xref: /linux/include/linux/mtd/spinand.h (revision 3f75bfff44be0646580fe4efda45d646f9c1693b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (c) 2016-2017 Micron Technology, Inc.
4  *
5  *  Authors:
6  *	Peter Pan <peterpandong@micron.com>
7  */
8 #ifndef __LINUX_MTD_SPINAND_H
9 #define __LINUX_MTD_SPINAND_H
10 
11 #include <linux/mutex.h>
12 #include <linux/bitops.h>
13 #include <linux/device.h>
14 #include <linux/mtd/mtd.h>
15 #include <linux/mtd/nand.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spi/spi-mem.h>
18 
19 /**
20  * Standard SPI NAND flash operations
21  */
22 
23 #define SPINAND_RESET_1S_0_0_OP						\
24 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1),				\
25 		   SPI_MEM_OP_NO_ADDR,					\
26 		   SPI_MEM_OP_NO_DUMMY,					\
27 		   SPI_MEM_OP_NO_DATA)
28 
29 #define SPINAND_WR_EN_DIS_1S_0_0_OP(enable)					\
30 	SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1),		\
31 		   SPI_MEM_OP_NO_ADDR,					\
32 		   SPI_MEM_OP_NO_DUMMY,					\
33 		   SPI_MEM_OP_NO_DATA)
34 
35 #define SPINAND_READID_1S_1S_1S_OP(naddr, ndummy, buf, len)		\
36 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1),				\
37 		   SPI_MEM_OP_ADDR(naddr, 0, 1),			\
38 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
39 		   SPI_MEM_OP_DATA_IN(len, buf, 1))
40 
41 #define SPINAND_SET_FEATURE_1S_1S_1S_OP(reg, valptr)			\
42 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1),				\
43 		   SPI_MEM_OP_ADDR(1, reg, 1),				\
44 		   SPI_MEM_OP_NO_DUMMY,					\
45 		   SPI_MEM_OP_DATA_OUT(1, valptr, 1))
46 
47 #define SPINAND_GET_FEATURE_1S_1S_1S_OP(reg, valptr)			\
48 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1),				\
49 		   SPI_MEM_OP_ADDR(1, reg, 1),				\
50 		   SPI_MEM_OP_NO_DUMMY,					\
51 		   SPI_MEM_OP_DATA_IN(1, valptr, 1))
52 
53 #define SPINAND_BLK_ERASE_1S_1S_0_OP(addr)				\
54 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1),				\
55 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
56 		   SPI_MEM_OP_NO_DUMMY,					\
57 		   SPI_MEM_OP_NO_DATA)
58 
59 #define SPINAND_PAGE_READ_1S_1S_0_OP(addr)				\
60 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1),				\
61 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
62 		   SPI_MEM_OP_NO_DUMMY,					\
63 		   SPI_MEM_OP_NO_DATA)
64 
65 #define SPINAND_PAGE_READ_FROM_CACHE_1S_1S_1S_OP(addr, ndummy, buf, len, ...) \
66 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x03, 1),				\
67 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
68 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
69 		   SPI_MEM_OP_DATA_IN(len, buf, 1),			\
70 		   SPI_MEM_OP_MAX_FREQ(__VA_ARGS__ + 0))
71 
72 #define SPINAND_PAGE_READ_FROM_CACHE_FAST_1S_1S_1S_OP(addr, ndummy, buf, len) \
73 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x0b, 1),				\
74 			 SPI_MEM_OP_ADDR(2, addr, 1),			\
75 			 SPI_MEM_OP_DUMMY(ndummy, 1),			\
76 			 SPI_MEM_OP_DATA_IN(len, buf, 1))
77 
78 #define SPINAND_PAGE_READ_FROM_CACHE_3A_1S_1S_1S_OP(addr, ndummy, buf, len) \
79 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x03, 1),				\
80 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
81 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
82 		   SPI_MEM_OP_DATA_IN(len, buf, 1))
83 
84 #define SPINAND_PAGE_READ_FROM_CACHE_FAST_3A_1S_1S_1S_OP(addr, ndummy, buf, len) \
85 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x0b, 1),				\
86 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
87 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
88 		   SPI_MEM_OP_DATA_IN(len, buf, 1))
89 
90 #define SPINAND_PAGE_READ_FROM_CACHE_1S_1D_1D_OP(addr, ndummy, buf, len, freq) \
91 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x0d, 1),				\
92 		   SPI_MEM_DTR_OP_ADDR(2, addr, 1),			\
93 		   SPI_MEM_DTR_OP_DUMMY(ndummy, 1),			\
94 		   SPI_MEM_DTR_OP_DATA_IN(len, buf, 1),			\
95 		   SPI_MEM_OP_MAX_FREQ(freq))
96 
97 #define SPINAND_PAGE_READ_FROM_CACHE_1S_1S_2S_OP(addr, ndummy, buf, len) \
98 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1),				\
99 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
100 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
101 		   SPI_MEM_OP_DATA_IN(len, buf, 2))
102 
103 #define SPINAND_PAGE_READ_FROM_CACHE_3A_1S_1S_2S_OP(addr, ndummy, buf, len) \
104 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1),				\
105 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
106 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
107 		   SPI_MEM_OP_DATA_IN(len, buf, 2))
108 
109 #define SPINAND_PAGE_READ_FROM_CACHE_1S_1D_2D_OP(addr, ndummy, buf, len, freq) \
110 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x3d, 1),				\
111 		   SPI_MEM_DTR_OP_ADDR(2, addr, 1),			\
112 		   SPI_MEM_DTR_OP_DUMMY(ndummy, 1),			\
113 		   SPI_MEM_DTR_OP_DATA_IN(len, buf, 2),			\
114 		   SPI_MEM_OP_MAX_FREQ(freq))
115 
116 #define SPINAND_PAGE_READ_FROM_CACHE_1S_2S_2S_OP(addr, ndummy, buf, len, ...) \
117 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1),				\
118 		   SPI_MEM_OP_ADDR(2, addr, 2),				\
119 		   SPI_MEM_OP_DUMMY(ndummy, 2),				\
120 		   SPI_MEM_OP_DATA_IN(len, buf, 2),			\
121 		   SPI_MEM_OP_MAX_FREQ(__VA_ARGS__ + 0))
122 
123 #define SPINAND_PAGE_READ_FROM_CACHE_3A_1S_2S_2S_OP(addr, ndummy, buf, len) \
124 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1),				\
125 		   SPI_MEM_OP_ADDR(3, addr, 2),				\
126 		   SPI_MEM_OP_DUMMY(ndummy, 2),				\
127 		   SPI_MEM_OP_DATA_IN(len, buf, 2))
128 
129 #define SPINAND_PAGE_READ_FROM_CACHE_1S_2D_2D_OP(addr, ndummy, buf, len, freq) \
130 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xbd, 1),				\
131 		   SPI_MEM_DTR_OP_ADDR(2, addr, 2),			\
132 		   SPI_MEM_DTR_OP_DUMMY(ndummy, 2),			\
133 		   SPI_MEM_DTR_OP_DATA_IN(len, buf, 2),			\
134 		   SPI_MEM_OP_MAX_FREQ(freq))
135 
136 #define SPINAND_PAGE_READ_FROM_CACHE_1S_1S_4S_OP(addr, ndummy, buf, len) \
137 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1),				\
138 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
139 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
140 		   SPI_MEM_OP_DATA_IN(len, buf, 4))
141 
142 #define SPINAND_PAGE_READ_FROM_CACHE_3A_1S_1S_4S_OP(addr, ndummy, buf, len)	\
143 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1),				\
144 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
145 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
146 		   SPI_MEM_OP_DATA_IN(len, buf, 4))
147 
148 #define SPINAND_PAGE_READ_FROM_CACHE_1S_1D_4D_OP(addr, ndummy, buf, len, freq) \
149 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x6d, 1),				\
150 		   SPI_MEM_DTR_OP_ADDR(2, addr, 1),			\
151 		   SPI_MEM_DTR_OP_DUMMY(ndummy, 1),			\
152 		   SPI_MEM_DTR_OP_DATA_IN(len, buf, 4),			\
153 		   SPI_MEM_OP_MAX_FREQ(freq))
154 
155 #define SPINAND_PAGE_READ_FROM_CACHE_1S_4S_4S_OP(addr, ndummy, buf, len, ...) \
156 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1),				\
157 		   SPI_MEM_OP_ADDR(2, addr, 4),				\
158 		   SPI_MEM_OP_DUMMY(ndummy, 4),				\
159 		   SPI_MEM_OP_DATA_IN(len, buf, 4),			\
160 		   SPI_MEM_OP_MAX_FREQ(__VA_ARGS__ + 0))
161 
162 #define SPINAND_PAGE_READ_FROM_CACHE_3A_1S_4S_4S_OP(addr, ndummy, buf, len) \
163 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1),				\
164 		   SPI_MEM_OP_ADDR(3, addr, 4),				\
165 		   SPI_MEM_OP_DUMMY(ndummy, 4),				\
166 		   SPI_MEM_OP_DATA_IN(len, buf, 4))
167 
168 #define SPINAND_PAGE_READ_FROM_CACHE_1S_4D_4D_OP(addr, ndummy, buf, len, freq) \
169 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xed, 1),				\
170 		   SPI_MEM_DTR_OP_ADDR(2, addr, 4),			\
171 		   SPI_MEM_DTR_OP_DUMMY(ndummy, 4),			\
172 		   SPI_MEM_DTR_OP_DATA_IN(len, buf, 4),			\
173 		   SPI_MEM_OP_MAX_FREQ(freq))
174 
175 #define SPINAND_PAGE_READ_FROM_CACHE_1S_1S_8S_OP(addr, ndummy, buf, len, freq) \
176 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x8b, 1),				\
177 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
178 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
179 		   SPI_MEM_OP_DATA_IN(len, buf, 8),			\
180 		   SPI_MEM_OP_MAX_FREQ(freq))
181 
182 #define SPINAND_PAGE_READ_FROM_CACHE_1S_8S_8S_OP(addr, ndummy, buf, len, freq) \
183 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xcb, 1),				\
184 		   SPI_MEM_OP_ADDR(2, addr, 8),				\
185 		   SPI_MEM_OP_DUMMY(ndummy, 8),				\
186 		   SPI_MEM_OP_DATA_IN(len, buf, 8),			\
187 		   SPI_MEM_OP_MAX_FREQ(freq))
188 
189 #define SPINAND_PAGE_READ_FROM_CACHE_1S_1D_8D_OP(addr, ndummy, buf, len, freq) \
190 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x9d, 1),				\
191 		   SPI_MEM_DTR_OP_ADDR(2, addr, 1),			\
192 		   SPI_MEM_DTR_OP_DUMMY(ndummy, 1),			\
193 		   SPI_MEM_DTR_OP_DATA_IN(len, buf, 8),			\
194 		   SPI_MEM_OP_MAX_FREQ(freq))
195 
196 #define SPINAND_PROG_EXEC_1S_1S_0_OP(addr)				\
197 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1),				\
198 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
199 		   SPI_MEM_OP_NO_DUMMY,					\
200 		   SPI_MEM_OP_NO_DATA)
201 
202 #define SPINAND_PROG_LOAD_1S_1S_1S_OP(reset, addr, buf, len)		\
203 	SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1),		\
204 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
205 		   SPI_MEM_OP_NO_DUMMY,					\
206 		   SPI_MEM_OP_DATA_OUT(len, buf, 1))
207 
208 #define SPINAND_PROG_LOAD_1S_1S_4S_OP(reset, addr, buf, len)		\
209 	SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1),		\
210 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
211 		   SPI_MEM_OP_NO_DUMMY,					\
212 		   SPI_MEM_OP_DATA_OUT(len, buf, 4))
213 
214 #define SPINAND_PROG_LOAD_1S_1S_8S_OP(addr, buf, len)			\
215 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x82, 1),				\
216 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
217 		   SPI_MEM_OP_NO_DUMMY,					\
218 		   SPI_MEM_OP_DATA_OUT(len, buf, 8))
219 
220 #define SPINAND_PROG_LOAD_1S_8S_8S_OP(reset, addr, buf, len)		\
221 	SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0xc2 : 0xc4, 1),		\
222 		   SPI_MEM_OP_ADDR(2, addr, 8),				\
223 		   SPI_MEM_OP_NO_DUMMY,					\
224 		   SPI_MEM_OP_DATA_OUT(len, buf, 8))
225 
226 /**
227  * Standard SPI NAND flash commands
228  */
229 #define SPINAND_CMD_PROG_LOAD_X4		0x32
230 #define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4	0x34
231 
232 /* feature register */
233 #define REG_BLOCK_LOCK		0xa0
234 #define BL_ALL_UNLOCKED		0x00
235 
236 /* configuration register */
237 #define REG_CFG			0xb0
238 #define CFG_OTP_ENABLE		BIT(6)
239 #define CFG_ECC_ENABLE		BIT(4)
240 #define CFG_QUAD_ENABLE		BIT(0)
241 
242 /* status register */
243 #define REG_STATUS		0xc0
244 #define STATUS_BUSY		BIT(0)
245 #define STATUS_ERASE_FAILED	BIT(2)
246 #define STATUS_PROG_FAILED	BIT(3)
247 #define STATUS_ECC_MASK		GENMASK(5, 4)
248 #define STATUS_ECC_NO_BITFLIPS	(0 << 4)
249 #define STATUS_ECC_HAS_BITFLIPS	(1 << 4)
250 #define STATUS_ECC_UNCOR_ERROR	(2 << 4)
251 
252 struct spinand_op;
253 struct spinand_device;
254 
255 #define SPINAND_MAX_ID_LEN	5
256 /*
257  * For erase, write and read operation, we got the following timings :
258  * tBERS (erase) 1ms to 4ms
259  * tPROG 300us to 400us
260  * tREAD 25us to 100us
261  * In order to minimize latency, the min value is divided by 4 for the
262  * initial delay, and dividing by 20 for the poll delay.
263  * For reset, 5us/10us/500us if the device is respectively
264  * reading/programming/erasing when the RESET occurs. Since we always
265  * issue a RESET when the device is IDLE, 5us is selected for both initial
266  * and poll delay.
267  */
268 #define SPINAND_READ_INITIAL_DELAY_US	6
269 #define SPINAND_READ_POLL_DELAY_US	5
270 #define SPINAND_RESET_INITIAL_DELAY_US	5
271 #define SPINAND_RESET_POLL_DELAY_US	5
272 #define SPINAND_WRITE_INITIAL_DELAY_US	75
273 #define SPINAND_WRITE_POLL_DELAY_US	15
274 #define SPINAND_ERASE_INITIAL_DELAY_US	250
275 #define SPINAND_ERASE_POLL_DELAY_US	50
276 
277 #define SPINAND_WAITRDY_TIMEOUT_MS	400
278 
279 /**
280  * struct spinand_id - SPI NAND id structure
281  * @data: buffer containing the id bytes. Currently 4 bytes large, but can
282  *	  be extended if required
283  * @len: ID length
284  */
285 struct spinand_id {
286 	u8 data[SPINAND_MAX_ID_LEN];
287 	int len;
288 };
289 
290 enum spinand_readid_method {
291 	SPINAND_READID_METHOD_OPCODE,
292 	SPINAND_READID_METHOD_OPCODE_ADDR,
293 	SPINAND_READID_METHOD_OPCODE_DUMMY,
294 };
295 
296 /**
297  * struct spinand_devid - SPI NAND device id structure
298  * @id: device id of current chip
299  * @len: number of bytes in device id
300  * @method: method to read chip id
301  *	    There are 3 possible variants:
302  *	    SPINAND_READID_METHOD_OPCODE: chip id is returned immediately
303  *	    after read_id opcode.
304  *	    SPINAND_READID_METHOD_OPCODE_ADDR: chip id is returned after
305  *	    read_id opcode + 1-byte address.
306  *	    SPINAND_READID_METHOD_OPCODE_DUMMY: chip id is returned after
307  *	    read_id opcode + 1 dummy byte.
308  */
309 struct spinand_devid {
310 	const u8 *id;
311 	const u8 len;
312 	const enum spinand_readid_method method;
313 };
314 
315 /**
316  * struct manufacurer_ops - SPI NAND manufacturer specific operations
317  * @init: initialize a SPI NAND device
318  * @cleanup: cleanup a SPI NAND device
319  *
320  * Each SPI NAND manufacturer driver should implement this interface so that
321  * NAND chips coming from this vendor can be initialized properly.
322  */
323 struct spinand_manufacturer_ops {
324 	int (*init)(struct spinand_device *spinand);
325 	void (*cleanup)(struct spinand_device *spinand);
326 };
327 
328 /**
329  * struct spinand_manufacturer - SPI NAND manufacturer instance
330  * @id: manufacturer ID
331  * @name: manufacturer name
332  * @devid_len: number of bytes in device ID
333  * @chips: supported SPI NANDs under current manufacturer
334  * @nchips: number of SPI NANDs available in chips array
335  * @ops: manufacturer operations
336  */
337 struct spinand_manufacturer {
338 	u8 id;
339 	char *name;
340 	const struct spinand_info *chips;
341 	const size_t nchips;
342 	const struct spinand_manufacturer_ops *ops;
343 };
344 
345 /* SPI NAND manufacturers */
346 extern const struct spinand_manufacturer alliancememory_spinand_manufacturer;
347 extern const struct spinand_manufacturer ato_spinand_manufacturer;
348 extern const struct spinand_manufacturer esmt_c8_spinand_manufacturer;
349 extern const struct spinand_manufacturer foresee_spinand_manufacturer;
350 extern const struct spinand_manufacturer gigadevice_spinand_manufacturer;
351 extern const struct spinand_manufacturer macronix_spinand_manufacturer;
352 extern const struct spinand_manufacturer micron_spinand_manufacturer;
353 extern const struct spinand_manufacturer paragon_spinand_manufacturer;
354 extern const struct spinand_manufacturer skyhigh_spinand_manufacturer;
355 extern const struct spinand_manufacturer toshiba_spinand_manufacturer;
356 extern const struct spinand_manufacturer winbond_spinand_manufacturer;
357 extern const struct spinand_manufacturer xtx_spinand_manufacturer;
358 
359 /**
360  * struct spinand_op_variants - SPI NAND operation variants
361  * @ops: the list of variants for a given operation
362  * @nops: the number of variants
363  *
364  * Some operations like read-from-cache/write-to-cache have several variants
365  * depending on the number of IO lines you use to transfer data or address
366  * cycles. This structure is a way to describe the different variants supported
367  * by a chip and let the core pick the best one based on the SPI mem controller
368  * capabilities.
369  */
370 struct spinand_op_variants {
371 	const struct spi_mem_op *ops;
372 	unsigned int nops;
373 };
374 
375 #define SPINAND_OP_VARIANTS(name, ...)					\
376 	const struct spinand_op_variants name = {			\
377 		.ops = (struct spi_mem_op[]) { __VA_ARGS__ },		\
378 		.nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) /	\
379 			sizeof(struct spi_mem_op),			\
380 	}
381 
382 /**
383  * spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND
384  *		      chip
385  * @get_status: get the ECC status. Should return a positive number encoding
386  *		the number of corrected bitflips if correction was possible or
387  *		-EBADMSG if there are uncorrectable errors. I can also return
388  *		other negative error codes if the error is not caused by
389  *		uncorrectable bitflips
390  * @ooblayout: the OOB layout used by the on-die ECC implementation
391  */
392 struct spinand_ecc_info {
393 	int (*get_status)(struct spinand_device *spinand, u8 status);
394 	const struct mtd_ooblayout_ops *ooblayout;
395 };
396 
397 #define SPINAND_HAS_QE_BIT		BIT(0)
398 #define SPINAND_HAS_CR_FEAT_BIT		BIT(1)
399 #define SPINAND_HAS_PROG_PLANE_SELECT_BIT		BIT(2)
400 #define SPINAND_HAS_READ_PLANE_SELECT_BIT		BIT(3)
401 #define SPINAND_NO_RAW_ACCESS				BIT(4)
402 
403 /**
404  * struct spinand_ondie_ecc_conf - private SPI-NAND on-die ECC engine structure
405  * @status: status of the last wait operation that will be used in case
406  *          ->get_status() is not populated by the spinand device.
407  */
408 struct spinand_ondie_ecc_conf {
409 	u8 status;
410 };
411 
412 /**
413  * struct spinand_otp_layout - structure to describe the SPI NAND OTP area
414  * @npages: number of pages in the OTP
415  * @start_page: start page of the user/factory OTP area.
416  */
417 struct spinand_otp_layout {
418 	unsigned int npages;
419 	unsigned int start_page;
420 };
421 
422 /**
423  * struct spinand_fact_otp_ops - SPI NAND OTP methods for factory area
424  * @info: get the OTP area information
425  * @read: read from the SPI NAND OTP area
426  */
427 struct spinand_fact_otp_ops {
428 	int (*info)(struct spinand_device *spinand, size_t len,
429 		    struct otp_info *buf, size_t *retlen);
430 	int (*read)(struct spinand_device *spinand, loff_t from, size_t len,
431 		    size_t *retlen, u8 *buf);
432 };
433 
434 /**
435  * struct spinand_user_otp_ops - SPI NAND OTP methods for user area
436  * @info: get the OTP area information
437  * @lock: lock an OTP region
438  * @erase: erase an OTP region
439  * @read: read from the SPI NAND OTP area
440  * @write: write to the SPI NAND OTP area
441  */
442 struct spinand_user_otp_ops {
443 	int (*info)(struct spinand_device *spinand, size_t len,
444 		    struct otp_info *buf, size_t *retlen);
445 	int (*lock)(struct spinand_device *spinand, loff_t from, size_t len);
446 	int (*erase)(struct spinand_device *spinand, loff_t from, size_t len);
447 	int (*read)(struct spinand_device *spinand, loff_t from, size_t len,
448 		    size_t *retlen, u8 *buf);
449 	int (*write)(struct spinand_device *spinand, loff_t from, size_t len,
450 		     size_t *retlen, const u8 *buf);
451 };
452 
453 /**
454  * struct spinand_fact_otp - SPI NAND OTP grouping structure for factory area
455  * @layout: OTP region layout
456  * @ops: OTP access ops
457  */
458 struct spinand_fact_otp {
459 	const struct spinand_otp_layout layout;
460 	const struct spinand_fact_otp_ops *ops;
461 };
462 
463 /**
464  * struct spinand_user_otp - SPI NAND OTP grouping structure for user area
465  * @layout: OTP region layout
466  * @ops: OTP access ops
467  */
468 struct spinand_user_otp {
469 	const struct spinand_otp_layout layout;
470 	const struct spinand_user_otp_ops *ops;
471 };
472 
473 /**
474  * struct spinand_info - Structure used to describe SPI NAND chips
475  * @model: model name
476  * @devid: device ID
477  * @flags: OR-ing of the SPINAND_XXX flags
478  * @memorg: memory organization
479  * @eccreq: ECC requirements
480  * @eccinfo: on-die ECC info
481  * @op_variants: operations variants
482  * @op_variants.read_cache: variants of the read-cache operation
483  * @op_variants.write_cache: variants of the write-cache operation
484  * @op_variants.update_cache: variants of the update-cache operation
485  * @select_target: function used to select a target/die. Required only for
486  *		   multi-die chips
487  * @set_cont_read: enable/disable continuous cached reads
488  * @fact_otp: SPI NAND factory OTP info.
489  * @user_otp: SPI NAND user OTP info.
490  * @read_retries: the number of read retry modes supported
491  * @set_read_retry: enable/disable read retry for data recovery
492  *
493  * Each SPI NAND manufacturer driver should have a spinand_info table
494  * describing all the chips supported by the driver.
495  */
496 struct spinand_info {
497 	const char *model;
498 	struct spinand_devid devid;
499 	u32 flags;
500 	struct nand_memory_organization memorg;
501 	struct nand_ecc_props eccreq;
502 	struct spinand_ecc_info eccinfo;
503 	struct {
504 		const struct spinand_op_variants *read_cache;
505 		const struct spinand_op_variants *write_cache;
506 		const struct spinand_op_variants *update_cache;
507 	} op_variants;
508 	int (*select_target)(struct spinand_device *spinand,
509 			     unsigned int target);
510 	int (*set_cont_read)(struct spinand_device *spinand,
511 			     bool enable);
512 	struct spinand_fact_otp fact_otp;
513 	struct spinand_user_otp user_otp;
514 	unsigned int read_retries;
515 	int (*set_read_retry)(struct spinand_device *spinand,
516 			     unsigned int read_retry);
517 };
518 
519 #define SPINAND_ID(__method, ...)					\
520 	{								\
521 		.id = (const u8[]){ __VA_ARGS__ },			\
522 		.len = sizeof((u8[]){ __VA_ARGS__ }),			\
523 		.method = __method,					\
524 	}
525 
526 #define SPINAND_INFO_OP_VARIANTS(__read, __write, __update)		\
527 	{								\
528 		.read_cache = __read,					\
529 		.write_cache = __write,					\
530 		.update_cache = __update,				\
531 	}
532 
533 #define SPINAND_ECCINFO(__ooblayout, __get_status)			\
534 	.eccinfo = {							\
535 		.ooblayout = __ooblayout,				\
536 		.get_status = __get_status,				\
537 	}
538 
539 #define SPINAND_SELECT_TARGET(__func)					\
540 	.select_target = __func
541 
542 #define SPINAND_CONT_READ(__set_cont_read)				\
543 	.set_cont_read = __set_cont_read
544 
545 #define SPINAND_FACT_OTP_INFO(__npages, __start_page, __ops)		\
546 	.fact_otp = {							\
547 		.layout = {						\
548 			.npages = __npages,				\
549 			.start_page = __start_page,			\
550 		},							\
551 		.ops = __ops,						\
552 	}
553 
554 #define SPINAND_USER_OTP_INFO(__npages, __start_page, __ops)		\
555 	.user_otp = {							\
556 		.layout = {						\
557 			.npages = __npages,				\
558 			.start_page = __start_page,			\
559 		},							\
560 		.ops = __ops,						\
561 	}
562 
563 #define SPINAND_READ_RETRY(__read_retries, __set_read_retry)		\
564 	.read_retries = __read_retries,					\
565 	.set_read_retry = __set_read_retry
566 
567 #define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants,	\
568 		     __flags, ...)					\
569 	{								\
570 		.model = __model,					\
571 		.devid = __id,						\
572 		.memorg = __memorg,					\
573 		.eccreq = __eccreq,					\
574 		.op_variants = __op_variants,				\
575 		.flags = __flags,					\
576 		__VA_ARGS__						\
577 	}
578 
579 struct spinand_dirmap {
580 	struct spi_mem_dirmap_desc *wdesc;
581 	struct spi_mem_dirmap_desc *rdesc;
582 	struct spi_mem_dirmap_desc *wdesc_ecc;
583 	struct spi_mem_dirmap_desc *rdesc_ecc;
584 };
585 
586 /**
587  * struct spinand_device - SPI NAND device instance
588  * @base: NAND device instance
589  * @spimem: pointer to the SPI mem object
590  * @lock: lock used to serialize accesses to the NAND
591  * @id: NAND ID as returned by READ_ID
592  * @flags: NAND flags
593  * @op_templates: various SPI mem op templates
594  * @op_templates.read_cache: read cache op template
595  * @op_templates.write_cache: write cache op template
596  * @op_templates.update_cache: update cache op template
597  * @select_target: select a specific target/die. Usually called before sending
598  *		   a command addressing a page or an eraseblock embedded in
599  *		   this die. Only required if your chip exposes several dies
600  * @cur_target: currently selected target/die
601  * @eccinfo: on-die ECC information
602  * @cfg_cache: config register cache. One entry per die
603  * @databuf: bounce buffer for data
604  * @oobbuf: bounce buffer for OOB data
605  * @scratchbuf: buffer used for everything but page accesses. This is needed
606  *		because the spi-mem interface explicitly requests that buffers
607  *		passed in spi_mem_op be DMA-able, so we can't based the bufs on
608  *		the stack
609  * @manufacturer: SPI NAND manufacturer information
610  * @cont_read_possible: Field filled by the core once the whole system
611  *		configuration is known to tell whether continuous reads are
612  *		suitable to use or not in general with this chip/configuration.
613  *		A per-transfer check must of course be done to ensure it is
614  *		actually relevant to enable this feature.
615  * @set_cont_read: Enable/disable the continuous read feature
616  * @priv: manufacturer private data
617  * @fact_otp: SPI NAND factory OTP info.
618  * @user_otp: SPI NAND user OTP info.
619  * @read_retries: the number of read retry modes supported
620  * @set_read_retry: Enable/disable the read retry feature
621  */
622 struct spinand_device {
623 	struct nand_device base;
624 	struct spi_mem *spimem;
625 	struct mutex lock;
626 	struct spinand_id id;
627 	u32 flags;
628 
629 	struct {
630 		const struct spi_mem_op *read_cache;
631 		const struct spi_mem_op *write_cache;
632 		const struct spi_mem_op *update_cache;
633 	} op_templates;
634 
635 	struct spinand_dirmap *dirmaps;
636 
637 	int (*select_target)(struct spinand_device *spinand,
638 			     unsigned int target);
639 	unsigned int cur_target;
640 
641 	struct spinand_ecc_info eccinfo;
642 
643 	u8 *cfg_cache;
644 	u8 *databuf;
645 	u8 *oobbuf;
646 	u8 *scratchbuf;
647 	const struct spinand_manufacturer *manufacturer;
648 	void *priv;
649 
650 	bool cont_read_possible;
651 	int (*set_cont_read)(struct spinand_device *spinand,
652 			     bool enable);
653 
654 	const struct spinand_fact_otp *fact_otp;
655 	const struct spinand_user_otp *user_otp;
656 
657 	unsigned int read_retries;
658 	int (*set_read_retry)(struct spinand_device *spinand,
659 			     unsigned int retry_mode);
660 };
661 
662 /**
663  * mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance
664  * @mtd: MTD instance
665  *
666  * Return: the SPI NAND device attached to @mtd.
667  */
mtd_to_spinand(struct mtd_info * mtd)668 static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd)
669 {
670 	return container_of(mtd_to_nanddev(mtd), struct spinand_device, base);
671 }
672 
673 /**
674  * spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device
675  * @spinand: SPI NAND device
676  *
677  * Return: the MTD device embedded in @spinand.
678  */
spinand_to_mtd(struct spinand_device * spinand)679 static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand)
680 {
681 	return nanddev_to_mtd(&spinand->base);
682 }
683 
684 /**
685  * nand_to_spinand() - Get the SPI NAND device embedding an NAND object
686  * @nand: NAND object
687  *
688  * Return: the SPI NAND device embedding @nand.
689  */
nand_to_spinand(struct nand_device * nand)690 static inline struct spinand_device *nand_to_spinand(struct nand_device *nand)
691 {
692 	return container_of(nand, struct spinand_device, base);
693 }
694 
695 /**
696  * spinand_to_nand() - Get the NAND device embedded in a SPI NAND object
697  * @spinand: SPI NAND device
698  *
699  * Return: the NAND device embedded in @spinand.
700  */
701 static inline struct nand_device *
spinand_to_nand(struct spinand_device * spinand)702 spinand_to_nand(struct spinand_device *spinand)
703 {
704 	return &spinand->base;
705 }
706 
707 /**
708  * spinand_set_of_node - Attach a DT node to a SPI NAND device
709  * @spinand: SPI NAND device
710  * @np: DT node
711  *
712  * Attach a DT node to a SPI NAND device.
713  */
spinand_set_of_node(struct spinand_device * spinand,struct device_node * np)714 static inline void spinand_set_of_node(struct spinand_device *spinand,
715 				       struct device_node *np)
716 {
717 	nanddev_set_of_node(&spinand->base, np);
718 }
719 
720 int spinand_match_and_init(struct spinand_device *spinand,
721 			   const struct spinand_info *table,
722 			   unsigned int table_size,
723 			   enum spinand_readid_method rdid_method);
724 
725 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val);
726 int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val);
727 int spinand_select_target(struct spinand_device *spinand, unsigned int target);
728 
729 int spinand_wait(struct spinand_device *spinand, unsigned long initial_delay_us,
730 		 unsigned long poll_delay_us, u8 *s);
731 
732 int spinand_read_page(struct spinand_device *spinand,
733 		      const struct nand_page_io_req *req);
734 
735 int spinand_write_page(struct spinand_device *spinand,
736 		       const struct nand_page_io_req *req);
737 
738 size_t spinand_otp_page_size(struct spinand_device *spinand);
739 size_t spinand_fact_otp_size(struct spinand_device *spinand);
740 size_t spinand_user_otp_size(struct spinand_device *spinand);
741 
742 int spinand_fact_otp_read(struct spinand_device *spinand, loff_t ofs,
743 			  size_t len, size_t *retlen, u8 *buf);
744 int spinand_user_otp_read(struct spinand_device *spinand, loff_t ofs,
745 			  size_t len, size_t *retlen, u8 *buf);
746 int spinand_user_otp_write(struct spinand_device *spinand, loff_t ofs,
747 			   size_t len, size_t *retlen, const u8 *buf);
748 
749 int spinand_set_mtd_otp_ops(struct spinand_device *spinand);
750 
751 #endif /* __LINUX_MTD_SPINAND_H */
752