xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/IVDescriptors.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file "describes" induction and recurrence variables.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/IVDescriptors.h"
14 #include "llvm/Analysis/DemandedBits.h"
15 #include "llvm/Analysis/LoopInfo.h"
16 #include "llvm/Analysis/ScalarEvolution.h"
17 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/PatternMatch.h"
23 #include "llvm/IR/ValueHandle.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/KnownBits.h"
26 
27 using namespace llvm;
28 using namespace llvm::PatternMatch;
29 
30 #define DEBUG_TYPE "iv-descriptors"
31 
areAllUsesIn(Instruction * I,SmallPtrSetImpl<Instruction * > & Set)32 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
33                                         SmallPtrSetImpl<Instruction *> &Set) {
34   for (const Use &Use : I->operands())
35     if (!Set.count(dyn_cast<Instruction>(Use)))
36       return false;
37   return true;
38 }
39 
isIntegerRecurrenceKind(RecurKind Kind)40 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) {
41   switch (Kind) {
42   default:
43     break;
44   case RecurKind::Add:
45   case RecurKind::Mul:
46   case RecurKind::Or:
47   case RecurKind::And:
48   case RecurKind::Xor:
49   case RecurKind::SMax:
50   case RecurKind::SMin:
51   case RecurKind::UMax:
52   case RecurKind::UMin:
53   case RecurKind::IAnyOf:
54   case RecurKind::FAnyOf:
55     return true;
56   }
57   return false;
58 }
59 
isFloatingPointRecurrenceKind(RecurKind Kind)60 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) {
61   return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind);
62 }
63 
64 /// Determines if Phi may have been type-promoted. If Phi has a single user
65 /// that ANDs the Phi with a type mask, return the user. RT is updated to
66 /// account for the narrower bit width represented by the mask, and the AND
67 /// instruction is added to CI.
lookThroughAnd(PHINode * Phi,Type * & RT,SmallPtrSetImpl<Instruction * > & Visited,SmallPtrSetImpl<Instruction * > & CI)68 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
69                                    SmallPtrSetImpl<Instruction *> &Visited,
70                                    SmallPtrSetImpl<Instruction *> &CI) {
71   if (!Phi->hasOneUse())
72     return Phi;
73 
74   const APInt *M = nullptr;
75   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
76 
77   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
78   // with a new integer type of the corresponding bit width.
79   if (match(J, m_And(m_Instruction(I), m_APInt(M)))) {
80     int32_t Bits = (*M + 1).exactLogBase2();
81     if (Bits > 0) {
82       RT = IntegerType::get(Phi->getContext(), Bits);
83       Visited.insert(Phi);
84       CI.insert(J);
85       return J;
86     }
87   }
88   return Phi;
89 }
90 
91 /// Compute the minimal bit width needed to represent a reduction whose exit
92 /// instruction is given by Exit.
computeRecurrenceType(Instruction * Exit,DemandedBits * DB,AssumptionCache * AC,DominatorTree * DT)93 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
94                                                      DemandedBits *DB,
95                                                      AssumptionCache *AC,
96                                                      DominatorTree *DT) {
97   bool IsSigned = false;
98   const DataLayout &DL = Exit->getDataLayout();
99   uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
100 
101   if (DB) {
102     // Use the demanded bits analysis to determine the bits that are live out
103     // of the exit instruction, rounding up to the nearest power of two. If the
104     // use of demanded bits results in a smaller bit width, we know the value
105     // must be positive (i.e., IsSigned = false), because if this were not the
106     // case, the sign bit would have been demanded.
107     auto Mask = DB->getDemandedBits(Exit);
108     MaxBitWidth = Mask.getBitWidth() - Mask.countl_zero();
109   }
110 
111   if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
112     // If demanded bits wasn't able to limit the bit width, we can try to use
113     // value tracking instead. This can be the case, for example, if the value
114     // may be negative.
115     auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
116     auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
117     MaxBitWidth = NumTypeBits - NumSignBits;
118     KnownBits Bits = computeKnownBits(Exit, DL);
119     if (!Bits.isNonNegative()) {
120       // If the value is not known to be non-negative, we set IsSigned to true,
121       // meaning that we will use sext instructions instead of zext
122       // instructions to restore the original type.
123       IsSigned = true;
124       // Make sure at least one sign bit is included in the result, so it
125       // will get properly sign-extended.
126       ++MaxBitWidth;
127     }
128   }
129   MaxBitWidth = llvm::bit_ceil(MaxBitWidth);
130 
131   return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
132                         IsSigned);
133 }
134 
135 /// Collect cast instructions that can be ignored in the vectorizer's cost
136 /// model, given a reduction exit value and the minimal type in which the
137 // reduction can be represented. Also search casts to the recurrence type
138 // to find the minimum width used by the recurrence.
collectCastInstrs(Loop * TheLoop,Instruction * Exit,Type * RecurrenceType,SmallPtrSetImpl<Instruction * > & Casts,unsigned & MinWidthCastToRecurTy)139 static void collectCastInstrs(Loop *TheLoop, Instruction *Exit,
140                               Type *RecurrenceType,
141                               SmallPtrSetImpl<Instruction *> &Casts,
142                               unsigned &MinWidthCastToRecurTy) {
143 
144   SmallVector<Instruction *, 8> Worklist;
145   SmallPtrSet<Instruction *, 8> Visited;
146   Worklist.push_back(Exit);
147   MinWidthCastToRecurTy = -1U;
148 
149   while (!Worklist.empty()) {
150     Instruction *Val = Worklist.pop_back_val();
151     Visited.insert(Val);
152     if (auto *Cast = dyn_cast<CastInst>(Val)) {
153       if (Cast->getSrcTy() == RecurrenceType) {
154         // If the source type of a cast instruction is equal to the recurrence
155         // type, it will be eliminated, and should be ignored in the vectorizer
156         // cost model.
157         Casts.insert(Cast);
158         continue;
159       }
160       if (Cast->getDestTy() == RecurrenceType) {
161         // The minimum width used by the recurrence is found by checking for
162         // casts on its operands. The minimum width is used by the vectorizer
163         // when finding the widest type for in-loop reductions without any
164         // loads/stores.
165         MinWidthCastToRecurTy = std::min<unsigned>(
166             MinWidthCastToRecurTy, Cast->getSrcTy()->getScalarSizeInBits());
167         continue;
168       }
169     }
170     // Add all operands to the work list if they are loop-varying values that
171     // we haven't yet visited.
172     for (Value *O : cast<User>(Val)->operands())
173       if (auto *I = dyn_cast<Instruction>(O))
174         if (TheLoop->contains(I) && !Visited.count(I))
175           Worklist.push_back(I);
176   }
177 }
178 
179 // Check if a given Phi node can be recognized as an ordered reduction for
180 // vectorizing floating point operations without unsafe math.
checkOrderedReduction(RecurKind Kind,Instruction * ExactFPMathInst,Instruction * Exit,PHINode * Phi)181 static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst,
182                                   Instruction *Exit, PHINode *Phi) {
183   // Currently only FAdd and FMulAdd are supported.
184   if (Kind != RecurKind::FAdd && Kind != RecurKind::FMulAdd)
185     return false;
186 
187   if (Kind == RecurKind::FAdd && Exit->getOpcode() != Instruction::FAdd)
188     return false;
189 
190   if (Kind == RecurKind::FMulAdd &&
191       !RecurrenceDescriptor::isFMulAddIntrinsic(Exit))
192     return false;
193 
194   // Ensure the exit instruction has only one user other than the reduction PHI
195   if (Exit != ExactFPMathInst || Exit->hasNUsesOrMore(3))
196     return false;
197 
198   // The only pattern accepted is the one in which the reduction PHI
199   // is used as one of the operands of the exit instruction
200   auto *Op0 = Exit->getOperand(0);
201   auto *Op1 = Exit->getOperand(1);
202   if (Kind == RecurKind::FAdd && Op0 != Phi && Op1 != Phi)
203     return false;
204   if (Kind == RecurKind::FMulAdd && Exit->getOperand(2) != Phi)
205     return false;
206 
207   LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi
208                     << ", ExitInst: " << *Exit << "\n");
209 
210   return true;
211 }
212 
AddReductionVar(PHINode * Phi,RecurKind Kind,Loop * TheLoop,FastMathFlags FuncFMF,RecurrenceDescriptor & RedDes,DemandedBits * DB,AssumptionCache * AC,DominatorTree * DT,ScalarEvolution * SE)213 bool RecurrenceDescriptor::AddReductionVar(
214     PHINode *Phi, RecurKind Kind, Loop *TheLoop, FastMathFlags FuncFMF,
215     RecurrenceDescriptor &RedDes, DemandedBits *DB, AssumptionCache *AC,
216     DominatorTree *DT, ScalarEvolution *SE) {
217   if (Phi->getNumIncomingValues() != 2)
218     return false;
219 
220   // Reduction variables are only found in the loop header block.
221   if (Phi->getParent() != TheLoop->getHeader())
222     return false;
223 
224   // Obtain the reduction start value from the value that comes from the loop
225   // preheader.
226   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
227 
228   // ExitInstruction is the single value which is used outside the loop.
229   // We only allow for a single reduction value to be used outside the loop.
230   // This includes users of the reduction, variables (which form a cycle
231   // which ends in the phi node).
232   Instruction *ExitInstruction = nullptr;
233 
234   // Variable to keep last visited store instruction. By the end of the
235   // algorithm this variable will be either empty or having intermediate
236   // reduction value stored in invariant address.
237   StoreInst *IntermediateStore = nullptr;
238 
239   // Indicates that we found a reduction operation in our scan.
240   bool FoundReduxOp = false;
241 
242   // We start with the PHI node and scan for all of the users of this
243   // instruction. All users must be instructions that can be used as reduction
244   // variables (such as ADD). We must have a single out-of-block user. The cycle
245   // must include the original PHI.
246   bool FoundStartPHI = false;
247 
248   // To recognize min/max patterns formed by a icmp select sequence, we store
249   // the number of instruction we saw from the recognized min/max pattern,
250   //  to make sure we only see exactly the two instructions.
251   unsigned NumCmpSelectPatternInst = 0;
252   InstDesc ReduxDesc(false, nullptr);
253 
254   // Data used for determining if the recurrence has been type-promoted.
255   Type *RecurrenceType = Phi->getType();
256   SmallPtrSet<Instruction *, 4> CastInsts;
257   unsigned MinWidthCastToRecurrenceType;
258   Instruction *Start = Phi;
259   bool IsSigned = false;
260 
261   SmallPtrSet<Instruction *, 8> VisitedInsts;
262   SmallVector<Instruction *, 8> Worklist;
263 
264   // Return early if the recurrence kind does not match the type of Phi. If the
265   // recurrence kind is arithmetic, we attempt to look through AND operations
266   // resulting from the type promotion performed by InstCombine.  Vector
267   // operations are not limited to the legal integer widths, so we may be able
268   // to evaluate the reduction in the narrower width.
269   if (RecurrenceType->isFloatingPointTy()) {
270     if (!isFloatingPointRecurrenceKind(Kind))
271       return false;
272   } else if (RecurrenceType->isIntegerTy()) {
273     if (!isIntegerRecurrenceKind(Kind))
274       return false;
275     if (!isMinMaxRecurrenceKind(Kind))
276       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
277   } else {
278     // Pointer min/max may exist, but it is not supported as a reduction op.
279     return false;
280   }
281 
282   Worklist.push_back(Start);
283   VisitedInsts.insert(Start);
284 
285   // Start with all flags set because we will intersect this with the reduction
286   // flags from all the reduction operations.
287   FastMathFlags FMF = FastMathFlags::getFast();
288 
289   // The first instruction in the use-def chain of the Phi node that requires
290   // exact floating point operations.
291   Instruction *ExactFPMathInst = nullptr;
292 
293   // A value in the reduction can be used:
294   //  - By the reduction:
295   //      - Reduction operation:
296   //        - One use of reduction value (safe).
297   //        - Multiple use of reduction value (not safe).
298   //      - PHI:
299   //        - All uses of the PHI must be the reduction (safe).
300   //        - Otherwise, not safe.
301   //  - By instructions outside of the loop (safe).
302   //      * One value may have several outside users, but all outside
303   //        uses must be of the same value.
304   //  - By store instructions with a loop invariant address (safe with
305   //    the following restrictions):
306   //      * If there are several stores, all must have the same address.
307   //      * Final value should be stored in that loop invariant address.
308   //  - By an instruction that is not part of the reduction (not safe).
309   //    This is either:
310   //      * An instruction type other than PHI or the reduction operation.
311   //      * A PHI in the header other than the initial PHI.
312   while (!Worklist.empty()) {
313     Instruction *Cur = Worklist.pop_back_val();
314 
315     // Store instructions are allowed iff it is the store of the reduction
316     // value to the same loop invariant memory location.
317     if (auto *SI = dyn_cast<StoreInst>(Cur)) {
318       if (!SE) {
319         LLVM_DEBUG(dbgs() << "Store instructions are not processed without "
320                           << "Scalar Evolution Analysis\n");
321         return false;
322       }
323 
324       const SCEV *PtrScev = SE->getSCEV(SI->getPointerOperand());
325       // Check it is the same address as previous stores
326       if (IntermediateStore) {
327         const SCEV *OtherScev =
328             SE->getSCEV(IntermediateStore->getPointerOperand());
329 
330         if (OtherScev != PtrScev) {
331           LLVM_DEBUG(dbgs() << "Storing reduction value to different addresses "
332                             << "inside the loop: " << *SI->getPointerOperand()
333                             << " and "
334                             << *IntermediateStore->getPointerOperand() << '\n');
335           return false;
336         }
337       }
338 
339       // Check the pointer is loop invariant
340       if (!SE->isLoopInvariant(PtrScev, TheLoop)) {
341         LLVM_DEBUG(dbgs() << "Storing reduction value to non-uniform address "
342                           << "inside the loop: " << *SI->getPointerOperand()
343                           << '\n');
344         return false;
345       }
346 
347       // IntermediateStore is always the last store in the loop.
348       IntermediateStore = SI;
349       continue;
350     }
351 
352     // No Users.
353     // If the instruction has no users then this is a broken chain and can't be
354     // a reduction variable.
355     if (Cur->use_empty())
356       return false;
357 
358     bool IsAPhi = isa<PHINode>(Cur);
359 
360     // A header PHI use other than the original PHI.
361     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
362       return false;
363 
364     // Reductions of instructions such as Div, and Sub is only possible if the
365     // LHS is the reduction variable.
366     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
367         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
368         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
369       return false;
370 
371     // Any reduction instruction must be of one of the allowed kinds. We ignore
372     // the starting value (the Phi or an AND instruction if the Phi has been
373     // type-promoted).
374     if (Cur != Start) {
375       ReduxDesc =
376           isRecurrenceInstr(TheLoop, Phi, Cur, Kind, ReduxDesc, FuncFMF);
377       ExactFPMathInst = ExactFPMathInst == nullptr
378                             ? ReduxDesc.getExactFPMathInst()
379                             : ExactFPMathInst;
380       if (!ReduxDesc.isRecurrence())
381         return false;
382       // FIXME: FMF is allowed on phi, but propagation is not handled correctly.
383       if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) {
384         FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags();
385         if (auto *Sel = dyn_cast<SelectInst>(ReduxDesc.getPatternInst())) {
386           // Accept FMF on either fcmp or select of a min/max idiom.
387           // TODO: This is a hack to work-around the fact that FMF may not be
388           //       assigned/propagated correctly. If that problem is fixed or we
389           //       standardize on fmin/fmax via intrinsics, this can be removed.
390           if (auto *FCmp = dyn_cast<FCmpInst>(Sel->getCondition()))
391             CurFMF |= FCmp->getFastMathFlags();
392         }
393         FMF &= CurFMF;
394       }
395       // Update this reduction kind if we matched a new instruction.
396       // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind'
397       //       state accurate while processing the worklist?
398       if (ReduxDesc.getRecKind() != RecurKind::None)
399         Kind = ReduxDesc.getRecKind();
400     }
401 
402     bool IsASelect = isa<SelectInst>(Cur);
403 
404     // A conditional reduction operation must only have 2 or less uses in
405     // VisitedInsts.
406     if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) &&
407         hasMultipleUsesOf(Cur, VisitedInsts, 2))
408       return false;
409 
410     // A reduction operation must only have one use of the reduction value.
411     if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) &&
412         !isAnyOfRecurrenceKind(Kind) && hasMultipleUsesOf(Cur, VisitedInsts, 1))
413       return false;
414 
415     // All inputs to a PHI node must be a reduction value.
416     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
417       return false;
418 
419     if ((isIntMinMaxRecurrenceKind(Kind) || Kind == RecurKind::IAnyOf) &&
420         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
421       ++NumCmpSelectPatternInst;
422     if ((isFPMinMaxRecurrenceKind(Kind) || Kind == RecurKind::FAnyOf) &&
423         (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
424       ++NumCmpSelectPatternInst;
425 
426     // Check  whether we found a reduction operator.
427     FoundReduxOp |= !IsAPhi && Cur != Start;
428 
429     // Process users of current instruction. Push non-PHI nodes after PHI nodes
430     // onto the stack. This way we are going to have seen all inputs to PHI
431     // nodes once we get to them.
432     SmallVector<Instruction *, 8> NonPHIs;
433     SmallVector<Instruction *, 8> PHIs;
434     for (User *U : Cur->users()) {
435       Instruction *UI = cast<Instruction>(U);
436 
437       // If the user is a call to llvm.fmuladd then the instruction can only be
438       // the final operand.
439       if (isFMulAddIntrinsic(UI))
440         if (Cur == UI->getOperand(0) || Cur == UI->getOperand(1))
441           return false;
442 
443       // Check if we found the exit user.
444       BasicBlock *Parent = UI->getParent();
445       if (!TheLoop->contains(Parent)) {
446         // If we already know this instruction is used externally, move on to
447         // the next user.
448         if (ExitInstruction == Cur)
449           continue;
450 
451         // Exit if you find multiple values used outside or if the header phi
452         // node is being used. In this case the user uses the value of the
453         // previous iteration, in which case we would loose "VF-1" iterations of
454         // the reduction operation if we vectorize.
455         if (ExitInstruction != nullptr || Cur == Phi)
456           return false;
457 
458         // The instruction used by an outside user must be the last instruction
459         // before we feed back to the reduction phi. Otherwise, we loose VF-1
460         // operations on the value.
461         if (!is_contained(Phi->operands(), Cur))
462           return false;
463 
464         ExitInstruction = Cur;
465         continue;
466       }
467 
468       // Process instructions only once (termination). Each reduction cycle
469       // value must only be used once, except by phi nodes and min/max
470       // reductions which are represented as a cmp followed by a select.
471       InstDesc IgnoredVal(false, nullptr);
472       if (VisitedInsts.insert(UI).second) {
473         if (isa<PHINode>(UI)) {
474           PHIs.push_back(UI);
475         } else {
476           StoreInst *SI = dyn_cast<StoreInst>(UI);
477           if (SI && SI->getPointerOperand() == Cur) {
478             // Reduction variable chain can only be stored somewhere but it
479             // can't be used as an address.
480             return false;
481           }
482           NonPHIs.push_back(UI);
483         }
484       } else if (!isa<PHINode>(UI) &&
485                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
486                    !isa<SelectInst>(UI)) ||
487                   (!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
488                    !isAnyOfPattern(TheLoop, Phi, UI, IgnoredVal)
489                         .isRecurrence() &&
490                    !isMinMaxPattern(UI, Kind, IgnoredVal).isRecurrence())))
491         return false;
492 
493       // Remember that we completed the cycle.
494       if (UI == Phi)
495         FoundStartPHI = true;
496     }
497     Worklist.append(PHIs.begin(), PHIs.end());
498     Worklist.append(NonPHIs.begin(), NonPHIs.end());
499   }
500 
501   // This means we have seen one but not the other instruction of the
502   // pattern or more than just a select and cmp. Zero implies that we saw a
503   // llvm.min/max intrinsic, which is always OK.
504   if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2 &&
505       NumCmpSelectPatternInst != 0)
506     return false;
507 
508   if (isAnyOfRecurrenceKind(Kind) && NumCmpSelectPatternInst != 1)
509     return false;
510 
511   if (IntermediateStore) {
512     // Check that stored value goes to the phi node again. This way we make sure
513     // that the value stored in IntermediateStore is indeed the final reduction
514     // value.
515     if (!is_contained(Phi->operands(), IntermediateStore->getValueOperand())) {
516       LLVM_DEBUG(dbgs() << "Not a final reduction value stored: "
517                         << *IntermediateStore << '\n');
518       return false;
519     }
520 
521     // If there is an exit instruction it's value should be stored in
522     // IntermediateStore
523     if (ExitInstruction &&
524         IntermediateStore->getValueOperand() != ExitInstruction) {
525       LLVM_DEBUG(dbgs() << "Last store Instruction of reduction value does not "
526                            "store last calculated value of the reduction: "
527                         << *IntermediateStore << '\n');
528       return false;
529     }
530 
531     // If all uses are inside the loop (intermediate stores), then the
532     // reduction value after the loop will be the one used in the last store.
533     if (!ExitInstruction)
534       ExitInstruction = cast<Instruction>(IntermediateStore->getValueOperand());
535   }
536 
537   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
538     return false;
539 
540   const bool IsOrdered =
541       checkOrderedReduction(Kind, ExactFPMathInst, ExitInstruction, Phi);
542 
543   if (Start != Phi) {
544     // If the starting value is not the same as the phi node, we speculatively
545     // looked through an 'and' instruction when evaluating a potential
546     // arithmetic reduction to determine if it may have been type-promoted.
547     //
548     // We now compute the minimal bit width that is required to represent the
549     // reduction. If this is the same width that was indicated by the 'and', we
550     // can represent the reduction in the smaller type. The 'and' instruction
551     // will be eliminated since it will essentially be a cast instruction that
552     // can be ignore in the cost model. If we compute a different type than we
553     // did when evaluating the 'and', the 'and' will not be eliminated, and we
554     // will end up with different kinds of operations in the recurrence
555     // expression (e.g., IntegerAND, IntegerADD). We give up if this is
556     // the case.
557     //
558     // The vectorizer relies on InstCombine to perform the actual
559     // type-shrinking. It does this by inserting instructions to truncate the
560     // exit value of the reduction to the width indicated by RecurrenceType and
561     // then extend this value back to the original width. If IsSigned is false,
562     // a 'zext' instruction will be generated; otherwise, a 'sext' will be
563     // used.
564     //
565     // TODO: We should not rely on InstCombine to rewrite the reduction in the
566     //       smaller type. We should just generate a correctly typed expression
567     //       to begin with.
568     Type *ComputedType;
569     std::tie(ComputedType, IsSigned) =
570         computeRecurrenceType(ExitInstruction, DB, AC, DT);
571     if (ComputedType != RecurrenceType)
572       return false;
573   }
574 
575   // Collect cast instructions and the minimum width used by the recurrence.
576   // If the starting value is not the same as the phi node and the computed
577   // recurrence type is equal to the recurrence type, the recurrence expression
578   // will be represented in a narrower or wider type. If there are any cast
579   // instructions that will be unnecessary, collect them in CastsFromRecurTy.
580   // Note that the 'and' instruction was already included in this list.
581   //
582   // TODO: A better way to represent this may be to tag in some way all the
583   //       instructions that are a part of the reduction. The vectorizer cost
584   //       model could then apply the recurrence type to these instructions,
585   //       without needing a white list of instructions to ignore.
586   //       This may also be useful for the inloop reductions, if it can be
587   //       kept simple enough.
588   collectCastInstrs(TheLoop, ExitInstruction, RecurrenceType, CastInsts,
589                     MinWidthCastToRecurrenceType);
590 
591   // We found a reduction var if we have reached the original phi node and we
592   // only have a single instruction with out-of-loop users.
593 
594   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
595   // is saved as part of the RecurrenceDescriptor.
596 
597   // Save the description of this reduction variable.
598   RecurrenceDescriptor RD(RdxStart, ExitInstruction, IntermediateStore, Kind,
599                           FMF, ExactFPMathInst, RecurrenceType, IsSigned,
600                           IsOrdered, CastInsts, MinWidthCastToRecurrenceType);
601   RedDes = RD;
602 
603   return true;
604 }
605 
606 // We are looking for loops that do something like this:
607 //   int r = 0;
608 //   for (int i = 0; i < n; i++) {
609 //     if (src[i] > 3)
610 //       r = 3;
611 //   }
612 // where the reduction value (r) only has two states, in this example 0 or 3.
613 // The generated LLVM IR for this type of loop will be like this:
614 //   for.body:
615 //     %r = phi i32 [ %spec.select, %for.body ], [ 0, %entry ]
616 //     ...
617 //     %cmp = icmp sgt i32 %5, 3
618 //     %spec.select = select i1 %cmp, i32 3, i32 %r
619 //     ...
620 // In general we can support vectorization of loops where 'r' flips between
621 // any two non-constants, provided they are loop invariant. The only thing
622 // we actually care about at the end of the loop is whether or not any lane
623 // in the selected vector is different from the start value. The final
624 // across-vector reduction after the loop simply involves choosing the start
625 // value if nothing changed (0 in the example above) or the other selected
626 // value (3 in the example above).
627 RecurrenceDescriptor::InstDesc
isAnyOfPattern(Loop * Loop,PHINode * OrigPhi,Instruction * I,InstDesc & Prev)628 RecurrenceDescriptor::isAnyOfPattern(Loop *Loop, PHINode *OrigPhi,
629                                      Instruction *I, InstDesc &Prev) {
630   // We must handle the select(cmp(),x,y) as a single instruction. Advance to
631   // the select.
632   CmpInst::Predicate Pred;
633   if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
634     if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
635       return InstDesc(Select, Prev.getRecKind());
636   }
637 
638   if (!match(I,
639              m_Select(m_Cmp(Pred, m_Value(), m_Value()), m_Value(), m_Value())))
640     return InstDesc(false, I);
641 
642   SelectInst *SI = cast<SelectInst>(I);
643   Value *NonPhi = nullptr;
644 
645   if (OrigPhi == dyn_cast<PHINode>(SI->getTrueValue()))
646     NonPhi = SI->getFalseValue();
647   else if (OrigPhi == dyn_cast<PHINode>(SI->getFalseValue()))
648     NonPhi = SI->getTrueValue();
649   else
650     return InstDesc(false, I);
651 
652   // We are looking for selects of the form:
653   //   select(cmp(), phi, loop_invariant) or
654   //   select(cmp(), loop_invariant, phi)
655   if (!Loop->isLoopInvariant(NonPhi))
656     return InstDesc(false, I);
657 
658   return InstDesc(I, isa<ICmpInst>(I->getOperand(0)) ? RecurKind::IAnyOf
659                                                      : RecurKind::FAnyOf);
660 }
661 
662 RecurrenceDescriptor::InstDesc
isMinMaxPattern(Instruction * I,RecurKind Kind,const InstDesc & Prev)663 RecurrenceDescriptor::isMinMaxPattern(Instruction *I, RecurKind Kind,
664                                       const InstDesc &Prev) {
665   assert((isa<CmpInst>(I) || isa<SelectInst>(I) || isa<CallInst>(I)) &&
666          "Expected a cmp or select or call instruction");
667   if (!isMinMaxRecurrenceKind(Kind))
668     return InstDesc(false, I);
669 
670   // We must handle the select(cmp()) as a single instruction. Advance to the
671   // select.
672   CmpInst::Predicate Pred;
673   if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
674     if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
675       return InstDesc(Select, Prev.getRecKind());
676   }
677 
678   // Only match select with single use cmp condition, or a min/max intrinsic.
679   if (!isa<IntrinsicInst>(I) &&
680       !match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
681                          m_Value())))
682     return InstDesc(false, I);
683 
684   // Look for a min/max pattern.
685   if (match(I, m_UMin(m_Value(), m_Value())))
686     return InstDesc(Kind == RecurKind::UMin, I);
687   if (match(I, m_UMax(m_Value(), m_Value())))
688     return InstDesc(Kind == RecurKind::UMax, I);
689   if (match(I, m_SMax(m_Value(), m_Value())))
690     return InstDesc(Kind == RecurKind::SMax, I);
691   if (match(I, m_SMin(m_Value(), m_Value())))
692     return InstDesc(Kind == RecurKind::SMin, I);
693   if (match(I, m_OrdFMin(m_Value(), m_Value())))
694     return InstDesc(Kind == RecurKind::FMin, I);
695   if (match(I, m_OrdFMax(m_Value(), m_Value())))
696     return InstDesc(Kind == RecurKind::FMax, I);
697   if (match(I, m_UnordFMin(m_Value(), m_Value())))
698     return InstDesc(Kind == RecurKind::FMin, I);
699   if (match(I, m_UnordFMax(m_Value(), m_Value())))
700     return InstDesc(Kind == RecurKind::FMax, I);
701   if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
702     return InstDesc(Kind == RecurKind::FMin, I);
703   if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
704     return InstDesc(Kind == RecurKind::FMax, I);
705   if (match(I, m_Intrinsic<Intrinsic::minimum>(m_Value(), m_Value())))
706     return InstDesc(Kind == RecurKind::FMinimum, I);
707   if (match(I, m_Intrinsic<Intrinsic::maximum>(m_Value(), m_Value())))
708     return InstDesc(Kind == RecurKind::FMaximum, I);
709 
710   return InstDesc(false, I);
711 }
712 
713 /// Returns true if the select instruction has users in the compare-and-add
714 /// reduction pattern below. The select instruction argument is the last one
715 /// in the sequence.
716 ///
717 /// %sum.1 = phi ...
718 /// ...
719 /// %cmp = fcmp pred %0, %CFP
720 /// %add = fadd %0, %sum.1
721 /// %sum.2 = select %cmp, %add, %sum.1
722 RecurrenceDescriptor::InstDesc
isConditionalRdxPattern(RecurKind Kind,Instruction * I)723 RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) {
724   SelectInst *SI = dyn_cast<SelectInst>(I);
725   if (!SI)
726     return InstDesc(false, I);
727 
728   CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
729   // Only handle single use cases for now.
730   if (!CI || !CI->hasOneUse())
731     return InstDesc(false, I);
732 
733   Value *TrueVal = SI->getTrueValue();
734   Value *FalseVal = SI->getFalseValue();
735   // Handle only when either of operands of select instruction is a PHI
736   // node for now.
737   if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
738       (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
739     return InstDesc(false, I);
740 
741   Instruction *I1 =
742       isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
743                              : dyn_cast<Instruction>(TrueVal);
744   if (!I1 || !I1->isBinaryOp())
745     return InstDesc(false, I);
746 
747   Value *Op1, *Op2;
748   if (!(((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) ||
749           m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
750          I1->isFast()) ||
751         (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast())) ||
752         ((m_Add(m_Value(Op1), m_Value(Op2)).match(I1) ||
753           m_Sub(m_Value(Op1), m_Value(Op2)).match(I1))) ||
754         (m_Mul(m_Value(Op1), m_Value(Op2)).match(I1))))
755     return InstDesc(false, I);
756 
757   Instruction *IPhi = isa<PHINode>(*Op1) ? dyn_cast<Instruction>(Op1)
758                                          : dyn_cast<Instruction>(Op2);
759   if (!IPhi || IPhi != FalseVal)
760     return InstDesc(false, I);
761 
762   return InstDesc(true, SI);
763 }
764 
765 RecurrenceDescriptor::InstDesc
isRecurrenceInstr(Loop * L,PHINode * OrigPhi,Instruction * I,RecurKind Kind,InstDesc & Prev,FastMathFlags FuncFMF)766 RecurrenceDescriptor::isRecurrenceInstr(Loop *L, PHINode *OrigPhi,
767                                         Instruction *I, RecurKind Kind,
768                                         InstDesc &Prev, FastMathFlags FuncFMF) {
769   assert(Prev.getRecKind() == RecurKind::None || Prev.getRecKind() == Kind);
770   switch (I->getOpcode()) {
771   default:
772     return InstDesc(false, I);
773   case Instruction::PHI:
774     return InstDesc(I, Prev.getRecKind(), Prev.getExactFPMathInst());
775   case Instruction::Sub:
776   case Instruction::Add:
777     return InstDesc(Kind == RecurKind::Add, I);
778   case Instruction::Mul:
779     return InstDesc(Kind == RecurKind::Mul, I);
780   case Instruction::And:
781     return InstDesc(Kind == RecurKind::And, I);
782   case Instruction::Or:
783     return InstDesc(Kind == RecurKind::Or, I);
784   case Instruction::Xor:
785     return InstDesc(Kind == RecurKind::Xor, I);
786   case Instruction::FDiv:
787   case Instruction::FMul:
788     return InstDesc(Kind == RecurKind::FMul, I,
789                     I->hasAllowReassoc() ? nullptr : I);
790   case Instruction::FSub:
791   case Instruction::FAdd:
792     return InstDesc(Kind == RecurKind::FAdd, I,
793                     I->hasAllowReassoc() ? nullptr : I);
794   case Instruction::Select:
795     if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul ||
796         Kind == RecurKind::Add || Kind == RecurKind::Mul)
797       return isConditionalRdxPattern(Kind, I);
798     [[fallthrough]];
799   case Instruction::FCmp:
800   case Instruction::ICmp:
801   case Instruction::Call:
802     if (isAnyOfRecurrenceKind(Kind))
803       return isAnyOfPattern(L, OrigPhi, I, Prev);
804     auto HasRequiredFMF = [&]() {
805      if (FuncFMF.noNaNs() && FuncFMF.noSignedZeros())
806        return true;
807      if (isa<FPMathOperator>(I) && I->hasNoNaNs() && I->hasNoSignedZeros())
808        return true;
809      // minimum and maximum intrinsics do not require nsz and nnan flags since
810      // NaN and signed zeroes are propagated in the intrinsic implementation.
811      return match(I, m_Intrinsic<Intrinsic::minimum>(m_Value(), m_Value())) ||
812             match(I, m_Intrinsic<Intrinsic::maximum>(m_Value(), m_Value()));
813     };
814     if (isIntMinMaxRecurrenceKind(Kind) ||
815         (HasRequiredFMF() && isFPMinMaxRecurrenceKind(Kind)))
816       return isMinMaxPattern(I, Kind, Prev);
817     else if (isFMulAddIntrinsic(I))
818       return InstDesc(Kind == RecurKind::FMulAdd, I,
819                       I->hasAllowReassoc() ? nullptr : I);
820     return InstDesc(false, I);
821   }
822 }
823 
hasMultipleUsesOf(Instruction * I,SmallPtrSetImpl<Instruction * > & Insts,unsigned MaxNumUses)824 bool RecurrenceDescriptor::hasMultipleUsesOf(
825     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
826     unsigned MaxNumUses) {
827   unsigned NumUses = 0;
828   for (const Use &U : I->operands()) {
829     if (Insts.count(dyn_cast<Instruction>(U)))
830       ++NumUses;
831     if (NumUses > MaxNumUses)
832       return true;
833   }
834 
835   return false;
836 }
837 
isReductionPHI(PHINode * Phi,Loop * TheLoop,RecurrenceDescriptor & RedDes,DemandedBits * DB,AssumptionCache * AC,DominatorTree * DT,ScalarEvolution * SE)838 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
839                                           RecurrenceDescriptor &RedDes,
840                                           DemandedBits *DB, AssumptionCache *AC,
841                                           DominatorTree *DT,
842                                           ScalarEvolution *SE) {
843   BasicBlock *Header = TheLoop->getHeader();
844   Function &F = *Header->getParent();
845   FastMathFlags FMF;
846   FMF.setNoNaNs(
847       F.getFnAttribute("no-nans-fp-math").getValueAsBool());
848   FMF.setNoSignedZeros(
849       F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool());
850 
851   if (AddReductionVar(Phi, RecurKind::Add, TheLoop, FMF, RedDes, DB, AC, DT,
852                       SE)) {
853     LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
854     return true;
855   }
856   if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, FMF, RedDes, DB, AC, DT,
857                       SE)) {
858     LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
859     return true;
860   }
861   if (AddReductionVar(Phi, RecurKind::Or, TheLoop, FMF, RedDes, DB, AC, DT,
862                       SE)) {
863     LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
864     return true;
865   }
866   if (AddReductionVar(Phi, RecurKind::And, TheLoop, FMF, RedDes, DB, AC, DT,
867                       SE)) {
868     LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
869     return true;
870   }
871   if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, FMF, RedDes, DB, AC, DT,
872                       SE)) {
873     LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
874     return true;
875   }
876   if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, FMF, RedDes, DB, AC, DT,
877                       SE)) {
878     LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n");
879     return true;
880   }
881   if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, FMF, RedDes, DB, AC, DT,
882                       SE)) {
883     LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n");
884     return true;
885   }
886   if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, FMF, RedDes, DB, AC, DT,
887                       SE)) {
888     LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n");
889     return true;
890   }
891   if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, FMF, RedDes, DB, AC, DT,
892                       SE)) {
893     LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n");
894     return true;
895   }
896   if (AddReductionVar(Phi, RecurKind::IAnyOf, TheLoop, FMF, RedDes, DB, AC, DT,
897                       SE)) {
898     LLVM_DEBUG(dbgs() << "Found an integer conditional select reduction PHI."
899                       << *Phi << "\n");
900     return true;
901   }
902   if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, FMF, RedDes, DB, AC, DT,
903                       SE)) {
904     LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
905     return true;
906   }
907   if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, FMF, RedDes, DB, AC, DT,
908                       SE)) {
909     LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
910     return true;
911   }
912   if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, FMF, RedDes, DB, AC, DT,
913                       SE)) {
914     LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n");
915     return true;
916   }
917   if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, FMF, RedDes, DB, AC, DT,
918                       SE)) {
919     LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n");
920     return true;
921   }
922   if (AddReductionVar(Phi, RecurKind::FAnyOf, TheLoop, FMF, RedDes, DB, AC, DT,
923                       SE)) {
924     LLVM_DEBUG(dbgs() << "Found a float conditional select reduction PHI."
925                       << " PHI." << *Phi << "\n");
926     return true;
927   }
928   if (AddReductionVar(Phi, RecurKind::FMulAdd, TheLoop, FMF, RedDes, DB, AC, DT,
929                       SE)) {
930     LLVM_DEBUG(dbgs() << "Found an FMulAdd reduction PHI." << *Phi << "\n");
931     return true;
932   }
933   if (AddReductionVar(Phi, RecurKind::FMaximum, TheLoop, FMF, RedDes, DB, AC, DT,
934                       SE)) {
935     LLVM_DEBUG(dbgs() << "Found a float MAXIMUM reduction PHI." << *Phi << "\n");
936     return true;
937   }
938   if (AddReductionVar(Phi, RecurKind::FMinimum, TheLoop, FMF, RedDes, DB, AC, DT,
939                       SE)) {
940     LLVM_DEBUG(dbgs() << "Found a float MINIMUM reduction PHI." << *Phi << "\n");
941     return true;
942   }
943   // Not a reduction of known type.
944   return false;
945 }
946 
isFixedOrderRecurrence(PHINode * Phi,Loop * TheLoop,DominatorTree * DT)947 bool RecurrenceDescriptor::isFixedOrderRecurrence(PHINode *Phi, Loop *TheLoop,
948                                                   DominatorTree *DT) {
949 
950   // Ensure the phi node is in the loop header and has two incoming values.
951   if (Phi->getParent() != TheLoop->getHeader() ||
952       Phi->getNumIncomingValues() != 2)
953     return false;
954 
955   // Ensure the loop has a preheader and a single latch block. The loop
956   // vectorizer will need the latch to set up the next iteration of the loop.
957   auto *Preheader = TheLoop->getLoopPreheader();
958   auto *Latch = TheLoop->getLoopLatch();
959   if (!Preheader || !Latch)
960     return false;
961 
962   // Ensure the phi node's incoming blocks are the loop preheader and latch.
963   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
964       Phi->getBasicBlockIndex(Latch) < 0)
965     return false;
966 
967   // Get the previous value. The previous value comes from the latch edge while
968   // the initial value comes from the preheader edge.
969   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
970 
971   // If Previous is a phi in the header, go through incoming values from the
972   // latch until we find a non-phi value. Use this as the new Previous, all uses
973   // in the header will be dominated by the original phi, but need to be moved
974   // after the non-phi previous value.
975   SmallPtrSet<PHINode *, 4> SeenPhis;
976   while (auto *PrevPhi = dyn_cast_or_null<PHINode>(Previous)) {
977     if (PrevPhi->getParent() != Phi->getParent())
978       return false;
979     if (!SeenPhis.insert(PrevPhi).second)
980       return false;
981     Previous = dyn_cast<Instruction>(PrevPhi->getIncomingValueForBlock(Latch));
982   }
983 
984   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous))
985     return false;
986 
987   // Ensure every user of the phi node (recursively) is dominated by the
988   // previous value. The dominance requirement ensures the loop vectorizer will
989   // not need to vectorize the initial value prior to the first iteration of the
990   // loop.
991   // TODO: Consider extending this sinking to handle memory instructions.
992 
993   SmallPtrSet<Value *, 8> Seen;
994   BasicBlock *PhiBB = Phi->getParent();
995   SmallVector<Instruction *, 8> WorkList;
996   auto TryToPushSinkCandidate = [&](Instruction *SinkCandidate) {
997     // Cyclic dependence.
998     if (Previous == SinkCandidate)
999       return false;
1000 
1001     if (!Seen.insert(SinkCandidate).second)
1002       return true;
1003     if (DT->dominates(Previous,
1004                       SinkCandidate)) // We already are good w/o sinking.
1005       return true;
1006 
1007     if (SinkCandidate->getParent() != PhiBB ||
1008         SinkCandidate->mayHaveSideEffects() ||
1009         SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator())
1010       return false;
1011 
1012     // If we reach a PHI node that is not dominated by Previous, we reached a
1013     // header PHI. No need for sinking.
1014     if (isa<PHINode>(SinkCandidate))
1015       return true;
1016 
1017     // Sink User tentatively and check its users
1018     WorkList.push_back(SinkCandidate);
1019     return true;
1020   };
1021 
1022   WorkList.push_back(Phi);
1023   // Try to recursively sink instructions and their users after Previous.
1024   while (!WorkList.empty()) {
1025     Instruction *Current = WorkList.pop_back_val();
1026     for (User *User : Current->users()) {
1027       if (!TryToPushSinkCandidate(cast<Instruction>(User)))
1028         return false;
1029     }
1030   }
1031 
1032   return true;
1033 }
1034 
1035 /// This function returns the identity element (or neutral element) for
1036 /// the operation K.
getRecurrenceIdentity(RecurKind K,Type * Tp,FastMathFlags FMF) const1037 Value *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp,
1038                                                    FastMathFlags FMF) const {
1039   switch (K) {
1040   case RecurKind::Xor:
1041   case RecurKind::Add:
1042   case RecurKind::Or:
1043     // Adding, Xoring, Oring zero to a number does not change it.
1044     return ConstantInt::get(Tp, 0);
1045   case RecurKind::Mul:
1046     // Multiplying a number by 1 does not change it.
1047     return ConstantInt::get(Tp, 1);
1048   case RecurKind::And:
1049     // AND-ing a number with an all-1 value does not change it.
1050     return ConstantInt::get(Tp, -1, true);
1051   case RecurKind::FMul:
1052     // Multiplying a number by 1 does not change it.
1053     return ConstantFP::get(Tp, 1.0L);
1054   case RecurKind::FMulAdd:
1055   case RecurKind::FAdd:
1056     // Adding zero to a number does not change it.
1057     // FIXME: Ideally we should not need to check FMF for FAdd and should always
1058     // use -0.0. However, this will currently result in mixed vectors of 0.0/-0.0.
1059     // Instead, we should ensure that 1) the FMF from FAdd are propagated to the PHI
1060     // nodes where possible, and 2) PHIs with the nsz flag + -0.0 use 0.0. This would
1061     // mean we can then remove the check for noSignedZeros() below (see D98963).
1062     if (FMF.noSignedZeros())
1063       return ConstantFP::get(Tp, 0.0L);
1064     return ConstantFP::get(Tp, -0.0L);
1065   case RecurKind::UMin:
1066     return ConstantInt::get(Tp, -1, true);
1067   case RecurKind::UMax:
1068     return ConstantInt::get(Tp, 0);
1069   case RecurKind::SMin:
1070     return ConstantInt::get(Tp,
1071                             APInt::getSignedMaxValue(Tp->getIntegerBitWidth()));
1072   case RecurKind::SMax:
1073     return ConstantInt::get(Tp,
1074                             APInt::getSignedMinValue(Tp->getIntegerBitWidth()));
1075   case RecurKind::FMin:
1076     assert((FMF.noNaNs() && FMF.noSignedZeros()) &&
1077            "nnan, nsz is expected to be set for FP min reduction.");
1078     return ConstantFP::getInfinity(Tp, false /*Negative*/);
1079   case RecurKind::FMax:
1080     assert((FMF.noNaNs() && FMF.noSignedZeros()) &&
1081            "nnan, nsz is expected to be set for FP max reduction.");
1082     return ConstantFP::getInfinity(Tp, true /*Negative*/);
1083   case RecurKind::FMinimum:
1084     return ConstantFP::getInfinity(Tp, false /*Negative*/);
1085   case RecurKind::FMaximum:
1086     return ConstantFP::getInfinity(Tp, true /*Negative*/);
1087   case RecurKind::IAnyOf:
1088   case RecurKind::FAnyOf:
1089     return getRecurrenceStartValue();
1090     break;
1091   default:
1092     llvm_unreachable("Unknown recurrence kind");
1093   }
1094 }
1095 
getOpcode(RecurKind Kind)1096 unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) {
1097   switch (Kind) {
1098   case RecurKind::Add:
1099     return Instruction::Add;
1100   case RecurKind::Mul:
1101     return Instruction::Mul;
1102   case RecurKind::Or:
1103     return Instruction::Or;
1104   case RecurKind::And:
1105     return Instruction::And;
1106   case RecurKind::Xor:
1107     return Instruction::Xor;
1108   case RecurKind::FMul:
1109     return Instruction::FMul;
1110   case RecurKind::FMulAdd:
1111   case RecurKind::FAdd:
1112     return Instruction::FAdd;
1113   case RecurKind::SMax:
1114   case RecurKind::SMin:
1115   case RecurKind::UMax:
1116   case RecurKind::UMin:
1117   case RecurKind::IAnyOf:
1118     return Instruction::ICmp;
1119   case RecurKind::FMax:
1120   case RecurKind::FMin:
1121   case RecurKind::FMaximum:
1122   case RecurKind::FMinimum:
1123   case RecurKind::FAnyOf:
1124     return Instruction::FCmp;
1125   default:
1126     llvm_unreachable("Unknown recurrence operation");
1127   }
1128 }
1129 
1130 SmallVector<Instruction *, 4>
getReductionOpChain(PHINode * Phi,Loop * L) const1131 RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const {
1132   SmallVector<Instruction *, 4> ReductionOperations;
1133   unsigned RedOp = getOpcode(Kind);
1134 
1135   // Search down from the Phi to the LoopExitInstr, looking for instructions
1136   // with a single user of the correct type for the reduction.
1137 
1138   // Note that we check that the type of the operand is correct for each item in
1139   // the chain, including the last (the loop exit value). This can come up from
1140   // sub, which would otherwise be treated as an add reduction. MinMax also need
1141   // to check for a pair of icmp/select, for which we use getNextInstruction and
1142   // isCorrectOpcode functions to step the right number of instruction, and
1143   // check the icmp/select pair.
1144   // FIXME: We also do not attempt to look through Select's yet, which might
1145   // be part of the reduction chain, or attempt to looks through And's to find a
1146   // smaller bitwidth. Subs are also currently not allowed (which are usually
1147   // treated as part of a add reduction) as they are expected to generally be
1148   // more expensive than out-of-loop reductions, and need to be costed more
1149   // carefully.
1150   unsigned ExpectedUses = 1;
1151   if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp)
1152     ExpectedUses = 2;
1153 
1154   auto getNextInstruction = [&](Instruction *Cur) -> Instruction * {
1155     for (auto *User : Cur->users()) {
1156       Instruction *UI = cast<Instruction>(User);
1157       if (isa<PHINode>(UI))
1158         continue;
1159       if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
1160         // We are expecting a icmp/select pair, which we go to the next select
1161         // instruction if we can. We already know that Cur has 2 uses.
1162         if (isa<SelectInst>(UI))
1163           return UI;
1164         continue;
1165       }
1166       return UI;
1167     }
1168     return nullptr;
1169   };
1170   auto isCorrectOpcode = [&](Instruction *Cur) {
1171     if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
1172       Value *LHS, *RHS;
1173       return SelectPatternResult::isMinOrMax(
1174           matchSelectPattern(Cur, LHS, RHS).Flavor);
1175     }
1176     // Recognize a call to the llvm.fmuladd intrinsic.
1177     if (isFMulAddIntrinsic(Cur))
1178       return true;
1179 
1180     return Cur->getOpcode() == RedOp;
1181   };
1182 
1183   // Attempt to look through Phis which are part of the reduction chain
1184   unsigned ExtraPhiUses = 0;
1185   Instruction *RdxInstr = LoopExitInstr;
1186   if (auto ExitPhi = dyn_cast<PHINode>(LoopExitInstr)) {
1187     if (ExitPhi->getNumIncomingValues() != 2)
1188       return {};
1189 
1190     Instruction *Inc0 = dyn_cast<Instruction>(ExitPhi->getIncomingValue(0));
1191     Instruction *Inc1 = dyn_cast<Instruction>(ExitPhi->getIncomingValue(1));
1192 
1193     Instruction *Chain = nullptr;
1194     if (Inc0 == Phi)
1195       Chain = Inc1;
1196     else if (Inc1 == Phi)
1197       Chain = Inc0;
1198     else
1199       return {};
1200 
1201     RdxInstr = Chain;
1202     ExtraPhiUses = 1;
1203   }
1204 
1205   // The loop exit instruction we check first (as a quick test) but add last. We
1206   // check the opcode is correct (and dont allow them to be Subs) and that they
1207   // have expected to have the expected number of uses. They will have one use
1208   // from the phi and one from a LCSSA value, no matter the type.
1209   if (!isCorrectOpcode(RdxInstr) || !LoopExitInstr->hasNUses(2))
1210     return {};
1211 
1212   // Check that the Phi has one (or two for min/max) uses, plus an extra use
1213   // for conditional reductions.
1214   if (!Phi->hasNUses(ExpectedUses + ExtraPhiUses))
1215     return {};
1216 
1217   Instruction *Cur = getNextInstruction(Phi);
1218 
1219   // Each other instruction in the chain should have the expected number of uses
1220   // and be the correct opcode.
1221   while (Cur != RdxInstr) {
1222     if (!Cur || !isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses))
1223       return {};
1224 
1225     ReductionOperations.push_back(Cur);
1226     Cur = getNextInstruction(Cur);
1227   }
1228 
1229   ReductionOperations.push_back(Cur);
1230   return ReductionOperations;
1231 }
1232 
InductionDescriptor(Value * Start,InductionKind K,const SCEV * Step,BinaryOperator * BOp,SmallVectorImpl<Instruction * > * Casts)1233 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
1234                                          const SCEV *Step, BinaryOperator *BOp,
1235                                          SmallVectorImpl<Instruction *> *Casts)
1236     : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
1237   assert(IK != IK_NoInduction && "Not an induction");
1238 
1239   // Start value type should match the induction kind and the value
1240   // itself should not be null.
1241   assert(StartValue && "StartValue is null");
1242   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
1243          "StartValue is not a pointer for pointer induction");
1244   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
1245          "StartValue is not an integer for integer induction");
1246 
1247   // Check the Step Value. It should be non-zero integer value.
1248   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
1249          "Step value is zero");
1250 
1251   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
1252          "StepValue is not an integer");
1253 
1254   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
1255          "StepValue is not FP for FpInduction");
1256   assert((IK != IK_FpInduction ||
1257           (InductionBinOp &&
1258            (InductionBinOp->getOpcode() == Instruction::FAdd ||
1259             InductionBinOp->getOpcode() == Instruction::FSub))) &&
1260          "Binary opcode should be specified for FP induction");
1261 
1262   if (Casts) {
1263     for (auto &Inst : *Casts) {
1264       RedundantCasts.push_back(Inst);
1265     }
1266   }
1267 }
1268 
getConstIntStepValue() const1269 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
1270   if (isa<SCEVConstant>(Step))
1271     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
1272   return nullptr;
1273 }
1274 
isFPInductionPHI(PHINode * Phi,const Loop * TheLoop,ScalarEvolution * SE,InductionDescriptor & D)1275 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
1276                                            ScalarEvolution *SE,
1277                                            InductionDescriptor &D) {
1278 
1279   // Here we only handle FP induction variables.
1280   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
1281 
1282   if (TheLoop->getHeader() != Phi->getParent())
1283     return false;
1284 
1285   // The loop may have multiple entrances or multiple exits; we can analyze
1286   // this phi if it has a unique entry value and a unique backedge value.
1287   if (Phi->getNumIncomingValues() != 2)
1288     return false;
1289   Value *BEValue = nullptr, *StartValue = nullptr;
1290   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
1291     BEValue = Phi->getIncomingValue(0);
1292     StartValue = Phi->getIncomingValue(1);
1293   } else {
1294     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
1295            "Unexpected Phi node in the loop");
1296     BEValue = Phi->getIncomingValue(1);
1297     StartValue = Phi->getIncomingValue(0);
1298   }
1299 
1300   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
1301   if (!BOp)
1302     return false;
1303 
1304   Value *Addend = nullptr;
1305   if (BOp->getOpcode() == Instruction::FAdd) {
1306     if (BOp->getOperand(0) == Phi)
1307       Addend = BOp->getOperand(1);
1308     else if (BOp->getOperand(1) == Phi)
1309       Addend = BOp->getOperand(0);
1310   } else if (BOp->getOpcode() == Instruction::FSub)
1311     if (BOp->getOperand(0) == Phi)
1312       Addend = BOp->getOperand(1);
1313 
1314   if (!Addend)
1315     return false;
1316 
1317   // The addend should be loop invariant
1318   if (auto *I = dyn_cast<Instruction>(Addend))
1319     if (TheLoop->contains(I))
1320       return false;
1321 
1322   // FP Step has unknown SCEV
1323   const SCEV *Step = SE->getUnknown(Addend);
1324   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
1325   return true;
1326 }
1327 
1328 /// This function is called when we suspect that the update-chain of a phi node
1329 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
1330 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
1331 /// predicate P under which the SCEV expression for the phi can be the
1332 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
1333 /// cast instructions that are involved in the update-chain of this induction.
1334 /// A caller that adds the required runtime predicate can be free to drop these
1335 /// cast instructions, and compute the phi using \p AR (instead of some scev
1336 /// expression with casts).
1337 ///
1338 /// For example, without a predicate the scev expression can take the following
1339 /// form:
1340 ///      (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
1341 ///
1342 /// It corresponds to the following IR sequence:
1343 /// %for.body:
1344 ///   %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
1345 ///   %casted_phi = "ExtTrunc i64 %x"
1346 ///   %add = add i64 %casted_phi, %step
1347 ///
1348 /// where %x is given in \p PN,
1349 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
1350 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
1351 /// several forms, for example, such as:
1352 ///   ExtTrunc1:    %casted_phi = and  %x, 2^n-1
1353 /// or:
1354 ///   ExtTrunc2:    %t = shl %x, m
1355 ///                 %casted_phi = ashr %t, m
1356 ///
1357 /// If we are able to find such sequence, we return the instructions
1358 /// we found, namely %casted_phi and the instructions on its use-def chain up
1359 /// to the phi (not including the phi).
getCastsForInductionPHI(PredicatedScalarEvolution & PSE,const SCEVUnknown * PhiScev,const SCEVAddRecExpr * AR,SmallVectorImpl<Instruction * > & CastInsts)1360 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
1361                                     const SCEVUnknown *PhiScev,
1362                                     const SCEVAddRecExpr *AR,
1363                                     SmallVectorImpl<Instruction *> &CastInsts) {
1364 
1365   assert(CastInsts.empty() && "CastInsts is expected to be empty.");
1366   auto *PN = cast<PHINode>(PhiScev->getValue());
1367   assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
1368   const Loop *L = AR->getLoop();
1369 
1370   // Find any cast instructions that participate in the def-use chain of
1371   // PhiScev in the loop.
1372   // FORNOW/TODO: We currently expect the def-use chain to include only
1373   // two-operand instructions, where one of the operands is an invariant.
1374   // createAddRecFromPHIWithCasts() currently does not support anything more
1375   // involved than that, so we keep the search simple. This can be
1376   // extended/generalized as needed.
1377 
1378   auto getDef = [&](const Value *Val) -> Value * {
1379     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
1380     if (!BinOp)
1381       return nullptr;
1382     Value *Op0 = BinOp->getOperand(0);
1383     Value *Op1 = BinOp->getOperand(1);
1384     Value *Def = nullptr;
1385     if (L->isLoopInvariant(Op0))
1386       Def = Op1;
1387     else if (L->isLoopInvariant(Op1))
1388       Def = Op0;
1389     return Def;
1390   };
1391 
1392   // Look for the instruction that defines the induction via the
1393   // loop backedge.
1394   BasicBlock *Latch = L->getLoopLatch();
1395   if (!Latch)
1396     return false;
1397   Value *Val = PN->getIncomingValueForBlock(Latch);
1398   if (!Val)
1399     return false;
1400 
1401   // Follow the def-use chain until the induction phi is reached.
1402   // If on the way we encounter a Value that has the same SCEV Expr as the
1403   // phi node, we can consider the instructions we visit from that point
1404   // as part of the cast-sequence that can be ignored.
1405   bool InCastSequence = false;
1406   auto *Inst = dyn_cast<Instruction>(Val);
1407   while (Val != PN) {
1408     // If we encountered a phi node other than PN, or if we left the loop,
1409     // we bail out.
1410     if (!Inst || !L->contains(Inst)) {
1411       return false;
1412     }
1413     auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
1414     if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
1415       InCastSequence = true;
1416     if (InCastSequence) {
1417       // Only the last instruction in the cast sequence is expected to have
1418       // uses outside the induction def-use chain.
1419       if (!CastInsts.empty())
1420         if (!Inst->hasOneUse())
1421           return false;
1422       CastInsts.push_back(Inst);
1423     }
1424     Val = getDef(Val);
1425     if (!Val)
1426       return false;
1427     Inst = dyn_cast<Instruction>(Val);
1428   }
1429 
1430   return InCastSequence;
1431 }
1432 
isInductionPHI(PHINode * Phi,const Loop * TheLoop,PredicatedScalarEvolution & PSE,InductionDescriptor & D,bool Assume)1433 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
1434                                          PredicatedScalarEvolution &PSE,
1435                                          InductionDescriptor &D, bool Assume) {
1436   Type *PhiTy = Phi->getType();
1437 
1438   // Handle integer and pointer inductions variables.
1439   // Now we handle also FP induction but not trying to make a
1440   // recurrent expression from the PHI node in-place.
1441 
1442   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
1443       !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
1444     return false;
1445 
1446   if (PhiTy->isFloatingPointTy())
1447     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
1448 
1449   const SCEV *PhiScev = PSE.getSCEV(Phi);
1450   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1451 
1452   // We need this expression to be an AddRecExpr.
1453   if (Assume && !AR)
1454     AR = PSE.getAsAddRec(Phi);
1455 
1456   if (!AR) {
1457     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1458     return false;
1459   }
1460 
1461   // Record any Cast instructions that participate in the induction update
1462   const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1463   // If we started from an UnknownSCEV, and managed to build an addRecurrence
1464   // only after enabling Assume with PSCEV, this means we may have encountered
1465   // cast instructions that required adding a runtime check in order to
1466   // guarantee the correctness of the AddRecurrence respresentation of the
1467   // induction.
1468   if (PhiScev != AR && SymbolicPhi) {
1469     SmallVector<Instruction *, 2> Casts;
1470     if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1471       return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1472   }
1473 
1474   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
1475 }
1476 
isInductionPHI(PHINode * Phi,const Loop * TheLoop,ScalarEvolution * SE,InductionDescriptor & D,const SCEV * Expr,SmallVectorImpl<Instruction * > * CastsToIgnore)1477 bool InductionDescriptor::isInductionPHI(
1478     PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1479     InductionDescriptor &D, const SCEV *Expr,
1480     SmallVectorImpl<Instruction *> *CastsToIgnore) {
1481   Type *PhiTy = Phi->getType();
1482   // We only handle integer and pointer inductions variables.
1483   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1484     return false;
1485 
1486   // Check that the PHI is consecutive.
1487   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
1488   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1489 
1490   if (!AR) {
1491     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1492     return false;
1493   }
1494 
1495   if (AR->getLoop() != TheLoop) {
1496     // FIXME: We should treat this as a uniform. Unfortunately, we
1497     // don't currently know how to handled uniform PHIs.
1498     LLVM_DEBUG(
1499         dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1500     return false;
1501   }
1502 
1503   // This function assumes that InductionPhi is called only on Phi nodes
1504   // present inside loop headers. Check for the same, and throw an assert if
1505   // the current Phi is not present inside the loop header.
1506   assert(Phi->getParent() == AR->getLoop()->getHeader()
1507     && "Invalid Phi node, not present in loop header");
1508 
1509   Value *StartValue =
1510       Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
1511 
1512   BasicBlock *Latch = AR->getLoop()->getLoopLatch();
1513   if (!Latch)
1514     return false;
1515 
1516   const SCEV *Step = AR->getStepRecurrence(*SE);
1517   // Calculate the pointer stride and check if it is consecutive.
1518   // The stride may be a constant or a loop invariant integer value.
1519   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1520   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
1521     return false;
1522 
1523   if (PhiTy->isIntegerTy()) {
1524     BinaryOperator *BOp =
1525         dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
1526     D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp,
1527                             CastsToIgnore);
1528     return true;
1529   }
1530 
1531   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1532 
1533   // This allows induction variables w/non-constant steps.
1534   D = InductionDescriptor(StartValue, IK_PtrInduction, Step);
1535   return true;
1536 }
1537