1 //===- llvm/ADT/SparseSet.h - Sparse set ------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file defines the SparseSet class derived from the version described in 11 /// Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters 12 /// on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec. 1993. 13 /// 14 /// A sparse set holds a small number of objects identified by integer keys from 15 /// a moderately sized universe. The sparse set uses more memory than other 16 /// containers in order to provide faster operations. 17 /// 18 //===----------------------------------------------------------------------===// 19 20 #ifndef LLVM_ADT_SPARSESET_H 21 #define LLVM_ADT_SPARSESET_H 22 23 #include "llvm/ADT/identity.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Support/AllocatorBase.h" 26 #include <cassert> 27 #include <cstdint> 28 #include <cstdlib> 29 #include <limits> 30 #include <utility> 31 32 namespace llvm { 33 34 /// SparseSetValTraits - Objects in a SparseSet are identified by keys that can 35 /// be uniquely converted to a small integer less than the set's universe. This 36 /// class allows the set to hold values that differ from the set's key type as 37 /// long as an index can still be derived from the value. SparseSet never 38 /// directly compares ValueT, only their indices, so it can map keys to 39 /// arbitrary values. SparseSetValTraits computes the index from the value 40 /// object. To compute the index from a key, SparseSet uses a separate 41 /// KeyFunctorT template argument. 42 /// 43 /// A simple type declaration, SparseSet<Type>, handles these cases: 44 /// - unsigned key, identity index, identity value 45 /// - unsigned key, identity index, fat value providing getSparseSetIndex() 46 /// 47 /// The type declaration SparseSet<Type, UnaryFunction> handles: 48 /// - unsigned key, remapped index, identity value (virtual registers) 49 /// - pointer key, pointer-derived index, identity value (node+ID) 50 /// - pointer key, pointer-derived index, fat value with getSparseSetIndex() 51 /// 52 /// Only other, unexpected cases require specializing SparseSetValTraits. 53 /// 54 /// For best results, ValueT should not require a destructor. 55 /// 56 template<typename ValueT> 57 struct SparseSetValTraits { 58 static unsigned getValIndex(const ValueT &Val) { 59 return Val.getSparseSetIndex(); 60 } 61 }; 62 63 /// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The 64 /// generic implementation handles ValueT classes which either provide 65 /// getSparseSetIndex() or specialize SparseSetValTraits<>. 66 /// 67 template<typename KeyT, typename ValueT, typename KeyFunctorT> 68 struct SparseSetValFunctor { 69 unsigned operator()(const ValueT &Val) const { 70 return SparseSetValTraits<ValueT>::getValIndex(Val); 71 } 72 }; 73 74 /// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of 75 /// identity key/value sets. 76 template<typename KeyT, typename KeyFunctorT> 77 struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> { 78 unsigned operator()(const KeyT &Key) const { 79 return KeyFunctorT()(Key); 80 } 81 }; 82 83 /// SparseSet - Fast set implementation for objects that can be identified by 84 /// small unsigned keys. 85 /// 86 /// SparseSet allocates memory proportional to the size of the key universe, so 87 /// it is not recommended for building composite data structures. It is useful 88 /// for algorithms that require a single set with fast operations. 89 /// 90 /// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast 91 /// clear() and iteration as fast as a vector. The find(), insert(), and 92 /// erase() operations are all constant time, and typically faster than a hash 93 /// table. The iteration order doesn't depend on numerical key values, it only 94 /// depends on the order of insert() and erase() operations. When no elements 95 /// have been erased, the iteration order is the insertion order. 96 /// 97 /// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but 98 /// offers constant-time clear() and size() operations as well as fast 99 /// iteration independent on the size of the universe. 100 /// 101 /// SparseSet contains a dense vector holding all the objects and a sparse 102 /// array holding indexes into the dense vector. Most of the memory is used by 103 /// the sparse array which is the size of the key universe. The SparseT 104 /// template parameter provides a space/speed tradeoff for sets holding many 105 /// elements. 106 /// 107 /// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse 108 /// array uses 4 x Universe bytes. 109 /// 110 /// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache 111 /// lines, but the sparse array is 4x smaller. N is the number of elements in 112 /// the set. 113 /// 114 /// For sets that may grow to thousands of elements, SparseT should be set to 115 /// uint16_t or uint32_t. 116 /// 117 /// @tparam ValueT The type of objects in the set. 118 /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT. 119 /// @tparam SparseT An unsigned integer type. See above. 120 /// 121 template<typename ValueT, 122 typename KeyFunctorT = identity<unsigned>, 123 typename SparseT = uint8_t> 124 class SparseSet { 125 static_assert(std::is_unsigned_v<SparseT>, 126 "SparseT must be an unsigned integer type"); 127 128 using KeyT = typename KeyFunctorT::argument_type; 129 using DenseT = SmallVector<ValueT, 8>; 130 using size_type = unsigned; 131 DenseT Dense; 132 SparseT *Sparse = nullptr; 133 unsigned Universe = 0; 134 KeyFunctorT KeyIndexOf; 135 SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf; 136 137 public: 138 using value_type = ValueT; 139 using reference = ValueT &; 140 using const_reference = const ValueT &; 141 using pointer = ValueT *; 142 using const_pointer = const ValueT *; 143 144 SparseSet() = default; 145 SparseSet(const SparseSet &) = delete; 146 SparseSet &operator=(const SparseSet &) = delete; 147 ~SparseSet() { free(Sparse); } 148 149 /// setUniverse - Set the universe size which determines the largest key the 150 /// set can hold. The universe must be sized before any elements can be 151 /// added. 152 /// 153 /// @param U Universe size. All object keys must be less than U. 154 /// 155 void setUniverse(unsigned U) { 156 // It's not hard to resize the universe on a non-empty set, but it doesn't 157 // seem like a likely use case, so we can add that code when we need it. 158 assert(empty() && "Can only resize universe on an empty map"); 159 // Hysteresis prevents needless reallocations. 160 if (U >= Universe/4 && U <= Universe) 161 return; 162 free(Sparse); 163 // The Sparse array doesn't actually need to be initialized, so malloc 164 // would be enough here, but that will cause tools like valgrind to 165 // complain about branching on uninitialized data. 166 Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT))); 167 Universe = U; 168 } 169 170 // Import trivial vector stuff from DenseT. 171 using iterator = typename DenseT::iterator; 172 using const_iterator = typename DenseT::const_iterator; 173 174 const_iterator begin() const { return Dense.begin(); } 175 const_iterator end() const { return Dense.end(); } 176 iterator begin() { return Dense.begin(); } 177 iterator end() { return Dense.end(); } 178 179 /// empty - Returns true if the set is empty. 180 /// 181 /// This is not the same as BitVector::empty(). 182 /// 183 bool empty() const { return Dense.empty(); } 184 185 /// size - Returns the number of elements in the set. 186 /// 187 /// This is not the same as BitVector::size() which returns the size of the 188 /// universe. 189 /// 190 size_type size() const { return Dense.size(); } 191 192 /// clear - Clears the set. This is a very fast constant time operation. 193 /// 194 void clear() { 195 // Sparse does not need to be cleared, see find(). 196 Dense.clear(); 197 } 198 199 /// findIndex - Find an element by its index. 200 /// 201 /// @param Idx A valid index to find. 202 /// @returns An iterator to the element identified by key, or end(). 203 /// 204 iterator findIndex(unsigned Idx) { 205 assert(Idx < Universe && "Key out of range"); 206 assert(Sparse != nullptr && "Invalid sparse type"); 207 const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u; 208 for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) { 209 const unsigned FoundIdx = ValIndexOf(Dense[i]); 210 assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?"); 211 if (Idx == FoundIdx) 212 return begin() + i; 213 // Stride is 0 when SparseT >= unsigned. We don't need to loop. 214 if (!Stride) 215 break; 216 } 217 return end(); 218 } 219 220 /// find - Find an element by its key. 221 /// 222 /// @param Key A valid key to find. 223 /// @returns An iterator to the element identified by key, or end(). 224 /// 225 iterator find(const KeyT &Key) { 226 return findIndex(KeyIndexOf(Key)); 227 } 228 229 const_iterator find(const KeyT &Key) const { 230 return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key)); 231 } 232 233 /// Check if the set contains the given \c Key. 234 /// 235 /// @param Key A valid key to find. 236 bool contains(const KeyT &Key) const { return find(Key) != end(); } 237 238 /// count - Returns 1 if this set contains an element identified by Key, 239 /// 0 otherwise. 240 /// 241 size_type count(const KeyT &Key) const { return contains(Key) ? 1 : 0; } 242 243 /// insert - Attempts to insert a new element. 244 /// 245 /// If Val is successfully inserted, return (I, true), where I is an iterator 246 /// pointing to the newly inserted element. 247 /// 248 /// If the set already contains an element with the same key as Val, return 249 /// (I, false), where I is an iterator pointing to the existing element. 250 /// 251 /// Insertion invalidates all iterators. 252 /// 253 std::pair<iterator, bool> insert(const ValueT &Val) { 254 unsigned Idx = ValIndexOf(Val); 255 iterator I = findIndex(Idx); 256 if (I != end()) 257 return std::make_pair(I, false); 258 Sparse[Idx] = size(); 259 Dense.push_back(Val); 260 return std::make_pair(end() - 1, true); 261 } 262 263 /// array subscript - If an element already exists with this key, return it. 264 /// Otherwise, automatically construct a new value from Key, insert it, 265 /// and return the newly inserted element. 266 ValueT &operator[](const KeyT &Key) { 267 return *insert(ValueT(Key)).first; 268 } 269 270 ValueT pop_back_val() { 271 // Sparse does not need to be cleared, see find(). 272 return Dense.pop_back_val(); 273 } 274 275 /// erase - Erases an existing element identified by a valid iterator. 276 /// 277 /// This invalidates all iterators, but erase() returns an iterator pointing 278 /// to the next element. This makes it possible to erase selected elements 279 /// while iterating over the set: 280 /// 281 /// for (SparseSet::iterator I = Set.begin(); I != Set.end();) 282 /// if (test(*I)) 283 /// I = Set.erase(I); 284 /// else 285 /// ++I; 286 /// 287 /// Note that end() changes when elements are erased, unlike std::list. 288 /// 289 iterator erase(iterator I) { 290 assert(unsigned(I - begin()) < size() && "Invalid iterator"); 291 if (I != end() - 1) { 292 *I = Dense.back(); 293 unsigned BackIdx = ValIndexOf(Dense.back()); 294 assert(BackIdx < Universe && "Invalid key in set. Did object mutate?"); 295 Sparse[BackIdx] = I - begin(); 296 } 297 // This depends on SmallVector::pop_back() not invalidating iterators. 298 // std::vector::pop_back() doesn't give that guarantee. 299 Dense.pop_back(); 300 return I; 301 } 302 303 /// erase - Erases an element identified by Key, if it exists. 304 /// 305 /// @param Key The key identifying the element to erase. 306 /// @returns True when an element was erased, false if no element was found. 307 /// 308 bool erase(const KeyT &Key) { 309 iterator I = find(Key); 310 if (I == end()) 311 return false; 312 erase(I); 313 return true; 314 } 315 }; 316 317 } // end namespace llvm 318 319 #endif // LLVM_ADT_SPARSESET_H 320