xref: /freebsd/contrib/llvm-project/llvm/include/llvm/Analysis/BlockFrequencyInfoImpl.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation --*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Shared implementation of BlockFrequency for IR and Machine Instructions.
10 // See the documentation below for BlockFrequencyInfoImpl for details.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
15 #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
16 
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/GraphTraits.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/SparseBitVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/ValueHandle.h"
30 #include "llvm/Support/BlockFrequency.h"
31 #include "llvm/Support/BranchProbability.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/DOTGraphTraits.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/Format.h"
36 #include "llvm/Support/ScaledNumber.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 #include <cassert>
40 #include <cstddef>
41 #include <cstdint>
42 #include <deque>
43 #include <iterator>
44 #include <limits>
45 #include <list>
46 #include <optional>
47 #include <queue>
48 #include <string>
49 #include <utility>
50 #include <vector>
51 
52 #define DEBUG_TYPE "block-freq"
53 
54 namespace llvm {
55 extern llvm::cl::opt<bool> CheckBFIUnknownBlockQueries;
56 
57 extern llvm::cl::opt<bool> UseIterativeBFIInference;
58 extern llvm::cl::opt<unsigned> IterativeBFIMaxIterationsPerBlock;
59 extern llvm::cl::opt<double> IterativeBFIPrecision;
60 
61 class BranchProbabilityInfo;
62 class Function;
63 class Loop;
64 class LoopInfo;
65 class MachineBasicBlock;
66 class MachineBranchProbabilityInfo;
67 class MachineFunction;
68 class MachineLoop;
69 class MachineLoopInfo;
70 
71 namespace bfi_detail {
72 
73 struct IrreducibleGraph;
74 
75 // This is part of a workaround for a GCC 4.7 crash on lambdas.
76 template <class BT> struct BlockEdgesAdder;
77 
78 /// Mass of a block.
79 ///
80 /// This class implements a sort of fixed-point fraction always between 0.0 and
81 /// 1.0.  getMass() == std::numeric_limits<uint64_t>::max() indicates a value of
82 /// 1.0.
83 ///
84 /// Masses can be added and subtracted.  Simple saturation arithmetic is used,
85 /// so arithmetic operations never overflow or underflow.
86 ///
87 /// Masses can be multiplied.  Multiplication treats full mass as 1.0 and uses
88 /// an inexpensive floating-point algorithm that's off-by-one (almost, but not
89 /// quite, maximum precision).
90 ///
91 /// Masses can be scaled by \a BranchProbability at maximum precision.
92 class BlockMass {
93   uint64_t Mass = 0;
94 
95 public:
96   BlockMass() = default;
BlockMass(uint64_t Mass)97   explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
98 
getEmpty()99   static BlockMass getEmpty() { return BlockMass(); }
100 
getFull()101   static BlockMass getFull() {
102     return BlockMass(std::numeric_limits<uint64_t>::max());
103   }
104 
getMass()105   uint64_t getMass() const { return Mass; }
106 
isFull()107   bool isFull() const { return Mass == std::numeric_limits<uint64_t>::max(); }
isEmpty()108   bool isEmpty() const { return !Mass; }
109 
110   bool operator!() const { return isEmpty(); }
111 
112   /// Add another mass.
113   ///
114   /// Adds another mass, saturating at \a isFull() rather than overflowing.
115   BlockMass &operator+=(BlockMass X) {
116     uint64_t Sum = Mass + X.Mass;
117     Mass = Sum < Mass ? std::numeric_limits<uint64_t>::max() : Sum;
118     return *this;
119   }
120 
121   /// Subtract another mass.
122   ///
123   /// Subtracts another mass, saturating at \a isEmpty() rather than
124   /// undeflowing.
125   BlockMass &operator-=(BlockMass X) {
126     uint64_t Diff = Mass - X.Mass;
127     Mass = Diff > Mass ? 0 : Diff;
128     return *this;
129   }
130 
131   BlockMass &operator*=(BranchProbability P) {
132     Mass = P.scale(Mass);
133     return *this;
134   }
135 
136   bool operator==(BlockMass X) const { return Mass == X.Mass; }
137   bool operator!=(BlockMass X) const { return Mass != X.Mass; }
138   bool operator<=(BlockMass X) const { return Mass <= X.Mass; }
139   bool operator>=(BlockMass X) const { return Mass >= X.Mass; }
140   bool operator<(BlockMass X) const { return Mass < X.Mass; }
141   bool operator>(BlockMass X) const { return Mass > X.Mass; }
142 
143   /// Convert to scaled number.
144   ///
145   /// Convert to \a ScaledNumber.  \a isFull() gives 1.0, while \a isEmpty()
146   /// gives slightly above 0.0.
147   ScaledNumber<uint64_t> toScaled() const;
148 
149   void dump() const;
150   raw_ostream &print(raw_ostream &OS) const;
151 };
152 
153 inline BlockMass operator+(BlockMass L, BlockMass R) {
154   return BlockMass(L) += R;
155 }
156 inline BlockMass operator-(BlockMass L, BlockMass R) {
157   return BlockMass(L) -= R;
158 }
159 inline BlockMass operator*(BlockMass L, BranchProbability R) {
160   return BlockMass(L) *= R;
161 }
162 inline BlockMass operator*(BranchProbability L, BlockMass R) {
163   return BlockMass(R) *= L;
164 }
165 
166 inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) {
167   return X.print(OS);
168 }
169 
170 } // end namespace bfi_detail
171 
172 /// Base class for BlockFrequencyInfoImpl
173 ///
174 /// BlockFrequencyInfoImplBase has supporting data structures and some
175 /// algorithms for BlockFrequencyInfoImplBase.  Only algorithms that depend on
176 /// the block type (or that call such algorithms) are skipped here.
177 ///
178 /// Nevertheless, the majority of the overall algorithm documentation lives with
179 /// BlockFrequencyInfoImpl.  See there for details.
180 class BlockFrequencyInfoImplBase {
181 public:
182   using Scaled64 = ScaledNumber<uint64_t>;
183   using BlockMass = bfi_detail::BlockMass;
184 
185   /// Representative of a block.
186   ///
187   /// This is a simple wrapper around an index into the reverse-post-order
188   /// traversal of the blocks.
189   ///
190   /// Unlike a block pointer, its order has meaning (location in the
191   /// topological sort) and it's class is the same regardless of block type.
192   struct BlockNode {
193     using IndexType = uint32_t;
194 
195     IndexType Index;
196 
BlockNodeBlockNode197     BlockNode() : Index(std::numeric_limits<uint32_t>::max()) {}
BlockNodeBlockNode198     BlockNode(IndexType Index) : Index(Index) {}
199 
200     bool operator==(const BlockNode &X) const { return Index == X.Index; }
201     bool operator!=(const BlockNode &X) const { return Index != X.Index; }
202     bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
203     bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
204     bool operator<(const BlockNode &X) const { return Index < X.Index; }
205     bool operator>(const BlockNode &X) const { return Index > X.Index; }
206 
isValidBlockNode207     bool isValid() const { return Index <= getMaxIndex(); }
208 
getMaxIndexBlockNode209     static size_t getMaxIndex() {
210        return std::numeric_limits<uint32_t>::max() - 1;
211     }
212   };
213 
214   /// Stats about a block itself.
215   struct FrequencyData {
216     Scaled64 Scaled;
217     uint64_t Integer;
218   };
219 
220   /// Data about a loop.
221   ///
222   /// Contains the data necessary to represent a loop as a pseudo-node once it's
223   /// packaged.
224   struct LoopData {
225     using ExitMap = SmallVector<std::pair<BlockNode, BlockMass>, 4>;
226     using NodeList = SmallVector<BlockNode, 4>;
227     using HeaderMassList = SmallVector<BlockMass, 1>;
228 
229     LoopData *Parent;            ///< The parent loop.
230     bool IsPackaged = false;     ///< Whether this has been packaged.
231     uint32_t NumHeaders = 1;     ///< Number of headers.
232     ExitMap Exits;               ///< Successor edges (and weights).
233     NodeList Nodes;              ///< Header and the members of the loop.
234     HeaderMassList BackedgeMass; ///< Mass returned to each loop header.
235     BlockMass Mass;
236     Scaled64 Scale;
237 
LoopDataLoopData238     LoopData(LoopData *Parent, const BlockNode &Header)
239       : Parent(Parent), Nodes(1, Header), BackedgeMass(1) {}
240 
241     template <class It1, class It2>
LoopDataLoopData242     LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
243              It2 LastOther)
244         : Parent(Parent), Nodes(FirstHeader, LastHeader) {
245       NumHeaders = Nodes.size();
246       Nodes.insert(Nodes.end(), FirstOther, LastOther);
247       BackedgeMass.resize(NumHeaders);
248     }
249 
isHeaderLoopData250     bool isHeader(const BlockNode &Node) const {
251       if (isIrreducible())
252         return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
253                                   Node);
254       return Node == Nodes[0];
255     }
256 
getHeaderLoopData257     BlockNode getHeader() const { return Nodes[0]; }
isIrreducibleLoopData258     bool isIrreducible() const { return NumHeaders > 1; }
259 
getHeaderIndexLoopData260     HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) {
261       assert(isHeader(B) && "this is only valid on loop header blocks");
262       if (isIrreducible())
263         return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) -
264                Nodes.begin();
265       return 0;
266     }
267 
members_beginLoopData268     NodeList::const_iterator members_begin() const {
269       return Nodes.begin() + NumHeaders;
270     }
271 
members_endLoopData272     NodeList::const_iterator members_end() const { return Nodes.end(); }
membersLoopData273     iterator_range<NodeList::const_iterator> members() const {
274       return make_range(members_begin(), members_end());
275     }
276   };
277 
278   /// Index of loop information.
279   struct WorkingData {
280     BlockNode Node;           ///< This node.
281     LoopData *Loop = nullptr; ///< The loop this block is inside.
282     BlockMass Mass;           ///< Mass distribution from the entry block.
283 
WorkingDataWorkingData284     WorkingData(const BlockNode &Node) : Node(Node) {}
285 
isLoopHeaderWorkingData286     bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
287 
isDoubleLoopHeaderWorkingData288     bool isDoubleLoopHeader() const {
289       return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
290              Loop->Parent->isHeader(Node);
291     }
292 
getContainingLoopWorkingData293     LoopData *getContainingLoop() const {
294       if (!isLoopHeader())
295         return Loop;
296       if (!isDoubleLoopHeader())
297         return Loop->Parent;
298       return Loop->Parent->Parent;
299     }
300 
301     /// Resolve a node to its representative.
302     ///
303     /// Get the node currently representing Node, which could be a containing
304     /// loop.
305     ///
306     /// This function should only be called when distributing mass.  As long as
307     /// there are no irreducible edges to Node, then it will have complexity
308     /// O(1) in this context.
309     ///
310     /// In general, the complexity is O(L), where L is the number of loop
311     /// headers Node has been packaged into.  Since this method is called in
312     /// the context of distributing mass, L will be the number of loop headers
313     /// an early exit edge jumps out of.
getResolvedNodeWorkingData314     BlockNode getResolvedNode() const {
315       auto *L = getPackagedLoop();
316       return L ? L->getHeader() : Node;
317     }
318 
getPackagedLoopWorkingData319     LoopData *getPackagedLoop() const {
320       if (!Loop || !Loop->IsPackaged)
321         return nullptr;
322       auto *L = Loop;
323       while (L->Parent && L->Parent->IsPackaged)
324         L = L->Parent;
325       return L;
326     }
327 
328     /// Get the appropriate mass for a node.
329     ///
330     /// Get appropriate mass for Node.  If Node is a loop-header (whose loop
331     /// has been packaged), returns the mass of its pseudo-node.  If it's a
332     /// node inside a packaged loop, it returns the loop's mass.
getMassWorkingData333     BlockMass &getMass() {
334       if (!isAPackage())
335         return Mass;
336       if (!isADoublePackage())
337         return Loop->Mass;
338       return Loop->Parent->Mass;
339     }
340 
341     /// Has ContainingLoop been packaged up?
isPackagedWorkingData342     bool isPackaged() const { return getResolvedNode() != Node; }
343 
344     /// Has Loop been packaged up?
isAPackageWorkingData345     bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
346 
347     /// Has Loop been packaged up twice?
isADoublePackageWorkingData348     bool isADoublePackage() const {
349       return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
350     }
351   };
352 
353   /// Unscaled probability weight.
354   ///
355   /// Probability weight for an edge in the graph (including the
356   /// successor/target node).
357   ///
358   /// All edges in the original function are 32-bit.  However, exit edges from
359   /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
360   /// space in general.
361   ///
362   /// In addition to the raw weight amount, Weight stores the type of the edge
363   /// in the current context (i.e., the context of the loop being processed).
364   /// Is this a local edge within the loop, an exit from the loop, or a
365   /// backedge to the loop header?
366   struct Weight {
367     enum DistType { Local, Exit, Backedge };
368     DistType Type = Local;
369     BlockNode TargetNode;
370     uint64_t Amount = 0;
371 
372     Weight() = default;
WeightWeight373     Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
374         : Type(Type), TargetNode(TargetNode), Amount(Amount) {}
375   };
376 
377   /// Distribution of unscaled probability weight.
378   ///
379   /// Distribution of unscaled probability weight to a set of successors.
380   ///
381   /// This class collates the successor edge weights for later processing.
382   ///
383   /// \a DidOverflow indicates whether \a Total did overflow while adding to
384   /// the distribution.  It should never overflow twice.
385   struct Distribution {
386     using WeightList = SmallVector<Weight, 4>;
387 
388     WeightList Weights;       ///< Individual successor weights.
389     uint64_t Total = 0;       ///< Sum of all weights.
390     bool DidOverflow = false; ///< Whether \a Total did overflow.
391 
392     Distribution() = default;
393 
addLocalDistribution394     void addLocal(const BlockNode &Node, uint64_t Amount) {
395       add(Node, Amount, Weight::Local);
396     }
397 
addExitDistribution398     void addExit(const BlockNode &Node, uint64_t Amount) {
399       add(Node, Amount, Weight::Exit);
400     }
401 
addBackedgeDistribution402     void addBackedge(const BlockNode &Node, uint64_t Amount) {
403       add(Node, Amount, Weight::Backedge);
404     }
405 
406     /// Normalize the distribution.
407     ///
408     /// Combines multiple edges to the same \a Weight::TargetNode and scales
409     /// down so that \a Total fits into 32-bits.
410     ///
411     /// This is linear in the size of \a Weights.  For the vast majority of
412     /// cases, adjacent edge weights are combined by sorting WeightList and
413     /// combining adjacent weights.  However, for very large edge lists an
414     /// auxiliary hash table is used.
415     void normalize();
416 
417   private:
418     void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
419   };
420 
421   /// Data about each block.  This is used downstream.
422   std::vector<FrequencyData> Freqs;
423 
424   /// Whether each block is an irreducible loop header.
425   /// This is used downstream.
426   SparseBitVector<> IsIrrLoopHeader;
427 
428   /// Loop data: see initializeLoops().
429   std::vector<WorkingData> Working;
430 
431   /// Indexed information about loops.
432   std::list<LoopData> Loops;
433 
434   /// Virtual destructor.
435   ///
436   /// Need a virtual destructor to mask the compiler warning about
437   /// getBlockName().
438   virtual ~BlockFrequencyInfoImplBase() = default;
439 
440   /// Add all edges out of a packaged loop to the distribution.
441   ///
442   /// Adds all edges from LocalLoopHead to Dist.  Calls addToDist() to add each
443   /// successor edge.
444   ///
445   /// \return \c true unless there's an irreducible backedge.
446   bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
447                                Distribution &Dist);
448 
449   /// Add an edge to the distribution.
450   ///
451   /// Adds an edge to Succ to Dist.  If \c LoopHead.isValid(), then whether the
452   /// edge is local/exit/backedge is in the context of LoopHead.  Otherwise,
453   /// every edge should be a local edge (since all the loops are packaged up).
454   ///
455   /// \return \c true unless aborted due to an irreducible backedge.
456   bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
457                  const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
458 
459   /// Analyze irreducible SCCs.
460   ///
461   /// Separate irreducible SCCs from \c G, which is an explicit graph of \c
462   /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
463   /// Insert them into \a Loops before \c Insert.
464   ///
465   /// \return the \c LoopData nodes representing the irreducible SCCs.
466   iterator_range<std::list<LoopData>::iterator>
467   analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
468                      std::list<LoopData>::iterator Insert);
469 
470   /// Update a loop after packaging irreducible SCCs inside of it.
471   ///
472   /// Update \c OuterLoop.  Before finding irreducible control flow, it was
473   /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
474   /// LoopData::BackedgeMass need to be reset.  Also, nodes that were packaged
475   /// up need to be removed from \a OuterLoop::Nodes.
476   void updateLoopWithIrreducible(LoopData &OuterLoop);
477 
478   /// Distribute mass according to a distribution.
479   ///
480   /// Distributes the mass in Source according to Dist.  If LoopHead.isValid(),
481   /// backedges and exits are stored in its entry in Loops.
482   ///
483   /// Mass is distributed in parallel from two copies of the source mass.
484   void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
485                       Distribution &Dist);
486 
487   /// Compute the loop scale for a loop.
488   void computeLoopScale(LoopData &Loop);
489 
490   /// Adjust the mass of all headers in an irreducible loop.
491   ///
492   /// Initially, irreducible loops are assumed to distribute their mass
493   /// equally among its headers. This can lead to wrong frequency estimates
494   /// since some headers may be executed more frequently than others.
495   ///
496   /// This adjusts header mass distribution so it matches the weights of
497   /// the backedges going into each of the loop headers.
498   void adjustLoopHeaderMass(LoopData &Loop);
499 
500   void distributeIrrLoopHeaderMass(Distribution &Dist);
501 
502   /// Package up a loop.
503   void packageLoop(LoopData &Loop);
504 
505   /// Unwrap loops.
506   void unwrapLoops();
507 
508   /// Finalize frequency metrics.
509   ///
510   /// Calculates final frequencies and cleans up no-longer-needed data
511   /// structures.
512   void finalizeMetrics();
513 
514   /// Clear all memory.
515   void clear();
516 
517   virtual std::string getBlockName(const BlockNode &Node) const;
518   std::string getLoopName(const LoopData &Loop) const;
519 
print(raw_ostream & OS)520   virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
dump()521   void dump() const { print(dbgs()); }
522 
523   Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
524 
525   BlockFrequency getBlockFreq(const BlockNode &Node) const;
526   std::optional<uint64_t>
527   getBlockProfileCount(const Function &F, const BlockNode &Node,
528                        bool AllowSynthetic = false) const;
529   std::optional<uint64_t>
530   getProfileCountFromFreq(const Function &F, BlockFrequency Freq,
531                           bool AllowSynthetic = false) const;
532   bool isIrrLoopHeader(const BlockNode &Node);
533 
534   void setBlockFreq(const BlockNode &Node, BlockFrequency Freq);
535 
getEntryFreq()536   BlockFrequency getEntryFreq() const {
537     assert(!Freqs.empty());
538     return BlockFrequency(Freqs[0].Integer);
539   }
540 };
541 
542 namespace bfi_detail {
543 
544 template <class BlockT> struct TypeMap {};
545 template <> struct TypeMap<BasicBlock> {
546   using BlockT = BasicBlock;
547   using BlockKeyT = AssertingVH<const BasicBlock>;
548   using FunctionT = Function;
549   using BranchProbabilityInfoT = BranchProbabilityInfo;
550   using LoopT = Loop;
551   using LoopInfoT = LoopInfo;
552 };
553 template <> struct TypeMap<MachineBasicBlock> {
554   using BlockT = MachineBasicBlock;
555   using BlockKeyT = const MachineBasicBlock *;
556   using FunctionT = MachineFunction;
557   using BranchProbabilityInfoT = MachineBranchProbabilityInfo;
558   using LoopT = MachineLoop;
559   using LoopInfoT = MachineLoopInfo;
560 };
561 
562 template <class BlockT, class BFIImplT>
563 class BFICallbackVH;
564 
565 /// Get the name of a MachineBasicBlock.
566 ///
567 /// Get the name of a MachineBasicBlock.  It's templated so that including from
568 /// CodeGen is unnecessary (that would be a layering issue).
569 ///
570 /// This is used mainly for debug output.  The name is similar to
571 /// MachineBasicBlock::getFullName(), but skips the name of the function.
572 template <class BlockT> std::string getBlockName(const BlockT *BB) {
573   assert(BB && "Unexpected nullptr");
574   auto MachineName = "BB" + Twine(BB->getNumber());
575   if (BB->getBasicBlock())
576     return (MachineName + "[" + BB->getName() + "]").str();
577   return MachineName.str();
578 }
579 /// Get the name of a BasicBlock.
580 template <> inline std::string getBlockName(const BasicBlock *BB) {
581   assert(BB && "Unexpected nullptr");
582   return BB->getName().str();
583 }
584 
585 /// Graph of irreducible control flow.
586 ///
587 /// This graph is used for determining the SCCs in a loop (or top-level
588 /// function) that has irreducible control flow.
589 ///
590 /// During the block frequency algorithm, the local graphs are defined in a
591 /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
592 /// graphs for most edges, but getting others from \a LoopData::ExitMap.  The
593 /// latter only has successor information.
594 ///
595 /// \a IrreducibleGraph makes this graph explicit.  It's in a form that can use
596 /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
597 /// and it explicitly lists predecessors and successors.  The initialization
598 /// that relies on \c MachineBasicBlock is defined in the header.
599 struct IrreducibleGraph {
600   using BFIBase = BlockFrequencyInfoImplBase;
601 
602   BFIBase &BFI;
603 
604   using BlockNode = BFIBase::BlockNode;
605   struct IrrNode {
606     BlockNode Node;
607     unsigned NumIn = 0;
608     std::deque<const IrrNode *> Edges;
609 
610     IrrNode(const BlockNode &Node) : Node(Node) {}
611 
612     using iterator = std::deque<const IrrNode *>::const_iterator;
613 
614     iterator pred_begin() const { return Edges.begin(); }
615     iterator succ_begin() const { return Edges.begin() + NumIn; }
616     iterator pred_end() const { return succ_begin(); }
617     iterator succ_end() const { return Edges.end(); }
618   };
619   BlockNode Start;
620   const IrrNode *StartIrr = nullptr;
621   std::vector<IrrNode> Nodes;
622   SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;
623 
624   /// Construct an explicit graph containing irreducible control flow.
625   ///
626   /// Construct an explicit graph of the control flow in \c OuterLoop (or the
627   /// top-level function, if \c OuterLoop is \c nullptr).  Uses \c
628   /// addBlockEdges to add block successors that have not been packaged into
629   /// loops.
630   ///
631   /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
632   /// user of this.
633   template <class BlockEdgesAdder>
634   IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
635                    BlockEdgesAdder addBlockEdges) : BFI(BFI) {
636     initialize(OuterLoop, addBlockEdges);
637   }
638 
639   template <class BlockEdgesAdder>
640   void initialize(const BFIBase::LoopData *OuterLoop,
641                   BlockEdgesAdder addBlockEdges);
642   void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
643   void addNodesInFunction();
644 
645   void addNode(const BlockNode &Node) {
646     Nodes.emplace_back(Node);
647     BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
648   }
649 
650   void indexNodes();
651   template <class BlockEdgesAdder>
652   void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
653                 BlockEdgesAdder addBlockEdges);
654   void addEdge(IrrNode &Irr, const BlockNode &Succ,
655                const BFIBase::LoopData *OuterLoop);
656 };
657 
658 template <class BlockEdgesAdder>
659 void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
660                                   BlockEdgesAdder addBlockEdges) {
661   if (OuterLoop) {
662     addNodesInLoop(*OuterLoop);
663     for (auto N : OuterLoop->Nodes)
664       addEdges(N, OuterLoop, addBlockEdges);
665   } else {
666     addNodesInFunction();
667     for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
668       addEdges(Index, OuterLoop, addBlockEdges);
669   }
670   StartIrr = Lookup[Start.Index];
671 }
672 
673 template <class BlockEdgesAdder>
674 void IrreducibleGraph::addEdges(const BlockNode &Node,
675                                 const BFIBase::LoopData *OuterLoop,
676                                 BlockEdgesAdder addBlockEdges) {
677   auto L = Lookup.find(Node.Index);
678   if (L == Lookup.end())
679     return;
680   IrrNode &Irr = *L->second;
681   const auto &Working = BFI.Working[Node.Index];
682 
683   if (Working.isAPackage())
684     for (const auto &I : Working.Loop->Exits)
685       addEdge(Irr, I.first, OuterLoop);
686   else
687     addBlockEdges(*this, Irr, OuterLoop);
688 }
689 
690 } // end namespace bfi_detail
691 
692 /// Shared implementation for block frequency analysis.
693 ///
694 /// This is a shared implementation of BlockFrequencyInfo and
695 /// MachineBlockFrequencyInfo, and calculates the relative frequencies of
696 /// blocks.
697 ///
698 /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
699 /// which is called the header.  A given loop, L, can have sub-loops, which are
700 /// loops within the subgraph of L that exclude its header.  (A "trivial" SCC
701 /// consists of a single block that does not have a self-edge.)
702 ///
703 /// In addition to loops, this algorithm has limited support for irreducible
704 /// SCCs, which are SCCs with multiple entry blocks.  Irreducible SCCs are
705 /// discovered on the fly, and modelled as loops with multiple headers.
706 ///
707 /// The headers of irreducible sub-SCCs consist of its entry blocks and all
708 /// nodes that are targets of a backedge within it (excluding backedges within
709 /// true sub-loops).  Block frequency calculations act as if a block is
710 /// inserted that intercepts all the edges to the headers.  All backedges and
711 /// entries point to this block.  Its successors are the headers, which split
712 /// the frequency evenly.
713 ///
714 /// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
715 /// separates mass distribution from loop scaling, and dithers to eliminate
716 /// probability mass loss.
717 ///
718 /// The implementation is split between BlockFrequencyInfoImpl, which knows the
719 /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
720 /// BlockFrequencyInfoImplBase, which doesn't.  The base class uses \a
721 /// BlockNode, a wrapper around a uint32_t.  BlockNode is numbered from 0 in
722 /// reverse-post order.  This gives two advantages:  it's easy to compare the
723 /// relative ordering of two nodes, and maps keyed on BlockT can be represented
724 /// by vectors.
725 ///
726 /// This algorithm is O(V+E), unless there is irreducible control flow, in
727 /// which case it's O(V*E) in the worst case.
728 ///
729 /// These are the main stages:
730 ///
731 ///  0. Reverse post-order traversal (\a initializeRPOT()).
732 ///
733 ///     Run a single post-order traversal and save it (in reverse) in RPOT.
734 ///     All other stages make use of this ordering.  Save a lookup from BlockT
735 ///     to BlockNode (the index into RPOT) in Nodes.
736 ///
737 ///  1. Loop initialization (\a initializeLoops()).
738 ///
739 ///     Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
740 ///     the algorithm.  In particular, store the immediate members of each loop
741 ///     in reverse post-order.
742 ///
743 ///  2. Calculate mass and scale in loops (\a computeMassInLoops()).
744 ///
745 ///     For each loop (bottom-up), distribute mass through the DAG resulting
746 ///     from ignoring backedges and treating sub-loops as a single pseudo-node.
747 ///     Track the backedge mass distributed to the loop header, and use it to
748 ///     calculate the loop scale (number of loop iterations).  Immediate
749 ///     members that represent sub-loops will already have been visited and
750 ///     packaged into a pseudo-node.
751 ///
752 ///     Distributing mass in a loop is a reverse-post-order traversal through
753 ///     the loop.  Start by assigning full mass to the Loop header.  For each
754 ///     node in the loop:
755 ///
756 ///         - Fetch and categorize the weight distribution for its successors.
757 ///           If this is a packaged-subloop, the weight distribution is stored
758 ///           in \a LoopData::Exits.  Otherwise, fetch it from
759 ///           BranchProbabilityInfo.
760 ///
761 ///         - Each successor is categorized as \a Weight::Local, a local edge
762 ///           within the current loop, \a Weight::Backedge, a backedge to the
763 ///           loop header, or \a Weight::Exit, any successor outside the loop.
764 ///           The weight, the successor, and its category are stored in \a
765 ///           Distribution.  There can be multiple edges to each successor.
766 ///
767 ///         - If there's a backedge to a non-header, there's an irreducible SCC.
768 ///           The usual flow is temporarily aborted.  \a
769 ///           computeIrreducibleMass() finds the irreducible SCCs within the
770 ///           loop, packages them up, and restarts the flow.
771 ///
772 ///         - Normalize the distribution:  scale weights down so that their sum
773 ///           is 32-bits, and coalesce multiple edges to the same node.
774 ///
775 ///         - Distribute the mass accordingly, dithering to minimize mass loss,
776 ///           as described in \a distributeMass().
777 ///
778 ///     In the case of irreducible loops, instead of a single loop header,
779 ///     there will be several. The computation of backedge masses is similar
780 ///     but instead of having a single backedge mass, there will be one
781 ///     backedge per loop header. In these cases, each backedge will carry
782 ///     a mass proportional to the edge weights along the corresponding
783 ///     path.
784 ///
785 ///     At the end of propagation, the full mass assigned to the loop will be
786 ///     distributed among the loop headers proportionally according to the
787 ///     mass flowing through their backedges.
788 ///
789 ///     Finally, calculate the loop scale from the accumulated backedge mass.
790 ///
791 ///  3. Distribute mass in the function (\a computeMassInFunction()).
792 ///
793 ///     Finally, distribute mass through the DAG resulting from packaging all
794 ///     loops in the function.  This uses the same algorithm as distributing
795 ///     mass in a loop, except that there are no exit or backedge edges.
796 ///
797 ///  4. Unpackage loops (\a unwrapLoops()).
798 ///
799 ///     Initialize each block's frequency to a floating point representation of
800 ///     its mass.
801 ///
802 ///     Visit loops top-down, scaling the frequencies of its immediate members
803 ///     by the loop's pseudo-node's frequency.
804 ///
805 ///  5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
806 ///
807 ///     Using the min and max frequencies as a guide, translate floating point
808 ///     frequencies to an appropriate range in uint64_t.
809 ///
810 /// It has some known flaws.
811 ///
812 ///   - The model of irreducible control flow is a rough approximation.
813 ///
814 ///     Modelling irreducible control flow exactly involves setting up and
815 ///     solving a group of infinite geometric series.  Such precision is
816 ///     unlikely to be worthwhile, since most of our algorithms give up on
817 ///     irreducible control flow anyway.
818 ///
819 ///     Nevertheless, we might find that we need to get closer.  Here's a sort
820 ///     of TODO list for the model with diminishing returns, to be completed as
821 ///     necessary.
822 ///
823 ///       - The headers for the \a LoopData representing an irreducible SCC
824 ///         include non-entry blocks.  When these extra blocks exist, they
825 ///         indicate a self-contained irreducible sub-SCC.  We could treat them
826 ///         as sub-loops, rather than arbitrarily shoving the problematic
827 ///         blocks into the headers of the main irreducible SCC.
828 ///
829 ///       - Entry frequencies are assumed to be evenly split between the
830 ///         headers of a given irreducible SCC, which is the only option if we
831 ///         need to compute mass in the SCC before its parent loop.  Instead,
832 ///         we could partially compute mass in the parent loop, and stop when
833 ///         we get to the SCC.  Here, we have the correct ratio of entry
834 ///         masses, which we can use to adjust their relative frequencies.
835 ///         Compute mass in the SCC, and then continue propagation in the
836 ///         parent.
837 ///
838 ///       - We can propagate mass iteratively through the SCC, for some fixed
839 ///         number of iterations.  Each iteration starts by assigning the entry
840 ///         blocks their backedge mass from the prior iteration.  The final
841 ///         mass for each block (and each exit, and the total backedge mass
842 ///         used for computing loop scale) is the sum of all iterations.
843 ///         (Running this until fixed point would "solve" the geometric
844 ///         series by simulation.)
845 template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
846   // This is part of a workaround for a GCC 4.7 crash on lambdas.
847   friend struct bfi_detail::BlockEdgesAdder<BT>;
848 
849   using BlockT = typename bfi_detail::TypeMap<BT>::BlockT;
850   using BlockKeyT = typename bfi_detail::TypeMap<BT>::BlockKeyT;
851   using FunctionT = typename bfi_detail::TypeMap<BT>::FunctionT;
852   using BranchProbabilityInfoT =
853       typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT;
854   using LoopT = typename bfi_detail::TypeMap<BT>::LoopT;
855   using LoopInfoT = typename bfi_detail::TypeMap<BT>::LoopInfoT;
856   using Successor = GraphTraits<const BlockT *>;
857   using Predecessor = GraphTraits<Inverse<const BlockT *>>;
858   using BFICallbackVH =
859       bfi_detail::BFICallbackVH<BlockT, BlockFrequencyInfoImpl>;
860 
861   const BranchProbabilityInfoT *BPI = nullptr;
862   const LoopInfoT *LI = nullptr;
863   const FunctionT *F = nullptr;
864 
865   // All blocks in reverse postorder.
866   std::vector<const BlockT *> RPOT;
867   DenseMap<BlockKeyT, std::pair<BlockNode, BFICallbackVH>> Nodes;
868 
869   using rpot_iterator = typename std::vector<const BlockT *>::const_iterator;
870 
871   rpot_iterator rpot_begin() const { return RPOT.begin(); }
872   rpot_iterator rpot_end() const { return RPOT.end(); }
873 
874   size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
875 
876   BlockNode getNode(const rpot_iterator &I) const {
877     return BlockNode(getIndex(I));
878   }
879 
880   BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB).first; }
881 
882   const BlockT *getBlock(const BlockNode &Node) const {
883     assert(Node.Index < RPOT.size());
884     return RPOT[Node.Index];
885   }
886 
887   /// Run (and save) a post-order traversal.
888   ///
889   /// Saves a reverse post-order traversal of all the nodes in \a F.
890   void initializeRPOT();
891 
892   /// Initialize loop data.
893   ///
894   /// Build up \a Loops using \a LoopInfo.  \a LoopInfo gives us a mapping from
895   /// each block to the deepest loop it's in, but we need the inverse.  For each
896   /// loop, we store in reverse post-order its "immediate" members, defined as
897   /// the header, the headers of immediate sub-loops, and all other blocks in
898   /// the loop that are not in sub-loops.
899   void initializeLoops();
900 
901   /// Propagate to a block's successors.
902   ///
903   /// In the context of distributing mass through \c OuterLoop, divide the mass
904   /// currently assigned to \c Node between its successors.
905   ///
906   /// \return \c true unless there's an irreducible backedge.
907   bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
908 
909   /// Compute mass in a particular loop.
910   ///
911   /// Assign mass to \c Loop's header, and then for each block in \c Loop in
912   /// reverse post-order, distribute mass to its successors.  Only visits nodes
913   /// that have not been packaged into sub-loops.
914   ///
915   /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
916   /// \return \c true unless there's an irreducible backedge.
917   bool computeMassInLoop(LoopData &Loop);
918 
919   /// Try to compute mass in the top-level function.
920   ///
921   /// Assign mass to the entry block, and then for each block in reverse
922   /// post-order, distribute mass to its successors.  Skips nodes that have
923   /// been packaged into loops.
924   ///
925   /// \pre \a computeMassInLoops() has been called.
926   /// \return \c true unless there's an irreducible backedge.
927   bool tryToComputeMassInFunction();
928 
929   /// Compute mass in (and package up) irreducible SCCs.
930   ///
931   /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
932   /// of \c Insert), and call \a computeMassInLoop() on each of them.
933   ///
934   /// If \c OuterLoop is \c nullptr, it refers to the top-level function.
935   ///
936   /// \pre \a computeMassInLoop() has been called for each subloop of \c
937   /// OuterLoop.
938   /// \pre \c Insert points at the last loop successfully processed by \a
939   /// computeMassInLoop().
940   /// \pre \c OuterLoop has irreducible SCCs.
941   void computeIrreducibleMass(LoopData *OuterLoop,
942                               std::list<LoopData>::iterator Insert);
943 
944   /// Compute mass in all loops.
945   ///
946   /// For each loop bottom-up, call \a computeMassInLoop().
947   ///
948   /// \a computeMassInLoop() aborts (and returns \c false) on loops that
949   /// contain a irreducible sub-SCCs.  Use \a computeIrreducibleMass() and then
950   /// re-enter \a computeMassInLoop().
951   ///
952   /// \post \a computeMassInLoop() has returned \c true for every loop.
953   void computeMassInLoops();
954 
955   /// Compute mass in the top-level function.
956   ///
957   /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
958   /// compute mass in the top-level function.
959   ///
960   /// \post \a tryToComputeMassInFunction() has returned \c true.
961   void computeMassInFunction();
962 
963   std::string getBlockName(const BlockNode &Node) const override {
964     return bfi_detail::getBlockName(getBlock(Node));
965   }
966 
967   /// The current implementation for computing relative block frequencies does
968   /// not handle correctly control-flow graphs containing irreducible loops. To
969   /// resolve the problem, we apply a post-processing step, which iteratively
970   /// updates block frequencies based on the frequencies of their predesessors.
971   /// This corresponds to finding the stationary point of the Markov chain by
972   /// an iterative method aka "PageRank computation".
973   /// The algorithm takes at most O(|E| * IterativeBFIMaxIterations) steps but
974   /// typically converges faster.
975   ///
976   /// Decide whether we want to apply iterative inference for a given function.
977   bool needIterativeInference() const;
978 
979   /// Apply an iterative post-processing to infer correct counts for irr loops.
980   void applyIterativeInference();
981 
982   using ProbMatrixType = std::vector<std::vector<std::pair<size_t, Scaled64>>>;
983 
984   /// Run iterative inference for a probability matrix and initial frequencies.
985   void iterativeInference(const ProbMatrixType &ProbMatrix,
986                           std::vector<Scaled64> &Freq) const;
987 
988   /// Find all blocks to apply inference on, that is, reachable from the entry
989   /// and backward reachable from exists along edges with positive probability.
990   void findReachableBlocks(std::vector<const BlockT *> &Blocks) const;
991 
992   /// Build a matrix of probabilities with transitions (edges) between the
993   /// blocks: ProbMatrix[I] holds pairs (J, P), where Pr[J -> I | J] = P
994   void initTransitionProbabilities(
995       const std::vector<const BlockT *> &Blocks,
996       const DenseMap<const BlockT *, size_t> &BlockIndex,
997       ProbMatrixType &ProbMatrix) const;
998 
999 #ifndef NDEBUG
1000   /// Compute the discrepancy between current block frequencies and the
1001   /// probability matrix.
1002   Scaled64 discrepancy(const ProbMatrixType &ProbMatrix,
1003                        const std::vector<Scaled64> &Freq) const;
1004 #endif
1005 
1006 public:
1007   BlockFrequencyInfoImpl() = default;
1008 
1009   const FunctionT *getFunction() const { return F; }
1010 
1011   void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI,
1012                  const LoopInfoT &LI);
1013 
1014   using BlockFrequencyInfoImplBase::getEntryFreq;
1015 
1016   BlockFrequency getBlockFreq(const BlockT *BB) const {
1017     return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
1018   }
1019 
1020   std::optional<uint64_t>
1021   getBlockProfileCount(const Function &F, const BlockT *BB,
1022                        bool AllowSynthetic = false) const {
1023     return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB),
1024                                                             AllowSynthetic);
1025   }
1026 
1027   std::optional<uint64_t>
1028   getProfileCountFromFreq(const Function &F, BlockFrequency Freq,
1029                           bool AllowSynthetic = false) const {
1030     return BlockFrequencyInfoImplBase::getProfileCountFromFreq(F, Freq,
1031                                                                AllowSynthetic);
1032   }
1033 
1034   bool isIrrLoopHeader(const BlockT *BB) {
1035     return BlockFrequencyInfoImplBase::isIrrLoopHeader(getNode(BB));
1036   }
1037 
1038   void setBlockFreq(const BlockT *BB, BlockFrequency Freq);
1039 
1040   void forgetBlock(const BlockT *BB) {
1041     // We don't erase corresponding items from `Freqs`, `RPOT` and other to
1042     // avoid invalidating indices. Doing so would have saved some memory, but
1043     // it's not worth it.
1044     Nodes.erase(BB);
1045   }
1046 
1047   Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
1048     return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
1049   }
1050 
1051   const BranchProbabilityInfoT &getBPI() const { return *BPI; }
1052 
1053   /// Print the frequencies for the current function.
1054   ///
1055   /// Prints the frequencies for the blocks in the current function.
1056   ///
1057   /// Blocks are printed in the natural iteration order of the function, rather
1058   /// than reverse post-order.  This provides two advantages:  writing -analyze
1059   /// tests is easier (since blocks come out in source order), and even
1060   /// unreachable blocks are printed.
1061   ///
1062   /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
1063   /// we need to override it here.
1064   raw_ostream &print(raw_ostream &OS) const override;
1065 
1066   using BlockFrequencyInfoImplBase::dump;
1067 
1068   void verifyMatch(BlockFrequencyInfoImpl<BT> &Other) const;
1069 };
1070 
1071 namespace bfi_detail {
1072 
1073 template <class BFIImplT>
1074 class BFICallbackVH<BasicBlock, BFIImplT> : public CallbackVH {
1075   BFIImplT *BFIImpl;
1076 
1077 public:
1078   BFICallbackVH() = default;
1079 
1080   BFICallbackVH(const BasicBlock *BB, BFIImplT *BFIImpl)
1081       : CallbackVH(BB), BFIImpl(BFIImpl) {}
1082 
1083   virtual ~BFICallbackVH() = default;
1084 
1085   void deleted() override {
1086     BFIImpl->forgetBlock(cast<BasicBlock>(getValPtr()));
1087   }
1088 };
1089 
1090 /// Dummy implementation since MachineBasicBlocks aren't Values, so ValueHandles
1091 /// don't apply to them.
1092 template <class BFIImplT>
1093 class BFICallbackVH<MachineBasicBlock, BFIImplT> {
1094 public:
1095   BFICallbackVH() = default;
1096   BFICallbackVH(const MachineBasicBlock *, BFIImplT *) {}
1097 };
1098 
1099 } // end namespace bfi_detail
1100 
1101 template <class BT>
1102 void BlockFrequencyInfoImpl<BT>::calculate(const FunctionT &F,
1103                                            const BranchProbabilityInfoT &BPI,
1104                                            const LoopInfoT &LI) {
1105   // Save the parameters.
1106   this->BPI = &BPI;
1107   this->LI = &LI;
1108   this->F = &F;
1109 
1110   // Clean up left-over data structures.
1111   BlockFrequencyInfoImplBase::clear();
1112   RPOT.clear();
1113   Nodes.clear();
1114 
1115   // Initialize.
1116   LLVM_DEBUG(dbgs() << "\nblock-frequency: " << F.getName()
1117                     << "\n================="
1118                     << std::string(F.getName().size(), '=') << "\n");
1119   initializeRPOT();
1120   initializeLoops();
1121 
1122   // Visit loops in post-order to find the local mass distribution, and then do
1123   // the full function.
1124   computeMassInLoops();
1125   computeMassInFunction();
1126   unwrapLoops();
1127   // Apply a post-processing step improving computed frequencies for functions
1128   // with irreducible loops.
1129   if (needIterativeInference())
1130     applyIterativeInference();
1131   finalizeMetrics();
1132 
1133   if (CheckBFIUnknownBlockQueries) {
1134     // To detect BFI queries for unknown blocks, add entries for unreachable
1135     // blocks, if any. This is to distinguish between known/existing unreachable
1136     // blocks and unknown blocks.
1137     for (const BlockT &BB : F)
1138       if (!Nodes.count(&BB))
1139         setBlockFreq(&BB, BlockFrequency());
1140   }
1141 }
1142 
1143 template <class BT>
1144 void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB,
1145                                               BlockFrequency Freq) {
1146   if (Nodes.count(BB))
1147     BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq);
1148   else {
1149     // If BB is a newly added block after BFI is done, we need to create a new
1150     // BlockNode for it assigned with a new index. The index can be determined
1151     // by the size of Freqs.
1152     BlockNode NewNode(Freqs.size());
1153     Nodes[BB] = {NewNode, BFICallbackVH(BB, this)};
1154     Freqs.emplace_back();
1155     BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq);
1156   }
1157 }
1158 
1159 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
1160   const BlockT *Entry = &F->front();
1161   RPOT.reserve(F->size());
1162   std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
1163   std::reverse(RPOT.begin(), RPOT.end());
1164 
1165   assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
1166          "More nodes in function than Block Frequency Info supports");
1167 
1168   LLVM_DEBUG(dbgs() << "reverse-post-order-traversal\n");
1169   for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
1170     BlockNode Node = getNode(I);
1171     LLVM_DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node)
1172                       << "\n");
1173     Nodes[*I] = {Node, BFICallbackVH(*I, this)};
1174   }
1175 
1176   Working.reserve(RPOT.size());
1177   for (size_t Index = 0; Index < RPOT.size(); ++Index)
1178     Working.emplace_back(Index);
1179   Freqs.resize(RPOT.size());
1180 }
1181 
1182 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
1183   LLVM_DEBUG(dbgs() << "loop-detection\n");
1184   if (LI->empty())
1185     return;
1186 
1187   // Visit loops top down and assign them an index.
1188   std::deque<std::pair<const LoopT *, LoopData *>> Q;
1189   for (const LoopT *L : *LI)
1190     Q.emplace_back(L, nullptr);
1191   while (!Q.empty()) {
1192     const LoopT *Loop = Q.front().first;
1193     LoopData *Parent = Q.front().second;
1194     Q.pop_front();
1195 
1196     BlockNode Header = getNode(Loop->getHeader());
1197     assert(Header.isValid());
1198 
1199     Loops.emplace_back(Parent, Header);
1200     Working[Header.Index].Loop = &Loops.back();
1201     LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
1202 
1203     for (const LoopT *L : *Loop)
1204       Q.emplace_back(L, &Loops.back());
1205   }
1206 
1207   // Visit nodes in reverse post-order and add them to their deepest containing
1208   // loop.
1209   for (size_t Index = 0; Index < RPOT.size(); ++Index) {
1210     // Loop headers have already been mostly mapped.
1211     if (Working[Index].isLoopHeader()) {
1212       LoopData *ContainingLoop = Working[Index].getContainingLoop();
1213       if (ContainingLoop)
1214         ContainingLoop->Nodes.push_back(Index);
1215       continue;
1216     }
1217 
1218     const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
1219     if (!Loop)
1220       continue;
1221 
1222     // Add this node to its containing loop's member list.
1223     BlockNode Header = getNode(Loop->getHeader());
1224     assert(Header.isValid());
1225     const auto &HeaderData = Working[Header.Index];
1226     assert(HeaderData.isLoopHeader());
1227 
1228     Working[Index].Loop = HeaderData.Loop;
1229     HeaderData.Loop->Nodes.push_back(Index);
1230     LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header)
1231                       << ": member = " << getBlockName(Index) << "\n");
1232   }
1233 }
1234 
1235 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
1236   // Visit loops with the deepest first, and the top-level loops last.
1237   for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
1238     if (computeMassInLoop(*L))
1239       continue;
1240     auto Next = std::next(L);
1241     computeIrreducibleMass(&*L, L.base());
1242     L = std::prev(Next);
1243     if (computeMassInLoop(*L))
1244       continue;
1245     llvm_unreachable("unhandled irreducible control flow");
1246   }
1247 }
1248 
1249 template <class BT>
1250 bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
1251   // Compute mass in loop.
1252   LLVM_DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
1253 
1254   if (Loop.isIrreducible()) {
1255     LLVM_DEBUG(dbgs() << "isIrreducible = true\n");
1256     Distribution Dist;
1257     unsigned NumHeadersWithWeight = 0;
1258     std::optional<uint64_t> MinHeaderWeight;
1259     DenseSet<uint32_t> HeadersWithoutWeight;
1260     HeadersWithoutWeight.reserve(Loop.NumHeaders);
1261     for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
1262       auto &HeaderNode = Loop.Nodes[H];
1263       const BlockT *Block = getBlock(HeaderNode);
1264       IsIrrLoopHeader.set(Loop.Nodes[H].Index);
1265       std::optional<uint64_t> HeaderWeight = Block->getIrrLoopHeaderWeight();
1266       if (!HeaderWeight) {
1267         LLVM_DEBUG(dbgs() << "Missing irr loop header metadata on "
1268                           << getBlockName(HeaderNode) << "\n");
1269         HeadersWithoutWeight.insert(H);
1270         continue;
1271       }
1272       LLVM_DEBUG(dbgs() << getBlockName(HeaderNode)
1273                         << " has irr loop header weight " << *HeaderWeight
1274                         << "\n");
1275       NumHeadersWithWeight++;
1276       uint64_t HeaderWeightValue = *HeaderWeight;
1277       if (!MinHeaderWeight || HeaderWeightValue < MinHeaderWeight)
1278         MinHeaderWeight = HeaderWeightValue;
1279       if (HeaderWeightValue) {
1280         Dist.addLocal(HeaderNode, HeaderWeightValue);
1281       }
1282     }
1283     // As a heuristic, if some headers don't have a weight, give them the
1284     // minimum weight seen (not to disrupt the existing trends too much by
1285     // using a weight that's in the general range of the other headers' weights,
1286     // and the minimum seems to perform better than the average.)
1287     // FIXME: better update in the passes that drop the header weight.
1288     // If no headers have a weight, give them even weight (use weight 1).
1289     if (!MinHeaderWeight)
1290       MinHeaderWeight = 1;
1291     for (uint32_t H : HeadersWithoutWeight) {
1292       auto &HeaderNode = Loop.Nodes[H];
1293       assert(!getBlock(HeaderNode)->getIrrLoopHeaderWeight() &&
1294              "Shouldn't have a weight metadata");
1295       uint64_t MinWeight = *MinHeaderWeight;
1296       LLVM_DEBUG(dbgs() << "Giving weight " << MinWeight << " to "
1297                         << getBlockName(HeaderNode) << "\n");
1298       if (MinWeight)
1299         Dist.addLocal(HeaderNode, MinWeight);
1300     }
1301     distributeIrrLoopHeaderMass(Dist);
1302     for (const BlockNode &M : Loop.Nodes)
1303       if (!propagateMassToSuccessors(&Loop, M))
1304         llvm_unreachable("unhandled irreducible control flow");
1305     if (NumHeadersWithWeight == 0)
1306       // No headers have a metadata. Adjust header mass.
1307       adjustLoopHeaderMass(Loop);
1308   } else {
1309     Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
1310     if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
1311       llvm_unreachable("irreducible control flow to loop header!?");
1312     for (const BlockNode &M : Loop.members())
1313       if (!propagateMassToSuccessors(&Loop, M))
1314         // Irreducible backedge.
1315         return false;
1316   }
1317 
1318   computeLoopScale(Loop);
1319   packageLoop(Loop);
1320   return true;
1321 }
1322 
1323 template <class BT>
1324 bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
1325   // Compute mass in function.
1326   LLVM_DEBUG(dbgs() << "compute-mass-in-function\n");
1327   assert(!Working.empty() && "no blocks in function");
1328   assert(!Working[0].isLoopHeader() && "entry block is a loop header");
1329 
1330   Working[0].getMass() = BlockMass::getFull();
1331   for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
1332     // Check for nodes that have been packaged.
1333     BlockNode Node = getNode(I);
1334     if (Working[Node.Index].isPackaged())
1335       continue;
1336 
1337     if (!propagateMassToSuccessors(nullptr, Node))
1338       return false;
1339   }
1340   return true;
1341 }
1342 
1343 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
1344   if (tryToComputeMassInFunction())
1345     return;
1346   computeIrreducibleMass(nullptr, Loops.begin());
1347   if (tryToComputeMassInFunction())
1348     return;
1349   llvm_unreachable("unhandled irreducible control flow");
1350 }
1351 
1352 template <class BT>
1353 bool BlockFrequencyInfoImpl<BT>::needIterativeInference() const {
1354   if (!UseIterativeBFIInference)
1355     return false;
1356   if (!F->getFunction().hasProfileData())
1357     return false;
1358   // Apply iterative inference only if the function contains irreducible loops;
1359   // otherwise, computed block frequencies are reasonably correct.
1360   for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
1361     if (L->isIrreducible())
1362       return true;
1363   }
1364   return false;
1365 }
1366 
1367 template <class BT> void BlockFrequencyInfoImpl<BT>::applyIterativeInference() {
1368   // Extract blocks for processing: a block is considered for inference iff it
1369   // can be reached from the entry by edges with a positive probability.
1370   // Non-processed blocks are assigned with the zero frequency and are ignored
1371   // in the computation
1372   std::vector<const BlockT *> ReachableBlocks;
1373   findReachableBlocks(ReachableBlocks);
1374   if (ReachableBlocks.empty())
1375     return;
1376 
1377   // The map is used to index successors/predecessors of reachable blocks in
1378   // the ReachableBlocks vector
1379   DenseMap<const BlockT *, size_t> BlockIndex;
1380   // Extract initial frequencies for the reachable blocks
1381   auto Freq = std::vector<Scaled64>(ReachableBlocks.size());
1382   Scaled64 SumFreq;
1383   for (size_t I = 0; I < ReachableBlocks.size(); I++) {
1384     const BlockT *BB = ReachableBlocks[I];
1385     BlockIndex[BB] = I;
1386     Freq[I] = getFloatingBlockFreq(BB);
1387     SumFreq += Freq[I];
1388   }
1389   assert(!SumFreq.isZero() && "empty initial block frequencies");
1390 
1391   LLVM_DEBUG(dbgs() << "Applying iterative inference for " << F->getName()
1392                     << " with " << ReachableBlocks.size() << " blocks\n");
1393 
1394   // Normalizing frequencies so they sum up to 1.0
1395   for (auto &Value : Freq) {
1396     Value /= SumFreq;
1397   }
1398 
1399   // Setting up edge probabilities using sparse matrix representation:
1400   // ProbMatrix[I] holds a vector of pairs (J, P) where Pr[J -> I | J] = P
1401   ProbMatrixType ProbMatrix;
1402   initTransitionProbabilities(ReachableBlocks, BlockIndex, ProbMatrix);
1403 
1404   // Run the propagation
1405   iterativeInference(ProbMatrix, Freq);
1406 
1407   // Assign computed frequency values
1408   for (const BlockT &BB : *F) {
1409     auto Node = getNode(&BB);
1410     if (!Node.isValid())
1411       continue;
1412     if (BlockIndex.count(&BB)) {
1413       Freqs[Node.Index].Scaled = Freq[BlockIndex[&BB]];
1414     } else {
1415       Freqs[Node.Index].Scaled = Scaled64::getZero();
1416     }
1417   }
1418 }
1419 
1420 template <class BT>
1421 void BlockFrequencyInfoImpl<BT>::iterativeInference(
1422     const ProbMatrixType &ProbMatrix, std::vector<Scaled64> &Freq) const {
1423   assert(0.0 < IterativeBFIPrecision && IterativeBFIPrecision < 1.0 &&
1424          "incorrectly specified precision");
1425   // Convert double precision to Scaled64
1426   const auto Precision =
1427       Scaled64::getInverse(static_cast<uint64_t>(1.0 / IterativeBFIPrecision));
1428   const size_t MaxIterations = IterativeBFIMaxIterationsPerBlock * Freq.size();
1429 
1430 #ifndef NDEBUG
1431   LLVM_DEBUG(dbgs() << "  Initial discrepancy = "
1432                     << discrepancy(ProbMatrix, Freq).toString() << "\n");
1433 #endif
1434 
1435   // Successors[I] holds unique sucessors of the I-th block
1436   auto Successors = std::vector<std::vector<size_t>>(Freq.size());
1437   for (size_t I = 0; I < Freq.size(); I++) {
1438     for (const auto &Jump : ProbMatrix[I]) {
1439       Successors[Jump.first].push_back(I);
1440     }
1441   }
1442 
1443   // To speedup computation, we maintain a set of "active" blocks whose
1444   // frequencies need to be updated based on the incoming edges.
1445   // The set is dynamic and changes after every update. Initially all blocks
1446   // with a positive frequency are active
1447   auto IsActive = BitVector(Freq.size(), false);
1448   std::queue<size_t> ActiveSet;
1449   for (size_t I = 0; I < Freq.size(); I++) {
1450     if (Freq[I] > 0) {
1451       ActiveSet.push(I);
1452       IsActive[I] = true;
1453     }
1454   }
1455 
1456   // Iterate over the blocks propagating frequencies
1457   size_t It = 0;
1458   while (It++ < MaxIterations && !ActiveSet.empty()) {
1459     size_t I = ActiveSet.front();
1460     ActiveSet.pop();
1461     IsActive[I] = false;
1462 
1463     // Compute a new frequency for the block: NewFreq := Freq \times ProbMatrix.
1464     // A special care is taken for self-edges that needs to be scaled by
1465     // (1.0 - SelfProb), where SelfProb is the sum of probabilities on the edges
1466     Scaled64 NewFreq;
1467     Scaled64 OneMinusSelfProb = Scaled64::getOne();
1468     for (const auto &Jump : ProbMatrix[I]) {
1469       if (Jump.first == I) {
1470         OneMinusSelfProb -= Jump.second;
1471       } else {
1472         NewFreq += Freq[Jump.first] * Jump.second;
1473       }
1474     }
1475     if (OneMinusSelfProb != Scaled64::getOne())
1476       NewFreq /= OneMinusSelfProb;
1477 
1478     // If the block's frequency has changed enough, then
1479     // make sure the block and its successors are in the active set
1480     auto Change = Freq[I] >= NewFreq ? Freq[I] - NewFreq : NewFreq - Freq[I];
1481     if (Change > Precision) {
1482       ActiveSet.push(I);
1483       IsActive[I] = true;
1484       for (size_t Succ : Successors[I]) {
1485         if (!IsActive[Succ]) {
1486           ActiveSet.push(Succ);
1487           IsActive[Succ] = true;
1488         }
1489       }
1490     }
1491 
1492     // Update the frequency for the block
1493     Freq[I] = NewFreq;
1494   }
1495 
1496   LLVM_DEBUG(dbgs() << "  Completed " << It << " inference iterations"
1497                     << format(" (%0.0f per block)", double(It) / Freq.size())
1498                     << "\n");
1499 #ifndef NDEBUG
1500   LLVM_DEBUG(dbgs() << "  Final   discrepancy = "
1501                     << discrepancy(ProbMatrix, Freq).toString() << "\n");
1502 #endif
1503 }
1504 
1505 template <class BT>
1506 void BlockFrequencyInfoImpl<BT>::findReachableBlocks(
1507     std::vector<const BlockT *> &Blocks) const {
1508   // Find all blocks to apply inference on, that is, reachable from the entry
1509   // along edges with non-zero probablities
1510   std::queue<const BlockT *> Queue;
1511   SmallPtrSet<const BlockT *, 8> Reachable;
1512   const BlockT *Entry = &F->front();
1513   Queue.push(Entry);
1514   Reachable.insert(Entry);
1515   while (!Queue.empty()) {
1516     const BlockT *SrcBB = Queue.front();
1517     Queue.pop();
1518     for (const BlockT *DstBB : children<const BlockT *>(SrcBB)) {
1519       auto EP = BPI->getEdgeProbability(SrcBB, DstBB);
1520       if (EP.isZero())
1521         continue;
1522       if (Reachable.insert(DstBB).second)
1523         Queue.push(DstBB);
1524     }
1525   }
1526 
1527   // Find all blocks to apply inference on, that is, backward reachable from
1528   // the entry along (backward) edges with non-zero probablities
1529   SmallPtrSet<const BlockT *, 8> InverseReachable;
1530   for (const BlockT &BB : *F) {
1531     // An exit block is a block without any successors
1532     bool HasSucc = !llvm::children<const BlockT *>(&BB).empty();
1533     if (!HasSucc && Reachable.count(&BB)) {
1534       Queue.push(&BB);
1535       InverseReachable.insert(&BB);
1536     }
1537   }
1538   while (!Queue.empty()) {
1539     const BlockT *SrcBB = Queue.front();
1540     Queue.pop();
1541     for (const BlockT *DstBB : inverse_children<const BlockT *>(SrcBB)) {
1542       auto EP = BPI->getEdgeProbability(DstBB, SrcBB);
1543       if (EP.isZero())
1544         continue;
1545       if (InverseReachable.insert(DstBB).second)
1546         Queue.push(DstBB);
1547     }
1548   }
1549 
1550   // Collect the result
1551   Blocks.reserve(F->size());
1552   for (const BlockT &BB : *F) {
1553     if (Reachable.count(&BB) && InverseReachable.count(&BB)) {
1554       Blocks.push_back(&BB);
1555     }
1556   }
1557 }
1558 
1559 template <class BT>
1560 void BlockFrequencyInfoImpl<BT>::initTransitionProbabilities(
1561     const std::vector<const BlockT *> &Blocks,
1562     const DenseMap<const BlockT *, size_t> &BlockIndex,
1563     ProbMatrixType &ProbMatrix) const {
1564   const size_t NumBlocks = Blocks.size();
1565   auto Succs = std::vector<std::vector<std::pair<size_t, Scaled64>>>(NumBlocks);
1566   auto SumProb = std::vector<Scaled64>(NumBlocks);
1567 
1568   // Find unique successors and corresponding probabilities for every block
1569   for (size_t Src = 0; Src < NumBlocks; Src++) {
1570     const BlockT *BB = Blocks[Src];
1571     SmallPtrSet<const BlockT *, 2> UniqueSuccs;
1572     for (const auto SI : children<const BlockT *>(BB)) {
1573       // Ignore cold blocks
1574       if (!BlockIndex.contains(SI))
1575         continue;
1576       // Ignore parallel edges between BB and SI blocks
1577       if (!UniqueSuccs.insert(SI).second)
1578         continue;
1579       // Ignore jumps with zero probability
1580       auto EP = BPI->getEdgeProbability(BB, SI);
1581       if (EP.isZero())
1582         continue;
1583 
1584       auto EdgeProb =
1585           Scaled64::getFraction(EP.getNumerator(), EP.getDenominator());
1586       size_t Dst = BlockIndex.find(SI)->second;
1587       Succs[Src].push_back(std::make_pair(Dst, EdgeProb));
1588       SumProb[Src] += EdgeProb;
1589     }
1590   }
1591 
1592   // Add transitions for every jump with positive branch probability
1593   ProbMatrix = ProbMatrixType(NumBlocks);
1594   for (size_t Src = 0; Src < NumBlocks; Src++) {
1595     // Ignore blocks w/o successors
1596     if (Succs[Src].empty())
1597       continue;
1598 
1599     assert(!SumProb[Src].isZero() && "Zero sum probability of non-exit block");
1600     for (auto &Jump : Succs[Src]) {
1601       size_t Dst = Jump.first;
1602       Scaled64 Prob = Jump.second;
1603       ProbMatrix[Dst].push_back(std::make_pair(Src, Prob / SumProb[Src]));
1604     }
1605   }
1606 
1607   // Add transitions from sinks to the source
1608   size_t EntryIdx = BlockIndex.find(&F->front())->second;
1609   for (size_t Src = 0; Src < NumBlocks; Src++) {
1610     if (Succs[Src].empty()) {
1611       ProbMatrix[EntryIdx].push_back(std::make_pair(Src, Scaled64::getOne()));
1612     }
1613   }
1614 }
1615 
1616 #ifndef NDEBUG
1617 template <class BT>
1618 BlockFrequencyInfoImplBase::Scaled64 BlockFrequencyInfoImpl<BT>::discrepancy(
1619     const ProbMatrixType &ProbMatrix, const std::vector<Scaled64> &Freq) const {
1620   assert(Freq[0] > 0 && "Incorrectly computed frequency of the entry block");
1621   Scaled64 Discrepancy;
1622   for (size_t I = 0; I < ProbMatrix.size(); I++) {
1623     Scaled64 Sum;
1624     for (const auto &Jump : ProbMatrix[I]) {
1625       Sum += Freq[Jump.first] * Jump.second;
1626     }
1627     Discrepancy += Freq[I] >= Sum ? Freq[I] - Sum : Sum - Freq[I];
1628   }
1629   // Normalizing by the frequency of the entry block
1630   return Discrepancy / Freq[0];
1631 }
1632 #endif
1633 
1634 /// \note This should be a lambda, but that crashes GCC 4.7.
1635 namespace bfi_detail {
1636 
1637 template <class BT> struct BlockEdgesAdder {
1638   using BlockT = BT;
1639   using LoopData = BlockFrequencyInfoImplBase::LoopData;
1640   using Successor = GraphTraits<const BlockT *>;
1641 
1642   const BlockFrequencyInfoImpl<BT> &BFI;
1643 
1644   explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI)
1645       : BFI(BFI) {}
1646 
1647   void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
1648                   const LoopData *OuterLoop) {
1649     const BlockT *BB = BFI.RPOT[Irr.Node.Index];
1650     for (const auto *Succ : children<const BlockT *>(BB))
1651       G.addEdge(Irr, BFI.getNode(Succ), OuterLoop);
1652   }
1653 };
1654 
1655 } // end namespace bfi_detail
1656 
1657 template <class BT>
1658 void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
1659     LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
1660   LLVM_DEBUG(dbgs() << "analyze-irreducible-in-";
1661              if (OuterLoop) dbgs()
1662              << "loop: " << getLoopName(*OuterLoop) << "\n";
1663              else dbgs() << "function\n");
1664 
1665   using namespace bfi_detail;
1666 
1667   // Ideally, addBlockEdges() would be declared here as a lambda, but that
1668   // crashes GCC 4.7.
1669   BlockEdgesAdder<BT> addBlockEdges(*this);
1670   IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
1671 
1672   for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
1673     computeMassInLoop(L);
1674 
1675   if (!OuterLoop)
1676     return;
1677   updateLoopWithIrreducible(*OuterLoop);
1678 }
1679 
1680 // A helper function that converts a branch probability into weight.
1681 inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) {
1682   return Prob.getNumerator();
1683 }
1684 
1685 template <class BT>
1686 bool
1687 BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
1688                                                       const BlockNode &Node) {
1689   LLVM_DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
1690   // Calculate probability for successors.
1691   Distribution Dist;
1692   if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
1693     assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
1694     if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
1695       // Irreducible backedge.
1696       return false;
1697   } else {
1698     const BlockT *BB = getBlock(Node);
1699     for (auto SI = GraphTraits<const BlockT *>::child_begin(BB),
1700               SE = GraphTraits<const BlockT *>::child_end(BB);
1701          SI != SE; ++SI)
1702       if (!addToDist(
1703               Dist, OuterLoop, Node, getNode(*SI),
1704               getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI))))
1705         // Irreducible backedge.
1706         return false;
1707   }
1708 
1709   // Distribute mass to successors, saving exit and backedge data in the
1710   // loop header.
1711   distributeMass(Node, OuterLoop, Dist);
1712   return true;
1713 }
1714 
1715 template <class BT>
1716 raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
1717   if (!F)
1718     return OS;
1719   OS << "block-frequency-info: " << F->getName() << "\n";
1720   for (const BlockT &BB : *F) {
1721     OS << " - " << bfi_detail::getBlockName(&BB) << ": float = ";
1722     getFloatingBlockFreq(&BB).print(OS, 5)
1723         << ", int = " << getBlockFreq(&BB).getFrequency();
1724     if (std::optional<uint64_t> ProfileCount =
1725         BlockFrequencyInfoImplBase::getBlockProfileCount(
1726             F->getFunction(), getNode(&BB)))
1727       OS << ", count = " << *ProfileCount;
1728     if (std::optional<uint64_t> IrrLoopHeaderWeight =
1729             BB.getIrrLoopHeaderWeight())
1730       OS << ", irr_loop_header_weight = " << *IrrLoopHeaderWeight;
1731     OS << "\n";
1732   }
1733 
1734   // Add an extra newline for readability.
1735   OS << "\n";
1736   return OS;
1737 }
1738 
1739 template <class BT>
1740 void BlockFrequencyInfoImpl<BT>::verifyMatch(
1741     BlockFrequencyInfoImpl<BT> &Other) const {
1742   bool Match = true;
1743   DenseMap<const BlockT *, BlockNode> ValidNodes;
1744   DenseMap<const BlockT *, BlockNode> OtherValidNodes;
1745   for (auto &Entry : Nodes) {
1746     const BlockT *BB = Entry.first;
1747     if (BB) {
1748       ValidNodes[BB] = Entry.second.first;
1749     }
1750   }
1751   for (auto &Entry : Other.Nodes) {
1752     const BlockT *BB = Entry.first;
1753     if (BB) {
1754       OtherValidNodes[BB] = Entry.second.first;
1755     }
1756   }
1757   unsigned NumValidNodes = ValidNodes.size();
1758   unsigned NumOtherValidNodes = OtherValidNodes.size();
1759   if (NumValidNodes != NumOtherValidNodes) {
1760     Match = false;
1761     dbgs() << "Number of blocks mismatch: " << NumValidNodes << " vs "
1762            << NumOtherValidNodes << "\n";
1763   } else {
1764     for (auto &Entry : ValidNodes) {
1765       const BlockT *BB = Entry.first;
1766       BlockNode Node = Entry.second;
1767       if (OtherValidNodes.count(BB)) {
1768         BlockNode OtherNode = OtherValidNodes[BB];
1769         const auto &Freq = Freqs[Node.Index];
1770         const auto &OtherFreq = Other.Freqs[OtherNode.Index];
1771         if (Freq.Integer != OtherFreq.Integer) {
1772           Match = false;
1773           dbgs() << "Freq mismatch: " << bfi_detail::getBlockName(BB) << " "
1774                  << Freq.Integer << " vs " << OtherFreq.Integer << "\n";
1775         }
1776       } else {
1777         Match = false;
1778         dbgs() << "Block " << bfi_detail::getBlockName(BB) << " index "
1779                << Node.Index << " does not exist in Other.\n";
1780       }
1781     }
1782     // If there's a valid node in OtherValidNodes that's not in ValidNodes,
1783     // either the above num check or the check on OtherValidNodes will fail.
1784   }
1785   if (!Match) {
1786     dbgs() << "This\n";
1787     print(dbgs());
1788     dbgs() << "Other\n";
1789     Other.print(dbgs());
1790   }
1791   assert(Match && "BFI mismatch");
1792 }
1793 
1794 // Graph trait base class for block frequency information graph
1795 // viewer.
1796 
1797 enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count };
1798 
1799 template <class BlockFrequencyInfoT, class BranchProbabilityInfoT>
1800 struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits {
1801   using GTraits = GraphTraits<BlockFrequencyInfoT *>;
1802   using NodeRef = typename GTraits::NodeRef;
1803   using EdgeIter = typename GTraits::ChildIteratorType;
1804   using NodeIter = typename GTraits::nodes_iterator;
1805 
1806   uint64_t MaxFrequency = 0;
1807 
1808   explicit BFIDOTGraphTraitsBase(bool isSimple = false)
1809       : DefaultDOTGraphTraits(isSimple) {}
1810 
1811   static StringRef getGraphName(const BlockFrequencyInfoT *G) {
1812     return G->getFunction()->getName();
1813   }
1814 
1815   std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph,
1816                                 unsigned HotPercentThreshold = 0) {
1817     std::string Result;
1818     if (!HotPercentThreshold)
1819       return Result;
1820 
1821     // Compute MaxFrequency on the fly:
1822     if (!MaxFrequency) {
1823       for (NodeIter I = GTraits::nodes_begin(Graph),
1824                     E = GTraits::nodes_end(Graph);
1825            I != E; ++I) {
1826         NodeRef N = *I;
1827         MaxFrequency =
1828             std::max(MaxFrequency, Graph->getBlockFreq(N).getFrequency());
1829       }
1830     }
1831     BlockFrequency Freq = Graph->getBlockFreq(Node);
1832     BlockFrequency HotFreq =
1833         (BlockFrequency(MaxFrequency) *
1834          BranchProbability::getBranchProbability(HotPercentThreshold, 100));
1835 
1836     if (Freq < HotFreq)
1837       return Result;
1838 
1839     raw_string_ostream OS(Result);
1840     OS << "color=\"red\"";
1841     OS.flush();
1842     return Result;
1843   }
1844 
1845   std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph,
1846                            GVDAGType GType, int layout_order = -1) {
1847     std::string Result;
1848     raw_string_ostream OS(Result);
1849 
1850     if (layout_order != -1)
1851       OS << Node->getName() << "[" << layout_order << "] : ";
1852     else
1853       OS << Node->getName() << " : ";
1854     switch (GType) {
1855     case GVDT_Fraction:
1856       OS << printBlockFreq(*Graph, *Node);
1857       break;
1858     case GVDT_Integer:
1859       OS << Graph->getBlockFreq(Node).getFrequency();
1860       break;
1861     case GVDT_Count: {
1862       auto Count = Graph->getBlockProfileCount(Node);
1863       if (Count)
1864         OS << *Count;
1865       else
1866         OS << "Unknown";
1867       break;
1868     }
1869     case GVDT_None:
1870       llvm_unreachable("If we are not supposed to render a graph we should "
1871                        "never reach this point.");
1872     }
1873     return Result;
1874   }
1875 
1876   std::string getEdgeAttributes(NodeRef Node, EdgeIter EI,
1877                                 const BlockFrequencyInfoT *BFI,
1878                                 const BranchProbabilityInfoT *BPI,
1879                                 unsigned HotPercentThreshold = 0) {
1880     std::string Str;
1881     if (!BPI)
1882       return Str;
1883 
1884     BranchProbability BP = BPI->getEdgeProbability(Node, EI);
1885     uint32_t N = BP.getNumerator();
1886     uint32_t D = BP.getDenominator();
1887     double Percent = 100.0 * N / D;
1888     raw_string_ostream OS(Str);
1889     OS << format("label=\"%.1f%%\"", Percent);
1890 
1891     if (HotPercentThreshold) {
1892       BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP;
1893       BlockFrequency HotFreq = BlockFrequency(MaxFrequency) *
1894                                BranchProbability(HotPercentThreshold, 100);
1895 
1896       if (EFreq >= HotFreq) {
1897         OS << ",color=\"red\"";
1898       }
1899     }
1900 
1901     OS.flush();
1902     return Str;
1903   }
1904 };
1905 
1906 } // end namespace llvm
1907 
1908 #undef DEBUG_TYPE
1909 
1910 #endif // LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
1911