1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 /*
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
26 * Copyright (c) 2014, 2022 by Delphix. All rights reserved.
27 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
28 * Copyright 2017 RackTop Systems.
29 * Copyright (c) 2018 Datto Inc.
30 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
31 */
32
33 /*
34 * Routines to manage ZFS mounts. We separate all the nasty routines that have
35 * to deal with the OS. The following functions are the main entry points --
36 * they are used by mount and unmount and when changing a filesystem's
37 * mountpoint.
38 *
39 * zfs_is_mounted()
40 * zfs_mount()
41 * zfs_mount_at()
42 * zfs_unmount()
43 * zfs_unmountall()
44 *
45 * This file also contains the functions used to manage sharing filesystems:
46 *
47 * zfs_is_shared()
48 * zfs_share()
49 * zfs_unshare()
50 * zfs_unshareall()
51 * zfs_commit_shares()
52 *
53 * The following functions are available for pool consumers, and will
54 * mount/unmount and share/unshare all datasets within pool:
55 *
56 * zpool_enable_datasets()
57 * zpool_disable_datasets()
58 */
59
60 #include <dirent.h>
61 #include <dlfcn.h>
62 #include <errno.h>
63 #include <fcntl.h>
64 #include <libgen.h>
65 #include <libintl.h>
66 #include <stdio.h>
67 #include <stdlib.h>
68 #include <string.h>
69 #include <unistd.h>
70 #include <zone.h>
71 #include <sys/mntent.h>
72 #include <sys/mount.h>
73 #include <sys/stat.h>
74 #include <sys/vfs.h>
75 #include <sys/dsl_crypt.h>
76
77 #include <libzfs.h>
78 #include <libzutil.h>
79
80 #include "libzfs_impl.h"
81
82 #include <libshare.h>
83 #include <sys/systeminfo.h>
84 #define MAXISALEN 257 /* based on sysinfo(2) man page */
85
86 static void zfs_mount_task(void *);
87
88 static const proto_table_t proto_table[SA_PROTOCOL_COUNT] = {
89 [SA_PROTOCOL_NFS] =
90 {ZFS_PROP_SHARENFS, EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED},
91 [SA_PROTOCOL_SMB] =
92 {ZFS_PROP_SHARESMB, EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED},
93 };
94
95 static const enum sa_protocol share_all_proto[SA_PROTOCOL_COUNT + 1] = {
96 SA_PROTOCOL_NFS,
97 SA_PROTOCOL_SMB,
98 SA_NO_PROTOCOL
99 };
100
101
102
103 static boolean_t
dir_is_empty_stat(const char * dirname)104 dir_is_empty_stat(const char *dirname)
105 {
106 struct stat st;
107
108 /*
109 * We only want to return false if the given path is a non empty
110 * directory, all other errors are handled elsewhere.
111 */
112 if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) {
113 return (B_TRUE);
114 }
115
116 /*
117 * An empty directory will still have two entries in it, one
118 * entry for each of "." and "..".
119 */
120 if (st.st_size > 2) {
121 return (B_FALSE);
122 }
123
124 return (B_TRUE);
125 }
126
127 static boolean_t
dir_is_empty_readdir(const char * dirname)128 dir_is_empty_readdir(const char *dirname)
129 {
130 DIR *dirp;
131 struct dirent64 *dp;
132 int dirfd;
133
134 if ((dirfd = openat(AT_FDCWD, dirname,
135 O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) {
136 return (B_TRUE);
137 }
138
139 if ((dirp = fdopendir(dirfd)) == NULL) {
140 (void) close(dirfd);
141 return (B_TRUE);
142 }
143
144 while ((dp = readdir64(dirp)) != NULL) {
145
146 if (strcmp(dp->d_name, ".") == 0 ||
147 strcmp(dp->d_name, "..") == 0)
148 continue;
149
150 (void) closedir(dirp);
151 return (B_FALSE);
152 }
153
154 (void) closedir(dirp);
155 return (B_TRUE);
156 }
157
158 /*
159 * Returns true if the specified directory is empty. If we can't open the
160 * directory at all, return true so that the mount can fail with a more
161 * informative error message.
162 */
163 static boolean_t
dir_is_empty(const char * dirname)164 dir_is_empty(const char *dirname)
165 {
166 struct statfs64 st;
167
168 /*
169 * If the statvfs call fails or the filesystem is not a ZFS
170 * filesystem, fall back to the slow path which uses readdir.
171 */
172 if ((statfs64(dirname, &st) != 0) ||
173 (st.f_type != ZFS_SUPER_MAGIC)) {
174 return (dir_is_empty_readdir(dirname));
175 }
176
177 /*
178 * At this point, we know the provided path is on a ZFS
179 * filesystem, so we can use stat instead of readdir to
180 * determine if the directory is empty or not. We try to avoid
181 * using readdir because that requires opening "dirname"; this
182 * open file descriptor can potentially end up in a child
183 * process if there's a concurrent fork, thus preventing the
184 * zfs_mount() from otherwise succeeding (the open file
185 * descriptor inherited by the child process will cause the
186 * parent's mount to fail with EBUSY). The performance
187 * implications of replacing the open, read, and close with a
188 * single stat is nice; but is not the main motivation for the
189 * added complexity.
190 */
191 return (dir_is_empty_stat(dirname));
192 }
193
194 /*
195 * Checks to see if the mount is active. If the filesystem is mounted, we fill
196 * in 'where' with the current mountpoint, and return 1. Otherwise, we return
197 * 0.
198 */
199 boolean_t
is_mounted(libzfs_handle_t * zfs_hdl,const char * special,char ** where)200 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where)
201 {
202 struct mnttab entry;
203
204 if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0)
205 return (B_FALSE);
206
207 if (where != NULL)
208 *where = zfs_strdup(zfs_hdl, entry.mnt_mountp);
209
210 return (B_TRUE);
211 }
212
213 boolean_t
zfs_is_mounted(zfs_handle_t * zhp,char ** where)214 zfs_is_mounted(zfs_handle_t *zhp, char **where)
215 {
216 return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where));
217 }
218
219 /*
220 * Checks any higher order concerns about whether the given dataset is
221 * mountable, false otherwise. zfs_is_mountable_internal specifically assumes
222 * that the caller has verified the sanity of mounting the dataset at
223 * its mountpoint to the extent the caller wants.
224 */
225 static boolean_t
zfs_is_mountable_internal(zfs_handle_t * zhp)226 zfs_is_mountable_internal(zfs_handle_t *zhp)
227 {
228 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) &&
229 getzoneid() == GLOBAL_ZONEID)
230 return (B_FALSE);
231
232 return (B_TRUE);
233 }
234
235 /*
236 * Returns true if the given dataset is mountable, false otherwise. Returns the
237 * mountpoint in 'buf'.
238 */
239 static boolean_t
zfs_is_mountable(zfs_handle_t * zhp,char * buf,size_t buflen,zprop_source_t * source,int flags)240 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen,
241 zprop_source_t *source, int flags)
242 {
243 char sourceloc[MAXNAMELEN];
244 zprop_source_t sourcetype;
245
246 if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type,
247 B_FALSE))
248 return (B_FALSE);
249
250 verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen,
251 &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0);
252
253 if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 ||
254 strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0)
255 return (B_FALSE);
256
257 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF)
258 return (B_FALSE);
259
260 if (!zfs_is_mountable_internal(zhp))
261 return (B_FALSE);
262
263 if (zfs_prop_get_int(zhp, ZFS_PROP_REDACTED) && !(flags & MS_FORCE))
264 return (B_FALSE);
265
266 if (source)
267 *source = sourcetype;
268
269 return (B_TRUE);
270 }
271
272 /*
273 * The filesystem is mounted by invoking the system mount utility rather
274 * than by the system call mount(2). This ensures that the /etc/mtab
275 * file is correctly locked for the update. Performing our own locking
276 * and /etc/mtab update requires making an unsafe assumption about how
277 * the mount utility performs its locking. Unfortunately, this also means
278 * in the case of a mount failure we do not have the exact errno. We must
279 * make due with return value from the mount process.
280 *
281 * In the long term a shared library called libmount is under development
282 * which provides a common API to address the locking and errno issues.
283 * Once the standard mount utility has been updated to use this library
284 * we can add an autoconf check to conditionally use it.
285 *
286 * http://www.kernel.org/pub/linux/utils/util-linux/libmount-docs/index.html
287 */
288
289 static int
zfs_add_option(zfs_handle_t * zhp,char * options,int len,zfs_prop_t prop,const char * on,const char * off)290 zfs_add_option(zfs_handle_t *zhp, char *options, int len,
291 zfs_prop_t prop, const char *on, const char *off)
292 {
293 const char *source;
294 uint64_t value;
295
296 /* Skip adding duplicate default options */
297 if ((strstr(options, on) != NULL) || (strstr(options, off) != NULL))
298 return (0);
299
300 /*
301 * zfs_prop_get_int() is not used to ensure our mount options
302 * are not influenced by the current /proc/self/mounts contents.
303 */
304 value = getprop_uint64(zhp, prop, &source);
305
306 (void) strlcat(options, ",", len);
307 (void) strlcat(options, value ? on : off, len);
308
309 return (0);
310 }
311
312 static int
zfs_add_options(zfs_handle_t * zhp,char * options,int len)313 zfs_add_options(zfs_handle_t *zhp, char *options, int len)
314 {
315 int error = 0;
316
317 error = zfs_add_option(zhp, options, len,
318 ZFS_PROP_ATIME, MNTOPT_ATIME, MNTOPT_NOATIME);
319 /*
320 * don't add relatime/strictatime when atime=off, otherwise strictatime
321 * will force atime=on
322 */
323 if (strstr(options, MNTOPT_NOATIME) == NULL) {
324 error = zfs_add_option(zhp, options, len,
325 ZFS_PROP_RELATIME, MNTOPT_RELATIME, MNTOPT_STRICTATIME);
326 }
327 error = error ? error : zfs_add_option(zhp, options, len,
328 ZFS_PROP_DEVICES, MNTOPT_DEVICES, MNTOPT_NODEVICES);
329 error = error ? error : zfs_add_option(zhp, options, len,
330 ZFS_PROP_EXEC, MNTOPT_EXEC, MNTOPT_NOEXEC);
331 error = error ? error : zfs_add_option(zhp, options, len,
332 ZFS_PROP_READONLY, MNTOPT_RO, MNTOPT_RW);
333 error = error ? error : zfs_add_option(zhp, options, len,
334 ZFS_PROP_SETUID, MNTOPT_SETUID, MNTOPT_NOSETUID);
335 error = error ? error : zfs_add_option(zhp, options, len,
336 ZFS_PROP_NBMAND, MNTOPT_NBMAND, MNTOPT_NONBMAND);
337
338 return (error);
339 }
340
341 int
zfs_mount(zfs_handle_t * zhp,const char * options,int flags)342 zfs_mount(zfs_handle_t *zhp, const char *options, int flags)
343 {
344 char mountpoint[ZFS_MAXPROPLEN];
345
346 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL,
347 flags))
348 return (0);
349
350 return (zfs_mount_at(zhp, options, flags, mountpoint));
351 }
352
353 /*
354 * Mount the given filesystem.
355 */
356 int
zfs_mount_at(zfs_handle_t * zhp,const char * options,int flags,const char * mountpoint)357 zfs_mount_at(zfs_handle_t *zhp, const char *options, int flags,
358 const char *mountpoint)
359 {
360 struct stat buf;
361 char mntopts[MNT_LINE_MAX];
362 char overlay[ZFS_MAXPROPLEN];
363 char prop_encroot[MAXNAMELEN];
364 boolean_t is_encroot;
365 zfs_handle_t *encroot_hp = zhp;
366 libzfs_handle_t *hdl = zhp->zfs_hdl;
367 uint64_t keystatus;
368 int remount = 0, rc;
369
370 if (options == NULL) {
371 (void) strlcpy(mntopts, MNTOPT_DEFAULTS, sizeof (mntopts));
372 } else {
373 (void) strlcpy(mntopts, options, sizeof (mntopts));
374 }
375
376 if (strstr(mntopts, MNTOPT_REMOUNT) != NULL)
377 remount = 1;
378
379 /* Potentially duplicates some checks if invoked by zfs_mount(). */
380 if (!zfs_is_mountable_internal(zhp))
381 return (0);
382
383 /*
384 * If the pool is imported read-only then all mounts must be read-only
385 */
386 if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL))
387 (void) strlcat(mntopts, "," MNTOPT_RO, sizeof (mntopts));
388
389 /*
390 * Append default mount options which apply to the mount point.
391 * This is done because under Linux (unlike Solaris) multiple mount
392 * points may reference a single super block. This means that just
393 * given a super block there is no back reference to update the per
394 * mount point options.
395 */
396 rc = zfs_add_options(zhp, mntopts, sizeof (mntopts));
397 if (rc) {
398 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
399 "default options unavailable"));
400 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
401 dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
402 mountpoint));
403 }
404
405 /*
406 * If the filesystem is encrypted the key must be loaded in order to
407 * mount. If the key isn't loaded, the MS_CRYPT flag decides whether
408 * or not we attempt to load the keys. Note: we must call
409 * zfs_refresh_properties() here since some callers of this function
410 * (most notably zpool_enable_datasets()) may implicitly load our key
411 * by loading the parent's key first.
412 */
413 if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
414 zfs_refresh_properties(zhp);
415 keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
416
417 /*
418 * If the key is unavailable and MS_CRYPT is set give the
419 * user a chance to enter the key. Otherwise just fail
420 * immediately.
421 */
422 if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
423 if (flags & MS_CRYPT) {
424 rc = zfs_crypto_get_encryption_root(zhp,
425 &is_encroot, prop_encroot);
426 if (rc) {
427 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
428 "Failed to get encryption root for "
429 "'%s'."), zfs_get_name(zhp));
430 return (rc);
431 }
432
433 if (!is_encroot) {
434 encroot_hp = zfs_open(hdl, prop_encroot,
435 ZFS_TYPE_DATASET);
436 if (encroot_hp == NULL)
437 return (hdl->libzfs_error);
438 }
439
440 rc = zfs_crypto_load_key(encroot_hp,
441 B_FALSE, NULL);
442
443 if (!is_encroot)
444 zfs_close(encroot_hp);
445 if (rc)
446 return (rc);
447 } else {
448 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
449 "encryption key not loaded"));
450 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
451 dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
452 mountpoint));
453 }
454 }
455
456 }
457
458 /*
459 * Append zfsutil option so the mount helper allow the mount
460 */
461 strlcat(mntopts, "," MNTOPT_ZFSUTIL, sizeof (mntopts));
462
463 /* Create the directory if it doesn't already exist */
464 if (lstat(mountpoint, &buf) != 0) {
465 if (mkdirp(mountpoint, 0755) != 0) {
466 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
467 "failed to create mountpoint: %s"),
468 zfs_strerror(errno));
469 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
470 dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
471 mountpoint));
472 }
473 }
474
475 /*
476 * Overlay mounts are enabled by default but may be disabled
477 * via the 'overlay' property. The -O flag remains for compatibility.
478 */
479 if (!(flags & MS_OVERLAY)) {
480 if (zfs_prop_get(zhp, ZFS_PROP_OVERLAY, overlay,
481 sizeof (overlay), NULL, NULL, 0, B_FALSE) == 0) {
482 if (strcmp(overlay, "on") == 0) {
483 flags |= MS_OVERLAY;
484 }
485 }
486 }
487
488 /*
489 * Determine if the mountpoint is empty. If so, refuse to perform the
490 * mount. We don't perform this check if 'remount' is
491 * specified or if overlay option (-O) is given
492 */
493 if ((flags & MS_OVERLAY) == 0 && !remount &&
494 !dir_is_empty(mountpoint)) {
495 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
496 "directory is not empty"));
497 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
498 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint));
499 }
500
501 /* perform the mount */
502 rc = do_mount(zhp, mountpoint, mntopts, flags);
503 if (rc) {
504 /*
505 * Generic errors are nasty, but there are just way too many
506 * from mount(), and they're well-understood. We pick a few
507 * common ones to improve upon.
508 */
509 if (rc == EBUSY) {
510 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
511 "mountpoint or dataset is busy"));
512 } else if (rc == EPERM) {
513 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
514 "Insufficient privileges"));
515 } else if (rc == ENOTSUP) {
516 int spa_version;
517
518 VERIFY0(zfs_spa_version(zhp, &spa_version));
519 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
520 "Can't mount a version %llu "
521 "file system on a version %d pool. Pool must be"
522 " upgraded to mount this file system."),
523 (u_longlong_t)zfs_prop_get_int(zhp,
524 ZFS_PROP_VERSION), spa_version);
525 } else {
526 zfs_error_aux(hdl, "%s", zfs_strerror(rc));
527 }
528 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
529 dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
530 zhp->zfs_name));
531 }
532
533 /* remove the mounted entry before re-adding on remount */
534 if (remount)
535 libzfs_mnttab_remove(hdl, zhp->zfs_name);
536
537 /* add the mounted entry into our cache */
538 libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, mntopts);
539 return (0);
540 }
541
542 /*
543 * Unmount a single filesystem.
544 */
545 static int
unmount_one(zfs_handle_t * zhp,const char * mountpoint,int flags)546 unmount_one(zfs_handle_t *zhp, const char *mountpoint, int flags)
547 {
548 int error;
549
550 error = do_unmount(zhp, mountpoint, flags);
551 if (error != 0) {
552 int libzfs_err;
553
554 switch (error) {
555 case EBUSY:
556 libzfs_err = EZFS_BUSY;
557 break;
558 case EIO:
559 libzfs_err = EZFS_IO;
560 break;
561 case ENOENT:
562 libzfs_err = EZFS_NOENT;
563 break;
564 case ENOMEM:
565 libzfs_err = EZFS_NOMEM;
566 break;
567 case EPERM:
568 libzfs_err = EZFS_PERM;
569 break;
570 default:
571 libzfs_err = EZFS_UMOUNTFAILED;
572 }
573 if (zhp) {
574 return (zfs_error_fmt(zhp->zfs_hdl, libzfs_err,
575 dgettext(TEXT_DOMAIN, "cannot unmount '%s'"),
576 mountpoint));
577 } else {
578 return (-1);
579 }
580 }
581
582 return (0);
583 }
584
585 /*
586 * Unmount the given filesystem.
587 */
588 int
zfs_unmount(zfs_handle_t * zhp,const char * mountpoint,int flags)589 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags)
590 {
591 libzfs_handle_t *hdl = zhp->zfs_hdl;
592 struct mnttab entry;
593 char *mntpt = NULL;
594 boolean_t encroot, unmounted = B_FALSE;
595
596 /* check to see if we need to unmount the filesystem */
597 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
598 libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) {
599 /*
600 * mountpoint may have come from a call to
601 * getmnt/getmntany if it isn't NULL. If it is NULL,
602 * we know it comes from libzfs_mnttab_find which can
603 * then get freed later. We strdup it to play it safe.
604 */
605 if (mountpoint == NULL)
606 mntpt = zfs_strdup(hdl, entry.mnt_mountp);
607 else
608 mntpt = zfs_strdup(hdl, mountpoint);
609
610 /*
611 * Unshare and unmount the filesystem
612 */
613 if (zfs_unshare(zhp, mntpt, share_all_proto) != 0) {
614 free(mntpt);
615 return (-1);
616 }
617 zfs_commit_shares(NULL);
618
619 if (unmount_one(zhp, mntpt, flags) != 0) {
620 free(mntpt);
621 (void) zfs_share(zhp, NULL);
622 zfs_commit_shares(NULL);
623 return (-1);
624 }
625
626 libzfs_mnttab_remove(hdl, zhp->zfs_name);
627 free(mntpt);
628 unmounted = B_TRUE;
629 }
630
631 /*
632 * If the MS_CRYPT flag is provided we must ensure we attempt to
633 * unload the dataset's key regardless of whether we did any work
634 * to unmount it. We only do this for encryption roots.
635 */
636 if ((flags & MS_CRYPT) != 0 &&
637 zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
638 zfs_refresh_properties(zhp);
639
640 if (zfs_crypto_get_encryption_root(zhp, &encroot, NULL) != 0 &&
641 unmounted) {
642 (void) zfs_mount(zhp, NULL, 0);
643 return (-1);
644 }
645
646 if (encroot && zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
647 ZFS_KEYSTATUS_AVAILABLE &&
648 zfs_crypto_unload_key(zhp) != 0) {
649 (void) zfs_mount(zhp, NULL, 0);
650 return (-1);
651 }
652 }
653
654 zpool_disable_volume_os(zhp->zfs_name);
655
656 return (0);
657 }
658
659 /*
660 * Unmount this filesystem and any children inheriting the mountpoint property.
661 * To do this, just act like we're changing the mountpoint property, but don't
662 * remount the filesystems afterwards.
663 */
664 int
zfs_unmountall(zfs_handle_t * zhp,int flags)665 zfs_unmountall(zfs_handle_t *zhp, int flags)
666 {
667 prop_changelist_t *clp;
668 int ret;
669
670 clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT,
671 CL_GATHER_ITER_MOUNTED, flags);
672 if (clp == NULL)
673 return (-1);
674
675 ret = changelist_prefix(clp);
676 changelist_free(clp);
677
678 return (ret);
679 }
680
681 /*
682 * Unshare a filesystem by mountpoint.
683 */
684 static int
unshare_one(libzfs_handle_t * hdl,const char * name,const char * mountpoint,enum sa_protocol proto)685 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint,
686 enum sa_protocol proto)
687 {
688 int err = sa_disable_share(mountpoint, proto);
689 if (err != SA_OK)
690 return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
691 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
692 name, sa_errorstr(err)));
693
694 return (0);
695 }
696
697 /*
698 * Share the given filesystem according to the options in the specified
699 * protocol specific properties (sharenfs, sharesmb). We rely
700 * on "libshare" to do the dirty work for us.
701 */
702 int
zfs_share(zfs_handle_t * zhp,const enum sa_protocol * proto)703 zfs_share(zfs_handle_t *zhp, const enum sa_protocol *proto)
704 {
705 char mountpoint[ZFS_MAXPROPLEN];
706 char shareopts[ZFS_MAXPROPLEN];
707 char sourcestr[ZFS_MAXPROPLEN];
708 const enum sa_protocol *curr_proto;
709 zprop_source_t sourcetype;
710 int err = 0;
711
712 if (proto == NULL)
713 proto = share_all_proto;
714
715 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL, 0))
716 return (0);
717
718 for (curr_proto = proto; *curr_proto != SA_NO_PROTOCOL; curr_proto++) {
719 /*
720 * Return success if there are no share options.
721 */
722 if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop,
723 shareopts, sizeof (shareopts), &sourcetype, sourcestr,
724 ZFS_MAXPROPLEN, B_FALSE) != 0 ||
725 strcmp(shareopts, "off") == 0)
726 continue;
727
728 /*
729 * If the 'zoned' property is set, then zfs_is_mountable()
730 * will have already bailed out if we are in the global zone.
731 * But local zones cannot be NFS servers, so we ignore it for
732 * local zones as well.
733 */
734 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED))
735 continue;
736
737 err = sa_enable_share(zfs_get_name(zhp), mountpoint, shareopts,
738 *curr_proto);
739 if (err != SA_OK) {
740 return (zfs_error_fmt(zhp->zfs_hdl,
741 proto_table[*curr_proto].p_share_err,
742 dgettext(TEXT_DOMAIN, "cannot share '%s: %s'"),
743 zfs_get_name(zhp), sa_errorstr(err)));
744 }
745
746 }
747 return (0);
748 }
749
750 /*
751 * Check to see if the filesystem is currently shared.
752 */
753 boolean_t
zfs_is_shared(zfs_handle_t * zhp,char ** where,const enum sa_protocol * proto)754 zfs_is_shared(zfs_handle_t *zhp, char **where,
755 const enum sa_protocol *proto)
756 {
757 char *mountpoint;
758 if (proto == NULL)
759 proto = share_all_proto;
760
761 if (ZFS_IS_VOLUME(zhp))
762 return (B_FALSE);
763
764 if (!zfs_is_mounted(zhp, &mountpoint))
765 return (B_FALSE);
766
767 for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p)
768 if (sa_is_shared(mountpoint, *p)) {
769 if (where != NULL)
770 *where = mountpoint;
771 else
772 free(mountpoint);
773 return (B_TRUE);
774 }
775
776 free(mountpoint);
777 return (B_FALSE);
778 }
779
780 void
zfs_commit_shares(const enum sa_protocol * proto)781 zfs_commit_shares(const enum sa_protocol *proto)
782 {
783 if (proto == NULL)
784 proto = share_all_proto;
785
786 for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p)
787 sa_commit_shares(*p);
788 }
789
790 void
zfs_truncate_shares(const enum sa_protocol * proto)791 zfs_truncate_shares(const enum sa_protocol *proto)
792 {
793 if (proto == NULL)
794 proto = share_all_proto;
795
796 for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p)
797 sa_truncate_shares(*p);
798 }
799
800 /*
801 * Unshare the given filesystem.
802 */
803 int
zfs_unshare(zfs_handle_t * zhp,const char * mountpoint,const enum sa_protocol * proto)804 zfs_unshare(zfs_handle_t *zhp, const char *mountpoint,
805 const enum sa_protocol *proto)
806 {
807 libzfs_handle_t *hdl = zhp->zfs_hdl;
808 struct mnttab entry;
809
810 if (proto == NULL)
811 proto = share_all_proto;
812
813 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
814 libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) {
815
816 /* check to see if need to unmount the filesystem */
817 const char *mntpt = mountpoint ?: entry.mnt_mountp;
818
819 for (const enum sa_protocol *curr_proto = proto;
820 *curr_proto != SA_NO_PROTOCOL; curr_proto++)
821 if (sa_is_shared(mntpt, *curr_proto) &&
822 unshare_one(hdl, zhp->zfs_name,
823 mntpt, *curr_proto) != 0)
824 return (-1);
825 }
826
827 return (0);
828 }
829
830 /*
831 * Same as zfs_unmountall(), but for NFS and SMB unshares.
832 */
833 int
zfs_unshareall(zfs_handle_t * zhp,const enum sa_protocol * proto)834 zfs_unshareall(zfs_handle_t *zhp, const enum sa_protocol *proto)
835 {
836 prop_changelist_t *clp;
837 int ret;
838
839 if (proto == NULL)
840 proto = share_all_proto;
841
842 clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0);
843 if (clp == NULL)
844 return (-1);
845
846 ret = changelist_unshare(clp, proto);
847 changelist_free(clp);
848
849 return (ret);
850 }
851
852 /*
853 * Remove the mountpoint associated with the current dataset, if necessary.
854 * We only remove the underlying directory if:
855 *
856 * - The mountpoint is not 'none' or 'legacy'
857 * - The mountpoint is non-empty
858 * - The mountpoint is the default or inherited
859 * - The 'zoned' property is set, or we're in a local zone
860 *
861 * Any other directories we leave alone.
862 */
863 void
remove_mountpoint(zfs_handle_t * zhp)864 remove_mountpoint(zfs_handle_t *zhp)
865 {
866 char mountpoint[ZFS_MAXPROPLEN];
867 zprop_source_t source;
868
869 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint),
870 &source, 0))
871 return;
872
873 if (source == ZPROP_SRC_DEFAULT ||
874 source == ZPROP_SRC_INHERITED) {
875 /*
876 * Try to remove the directory, silently ignoring any errors.
877 * The filesystem may have since been removed or moved around,
878 * and this error isn't really useful to the administrator in
879 * any way.
880 */
881 (void) rmdir(mountpoint);
882 }
883 }
884
885 /*
886 * Add the given zfs handle to the cb_handles array, dynamically reallocating
887 * the array if it is out of space.
888 */
889 void
libzfs_add_handle(get_all_cb_t * cbp,zfs_handle_t * zhp)890 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp)
891 {
892 if (cbp->cb_alloc == cbp->cb_used) {
893 size_t newsz;
894 zfs_handle_t **newhandles;
895
896 newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64;
897 newhandles = zfs_realloc(zhp->zfs_hdl,
898 cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *),
899 newsz * sizeof (zfs_handle_t *));
900 cbp->cb_handles = newhandles;
901 cbp->cb_alloc = newsz;
902 }
903 cbp->cb_handles[cbp->cb_used++] = zhp;
904 }
905
906 /*
907 * Recursive helper function used during file system enumeration
908 */
909 static int
zfs_iter_cb(zfs_handle_t * zhp,void * data)910 zfs_iter_cb(zfs_handle_t *zhp, void *data)
911 {
912 get_all_cb_t *cbp = data;
913
914 if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) {
915 zfs_close(zhp);
916 return (0);
917 }
918
919 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) {
920 zfs_close(zhp);
921 return (0);
922 }
923
924 if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
925 ZFS_KEYSTATUS_UNAVAILABLE) {
926 zfs_close(zhp);
927 return (0);
928 }
929
930 /*
931 * If this filesystem is inconsistent and has a receive resume
932 * token, we can not mount it.
933 */
934 if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) &&
935 zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
936 NULL, 0, NULL, NULL, 0, B_TRUE) == 0) {
937 zfs_close(zhp);
938 return (0);
939 }
940
941 libzfs_add_handle(cbp, zhp);
942 if (zfs_iter_filesystems_v2(zhp, 0, zfs_iter_cb, cbp) != 0) {
943 zfs_close(zhp);
944 return (-1);
945 }
946 return (0);
947 }
948
949 /*
950 * Sort comparator that compares two mountpoint paths. We sort these paths so
951 * that subdirectories immediately follow their parents. This means that we
952 * effectively treat the '/' character as the lowest value non-nul char.
953 * Since filesystems from non-global zones can have the same mountpoint
954 * as other filesystems, the comparator sorts global zone filesystems to
955 * the top of the list. This means that the global zone will traverse the
956 * filesystem list in the correct order and can stop when it sees the
957 * first zoned filesystem. In a non-global zone, only the delegated
958 * filesystems are seen.
959 *
960 * An example sorted list using this comparator would look like:
961 *
962 * /foo
963 * /foo/bar
964 * /foo/bar/baz
965 * /foo/baz
966 * /foo.bar
967 * /foo (NGZ1)
968 * /foo (NGZ2)
969 *
970 * The mounting code depends on this ordering to deterministically iterate
971 * over filesystems in order to spawn parallel mount tasks.
972 */
973 static int
mountpoint_cmp(const void * arga,const void * argb)974 mountpoint_cmp(const void *arga, const void *argb)
975 {
976 zfs_handle_t *const *zap = arga;
977 zfs_handle_t *za = *zap;
978 zfs_handle_t *const *zbp = argb;
979 zfs_handle_t *zb = *zbp;
980 char mounta[MAXPATHLEN];
981 char mountb[MAXPATHLEN];
982 const char *a = mounta;
983 const char *b = mountb;
984 boolean_t gota, gotb;
985 uint64_t zoneda, zonedb;
986
987 zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED);
988 zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED);
989 if (zoneda && !zonedb)
990 return (1);
991 if (!zoneda && zonedb)
992 return (-1);
993
994 gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM);
995 if (gota) {
996 verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta,
997 sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0);
998 }
999 gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM);
1000 if (gotb) {
1001 verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb,
1002 sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0);
1003 }
1004
1005 if (gota && gotb) {
1006 while (*a != '\0' && (*a == *b)) {
1007 a++;
1008 b++;
1009 }
1010 if (*a == *b)
1011 return (0);
1012 if (*a == '\0')
1013 return (-1);
1014 if (*b == '\0')
1015 return (1);
1016 if (*a == '/')
1017 return (-1);
1018 if (*b == '/')
1019 return (1);
1020 return (*a < *b ? -1 : *a > *b);
1021 }
1022
1023 if (gota)
1024 return (-1);
1025 if (gotb)
1026 return (1);
1027
1028 /*
1029 * If neither filesystem has a mountpoint, revert to sorting by
1030 * dataset name.
1031 */
1032 return (strcmp(zfs_get_name(za), zfs_get_name(zb)));
1033 }
1034
1035 /*
1036 * Return true if path2 is a child of path1 or path2 equals path1 or
1037 * path1 is "/" (path2 is always a child of "/").
1038 */
1039 static boolean_t
libzfs_path_contains(const char * path1,const char * path2)1040 libzfs_path_contains(const char *path1, const char *path2)
1041 {
1042 return (strcmp(path1, path2) == 0 || strcmp(path1, "/") == 0 ||
1043 (strstr(path2, path1) == path2 && path2[strlen(path1)] == '/'));
1044 }
1045
1046 /*
1047 * Given a mountpoint specified by idx in the handles array, find the first
1048 * non-descendent of that mountpoint and return its index. Descendant paths
1049 * start with the parent's path. This function relies on the ordering
1050 * enforced by mountpoint_cmp().
1051 */
1052 static int
non_descendant_idx(zfs_handle_t ** handles,size_t num_handles,int idx)1053 non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx)
1054 {
1055 char parent[ZFS_MAXPROPLEN];
1056 char child[ZFS_MAXPROPLEN];
1057 int i;
1058
1059 verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent,
1060 sizeof (parent), NULL, NULL, 0, B_FALSE) == 0);
1061
1062 for (i = idx + 1; i < num_handles; i++) {
1063 verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child,
1064 sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1065 if (!libzfs_path_contains(parent, child))
1066 break;
1067 }
1068 return (i);
1069 }
1070
1071 typedef struct mnt_param {
1072 libzfs_handle_t *mnt_hdl;
1073 taskq_t *mnt_tq;
1074 zfs_handle_t **mnt_zhps; /* filesystems to mount */
1075 size_t mnt_num_handles;
1076 int mnt_idx; /* Index of selected entry to mount */
1077 zfs_iter_f mnt_func;
1078 void *mnt_data;
1079 } mnt_param_t;
1080
1081 /*
1082 * Allocate and populate the parameter struct for mount function, and
1083 * schedule mounting of the entry selected by idx.
1084 */
1085 static void
zfs_dispatch_mount(libzfs_handle_t * hdl,zfs_handle_t ** handles,size_t num_handles,int idx,zfs_iter_f func,void * data,taskq_t * tq)1086 zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles,
1087 size_t num_handles, int idx, zfs_iter_f func, void *data, taskq_t *tq)
1088 {
1089 mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t));
1090
1091 mnt_param->mnt_hdl = hdl;
1092 mnt_param->mnt_tq = tq;
1093 mnt_param->mnt_zhps = handles;
1094 mnt_param->mnt_num_handles = num_handles;
1095 mnt_param->mnt_idx = idx;
1096 mnt_param->mnt_func = func;
1097 mnt_param->mnt_data = data;
1098
1099 if (taskq_dispatch(tq, zfs_mount_task, (void*)mnt_param,
1100 TQ_SLEEP) == TASKQID_INVALID) {
1101 /* Could not dispatch to thread pool; execute directly */
1102 zfs_mount_task((void*)mnt_param);
1103 }
1104 }
1105
1106 /*
1107 * This is the structure used to keep state of mounting or sharing operations
1108 * during a call to zpool_enable_datasets().
1109 */
1110 typedef struct mount_state {
1111 /*
1112 * ms_mntstatus is set to -1 if any mount fails. While multiple threads
1113 * could update this variable concurrently, no synchronization is
1114 * needed as it's only ever set to -1.
1115 */
1116 int ms_mntstatus;
1117 int ms_mntflags;
1118 const char *ms_mntopts;
1119 } mount_state_t;
1120
1121 static int
zfs_mount_one(zfs_handle_t * zhp,void * arg)1122 zfs_mount_one(zfs_handle_t *zhp, void *arg)
1123 {
1124 mount_state_t *ms = arg;
1125 int ret = 0;
1126
1127 /*
1128 * don't attempt to mount encrypted datasets with
1129 * unloaded keys
1130 */
1131 if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
1132 ZFS_KEYSTATUS_UNAVAILABLE)
1133 return (0);
1134
1135 if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0)
1136 ret = ms->ms_mntstatus = -1;
1137 return (ret);
1138 }
1139
1140 static int
zfs_share_one(zfs_handle_t * zhp,void * arg)1141 zfs_share_one(zfs_handle_t *zhp, void *arg)
1142 {
1143 mount_state_t *ms = arg;
1144 int ret = 0;
1145
1146 if (zfs_share(zhp, NULL) != 0)
1147 ret = ms->ms_mntstatus = -1;
1148 return (ret);
1149 }
1150
1151 /*
1152 * Thread pool function to mount one file system. On completion, it finds and
1153 * schedules its children to be mounted. This depends on the sorting done in
1154 * zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries
1155 * each descending from the previous) will have no parallelism since we always
1156 * have to wait for the parent to finish mounting before we can schedule
1157 * its children.
1158 */
1159 static void
zfs_mount_task(void * arg)1160 zfs_mount_task(void *arg)
1161 {
1162 mnt_param_t *mp = arg;
1163 int idx = mp->mnt_idx;
1164 zfs_handle_t **handles = mp->mnt_zhps;
1165 size_t num_handles = mp->mnt_num_handles;
1166 char mountpoint[ZFS_MAXPROPLEN];
1167
1168 verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint,
1169 sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0);
1170
1171 if (mp->mnt_func(handles[idx], mp->mnt_data) != 0)
1172 goto out;
1173
1174 /*
1175 * We dispatch tasks to mount filesystems with mountpoints underneath
1176 * this one. We do this by dispatching the next filesystem with a
1177 * descendant mountpoint of the one we just mounted, then skip all of
1178 * its descendants, dispatch the next descendant mountpoint, and so on.
1179 * The non_descendant_idx() function skips over filesystems that are
1180 * descendants of the filesystem we just dispatched.
1181 */
1182 for (int i = idx + 1; i < num_handles;
1183 i = non_descendant_idx(handles, num_handles, i)) {
1184 char child[ZFS_MAXPROPLEN];
1185 verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT,
1186 child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1187
1188 if (!libzfs_path_contains(mountpoint, child))
1189 break; /* not a descendant, return */
1190 zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i,
1191 mp->mnt_func, mp->mnt_data, mp->mnt_tq);
1192 }
1193
1194 out:
1195 free(mp);
1196 }
1197
1198 /*
1199 * Issue the func callback for each ZFS handle contained in the handles
1200 * array. This function is used to mount all datasets, and so this function
1201 * guarantees that filesystems for parent mountpoints are called before their
1202 * children. As such, before issuing any callbacks, we first sort the array
1203 * of handles by mountpoint.
1204 *
1205 * Callbacks are issued in one of two ways:
1206 *
1207 * 1. Sequentially: If the nthr argument is <= 1 or the ZFS_SERIAL_MOUNT
1208 * environment variable is set, then we issue callbacks sequentially.
1209 *
1210 * 2. In parallel: If the nthr argument is > 1 and the ZFS_SERIAL_MOUNT
1211 * environment variable is not set, then we use a tpool to dispatch threads
1212 * to mount filesystems in parallel. This function dispatches tasks to mount
1213 * the filesystems at the top-level mountpoints, and these tasks in turn
1214 * are responsible for recursively mounting filesystems in their children
1215 * mountpoints. The value of the nthr argument will be the number of worker
1216 * threads for the thread pool.
1217 */
1218 void
zfs_foreach_mountpoint(libzfs_handle_t * hdl,zfs_handle_t ** handles,size_t num_handles,zfs_iter_f func,void * data,uint_t nthr)1219 zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles,
1220 size_t num_handles, zfs_iter_f func, void *data, uint_t nthr)
1221 {
1222 zoneid_t zoneid = getzoneid();
1223
1224 /*
1225 * The ZFS_SERIAL_MOUNT environment variable is an undocumented
1226 * variable that can be used as a convenience to do a/b comparison
1227 * of serial vs. parallel mounting.
1228 */
1229 boolean_t serial_mount = nthr <= 1 ||
1230 (getenv("ZFS_SERIAL_MOUNT") != NULL);
1231
1232 /*
1233 * Sort the datasets by mountpoint. See mountpoint_cmp for details
1234 * of how these are sorted.
1235 */
1236 qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp);
1237
1238 if (serial_mount) {
1239 for (int i = 0; i < num_handles; i++) {
1240 func(handles[i], data);
1241 }
1242 return;
1243 }
1244
1245 /*
1246 * Issue the callback function for each dataset using a parallel
1247 * algorithm that uses a thread pool to manage threads.
1248 */
1249 taskq_t *tq = taskq_create("zfs_foreach_mountpoint", nthr, minclsyspri,
1250 1, INT_MAX, TASKQ_DYNAMIC);
1251
1252 /*
1253 * There may be multiple "top level" mountpoints outside of the pool's
1254 * root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of
1255 * these.
1256 */
1257 for (int i = 0; i < num_handles;
1258 i = non_descendant_idx(handles, num_handles, i)) {
1259 /*
1260 * Since the mountpoints have been sorted so that the zoned
1261 * filesystems are at the end, a zoned filesystem seen from
1262 * the global zone means that we're done.
1263 */
1264 if (zoneid == GLOBAL_ZONEID &&
1265 zfs_prop_get_int(handles[i], ZFS_PROP_ZONED))
1266 break;
1267 zfs_dispatch_mount(hdl, handles, num_handles, i, func, data,
1268 tq);
1269 }
1270
1271 taskq_wait(tq); /* wait for all scheduled mounts to complete */
1272 taskq_destroy(tq);
1273 }
1274
1275 /*
1276 * Mount and share all datasets within the given pool. This assumes that no
1277 * datasets within the pool are currently mounted. nthr will be number of
1278 * worker threads to use while mounting datasets.
1279 */
1280 int
zpool_enable_datasets(zpool_handle_t * zhp,const char * mntopts,int flags,uint_t nthr)1281 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags,
1282 uint_t nthr)
1283 {
1284 get_all_cb_t cb = { 0 };
1285 mount_state_t ms = { 0 };
1286 zfs_handle_t *zfsp;
1287 int ret = 0;
1288
1289 if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name,
1290 ZFS_TYPE_DATASET)) == NULL)
1291 goto out;
1292
1293 /*
1294 * Gather all non-snapshot datasets within the pool. Start by adding
1295 * the root filesystem for this pool to the list, and then iterate
1296 * over all child filesystems.
1297 */
1298 libzfs_add_handle(&cb, zfsp);
1299 if (zfs_iter_filesystems_v2(zfsp, 0, zfs_iter_cb, &cb) != 0)
1300 goto out;
1301
1302 /*
1303 * Mount all filesystems
1304 */
1305 ms.ms_mntopts = mntopts;
1306 ms.ms_mntflags = flags;
1307 zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1308 zfs_mount_one, &ms, nthr);
1309 if (ms.ms_mntstatus != 0)
1310 ret = EZFS_MOUNTFAILED;
1311
1312 /*
1313 * Share all filesystems that need to be shared. This needs to be
1314 * a separate pass because libshare is not mt-safe, and so we need
1315 * to share serially.
1316 */
1317 ms.ms_mntstatus = 0;
1318 zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1319 zfs_share_one, &ms, 1);
1320 if (ms.ms_mntstatus != 0)
1321 ret = EZFS_SHAREFAILED;
1322 else
1323 zfs_commit_shares(NULL);
1324
1325 out:
1326 for (int i = 0; i < cb.cb_used; i++)
1327 zfs_close(cb.cb_handles[i]);
1328 free(cb.cb_handles);
1329
1330 return (ret);
1331 }
1332
1333 struct sets_s {
1334 char *mountpoint;
1335 zfs_handle_t *dataset;
1336 };
1337
1338 static int
mountpoint_compare(const void * a,const void * b)1339 mountpoint_compare(const void *a, const void *b)
1340 {
1341 const struct sets_s *mounta = (struct sets_s *)a;
1342 const struct sets_s *mountb = (struct sets_s *)b;
1343
1344 return (strcmp(mountb->mountpoint, mounta->mountpoint));
1345 }
1346
1347 /*
1348 * Unshare and unmount all datasets within the given pool. We don't want to
1349 * rely on traversing the DSL to discover the filesystems within the pool,
1350 * because this may be expensive (if not all of them are mounted), and can fail
1351 * arbitrarily (on I/O error, for example). Instead, we walk /proc/self/mounts
1352 * and gather all the filesystems that are currently mounted.
1353 */
1354 int
zpool_disable_datasets(zpool_handle_t * zhp,boolean_t force)1355 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force)
1356 {
1357 int used, alloc;
1358 FILE *mnttab;
1359 struct mnttab entry;
1360 size_t namelen;
1361 struct sets_s *sets = NULL;
1362 libzfs_handle_t *hdl = zhp->zpool_hdl;
1363 int i;
1364 int ret = -1;
1365 int flags = (force ? MS_FORCE : 0);
1366
1367 namelen = strlen(zhp->zpool_name);
1368
1369 if ((mnttab = fopen(MNTTAB, "re")) == NULL)
1370 return (ENOENT);
1371
1372 used = alloc = 0;
1373 while (getmntent(mnttab, &entry) == 0) {
1374 /*
1375 * Ignore non-ZFS entries.
1376 */
1377 if (entry.mnt_fstype == NULL ||
1378 strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
1379 continue;
1380
1381 /*
1382 * Ignore filesystems not within this pool.
1383 */
1384 if (entry.mnt_mountp == NULL ||
1385 strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 ||
1386 (entry.mnt_special[namelen] != '/' &&
1387 entry.mnt_special[namelen] != '\0'))
1388 continue;
1389
1390 /*
1391 * At this point we've found a filesystem within our pool. Add
1392 * it to our growing list.
1393 */
1394 if (used == alloc) {
1395 if (alloc == 0) {
1396 sets = zfs_alloc(hdl,
1397 8 * sizeof (struct sets_s));
1398 alloc = 8;
1399 } else {
1400 sets = zfs_realloc(hdl, sets,
1401 alloc * sizeof (struct sets_s),
1402 alloc * 2 * sizeof (struct sets_s));
1403
1404 alloc *= 2;
1405 }
1406 }
1407
1408 sets[used].mountpoint = zfs_strdup(hdl, entry.mnt_mountp);
1409
1410 /*
1411 * This is allowed to fail, in case there is some I/O error. It
1412 * is only used to determine if we need to remove the underlying
1413 * mountpoint, so failure is not fatal.
1414 */
1415 sets[used].dataset = make_dataset_handle(hdl,
1416 entry.mnt_special);
1417
1418 used++;
1419 }
1420
1421 /*
1422 * At this point, we have the entire list of filesystems, so sort it by
1423 * mountpoint.
1424 */
1425 if (used != 0)
1426 qsort(sets, used, sizeof (struct sets_s), mountpoint_compare);
1427
1428 /*
1429 * Walk through and first unshare everything.
1430 */
1431 for (i = 0; i < used; i++) {
1432 for (enum sa_protocol p = 0; p < SA_PROTOCOL_COUNT; ++p) {
1433 if (sa_is_shared(sets[i].mountpoint, p) &&
1434 unshare_one(hdl, sets[i].mountpoint,
1435 sets[i].mountpoint, p) != 0)
1436 goto out;
1437 }
1438 }
1439 zfs_commit_shares(NULL);
1440
1441 /*
1442 * Now unmount everything, removing the underlying directories as
1443 * appropriate.
1444 */
1445 for (i = 0; i < used; i++) {
1446 if (unmount_one(sets[i].dataset, sets[i].mountpoint,
1447 flags) != 0)
1448 goto out;
1449 }
1450
1451 for (i = 0; i < used; i++) {
1452 if (sets[i].dataset)
1453 remove_mountpoint(sets[i].dataset);
1454 }
1455
1456 zpool_disable_datasets_os(zhp, force);
1457
1458 ret = 0;
1459 out:
1460 (void) fclose(mnttab);
1461 for (i = 0; i < used; i++) {
1462 if (sets[i].dataset)
1463 zfs_close(sets[i].dataset);
1464 free(sets[i].mountpoint);
1465 }
1466 free(sets);
1467
1468 return (ret);
1469 }
1470