous result instead of the original
2387   /// SCEV.
2388   DenseMap<const SCEV *, RewriteEntry> RewriteMap;
2389 
2390   /// Records what NoWrap flags we've added to a Value *.
2391   ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap;
2392 
2393   /// The ScalarEvolution analysis.
2394   ScalarEvolution &SE;
2395 
2396   /// The analyzed Loop.
2397   const Loop &L;
2398 
2399   /// The SCEVPredicate that forms our context. We will rewrite all
2400   /// expressions assuming that this predicate true.
2401   std::unique_ptr<SCEVUnionPredicate> Preds;
2402 
2403   /// Marks the version of the SCEV predicate used. When rewriting a SCEV
2404   /// expression we mark it with the version of the predicate. We use this to
2405   /// figure out if the predicate has changed from the last rewrite of the
2406   /// SCEV. If so, we need to perform a new rewrite.
2407   unsigned Generation = 0;
2408 
2409   /// The backedge taken count.
2410   const SCEV *BackedgeCount = nullptr;
2411 
2412   /// The symbolic backedge taken count.
2413   const SCEV *SymbolicMaxBackedgeCount = nullptr;
2414 };
2415 
2416 template <> struct DenseMapInfo<ScalarEvolution::FoldID> {
2417   static inline ScalarEvolution::FoldID getEmptyKey() {
2418     ScalarEvolution::FoldID ID(0);
2419     return ID;
2420   }
2421   static inline ScalarEvolution::FoldID getTombstoneKey() {
2422     ScalarEvolution::FoldID ID(1);
2423     return ID;
2424   }
2425 
2426   static unsigned getHashValue(const ScalarEvolution::FoldID &Val) {
2427     return Val.computeHash();
2428   }
2429 
2430   static bool isEqual(const ScalarEvolution::FoldID &LHS,
2431                       const ScalarEvolution::FoldID &RHS) {
2432     return LHS == RHS;
2433   }
2434 };
2435 
2436 } // end namespace llvm
2437 
2438 #endif // LLVM_ANALYSIS_SCALAREVOLUTION_H
2439