xref: /freebsd/contrib/llvm-project/llvm/include/llvm/ADT/DenseMap.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines the DenseMap class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ADT_DENSEMAP_H
15 #define LLVM_ADT_DENSEMAP_H
16 
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/EpochTracker.h"
19 #include "llvm/Support/AlignOf.h"
20 #include "llvm/Support/Compiler.h"
21 #include "llvm/Support/MathExtras.h"
22 #include "llvm/Support/MemAlloc.h"
23 #include "llvm/Support/ReverseIteration.h"
24 #include "llvm/Support/type_traits.h"
25 #include <algorithm>
26 #include <cassert>
27 #include <cstddef>
28 #include <cstring>
29 #include <initializer_list>
30 #include <iterator>
31 #include <new>
32 #include <type_traits>
33 #include <utility>
34 
35 namespace llvm {
36 
37 namespace detail {
38 
39 // We extend a pair to allow users to override the bucket type with their own
40 // implementation without requiring two members.
41 template <typename KeyT, typename ValueT>
42 struct DenseMapPair : public std::pair<KeyT, ValueT> {
43   using std::pair<KeyT, ValueT>::pair;
44 
getFirstDenseMapPair45   KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; }
getFirstDenseMapPair46   const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; }
getSecondDenseMapPair47   ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; }
getSecondDenseMapPair48   const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; }
49 };
50 
51 } // end namespace detail
52 
53 template <typename KeyT, typename ValueT,
54           typename KeyInfoT = DenseMapInfo<KeyT>,
55           typename Bucket = llvm::detail::DenseMapPair<KeyT, ValueT>,
56           bool IsConst = false>
57 class DenseMapIterator;
58 
59 template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
60           typename BucketT>
61 class DenseMapBase : public DebugEpochBase {
62   template <typename T>
63   using const_arg_type_t = typename const_pointer_or_const_ref<T>::type;
64 
65 public:
66   using size_type = unsigned;
67   using key_type = KeyT;
68   using mapped_type = ValueT;
69   using value_type = BucketT;
70 
71   using iterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT>;
72   using const_iterator =
73       DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true>;
74 
begin()75   inline iterator begin() {
76     // When the map is empty, avoid the overhead of advancing/retreating past
77     // empty buckets.
78     if (empty())
79       return end();
80     if (shouldReverseIterate<KeyT>())
81       return makeIterator(getBucketsEnd() - 1, getBuckets(), *this);
82     return makeIterator(getBuckets(), getBucketsEnd(), *this);
83   }
end()84   inline iterator end() {
85     return makeIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
86   }
begin()87   inline const_iterator begin() const {
88     if (empty())
89       return end();
90     if (shouldReverseIterate<KeyT>())
91       return makeConstIterator(getBucketsEnd() - 1, getBuckets(), *this);
92     return makeConstIterator(getBuckets(), getBucketsEnd(), *this);
93   }
end()94   inline const_iterator end() const {
95     return makeConstIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
96   }
97 
empty()98   [[nodiscard]] bool empty() const { return getNumEntries() == 0; }
size()99   unsigned size() const { return getNumEntries(); }
100 
101   /// Grow the densemap so that it can contain at least \p NumEntries items
102   /// before resizing again.
reserve(size_type NumEntries)103   void reserve(size_type NumEntries) {
104     auto NumBuckets = getMinBucketToReserveForEntries(NumEntries);
105     incrementEpoch();
106     if (NumBuckets > getNumBuckets())
107       grow(NumBuckets);
108   }
109 
clear()110   void clear() {
111     incrementEpoch();
112     if (getNumEntries() == 0 && getNumTombstones() == 0) return;
113 
114     // If the capacity of the array is huge, and the # elements used is small,
115     // shrink the array.
116     if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
117       shrink_and_clear();
118       return;
119     }
120 
121     const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
122     if (std::is_trivially_destructible<ValueT>::value) {
123       // Use a simpler loop when values don't need destruction.
124       for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P)
125         P->getFirst() = EmptyKey;
126     } else {
127       unsigned NumEntries = getNumEntries();
128       for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
129         if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) {
130           if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
131             P->getSecond().~ValueT();
132             --NumEntries;
133           }
134           P->getFirst() = EmptyKey;
135         }
136       }
137       assert(NumEntries == 0 && "Node count imbalance!");
138       (void)NumEntries;
139     }
140     setNumEntries(0);
141     setNumTombstones(0);
142   }
143 
144   /// Return true if the specified key is in the map, false otherwise.
contains(const_arg_type_t<KeyT> Val)145   bool contains(const_arg_type_t<KeyT> Val) const {
146     const BucketT *TheBucket;
147     return LookupBucketFor(Val, TheBucket);
148   }
149 
150   /// Return 1 if the specified key is in the map, 0 otherwise.
count(const_arg_type_t<KeyT> Val)151   size_type count(const_arg_type_t<KeyT> Val) const {
152     return contains(Val) ? 1 : 0;
153   }
154 
find(const_arg_type_t<KeyT> Val)155   iterator find(const_arg_type_t<KeyT> Val) {
156     BucketT *TheBucket;
157     if (LookupBucketFor(Val, TheBucket))
158       return makeIterator(TheBucket,
159                           shouldReverseIterate<KeyT>() ? getBuckets()
160                                                        : getBucketsEnd(),
161                           *this, true);
162     return end();
163   }
find(const_arg_type_t<KeyT> Val)164   const_iterator find(const_arg_type_t<KeyT> Val) const {
165     const BucketT *TheBucket;
166     if (LookupBucketFor(Val, TheBucket))
167       return makeConstIterator(TheBucket,
168                                shouldReverseIterate<KeyT>() ? getBuckets()
169                                                             : getBucketsEnd(),
170                                *this, true);
171     return end();
172   }
173 
174   /// Alternate version of find() which allows a different, and possibly
175   /// less expensive, key type.
176   /// The DenseMapInfo is responsible for supplying methods
177   /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
178   /// type used.
179   template<class LookupKeyT>
find_as(const LookupKeyT & Val)180   iterator find_as(const LookupKeyT &Val) {
181     BucketT *TheBucket;
182     if (LookupBucketFor(Val, TheBucket))
183       return makeIterator(TheBucket,
184                           shouldReverseIterate<KeyT>() ? getBuckets()
185                                                        : getBucketsEnd(),
186                           *this, true);
187     return end();
188   }
189   template<class LookupKeyT>
find_as(const LookupKeyT & Val)190   const_iterator find_as(const LookupKeyT &Val) const {
191     const BucketT *TheBucket;
192     if (LookupBucketFor(Val, TheBucket))
193       return makeConstIterator(TheBucket,
194                                shouldReverseIterate<KeyT>() ? getBuckets()
195                                                             : getBucketsEnd(),
196                                *this, true);
197     return end();
198   }
199 
200   /// lookup - Return the entry for the specified key, or a default
201   /// constructed value if no such entry exists.
lookup(const_arg_type_t<KeyT> Val)202   ValueT lookup(const_arg_type_t<KeyT> Val) const {
203     const BucketT *TheBucket;
204     if (LookupBucketFor(Val, TheBucket))
205       return TheBucket->getSecond();
206     return ValueT();
207   }
208 
209   /// at - Return the entry for the specified key, or abort if no such
210   /// entry exists.
at(const_arg_type_t<KeyT> Val)211   const ValueT &at(const_arg_type_t<KeyT> Val) const {
212     auto Iter = this->find(std::move(Val));
213     assert(Iter != this->end() && "DenseMap::at failed due to a missing key");
214     return Iter->second;
215   }
216 
217   // Inserts key,value pair into the map if the key isn't already in the map.
218   // If the key is already in the map, it returns false and doesn't update the
219   // value.
insert(const std::pair<KeyT,ValueT> & KV)220   std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
221     return try_emplace(KV.first, KV.second);
222   }
223 
224   // Inserts key,value pair into the map if the key isn't already in the map.
225   // If the key is already in the map, it returns false and doesn't update the
226   // value.
insert(std::pair<KeyT,ValueT> && KV)227   std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
228     return try_emplace(std::move(KV.first), std::move(KV.second));
229   }
230 
231   // Inserts key,value pair into the map if the key isn't already in the map.
232   // The value is constructed in-place if the key is not in the map, otherwise
233   // it is not moved.
234   template <typename... Ts>
try_emplace(KeyT && Key,Ts &&...Args)235   std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&... Args) {
236     BucketT *TheBucket;
237     if (LookupBucketFor(Key, TheBucket))
238       return std::make_pair(makeIterator(TheBucket,
239                                          shouldReverseIterate<KeyT>()
240                                              ? getBuckets()
241                                              : getBucketsEnd(),
242                                          *this, true),
243                             false); // Already in map.
244 
245     // Otherwise, insert the new element.
246     TheBucket =
247         InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...);
248     return std::make_pair(makeIterator(TheBucket,
249                                        shouldReverseIterate<KeyT>()
250                                            ? getBuckets()
251                                            : getBucketsEnd(),
252                                        *this, true),
253                           true);
254   }
255 
256   // Inserts key,value pair into the map if the key isn't already in the map.
257   // The value is constructed in-place if the key is not in the map, otherwise
258   // it is not moved.
259   template <typename... Ts>
try_emplace(const KeyT & Key,Ts &&...Args)260   std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&... Args) {
261     BucketT *TheBucket;
262     if (LookupBucketFor(Key, TheBucket))
263       return std::make_pair(makeIterator(TheBucket,
264                                          shouldReverseIterate<KeyT>()
265                                              ? getBuckets()
266                                              : getBucketsEnd(),
267                                          *this, true),
268                             false); // Already in map.
269 
270     // Otherwise, insert the new element.
271     TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...);
272     return std::make_pair(makeIterator(TheBucket,
273                                        shouldReverseIterate<KeyT>()
274                                            ? getBuckets()
275                                            : getBucketsEnd(),
276                                        *this, true),
277                           true);
278   }
279 
280   /// Alternate version of insert() which allows a different, and possibly
281   /// less expensive, key type.
282   /// The DenseMapInfo is responsible for supplying methods
283   /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
284   /// type used.
285   template <typename LookupKeyT>
insert_as(std::pair<KeyT,ValueT> && KV,const LookupKeyT & Val)286   std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV,
287                                       const LookupKeyT &Val) {
288     BucketT *TheBucket;
289     if (LookupBucketFor(Val, TheBucket))
290       return std::make_pair(makeIterator(TheBucket,
291                                          shouldReverseIterate<KeyT>()
292                                              ? getBuckets()
293                                              : getBucketsEnd(),
294                                          *this, true),
295                             false); // Already in map.
296 
297     // Otherwise, insert the new element.
298     TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first),
299                                            std::move(KV.second), Val);
300     return std::make_pair(makeIterator(TheBucket,
301                                        shouldReverseIterate<KeyT>()
302                                            ? getBuckets()
303                                            : getBucketsEnd(),
304                                        *this, true),
305                           true);
306   }
307 
308   /// insert - Range insertion of pairs.
309   template<typename InputIt>
insert(InputIt I,InputIt E)310   void insert(InputIt I, InputIt E) {
311     for (; I != E; ++I)
312       insert(*I);
313   }
314 
315   template <typename V>
insert_or_assign(const KeyT & Key,V && Val)316   std::pair<iterator, bool> insert_or_assign(const KeyT &Key, V &&Val) {
317     auto Ret = try_emplace(Key, std::forward<V>(Val));
318     if (!Ret.second)
319       Ret.first->second = std::forward<V>(Val);
320     return Ret;
321   }
322 
323   template <typename V>
insert_or_assign(KeyT && Key,V && Val)324   std::pair<iterator, bool> insert_or_assign(KeyT &&Key, V &&Val) {
325     auto Ret = try_emplace(std::move(Key), std::forward<V>(Val));
326     if (!Ret.second)
327       Ret.first->second = std::forward<V>(Val);
328     return Ret;
329   }
330 
331   /// Returns the value associated to the key in the map if it exists. If it
332   /// does not exist, emplace a default value for the key and returns a
333   /// reference to the newly created value.
getOrInsertDefault(KeyT && Key)334   ValueT &getOrInsertDefault(KeyT &&Key) {
335     return try_emplace(Key).first->second;
336   }
337 
338   /// Returns the value associated to the key in the map if it exists. If it
339   /// does not exist, emplace a default value for the key and returns a
340   /// reference to the newly created value.
getOrInsertDefault(const KeyT & Key)341   ValueT &getOrInsertDefault(const KeyT &Key) {
342     return try_emplace(Key).first->second;
343   }
344 
erase(const KeyT & Val)345   bool erase(const KeyT &Val) {
346     BucketT *TheBucket;
347     if (!LookupBucketFor(Val, TheBucket))
348       return false; // not in map.
349 
350     TheBucket->getSecond().~ValueT();
351     TheBucket->getFirst() = getTombstoneKey();
352     decrementNumEntries();
353     incrementNumTombstones();
354     return true;
355   }
erase(iterator I)356   void erase(iterator I) {
357     BucketT *TheBucket = &*I;
358     TheBucket->getSecond().~ValueT();
359     TheBucket->getFirst() = getTombstoneKey();
360     decrementNumEntries();
361     incrementNumTombstones();
362   }
363 
FindAndConstruct(const KeyT & Key)364   value_type& FindAndConstruct(const KeyT &Key) {
365     BucketT *TheBucket;
366     if (LookupBucketFor(Key, TheBucket))
367       return *TheBucket;
368 
369     return *InsertIntoBucket(TheBucket, Key);
370   }
371 
372   ValueT &operator[](const KeyT &Key) {
373     return FindAndConstruct(Key).second;
374   }
375 
FindAndConstruct(KeyT && Key)376   value_type& FindAndConstruct(KeyT &&Key) {
377     BucketT *TheBucket;
378     if (LookupBucketFor(Key, TheBucket))
379       return *TheBucket;
380 
381     return *InsertIntoBucket(TheBucket, std::move(Key));
382   }
383 
384   ValueT &operator[](KeyT &&Key) {
385     return FindAndConstruct(std::move(Key)).second;
386   }
387 
388   /// isPointerIntoBucketsArray - Return true if the specified pointer points
389   /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
390   /// value in the DenseMap).
isPointerIntoBucketsArray(const void * Ptr)391   bool isPointerIntoBucketsArray(const void *Ptr) const {
392     return Ptr >= getBuckets() && Ptr < getBucketsEnd();
393   }
394 
395   /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
396   /// array.  In conjunction with the previous method, this can be used to
397   /// determine whether an insertion caused the DenseMap to reallocate.
getPointerIntoBucketsArray()398   const void *getPointerIntoBucketsArray() const { return getBuckets(); }
399 
400 protected:
401   DenseMapBase() = default;
402 
destroyAll()403   void destroyAll() {
404     if (getNumBuckets() == 0) // Nothing to do.
405       return;
406 
407     const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
408     for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
409       if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
410           !KeyInfoT::isEqual(P->getFirst(), TombstoneKey))
411         P->getSecond().~ValueT();
412       P->getFirst().~KeyT();
413     }
414   }
415 
initEmpty()416   void initEmpty() {
417     setNumEntries(0);
418     setNumTombstones(0);
419 
420     assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
421            "# initial buckets must be a power of two!");
422     const KeyT EmptyKey = getEmptyKey();
423     for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
424       ::new (&B->getFirst()) KeyT(EmptyKey);
425   }
426 
427   /// Returns the number of buckets to allocate to ensure that the DenseMap can
428   /// accommodate \p NumEntries without need to grow().
getMinBucketToReserveForEntries(unsigned NumEntries)429   unsigned getMinBucketToReserveForEntries(unsigned NumEntries) {
430     // Ensure that "NumEntries * 4 < NumBuckets * 3"
431     if (NumEntries == 0)
432       return 0;
433     // +1 is required because of the strict equality.
434     // For example if NumEntries is 48, we need to return 401.
435     return NextPowerOf2(NumEntries * 4 / 3 + 1);
436   }
437 
moveFromOldBuckets(BucketT * OldBucketsBegin,BucketT * OldBucketsEnd)438   void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
439     initEmpty();
440 
441     // Insert all the old elements.
442     const KeyT EmptyKey = getEmptyKey();
443     const KeyT TombstoneKey = getTombstoneKey();
444     for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
445       if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) &&
446           !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) {
447         // Insert the key/value into the new table.
448         BucketT *DestBucket;
449         bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket);
450         (void)FoundVal; // silence warning.
451         assert(!FoundVal && "Key already in new map?");
452         DestBucket->getFirst() = std::move(B->getFirst());
453         ::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond()));
454         incrementNumEntries();
455 
456         // Free the value.
457         B->getSecond().~ValueT();
458       }
459       B->getFirst().~KeyT();
460     }
461   }
462 
463   template <typename OtherBaseT>
copyFrom(const DenseMapBase<OtherBaseT,KeyT,ValueT,KeyInfoT,BucketT> & other)464   void copyFrom(
465       const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) {
466     assert(&other != this);
467     assert(getNumBuckets() == other.getNumBuckets());
468 
469     setNumEntries(other.getNumEntries());
470     setNumTombstones(other.getNumTombstones());
471 
472     if (std::is_trivially_copyable<KeyT>::value &&
473         std::is_trivially_copyable<ValueT>::value)
474       memcpy(reinterpret_cast<void *>(getBuckets()), other.getBuckets(),
475              getNumBuckets() * sizeof(BucketT));
476     else
477       for (size_t i = 0; i < getNumBuckets(); ++i) {
478         ::new (&getBuckets()[i].getFirst())
479             KeyT(other.getBuckets()[i].getFirst());
480         if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) &&
481             !KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey()))
482           ::new (&getBuckets()[i].getSecond())
483               ValueT(other.getBuckets()[i].getSecond());
484       }
485   }
486 
getHashValue(const KeyT & Val)487   static unsigned getHashValue(const KeyT &Val) {
488     return KeyInfoT::getHashValue(Val);
489   }
490 
491   template<typename LookupKeyT>
getHashValue(const LookupKeyT & Val)492   static unsigned getHashValue(const LookupKeyT &Val) {
493     return KeyInfoT::getHashValue(Val);
494   }
495 
getEmptyKey()496   static const KeyT getEmptyKey() {
497     static_assert(std::is_base_of<DenseMapBase, DerivedT>::value,
498                   "Must pass the derived type to this template!");
499     return KeyInfoT::getEmptyKey();
500   }
501 
getTombstoneKey()502   static const KeyT getTombstoneKey() {
503     return KeyInfoT::getTombstoneKey();
504   }
505 
506 private:
507   iterator makeIterator(BucketT *P, BucketT *E,
508                         DebugEpochBase &Epoch,
509                         bool NoAdvance=false) {
510     if (shouldReverseIterate<KeyT>()) {
511       BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
512       return iterator(B, E, Epoch, NoAdvance);
513     }
514     return iterator(P, E, Epoch, NoAdvance);
515   }
516 
517   const_iterator makeConstIterator(const BucketT *P, const BucketT *E,
518                                    const DebugEpochBase &Epoch,
519                                    const bool NoAdvance=false) const {
520     if (shouldReverseIterate<KeyT>()) {
521       const BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
522       return const_iterator(B, E, Epoch, NoAdvance);
523     }
524     return const_iterator(P, E, Epoch, NoAdvance);
525   }
526 
getNumEntries()527   unsigned getNumEntries() const {
528     return static_cast<const DerivedT *>(this)->getNumEntries();
529   }
530 
setNumEntries(unsigned Num)531   void setNumEntries(unsigned Num) {
532     static_cast<DerivedT *>(this)->setNumEntries(Num);
533   }
534 
incrementNumEntries()535   void incrementNumEntries() {
536     setNumEntries(getNumEntries() + 1);
537   }
538 
decrementNumEntries()539   void decrementNumEntries() {
540     setNumEntries(getNumEntries() - 1);
541   }
542 
getNumTombstones()543   unsigned getNumTombstones() const {
544     return static_cast<const DerivedT *>(this)->getNumTombstones();
545   }
546 
setNumTombstones(unsigned Num)547   void setNumTombstones(unsigned Num) {
548     static_cast<DerivedT *>(this)->setNumTombstones(Num);
549   }
550 
incrementNumTombstones()551   void incrementNumTombstones() {
552     setNumTombstones(getNumTombstones() + 1);
553   }
554 
decrementNumTombstones()555   void decrementNumTombstones() {
556     setNumTombstones(getNumTombstones() - 1);
557   }
558 
getBuckets()559   const BucketT *getBuckets() const {
560     return static_cast<const DerivedT *>(this)->getBuckets();
561   }
562 
getBuckets()563   BucketT *getBuckets() {
564     return static_cast<DerivedT *>(this)->getBuckets();
565   }
566 
getNumBuckets()567   unsigned getNumBuckets() const {
568     return static_cast<const DerivedT *>(this)->getNumBuckets();
569   }
570 
getBucketsEnd()571   BucketT *getBucketsEnd() {
572     return getBuckets() + getNumBuckets();
573   }
574 
getBucketsEnd()575   const BucketT *getBucketsEnd() const {
576     return getBuckets() + getNumBuckets();
577   }
578 
grow(unsigned AtLeast)579   void grow(unsigned AtLeast) {
580     static_cast<DerivedT *>(this)->grow(AtLeast);
581   }
582 
shrink_and_clear()583   void shrink_and_clear() {
584     static_cast<DerivedT *>(this)->shrink_and_clear();
585   }
586 
587   template <typename KeyArg, typename... ValueArgs>
InsertIntoBucket(BucketT * TheBucket,KeyArg && Key,ValueArgs &&...Values)588   BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key,
589                             ValueArgs &&... Values) {
590     TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket);
591 
592     TheBucket->getFirst() = std::forward<KeyArg>(Key);
593     ::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...);
594     return TheBucket;
595   }
596 
597   template <typename LookupKeyT>
InsertIntoBucketWithLookup(BucketT * TheBucket,KeyT && Key,ValueT && Value,LookupKeyT & Lookup)598   BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key,
599                                       ValueT &&Value, LookupKeyT &Lookup) {
600     TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket);
601 
602     TheBucket->getFirst() = std::move(Key);
603     ::new (&TheBucket->getSecond()) ValueT(std::move(Value));
604     return TheBucket;
605   }
606 
607   template <typename LookupKeyT>
InsertIntoBucketImpl(const KeyT & Key,const LookupKeyT & Lookup,BucketT * TheBucket)608   BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup,
609                                 BucketT *TheBucket) {
610     incrementEpoch();
611 
612     // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
613     // the buckets are empty (meaning that many are filled with tombstones),
614     // grow the table.
615     //
616     // The later case is tricky.  For example, if we had one empty bucket with
617     // tons of tombstones, failing lookups (e.g. for insertion) would have to
618     // probe almost the entire table until it found the empty bucket.  If the
619     // table completely filled with tombstones, no lookup would ever succeed,
620     // causing infinite loops in lookup.
621     unsigned NewNumEntries = getNumEntries() + 1;
622     unsigned NumBuckets = getNumBuckets();
623     if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) {
624       this->grow(NumBuckets * 2);
625       LookupBucketFor(Lookup, TheBucket);
626       NumBuckets = getNumBuckets();
627     } else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <=
628                              NumBuckets/8)) {
629       this->grow(NumBuckets);
630       LookupBucketFor(Lookup, TheBucket);
631     }
632     assert(TheBucket);
633 
634     // Only update the state after we've grown our bucket space appropriately
635     // so that when growing buckets we have self-consistent entry count.
636     incrementNumEntries();
637 
638     // If we are writing over a tombstone, remember this.
639     const KeyT EmptyKey = getEmptyKey();
640     if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey))
641       decrementNumTombstones();
642 
643     return TheBucket;
644   }
645 
646   /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
647   /// FoundBucket.  If the bucket contains the key and a value, this returns
648   /// true, otherwise it returns a bucket with an empty marker or tombstone and
649   /// returns false.
650   template<typename LookupKeyT>
LookupBucketFor(const LookupKeyT & Val,const BucketT * & FoundBucket)651   bool LookupBucketFor(const LookupKeyT &Val,
652                        const BucketT *&FoundBucket) const {
653     const BucketT *BucketsPtr = getBuckets();
654     const unsigned NumBuckets = getNumBuckets();
655 
656     if (NumBuckets == 0) {
657       FoundBucket = nullptr;
658       return false;
659     }
660 
661     // FoundTombstone - Keep track of whether we find a tombstone while probing.
662     const BucketT *FoundTombstone = nullptr;
663     const KeyT EmptyKey = getEmptyKey();
664     const KeyT TombstoneKey = getTombstoneKey();
665     assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
666            !KeyInfoT::isEqual(Val, TombstoneKey) &&
667            "Empty/Tombstone value shouldn't be inserted into map!");
668 
669     unsigned BucketNo = getHashValue(Val) & (NumBuckets-1);
670     unsigned ProbeAmt = 1;
671     while (true) {
672       const BucketT *ThisBucket = BucketsPtr + BucketNo;
673       // Found Val's bucket?  If so, return it.
674       if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) {
675         FoundBucket = ThisBucket;
676         return true;
677       }
678 
679       // If we found an empty bucket, the key doesn't exist in the set.
680       // Insert it and return the default value.
681       if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) {
682         // If we've already seen a tombstone while probing, fill it in instead
683         // of the empty bucket we eventually probed to.
684         FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
685         return false;
686       }
687 
688       // If this is a tombstone, remember it.  If Val ends up not in the map, we
689       // prefer to return it than something that would require more probing.
690       if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) &&
691           !FoundTombstone)
692         FoundTombstone = ThisBucket;  // Remember the first tombstone found.
693 
694       // Otherwise, it's a hash collision or a tombstone, continue quadratic
695       // probing.
696       BucketNo += ProbeAmt++;
697       BucketNo &= (NumBuckets-1);
698     }
699   }
700 
701   template <typename LookupKeyT>
LookupBucketFor(const LookupKeyT & Val,BucketT * & FoundBucket)702   bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
703     const BucketT *ConstFoundBucket;
704     bool Result = const_cast<const DenseMapBase *>(this)
705       ->LookupBucketFor(Val, ConstFoundBucket);
706     FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
707     return Result;
708   }
709 
710 public:
711   /// Return the approximate size (in bytes) of the actual map.
712   /// This is just the raw memory used by DenseMap.
713   /// If entries are pointers to objects, the size of the referenced objects
714   /// are not included.
getMemorySize()715   size_t getMemorySize() const {
716     return getNumBuckets() * sizeof(BucketT);
717   }
718 };
719 
720 /// Equality comparison for DenseMap.
721 ///
722 /// Iterates over elements of LHS confirming that each (key, value) pair in LHS
723 /// is also in RHS, and that no additional pairs are in RHS.
724 /// Equivalent to N calls to RHS.find and N value comparisons. Amortized
725 /// complexity is linear, worst case is O(N^2) (if every hash collides).
726 template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
727           typename BucketT>
728 bool operator==(
729     const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS,
730     const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) {
731   if (LHS.size() != RHS.size())
732     return false;
733 
734   for (auto &KV : LHS) {
735     auto I = RHS.find(KV.first);
736     if (I == RHS.end() || I->second != KV.second)
737       return false;
738   }
739 
740   return true;
741 }
742 
743 /// Inequality comparison for DenseMap.
744 ///
745 /// Equivalent to !(LHS == RHS). See operator== for performance notes.
746 template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
747           typename BucketT>
748 bool operator!=(
749     const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS,
750     const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) {
751   return !(LHS == RHS);
752 }
753 
754 template <typename KeyT, typename ValueT,
755           typename KeyInfoT = DenseMapInfo<KeyT>,
756           typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>>
757 class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>,
758                                      KeyT, ValueT, KeyInfoT, BucketT> {
759   friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
760 
761   // Lift some types from the dependent base class into this class for
762   // simplicity of referring to them.
763   using BaseT = DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
764 
765   BucketT *Buckets;
766   unsigned NumEntries;
767   unsigned NumTombstones;
768   unsigned NumBuckets;
769 
770 public:
771   /// Create a DenseMap with an optional \p InitialReserve that guarantee that
772   /// this number of elements can be inserted in the map without grow()
773   explicit DenseMap(unsigned InitialReserve = 0) { init(InitialReserve); }
774 
DenseMap(const DenseMap & other)775   DenseMap(const DenseMap &other) : BaseT() {
776     init(0);
777     copyFrom(other);
778   }
779 
DenseMap(DenseMap && other)780   DenseMap(DenseMap &&other) : BaseT() {
781     init(0);
782     swap(other);
783   }
784 
785   template<typename InputIt>
DenseMap(const InputIt & I,const InputIt & E)786   DenseMap(const InputIt &I, const InputIt &E) {
787     init(std::distance(I, E));
788     this->insert(I, E);
789   }
790 
DenseMap(std::initializer_list<typename BaseT::value_type> Vals)791   DenseMap(std::initializer_list<typename BaseT::value_type> Vals) {
792     init(Vals.size());
793     this->insert(Vals.begin(), Vals.end());
794   }
795 
~DenseMap()796   ~DenseMap() {
797     this->destroyAll();
798     deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
799   }
800 
swap(DenseMap & RHS)801   void swap(DenseMap& RHS) {
802     this->incrementEpoch();
803     RHS.incrementEpoch();
804     std::swap(Buckets, RHS.Buckets);
805     std::swap(NumEntries, RHS.NumEntries);
806     std::swap(NumTombstones, RHS.NumTombstones);
807     std::swap(NumBuckets, RHS.NumBuckets);
808   }
809 
810   DenseMap& operator=(const DenseMap& other) {
811     if (&other != this)
812       copyFrom(other);
813     return *this;
814   }
815 
816   DenseMap& operator=(DenseMap &&other) {
817     this->destroyAll();
818     deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
819     init(0);
820     swap(other);
821     return *this;
822   }
823 
copyFrom(const DenseMap & other)824   void copyFrom(const DenseMap& other) {
825     this->destroyAll();
826     deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
827     if (allocateBuckets(other.NumBuckets)) {
828       this->BaseT::copyFrom(other);
829     } else {
830       NumEntries = 0;
831       NumTombstones = 0;
832     }
833   }
834 
init(unsigned InitNumEntries)835   void init(unsigned InitNumEntries) {
836     auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries);
837     if (allocateBuckets(InitBuckets)) {
838       this->BaseT::initEmpty();
839     } else {
840       NumEntries = 0;
841       NumTombstones = 0;
842     }
843   }
844 
grow(unsigned AtLeast)845   void grow(unsigned AtLeast) {
846     unsigned OldNumBuckets = NumBuckets;
847     BucketT *OldBuckets = Buckets;
848 
849     allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1))));
850     assert(Buckets);
851     if (!OldBuckets) {
852       this->BaseT::initEmpty();
853       return;
854     }
855 
856     this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets);
857 
858     // Free the old table.
859     deallocate_buffer(OldBuckets, sizeof(BucketT) * OldNumBuckets,
860                       alignof(BucketT));
861   }
862 
shrink_and_clear()863   void shrink_and_clear() {
864     unsigned OldNumBuckets = NumBuckets;
865     unsigned OldNumEntries = NumEntries;
866     this->destroyAll();
867 
868     // Reduce the number of buckets.
869     unsigned NewNumBuckets = 0;
870     if (OldNumEntries)
871       NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
872     if (NewNumBuckets == NumBuckets) {
873       this->BaseT::initEmpty();
874       return;
875     }
876 
877     deallocate_buffer(Buckets, sizeof(BucketT) * OldNumBuckets,
878                       alignof(BucketT));
879     init(NewNumBuckets);
880   }
881 
882 private:
getNumEntries()883   unsigned getNumEntries() const {
884     return NumEntries;
885   }
886 
setNumEntries(unsigned Num)887   void setNumEntries(unsigned Num) {
888     NumEntries = Num;
889   }
890 
getNumTombstones()891   unsigned getNumTombstones() const {
892     return NumTombstones;
893   }
894 
setNumTombstones(unsigned Num)895   void setNumTombstones(unsigned Num) {
896     NumTombstones = Num;
897   }
898 
getBuckets()899   BucketT *getBuckets() const {
900     return Buckets;
901   }
902 
getNumBuckets()903   unsigned getNumBuckets() const {
904     return NumBuckets;
905   }
906 
allocateBuckets(unsigned Num)907   bool allocateBuckets(unsigned Num) {
908     NumBuckets = Num;
909     if (NumBuckets == 0) {
910       Buckets = nullptr;
911       return false;
912     }
913 
914     Buckets = static_cast<BucketT *>(
915         allocate_buffer(sizeof(BucketT) * NumBuckets, alignof(BucketT)));
916     return true;
917   }
918 };
919 
920 template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4,
921           typename KeyInfoT = DenseMapInfo<KeyT>,
922           typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>>
923 class SmallDenseMap
924     : public DenseMapBase<
925           SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT,
926           ValueT, KeyInfoT, BucketT> {
927   friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
928 
929   // Lift some types from the dependent base class into this class for
930   // simplicity of referring to them.
931   using BaseT = DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
932 
933   static_assert(isPowerOf2_64(InlineBuckets),
934                 "InlineBuckets must be a power of 2.");
935 
936   unsigned Small : 1;
937   unsigned NumEntries : 31;
938   unsigned NumTombstones;
939 
940   struct LargeRep {
941     BucketT *Buckets;
942     unsigned NumBuckets;
943   };
944 
945   /// A "union" of an inline bucket array and the struct representing
946   /// a large bucket. This union will be discriminated by the 'Small' bit.
947   AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage;
948 
949 public:
950   explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
951     if (NumInitBuckets > InlineBuckets)
952       NumInitBuckets = llvm::bit_ceil(NumInitBuckets);
953     init(NumInitBuckets);
954   }
955 
SmallDenseMap(const SmallDenseMap & other)956   SmallDenseMap(const SmallDenseMap &other) : BaseT() {
957     init(0);
958     copyFrom(other);
959   }
960 
SmallDenseMap(SmallDenseMap && other)961   SmallDenseMap(SmallDenseMap &&other) : BaseT() {
962     init(0);
963     swap(other);
964   }
965 
966   template<typename InputIt>
SmallDenseMap(const InputIt & I,const InputIt & E)967   SmallDenseMap(const InputIt &I, const InputIt &E) {
968     init(NextPowerOf2(std::distance(I, E)));
969     this->insert(I, E);
970   }
971 
SmallDenseMap(std::initializer_list<typename BaseT::value_type> Vals)972   SmallDenseMap(std::initializer_list<typename BaseT::value_type> Vals)
973       : SmallDenseMap(Vals.begin(), Vals.end()) {}
974 
~SmallDenseMap()975   ~SmallDenseMap() {
976     this->destroyAll();
977     deallocateBuckets();
978   }
979 
swap(SmallDenseMap & RHS)980   void swap(SmallDenseMap& RHS) {
981     unsigned TmpNumEntries = RHS.NumEntries;
982     RHS.NumEntries = NumEntries;
983     NumEntries = TmpNumEntries;
984     std::swap(NumTombstones, RHS.NumTombstones);
985 
986     const KeyT EmptyKey = this->getEmptyKey();
987     const KeyT TombstoneKey = this->getTombstoneKey();
988     if (Small && RHS.Small) {
989       // If we're swapping inline bucket arrays, we have to cope with some of
990       // the tricky bits of DenseMap's storage system: the buckets are not
991       // fully initialized. Thus we swap every key, but we may have
992       // a one-directional move of the value.
993       for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
994         BucketT *LHSB = &getInlineBuckets()[i],
995                 *RHSB = &RHS.getInlineBuckets()[i];
996         bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) &&
997                             !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey));
998         bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) &&
999                             !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey));
1000         if (hasLHSValue && hasRHSValue) {
1001           // Swap together if we can...
1002           std::swap(*LHSB, *RHSB);
1003           continue;
1004         }
1005         // Swap separately and handle any asymmetry.
1006         std::swap(LHSB->getFirst(), RHSB->getFirst());
1007         if (hasLHSValue) {
1008           ::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond()));
1009           LHSB->getSecond().~ValueT();
1010         } else if (hasRHSValue) {
1011           ::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond()));
1012           RHSB->getSecond().~ValueT();
1013         }
1014       }
1015       return;
1016     }
1017     if (!Small && !RHS.Small) {
1018       std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
1019       std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
1020       return;
1021     }
1022 
1023     SmallDenseMap &SmallSide = Small ? *this : RHS;
1024     SmallDenseMap &LargeSide = Small ? RHS : *this;
1025 
1026     // First stash the large side's rep and move the small side across.
1027     LargeRep TmpRep = std::move(*LargeSide.getLargeRep());
1028     LargeSide.getLargeRep()->~LargeRep();
1029     LargeSide.Small = true;
1030     // This is similar to the standard move-from-old-buckets, but the bucket
1031     // count hasn't actually rotated in this case. So we have to carefully
1032     // move construct the keys and values into their new locations, but there
1033     // is no need to re-hash things.
1034     for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
1035       BucketT *NewB = &LargeSide.getInlineBuckets()[i],
1036               *OldB = &SmallSide.getInlineBuckets()[i];
1037       ::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst()));
1038       OldB->getFirst().~KeyT();
1039       if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) &&
1040           !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) {
1041         ::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond()));
1042         OldB->getSecond().~ValueT();
1043       }
1044     }
1045 
1046     // The hard part of moving the small buckets across is done, just move
1047     // the TmpRep into its new home.
1048     SmallSide.Small = false;
1049     new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep));
1050   }
1051 
1052   SmallDenseMap& operator=(const SmallDenseMap& other) {
1053     if (&other != this)
1054       copyFrom(other);
1055     return *this;
1056   }
1057 
1058   SmallDenseMap& operator=(SmallDenseMap &&other) {
1059     this->destroyAll();
1060     deallocateBuckets();
1061     init(0);
1062     swap(other);
1063     return *this;
1064   }
1065 
copyFrom(const SmallDenseMap & other)1066   void copyFrom(const SmallDenseMap& other) {
1067     this->destroyAll();
1068     deallocateBuckets();
1069     Small = true;
1070     if (other.getNumBuckets() > InlineBuckets) {
1071       Small = false;
1072       new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets()));
1073     }
1074     this->BaseT::copyFrom(other);
1075   }
1076 
init(unsigned InitBuckets)1077   void init(unsigned InitBuckets) {
1078     Small = true;
1079     if (InitBuckets > InlineBuckets) {
1080       Small = false;
1081       new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
1082     }
1083     this->BaseT::initEmpty();
1084   }
1085 
grow(unsigned AtLeast)1086   void grow(unsigned AtLeast) {
1087     if (AtLeast > InlineBuckets)
1088       AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1));
1089 
1090     if (Small) {
1091       // First move the inline buckets into a temporary storage.
1092       AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage;
1093       BucketT *TmpBegin = reinterpret_cast<BucketT *>(&TmpStorage);
1094       BucketT *TmpEnd = TmpBegin;
1095 
1096       // Loop over the buckets, moving non-empty, non-tombstones into the
1097       // temporary storage. Have the loop move the TmpEnd forward as it goes.
1098       const KeyT EmptyKey = this->getEmptyKey();
1099       const KeyT TombstoneKey = this->getTombstoneKey();
1100       for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
1101         if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
1102             !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
1103           assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
1104                  "Too many inline buckets!");
1105           ::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst()));
1106           ::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond()));
1107           ++TmpEnd;
1108           P->getSecond().~ValueT();
1109         }
1110         P->getFirst().~KeyT();
1111       }
1112 
1113       // AtLeast == InlineBuckets can happen if there are many tombstones,
1114       // and grow() is used to remove them. Usually we always switch to the
1115       // large rep here.
1116       if (AtLeast > InlineBuckets) {
1117         Small = false;
1118         new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
1119       }
1120       this->moveFromOldBuckets(TmpBegin, TmpEnd);
1121       return;
1122     }
1123 
1124     LargeRep OldRep = std::move(*getLargeRep());
1125     getLargeRep()->~LargeRep();
1126     if (AtLeast <= InlineBuckets) {
1127       Small = true;
1128     } else {
1129       new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
1130     }
1131 
1132     this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets);
1133 
1134     // Free the old table.
1135     deallocate_buffer(OldRep.Buckets, sizeof(BucketT) * OldRep.NumBuckets,
1136                       alignof(BucketT));
1137   }
1138 
shrink_and_clear()1139   void shrink_and_clear() {
1140     unsigned OldSize = this->size();
1141     this->destroyAll();
1142 
1143     // Reduce the number of buckets.
1144     unsigned NewNumBuckets = 0;
1145     if (OldSize) {
1146       NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
1147       if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
1148         NewNumBuckets = 64;
1149     }
1150     if ((Small && NewNumBuckets <= InlineBuckets) ||
1151         (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
1152       this->BaseT::initEmpty();
1153       return;
1154     }
1155 
1156     deallocateBuckets();
1157     init(NewNumBuckets);
1158   }
1159 
1160 private:
getNumEntries()1161   unsigned getNumEntries() const {
1162     return NumEntries;
1163   }
1164 
setNumEntries(unsigned Num)1165   void setNumEntries(unsigned Num) {
1166     // NumEntries is hardcoded to be 31 bits wide.
1167     assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries");
1168     NumEntries = Num;
1169   }
1170 
getNumTombstones()1171   unsigned getNumTombstones() const {
1172     return NumTombstones;
1173   }
1174 
setNumTombstones(unsigned Num)1175   void setNumTombstones(unsigned Num) {
1176     NumTombstones = Num;
1177   }
1178 
getInlineBuckets()1179   const BucketT *getInlineBuckets() const {
1180     assert(Small);
1181     // Note that this cast does not violate aliasing rules as we assert that
1182     // the memory's dynamic type is the small, inline bucket buffer, and the
1183     // 'storage' is a POD containing a char buffer.
1184     return reinterpret_cast<const BucketT *>(&storage);
1185   }
1186 
getInlineBuckets()1187   BucketT *getInlineBuckets() {
1188     return const_cast<BucketT *>(
1189       const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
1190   }
1191 
getLargeRep()1192   const LargeRep *getLargeRep() const {
1193     assert(!Small);
1194     // Note, same rule about aliasing as with getInlineBuckets.
1195     return reinterpret_cast<const LargeRep *>(&storage);
1196   }
1197 
getLargeRep()1198   LargeRep *getLargeRep() {
1199     return const_cast<LargeRep *>(
1200       const_cast<const SmallDenseMap *>(this)->getLargeRep());
1201   }
1202 
getBuckets()1203   const BucketT *getBuckets() const {
1204     return Small ? getInlineBuckets() : getLargeRep()->Buckets;
1205   }
1206 
getBuckets()1207   BucketT *getBuckets() {
1208     return const_cast<BucketT *>(
1209       const_cast<const SmallDenseMap *>(this)->getBuckets());
1210   }
1211 
getNumBuckets()1212   unsigned getNumBuckets() const {
1213     return Small ? InlineBuckets : getLargeRep()->NumBuckets;
1214   }
1215 
deallocateBuckets()1216   void deallocateBuckets() {
1217     if (Small)
1218       return;
1219 
1220     deallocate_buffer(getLargeRep()->Buckets,
1221                       sizeof(BucketT) * getLargeRep()->NumBuckets,
1222                       alignof(BucketT));
1223     getLargeRep()->~LargeRep();
1224   }
1225 
allocateBuckets(unsigned Num)1226   LargeRep allocateBuckets(unsigned Num) {
1227     assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
1228     LargeRep Rep = {static_cast<BucketT *>(allocate_buffer(
1229                         sizeof(BucketT) * Num, alignof(BucketT))),
1230                     Num};
1231     return Rep;
1232   }
1233 };
1234 
1235 template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket,
1236           bool IsConst>
1237 class DenseMapIterator : DebugEpochBase::HandleBase {
1238   friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;
1239   friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>;
1240 
1241 public:
1242   using difference_type = ptrdiff_t;
1243   using value_type = std::conditional_t<IsConst, const Bucket, Bucket>;
1244   using pointer = value_type *;
1245   using reference = value_type &;
1246   using iterator_category = std::forward_iterator_tag;
1247 
1248 private:
1249   pointer Ptr = nullptr;
1250   pointer End = nullptr;
1251 
1252 public:
1253   DenseMapIterator() = default;
1254 
1255   DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch,
1256                    bool NoAdvance = false)
1257       : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) {
1258     assert(isHandleInSync() && "invalid construction!");
1259 
1260     if (NoAdvance) return;
1261     if (shouldReverseIterate<KeyT>()) {
1262       RetreatPastEmptyBuckets();
1263       return;
1264     }
1265     AdvancePastEmptyBuckets();
1266   }
1267 
1268   // Converting ctor from non-const iterators to const iterators. SFINAE'd out
1269   // for const iterator destinations so it doesn't end up as a user defined copy
1270   // constructor.
1271   template <bool IsConstSrc,
1272             typename = std::enable_if_t<!IsConstSrc && IsConst>>
DenseMapIterator(const DenseMapIterator<KeyT,ValueT,KeyInfoT,Bucket,IsConstSrc> & I)1273   DenseMapIterator(
1274       const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I)
1275       : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {}
1276 
1277   reference operator*() const {
1278     assert(isHandleInSync() && "invalid iterator access!");
1279     assert(Ptr != End && "dereferencing end() iterator");
1280     if (shouldReverseIterate<KeyT>())
1281       return Ptr[-1];
1282     return *Ptr;
1283   }
1284   pointer operator->() const {
1285     assert(isHandleInSync() && "invalid iterator access!");
1286     assert(Ptr != End && "dereferencing end() iterator");
1287     if (shouldReverseIterate<KeyT>())
1288       return &(Ptr[-1]);
1289     return Ptr;
1290   }
1291 
1292   friend bool operator==(const DenseMapIterator &LHS,
1293                          const DenseMapIterator &RHS) {
1294     assert((!LHS.Ptr || LHS.isHandleInSync()) && "handle not in sync!");
1295     assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
1296     assert(LHS.getEpochAddress() == RHS.getEpochAddress() &&
1297            "comparing incomparable iterators!");
1298     return LHS.Ptr == RHS.Ptr;
1299   }
1300 
1301   friend bool operator!=(const DenseMapIterator &LHS,
1302                          const DenseMapIterator &RHS) {
1303     return !(LHS == RHS);
1304   }
1305 
1306   inline DenseMapIterator& operator++() {  // Preincrement
1307     assert(isHandleInSync() && "invalid iterator access!");
1308     assert(Ptr != End && "incrementing end() iterator");
1309     if (shouldReverseIterate<KeyT>()) {
1310       --Ptr;
1311       RetreatPastEmptyBuckets();
1312       return *this;
1313     }
1314     ++Ptr;
1315     AdvancePastEmptyBuckets();
1316     return *this;
1317   }
1318   DenseMapIterator operator++(int) {  // Postincrement
1319     assert(isHandleInSync() && "invalid iterator access!");
1320     DenseMapIterator tmp = *this; ++*this; return tmp;
1321   }
1322 
1323 private:
AdvancePastEmptyBuckets()1324   void AdvancePastEmptyBuckets() {
1325     assert(Ptr <= End);
1326     const KeyT Empty = KeyInfoT::getEmptyKey();
1327     const KeyT Tombstone = KeyInfoT::getTombstoneKey();
1328 
1329     while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) ||
1330                           KeyInfoT::isEqual(Ptr->getFirst(), Tombstone)))
1331       ++Ptr;
1332   }
1333 
RetreatPastEmptyBuckets()1334   void RetreatPastEmptyBuckets() {
1335     assert(Ptr >= End);
1336     const KeyT Empty = KeyInfoT::getEmptyKey();
1337     const KeyT Tombstone = KeyInfoT::getTombstoneKey();
1338 
1339     while (Ptr != End && (KeyInfoT::isEqual(Ptr[-1].getFirst(), Empty) ||
1340                           KeyInfoT::isEqual(Ptr[-1].getFirst(), Tombstone)))
1341       --Ptr;
1342   }
1343 };
1344 
1345 template <typename KeyT, typename ValueT, typename KeyInfoT>
capacity_in_bytes(const DenseMap<KeyT,ValueT,KeyInfoT> & X)1346 inline size_t capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) {
1347   return X.getMemorySize();
1348 }
1349 
1350 } // end namespace llvm
1351 
1352 #endif // LLVM_ADT_DENSEMAP_H
1353