1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright 2011 Bayard G. Bell <buffer.g.overflow@gmail.com>.
27 * All rights reserved. Use is subject to license terms.
28 * Copyright 2020 Joyent, Inc.
29 * Copyright 2025 MNX Cloud, Inc.
30 * Copyright 2025 Oxide Computer Company
31 */
32
33 /*
34 * Kernel's linker/loader
35 */
36
37 #include <sys/types.h>
38 #include <sys/param.h>
39 #include <sys/sysmacros.h>
40 #include <sys/systm.h>
41 #include <sys/user.h>
42 #include <sys/kmem.h>
43 #include <sys/reboot.h>
44 #include <sys/bootconf.h>
45 #include <sys/debug.h>
46 #include <sys/uio.h>
47 #include <sys/file.h>
48 #include <sys/vnode.h>
49 #include <sys/user.h>
50 #include <sys/mman.h>
51 #include <vm/as.h>
52 #include <vm/seg_kp.h>
53 #include <vm/seg_kmem.h>
54 #include <sys/elf.h>
55 #include <sys/elf_notes.h>
56 #include <sys/vmsystm.h>
57 #include <sys/kdi.h>
58 #include <sys/atomic.h>
59 #include <sys/kmdb.h>
60
61 #include <sys/link.h>
62 #include <sys/kobj.h>
63 #include <sys/ksyms.h>
64 #include <sys/disp.h>
65 #include <sys/modctl.h>
66 #include <sys/varargs.h>
67 #include <sys/kstat.h>
68 #include <sys/kobj_impl.h>
69 #include <sys/fs/decomp.h>
70 #include <sys/callb.h>
71 #include <sys/cmn_err.h>
72 #include <sys/zmod.h>
73
74 #include <krtld/reloc.h>
75 #include <krtld/kobj_kdi.h>
76 #include <sys/sha1.h>
77 #include <sys/crypto/elfsign.h>
78
79 #if !defined(_OBP)
80 #include <sys/bootvfs.h>
81 #endif
82
83 /*
84 * do_symbols() error codes
85 */
86 #define DOSYM_UNDEF -1 /* undefined symbol */
87 #define DOSYM_UNSAFE -2 /* MT-unsafe driver symbol */
88
89 #if !defined(_OBP)
90 static void synthetic_bootaux(char *, val_t *);
91 #endif
92
93 static struct module *load_exec(val_t *, char *);
94 static void load_linker(val_t *);
95 static struct modctl *add_primary(const char *filename, int);
96 static int bind_primary(val_t *, int);
97 static int load_primary(struct module *, int);
98 static int load_kmdb(val_t *);
99 static int get_progbits(struct module *, struct _buf *);
100 static int get_syms(struct module *, struct _buf *);
101 static int get_ctf(struct module *, struct _buf *);
102 static void get_signature(struct module *, struct _buf *);
103 static int do_common(struct module *);
104 static void add_dependent(struct module *, struct module *);
105 static int do_dependents(struct modctl *, char *, size_t);
106 static int do_symbols(struct module *, Elf64_Addr);
107 static void module_assign(struct modctl *, struct module *);
108 static void free_module_data(struct module *);
109 static char *depends_on(struct module *);
110 static char *getmodpath(const char *);
111 static char *basename(char *);
112 static void attr_val(val_t *);
113 static char *find_libmacro(char *);
114 static char *expand_libmacro(char *, char *, char *);
115 static int read_bootflags(void);
116 static int kobj_comp_setup(struct _buf *, struct compinfo *);
117 static int kobj_uncomp_blk(struct _buf *, caddr_t, uint_t);
118 static int kobj_read_blks(struct _buf *, caddr_t, uint_t, uint_t);
119 static int kobj_boot_open(char *, int);
120 static int kobj_boot_close(int);
121 static int kobj_boot_seek(int, off_t, off_t);
122 static int kobj_boot_read(int, caddr_t, size_t);
123 static int kobj_boot_fstat(int, struct bootstat *);
124 static int kobj_boot_compinfo(int, struct compinfo *);
125
126 static Sym *lookup_one(struct module *, const char *);
127 static void sym_insert(struct module *, char *, symid_t);
128 static Sym *sym_lookup(struct module *, Sym *);
129
130 static struct kobjopen_tctl *kobjopen_alloc(char *filename);
131 static void kobjopen_free(struct kobjopen_tctl *ltp);
132 static void kobjopen_thread(struct kobjopen_tctl *ltp);
133 static int kobj_is_compressed(intptr_t);
134
135 extern int kcopy(const void *, void *, size_t);
136 extern int elf_mach_ok(Ehdr *);
137 extern int alloc_gottable(struct module *, caddr_t *, caddr_t *);
138
139 #if !defined(_OBP)
140 extern int kobj_boot_mountroot(void);
141 #endif
142
143 extern int modrootloaded;
144 extern int swaploaded;
145 extern int bop_io_quiesced;
146 extern int last_module_id;
147
148 extern char stubs_base[];
149 extern char stubs_end[];
150
151 #ifdef KOBJ_DEBUG
152 /*
153 * Values that can be or'd in to kobj_debug and their effects:
154 *
155 * D_DEBUG - misc. debugging information.
156 * D_SYMBOLS - list symbols and their values as they are entered
157 * into the hash table
158 * D_RELOCATIONS - display relocation processing information
159 * D_LOADING - display information about each module as it
160 * is loaded.
161 */
162 int kobj_debug = 0;
163
164 #define KOBJ_MARK(s) if (kobj_debug & D_DEBUG) \
165 (_kobj_printf(ops, "%d", __LINE__), _kobj_printf(ops, ": %s\n", s))
166 #else
167 #define KOBJ_MARK(s) /* discard */
168 #endif
169
170 #define MODPATH_PROPNAME "module-path"
171
172 #ifdef MODDIR_SUFFIX
173 static char slash_moddir_suffix_slash[] = MODDIR_SUFFIX "/";
174 #else
175 #define slash_moddir_suffix_slash ""
176 #endif
177
178 #define _moddebug get_weakish_int(&moddebug)
179 #define _modrootloaded get_weakish_int(&modrootloaded)
180 #define _swaploaded get_weakish_int(&swaploaded)
181 #define _ioquiesced get_weakish_int(&bop_io_quiesced)
182
183 #define mod(X) (struct module *)((X)->modl_modp->mod_mp)
184
185 void *romp; /* rom vector (opaque to us) */
186 struct bootops *ops; /* bootops vector */
187 void *dbvec; /* debug vector */
188
189 /*
190 * kobjopen thread control structure
191 */
192 struct kobjopen_tctl {
193 ksema_t sema;
194 char *name; /* name of file */
195 struct vnode *vp; /* vnode return from vn_open() */
196 int Errno; /* error return from vnopen */
197 };
198
199 /*
200 * Structure for defining dynamically expandable library macros
201 */
202
203 struct lib_macro_info {
204 char *lmi_list; /* ptr to list of possible choices */
205 char *lmi_macroname; /* pointer to macro name */
206 ushort_t lmi_ba_index; /* index into bootaux vector */
207 ushort_t lmi_macrolen; /* macro length */
208 } libmacros[] = {
209 { NULL, "CPU", BA_CPU, 0 },
210 { NULL, "MMU", BA_MMU, 0 }
211 };
212
213 #define NLIBMACROS sizeof (libmacros) / sizeof (struct lib_macro_info)
214
215 char *boot_cpu_compatible_list; /* make $CPU available */
216
217 char *kobj_module_path; /* module search path */
218 vmem_t *text_arena; /* module text arena */
219 static vmem_t *data_arena; /* module data & bss arena */
220 static vmem_t *ctf_arena; /* CTF debug data arena */
221 static struct modctl *kobj_modules = NULL; /* modules loaded */
222 int kobj_mmu_pagesize; /* system pagesize */
223 static int lg_pagesize; /* "large" pagesize */
224 static int kobj_last_module_id = 0; /* id assignment */
225 static kmutex_t kobj_lock; /* protects mach memory list */
226
227 /*
228 * The following functions have been implemented by the kernel.
229 * However, many 3rd party drivers provide their own implementations
230 * of these functions. When such drivers are loaded, messages
231 * indicating that these symbols have been multiply defined will be
232 * emitted to the console. To avoid alarming customers for no good
233 * reason, we simply suppress such warnings for the following set of
234 * functions.
235 */
236 static char *suppress_sym_list[] =
237 {
238 "strstr",
239 "strncat",
240 "strlcat",
241 "strlcpy",
242 "strspn",
243 "memcpy",
244 "memset",
245 "memmove",
246 "memcmp",
247 "memchr",
248 "__udivdi3",
249 "__divdi3",
250 "__umoddi3",
251 "__moddi3",
252 NULL /* This entry must exist */
253 };
254
255 /* indexed by KOBJ_NOTIFY_* */
256 static kobj_notify_list_t *kobj_notifiers[KOBJ_NOTIFY_MAX + 1];
257
258 /*
259 * Prefix for statically defined tracing (SDT) DTrace probes.
260 */
261 const char *sdt_prefix = "__dtrace_probe_";
262
263 /*
264 * Beginning and end of the kernel's dynamic text/data segments.
265 */
266 static caddr_t _text;
267 static caddr_t _etext;
268 static caddr_t _data;
269
270 /*
271 * The sparc linker doesn't create a memory location
272 * for a variable named _edata, so _edata can only be
273 * referred to, not modified. krtld needs a static
274 * variable to modify it - within krtld, of course -
275 * outside of krtld, e_data is used in all kernels.
276 */
277 #if defined(__sparc)
278 static caddr_t _edata;
279 #else
280 extern caddr_t _edata;
281 #endif
282
283 Addr dynseg = 0; /* load address of "dynamic" segment */
284 size_t dynsize; /* "dynamic" segment size */
285
286
287 int standalone = 1; /* an unwholey kernel? */
288 int use_iflush; /* iflush after relocations */
289
290 /*
291 * _kobj_printf() and _vkobj_printf()
292 *
293 * Common printf function pointer. Can handle only one conversion
294 * specification in the format string. Some of the functions invoked
295 * through this function pointer cannot handle more that one conversion
296 * specification in the format string.
297 */
298 void (*_kobj_printf)(void *, const char *, ...) __KPRINTFLIKE(2);
299 void (*_vkobj_printf)(void *, const char *, va_list) __KVPRINTFLIKE(2);
300
301 /*
302 * Standalone function pointers for use within krtld.
303 * Many platforms implement optimized platmod versions of
304 * utilities such as bcopy and any such are not yet available
305 * until the kernel is more completely stitched together.
306 * See kobj_impl.h
307 */
308 void (*kobj_bcopy)(const void *, void *, size_t);
309 void (*kobj_bzero)(void *, size_t);
310 size_t (*kobj_strlcat)(char *, const char *, size_t);
311
312 static kobj_stat_t kobj_stat;
313
314 #define MINALIGN 8 /* at least a double-word */
315
316 int
get_weakish_int(int * ip)317 get_weakish_int(int *ip)
318 {
319 if (standalone)
320 return (0);
321 return (ip == NULL ? 0 : *ip);
322 }
323
324 static void *
get_weakish_pointer(void ** ptrp)325 get_weakish_pointer(void **ptrp)
326 {
327 if (standalone)
328 return (0);
329 return (ptrp == NULL ? 0 : *ptrp);
330 }
331
332 /*
333 * XXX fix dependencies on "kernel"; this should work
334 * for other standalone binaries as well.
335 *
336 * XXX Fix hashing code to use one pointer to
337 * hash entries.
338 * |----------|
339 * | nbuckets |
340 * |----------|
341 * | nchains |
342 * |----------|
343 * | bucket[] |
344 * |----------|
345 * | chain[] |
346 * |----------|
347 */
348
349 /*
350 * Load, bind and relocate all modules that
351 * form the primary kernel. At this point, our
352 * externals have not been relocated.
353 */
354 void
kobj_init(void * romvec,void * dvec,struct bootops * bootvec,val_t * bootaux)355 kobj_init(
356 void *romvec,
357 void *dvec,
358 struct bootops *bootvec,
359 val_t *bootaux)
360 {
361 struct module *mp;
362 struct modctl *modp;
363 Addr entry;
364 char filename[MAXPATHLEN];
365
366 /*
367 * Save these to pass on to
368 * the booted standalone.
369 */
370 romp = romvec;
371 dbvec = dvec;
372
373 ops = bootvec;
374 kobj_setup_standalone_vectors();
375
376 KOBJ_MARK("Entered kobj_init()");
377
378 (void) BOP_GETPROP(ops, "whoami", filename);
379
380 /*
381 * We don't support standalone debuggers anymore. The use of kadb
382 * will interfere with the later use of kmdb. Let the user mend
383 * their ways now. Users will reach this message if they still
384 * have the kadb binary on their system (perhaps they used an old
385 * bfu, or maybe they intentionally copied it there) and have
386 * specified its use in a way that eluded our checking in the boot
387 * program.
388 */
389 if (dvec != NULL) {
390 _kobj_printf(ops, "\nWARNING: Standalone debuggers such as "
391 "kadb are no longer supported\n\n");
392 goto fail;
393 }
394
395 #if defined(_OBP)
396 /*
397 * OBP allows us to read both the ramdisk and
398 * the underlying root fs when root is a disk.
399 * This can lower incidences of unbootable systems
400 * when the archive is out-of-date with the /etc
401 * state files.
402 */
403 if (BOP_MOUNTROOT() != BOOT_SVC_OK) {
404 _kobj_printf(ops, "can't mount boot fs\n");
405 goto fail;
406 }
407 #else
408 /* on x86, we always boot with a ramdisk */
409 if (kobj_boot_mountroot() != 0) {
410 goto fail;
411 }
412
413 /*
414 * Now that the ramdisk is mounted, finish boot property
415 * initialization.
416 */
417 read_bootenvrc();
418
419 #if !defined(_UNIX_KRTLD)
420 /*
421 * 'unix' is linked together with 'krtld' into one executable and
422 * the early boot code does -not- hand us any of the dynamic metadata
423 * about the executable. In particular, it does not read in, map or
424 * otherwise look at the program headers. We fake all that up now.
425 *
426 * We do this early as DTrace static probes call undefined references.
427 * We have to process those relocations before calling any of them.
428 *
429 * OBP tells kobj_start() where the ELF image is in memory, so it
430 * synthesized bootaux before kobj_init() was called
431 */
432 if (bootaux[BA_PHDR].ba_ptr == NULL)
433 synthetic_bootaux(filename, bootaux);
434
435 #endif /* !_UNIX_KRTLD */
436 #endif /* _OBP */
437
438 /*
439 * Save the interesting attribute-values
440 * (scanned by kobj_boot).
441 */
442 attr_val(bootaux);
443
444 /*
445 * Set the module search path.
446 */
447 kobj_module_path = getmodpath(filename);
448
449 boot_cpu_compatible_list = find_libmacro("CPU");
450
451 /*
452 * These two modules have actually been
453 * loaded by boot, but we finish the job
454 * by introducing them into the world of
455 * loadable modules.
456 */
457
458 mp = load_exec(bootaux, filename);
459 load_linker(bootaux);
460
461 /*
462 * Load all the primary dependent modules.
463 */
464 if (load_primary(mp, KOBJ_LM_PRIMARY) == -1)
465 goto fail;
466
467 /*
468 * Glue it together.
469 */
470 if (bind_primary(bootaux, KOBJ_LM_PRIMARY) == -1)
471 goto fail;
472
473 entry = bootaux[BA_ENTRY].ba_val;
474
475 /*
476 * Get the boot flags
477 */
478 bootflags(ops);
479
480 if (boothowto & RB_VERBOSE)
481 kobj_lm_dump(KOBJ_LM_PRIMARY);
482
483 kobj_kdi_init();
484
485 if (boothowto & RB_KMDB) {
486 if (load_kmdb(bootaux) < 0)
487 goto fail;
488 }
489
490 /*
491 * Post setup.
492 */
493 s_text = _text;
494 e_text = _etext;
495 s_data = _data;
496 e_data = _edata;
497
498 kobj_sync_instruction_memory(s_text, e_text - s_text);
499
500 #ifdef KOBJ_DEBUG
501 if (kobj_debug & D_DEBUG)
502 _kobj_printf(ops,
503 "krtld: transferring control to: 0x%lx\n", entry);
504 #endif
505
506 /*
507 * Make sure the mod system knows about the modules already loaded.
508 */
509 last_module_id = kobj_last_module_id;
510 bcopy(kobj_modules, &modules, sizeof (modules));
511 modp = &modules;
512 do {
513 if (modp->mod_next == kobj_modules)
514 modp->mod_next = &modules;
515 if (modp->mod_prev == kobj_modules)
516 modp->mod_prev = &modules;
517 } while ((modp = modp->mod_next) != &modules);
518
519 standalone = 0;
520
521 #ifdef KOBJ_DEBUG
522 if (kobj_debug & D_DEBUG)
523 _kobj_printf(ops,
524 "krtld: really transferring control to: 0x%lx\n", entry);
525 #endif
526
527 /* restore printf/bcopy/bzero vectors before returning */
528 kobj_restore_vectors();
529
530 #if defined(_DBOOT)
531 /*
532 * krtld was called from a dboot ELF section, the embedded
533 * dboot code contains the real entry via bootaux
534 */
535 exitto((caddr_t)entry);
536 #else
537 /*
538 * krtld was directly called from startup
539 */
540 return;
541 #endif
542
543 fail:
544
545 _kobj_printf(ops, "krtld: error during initial load/link phase\n");
546
547 #if !defined(_UNIX_KRTLD)
548 _kobj_printf(ops, "\n");
549 _kobj_printf(ops, "krtld could neither locate nor resolve symbols"
550 " for:\n");
551 _kobj_printf(ops, " %s\n", filename);
552 _kobj_printf(ops, "in the boot archive. Please verify that this"
553 " file\n");
554 _kobj_printf(ops, "matches what is found in the boot archive.\n");
555 _kobj_printf(ops, "You may need to boot using the Solaris failsafe to"
556 " fix this.\n");
557 bop_panic("Unable to boot");
558 #endif
559 }
560
561 #if !defined(_UNIX_KRTLD) && !defined(_OBP)
562 /*
563 * Synthesize additional metadata that describes the executable if
564 * krtld's caller didn't do it.
565 *
566 * (When the dynamic executable has an interpreter, the boot program
567 * does all this for us. Where we don't have an interpreter, (or a
568 * even a boot program, perhaps) we have to do this for ourselves.)
569 */
570 static void
synthetic_bootaux(char * filename,val_t * bootaux)571 synthetic_bootaux(char *filename, val_t *bootaux)
572 {
573 Ehdr ehdr;
574 caddr_t phdrbase;
575 struct _buf *file;
576 int i, n;
577
578 /*
579 * Elf header
580 */
581 KOBJ_MARK("synthetic_bootaux()");
582 KOBJ_MARK(filename);
583 file = kobj_open_file(filename);
584 if (file == (struct _buf *)-1) {
585 _kobj_printf(ops, "krtld: failed to open '%s'\n", filename);
586 return;
587 }
588 KOBJ_MARK("reading program headers");
589 if (kobj_read_file(file, (char *)&ehdr, sizeof (ehdr), 0) < 0) {
590 _kobj_printf(ops, "krtld: %s: failed to read ehder\n",
591 filename);
592 return;
593 }
594
595 /*
596 * Program headers
597 */
598 bootaux[BA_PHNUM].ba_val = ehdr.e_phnum;
599 bootaux[BA_PHENT].ba_val = ehdr.e_phentsize;
600 n = ehdr.e_phentsize * ehdr.e_phnum;
601
602 phdrbase = kobj_alloc(n, KM_WAIT | KM_TMP);
603
604 if (kobj_read_file(file, phdrbase, n, ehdr.e_phoff) < 0) {
605 _kobj_printf(ops, "krtld: %s: failed to read phdrs\n",
606 filename);
607 return;
608 }
609 bootaux[BA_PHDR].ba_ptr = phdrbase;
610 kobj_close_file(file);
611 KOBJ_MARK("closed file");
612
613 /*
614 * Find the dynamic section address
615 */
616 for (i = 0; i < ehdr.e_phnum; i++) {
617 Phdr *phdr = (Phdr *)(phdrbase + ehdr.e_phentsize * i);
618
619 if (phdr->p_type == PT_DYNAMIC) {
620 bootaux[BA_DYNAMIC].ba_ptr = (void *)phdr->p_vaddr;
621 break;
622 }
623 }
624 KOBJ_MARK("synthetic_bootaux() done");
625 }
626 #endif /* !_UNIX_KRTLD && !_OBP */
627
628 /*
629 * Set up any global information derived
630 * from attribute/values in the boot or
631 * aux vector.
632 */
633 static void
attr_val(val_t * bootaux)634 attr_val(val_t *bootaux)
635 {
636 Phdr *phdr;
637 int phnum, phsize;
638 int i;
639
640 KOBJ_MARK("attr_val()");
641 kobj_mmu_pagesize = bootaux[BA_PAGESZ].ba_val;
642 lg_pagesize = bootaux[BA_LPAGESZ].ba_val;
643 use_iflush = bootaux[BA_IFLUSH].ba_val;
644
645 phdr = (Phdr *)bootaux[BA_PHDR].ba_ptr;
646 phnum = bootaux[BA_PHNUM].ba_val;
647 phsize = bootaux[BA_PHENT].ba_val;
648 for (i = 0; i < phnum; i++) {
649 phdr = (Phdr *)(bootaux[BA_PHDR].ba_val + i * phsize);
650
651 if (phdr->p_type != PT_LOAD) {
652 continue;
653 }
654 /*
655 * Bounds of the various segments.
656 */
657 if (!(phdr->p_flags & PF_X)) {
658 #if defined(_RELSEG)
659 /*
660 * sparc kernel puts the dynamic info
661 * into a separate segment, which is
662 * free'd in bop_fini()
663 */
664 ASSERT(phdr->p_vaddr != 0);
665 dynseg = phdr->p_vaddr;
666 dynsize = phdr->p_memsz;
667 #else
668 ASSERT(phdr->p_vaddr == 0);
669 #endif
670 } else {
671 if (phdr->p_flags & PF_W) {
672 _data = (caddr_t)phdr->p_vaddr;
673 _edata = _data + phdr->p_memsz;
674 } else {
675 _text = (caddr_t)phdr->p_vaddr;
676 _etext = _text + phdr->p_memsz;
677 }
678 }
679 }
680
681 /* To do the kobj_alloc, _edata needs to be set. */
682 for (i = 0; i < NLIBMACROS; i++) {
683 if (bootaux[libmacros[i].lmi_ba_index].ba_ptr != NULL) {
684 libmacros[i].lmi_list = kobj_alloc(
685 strlen(bootaux[libmacros[i].lmi_ba_index].ba_ptr) +
686 1, KM_WAIT);
687 (void) strcpy(libmacros[i].lmi_list,
688 bootaux[libmacros[i].lmi_ba_index].ba_ptr);
689 }
690 libmacros[i].lmi_macrolen = strlen(libmacros[i].lmi_macroname);
691 }
692 }
693
694 /*
695 * Set up the booted executable.
696 */
697 static struct module *
load_exec(val_t * bootaux,char * filename)698 load_exec(val_t *bootaux, char *filename)
699 {
700 struct modctl *cp;
701 struct module *mp;
702 Dyn *dyn;
703 Sym *sp;
704 int i, lsize, osize, nsize, allocsize;
705 char *libname, *tmp;
706 char path[MAXPATHLEN];
707
708 #ifdef KOBJ_DEBUG
709 if (kobj_debug & D_DEBUG)
710 _kobj_printf(ops, "module path '%s'\n", kobj_module_path);
711 #endif
712
713 KOBJ_MARK("add_primary");
714 cp = add_primary(filename, KOBJ_LM_PRIMARY);
715
716 KOBJ_MARK("struct module");
717 mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
718 cp->mod_mp = mp;
719
720 /*
721 * We don't have the following information
722 * since this module is an executable and not
723 * a relocatable .o.
724 */
725 mp->symtbl_section = 0;
726 mp->shdrs = NULL;
727 mp->strhdr = NULL;
728
729 /*
730 * Since this module is the only exception,
731 * we cons up some section headers.
732 */
733 KOBJ_MARK("symhdr");
734 mp->symhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
735
736 KOBJ_MARK("strhdr");
737 mp->strhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
738
739 mp->symhdr->sh_type = SHT_SYMTAB;
740 mp->strhdr->sh_type = SHT_STRTAB;
741 /*
742 * Scan the dynamic structure.
743 */
744 for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
745 dyn->d_tag != DT_NULL; dyn++) {
746 switch (dyn->d_tag) {
747 case DT_SYMTAB:
748 mp->symspace = mp->symtbl = (char *)dyn->d_un.d_ptr;
749 mp->symhdr->sh_addr = dyn->d_un.d_ptr;
750 break;
751 case DT_HASH:
752 mp->nsyms = *((uint_t *)dyn->d_un.d_ptr + 1);
753 mp->hashsize = *(uint_t *)dyn->d_un.d_ptr;
754 break;
755 case DT_STRTAB:
756 mp->strings = (char *)dyn->d_un.d_ptr;
757 mp->strhdr->sh_addr = dyn->d_un.d_ptr;
758 break;
759 case DT_STRSZ:
760 mp->strhdr->sh_size = dyn->d_un.d_val;
761 break;
762 case DT_SYMENT:
763 mp->symhdr->sh_entsize = dyn->d_un.d_val;
764 break;
765 }
766 }
767
768 /*
769 * Collapse any DT_NEEDED entries into one string.
770 */
771 nsize = osize = 0;
772 allocsize = MAXPATHLEN;
773
774 KOBJ_MARK("depends_on");
775 mp->depends_on = kobj_alloc(allocsize, KM_WAIT);
776
777 for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
778 dyn->d_tag != DT_NULL; dyn++)
779 if (dyn->d_tag == DT_NEEDED) {
780 char *_lib;
781
782 libname = mp->strings + dyn->d_un.d_val;
783 if (strchr(libname, '$') != NULL) {
784 if ((_lib = expand_libmacro(libname,
785 path, path)) != NULL)
786 libname = _lib;
787 else
788 _kobj_printf(ops, "krtld: "
789 "load_exec: fail to "
790 "expand %s\n", libname);
791 }
792 lsize = strlen(libname);
793 nsize += lsize;
794 if (nsize + 1 > allocsize) {
795 KOBJ_MARK("grow depends_on");
796 tmp = kobj_alloc(allocsize + MAXPATHLEN,
797 KM_WAIT);
798 bcopy(mp->depends_on, tmp, osize);
799 kobj_free(mp->depends_on, allocsize);
800 mp->depends_on = tmp;
801 allocsize += MAXPATHLEN;
802 }
803 bcopy(libname, mp->depends_on + osize, lsize);
804 *(mp->depends_on + nsize) = ' '; /* separate */
805 nsize++;
806 osize = nsize;
807 }
808 if (nsize) {
809 mp->depends_on[nsize - 1] = '\0'; /* terminate the string */
810 /*
811 * alloc with exact size and copy whatever it got over
812 */
813 KOBJ_MARK("realloc depends_on");
814 tmp = kobj_alloc(nsize, KM_WAIT);
815 bcopy(mp->depends_on, tmp, nsize);
816 kobj_free(mp->depends_on, allocsize);
817 mp->depends_on = tmp;
818 } else {
819 kobj_free(mp->depends_on, allocsize);
820 mp->depends_on = NULL;
821 }
822
823 mp->flags = KOBJ_EXEC|KOBJ_PRIM; /* NOT a relocatable .o */
824 mp->symhdr->sh_size = mp->nsyms * mp->symhdr->sh_entsize;
825 /*
826 * We allocate our own table since we don't
827 * hash undefined references.
828 */
829 KOBJ_MARK("chains");
830 mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
831 KOBJ_MARK("buckets");
832 mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
833
834 mp->text = _text;
835 mp->data = _data;
836
837 mp->text_size = _etext - _text;
838 mp->data_size = _edata - _data;
839
840 cp->mod_text = mp->text;
841 cp->mod_text_size = mp->text_size;
842
843 mp->filename = cp->mod_filename;
844
845 #ifdef KOBJ_DEBUG
846 if (kobj_debug & D_LOADING) {
847 _kobj_printf(ops, "krtld: file=%s\n", mp->filename);
848 _kobj_printf(ops, "\ttext: 0x%p", mp->text);
849 _kobj_printf(ops, " size: 0x%lx\n", mp->text_size);
850 _kobj_printf(ops, "\tdata: 0x%p", mp->data);
851 _kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size);
852 }
853 #endif /* KOBJ_DEBUG */
854
855 /*
856 * Insert symbols into the hash table.
857 */
858 for (i = 0; i < mp->nsyms; i++) {
859 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
860
861 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
862 continue;
863 #if defined(__sparc)
864 /*
865 * Register symbols are ignored in the kernel
866 */
867 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER)
868 continue;
869 #endif /* __sparc */
870
871 sym_insert(mp, mp->strings + sp->st_name, i);
872 }
873
874 KOBJ_MARK("load_exec done");
875 return (mp);
876 }
877
878 static boolean_t
is_extended_ehdr(const Ehdr * hdr)879 is_extended_ehdr(const Ehdr *hdr)
880 {
881 /*
882 * If any of e_shnum, e_shstrndx, or e_phnum are at their sentinel
883 * value, this indicates that an extended ELF header is in use. That
884 * means that one or more of these values is too large to fit in the
885 * elf header and the true values for those are in the first section
886 * header.
887 */
888 return ((hdr->e_shnum == 0 && hdr->e_shoff != 0) ||
889 hdr->e_phnum == PN_XNUM || hdr->e_shstrndx == SHN_XINDEX);
890 }
891
892 /*
893 * Set up the linker module (if it's compiled in, LDNAME is NULL)
894 */
895 static void
load_linker(val_t * bootaux)896 load_linker(val_t *bootaux)
897 {
898 struct module *kmp = (struct module *)kobj_modules->mod_mp;
899 struct module *mp;
900 struct modctl *cp;
901 int i;
902 Shdr *shp;
903 Sym *sp;
904 int shsize;
905 char *dlname = (char *)bootaux[BA_LDNAME].ba_ptr;
906 Ehdr *ehdr = (Ehdr *)bootaux[BA_LDELF].ba_ptr;
907
908 /*
909 * On some architectures, krtld is compiled into the kernel.
910 */
911 if (dlname == NULL)
912 return;
913
914 /*
915 * We don't support loading the linker from an ELF object which uses an
916 * extended header. That's identified by looking for sentinel values in
917 * selected header fields.
918 */
919 if (is_extended_ehdr(ehdr)) {
920 bop_panic(
921 "linker %s has an extended ELF header; unable to load.",
922 dlname);
923 }
924
925 cp = add_primary(dlname, KOBJ_LM_PRIMARY);
926
927 mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
928
929 cp->mod_mp = mp;
930 mp->hdr = *ehdr;
931 mp->shnum = mp->hdr.e_shnum;
932 mp->phnum = mp->hdr.e_phnum;
933 mp->shstrndx = mp->hdr.e_shstrndx;
934 shsize = mp->hdr.e_shentsize * mp->shnum;
935 mp->shdrs = kobj_alloc(shsize, KM_WAIT);
936 bcopy(bootaux[BA_LDSHDR].ba_ptr, mp->shdrs, shsize);
937
938 for (i = 1; i < (int)mp->shnum; i++) {
939 shp = (Shdr *)(mp->shdrs + (i * mp->hdr.e_shentsize));
940
941 if (shp->sh_flags & SHF_ALLOC) {
942 if (shp->sh_flags & SHF_WRITE) {
943 if (mp->data == NULL)
944 mp->data = (char *)shp->sh_addr;
945 } else if (mp->text == NULL) {
946 mp->text = (char *)shp->sh_addr;
947 }
948 }
949 if (shp->sh_type == SHT_SYMTAB) {
950 mp->symtbl_section = i;
951 mp->symhdr = shp;
952 mp->symspace = mp->symtbl = (char *)shp->sh_addr;
953 }
954 }
955 mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
956 mp->flags = KOBJ_INTERP|KOBJ_PRIM;
957 mp->strhdr = (Shdr *)
958 (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
959 mp->strings = (char *)mp->strhdr->sh_addr;
960 mp->hashsize = kobj_gethashsize(mp->nsyms);
961
962 mp->symsize = mp->symhdr->sh_size + mp->strhdr->sh_size + sizeof (int) +
963 (mp->hashsize + mp->nsyms) * sizeof (symid_t);
964
965 mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
966 mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
967
968 mp->bss = bootaux[BA_BSS].ba_val;
969 mp->bss_align = 0; /* pre-aligned during allocation */
970 mp->bss_size = (uintptr_t)_edata - mp->bss;
971 mp->text_size = _etext - mp->text;
972 mp->data_size = _edata - mp->data;
973 mp->filename = cp->mod_filename;
974 cp->mod_text = mp->text;
975 cp->mod_text_size = mp->text_size;
976
977 /*
978 * Now that we've figured out where the linker is,
979 * set the limits for the booted object.
980 */
981 kmp->text_size = (size_t)(mp->text - kmp->text);
982 kmp->data_size = (size_t)(mp->data - kmp->data);
983 kobj_modules->mod_text_size = kmp->text_size;
984
985 #ifdef KOBJ_DEBUG
986 if (kobj_debug & D_LOADING) {
987 _kobj_printf(ops, "krtld: file=%s\n", mp->filename);
988 _kobj_printf(ops, "\ttext:0x%p", mp->text);
989 _kobj_printf(ops, " size: 0x%lx\n", mp->text_size);
990 _kobj_printf(ops, "\tdata:0x%p", mp->data);
991 _kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size);
992 }
993 #endif /* KOBJ_DEBUG */
994
995 /*
996 * Insert the symbols into the hash table.
997 */
998 for (i = 0; i < mp->nsyms; i++) {
999 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
1000
1001 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
1002 continue;
1003 if (ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
1004 if (sp->st_shndx == SHN_COMMON)
1005 sp->st_shndx = SHN_ABS;
1006 }
1007 sym_insert(mp, mp->strings + sp->st_name, i);
1008 }
1009
1010 }
1011
1012 static kobj_notify_list_t **
kobj_notify_lookup(uint_t type)1013 kobj_notify_lookup(uint_t type)
1014 {
1015 ASSERT(type != 0 && type < sizeof (kobj_notifiers) /
1016 sizeof (kobj_notify_list_t *));
1017
1018 return (&kobj_notifiers[type]);
1019 }
1020
1021 int
kobj_notify_add(kobj_notify_list_t * knp)1022 kobj_notify_add(kobj_notify_list_t *knp)
1023 {
1024 kobj_notify_list_t **knl;
1025
1026 knl = kobj_notify_lookup(knp->kn_type);
1027
1028 knp->kn_next = NULL;
1029 knp->kn_prev = NULL;
1030
1031 mutex_enter(&kobj_lock);
1032
1033 if (*knl != NULL) {
1034 (*knl)->kn_prev = knp;
1035 knp->kn_next = *knl;
1036 }
1037 (*knl) = knp;
1038
1039 mutex_exit(&kobj_lock);
1040 return (0);
1041 }
1042
1043 int
kobj_notify_remove(kobj_notify_list_t * knp)1044 kobj_notify_remove(kobj_notify_list_t *knp)
1045 {
1046 kobj_notify_list_t **knl = kobj_notify_lookup(knp->kn_type);
1047 kobj_notify_list_t *tknp;
1048
1049 mutex_enter(&kobj_lock);
1050
1051 if ((tknp = knp->kn_next) != NULL)
1052 tknp->kn_prev = knp->kn_prev;
1053
1054 if ((tknp = knp->kn_prev) != NULL)
1055 tknp->kn_next = knp->kn_next;
1056 else
1057 *knl = knp->kn_next;
1058
1059 mutex_exit(&kobj_lock);
1060
1061 return (0);
1062 }
1063
1064 /*
1065 * Notify all interested callbacks of a specified change in module state.
1066 */
1067 static void
kobj_notify(int type,struct modctl * modp)1068 kobj_notify(int type, struct modctl *modp)
1069 {
1070 kobj_notify_list_t *knp;
1071
1072 if (modp->mod_loadflags & MOD_NONOTIFY || standalone)
1073 return;
1074
1075 mutex_enter(&kobj_lock);
1076
1077 for (knp = *(kobj_notify_lookup(type)); knp != NULL; knp = knp->kn_next)
1078 knp->kn_func(type, modp);
1079
1080 /*
1081 * KDI notification must be last (it has to allow for work done by the
1082 * other notification callbacks), so we call it manually.
1083 */
1084 kobj_kdi_mod_notify(type, modp);
1085
1086 mutex_exit(&kobj_lock);
1087 }
1088
1089 /*
1090 * Create the module path.
1091 */
1092 static char *
getmodpath(const char * filename)1093 getmodpath(const char *filename)
1094 {
1095 char *path = kobj_zalloc(MAXPATHLEN, KM_WAIT);
1096
1097 /*
1098 * Platform code gets first crack, then add
1099 * the default components
1100 */
1101 mach_modpath(path, filename);
1102 if (*path != '\0')
1103 (void) strcat(path, " ");
1104 return (strcat(path, MOD_DEFPATH));
1105 }
1106
1107 static struct modctl *
add_primary(const char * filename,int lmid)1108 add_primary(const char *filename, int lmid)
1109 {
1110 struct modctl *cp;
1111
1112 cp = kobj_zalloc(sizeof (struct modctl), KM_WAIT);
1113
1114 cp->mod_filename = kobj_alloc(strlen(filename) + 1, KM_WAIT);
1115
1116 /*
1117 * For symbol lookup, we assemble our own
1118 * modctl list of the primary modules.
1119 */
1120
1121 (void) strcpy(cp->mod_filename, filename);
1122 cp->mod_modname = basename(cp->mod_filename);
1123
1124 /* set values for modinfo assuming that the load will work */
1125 cp->mod_prim = 1;
1126 cp->mod_loaded = 1;
1127 cp->mod_installed = 1;
1128 cp->mod_loadcnt = 1;
1129 cp->mod_loadflags = MOD_NOAUTOUNLOAD;
1130
1131 cp->mod_id = kobj_last_module_id++;
1132
1133 /*
1134 * Link the module in. We'll pass this info on
1135 * to the mod squad later.
1136 */
1137 if (kobj_modules == NULL) {
1138 kobj_modules = cp;
1139 cp->mod_prev = cp->mod_next = cp;
1140 } else {
1141 cp->mod_prev = kobj_modules->mod_prev;
1142 cp->mod_next = kobj_modules;
1143 kobj_modules->mod_prev->mod_next = cp;
1144 kobj_modules->mod_prev = cp;
1145 }
1146
1147 kobj_lm_append(lmid, cp);
1148
1149 return (cp);
1150 }
1151
1152 static int
kobj_load_elfhdr(struct _buf * file,struct module * mp)1153 kobj_load_elfhdr(struct _buf *file, struct module *mp)
1154 {
1155 if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) {
1156 _kobj_printf(ops, "kobj_load_elfhdr: %s read header failed\n",
1157 mp->filename);
1158 return (-1);
1159 }
1160
1161 mp->shnum = mp->hdr.e_shnum;
1162 mp->shstrndx = mp->hdr.e_shstrndx;
1163 mp->phnum = mp->hdr.e_phnum;
1164
1165 /*
1166 * If there is an extended ELF header we need to read in the first
1167 * section header to access the values for fields that don't fit in
1168 * the standard header.
1169 */
1170 if (is_extended_ehdr(&mp->hdr)) {
1171 Shdr hdr0;
1172
1173 if (mp->hdr.e_shoff == 0 ||
1174 kobj_read_file(file, (char *)&hdr0, sizeof (hdr0),
1175 mp->hdr.e_shoff) < 0) {
1176 _kobj_printf(ops,
1177 "kobj_load_elfhdr: %s read ext header failed\n",
1178 mp->filename);
1179 return (-1);
1180 }
1181
1182 if (mp->shnum == 0)
1183 mp->shnum = hdr0.sh_size;
1184 if (mp->shstrndx == SHN_XINDEX)
1185 mp->shstrndx = hdr0.sh_link;
1186 if (mp->phnum == PN_XNUM && hdr0.sh_info != 0)
1187 mp->phnum = hdr0.sh_info;
1188 }
1189
1190 return (0);
1191 }
1192
1193 static int
bind_primary(val_t * bootaux,int lmid)1194 bind_primary(val_t *bootaux, int lmid)
1195 {
1196 struct modctl_list *linkmap = kobj_lm_lookup(lmid);
1197 struct modctl_list *lp;
1198 struct module *mp;
1199
1200 /*
1201 * Do common symbols.
1202 */
1203 for (lp = linkmap; lp; lp = lp->modl_next) {
1204 mp = mod(lp);
1205
1206 /*
1207 * Don't do common section relocations for modules that
1208 * don't need it.
1209 */
1210 if (mp->flags & (KOBJ_EXEC|KOBJ_INTERP))
1211 continue;
1212
1213 if (do_common(mp) < 0)
1214 return (-1);
1215 }
1216
1217 /*
1218 * Resolve symbols.
1219 */
1220 for (lp = linkmap; lp; lp = lp->modl_next) {
1221 mp = mod(lp);
1222
1223 if (do_symbols(mp, 0) < 0)
1224 return (-1);
1225 }
1226
1227 /*
1228 * Do relocations.
1229 */
1230 for (lp = linkmap; lp; lp = lp->modl_next) {
1231 mp = mod(lp);
1232
1233 if (mp->flags & KOBJ_EXEC) {
1234 Dyn *dyn;
1235 Word relasz = 0, relaent = 0;
1236 char *rela = NULL;
1237
1238 for (dyn = (Dyn *)bootaux[BA_DYNAMIC].ba_ptr;
1239 dyn->d_tag != DT_NULL; dyn++) {
1240 switch (dyn->d_tag) {
1241 case DT_RELASZ:
1242 case DT_RELSZ:
1243 relasz = dyn->d_un.d_val;
1244 break;
1245 case DT_RELAENT:
1246 case DT_RELENT:
1247 relaent = dyn->d_un.d_val;
1248 break;
1249 case DT_RELA:
1250 rela = (char *)dyn->d_un.d_ptr;
1251 break;
1252 case DT_REL:
1253 rela = (char *)dyn->d_un.d_ptr;
1254 break;
1255 }
1256 }
1257 if (relasz == 0 ||
1258 relaent == 0 || rela == NULL) {
1259 _kobj_printf(ops, "krtld: bind_primary(): "
1260 "no relocation information found for "
1261 "module %s\n", mp->filename);
1262 return (-1);
1263 }
1264 #ifdef KOBJ_DEBUG
1265 if (kobj_debug & D_RELOCATIONS)
1266 _kobj_printf(ops, "krtld: relocating: file=%s "
1267 "KOBJ_EXEC\n", mp->filename);
1268 #endif
1269 if (do_relocate(mp, rela, relasz/relaent, relaent,
1270 (Addr)mp->text) < 0)
1271 return (-1);
1272 } else {
1273 if (do_relocations(mp) < 0)
1274 return (-1);
1275 }
1276
1277 kobj_sync_instruction_memory(mp->text, mp->text_size);
1278 }
1279
1280 for (lp = linkmap; lp; lp = lp->modl_next) {
1281 mp = mod(lp);
1282
1283 /*
1284 * We need to re-read the full symbol table for the boot file,
1285 * since we couldn't use the full one before. We also need to
1286 * load the CTF sections of both the boot file and the
1287 * interpreter (us).
1288 */
1289 if (mp->flags & KOBJ_EXEC) {
1290 struct _buf *file;
1291 int n;
1292
1293 file = kobj_open_file(mp->filename);
1294 if (file == (struct _buf *)-1)
1295 return (-1);
1296 if (kobj_load_elfhdr(file, mp) < 0)
1297 return (-1);
1298 n = mp->hdr.e_shentsize * mp->shnum;
1299 mp->shdrs = kobj_alloc(n, KM_WAIT);
1300 if (kobj_read_file(file, mp->shdrs, n,
1301 mp->hdr.e_shoff) < 0)
1302 return (-1);
1303 if (get_syms(mp, file) < 0)
1304 return (-1);
1305 if (get_ctf(mp, file) < 0)
1306 return (-1);
1307 kobj_close_file(file);
1308 mp->flags |= KOBJ_RELOCATED;
1309
1310 } else if (mp->flags & KOBJ_INTERP) {
1311 struct _buf *file;
1312
1313 /*
1314 * The interpreter path fragment in mp->filename
1315 * will already have the module directory suffix
1316 * in it (if appropriate).
1317 */
1318 file = kobj_open_path(mp->filename, 1, 0);
1319 if (file == (struct _buf *)-1)
1320 return (-1);
1321 if (get_ctf(mp, file) < 0)
1322 return (-1);
1323 kobj_close_file(file);
1324 mp->flags |= KOBJ_RELOCATED;
1325 }
1326 }
1327
1328 return (0);
1329 }
1330
1331 static struct modctl *
mod_already_loaded(char * modname)1332 mod_already_loaded(char *modname)
1333 {
1334 struct modctl *mctl = kobj_modules;
1335
1336 do {
1337 if (strcmp(modname, mctl->mod_filename) == 0)
1338 return (mctl);
1339 mctl = mctl->mod_next;
1340
1341 } while (mctl != kobj_modules);
1342
1343 return (NULL);
1344 }
1345
1346 /*
1347 * Load all the primary dependent modules.
1348 */
1349 static int
load_primary(struct module * mp,int lmid)1350 load_primary(struct module *mp, int lmid)
1351 {
1352 struct modctl *cp;
1353 struct module *dmp;
1354 char *p, *q;
1355 char modname[MODMAXNAMELEN];
1356
1357 if ((p = mp->depends_on) == NULL)
1358 return (0);
1359
1360 /* CONSTANTCONDITION */
1361 while (1) {
1362 /*
1363 * Skip space.
1364 */
1365 while (*p && (*p == ' ' || *p == '\t'))
1366 p++;
1367 /*
1368 * Get module name.
1369 */
1370 q = modname;
1371 while (*p && *p != ' ' && *p != '\t')
1372 *q++ = *p++;
1373
1374 if (q == modname)
1375 break;
1376
1377 *q = '\0';
1378 /*
1379 * Check for dup dependencies.
1380 */
1381 if (strcmp(modname, "dtracestubs") == 0 ||
1382 mod_already_loaded(modname) != NULL)
1383 continue;
1384
1385 cp = add_primary(modname, lmid);
1386 cp->mod_busy = 1;
1387 /*
1388 * Load it.
1389 */
1390 (void) kobj_load_module(cp, 1);
1391 cp->mod_busy = 0;
1392
1393 if ((dmp = cp->mod_mp) == NULL) {
1394 cp->mod_loaded = 0;
1395 cp->mod_installed = 0;
1396 cp->mod_loadcnt = 0;
1397 return (-1);
1398 }
1399
1400 add_dependent(mp, dmp);
1401 dmp->flags |= KOBJ_PRIM;
1402
1403 /*
1404 * Recurse.
1405 */
1406 if (load_primary(dmp, lmid) == -1) {
1407 cp->mod_loaded = 0;
1408 cp->mod_installed = 0;
1409 cp->mod_loadcnt = 0;
1410 return (-1);
1411 }
1412 }
1413 return (0);
1414 }
1415
1416 static int
console_is_usb_serial(void)1417 console_is_usb_serial(void)
1418 {
1419 char *console;
1420 int len, ret;
1421
1422 if ((len = BOP_GETPROPLEN(ops, "console")) == -1)
1423 return (0);
1424
1425 console = kobj_zalloc(len, KM_WAIT|KM_TMP);
1426 (void) BOP_GETPROP(ops, "console", console);
1427 ret = (strcmp(console, "usb-serial") == 0);
1428 kobj_free(console, len);
1429
1430 return (ret);
1431 }
1432
1433 static int
load_kmdb(val_t * bootaux)1434 load_kmdb(val_t *bootaux)
1435 {
1436 struct modctl *mctl;
1437 struct module *mp;
1438 Sym *sym;
1439
1440 if (console_is_usb_serial()) {
1441 _kobj_printf(ops, "kmdb not loaded "
1442 "(unsupported on usb serial console)\n");
1443 return (0);
1444 }
1445
1446 _kobj_printf(ops, "Loading kmdb...\n");
1447
1448 if ((mctl = add_primary("misc/kmdbmod", KOBJ_LM_DEBUGGER)) == NULL)
1449 return (-1);
1450
1451 mctl->mod_busy = 1;
1452 (void) kobj_load_module(mctl, 1);
1453 mctl->mod_busy = 0;
1454
1455 if ((mp = mctl->mod_mp) == NULL)
1456 return (-1);
1457
1458 mp->flags |= KOBJ_PRIM;
1459
1460 if (load_primary(mp, KOBJ_LM_DEBUGGER) < 0)
1461 return (-1);
1462
1463 if (boothowto & RB_VERBOSE)
1464 kobj_lm_dump(KOBJ_LM_DEBUGGER);
1465
1466 if (bind_primary(bootaux, KOBJ_LM_DEBUGGER) < 0)
1467 return (-1);
1468
1469 if ((sym = lookup_one(mctl->mod_mp, "kctl_boot_activate")) == NULL)
1470 return (-1);
1471
1472 #ifdef KOBJ_DEBUG
1473 if (kobj_debug & D_DEBUG) {
1474 _kobj_printf(ops, "calling kctl_boot_activate() @ 0x%lx\n",
1475 sym->st_value);
1476 _kobj_printf(ops, "\tops 0x%p\n", ops);
1477 _kobj_printf(ops, "\tromp 0x%p\n", romp);
1478 }
1479 #endif
1480
1481 if (((kctl_boot_activate_f *)sym->st_value)(ops, romp, 0,
1482 (const char **)kobj_kmdb_argv) < 0)
1483 return (-1);
1484
1485 return (0);
1486 }
1487
1488 /*
1489 * Return a string listing module dependencies.
1490 */
1491 static char *
depends_on(struct module * mp)1492 depends_on(struct module *mp)
1493 {
1494 Sym *sp;
1495 char *depstr, *q;
1496
1497 /*
1498 * The module doesn't have a depends_on value, so let's try it the
1499 * old-fashioned way - via "_depends_on"
1500 */
1501 if ((sp = lookup_one(mp, "_depends_on")) == NULL)
1502 return (NULL);
1503
1504 q = (char *)sp->st_value;
1505
1506 #ifdef KOBJ_DEBUG
1507 /*
1508 * _depends_on is a deprecated interface, so we warn about its use
1509 * irrespective of subsequent processing errors. How else are we going
1510 * to be able to deco this interface completely?
1511 * Changes initially limited to DEBUG because third-party modules
1512 * should be flagged to developers before general use base.
1513 */
1514 _kobj_printf(ops,
1515 "Warning: %s uses deprecated _depends_on interface.\n",
1516 mp->filename);
1517 _kobj_printf(ops, "Please notify module developer or vendor.\n");
1518 #endif
1519
1520 /*
1521 * Idiot checks. Make sure it's
1522 * in-bounds and NULL terminated.
1523 */
1524 if (kobj_addrcheck(mp, q) || q[sp->st_size - 1] != '\0') {
1525 _kobj_printf(ops, "Error processing dependency for %s\n",
1526 mp->filename);
1527 return (NULL);
1528 }
1529
1530 depstr = (char *)kobj_alloc(strlen(q) + 1, KM_WAIT);
1531 (void) strcpy(depstr, q);
1532
1533 return (depstr);
1534 }
1535
1536 void
kobj_getmodinfo(void * xmp,struct modinfo * modinfo)1537 kobj_getmodinfo(void *xmp, struct modinfo *modinfo)
1538 {
1539 struct module *mp;
1540 mp = (struct module *)xmp;
1541
1542 modinfo->mi_base = mp->text;
1543 modinfo->mi_size = mp->text_size + mp->data_size;
1544 }
1545
1546 /*
1547 * kobj_export_ksyms() performs the following services:
1548 *
1549 * (1) Migrates the symbol table from boot/kobj memory to the ksyms arena.
1550 * (2) Removes unneeded symbols to save space.
1551 * (3) Reduces memory footprint by using VM_BESTFIT allocations.
1552 * (4) Makes the symbol table visible to /dev/ksyms.
1553 */
1554 static void
kobj_export_ksyms(struct module * mp)1555 kobj_export_ksyms(struct module *mp)
1556 {
1557 Sym *esp = (Sym *)(mp->symtbl + mp->symhdr->sh_size);
1558 Sym *sp, *osp;
1559 char *name;
1560 size_t namelen;
1561 struct module *omp;
1562 uint_t nsyms;
1563 size_t symsize = mp->symhdr->sh_entsize;
1564 size_t locals = 1;
1565 size_t strsize;
1566
1567 /*
1568 * Make a copy of the original module structure.
1569 */
1570 omp = kobj_alloc(sizeof (struct module), KM_WAIT);
1571 bcopy(mp, omp, sizeof (struct module));
1572
1573 /*
1574 * Compute the sizes of the new symbol table sections.
1575 */
1576 for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1577 if (osp->st_value == 0)
1578 continue;
1579 if (sym_lookup(omp, osp) == NULL)
1580 continue;
1581 name = omp->strings + osp->st_name;
1582 namelen = strlen(name);
1583 if (ELF_ST_BIND(osp->st_info) == STB_LOCAL)
1584 locals++;
1585 nsyms++;
1586 strsize += namelen + 1;
1587 }
1588
1589 mp->nsyms = nsyms;
1590 mp->hashsize = kobj_gethashsize(mp->nsyms);
1591
1592 /*
1593 * ksyms_lock must be held as writer during any operation that
1594 * modifies ksyms_arena, including allocation from same, and
1595 * must not be dropped until the arena is vmem_walk()able.
1596 */
1597 rw_enter(&ksyms_lock, RW_WRITER);
1598
1599 /*
1600 * Allocate space for the new section headers (symtab and strtab),
1601 * symbol table, buckets, chains, and strings.
1602 */
1603 mp->symsize = (2 * sizeof (Shdr)) + (nsyms * symsize) +
1604 (mp->hashsize + mp->nsyms) * sizeof (symid_t) + strsize;
1605
1606 if (mp->flags & KOBJ_NOKSYMS) {
1607 mp->symspace = kobj_alloc(mp->symsize, KM_WAIT);
1608 } else {
1609 mp->symspace = vmem_alloc(ksyms_arena, mp->symsize,
1610 VM_BESTFIT | VM_SLEEP);
1611 }
1612 bzero(mp->symspace, mp->symsize);
1613
1614 /*
1615 * Divvy up symspace.
1616 */
1617 mp->shdrs = mp->symspace;
1618 mp->symhdr = (Shdr *)mp->shdrs;
1619 mp->strhdr = (Shdr *)(mp->symhdr + 1);
1620 mp->symtbl = (char *)(mp->strhdr + 1);
1621 mp->buckets = (symid_t *)(mp->symtbl + (nsyms * symsize));
1622 mp->chains = (symid_t *)(mp->buckets + mp->hashsize);
1623 mp->strings = (char *)(mp->chains + nsyms);
1624
1625 /*
1626 * Fill in the new section headers (symtab and strtab).
1627 */
1628 mp->shnum = 2;
1629 mp->symtbl_section = 0;
1630
1631 mp->symhdr->sh_type = SHT_SYMTAB;
1632 mp->symhdr->sh_addr = (Addr)mp->symtbl;
1633 mp->symhdr->sh_size = nsyms * symsize;
1634 mp->symhdr->sh_link = 1;
1635 mp->symhdr->sh_info = locals;
1636 mp->symhdr->sh_addralign = sizeof (Addr);
1637 mp->symhdr->sh_entsize = symsize;
1638
1639 mp->strhdr->sh_type = SHT_STRTAB;
1640 mp->strhdr->sh_addr = (Addr)mp->strings;
1641 mp->strhdr->sh_size = strsize;
1642 mp->strhdr->sh_addralign = 1;
1643
1644 /*
1645 * Construct the new symbol table.
1646 */
1647 for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1648 if (osp->st_value == 0)
1649 continue;
1650 if (sym_lookup(omp, osp) == NULL)
1651 continue;
1652 name = omp->strings + osp->st_name;
1653 namelen = strlen(name);
1654 sp = (Sym *)(mp->symtbl + symsize * nsyms);
1655 bcopy(osp, sp, symsize);
1656 bcopy(name, mp->strings + strsize, namelen);
1657 sp->st_name = strsize;
1658 sym_insert(mp, name, nsyms);
1659 nsyms++;
1660 strsize += namelen + 1;
1661 }
1662
1663 rw_exit(&ksyms_lock);
1664
1665 /*
1666 * Free the old section headers -- we'll never need them again.
1667 */
1668 if (!(mp->flags & KOBJ_PRIM)) {
1669 uint_t shn;
1670 Shdr *shp;
1671
1672 for (shn = 1; shn < omp->shnum; shn++) {
1673 shp = (Shdr *)(omp->shdrs + shn * omp->hdr.e_shentsize);
1674 switch (shp->sh_type) {
1675 case SHT_RELA:
1676 case SHT_REL:
1677 if (shp->sh_addr != 0) {
1678 kobj_free((void *)shp->sh_addr,
1679 shp->sh_size);
1680 }
1681 break;
1682 }
1683 }
1684 kobj_free(omp->shdrs, omp->hdr.e_shentsize * omp->shnum);
1685 }
1686 /*
1687 * Discard the old symbol table and our copy of the module strucure.
1688 */
1689 if (!(mp->flags & KOBJ_PRIM))
1690 kobj_free(omp->symspace, omp->symsize);
1691 kobj_free(omp, sizeof (struct module));
1692 }
1693
1694 static void
kobj_export_ctf(struct module * mp)1695 kobj_export_ctf(struct module *mp)
1696 {
1697 char *data = mp->ctfdata;
1698 size_t size = mp->ctfsize;
1699
1700 if (data != NULL) {
1701 if (_moddebug & MODDEBUG_NOCTF) {
1702 mp->ctfdata = NULL;
1703 mp->ctfsize = 0;
1704 } else {
1705 mp->ctfdata = vmem_alloc(ctf_arena, size,
1706 VM_BESTFIT | VM_SLEEP);
1707 bcopy(data, mp->ctfdata, size);
1708 }
1709
1710 if (!(mp->flags & KOBJ_PRIM))
1711 kobj_free(data, size);
1712 }
1713 }
1714
1715 void
kobj_export_module(struct module * mp)1716 kobj_export_module(struct module *mp)
1717 {
1718 kobj_export_ksyms(mp);
1719 kobj_export_ctf(mp);
1720
1721 mp->flags |= KOBJ_EXPORTED;
1722 }
1723
1724 static int
process_dynamic(struct module * mp,char * dyndata,char * strdata)1725 process_dynamic(struct module *mp, char *dyndata, char *strdata)
1726 {
1727 char *path = NULL, *depstr = NULL;
1728 int allocsize = 0, osize = 0, nsize = 0;
1729 char *libname, *tmp;
1730 int lsize;
1731 Dyn *dynp;
1732
1733 for (dynp = (Dyn *)dyndata; dynp && dynp->d_tag != DT_NULL; dynp++) {
1734 switch (dynp->d_tag) {
1735 case DT_NEEDED:
1736 /*
1737 * Read the DT_NEEDED entries, expanding the macros they
1738 * contain (if any), and concatenating them into a
1739 * single space-separated dependency list.
1740 */
1741 libname = (ulong_t)dynp->d_un.d_ptr + strdata;
1742
1743 if (strchr(libname, '$') != NULL) {
1744 char *_lib;
1745
1746 if (path == NULL)
1747 path = kobj_alloc(MAXPATHLEN, KM_WAIT);
1748 if ((_lib = expand_libmacro(libname, path,
1749 path)) != NULL)
1750 libname = _lib;
1751 else {
1752 _kobj_printf(ops, "krtld: "
1753 "process_dynamic: failed to expand "
1754 "%s\n", libname);
1755 }
1756 }
1757
1758 lsize = strlen(libname);
1759 nsize += lsize;
1760 if (nsize + 1 > allocsize) {
1761 tmp = kobj_alloc(allocsize + MAXPATHLEN,
1762 KM_WAIT);
1763 if (depstr != NULL) {
1764 bcopy(depstr, tmp, osize);
1765 kobj_free(depstr, allocsize);
1766 }
1767 depstr = tmp;
1768 allocsize += MAXPATHLEN;
1769 }
1770 bcopy(libname, depstr + osize, lsize);
1771 *(depstr + nsize) = ' '; /* separator */
1772 nsize++;
1773 osize = nsize;
1774 break;
1775
1776 case DT_FLAGS_1:
1777 if (dynp->d_un.d_val & DF_1_IGNMULDEF)
1778 mp->flags |= KOBJ_IGNMULDEF;
1779 if (dynp->d_un.d_val & DF_1_NOKSYMS)
1780 mp->flags |= KOBJ_NOKSYMS;
1781
1782 break;
1783 }
1784 }
1785
1786 /*
1787 * finish up the depends string (if any)
1788 */
1789 if (depstr != NULL) {
1790 *(depstr + nsize - 1) = '\0'; /* overwrite separator w/term */
1791 if (path != NULL)
1792 kobj_free(path, MAXPATHLEN);
1793
1794 tmp = kobj_alloc(nsize, KM_WAIT);
1795 bcopy(depstr, tmp, nsize);
1796 kobj_free(depstr, allocsize);
1797 depstr = tmp;
1798
1799 mp->depends_on = depstr;
1800 }
1801
1802 return (0);
1803 }
1804
1805 static int
do_dynamic(struct module * mp,struct _buf * file)1806 do_dynamic(struct module *mp, struct _buf *file)
1807 {
1808 Shdr *dshp, *dstrp, *shp;
1809 char *dyndata, *dstrdata;
1810 int dshn, shn, rc;
1811
1812 /* find and validate the dynamic section (if any) */
1813
1814 for (dshp = NULL, shn = 1; shn < mp->shnum; shn++) {
1815 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
1816 switch (shp->sh_type) {
1817 case SHT_DYNAMIC:
1818 if (dshp != NULL) {
1819 _kobj_printf(ops, "krtld: get_dynamic: %s, ",
1820 mp->filename);
1821 _kobj_printf(ops,
1822 "multiple dynamic sections\n");
1823 return (-1);
1824 } else {
1825 dshp = shp;
1826 dshn = shn;
1827 }
1828 break;
1829 }
1830 }
1831
1832 if (dshp == NULL)
1833 return (0);
1834
1835 if (dshp->sh_link > mp->shnum) {
1836 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1837 _kobj_printf(ops, "no section for sh_link %d\n", dshp->sh_link);
1838 return (-1);
1839 }
1840 dstrp = (Shdr *)(mp->shdrs + dshp->sh_link * mp->hdr.e_shentsize);
1841
1842 if (dstrp->sh_type != SHT_STRTAB) {
1843 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1844 _kobj_printf(ops, "sh_link not a string table for section %d\n",
1845 dshn);
1846 return (-1);
1847 }
1848
1849 /* read it from disk */
1850
1851 dyndata = kobj_alloc(dshp->sh_size, KM_WAIT|KM_TMP);
1852 if (kobj_read_file(file, dyndata, dshp->sh_size, dshp->sh_offset) < 0) {
1853 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1854 _kobj_printf(ops, "error reading section %d\n", dshn);
1855
1856 kobj_free(dyndata, dshp->sh_size);
1857 return (-1);
1858 }
1859
1860 dstrdata = kobj_alloc(dstrp->sh_size, KM_WAIT|KM_TMP);
1861 if (kobj_read_file(file, dstrdata, dstrp->sh_size,
1862 dstrp->sh_offset) < 0) {
1863 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1864 _kobj_printf(ops, "error reading section %d\n", dshp->sh_link);
1865
1866 kobj_free(dyndata, dshp->sh_size);
1867 kobj_free(dstrdata, dstrp->sh_size);
1868 return (-1);
1869 }
1870
1871 /* pull the interesting pieces out */
1872
1873 rc = process_dynamic(mp, dyndata, dstrdata);
1874
1875 kobj_free(dyndata, dshp->sh_size);
1876 kobj_free(dstrdata, dstrp->sh_size);
1877
1878 return (rc);
1879 }
1880
1881 void
kobj_set_ctf(struct module * mp,caddr_t data,size_t size)1882 kobj_set_ctf(struct module *mp, caddr_t data, size_t size)
1883 {
1884 if (!standalone) {
1885 if (mp->ctfdata != NULL) {
1886 if (vmem_contains(ctf_arena, mp->ctfdata,
1887 mp->ctfsize)) {
1888 vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
1889 } else {
1890 kobj_free(mp->ctfdata, mp->ctfsize);
1891 }
1892 }
1893 }
1894
1895 /*
1896 * The order is very important here. We need to make sure that
1897 * consumers, at any given instant, see a consistent state. We'd
1898 * rather they see no CTF data than the address of one buffer and the
1899 * size of another.
1900 */
1901 mp->ctfdata = NULL;
1902 membar_producer();
1903 mp->ctfsize = size;
1904 mp->ctfdata = data;
1905 membar_producer();
1906 }
1907
1908 int
kobj_load_module(struct modctl * modp,int use_path)1909 kobj_load_module(struct modctl *modp, int use_path)
1910 {
1911 char *filename = modp->mod_filename;
1912 char *modname = modp->mod_modname;
1913 int i;
1914 int n;
1915 struct _buf *file;
1916 struct module *mp = NULL;
1917 #ifdef MODDIR_SUFFIX
1918 int no_suffixdir_drv = 0;
1919 #endif
1920
1921 mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
1922
1923 /*
1924 * We need to prevent kmdb's symbols from leaking into /dev/ksyms.
1925 * kmdb contains a bunch of symbols with well-known names, symbols
1926 * which will mask the real versions, thus causing no end of trouble
1927 * for mdb.
1928 */
1929 if (strcmp(modp->mod_modname, "kmdbmod") == 0)
1930 mp->flags |= KOBJ_NOKSYMS;
1931
1932 file = kobj_open_path(filename, use_path, 1);
1933 if (file == (struct _buf *)-1) {
1934 #ifdef MODDIR_SUFFIX
1935 file = kobj_open_path(filename, use_path, 0);
1936 #endif
1937 if (file == (struct _buf *)-1) {
1938 kobj_free(mp, sizeof (*mp));
1939 goto bad;
1940 }
1941 #ifdef MODDIR_SUFFIX
1942 /*
1943 * There is no driver module in the ISA specific (suffix)
1944 * subdirectory but there is a module in the parent directory.
1945 */
1946 if (strncmp(filename, "drv/", 4) == 0) {
1947 no_suffixdir_drv = 1;
1948 }
1949 #endif
1950 }
1951
1952 mp->filename = kobj_alloc(strlen(file->_name) + 1, KM_WAIT);
1953 (void) strcpy(mp->filename, file->_name);
1954
1955 if (kobj_load_elfhdr(file, mp) != 0) {
1956 kobj_free(mp->filename, strlen(file->_name) + 1);
1957 kobj_free(mp, sizeof (*mp));
1958 goto bad;
1959 }
1960
1961 for (i = 0; i < SELFMAG; i++) {
1962 if (mp->hdr.e_ident[i] != ELFMAG[i]) {
1963 if (_moddebug & MODDEBUG_ERRMSG)
1964 _kobj_printf(ops, "%s not an elf module\n",
1965 modname);
1966 kobj_free(mp->filename, strlen(file->_name) + 1);
1967 kobj_free(mp, sizeof (*mp));
1968 goto bad;
1969 }
1970 }
1971 /*
1972 * It's ELF, but is it our ISA? Interpreting the header
1973 * from a file for a byte-swapped ISA could cause a huge
1974 * and unsatisfiable value to be passed to kobj_alloc below
1975 * and therefore hang booting.
1976 */
1977 if (!elf_mach_ok(&mp->hdr)) {
1978 if (_moddebug & MODDEBUG_ERRMSG)
1979 _kobj_printf(ops, "%s not an elf module for this ISA\n",
1980 modname);
1981 kobj_free(mp->filename, strlen(file->_name) + 1);
1982 kobj_free(mp, sizeof (*mp));
1983 #ifdef MODDIR_SUFFIX
1984 /*
1985 * The driver mod is not in the ISA specific subdirectory
1986 * and the module in the parent directory is not our ISA.
1987 * If it is our ISA, for now we will silently succeed.
1988 */
1989 if (no_suffixdir_drv == 1) {
1990 cmn_err(CE_CONT, "?NOTICE: %s: 64-bit driver module"
1991 " not found\n", modname);
1992 }
1993 #endif
1994 goto bad;
1995 }
1996
1997 /*
1998 * All modules, save for unix, should be relocatable (as opposed to
1999 * dynamic). Dynamic modules come with PLTs and GOTs, which can't
2000 * currently be processed by krtld.
2001 */
2002 if (mp->hdr.e_type != ET_REL) {
2003 if (_moddebug & MODDEBUG_ERRMSG)
2004 _kobj_printf(ops, "%s isn't a relocatable (ET_REL) "
2005 "module\n", modname);
2006 kobj_free(mp->filename, strlen(file->_name) + 1);
2007 kobj_free(mp, sizeof (*mp));
2008 goto bad;
2009 }
2010
2011 n = mp->hdr.e_shentsize * mp->shnum;
2012 mp->shdrs = kobj_alloc(n, KM_WAIT);
2013
2014 if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) {
2015 _kobj_printf(ops, "kobj_load_module: %s error reading "
2016 "section headers\n", modname);
2017 kobj_free(mp->shdrs, n);
2018 kobj_free(mp->filename, strlen(file->_name) + 1);
2019 kobj_free(mp, sizeof (*mp));
2020 goto bad;
2021 }
2022
2023 kobj_notify(KOBJ_NOTIFY_MODLOADING, modp);
2024 module_assign(modp, mp);
2025
2026 /* read in sections */
2027 if (get_progbits(mp, file) < 0) {
2028 _kobj_printf(ops, "%s error reading sections\n", modname);
2029 goto bad;
2030 }
2031
2032 if (do_dynamic(mp, file) < 0) {
2033 _kobj_printf(ops, "%s error reading dynamic section\n",
2034 modname);
2035 goto bad;
2036 }
2037
2038 modp->mod_text = mp->text;
2039 modp->mod_text_size = mp->text_size;
2040
2041 /* read in symbols; adjust values for each section's real address */
2042 if (get_syms(mp, file) < 0) {
2043 _kobj_printf(ops, "%s error reading symbols\n",
2044 modname);
2045 goto bad;
2046 }
2047
2048 /*
2049 * If we didn't dependency information from the dynamic section, look
2050 * for it the old-fashioned way.
2051 */
2052 if (mp->depends_on == NULL)
2053 mp->depends_on = depends_on(mp);
2054
2055 if (get_ctf(mp, file) < 0) {
2056 _kobj_printf(ops, "%s debug information will not "
2057 "be available\n", modname);
2058 }
2059
2060 /* primary kernel modules do not have a signature section */
2061 if (!(mp->flags & KOBJ_PRIM))
2062 get_signature(mp, file);
2063
2064 #ifdef KOBJ_DEBUG
2065 if (kobj_debug & D_LOADING) {
2066 _kobj_printf(ops, "krtld: file=%s\n", mp->filename);
2067 _kobj_printf(ops, "\ttext:0x%p", mp->text);
2068 _kobj_printf(ops, " size: 0x%lx\n", mp->text_size);
2069 _kobj_printf(ops, "\tdata:0x%p", mp->data);
2070 _kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size);
2071 }
2072 #endif /* KOBJ_DEBUG */
2073
2074 /*
2075 * For primary kernel modules, we defer
2076 * symbol resolution and relocation until
2077 * all primary objects have been loaded.
2078 */
2079 if (!standalone) {
2080 int ddrval, dcrval;
2081 char *dependent_modname;
2082 /* load all dependents */
2083 dependent_modname = kobj_zalloc(MODMAXNAMELEN, KM_WAIT);
2084 ddrval = do_dependents(modp, dependent_modname, MODMAXNAMELEN);
2085
2086 /*
2087 * resolve undefined and common symbols,
2088 * also allocates common space
2089 */
2090 if ((dcrval = do_common(mp)) < 0) {
2091 switch (dcrval) {
2092 case DOSYM_UNSAFE:
2093 _kobj_printf(ops, "WARNING: mod_load: "
2094 "MT-unsafe module '%s' rejected\n",
2095 modname);
2096 break;
2097 case DOSYM_UNDEF:
2098 _kobj_printf(ops, "WARNING: mod_load: "
2099 "cannot load module '%s'\n",
2100 modname);
2101 if (ddrval == -1) {
2102 _kobj_printf(ops, "WARNING: %s: ",
2103 modname);
2104 _kobj_printf(ops,
2105 "unable to resolve dependency, "
2106 "module '%s' not found\n",
2107 dependent_modname);
2108 }
2109 break;
2110 }
2111 }
2112 kobj_free(dependent_modname, MODMAXNAMELEN);
2113 if (dcrval < 0)
2114 goto bad;
2115
2116 /* process relocation tables */
2117 if (do_relocations(mp) < 0) {
2118 _kobj_printf(ops, "%s error doing relocations\n",
2119 modname);
2120 goto bad;
2121 }
2122
2123 if (mp->destination) {
2124 off_t off = (uintptr_t)mp->destination & PAGEOFFSET;
2125 caddr_t base = (caddr_t)mp->destination - off;
2126 size_t size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2127
2128 hat_unload(kas.a_hat, base, size, HAT_UNLOAD_UNLOCK);
2129 vmem_free(heap_arena, base, size);
2130 }
2131
2132 /* sync_instruction_memory */
2133 kobj_sync_instruction_memory(mp->text, mp->text_size);
2134 kobj_export_module(mp);
2135 kobj_notify(KOBJ_NOTIFY_MODLOADED, modp);
2136 }
2137 kobj_close_file(file);
2138 return (0);
2139 bad:
2140 if (file != (struct _buf *)-1)
2141 kobj_close_file(file);
2142 if (modp->mod_mp != NULL)
2143 free_module_data(modp->mod_mp);
2144
2145 module_assign(modp, NULL);
2146 return ((file == (struct _buf *)-1) ? ENOENT : EINVAL);
2147 }
2148
2149 int
kobj_load_primary_module(struct modctl * modp)2150 kobj_load_primary_module(struct modctl *modp)
2151 {
2152 struct modctl *dep;
2153 struct module *mp;
2154
2155 if (kobj_load_module(modp, 0) != 0)
2156 return (-1);
2157
2158 dep = NULL;
2159 mp = modp->mod_mp;
2160 mp->flags |= KOBJ_PRIM;
2161
2162 /* Bind new module to its dependents */
2163 if (mp->depends_on != NULL && (dep =
2164 mod_already_loaded(mp->depends_on)) == NULL) {
2165 #ifdef KOBJ_DEBUG
2166 if (kobj_debug & D_DEBUG) {
2167 _kobj_printf(ops, "krtld: failed to resolve deps "
2168 "for primary %s\n", modp->mod_modname);
2169 }
2170 #endif
2171 return (-1);
2172 }
2173
2174 if (dep != NULL)
2175 add_dependent(mp, dep->mod_mp);
2176
2177 /*
2178 * Relocate it. This module may not be part of a link map, so we
2179 * can't use bind_primary.
2180 */
2181 if (do_common(mp) < 0 || do_symbols(mp, 0) < 0 ||
2182 do_relocations(mp) < 0) {
2183 #ifdef KOBJ_DEBUG
2184 if (kobj_debug & D_DEBUG) {
2185 _kobj_printf(ops, "krtld: failed to relocate "
2186 "primary %s\n", modp->mod_modname);
2187 }
2188 #endif
2189 return (-1);
2190 }
2191
2192 return (0);
2193 }
2194
2195 static void
module_assign(struct modctl * cp,struct module * mp)2196 module_assign(struct modctl *cp, struct module *mp)
2197 {
2198 if (standalone) {
2199 cp->mod_mp = mp;
2200 return;
2201 }
2202 mutex_enter(&mod_lock);
2203 cp->mod_mp = mp;
2204 cp->mod_gencount++;
2205 mutex_exit(&mod_lock);
2206 }
2207
2208 void
kobj_unload_module(struct modctl * modp)2209 kobj_unload_module(struct modctl *modp)
2210 {
2211 struct module *mp = modp->mod_mp;
2212
2213 if ((_moddebug & MODDEBUG_KEEPTEXT) && mp) {
2214 _kobj_printf(ops, "text for %s ", mp->filename);
2215 _kobj_printf(ops, "was at %p\n", mp->text);
2216 mp->text = NULL; /* don't actually free it */
2217 }
2218
2219 kobj_notify(KOBJ_NOTIFY_MODUNLOADING, modp);
2220
2221 /*
2222 * Null out mod_mp first, so consumers (debuggers) know not to look
2223 * at the module structure any more.
2224 */
2225 mutex_enter(&mod_lock);
2226 modp->mod_mp = NULL;
2227 mutex_exit(&mod_lock);
2228
2229 kobj_notify(KOBJ_NOTIFY_MODUNLOADED, modp);
2230 free_module_data(mp);
2231 }
2232
2233 static void
free_module_data(struct module * mp)2234 free_module_data(struct module *mp)
2235 {
2236 struct module_list *lp, *tmp;
2237 hotinline_desc_t *hid, *next;
2238 int ksyms_exported = 0;
2239
2240 lp = mp->head;
2241 while (lp) {
2242 tmp = lp;
2243 lp = lp->next;
2244 kobj_free((char *)tmp, sizeof (*tmp));
2245 }
2246
2247 /* release hotinlines */
2248 hid = mp->hi_calls;
2249 while (hid != NULL) {
2250 next = hid->hid_next;
2251 kobj_free(hid->hid_symname, strlen(hid->hid_symname) + 1);
2252 kobj_free(hid, sizeof (hotinline_desc_t));
2253 hid = next;
2254 }
2255
2256 rw_enter(&ksyms_lock, RW_WRITER);
2257 if (mp->symspace) {
2258 if (vmem_contains(ksyms_arena, mp->symspace, mp->symsize)) {
2259 vmem_free(ksyms_arena, mp->symspace, mp->symsize);
2260 ksyms_exported = 1;
2261 } else {
2262 if (mp->flags & KOBJ_NOKSYMS)
2263 ksyms_exported = 1;
2264 kobj_free(mp->symspace, mp->symsize);
2265 }
2266 }
2267 rw_exit(&ksyms_lock);
2268
2269 if (mp->ctfdata) {
2270 if (vmem_contains(ctf_arena, mp->ctfdata, mp->ctfsize))
2271 vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
2272 else
2273 kobj_free(mp->ctfdata, mp->ctfsize);
2274 }
2275
2276 if (mp->sigdata)
2277 kobj_free(mp->sigdata, mp->sigsize);
2278
2279 /*
2280 * We did not get far enough into kobj_export_ksyms() to free allocated
2281 * buffers because we encounted error conditions. Free the buffers.
2282 */
2283 if ((ksyms_exported == 0) && (mp->shdrs != NULL)) {
2284 uint_t shn;
2285 Shdr *shp;
2286
2287 for (shn = 1; shn < mp->shnum; shn++) {
2288 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2289 switch (shp->sh_type) {
2290 case SHT_RELA:
2291 case SHT_REL:
2292 if (shp->sh_addr != 0)
2293 kobj_free((void *)shp->sh_addr,
2294 shp->sh_size);
2295 break;
2296 }
2297 }
2298
2299 if (!(mp->flags & KOBJ_PRIM)) {
2300 kobj_free(mp->shdrs, mp->hdr.e_shentsize * mp->shnum);
2301 }
2302 }
2303
2304 if (mp->bss)
2305 vmem_free(data_arena, (void *)mp->bss, mp->bss_size);
2306
2307 if (mp->fbt_tab)
2308 kobj_texthole_free(mp->fbt_tab, mp->fbt_size);
2309
2310 if (mp->textwin_base)
2311 kobj_textwin_free(mp);
2312
2313 if (mp->sdt_probes != NULL) {
2314 sdt_probedesc_t *sdp = mp->sdt_probes, *next;
2315
2316 while (sdp != NULL) {
2317 next = sdp->sdpd_next;
2318 kobj_free(sdp->sdpd_name, strlen(sdp->sdpd_name) + 1);
2319 kobj_free(sdp, sizeof (sdt_probedesc_t));
2320 sdp = next;
2321 }
2322 }
2323
2324 if (mp->sdt_tab)
2325 kobj_texthole_free(mp->sdt_tab, mp->sdt_size);
2326 if (mp->text)
2327 vmem_free(text_arena, mp->text, mp->text_size);
2328 if (mp->data)
2329 vmem_free(data_arena, mp->data, mp->data_size);
2330 if (mp->depends_on)
2331 kobj_free(mp->depends_on, strlen(mp->depends_on)+1);
2332 if (mp->filename)
2333 kobj_free(mp->filename, strlen(mp->filename)+1);
2334
2335 kobj_free((char *)mp, sizeof (*mp));
2336 }
2337
2338 static int
get_progbits(struct module * mp,struct _buf * file)2339 get_progbits(struct module *mp, struct _buf *file)
2340 {
2341 struct proginfo *tp, *dp, *sdp;
2342 Shdr *shp;
2343 reloc_dest_t dest = NULL;
2344 uintptr_t bits_ptr;
2345 uintptr_t text = 0, data, textptr;
2346 uint_t shn;
2347 int err = -1;
2348
2349 tp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2350 dp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2351 sdp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2352 /*
2353 * loop through sections to find out how much space we need
2354 * for text, data, (also bss that is already assigned)
2355 */
2356 if (get_progbits_size(mp, tp, dp, sdp) < 0)
2357 goto done;
2358
2359 mp->text_size = tp->size;
2360 mp->data_size = dp->size;
2361
2362 if (standalone) {
2363 caddr_t limit = _data;
2364
2365 if (lg_pagesize && _text + lg_pagesize < limit)
2366 limit = _text + lg_pagesize;
2367
2368 mp->text = kobj_segbrk(&_etext, mp->text_size,
2369 tp->align, limit);
2370 /*
2371 * If we can't grow the text segment, try the
2372 * data segment before failing.
2373 */
2374 if (mp->text == NULL) {
2375 mp->text = kobj_segbrk(&_edata, mp->text_size,
2376 tp->align, 0);
2377 }
2378
2379 mp->data = kobj_segbrk(&_edata, mp->data_size, dp->align, 0);
2380
2381 if (mp->text == NULL || mp->data == NULL)
2382 goto done;
2383
2384 } else {
2385 if (text_arena == NULL)
2386 kobj_vmem_init(&text_arena, &data_arena);
2387
2388 /*
2389 * some architectures may want to load the module on a
2390 * page that is currently read only. It may not be
2391 * possible for those architectures to remap their page
2392 * on the fly. So we provide a facility for them to hang
2393 * a private hook where the memory they assign the module
2394 * is not the actual place where the module loads.
2395 *
2396 * In this case there are two addresses that deal with the
2397 * modload.
2398 * 1) the final destination of the module
2399 * 2) the address that is used to view the newly
2400 * loaded module until all the relocations relative to 1
2401 * above are completed.
2402 *
2403 * That is what dest is used for below.
2404 */
2405 mp->text_size += tp->align;
2406 mp->data_size += dp->align;
2407
2408 mp->text = kobj_text_alloc(text_arena, mp->text_size);
2409
2410 /*
2411 * a remap is taking place. Align the text ptr relative
2412 * to the secondary mapping. That is where the bits will
2413 * be read in.
2414 */
2415 if (kvseg.s_base != NULL && !vmem_contains(heaptext_arena,
2416 mp->text, mp->text_size)) {
2417 off_t off = (uintptr_t)mp->text & PAGEOFFSET;
2418 size_t size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2419 caddr_t map = vmem_alloc(heap_arena, size, VM_SLEEP);
2420 caddr_t orig = mp->text - off;
2421 pgcnt_t pages = size / PAGESIZE;
2422
2423 dest = (reloc_dest_t)(map + off);
2424 text = ALIGN((uintptr_t)dest, tp->align);
2425
2426 while (pages--) {
2427 hat_devload(kas.a_hat, map, PAGESIZE,
2428 hat_getpfnum(kas.a_hat, orig),
2429 PROT_READ | PROT_WRITE | PROT_EXEC,
2430 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
2431 map += PAGESIZE;
2432 orig += PAGESIZE;
2433 }
2434 /*
2435 * Since we set up a non-cacheable mapping, we need
2436 * to flush any old entries in the cache that might
2437 * be left around from the read-only mapping.
2438 */
2439 dcache_flushall();
2440 }
2441 if (mp->data_size)
2442 mp->data = vmem_alloc(data_arena, mp->data_size,
2443 VM_SLEEP | VM_BESTFIT);
2444 }
2445 textptr = (uintptr_t)mp->text;
2446 textptr = ALIGN(textptr, tp->align);
2447 mp->destination = dest;
2448
2449 /*
2450 * This is the case where a remap is not being done.
2451 */
2452 if (text == 0)
2453 text = ALIGN((uintptr_t)mp->text, tp->align);
2454 data = ALIGN((uintptr_t)mp->data, dp->align);
2455
2456 /* now loop though sections assigning addresses and loading the data */
2457 for (shn = 1; shn < mp->shnum; shn++) {
2458 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2459 if (!(shp->sh_flags & SHF_ALLOC))
2460 continue;
2461
2462 if ((shp->sh_flags & SHF_WRITE) == 0)
2463 bits_ptr = text;
2464 else
2465 bits_ptr = data;
2466
2467 bits_ptr = ALIGN(bits_ptr, shp->sh_addralign);
2468
2469 if (shp->sh_type == SHT_NOBITS) {
2470 /*
2471 * Zero bss.
2472 */
2473 bzero((caddr_t)bits_ptr, shp->sh_size);
2474 shp->sh_type = SHT_PROGBITS;
2475 } else {
2476 if (kobj_read_file(file, (char *)bits_ptr,
2477 shp->sh_size, shp->sh_offset) < 0)
2478 goto done;
2479 }
2480
2481 if (shp->sh_flags & SHF_WRITE) {
2482 shp->sh_addr = bits_ptr;
2483 } else {
2484 textptr = ALIGN(textptr, shp->sh_addralign);
2485 shp->sh_addr = textptr;
2486 textptr += shp->sh_size;
2487 }
2488
2489 bits_ptr += shp->sh_size;
2490 if ((shp->sh_flags & SHF_WRITE) == 0)
2491 text = bits_ptr;
2492 else
2493 data = bits_ptr;
2494 }
2495
2496 err = 0;
2497 done:
2498 /*
2499 * Free and mark as freed the section headers here so that
2500 * free_module_data() does not have to worry about this buffer.
2501 *
2502 * This buffer is freed here because one of the possible reasons
2503 * for error is a section with non-zero sh_addr and in that case
2504 * free_module_data() would have no way of recognizing that this
2505 * buffer was unallocated.
2506 */
2507 if (err != 0) {
2508 kobj_free(mp->shdrs, mp->hdr.e_shentsize * mp->shnum);
2509 mp->shdrs = NULL;
2510 }
2511
2512 (void) kobj_free(tp, sizeof (struct proginfo));
2513 (void) kobj_free(dp, sizeof (struct proginfo));
2514 (void) kobj_free(sdp, sizeof (struct proginfo));
2515
2516 return (err);
2517 }
2518
2519 /*
2520 * Go through suppress_sym_list to see if "multiply defined"
2521 * warning of this symbol should be suppressed. Return 1 if
2522 * warning should be suppressed, 0 otherwise.
2523 */
2524 static int
kobj_suppress_warning(char * symname)2525 kobj_suppress_warning(char *symname)
2526 {
2527 int i;
2528
2529 for (i = 0; suppress_sym_list[i] != NULL; i++) {
2530 if (strcmp(suppress_sym_list[i], symname) == 0)
2531 return (1);
2532 }
2533
2534 return (0);
2535 }
2536
2537 static int
get_syms(struct module * mp,struct _buf * file)2538 get_syms(struct module *mp, struct _buf *file)
2539 {
2540 uint_t shn;
2541 Shdr *shp;
2542 uint_t i;
2543 Sym *sp, *ksp;
2544 Shdr *symxhdr = NULL;
2545 Elf32_Word *symxtbl = NULL;
2546 char *symname;
2547 int dosymtab = 0;
2548 int err = -1;
2549
2550 /*
2551 * Find the interesting sections.
2552 */
2553 for (shn = 1; shn < mp->shnum; shn++) {
2554 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2555 switch (shp->sh_type) {
2556 case SHT_SYMTAB:
2557 mp->symtbl_section = shn;
2558 mp->symhdr = shp;
2559 dosymtab++;
2560 break;
2561
2562 case SHT_SYMTAB_SHNDX:
2563 symxhdr = shp;
2564 break;
2565
2566 case SHT_RELA:
2567 case SHT_REL:
2568 /*
2569 * Already loaded.
2570 */
2571 if (shp->sh_addr)
2572 continue;
2573
2574 /* KM_TMP since kobj_free'd in do_relocations */
2575 shp->sh_addr = (Addr)
2576 kobj_alloc(shp->sh_size, KM_WAIT|KM_TMP);
2577
2578 if (kobj_read_file(file, (char *)shp->sh_addr,
2579 shp->sh_size, shp->sh_offset) < 0) {
2580 _kobj_printf(ops, "krtld: get_syms: %s, ",
2581 mp->filename);
2582 _kobj_printf(ops, "error reading section %d\n",
2583 shn);
2584 return (-1);
2585 }
2586 break;
2587 }
2588 }
2589
2590 /*
2591 * This is true for a stripped executable. In the case of
2592 * 'unix' it can be stripped but it still contains the SHT_DYNSYM,
2593 * and since that symbol information is still present everything
2594 * is just fine.
2595 */
2596 if (!dosymtab) {
2597 if (mp->flags & KOBJ_EXEC)
2598 return (0);
2599 _kobj_printf(ops, "krtld: get_syms: %s ",
2600 mp->filename);
2601 _kobj_printf(ops, "no SHT_SYMTAB symbol table found\n");
2602 return (-1);
2603 }
2604
2605 /*
2606 * get the associated string table header
2607 */
2608 if (mp->symhdr == NULL || mp->symhdr->sh_link >= mp->shnum)
2609 return (-1);
2610 mp->strhdr = (Shdr *)
2611 (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
2612
2613 mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
2614 mp->hashsize = kobj_gethashsize(mp->nsyms);
2615
2616 /*
2617 * Allocate space for the symbol table, buckets, chains, and strings.
2618 */
2619 mp->symsize = mp->symhdr->sh_size +
2620 (mp->hashsize + mp->nsyms) * sizeof (symid_t) + mp->strhdr->sh_size;
2621 mp->symspace = kobj_zalloc(mp->symsize, KM_WAIT|KM_SCRATCH);
2622
2623 mp->symtbl = mp->symspace;
2624 mp->buckets = (symid_t *)(mp->symtbl + mp->symhdr->sh_size);
2625 mp->chains = mp->buckets + mp->hashsize;
2626 mp->strings = (char *)(mp->chains + mp->nsyms);
2627
2628 if (kobj_read_file(file, mp->symtbl,
2629 mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0) {
2630 _kobj_printf(ops, "%s failed to read symbol table\n",
2631 file->_name);
2632 return (-1);
2633 }
2634 if (kobj_read_file(file, mp->strings,
2635 mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0) {
2636 _kobj_printf(ops, "%s failed to read string table\n",
2637 file->_name);
2638 return (-1);
2639 }
2640
2641 if (symxhdr != NULL) {
2642 symxtbl = kobj_zalloc(symxhdr->sh_size, KM_WAIT|KM_SCRATCH);
2643 if (kobj_read_file(file, (char *)symxtbl, symxhdr->sh_size,
2644 symxhdr->sh_offset) < 0) {
2645 _kobj_printf(ops,
2646 "%s failed to read symbol shndx table\n",
2647 file->_name);
2648 goto out;
2649 }
2650 }
2651
2652 /*
2653 * loop through the symbol table adjusting values to account
2654 * for where each section got loaded into memory. Also
2655 * fill in the hash table.
2656 */
2657 for (i = 1; i < mp->nsyms; i++) {
2658 Elf32_Word shndx;
2659
2660 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
2661
2662 /*
2663 * If the section header value is the sentinel value SHN_XINDEX
2664 * and we found a SHT_SYMTAB_SHNDX section, look up the
2665 * real index from there.
2666 */
2667 shndx = sp->st_shndx;
2668 if (shndx == SHN_XINDEX && symxhdr != NULL) {
2669 if (i * sizeof (Elf32_Word) >= symxhdr->sh_size) {
2670 _kobj_printf(ops,
2671 "%s extended shndx out of range ",
2672 file->_name);
2673 _kobj_printf(ops, "in symbol %d\n", i);
2674 goto out;
2675 }
2676 shndx = symxtbl[i];
2677 }
2678
2679 if (shndx < SHN_LORESERVE) {
2680 if (shndx >= mp->shnum) {
2681 _kobj_printf(ops, "%s bad shndx ",
2682 file->_name);
2683 _kobj_printf(ops, "in symbol %d\n", i);
2684 goto out;
2685 }
2686 shp = (Shdr *)(mp->shdrs + shndx * mp->hdr.e_shentsize);
2687 if (!(mp->flags & KOBJ_EXEC))
2688 sp->st_value += shp->sh_addr;
2689 }
2690
2691 if (sp->st_name == 0 || shndx == SHN_UNDEF)
2692 continue;
2693 if (sp->st_name >= mp->strhdr->sh_size)
2694 goto out;
2695
2696 symname = mp->strings + sp->st_name;
2697
2698 if (!(mp->flags & KOBJ_EXEC) &&
2699 ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
2700 ksp = kobj_lookup_all(mp, symname, 0);
2701
2702 if (ksp && ELF_ST_BIND(ksp->st_info) == STB_GLOBAL &&
2703 !kobj_suppress_warning(symname) &&
2704 sp->st_shndx != SHN_UNDEF &&
2705 sp->st_shndx != SHN_COMMON &&
2706 ksp->st_shndx != SHN_UNDEF &&
2707 ksp->st_shndx != SHN_COMMON) {
2708 /*
2709 * Unless this symbol is a stub, it's multiply
2710 * defined. Multiply-defined symbols are
2711 * usually bad, but some objects (kmdb) have
2712 * a legitimate need to have their own
2713 * copies of common functions.
2714 */
2715 if ((standalone ||
2716 ksp->st_value < (uintptr_t)stubs_base ||
2717 ksp->st_value >= (uintptr_t)stubs_end) &&
2718 !(mp->flags & KOBJ_IGNMULDEF)) {
2719 _kobj_printf(ops,
2720 "%s symbol ", file->_name);
2721 _kobj_printf(ops,
2722 "%s multiply defined\n", symname);
2723 }
2724 }
2725 }
2726
2727 sym_insert(mp, symname, i);
2728 }
2729
2730 err = 0;
2731
2732 out:
2733 if (symxhdr != NULL)
2734 kobj_free(symxtbl, symxhdr->sh_size);
2735
2736 return (err);
2737 }
2738
2739 static int
get_ctf(struct module * mp,struct _buf * file)2740 get_ctf(struct module *mp, struct _buf *file)
2741 {
2742 char *shstrtab, *ctfdata;
2743 size_t shstrlen;
2744 Shdr *shp;
2745 uint_t i;
2746
2747 if (_moddebug & MODDEBUG_NOCTF)
2748 return (0); /* do not attempt to even load CTF data */
2749
2750 if (mp->shstrndx >= mp->shnum) {
2751 _kobj_printf(ops, "krtld: get_ctf: %s, ",
2752 mp->filename);
2753 _kobj_printf(ops, "corrupt shstrndx %u\n",
2754 mp->shstrndx);
2755 return (-1);
2756 }
2757
2758 shp = (Shdr *)(mp->shdrs + mp->shstrndx * mp->hdr.e_shentsize);
2759 shstrlen = shp->sh_size;
2760 shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2761
2762 if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2763 _kobj_printf(ops, "krtld: get_ctf: %s, ",
2764 mp->filename);
2765 _kobj_printf(ops, "error reading section %u\n",
2766 mp->shstrndx);
2767 kobj_free(shstrtab, shstrlen);
2768 return (-1);
2769 }
2770
2771 for (i = 0; i < mp->shnum; i++) {
2772 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2773
2774 if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2775 strcmp(shstrtab + shp->sh_name, ".SUNW_ctf") == 0) {
2776 ctfdata = kobj_alloc(shp->sh_size, KM_WAIT|KM_SCRATCH);
2777
2778 if (kobj_read_file(file, ctfdata, shp->sh_size,
2779 shp->sh_offset) < 0) {
2780 _kobj_printf(ops, "krtld: get_ctf: %s, error "
2781 "reading .SUNW_ctf data\n", mp->filename);
2782 kobj_free(ctfdata, shp->sh_size);
2783 kobj_free(shstrtab, shstrlen);
2784 return (-1);
2785 }
2786
2787 mp->ctfdata = ctfdata;
2788 mp->ctfsize = shp->sh_size;
2789 break;
2790 }
2791 }
2792
2793 kobj_free(shstrtab, shstrlen);
2794 return (0);
2795 }
2796
2797 #define SHA1_DIGEST_LENGTH 20 /* SHA1 digest length in bytes */
2798
2799 /*
2800 * Return the hash of the ELF sections that are memory resident.
2801 * i.e. text and data. We skip a SHT_NOBITS section since it occupies
2802 * no space in the file. We use SHA1 here since libelfsign uses
2803 * it and both places need to use the same algorithm.
2804 */
2805 static void
crypto_es_hash(struct module * mp,char * hash,char * shstrtab)2806 crypto_es_hash(struct module *mp, char *hash, char *shstrtab)
2807 {
2808 uint_t shn;
2809 Shdr *shp;
2810 SHA1_CTX ctx;
2811
2812 SHA1Init(&ctx);
2813
2814 for (shn = 1; shn < mp->shnum; shn++) {
2815 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2816 if (!(shp->sh_flags & SHF_ALLOC) || shp->sh_size == 0)
2817 continue;
2818
2819 /*
2820 * The check should ideally be shp->sh_type == SHT_NOBITS.
2821 * However, we can't do that check here as get_progbits()
2822 * resets the type.
2823 */
2824 if (strcmp(shstrtab + shp->sh_name, ".bss") == 0)
2825 continue;
2826 #ifdef KOBJ_DEBUG
2827 if (kobj_debug & D_DEBUG)
2828 _kobj_printf(ops,
2829 "krtld: crypto_es_hash: updating hash with"
2830 " %s data size=%lx\n", shstrtab + shp->sh_name,
2831 (size_t)shp->sh_size);
2832 #endif
2833 ASSERT(shp->sh_addr != 0);
2834 SHA1Update(&ctx, (const uint8_t *)shp->sh_addr, shp->sh_size);
2835 }
2836
2837 SHA1Final((uchar_t *)hash, &ctx);
2838 }
2839
2840 /*
2841 * Get the .SUNW_signature section for the module, it it exists.
2842 *
2843 * This section exists only for crypto modules. None of the
2844 * primary modules have this section currently.
2845 */
2846 static void
get_signature(struct module * mp,struct _buf * file)2847 get_signature(struct module *mp, struct _buf *file)
2848 {
2849 char *shstrtab, *sigdata = NULL;
2850 size_t shstrlen;
2851 Shdr *shp;
2852 uint_t i;
2853
2854 if (mp->shstrndx >= mp->shnum) {
2855 _kobj_printf(ops, "krtld: get_signature: %s, ",
2856 mp->filename);
2857 _kobj_printf(ops, "corrupt shstrndx %u\n",
2858 mp->shstrndx);
2859 return;
2860 }
2861
2862 shp = (Shdr *)(mp->shdrs + mp->shstrndx * mp->hdr.e_shentsize);
2863 shstrlen = shp->sh_size;
2864 shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2865
2866 if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2867 _kobj_printf(ops, "krtld: get_signature: %s, ",
2868 mp->filename);
2869 _kobj_printf(ops, "error reading section %u\n",
2870 mp->shstrndx);
2871 kobj_free(shstrtab, shstrlen);
2872 return;
2873 }
2874
2875 for (i = 0; i < mp->shnum; i++) {
2876 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2877 if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2878 strcmp(shstrtab + shp->sh_name,
2879 ELF_SIGNATURE_SECTION) == 0) {
2880 filesig_vers_t filesig_version;
2881 size_t sigsize = shp->sh_size + SHA1_DIGEST_LENGTH;
2882 sigdata = kobj_alloc(sigsize, KM_WAIT|KM_SCRATCH);
2883
2884 if (kobj_read_file(file, sigdata, shp->sh_size,
2885 shp->sh_offset) < 0) {
2886 _kobj_printf(ops, "krtld: get_signature: %s,"
2887 " error reading .SUNW_signature data\n",
2888 mp->filename);
2889 kobj_free(sigdata, sigsize);
2890 kobj_free(shstrtab, shstrlen);
2891 return;
2892 }
2893 filesig_version = ((struct filesignatures *)sigdata)->
2894 filesig_sig.filesig_version;
2895 if (!(filesig_version == FILESIG_VERSION1 ||
2896 filesig_version == FILESIG_VERSION3)) {
2897 /* skip versions we don't understand */
2898 kobj_free(sigdata, sigsize);
2899 kobj_free(shstrtab, shstrlen);
2900 return;
2901 }
2902
2903 mp->sigdata = sigdata;
2904 mp->sigsize = sigsize;
2905 break;
2906 }
2907 }
2908
2909 if (sigdata != NULL) {
2910 crypto_es_hash(mp, sigdata + shp->sh_size, shstrtab);
2911 }
2912
2913 kobj_free(shstrtab, shstrlen);
2914 }
2915
2916 static void
add_dependent(struct module * mp,struct module * dep)2917 add_dependent(struct module *mp, struct module *dep)
2918 {
2919 struct module_list *lp;
2920
2921 for (lp = mp->head; lp; lp = lp->next) {
2922 if (lp->mp == dep)
2923 return; /* already on the list */
2924 }
2925
2926 if (lp == NULL) {
2927 lp = kobj_zalloc(sizeof (*lp), KM_WAIT);
2928
2929 lp->mp = dep;
2930 lp->next = NULL;
2931 if (mp->tail)
2932 mp->tail->next = lp;
2933 else
2934 mp->head = lp;
2935 mp->tail = lp;
2936 }
2937 }
2938
2939 static int
do_dependents(struct modctl * modp,char * modname,size_t modnamelen)2940 do_dependents(struct modctl *modp, char *modname, size_t modnamelen)
2941 {
2942 struct module *mp;
2943 struct modctl *req;
2944 char *d, *p, *q;
2945 int c;
2946 char *err_modname = NULL;
2947
2948 mp = modp->mod_mp;
2949
2950 if ((p = mp->depends_on) == NULL)
2951 return (0);
2952
2953 for (;;) {
2954 /*
2955 * Skip space.
2956 */
2957 while (*p && (*p == ' ' || *p == '\t'))
2958 p++;
2959 /*
2960 * Get module name.
2961 */
2962 d = p;
2963 q = modname;
2964 c = 0;
2965 while (*p && *p != ' ' && *p != '\t') {
2966 if (c < modnamelen - 1) {
2967 *q++ = *p;
2968 c++;
2969 }
2970 p++;
2971 }
2972
2973 if (q == modname)
2974 break;
2975
2976 if (c == modnamelen - 1) {
2977 char *dep = kobj_alloc(p - d + 1, KM_WAIT|KM_TMP);
2978
2979 (void) strncpy(dep, d, p - d + 1);
2980 dep[p - d] = '\0';
2981
2982 _kobj_printf(ops, "%s: dependency ", modp->mod_modname);
2983 _kobj_printf(ops, "'%s' too long ", dep);
2984 _kobj_printf(ops, "(max %d chars)\n", (int)modnamelen);
2985
2986 kobj_free(dep, p - d + 1);
2987
2988 return (-1);
2989 }
2990
2991 *q = '\0';
2992 if ((req = mod_load_requisite(modp, modname)) == NULL) {
2993 #ifndef KOBJ_DEBUG
2994 if (_moddebug & MODDEBUG_LOADMSG) {
2995 #endif /* KOBJ_DEBUG */
2996 _kobj_printf(ops,
2997 "%s: unable to resolve dependency, ",
2998 modp->mod_modname);
2999 _kobj_printf(ops, "cannot load module '%s'\n",
3000 modname);
3001 #ifndef KOBJ_DEBUG
3002 }
3003 #endif /* KOBJ_DEBUG */
3004 if (err_modname == NULL) {
3005 /*
3006 * This must be the same size as the modname
3007 * one.
3008 */
3009 err_modname = kobj_zalloc(MODMAXNAMELEN,
3010 KM_WAIT);
3011
3012 /*
3013 * We can use strcpy() here without fearing
3014 * the NULL terminator because the size of
3015 * err_modname is the same as one of modname,
3016 * and it's filled with zeros.
3017 */
3018 (void) strcpy(err_modname, modname);
3019 }
3020 continue;
3021 }
3022
3023 add_dependent(mp, req->mod_mp);
3024 mod_release_mod(req);
3025
3026 }
3027
3028 if (err_modname != NULL) {
3029 /*
3030 * Copy the first module name where you detect an error to keep
3031 * its behavior the same as before.
3032 * This way keeps minimizing the memory use for error
3033 * modules, and this might be important at boot time because
3034 * the memory usage is a crucial factor for booting in most
3035 * cases. You can expect more verbose messages when using
3036 * a debug kernel or setting a bit in moddebug.
3037 */
3038 bzero(modname, MODMAXNAMELEN);
3039 (void) strcpy(modname, err_modname);
3040 kobj_free(err_modname, MODMAXNAMELEN);
3041 return (-1);
3042 }
3043
3044 return (0);
3045 }
3046
3047 static int
do_common(struct module * mp)3048 do_common(struct module *mp)
3049 {
3050 int err;
3051
3052 /*
3053 * first time through, assign all symbols defined in other
3054 * modules, and count up how much common space will be needed
3055 * (bss_size and bss_align)
3056 */
3057 if ((err = do_symbols(mp, 0)) < 0)
3058 return (err);
3059 /*
3060 * increase bss_size by the maximum delta that could be
3061 * computed by the ALIGN below
3062 */
3063 mp->bss_size += mp->bss_align;
3064 if (mp->bss_size) {
3065 if (standalone)
3066 mp->bss = (uintptr_t)kobj_segbrk(&_edata, mp->bss_size,
3067 MINALIGN, 0);
3068 else
3069 mp->bss = (uintptr_t)vmem_alloc(data_arena,
3070 mp->bss_size, VM_SLEEP | VM_BESTFIT);
3071 bzero((void *)mp->bss, mp->bss_size);
3072 /* now assign addresses to all common symbols */
3073 if ((err = do_symbols(mp, ALIGN(mp->bss, mp->bss_align))) < 0)
3074 return (err);
3075 }
3076 return (0);
3077 }
3078
3079 static int
do_symbols(struct module * mp,Elf64_Addr bss_base)3080 do_symbols(struct module *mp, Elf64_Addr bss_base)
3081 {
3082 int bss_align;
3083 uintptr_t bss_ptr;
3084 int err;
3085 int i;
3086 Sym *sp, *sp1;
3087 char *name;
3088 int assign;
3089 int resolved = 1;
3090
3091 /*
3092 * Nothing left to do (optimization).
3093 */
3094 if (mp->flags & KOBJ_RESOLVED)
3095 return (0);
3096
3097 assign = (bss_base) ? 1 : 0;
3098 bss_ptr = bss_base;
3099 bss_align = 0;
3100 err = 0;
3101
3102 for (i = 1; i < mp->nsyms; i++) {
3103 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * i);
3104 /*
3105 * we know that st_name is in bounds, since get_sections
3106 * has already checked all of the symbols
3107 */
3108 name = mp->strings + sp->st_name;
3109 if (sp->st_shndx != SHN_UNDEF && sp->st_shndx != SHN_COMMON)
3110 continue;
3111 #if defined(__sparc)
3112 /*
3113 * Register symbols are ignored in the kernel
3114 */
3115 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) {
3116 if (*name != '\0') {
3117 _kobj_printf(ops, "%s: named REGISTER symbol ",
3118 mp->filename);
3119 _kobj_printf(ops, "not supported '%s'\n",
3120 name);
3121 err = DOSYM_UNDEF;
3122 }
3123 continue;
3124 }
3125 #endif /* __sparc */
3126 /*
3127 * TLS symbols are ignored in the kernel
3128 */
3129 if (ELF_ST_TYPE(sp->st_info) == STT_TLS) {
3130 _kobj_printf(ops, "%s: TLS symbol ",
3131 mp->filename);
3132 _kobj_printf(ops, "not supported '%s'\n",
3133 name);
3134 err = DOSYM_UNDEF;
3135 continue;
3136 }
3137
3138 if (ELF_ST_BIND(sp->st_info) != STB_LOCAL) {
3139 if ((sp1 = kobj_lookup_all(mp, name, 0)) != NULL) {
3140 sp->st_shndx = SHN_ABS;
3141 sp->st_value = sp1->st_value;
3142 continue;
3143 }
3144 }
3145
3146 if (sp->st_shndx == SHN_UNDEF) {
3147 resolved = 0;
3148
3149 /*
3150 * Skip over sdt probes and smap calls,
3151 * they're relocated later.
3152 */
3153 if (strncmp(name, sdt_prefix, strlen(sdt_prefix)) == 0)
3154 continue;
3155 #if defined(__x86)
3156 if (strcmp(name, "smap_enable") == 0 ||
3157 strcmp(name, "smap_disable") == 0)
3158 continue;
3159 #endif /* defined(__x86) */
3160
3161
3162 /*
3163 * If it's not a weak reference and it's
3164 * not a primary object, it's an error.
3165 * (Primary objects may take more than
3166 * one pass to resolve)
3167 */
3168 if (!(mp->flags & KOBJ_PRIM) &&
3169 ELF_ST_BIND(sp->st_info) != STB_WEAK) {
3170 _kobj_printf(ops, "%s: undefined symbol",
3171 mp->filename);
3172 _kobj_printf(ops, " '%s'\n", name);
3173 /*
3174 * Try to determine whether this symbol
3175 * represents a dependency on obsolete
3176 * unsafe driver support. This is just
3177 * to make the warning more informative.
3178 */
3179 if (strcmp(name, "sleep") == 0 ||
3180 strcmp(name, "unsleep") == 0 ||
3181 strcmp(name, "wakeup") == 0 ||
3182 strcmp(name, "bsd_compat_ioctl") == 0 ||
3183 strcmp(name, "unsafe_driver") == 0 ||
3184 strncmp(name, "spl", 3) == 0 ||
3185 strncmp(name, "i_ddi_spl", 9) == 0)
3186 err = DOSYM_UNSAFE;
3187 if (err == 0)
3188 err = DOSYM_UNDEF;
3189 }
3190 continue;
3191 }
3192 /*
3193 * It's a common symbol - st_value is the
3194 * required alignment.
3195 */
3196 if (sp->st_value > bss_align)
3197 bss_align = sp->st_value;
3198 bss_ptr = ALIGN(bss_ptr, sp->st_value);
3199 if (assign) {
3200 sp->st_shndx = SHN_ABS;
3201 sp->st_value = bss_ptr;
3202 }
3203 bss_ptr += sp->st_size;
3204 }
3205 if (err)
3206 return (err);
3207 if (assign == 0 && mp->bss == 0) {
3208 mp->bss_align = bss_align;
3209 mp->bss_size = bss_ptr;
3210 } else if (resolved) {
3211 mp->flags |= KOBJ_RESOLVED;
3212 }
3213
3214 return (0);
3215 }
3216
3217 uint_t
kobj_hash_name(const char * p)3218 kobj_hash_name(const char *p)
3219 {
3220 uint_t g;
3221 uint_t hval;
3222
3223 hval = 0;
3224 while (*p) {
3225 hval = (hval << 4) + *p++;
3226 if ((g = (hval & 0xf0000000)) != 0)
3227 hval ^= g >> 24;
3228 hval &= ~g;
3229 }
3230 return (hval);
3231 }
3232
3233 /* look for name in all modules */
3234 uintptr_t
kobj_getsymvalue(char * name,int kernelonly)3235 kobj_getsymvalue(char *name, int kernelonly)
3236 {
3237 Sym *sp;
3238 struct modctl *modp;
3239 struct module *mp;
3240 uintptr_t value = 0;
3241
3242 if ((sp = kobj_lookup_kernel(name)) != NULL)
3243 return ((uintptr_t)sp->st_value);
3244
3245 if (kernelonly)
3246 return (0); /* didn't find it in the kernel so give up */
3247
3248 mutex_enter(&mod_lock);
3249 modp = &modules;
3250 do {
3251 mp = (struct module *)modp->mod_mp;
3252 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3253 (sp = lookup_one(mp, name))) {
3254 value = (uintptr_t)sp->st_value;
3255 break;
3256 }
3257 } while ((modp = modp->mod_next) != &modules);
3258 mutex_exit(&mod_lock);
3259 return (value);
3260 }
3261
3262 /* look for a symbol near value. */
3263 char *
kobj_getsymname(uintptr_t value,ulong_t * offset)3264 kobj_getsymname(uintptr_t value, ulong_t *offset)
3265 {
3266 char *name = NULL;
3267 struct modctl *modp;
3268
3269 struct modctl_list *lp;
3270 struct module *mp;
3271
3272 /*
3273 * Trap handler got us there, but we may not have whole kernel yet.
3274 */
3275 if (standalone)
3276 return (NULL);
3277
3278 /*
3279 * Loop through the primary kernel modules.
3280 */
3281 for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3282 mp = mod(lp);
3283
3284 if ((name = kobj_searchsym(mp, value, offset)) != NULL)
3285 return (name);
3286 }
3287
3288 mutex_enter(&mod_lock);
3289 modp = &modules;
3290 do {
3291 mp = (struct module *)modp->mod_mp;
3292 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3293 (name = kobj_searchsym(mp, value, offset)))
3294 break;
3295 } while ((modp = modp->mod_next) != &modules);
3296 mutex_exit(&mod_lock);
3297 return (name);
3298 }
3299
3300 /* return address of symbol and size */
3301
3302 uintptr_t
kobj_getelfsym(char * name,void * mp,int * size)3303 kobj_getelfsym(char *name, void *mp, int *size)
3304 {
3305 Sym *sp;
3306
3307 if (mp == NULL)
3308 sp = kobj_lookup_kernel(name);
3309 else
3310 sp = lookup_one(mp, name);
3311
3312 if (sp == NULL)
3313 return (0);
3314
3315 *size = (int)sp->st_size;
3316 return ((uintptr_t)sp->st_value);
3317 }
3318
3319 uintptr_t
kobj_lookup(struct module * mod,const char * name)3320 kobj_lookup(struct module *mod, const char *name)
3321 {
3322 Sym *sp;
3323
3324 sp = lookup_one(mod, name);
3325
3326 if (sp == NULL)
3327 return (0);
3328
3329 return ((uintptr_t)sp->st_value);
3330 }
3331
3332 char *
kobj_searchsym(struct module * mp,uintptr_t value,ulong_t * offset)3333 kobj_searchsym(struct module *mp, uintptr_t value, ulong_t *offset)
3334 {
3335 Sym *symtabptr;
3336 char *strtabptr;
3337 int symnum;
3338 Sym *sym;
3339 Sym *cursym;
3340 uintptr_t curval;
3341
3342 *offset = (ulong_t)-1l; /* assume not found */
3343 cursym = NULL;
3344
3345 if (kobj_addrcheck(mp, (void *)value) != 0)
3346 return (NULL); /* not in this module */
3347
3348 strtabptr = mp->strings;
3349 symtabptr = (Sym *)mp->symtbl;
3350
3351 /*
3352 * Scan the module's symbol table for a symbol <= value
3353 */
3354 for (symnum = 1, sym = symtabptr + 1;
3355 symnum < mp->nsyms; symnum++, sym = (Sym *)
3356 ((uintptr_t)sym + mp->symhdr->sh_entsize)) {
3357 if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL) {
3358 if (ELF_ST_BIND(sym->st_info) != STB_LOCAL)
3359 continue;
3360 if (ELF_ST_TYPE(sym->st_info) != STT_OBJECT &&
3361 ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3362 continue;
3363 }
3364
3365 curval = (uintptr_t)sym->st_value;
3366
3367 if (curval > value)
3368 continue;
3369
3370 /*
3371 * If one or both are functions...
3372 */
3373 if (ELF_ST_TYPE(sym->st_info) == STT_FUNC || (cursym != NULL &&
3374 ELF_ST_TYPE(cursym->st_info) == STT_FUNC)) {
3375 /* Ignore if the address is out of the bounds */
3376 if (value - sym->st_value >= sym->st_size)
3377 continue;
3378
3379 if (cursym != NULL &&
3380 ELF_ST_TYPE(cursym->st_info) == STT_FUNC) {
3381 /* Prefer the function to the non-function */
3382 if (ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3383 continue;
3384
3385 /* Prefer the larger of the two functions */
3386 if (sym->st_size <= cursym->st_size)
3387 continue;
3388 }
3389 } else if (value - curval >= *offset) {
3390 continue;
3391 }
3392
3393 *offset = (ulong_t)(value - curval);
3394 cursym = sym;
3395 }
3396 if (cursym == NULL)
3397 return (NULL);
3398
3399 return (strtabptr + cursym->st_name);
3400 }
3401
3402 Sym *
kobj_lookup_all(struct module * mp,char * name,int include_self)3403 kobj_lookup_all(struct module *mp, char *name, int include_self)
3404 {
3405 Sym *sp;
3406 struct module_list *mlp;
3407 struct modctl_list *clp;
3408 struct module *mmp;
3409
3410 if (include_self && (sp = lookup_one(mp, name)) != NULL)
3411 return (sp);
3412
3413 for (mlp = mp->head; mlp; mlp = mlp->next) {
3414 if ((sp = lookup_one(mlp->mp, name)) != NULL &&
3415 ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3416 return (sp);
3417 }
3418
3419 /*
3420 * Loop through the primary kernel modules.
3421 */
3422 for (clp = kobj_lm_lookup(KOBJ_LM_PRIMARY); clp; clp = clp->modl_next) {
3423 mmp = mod(clp);
3424
3425 if (mmp == NULL || mp == mmp)
3426 continue;
3427
3428 if ((sp = lookup_one(mmp, name)) != NULL &&
3429 ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3430 return (sp);
3431 }
3432 return (NULL);
3433 }
3434
3435 Sym *
kobj_lookup_kernel(const char * name)3436 kobj_lookup_kernel(const char *name)
3437 {
3438 struct modctl_list *lp;
3439 struct module *mp;
3440 Sym *sp;
3441
3442 /*
3443 * Loop through the primary kernel modules.
3444 */
3445 for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3446 mp = mod(lp);
3447
3448 if (mp == NULL)
3449 continue;
3450
3451 if ((sp = lookup_one(mp, name)) != NULL)
3452 return (sp);
3453 }
3454 return (NULL);
3455 }
3456
3457 static Sym *
lookup_one(struct module * mp,const char * name)3458 lookup_one(struct module *mp, const char *name)
3459 {
3460 symid_t *ip;
3461 char *name1;
3462 Sym *sp;
3463
3464 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3465 ip = &mp->chains[*ip]) {
3466 sp = (Sym *)(mp->symtbl +
3467 mp->symhdr->sh_entsize * *ip);
3468 name1 = mp->strings + sp->st_name;
3469 if (strcmp(name, name1) == 0 &&
3470 ELF_ST_TYPE(sp->st_info) != STT_FILE &&
3471 sp->st_shndx != SHN_UNDEF &&
3472 sp->st_shndx != SHN_COMMON)
3473 return (sp);
3474 }
3475 return (NULL);
3476 }
3477
3478 /*
3479 * Lookup a given symbol pointer in the module's symbol hash. If the symbol
3480 * is hashed, return the symbol pointer; otherwise return NULL.
3481 */
3482 static Sym *
sym_lookup(struct module * mp,Sym * ksp)3483 sym_lookup(struct module *mp, Sym *ksp)
3484 {
3485 char *name = mp->strings + ksp->st_name;
3486 symid_t *ip;
3487 Sym *sp;
3488
3489 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3490 ip = &mp->chains[*ip]) {
3491 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * *ip);
3492 if (sp == ksp)
3493 return (ksp);
3494 }
3495 return (NULL);
3496 }
3497
3498 static void
sym_insert(struct module * mp,char * name,symid_t index)3499 sym_insert(struct module *mp, char *name, symid_t index)
3500 {
3501 symid_t *ip;
3502
3503 #ifdef KOBJ_DEBUG
3504 if (kobj_debug & D_SYMBOLS) {
3505 static struct module *lastmp = NULL;
3506 Sym *sp;
3507 if (lastmp != mp) {
3508 _kobj_printf(ops,
3509 "krtld: symbol entry: file=%s\n",
3510 mp->filename);
3511 _kobj_printf(ops,
3512 "krtld:\tsymndx\tvalue\t\t"
3513 "symbol name\n");
3514 lastmp = mp;
3515 }
3516 sp = (Sym *)(mp->symtbl +
3517 index * mp->symhdr->sh_entsize);
3518 _kobj_printf(ops, "krtld:\t[%3d]", index);
3519 _kobj_printf(ops, "\t0x%lx", sp->st_value);
3520 _kobj_printf(ops, "\t%s\n", name);
3521 }
3522 #endif
3523
3524 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3525 ip = &mp->chains[*ip]) {
3526 ;
3527 }
3528 *ip = index;
3529 }
3530
3531 struct modctl *
kobj_boot_mod_lookup(const char * modname)3532 kobj_boot_mod_lookup(const char *modname)
3533 {
3534 struct modctl *mctl = kobj_modules;
3535
3536 do {
3537 if (strcmp(modname, mctl->mod_modname) == 0)
3538 return (mctl);
3539 } while ((mctl = mctl->mod_next) != kobj_modules);
3540
3541 return (NULL);
3542 }
3543
3544 /*
3545 * Determine if the module exists.
3546 */
3547 int
kobj_path_exists(char * name,int use_path)3548 kobj_path_exists(char *name, int use_path)
3549 {
3550 struct _buf *file;
3551
3552 file = kobj_open_path(name, use_path, 1);
3553 #ifdef MODDIR_SUFFIX
3554 if (file == (struct _buf *)-1)
3555 file = kobj_open_path(name, use_path, 0);
3556 #endif /* MODDIR_SUFFIX */
3557 if (file == (struct _buf *)-1)
3558 return (0);
3559 kobj_close_file(file);
3560 return (1);
3561 }
3562
3563 /*
3564 * fullname is dynamically allocated to be able to hold the
3565 * maximum size string that can be constructed from name.
3566 * path is exactly like the shell PATH variable.
3567 */
3568 struct _buf *
kobj_open_path(char * name,int use_path,int use_moddir_suffix)3569 kobj_open_path(char *name, int use_path, int use_moddir_suffix)
3570 {
3571 char *p, *q;
3572 char *pathp;
3573 char *pathpsave;
3574 char *fullname;
3575 int maxpathlen;
3576 struct _buf *file;
3577
3578 #if !defined(MODDIR_SUFFIX)
3579 use_moddir_suffix = B_FALSE;
3580 #endif
3581
3582 if (!use_path)
3583 pathp = ""; /* use name as specified */
3584 else
3585 pathp = kobj_module_path;
3586 /* use configured default path */
3587
3588 pathpsave = pathp; /* keep this for error reporting */
3589
3590 /*
3591 * Allocate enough space for the largest possible fullname.
3592 * since path is of the form <directory> : <directory> : ...
3593 * we're potentially allocating a little more than we need to
3594 * but we'll allocate the exact amount when we find the right directory.
3595 * (The + 3 below is one for NULL terminator and one for the '/'
3596 * we might have to add at the beginning of path and one for
3597 * the '/' between path and name.)
3598 */
3599 maxpathlen = strlen(pathp) + strlen(name) + 3;
3600 /* sizeof includes null */
3601 maxpathlen += sizeof (slash_moddir_suffix_slash) - 1;
3602 fullname = kobj_zalloc(maxpathlen, KM_WAIT);
3603
3604 for (;;) {
3605 p = fullname;
3606 if (*pathp != '\0' && *pathp != '/')
3607 *p++ = '/'; /* path must start with '/' */
3608 while (*pathp && *pathp != ':' && *pathp != ' ')
3609 *p++ = *pathp++;
3610 if (p != fullname && p[-1] != '/')
3611 *p++ = '/';
3612 if (use_moddir_suffix) {
3613 char *b = basename(name);
3614 char *s;
3615
3616 /* copy everything up to the base name */
3617 q = name;
3618 while (q != b && *q)
3619 *p++ = *q++;
3620 s = slash_moddir_suffix_slash;
3621 while (*s)
3622 *p++ = *s++;
3623 /* copy the rest */
3624 while (*b)
3625 *p++ = *b++;
3626 } else {
3627 q = name;
3628 while (*q)
3629 *p++ = *q++;
3630 }
3631 *p = 0;
3632 if ((file = kobj_open_file(fullname)) != (struct _buf *)-1) {
3633 kobj_free(fullname, maxpathlen);
3634 return (file);
3635 }
3636 while (*pathp == ' ' || *pathp == ':')
3637 pathp++;
3638 if (*pathp == 0)
3639 break;
3640
3641 }
3642 kobj_free(fullname, maxpathlen);
3643 if (_moddebug & MODDEBUG_ERRMSG) {
3644 _kobj_printf(ops, "can't open %s,", name);
3645 _kobj_printf(ops, " path is %s\n", pathpsave);
3646 }
3647 return ((struct _buf *)-1);
3648 }
3649
3650 intptr_t
kobj_open(char * filename)3651 kobj_open(char *filename)
3652 {
3653 struct vnode *vp;
3654 int fd;
3655
3656 if (_modrootloaded) {
3657 struct kobjopen_tctl *ltp = kobjopen_alloc(filename);
3658 int Errno;
3659
3660 /*
3661 * Hand off the open to a thread who has a
3662 * stack size capable handling the request.
3663 */
3664 if (curthread != &t0) {
3665 (void) thread_create(NULL, DEFAULTSTKSZ * 2,
3666 kobjopen_thread, ltp, 0, &p0, TS_RUN, maxclsyspri);
3667 sema_p(<p->sema);
3668 Errno = ltp->Errno;
3669 vp = ltp->vp;
3670 } else {
3671 /*
3672 * 1098067: module creds should not be those of the
3673 * caller
3674 */
3675 cred_t *saved_cred = curthread->t_cred;
3676 curthread->t_cred = kcred;
3677 Errno = vn_openat(filename, UIO_SYSSPACE, FREAD, 0, &vp,
3678 0, 0, rootdir, -1);
3679 curthread->t_cred = saved_cred;
3680 }
3681 kobjopen_free(ltp);
3682
3683 if (Errno) {
3684 if (_moddebug & MODDEBUG_ERRMSG) {
3685 _kobj_printf(ops,
3686 "kobj_open: vn_open of %s fails, ",
3687 filename);
3688 _kobj_printf(ops, "Errno = %d\n", Errno);
3689 }
3690 return (-1);
3691 } else {
3692 if (_moddebug & MODDEBUG_ERRMSG) {
3693 _kobj_printf(ops, "kobj_open: '%s'", filename);
3694 _kobj_printf(ops, " vp = %p\n", vp);
3695 }
3696 return ((intptr_t)vp);
3697 }
3698 } else {
3699 fd = kobj_boot_open(filename, 0);
3700
3701 if (_moddebug & MODDEBUG_ERRMSG) {
3702 if (fd < 0)
3703 _kobj_printf(ops,
3704 "kobj_open: can't open %s\n", filename);
3705 else {
3706 _kobj_printf(ops, "kobj_open: '%s'", filename);
3707 _kobj_printf(ops, " descr = 0x%x\n", fd);
3708 }
3709 }
3710 return ((intptr_t)fd);
3711 }
3712 }
3713
3714 /*
3715 * Calls to kobj_open() are handled off to this routine as a separate thread.
3716 */
3717 static void
kobjopen_thread(struct kobjopen_tctl * ltp)3718 kobjopen_thread(struct kobjopen_tctl *ltp)
3719 {
3720 kmutex_t cpr_lk;
3721 callb_cpr_t cpr_i;
3722
3723 mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL);
3724 CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "kobjopen");
3725 ltp->Errno = vn_open(ltp->name, UIO_SYSSPACE, FREAD, 0, &(ltp->vp),
3726 0, 0);
3727 sema_v(<p->sema);
3728 mutex_enter(&cpr_lk);
3729 CALLB_CPR_EXIT(&cpr_i);
3730 mutex_destroy(&cpr_lk);
3731 thread_exit();
3732 }
3733
3734 /*
3735 * allocate and initialize a kobjopen thread structure
3736 */
3737 static struct kobjopen_tctl *
kobjopen_alloc(char * filename)3738 kobjopen_alloc(char *filename)
3739 {
3740 struct kobjopen_tctl *ltp = kmem_zalloc(sizeof (*ltp), KM_SLEEP);
3741
3742 ASSERT(filename != NULL);
3743
3744 ltp->name = kmem_alloc(strlen(filename) + 1, KM_SLEEP);
3745 bcopy(filename, ltp->name, strlen(filename) + 1);
3746 sema_init(<p->sema, 0, NULL, SEMA_DEFAULT, NULL);
3747 return (ltp);
3748 }
3749
3750 /*
3751 * free a kobjopen thread control structure
3752 */
3753 static void
kobjopen_free(struct kobjopen_tctl * ltp)3754 kobjopen_free(struct kobjopen_tctl *ltp)
3755 {
3756 sema_destroy(<p->sema);
3757 kmem_free(ltp->name, strlen(ltp->name) + 1);
3758 kmem_free(ltp, sizeof (*ltp));
3759 }
3760
3761 int
kobj_read(intptr_t descr,char * buf,uint_t size,uint_t offset)3762 kobj_read(intptr_t descr, char *buf, uint_t size, uint_t offset)
3763 {
3764 int stat;
3765 ssize_t resid;
3766
3767 if (_modrootloaded) {
3768 if ((stat = vn_rdwr(UIO_READ, (struct vnode *)descr, buf, size,
3769 (offset_t)offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3770 &resid)) != 0) {
3771 _kobj_printf(ops,
3772 "vn_rdwr failed with error 0x%x\n", stat);
3773 return (-1);
3774 }
3775 return (size - resid);
3776 } else {
3777 int count = 0;
3778
3779 if (kobj_boot_seek((int)descr, (off_t)0, offset) != 0) {
3780 _kobj_printf(ops,
3781 "kobj_read: seek 0x%x failed\n", offset);
3782 return (-1);
3783 }
3784
3785 count = kobj_boot_read((int)descr, buf, size);
3786 if (count < size) {
3787 if (_moddebug & MODDEBUG_ERRMSG) {
3788 _kobj_printf(ops,
3789 "kobj_read: req %d bytes, ", size);
3790 _kobj_printf(ops, "got %d\n", count);
3791 }
3792 }
3793 return (count);
3794 }
3795 }
3796
3797 void
kobj_close(intptr_t descr)3798 kobj_close(intptr_t descr)
3799 {
3800 if (_moddebug & MODDEBUG_ERRMSG)
3801 _kobj_printf(ops, "kobj_close: 0x%lx\n", descr);
3802
3803 if (_modrootloaded) {
3804 struct vnode *vp = (struct vnode *)descr;
3805 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL);
3806 VN_RELE(vp);
3807 } else
3808 (void) kobj_boot_close((int)descr);
3809 }
3810
3811 int
kobj_fstat(intptr_t descr,struct bootstat * buf)3812 kobj_fstat(intptr_t descr, struct bootstat *buf)
3813 {
3814 if (buf == NULL)
3815 return (-1);
3816
3817 if (_modrootloaded) {
3818 vattr_t vattr;
3819 struct vnode *vp = (struct vnode *)descr;
3820 if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0)
3821 return (-1);
3822
3823 /*
3824 * The vattr and bootstat structures are similar, but not
3825 * identical. We do our best to fill in the bootstat structure
3826 * from the contents of vattr (transfering only the ones that
3827 * are obvious.
3828 */
3829
3830 buf->st_mode = (uint32_t)vattr.va_mode;
3831 buf->st_nlink = (uint32_t)vattr.va_nlink;
3832 buf->st_uid = (int32_t)vattr.va_uid;
3833 buf->st_gid = (int32_t)vattr.va_gid;
3834 buf->st_rdev = (uint64_t)vattr.va_rdev;
3835 buf->st_size = (uint64_t)vattr.va_size;
3836 buf->st_atim.tv_sec = (int64_t)vattr.va_atime.tv_sec;
3837 buf->st_atim.tv_nsec = (int64_t)vattr.va_atime.tv_nsec;
3838 buf->st_mtim.tv_sec = (int64_t)vattr.va_mtime.tv_sec;
3839 buf->st_mtim.tv_nsec = (int64_t)vattr.va_mtime.tv_nsec;
3840 buf->st_ctim.tv_sec = (int64_t)vattr.va_ctime.tv_sec;
3841 buf->st_ctim.tv_nsec = (int64_t)vattr.va_ctime.tv_nsec;
3842 buf->st_blksize = (int32_t)vattr.va_blksize;
3843 buf->st_blocks = (int64_t)vattr.va_nblocks;
3844
3845 return (0);
3846 }
3847
3848 return (kobj_boot_fstat((int)descr, buf));
3849 }
3850
3851
3852 struct _buf *
kobj_open_file(char * name)3853 kobj_open_file(char *name)
3854 {
3855 struct _buf *file;
3856 struct compinfo cbuf;
3857 intptr_t fd;
3858
3859 if ((fd = kobj_open(name)) == -1) {
3860 return ((struct _buf *)-1);
3861 }
3862
3863 file = kobj_zalloc(sizeof (struct _buf), KM_WAIT|KM_TMP);
3864 file->_fd = fd;
3865 file->_name = kobj_alloc(strlen(name)+1, KM_WAIT|KM_TMP);
3866 file->_cnt = file->_size = file->_off = 0;
3867 file->_ln = 1;
3868 file->_ptr = file->_base;
3869 (void) strcpy(file->_name, name);
3870
3871 /*
3872 * Before root is mounted, we must check
3873 * for a compressed file and do our own
3874 * buffering.
3875 */
3876 if (_modrootloaded) {
3877 file->_base = kobj_zalloc(MAXBSIZE, KM_WAIT);
3878 file->_bsize = MAXBSIZE;
3879
3880 /* Check if the file is compressed */
3881 file->_iscmp = kobj_is_compressed(fd);
3882 } else {
3883 if (kobj_boot_compinfo(fd, &cbuf) != 0) {
3884 kobj_close_file(file);
3885 return ((struct _buf *)-1);
3886 }
3887 file->_iscmp = cbuf.iscmp;
3888 if (file->_iscmp) {
3889 if (kobj_comp_setup(file, &cbuf) != 0) {
3890 kobj_close_file(file);
3891 return ((struct _buf *)-1);
3892 }
3893 } else {
3894 file->_base = kobj_zalloc(cbuf.blksize, KM_WAIT|KM_TMP);
3895 file->_bsize = cbuf.blksize;
3896 }
3897 }
3898 return (file);
3899 }
3900
3901 static int
kobj_comp_setup(struct _buf * file,struct compinfo * cip)3902 kobj_comp_setup(struct _buf *file, struct compinfo *cip)
3903 {
3904 struct comphdr *hdr;
3905
3906 /*
3907 * read the compressed image into memory,
3908 * so we can deompress from there
3909 */
3910 file->_dsize = cip->fsize;
3911 file->_dbuf = kobj_alloc(cip->fsize, KM_WAIT|KM_TMP);
3912 if (kobj_read(file->_fd, file->_dbuf, cip->fsize, 0) != cip->fsize) {
3913 kobj_free(file->_dbuf, cip->fsize);
3914 return (-1);
3915 }
3916
3917 hdr = kobj_comphdr(file);
3918 if (hdr->ch_magic != CH_MAGIC_ZLIB || hdr->ch_version != CH_VERSION ||
3919 hdr->ch_algorithm != CH_ALG_ZLIB || hdr->ch_fsize == 0 ||
3920 !ISP2(hdr->ch_blksize)) {
3921 kobj_free(file->_dbuf, cip->fsize);
3922 return (-1);
3923 }
3924 file->_base = kobj_alloc(hdr->ch_blksize, KM_WAIT|KM_TMP);
3925 file->_bsize = hdr->ch_blksize;
3926 return (0);
3927 }
3928
3929 void
kobj_close_file(struct _buf * file)3930 kobj_close_file(struct _buf *file)
3931 {
3932 kobj_close(file->_fd);
3933 if (file->_base != NULL)
3934 kobj_free(file->_base, file->_bsize);
3935 if (file->_dbuf != NULL)
3936 kobj_free(file->_dbuf, file->_dsize);
3937 kobj_free(file->_name, strlen(file->_name)+1);
3938 kobj_free(file, sizeof (struct _buf));
3939 }
3940
3941 int
kobj_read_file(struct _buf * file,char * buf,uint_t size,uint_t off)3942 kobj_read_file(struct _buf *file, char *buf, uint_t size, uint_t off)
3943 {
3944 int b_size, c_size;
3945 int b_off; /* Offset into buffer for start of bcopy */
3946 int count = 0;
3947 int page_addr;
3948
3949 if (_moddebug & MODDEBUG_ERRMSG) {
3950 _kobj_printf(ops, "kobj_read_file: size=%x,", size);
3951 _kobj_printf(ops, " offset=%x at", off);
3952 _kobj_printf(ops, " buf=%lx\n", (uintptr_t)buf);
3953 }
3954
3955 /*
3956 * Handle compressed (gzip for now) file here. First get the
3957 * compressed size, then read the image into memory and finally
3958 * call zlib to decompress the image at the supplied memory buffer.
3959 */
3960 if (file->_iscmp == CH_MAGIC_GZIP) {
3961 ulong_t dlen;
3962 vattr_t vattr;
3963 struct vnode *vp = (struct vnode *)file->_fd;
3964 ssize_t resid;
3965 int err = 0;
3966
3967 if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0)
3968 return (-1);
3969
3970 file->_dbuf = kobj_alloc(vattr.va_size, KM_WAIT|KM_TMP);
3971 file->_dsize = vattr.va_size;
3972
3973 /* Read the compressed file into memory */
3974 if ((err = vn_rdwr(UIO_READ, vp, file->_dbuf, vattr.va_size,
3975 (offset_t)(0), UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3976 &resid)) != 0) {
3977
3978 _kobj_printf(ops, "kobj_read_file :vn_rdwr() failed, "
3979 "error code 0x%x\n", err);
3980 return (-1);
3981 }
3982
3983 dlen = size;
3984
3985 /* Decompress the image at the supplied memory buffer */
3986 if ((err = z_uncompress(buf, &dlen, file->_dbuf,
3987 vattr.va_size)) != Z_OK) {
3988 _kobj_printf(ops, "kobj_read_file: z_uncompress "
3989 "failed, error code : 0x%x\n", err);
3990 return (-1);
3991 }
3992
3993 if (dlen != size) {
3994 _kobj_printf(ops, "kobj_read_file: z_uncompress "
3995 "failed to uncompress (size returned 0x%lx , "
3996 "expected size: 0x%x)\n", dlen, size);
3997 return (-1);
3998 }
3999
4000 return (0);
4001 }
4002
4003 while (size) {
4004 page_addr = F_PAGE(file, off);
4005 b_size = file->_size;
4006 /*
4007 * If we have the filesystem page the caller's referring to
4008 * and we have something in the buffer,
4009 * satisfy as much of the request from the buffer as we can.
4010 */
4011 if (page_addr == file->_off && b_size > 0) {
4012 b_off = B_OFFSET(file, off);
4013 c_size = b_size - b_off;
4014 /*
4015 * If there's nothing to copy, we're at EOF.
4016 */
4017 if (c_size <= 0)
4018 break;
4019 if (c_size > size)
4020 c_size = size;
4021 if (buf) {
4022 if (_moddebug & MODDEBUG_ERRMSG)
4023 _kobj_printf(ops, "copying %x bytes\n",
4024 c_size);
4025 bcopy(file->_base+b_off, buf, c_size);
4026 size -= c_size;
4027 off += c_size;
4028 buf += c_size;
4029 count += c_size;
4030 } else {
4031 _kobj_printf(ops, "kobj_read: system error");
4032 count = -1;
4033 break;
4034 }
4035 } else {
4036 /*
4037 * If the caller's offset is page aligned and
4038 * the caller want's at least a filesystem page and
4039 * the caller provided a buffer,
4040 * read directly into the caller's buffer.
4041 */
4042 if (page_addr == off &&
4043 (c_size = F_BLKS(file, size)) && buf) {
4044 c_size = kobj_read_blks(file, buf, c_size,
4045 page_addr);
4046 if (c_size < 0) {
4047 count = -1;
4048 break;
4049 }
4050 count += c_size;
4051 if (c_size != F_BLKS(file, size))
4052 break;
4053 size -= c_size;
4054 off += c_size;
4055 buf += c_size;
4056 /*
4057 * Otherwise, read into our buffer and copy next time
4058 * around the loop.
4059 */
4060 } else {
4061 file->_off = page_addr;
4062 c_size = kobj_read_blks(file, file->_base,
4063 file->_bsize, page_addr);
4064 file->_ptr = file->_base;
4065 file->_cnt = c_size;
4066 file->_size = c_size;
4067 /*
4068 * If a _filbuf call or nothing read, break.
4069 */
4070 if (buf == NULL || c_size <= 0) {
4071 count = c_size;
4072 break;
4073 }
4074 }
4075 if (_moddebug & MODDEBUG_ERRMSG)
4076 _kobj_printf(ops, "read %x bytes\n", c_size);
4077 }
4078 }
4079 if (_moddebug & MODDEBUG_ERRMSG)
4080 _kobj_printf(ops, "count = %x\n", count);
4081
4082 return (count);
4083 }
4084
4085 static int
kobj_read_blks(struct _buf * file,char * buf,uint_t size,uint_t off)4086 kobj_read_blks(struct _buf *file, char *buf, uint_t size, uint_t off)
4087 {
4088 int ret;
4089
4090 ASSERT(B_OFFSET(file, size) == 0 && B_OFFSET(file, off) == 0);
4091 if (file->_iscmp) {
4092 uint_t blks;
4093 int nret;
4094
4095 ret = 0;
4096 for (blks = size / file->_bsize; blks != 0; blks--) {
4097 nret = kobj_uncomp_blk(file, buf, off);
4098 if (nret == -1)
4099 return (-1);
4100 buf += nret;
4101 off += nret;
4102 ret += nret;
4103 if (nret < file->_bsize)
4104 break;
4105 }
4106 } else
4107 ret = kobj_read(file->_fd, buf, size, off);
4108 return (ret);
4109 }
4110
4111 static int
kobj_uncomp_blk(struct _buf * file,char * buf,uint_t off)4112 kobj_uncomp_blk(struct _buf *file, char *buf, uint_t off)
4113 {
4114 struct comphdr *hdr = kobj_comphdr(file);
4115 ulong_t dlen, slen;
4116 caddr_t src;
4117 int i;
4118
4119 dlen = file->_bsize;
4120 i = off / file->_bsize;
4121 src = file->_dbuf + hdr->ch_blkmap[i];
4122 if (i == hdr->ch_fsize / file->_bsize)
4123 slen = file->_dsize - hdr->ch_blkmap[i];
4124 else
4125 slen = hdr->ch_blkmap[i + 1] - hdr->ch_blkmap[i];
4126 if (z_uncompress(buf, &dlen, src, slen) != Z_OK)
4127 return (-1);
4128 return (dlen);
4129 }
4130
4131 int
kobj_filbuf(struct _buf * f)4132 kobj_filbuf(struct _buf *f)
4133 {
4134 if (kobj_read_file(f, NULL, f->_bsize, f->_off + f->_size) > 0)
4135 return (kobj_getc(f));
4136 return (-1);
4137 }
4138
4139 void
kobj_free(void * address,size_t size)4140 kobj_free(void *address, size_t size)
4141 {
4142 if (standalone)
4143 return;
4144
4145 kmem_free(address, size);
4146 kobj_stat.nfree_calls++;
4147 kobj_stat.nfree += size;
4148 }
4149
4150 void *
kobj_zalloc(size_t size,int flag)4151 kobj_zalloc(size_t size, int flag)
4152 {
4153 void *v;
4154
4155 if ((v = kobj_alloc(size, flag)) != 0) {
4156 bzero(v, size);
4157 }
4158
4159 return (v);
4160 }
4161
4162 void *
kobj_alloc(size_t size,int flag)4163 kobj_alloc(size_t size, int flag)
4164 {
4165 /*
4166 * If we are running standalone in the
4167 * linker, we ask boot for memory.
4168 * Either it's temporary memory that we lose
4169 * once boot is mapped out or we allocate it
4170 * permanently using the dynamic data segment.
4171 */
4172 if (standalone) {
4173 #if defined(_OBP)
4174 if (flag & (KM_TMP | KM_SCRATCH))
4175 return (bop_temp_alloc(size, MINALIGN));
4176 #else
4177 if (flag & (KM_TMP | KM_SCRATCH))
4178 return (BOP_ALLOC(ops, 0, size, MINALIGN));
4179 #endif
4180 return (kobj_segbrk(&_edata, size, MINALIGN, 0));
4181 }
4182
4183 kobj_stat.nalloc_calls++;
4184 kobj_stat.nalloc += size;
4185
4186 return (kmem_alloc(size, (flag & KM_NOWAIT) ? KM_NOSLEEP : KM_SLEEP));
4187 }
4188
4189 /*
4190 * Allow the "mod" system to sync up with the work
4191 * already done by kobj during the initial loading
4192 * of the kernel. This also gives us a chance
4193 * to reallocate memory that belongs to boot.
4194 */
4195 void
kobj_sync(void)4196 kobj_sync(void)
4197 {
4198 struct modctl_list *lp, **lpp;
4199
4200 /*
4201 * The module path can be set in /etc/system via 'moddir' commands
4202 */
4203 if (default_path != NULL)
4204 kobj_module_path = default_path;
4205 else
4206 default_path = kobj_module_path;
4207
4208 ksyms_arena = vmem_create("ksyms", NULL, 0, sizeof (uint64_t),
4209 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4210
4211 ctf_arena = vmem_create("ctf", NULL, 0, sizeof (uint_t),
4212 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4213
4214 /*
4215 * Move symbol tables from boot memory to ksyms_arena.
4216 */
4217 for (lpp = kobj_linkmaps; *lpp != NULL; lpp++) {
4218 for (lp = *lpp; lp != NULL; lp = lp->modl_next)
4219 kobj_export_module(mod(lp));
4220 }
4221 }
4222
4223 caddr_t
kobj_segbrk(caddr_t * spp,size_t size,size_t align,caddr_t limit)4224 kobj_segbrk(caddr_t *spp, size_t size, size_t align, caddr_t limit)
4225 {
4226 uintptr_t va, pva;
4227 size_t alloc_pgsz = kobj_mmu_pagesize;
4228 size_t alloc_align = BO_NO_ALIGN;
4229 size_t alloc_size;
4230
4231 /*
4232 * If we are using "large" mappings for the kernel,
4233 * request aligned memory from boot using the
4234 * "large" pagesize.
4235 */
4236 if (lg_pagesize) {
4237 alloc_align = lg_pagesize;
4238 alloc_pgsz = lg_pagesize;
4239 }
4240
4241 #if defined(__sparc)
4242 /* account for redzone */
4243 if (limit)
4244 limit -= alloc_pgsz;
4245 #endif /* __sparc */
4246
4247 va = ALIGN((uintptr_t)*spp, align);
4248 pva = P2ROUNDUP((uintptr_t)*spp, alloc_pgsz);
4249 /*
4250 * Need more pages?
4251 */
4252 if (va + size > pva) {
4253 uintptr_t npva;
4254
4255 alloc_size = P2ROUNDUP(size - (pva - va), alloc_pgsz);
4256 /*
4257 * Check for overlapping segments.
4258 */
4259 if (limit && limit <= *spp + alloc_size) {
4260 return ((caddr_t)0);
4261 }
4262
4263 npva = (uintptr_t)BOP_ALLOC(ops, (caddr_t)pva,
4264 alloc_size, alloc_align);
4265
4266 if (npva == 0) {
4267 _kobj_printf(ops, "BOP_ALLOC failed, 0x%lx bytes",
4268 alloc_size);
4269 _kobj_printf(ops, " aligned %lx", alloc_align);
4270 _kobj_printf(ops, " at 0x%lx\n", pva);
4271 return (NULL);
4272 }
4273 }
4274 *spp = (caddr_t)(va + size);
4275
4276 return ((caddr_t)va);
4277 }
4278
4279 /*
4280 * Calculate the number of output hash buckets.
4281 * We use the next prime larger than n / 4,
4282 * so the average hash chain is about 4 entries.
4283 * More buckets would just be a waste of memory.
4284 */
4285 uint_t
kobj_gethashsize(uint_t n)4286 kobj_gethashsize(uint_t n)
4287 {
4288 int f;
4289 int hsize = MAX(n / 4, 2);
4290
4291 for (f = 2; f * f <= hsize; f++)
4292 if (hsize % f == 0)
4293 hsize += f = 1;
4294
4295 return (hsize);
4296 }
4297
4298 /*
4299 * Get the file size.
4300 *
4301 * Before root is mounted, files are compressed in the boot_archive ramdisk
4302 * (in the memory). kobj_fstat would return the compressed file size.
4303 * In order to get the uncompressed file size, read the file to the end and
4304 * count its size.
4305 */
4306 int
kobj_get_filesize(struct _buf * file,uint64_t * size)4307 kobj_get_filesize(struct _buf *file, uint64_t *size)
4308 {
4309 int err = 0;
4310 ssize_t resid;
4311 uint32_t buf;
4312
4313 if (_modrootloaded) {
4314 struct bootstat bst;
4315
4316 if (kobj_fstat(file->_fd, &bst) != 0)
4317 return (EIO);
4318 *size = bst.st_size;
4319
4320 if (file->_iscmp == CH_MAGIC_GZIP) {
4321 /*
4322 * Read the last 4 bytes of the compressed (gzip)
4323 * image to get the size of its uncompressed
4324 * version.
4325 */
4326 if ((err = vn_rdwr(UIO_READ, (struct vnode *)file->_fd,
4327 (char *)(&buf), 4, (offset_t)(*size - 4),
4328 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid))
4329 != 0) {
4330 _kobj_printf(ops, "kobj_get_filesize: "
4331 "vn_rdwr() failed with error 0x%x\n", err);
4332 return (-1);
4333 }
4334
4335 *size = (uint64_t)buf;
4336 }
4337 } else {
4338
4339 #if defined(_OBP)
4340 struct bootstat bsb;
4341
4342 if (file->_iscmp) {
4343 struct comphdr *hdr = kobj_comphdr(file);
4344
4345 *size = hdr->ch_fsize;
4346 } else if (kobj_boot_fstat(file->_fd, &bsb) != 0)
4347 return (EIO);
4348 else
4349 *size = bsb.st_size;
4350 #else
4351 char *buf;
4352 int count;
4353 uint64_t offset = 0;
4354
4355 buf = kmem_alloc(MAXBSIZE, KM_SLEEP);
4356 do {
4357 count = kobj_read_file(file, buf, MAXBSIZE, offset);
4358 if (count < 0) {
4359 kmem_free(buf, MAXBSIZE);
4360 return (EIO);
4361 }
4362 offset += count;
4363 } while (count == MAXBSIZE);
4364 kmem_free(buf, MAXBSIZE);
4365
4366 *size = offset;
4367 #endif
4368 }
4369
4370 return (0);
4371 }
4372
4373 static char *
basename(char * s)4374 basename(char *s)
4375 {
4376 char *p, *q;
4377
4378 q = NULL;
4379 p = s;
4380 do {
4381 if (*p == '/')
4382 q = p;
4383 } while (*p++);
4384 return (q ? q + 1 : s);
4385 }
4386
4387 void
kobj_stat_get(kobj_stat_t * kp)4388 kobj_stat_get(kobj_stat_t *kp)
4389 {
4390 *kp = kobj_stat;
4391 }
4392
4393 int
kobj_getpagesize()4394 kobj_getpagesize()
4395 {
4396 return (lg_pagesize);
4397 }
4398
4399 void
kobj_textwin_alloc(struct module * mp)4400 kobj_textwin_alloc(struct module *mp)
4401 {
4402 ASSERT(MUTEX_HELD(&mod_lock));
4403
4404 if (mp->textwin != NULL)
4405 return;
4406
4407 /*
4408 * If the text is not contained in the heap, then it is not contained
4409 * by a writable mapping. (Specifically, it's on the nucleus page.)
4410 * We allocate a read/write mapping for this module's text to allow
4411 * the text to be patched without calling hot_patch_kernel_text()
4412 * (which is quite slow).
4413 */
4414 if (!vmem_contains(heaptext_arena, mp->text, mp->text_size)) {
4415 uintptr_t text = (uintptr_t)mp->text;
4416 uintptr_t size = (uintptr_t)mp->text_size;
4417 uintptr_t i;
4418 caddr_t va;
4419 size_t sz = ((text + size + PAGESIZE - 1) & PAGEMASK) -
4420 (text & PAGEMASK);
4421
4422 va = mp->textwin_base = vmem_alloc(heap_arena, sz, VM_SLEEP);
4423
4424 for (i = text & PAGEMASK; i < text + size; i += PAGESIZE) {
4425 hat_devload(kas.a_hat, va, PAGESIZE,
4426 hat_getpfnum(kas.a_hat, (caddr_t)i),
4427 PROT_READ | PROT_WRITE,
4428 HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
4429 va += PAGESIZE;
4430 }
4431
4432 mp->textwin = mp->textwin_base + (text & PAGEOFFSET);
4433 } else {
4434 mp->textwin = mp->text;
4435 }
4436 }
4437
4438 void
kobj_textwin_free(struct module * mp)4439 kobj_textwin_free(struct module *mp)
4440 {
4441 uintptr_t text = (uintptr_t)mp->text;
4442 uintptr_t tsize = (uintptr_t)mp->text_size;
4443 size_t size = (((text + tsize + PAGESIZE - 1) & PAGEMASK) -
4444 (text & PAGEMASK));
4445
4446 mp->textwin = NULL;
4447
4448 if (mp->textwin_base == NULL)
4449 return;
4450
4451 hat_unload(kas.a_hat, mp->textwin_base, size, HAT_UNLOAD_UNLOCK);
4452 vmem_free(heap_arena, mp->textwin_base, size);
4453 mp->textwin_base = NULL;
4454 }
4455
4456 static char *
find_libmacro(char * name)4457 find_libmacro(char *name)
4458 {
4459 int lmi;
4460
4461 for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4462 if (strcmp(name, libmacros[lmi].lmi_macroname) == 0)
4463 return (libmacros[lmi].lmi_list);
4464 }
4465 return (NULL);
4466 }
4467
4468 /*
4469 * Check for $MACRO in tail (string to expand) and expand it in path at pathend
4470 * returns path if successful, else NULL
4471 * Support multiple $MACROs expansion and the first valid path will be returned
4472 * Caller's responsibility to provide enough space in path to expand
4473 */
4474 char *
expand_libmacro(char * tail,char * path,char * pathend)4475 expand_libmacro(char *tail, char *path, char *pathend)
4476 {
4477 char c, *p, *p1, *p2, *path2, *endp;
4478 int diff, lmi, macrolen, valid_macro, more_macro;
4479 struct _buf *file;
4480
4481 /*
4482 * check for $MACROS between nulls or slashes
4483 */
4484 p = strchr(tail, '$');
4485 if (p == NULL)
4486 return (NULL);
4487 for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4488 macrolen = libmacros[lmi].lmi_macrolen;
4489 if (strncmp(p + 1, libmacros[lmi].lmi_macroname, macrolen) == 0)
4490 break;
4491 }
4492
4493 valid_macro = 0;
4494 if (lmi < NLIBMACROS) {
4495 /*
4496 * The following checks are used to restrict expansion of
4497 * macros to those that form a full directory/file name
4498 * and to keep the behavior same as before. If this
4499 * restriction is removed or no longer valid in the future,
4500 * the checks below can be deleted.
4501 */
4502 if ((p == tail) || (*(p - 1) == '/')) {
4503 c = *(p + macrolen + 1);
4504 if (c == '/' || c == '\0')
4505 valid_macro = 1;
4506 }
4507 }
4508
4509 if (!valid_macro) {
4510 p2 = strchr(p, '/');
4511 /*
4512 * if no more macro to expand, then just copy whatever left
4513 * and check whether it exists
4514 */
4515 if (p2 == NULL || strchr(p2, '$') == NULL) {
4516 (void) strcpy(pathend, tail);
4517 if ((file = kobj_open_path(path, 1, 1)) !=
4518 (struct _buf *)-1) {
4519 kobj_close_file(file);
4520 return (path);
4521 } else
4522 return (NULL);
4523 } else {
4524 /*
4525 * copy all chars before '/' and call expand_libmacro()
4526 * again
4527 */
4528 diff = p2 - tail;
4529 bcopy(tail, pathend, diff);
4530 pathend += diff;
4531 *(pathend) = '\0';
4532 return (expand_libmacro(p2, path, pathend));
4533 }
4534 }
4535
4536 more_macro = 0;
4537 if (c != '\0') {
4538 endp = p + macrolen + 1;
4539 if (strchr(endp, '$') != NULL)
4540 more_macro = 1;
4541 } else
4542 endp = NULL;
4543
4544 /*
4545 * copy lmi_list and split it into components.
4546 * then put the part of tail before $MACRO into path
4547 * at pathend
4548 */
4549 diff = p - tail;
4550 if (diff > 0)
4551 bcopy(tail, pathend, diff);
4552 path2 = pathend + diff;
4553 p1 = libmacros[lmi].lmi_list;
4554 while (p1 && (*p1 != '\0')) {
4555 p2 = strchr(p1, ':');
4556 if (p2) {
4557 diff = p2 - p1;
4558 bcopy(p1, path2, diff);
4559 *(path2 + diff) = '\0';
4560 } else {
4561 diff = strlen(p1);
4562 bcopy(p1, path2, diff + 1);
4563 }
4564 /* copy endp only if there isn't any more macro to expand */
4565 if (!more_macro && (endp != NULL))
4566 (void) strcat(path2, endp);
4567 file = kobj_open_path(path, 1, 1);
4568 if (file != (struct _buf *)-1) {
4569 kobj_close_file(file);
4570 /*
4571 * if more macros to expand then call expand_libmacro(),
4572 * else return path which has the whole path
4573 */
4574 if (!more_macro || (expand_libmacro(endp, path,
4575 path2 + diff) != NULL)) {
4576 return (path);
4577 }
4578 }
4579 if (p2)
4580 p1 = ++p2;
4581 else
4582 return (NULL);
4583 }
4584 return (NULL);
4585 }
4586
4587 char *kobj_file_buf;
4588 int kobj_file_bufsize;
4589
4590 /*
4591 * This code is for the purpose of manually recording which files
4592 * needs to go into the boot archive on any given system.
4593 *
4594 * To enable the code, set kobj_file_bufsize in /etc/system
4595 * and reboot the system, then use mdb to look at kobj_file_buf.
4596 */
4597 static void
kobj_record_file(char * filename)4598 kobj_record_file(char *filename)
4599 {
4600 static char *buf;
4601 static int size = 0;
4602 int n;
4603
4604 if (kobj_file_bufsize == 0) /* don't bother */
4605 return;
4606
4607 if (kobj_file_buf == NULL) { /* allocate buffer */
4608 size = kobj_file_bufsize;
4609 buf = kobj_file_buf = kobj_alloc(size, KM_WAIT|KM_TMP);
4610 }
4611
4612 n = snprintf(buf, size, "%s\n", filename);
4613 if (n > size)
4614 n = size;
4615 size -= n;
4616 buf += n;
4617 }
4618
4619 static int
kobj_boot_fstat(int fd,struct bootstat * stp)4620 kobj_boot_fstat(int fd, struct bootstat *stp)
4621 {
4622 #if defined(_OBP)
4623 if (!standalone && _ioquiesced)
4624 return (-1);
4625 return (BOP_FSTAT(ops, fd, stp));
4626 #else
4627 return (BRD_FSTAT(bfs_ops, fd, stp));
4628 #endif
4629 }
4630
4631 static int
kobj_boot_open(char * filename,int flags)4632 kobj_boot_open(char *filename, int flags)
4633 {
4634 #if defined(_OBP)
4635
4636 /*
4637 * If io via bootops is quiesced, it means boot is no longer
4638 * available to us. We make it look as if we can't open the
4639 * named file - which is reasonably accurate.
4640 */
4641 if (!standalone && _ioquiesced)
4642 return (-1);
4643
4644 kobj_record_file(filename);
4645 return (BOP_OPEN(filename, flags));
4646 #else /* x86 */
4647 kobj_record_file(filename);
4648 return (BRD_OPEN(bfs_ops, filename, flags));
4649 #endif
4650 }
4651
4652 static int
kobj_boot_close(int fd)4653 kobj_boot_close(int fd)
4654 {
4655 #if defined(_OBP)
4656 if (!standalone && _ioquiesced)
4657 return (-1);
4658
4659 return (BOP_CLOSE(fd));
4660 #else /* x86 */
4661 return (BRD_CLOSE(bfs_ops, fd));
4662 #endif
4663 }
4664
4665 static int
kobj_boot_seek(int fd,off_t hi __unused,off_t lo)4666 kobj_boot_seek(int fd, off_t hi __unused, off_t lo)
4667 {
4668 #if defined(_OBP)
4669 return (BOP_SEEK(fd, lo) == -1 ? -1 : 0);
4670 #else
4671 return (BRD_SEEK(bfs_ops, fd, lo, SEEK_SET));
4672 #endif
4673 }
4674
4675 static int
kobj_boot_read(int fd,caddr_t buf,size_t size)4676 kobj_boot_read(int fd, caddr_t buf, size_t size)
4677 {
4678 #if defined(_OBP)
4679 return (BOP_READ(fd, buf, size));
4680 #else
4681 return (BRD_READ(bfs_ops, fd, buf, size));
4682 #endif
4683 }
4684
4685 static int
kobj_boot_compinfo(int fd,struct compinfo * cb)4686 kobj_boot_compinfo(int fd, struct compinfo *cb)
4687 {
4688 return (boot_compinfo(fd, cb));
4689 }
4690
4691 /*
4692 * Check if the file is compressed (for now we handle only gzip).
4693 * It returns CH_MAGIC_GZIP if the file is compressed and 0 otherwise.
4694 */
4695 static int
kobj_is_compressed(intptr_t fd)4696 kobj_is_compressed(intptr_t fd)
4697 {
4698 struct vnode *vp = (struct vnode *)fd;
4699 ssize_t resid;
4700 uint16_t magic_buf;
4701 int err = 0;
4702
4703 if ((err = vn_rdwr(UIO_READ, vp, (caddr_t)((intptr_t)&magic_buf),
4704 sizeof (magic_buf), (offset_t)(0),
4705 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) {
4706
4707 _kobj_printf(ops, "kobj_is_compressed: vn_rdwr() failed, "
4708 "error code 0x%x\n", err);
4709 return (0);
4710 }
4711
4712 if (magic_buf == CH_MAGIC_GZIP)
4713 return (CH_MAGIC_GZIP);
4714
4715 return (0);
4716 }
4717