1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 2008 Isilon Systems, Inc.
5 * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
6 * Copyright (c) 1998 Berkeley Software Design, Inc.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Berkeley Software Design Inc's name may not be used to endorse or
18 * promote products derived from this software without specific prior
19 * written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
34 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
35 */
36
37 /*
38 * Implementation of the `witness' lock verifier. Originally implemented for
39 * mutexes in BSD/OS. Extended to handle generic lock objects and lock
40 * classes in FreeBSD.
41 */
42
43 /*
44 * Main Entry: witness
45 * Pronunciation: 'wit-n&s
46 * Function: noun
47 * Etymology: Middle English witnesse, from Old English witnes knowledge,
48 * testimony, witness, from 2wit
49 * Date: before 12th century
50 * 1 : attestation of a fact or event : TESTIMONY
51 * 2 : one that gives evidence; specifically : one who testifies in
52 * a cause or before a judicial tribunal
53 * 3 : one asked to be present at a transaction so as to be able to
54 * testify to its having taken place
55 * 4 : one who has personal knowledge of something
56 * 5 a : something serving as evidence or proof : SIGN
57 * b : public affirmation by word or example of usually
58 * religious faith or conviction <the heroic witness to divine
59 * life -- Pilot>
60 * 6 capitalized : a member of the Jehovah's Witnesses
61 */
62
63 /*
64 * Special rules concerning Giant and lock orders:
65 *
66 * 1) Giant must be acquired before any other mutexes. Stated another way,
67 * no other mutex may be held when Giant is acquired.
68 *
69 * 2) Giant must be released when blocking on a sleepable lock.
70 *
71 * This rule is less obvious, but is a result of Giant providing the same
72 * semantics as spl(). Basically, when a thread sleeps, it must release
73 * Giant. When a thread blocks on a sleepable lock, it sleeps. Hence rule
74 * 2).
75 *
76 * 3) Giant may be acquired before or after sleepable locks.
77 *
78 * This rule is also not quite as obvious. Giant may be acquired after
79 * a sleepable lock because it is a non-sleepable lock and non-sleepable
80 * locks may always be acquired while holding a sleepable lock. The second
81 * case, Giant before a sleepable lock, follows from rule 2) above. Suppose
82 * you have two threads T1 and T2 and a sleepable lock X. Suppose that T1
83 * acquires X and blocks on Giant. Then suppose that T2 acquires Giant and
84 * blocks on X. When T2 blocks on X, T2 will release Giant allowing T1 to
85 * execute. Thus, acquiring Giant both before and after a sleepable lock
86 * will not result in a lock order reversal.
87 */
88
89 #include <sys/cdefs.h>
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/stdarg.h>
109 #include <sys/sysctl.h>
110 #include <sys/syslog.h>
111 #include <sys/systm.h>
112
113 #ifdef DDB
114 #include <ddb/ddb.h>
115 #endif
116
117 #if !defined(DDB) && !defined(STACK)
118 #error "DDB or STACK options are required for WITNESS"
119 #endif
120
121 /* Note that these traces do not work with KTR_ALQ. */
122 #if 0
123 #define KTR_WITNESS KTR_SUBSYS
124 #else
125 #define KTR_WITNESS 0
126 #endif
127
128 #define LI_RECURSEMASK 0x0000ffff /* Recursion depth of lock instance. */
129 #define LI_EXCLUSIVE 0x00010000 /* Exclusive lock instance. */
130 #define LI_NORELEASE 0x00020000 /* Lock not allowed to be released. */
131 #define LI_SLEEPABLE 0x00040000 /* Lock may be held while sleeping. */
132
133 #ifndef WITNESS_COUNT
134 #define WITNESS_COUNT 1536
135 #endif
136 #define WITNESS_HASH_SIZE 251 /* Prime, gives load factor < 2 */
137 #define WITNESS_PENDLIST (512 + (MAXCPU * 4))
138
139 /* Allocate 256 KB of stack data space */
140 #define WITNESS_LO_DATA_COUNT 2048
141
142 /* Prime, gives load factor of ~2 at full load */
143 #define WITNESS_LO_HASH_SIZE 1021
144
145 /*
146 * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
147 * will hold LOCK_NCHILDREN locks. We handle failure ok, and we should
148 * probably be safe for the most part, but it's still a SWAG.
149 */
150 #define LOCK_NCHILDREN 5
151 #define LOCK_CHILDCOUNT 2048
152
153 #define MAX_W_NAME 64
154
155 #define FULLGRAPH_SBUF_SIZE 512
156
157 /*
158 * These flags go in the witness relationship matrix and describe the
159 * relationship between any two struct witness objects.
160 */
161 #define WITNESS_UNRELATED 0x00 /* No lock order relation. */
162 #define WITNESS_PARENT 0x01 /* Parent, aka direct ancestor. */
163 #define WITNESS_ANCESTOR 0x02 /* Direct or indirect ancestor. */
164 #define WITNESS_CHILD 0x04 /* Child, aka direct descendant. */
165 #define WITNESS_DESCENDANT 0x08 /* Direct or indirect descendant. */
166 #define WITNESS_ANCESTOR_MASK (WITNESS_PARENT | WITNESS_ANCESTOR)
167 #define WITNESS_DESCENDANT_MASK (WITNESS_CHILD | WITNESS_DESCENDANT)
168 #define WITNESS_RELATED_MASK \
169 (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
170 #define WITNESS_REVERSAL 0x10 /* A lock order reversal has been
171 * observed. */
172 #define WITNESS_RESERVED1 0x20 /* Unused flag, reserved. */
173 #define WITNESS_RESERVED2 0x40 /* Unused flag, reserved. */
174 #define WITNESS_LOCK_ORDER_KNOWN 0x80 /* This lock order is known. */
175
176 /* Descendant to ancestor flags */
177 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
178
179 /* Ancestor to descendant flags */
180 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
181
182 #define WITNESS_INDEX_ASSERT(i) \
183 MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
184
185 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
186
187 /*
188 * Lock instances. A lock instance is the data associated with a lock while
189 * it is held by witness. For example, a lock instance will hold the
190 * recursion count of a lock. Lock instances are held in lists. Spin locks
191 * are held in a per-cpu list while sleep locks are held in per-thread list.
192 */
193 struct lock_instance {
194 struct lock_object *li_lock;
195 const char *li_file;
196 int li_line;
197 u_int li_flags;
198 };
199
200 /*
201 * A simple list type used to build the list of locks held by a thread
202 * or CPU. We can't simply embed the list in struct lock_object since a
203 * lock may be held by more than one thread if it is a shared lock. Locks
204 * are added to the head of the list, so we fill up each list entry from
205 * "the back" logically. To ease some of the arithmetic, we actually fill
206 * in each list entry the normal way (children[0] then children[1], etc.) but
207 * when we traverse the list we read children[count-1] as the first entry
208 * down to children[0] as the final entry.
209 */
210 struct lock_list_entry {
211 struct lock_list_entry *ll_next;
212 struct lock_instance ll_children[LOCK_NCHILDREN];
213 u_int ll_count;
214 };
215
216 /*
217 * The main witness structure. One of these per named lock type in the system
218 * (for example, "vnode interlock").
219 */
220 struct witness {
221 char w_name[MAX_W_NAME];
222 uint32_t w_index; /* Index in the relationship matrix */
223 struct lock_class *w_class;
224 STAILQ_ENTRY(witness) w_list; /* List of all witnesses. */
225 STAILQ_ENTRY(witness) w_typelist; /* Witnesses of a type. */
226 struct witness *w_hash_next; /* Linked list in hash buckets. */
227 const char *w_file; /* File where last acquired */
228 uint32_t w_line; /* Line where last acquired */
229 uint32_t w_refcount;
230 uint16_t w_num_ancestors; /* direct/indirect
231 * ancestor count */
232 uint16_t w_num_descendants; /* direct/indirect
233 * descendant count */
234 int16_t w_ddb_level;
235 unsigned w_displayed:1;
236 unsigned w_reversed:1;
237 };
238
239 STAILQ_HEAD(witness_list, witness);
240
241 /*
242 * The witness hash table. Keys are witness names (const char *), elements are
243 * witness objects (struct witness *).
244 */
245 struct witness_hash {
246 struct witness *wh_array[WITNESS_HASH_SIZE];
247 uint32_t wh_size;
248 uint32_t wh_count;
249 };
250
251 /*
252 * Key type for the lock order data hash table.
253 */
254 struct witness_lock_order_key {
255 uint16_t from;
256 uint16_t to;
257 };
258
259 struct witness_lock_order_data {
260 struct stack wlod_stack;
261 struct witness_lock_order_key wlod_key;
262 struct witness_lock_order_data *wlod_next;
263 };
264
265 /*
266 * The witness lock order data hash table. Keys are witness index tuples
267 * (struct witness_lock_order_key), elements are lock order data objects
268 * (struct witness_lock_order_data).
269 */
270 struct witness_lock_order_hash {
271 struct witness_lock_order_data *wloh_array[WITNESS_LO_HASH_SIZE];
272 u_int wloh_size;
273 u_int wloh_count;
274 };
275
276 struct witness_blessed {
277 const char *b_lock1;
278 const char *b_lock2;
279 };
280
281 struct witness_pendhelp {
282 const char *wh_type;
283 struct lock_object *wh_lock;
284 };
285
286 struct witness_order_list_entry {
287 const char *w_name;
288 struct lock_class *w_class;
289 };
290
291 /*
292 * Returns 0 if one of the locks is a spin lock and the other is not.
293 * Returns 1 otherwise.
294 */
295 static __inline int
witness_lock_type_equal(struct witness * w1,struct witness * w2)296 witness_lock_type_equal(struct witness *w1, struct witness *w2)
297 {
298
299 return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
300 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
301 }
302
303 static __inline int
witness_lock_order_key_equal(const struct witness_lock_order_key * a,const struct witness_lock_order_key * b)304 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
305 const struct witness_lock_order_key *b)
306 {
307
308 return (a->from == b->from && a->to == b->to);
309 }
310
311 static int _isitmyx(struct witness *w1, struct witness *w2, int rmask,
312 const char *fname);
313 static void adopt(struct witness *parent, struct witness *child);
314 static int blessed(struct witness *, struct witness *);
315 static void depart(struct witness *w);
316 static struct witness *enroll(const char *description,
317 struct lock_class *lock_class);
318 static struct lock_instance *find_instance(struct lock_list_entry *list,
319 const struct lock_object *lock);
320 static int isitmychild(struct witness *parent, struct witness *child);
321 static int isitmydescendant(struct witness *parent, struct witness *child);
322 static void itismychild(struct witness *parent, struct witness *child);
323 static int sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
324 static int sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
325 static int sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
326 static int sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
327 static void witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
328 #ifdef DDB
329 static void witness_ddb_compute_levels(void);
330 static void witness_ddb_display(int(*)(const char *fmt, ...));
331 static void witness_ddb_display_descendants(int(*)(const char *fmt, ...),
332 struct witness *, int indent);
333 static void witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
334 struct witness_list *list);
335 static void witness_ddb_level_descendants(struct witness *parent, int l);
336 static void witness_ddb_list(struct thread *td);
337 #endif
338 static void witness_enter_debugger(const char *msg);
339 static void witness_debugger(int cond, const char *msg);
340 static void witness_free(struct witness *m);
341 static struct witness *witness_get(void);
342 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
343 static struct witness *witness_hash_get(const char *key);
344 static void witness_hash_put(struct witness *w);
345 static void witness_init_hash_tables(void);
346 static void witness_increment_graph_generation(void);
347 static void witness_lock_list_free(struct lock_list_entry *lle);
348 static struct lock_list_entry *witness_lock_list_get(void);
349 static int witness_lock_order_add(struct witness *parent,
350 struct witness *child);
351 static int witness_lock_order_check(struct witness *parent,
352 struct witness *child);
353 static struct witness_lock_order_data *witness_lock_order_get(
354 struct witness *parent,
355 struct witness *child);
356 static void witness_list_lock(struct lock_instance *instance,
357 int (*prnt)(const char *fmt, ...));
358 static int witness_output(const char *fmt, ...) __printflike(1, 2);
359 static int witness_output_drain(void *arg __unused, const char *data,
360 int len);
361 static int witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
362 static void witness_setflag(struct lock_object *lock, int flag, int set);
363
364 FEATURE(witness, "kernel has witness(9) support");
365
366 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
367 "Witness Locking");
368
369 /*
370 * If set to 0, lock order checking is disabled. If set to -1,
371 * witness is completely disabled. Otherwise witness performs full
372 * lock order checking for all locks. At runtime, lock order checking
373 * may be toggled. However, witness cannot be reenabled once it is
374 * completely disabled.
375 */
376 static int witness_watch = 1;
377 SYSCTL_PROC(_debug_witness, OID_AUTO, watch,
378 CTLFLAG_RWTUN | CTLTYPE_INT | CTLFLAG_MPSAFE, NULL, 0,
379 sysctl_debug_witness_watch, "I",
380 "witness is watching lock operations");
381
382 #ifdef KDB
383 /*
384 * When KDB is enabled and witness_kdb is 1, it will cause the system
385 * to drop into kdebug() when:
386 * - a lock hierarchy violation occurs
387 * - locks are held when going to sleep.
388 */
389 #ifdef WITNESS_KDB
390 int witness_kdb = 1;
391 #else
392 int witness_kdb = 0;
393 #endif
394 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
395 #endif /* KDB */
396
397 #if defined(DDB) || defined(KDB)
398 /*
399 * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
400 * to print a stack trace:
401 * - a lock hierarchy violation occurs
402 * - locks are held when going to sleep.
403 */
404 int witness_trace = 1;
405 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
406 #endif /* DDB || KDB */
407
408 #ifdef WITNESS_SKIPSPIN
409 int witness_skipspin = 1;
410 #else
411 int witness_skipspin = 0;
412 #endif
413 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
414
415 int badstack_sbuf_size;
416
417 int witness_count = WITNESS_COUNT;
418 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN,
419 &witness_count, 0, "");
420
421 /*
422 * Output channel for witness messages. By default we print to the console.
423 */
424 enum witness_channel {
425 WITNESS_CONSOLE,
426 WITNESS_LOG,
427 WITNESS_NONE,
428 };
429
430 static enum witness_channel witness_channel = WITNESS_CONSOLE;
431 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel,
432 CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL, 0,
433 sysctl_debug_witness_channel, "A",
434 "Output channel for warnings");
435
436 /*
437 * Call this to print out the relations between locks.
438 */
439 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph,
440 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
441 sysctl_debug_witness_fullgraph, "A",
442 "Show locks relation graphs");
443
444 /*
445 * Call this to print out the witness faulty stacks.
446 */
447 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks,
448 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
449 sysctl_debug_witness_badstacks, "A",
450 "Show bad witness stacks");
451
452 static struct mtx w_mtx;
453
454 /* w_list */
455 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
456 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
457
458 /* w_typelist */
459 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
460 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
461
462 /* lock list */
463 static struct lock_list_entry *w_lock_list_free = NULL;
464 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
465 static u_int pending_cnt;
466
467 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
468 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
469 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
470 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
471 "");
472
473 static struct witness *w_data;
474 static uint8_t **w_rmatrix;
475 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
476 static struct witness_hash w_hash; /* The witness hash table. */
477
478 /* The lock order data hash */
479 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
480 static struct witness_lock_order_data *w_lofree = NULL;
481 static struct witness_lock_order_hash w_lohash;
482 static int w_max_used_index = 0;
483 static unsigned int w_generation = 0;
484 static const char w_notrunning[] = "Witness not running\n";
485 static const char w_stillcold[] = "Witness is still cold\n";
486 #ifdef __i386__
487 static const char w_notallowed[] = "The sysctl is disabled on the arch\n";
488 #endif
489
490 static struct witness_order_list_entry order_lists[] = {
491 /*
492 * sx locks
493 */
494 { "proctree", &lock_class_sx },
495 { "allproc", &lock_class_sx },
496 { "allprison", &lock_class_sx },
497 { NULL, NULL },
498 /*
499 * Various mutexes
500 */
501 { "Giant", &lock_class_mtx_sleep },
502 { "pipe mutex", &lock_class_mtx_sleep },
503 { "sigio lock", &lock_class_mtx_sleep },
504 { "process group", &lock_class_mtx_sleep },
505 #ifdef HWPMC_HOOKS
506 { "pmc-sleep", &lock_class_mtx_sleep },
507 #endif
508 { "process lock", &lock_class_mtx_sleep },
509 { "session", &lock_class_mtx_sleep },
510 { "uidinfo hash", &lock_class_rw },
511 { "time lock", &lock_class_mtx_sleep },
512 { NULL, NULL },
513 /*
514 * umtx
515 */
516 { "umtx lock", &lock_class_mtx_sleep },
517 { NULL, NULL },
518 /*
519 * Sockets
520 */
521 { "accept", &lock_class_mtx_sleep },
522 { "so_snd", &lock_class_mtx_sleep },
523 { "so_rcv", &lock_class_mtx_sleep },
524 { "sellck", &lock_class_mtx_sleep },
525 { NULL, NULL },
526 /*
527 * Routing
528 */
529 { "so_rcv", &lock_class_mtx_sleep },
530 { "radix node head", &lock_class_rm },
531 { "ifaddr", &lock_class_mtx_sleep },
532 { NULL, NULL },
533 /*
534 * IPv4 multicast:
535 * protocol locks before interface locks, after UDP locks.
536 */
537 { "in_multi_sx", &lock_class_sx },
538 { "udpinp", &lock_class_rw },
539 { "in_multi_list_mtx", &lock_class_mtx_sleep },
540 { "igmp_mtx", &lock_class_mtx_sleep },
541 { "if_addr_lock", &lock_class_mtx_sleep },
542 { NULL, NULL },
543 /*
544 * IPv6 multicast:
545 * protocol locks before interface locks, after UDP locks.
546 */
547 { "in6_multi_sx", &lock_class_sx },
548 { "udpinp", &lock_class_rw },
549 { "in6_multi_list_mtx", &lock_class_mtx_sleep },
550 { "mld_mtx", &lock_class_mtx_sleep },
551 { "if_addr_lock", &lock_class_mtx_sleep },
552 { NULL, NULL },
553 /*
554 * UNIX Domain Sockets
555 */
556 { "unp_link_rwlock", &lock_class_rw },
557 { "unp_list_lock", &lock_class_mtx_sleep },
558 { "unp", &lock_class_mtx_sleep },
559 { "so_snd", &lock_class_mtx_sleep },
560 { NULL, NULL },
561 /*
562 * UDP/IP
563 */
564 { "udpinp", &lock_class_rw },
565 { "udp", &lock_class_mtx_sleep },
566 { "so_snd", &lock_class_mtx_sleep },
567 { NULL, NULL },
568 /*
569 * TCP/IP
570 */
571 { "tcpinp", &lock_class_rw },
572 { "tcp", &lock_class_mtx_sleep },
573 { "so_snd", &lock_class_mtx_sleep },
574 { NULL, NULL },
575 /*
576 * BPF
577 */
578 { "bpf global lock", &lock_class_sx },
579 { "bpf cdev lock", &lock_class_mtx_sleep },
580 { NULL, NULL },
581 /*
582 * NFS server
583 */
584 { "nfsd_mtx", &lock_class_mtx_sleep },
585 { "so_snd", &lock_class_mtx_sleep },
586 { NULL, NULL },
587
588 /*
589 * IEEE 802.11
590 */
591 { "802.11 com lock", &lock_class_mtx_sleep},
592 { NULL, NULL },
593 /*
594 * Network drivers
595 */
596 { "network driver", &lock_class_mtx_sleep},
597 { NULL, NULL },
598
599 /*
600 * Netgraph
601 */
602 { "ng_node", &lock_class_mtx_sleep },
603 { "ng_worklist", &lock_class_mtx_sleep },
604 { NULL, NULL },
605 /*
606 * CDEV
607 */
608 { "vm map (system)", &lock_class_mtx_sleep },
609 { "vnode interlock", &lock_class_mtx_sleep },
610 { "cdev", &lock_class_mtx_sleep },
611 { "devthrd", &lock_class_mtx_sleep },
612 { NULL, NULL },
613 /*
614 * VM
615 */
616 { "vm map (user)", &lock_class_sx },
617 { "vm object", &lock_class_rw },
618 { "vm page", &lock_class_mtx_sleep },
619 { "pmap pv global", &lock_class_rw },
620 { "pmap", &lock_class_mtx_sleep },
621 { "pmap pv list", &lock_class_rw },
622 { "vm page free queue", &lock_class_mtx_sleep },
623 { "vm pagequeue", &lock_class_mtx_sleep },
624 { NULL, NULL },
625 /*
626 * kqueue/VFS interaction
627 */
628 { "kqueue", &lock_class_mtx_sleep },
629 { "struct mount mtx", &lock_class_mtx_sleep },
630 { "vnode interlock", &lock_class_mtx_sleep },
631 { NULL, NULL },
632 /*
633 * VFS namecache
634 */
635 { "ncvn", &lock_class_mtx_sleep },
636 { "ncbuc", &lock_class_mtx_sleep },
637 { "vnode interlock", &lock_class_mtx_sleep },
638 { "ncneg", &lock_class_mtx_sleep },
639 { NULL, NULL },
640 /*
641 * ZFS locking
642 */
643 { "dn->dn_mtx", &lock_class_sx },
644 { "dr->dt.di.dr_mtx", &lock_class_sx },
645 { "db->db_mtx", &lock_class_sx },
646 { NULL, NULL },
647 /*
648 * TCP log locks
649 */
650 { "TCP ID tree", &lock_class_rw },
651 { "tcp log id bucket", &lock_class_mtx_sleep },
652 { "tcpinp", &lock_class_rw },
653 { "TCP log expireq", &lock_class_mtx_sleep },
654 { NULL, NULL },
655 /*
656 * spin locks
657 */
658 #ifdef SMP
659 { "ap boot", &lock_class_mtx_spin },
660 #endif
661 { "rm.mutex_mtx", &lock_class_mtx_spin },
662 #ifdef __i386__
663 { "cy", &lock_class_mtx_spin },
664 #endif
665 { "scc_hwmtx", &lock_class_mtx_spin },
666 { "uart_hwmtx", &lock_class_mtx_spin },
667 { "fast_taskqueue", &lock_class_mtx_spin },
668 { "intr table", &lock_class_mtx_spin },
669 { "process slock", &lock_class_mtx_spin },
670 { "syscons video lock", &lock_class_mtx_spin },
671 { "sleepq chain", &lock_class_mtx_spin },
672 { "rm_spinlock", &lock_class_mtx_spin },
673 { "turnstile chain", &lock_class_mtx_spin },
674 { "turnstile lock", &lock_class_mtx_spin },
675 { "sched lock", &lock_class_mtx_spin },
676 { "td_contested", &lock_class_mtx_spin },
677 { "callout", &lock_class_mtx_spin },
678 { "entropy harvest mutex", &lock_class_mtx_spin },
679 #ifdef SMP
680 { "smp rendezvous", &lock_class_mtx_spin },
681 #endif
682 #ifdef __powerpc__
683 { "tlb0", &lock_class_mtx_spin },
684 #endif
685 { NULL, NULL },
686 { "sched lock", &lock_class_mtx_spin },
687 #ifdef HWPMC_HOOKS
688 { "pmc-per-proc", &lock_class_mtx_spin },
689 #endif
690 { NULL, NULL },
691 /*
692 * leaf locks
693 */
694 { "intrcnt", &lock_class_mtx_spin },
695 { "icu", &lock_class_mtx_spin },
696 #ifdef __i386__
697 { "allpmaps", &lock_class_mtx_spin },
698 { "descriptor tables", &lock_class_mtx_spin },
699 #endif
700 { "clk", &lock_class_mtx_spin },
701 { "cpuset", &lock_class_mtx_spin },
702 { "mprof lock", &lock_class_mtx_spin },
703 { "zombie lock", &lock_class_mtx_spin },
704 { "ALD Queue", &lock_class_mtx_spin },
705 #if defined(__i386__) || defined(__amd64__)
706 { "pcicfg", &lock_class_mtx_spin },
707 { "NDIS thread lock", &lock_class_mtx_spin },
708 #endif
709 { "tw_osl_io_lock", &lock_class_mtx_spin },
710 { "tw_osl_q_lock", &lock_class_mtx_spin },
711 { "tw_cl_io_lock", &lock_class_mtx_spin },
712 { "tw_cl_intr_lock", &lock_class_mtx_spin },
713 { "tw_cl_gen_lock", &lock_class_mtx_spin },
714 #ifdef HWPMC_HOOKS
715 { "pmc-leaf", &lock_class_mtx_spin },
716 #endif
717 { "blocked lock", &lock_class_mtx_spin },
718 { NULL, NULL },
719 { NULL, NULL }
720 };
721
722 /*
723 * Pairs of locks which have been blessed. Witness does not complain about
724 * order problems with blessed lock pairs. Please do not add an entry to the
725 * table without an explanatory comment.
726 */
727 static struct witness_blessed blessed_list[] = {
728 /*
729 * See the comment in ufs_dirhash.c. Basically, a vnode lock serializes
730 * both lock orders, so a deadlock cannot happen as a result of this
731 * LOR.
732 */
733 { "dirhash", "bufwait" },
734
735 /*
736 * A UFS vnode may be locked in vget() while a buffer belonging to the
737 * parent directory vnode is locked.
738 */
739 { "ufs", "bufwait" },
740
741 /*
742 * The tarfs decompression stream vnode may be locked while a
743 * buffer belonging to a tarfs data vnode is locked.
744 */
745 { "tarfs", "bufwait" },
746 };
747
748 /*
749 * This global is set to 0 once it becomes safe to use the witness code.
750 */
751 static int witness_cold = 1;
752
753 /*
754 * This global is set to 1 once the static lock orders have been enrolled
755 * so that a warning can be issued for any spin locks enrolled later.
756 */
757 static int witness_spin_warn = 0;
758
759 /* Trim useless garbage from filenames. */
760 static const char *
fixup_filename(const char * file)761 fixup_filename(const char *file)
762 {
763
764 if (file == NULL)
765 return (NULL);
766 while (strncmp(file, "../", 3) == 0)
767 file += 3;
768 return (file);
769 }
770
771 /*
772 * Calculate the size of early witness structures.
773 */
774 int
witness_startup_count(void)775 witness_startup_count(void)
776 {
777 int sz;
778
779 sz = sizeof(struct witness) * witness_count;
780 sz += sizeof(*w_rmatrix) * (witness_count + 1);
781 sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) *
782 (witness_count + 1);
783
784 return (sz);
785 }
786
787 /*
788 * The WITNESS-enabled diagnostic code. Note that the witness code does
789 * assume that the early boot is single-threaded at least until after this
790 * routine is completed.
791 */
792 void
witness_startup(void * mem)793 witness_startup(void *mem)
794 {
795 struct lock_object *lock;
796 struct witness_order_list_entry *order;
797 struct witness *w, *w1;
798 uintptr_t p;
799 int i;
800
801 p = (uintptr_t)mem;
802 w_data = (void *)p;
803 p += sizeof(struct witness) * witness_count;
804
805 w_rmatrix = (void *)p;
806 p += sizeof(*w_rmatrix) * (witness_count + 1);
807
808 for (i = 0; i < witness_count + 1; i++) {
809 w_rmatrix[i] = (void *)p;
810 p += sizeof(*w_rmatrix[i]) * (witness_count + 1);
811 }
812 badstack_sbuf_size = witness_count * 256;
813
814 /*
815 * We have to release Giant before initializing its witness
816 * structure so that WITNESS doesn't get confused.
817 */
818 mtx_unlock(&Giant);
819 mtx_assert(&Giant, MA_NOTOWNED);
820
821 CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
822 mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
823 MTX_NOWITNESS | MTX_NOPROFILE);
824 for (i = witness_count - 1; i >= 0; i--) {
825 w = &w_data[i];
826 memset(w, 0, sizeof(*w));
827 w_data[i].w_index = i; /* Witness index never changes. */
828 witness_free(w);
829 }
830 KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
831 ("%s: Invalid list of free witness objects", __func__));
832
833 /* Witness with index 0 is not used to aid in debugging. */
834 STAILQ_REMOVE_HEAD(&w_free, w_list);
835 w_free_cnt--;
836
837 for (i = 0; i < witness_count; i++) {
838 memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) *
839 (witness_count + 1));
840 }
841
842 for (i = 0; i < LOCK_CHILDCOUNT; i++)
843 witness_lock_list_free(&w_locklistdata[i]);
844 witness_init_hash_tables();
845
846 /* First add in all the specified order lists. */
847 for (order = order_lists; order->w_name != NULL; order++) {
848 w = enroll(order->w_name, order->w_class);
849 if (w == NULL)
850 continue;
851 w->w_file = "order list";
852 for (order++; order->w_name != NULL; order++) {
853 w1 = enroll(order->w_name, order->w_class);
854 if (w1 == NULL)
855 continue;
856 w1->w_file = "order list";
857 itismychild(w, w1);
858 w = w1;
859 }
860 }
861 witness_spin_warn = 1;
862
863 /* Iterate through all locks and add them to witness. */
864 for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
865 lock = pending_locks[i].wh_lock;
866 KASSERT(lock->lo_flags & LO_WITNESS,
867 ("%s: lock %s is on pending list but not LO_WITNESS",
868 __func__, lock->lo_name));
869 lock->lo_witness = enroll(pending_locks[i].wh_type,
870 LOCK_CLASS(lock));
871 }
872
873 /* Mark the witness code as being ready for use. */
874 witness_cold = 0;
875
876 mtx_lock(&Giant);
877 }
878
879 void
witness_init(struct lock_object * lock,const char * type)880 witness_init(struct lock_object *lock, const char *type)
881 {
882 struct lock_class *class;
883
884 /* Various sanity checks. */
885 class = LOCK_CLASS(lock);
886 if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
887 (class->lc_flags & LC_RECURSABLE) == 0)
888 kassert_panic("%s: lock (%s) %s can not be recursable",
889 __func__, class->lc_name, lock->lo_name);
890 if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
891 (class->lc_flags & LC_SLEEPABLE) == 0)
892 kassert_panic("%s: lock (%s) %s can not be sleepable",
893 __func__, class->lc_name, lock->lo_name);
894 if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
895 (class->lc_flags & LC_UPGRADABLE) == 0)
896 kassert_panic("%s: lock (%s) %s can not be upgradable",
897 __func__, class->lc_name, lock->lo_name);
898
899 /*
900 * If we shouldn't watch this lock, then just clear lo_witness.
901 * Otherwise, if witness_cold is set, then it is too early to
902 * enroll this lock, so defer it to witness_initialize() by adding
903 * it to the pending_locks list. If it is not too early, then enroll
904 * the lock now.
905 */
906 if (witness_watch < 1 || KERNEL_PANICKED() ||
907 (lock->lo_flags & LO_WITNESS) == 0)
908 lock->lo_witness = NULL;
909 else if (witness_cold) {
910 pending_locks[pending_cnt].wh_lock = lock;
911 pending_locks[pending_cnt++].wh_type = type;
912 if (pending_cnt > WITNESS_PENDLIST)
913 panic("%s: pending locks list is too small, "
914 "increase WITNESS_PENDLIST\n",
915 __func__);
916 } else
917 lock->lo_witness = enroll(type, class);
918 }
919
920 void
witness_destroy(struct lock_object * lock)921 witness_destroy(struct lock_object *lock)
922 {
923 struct lock_class *class;
924 struct witness *w;
925
926 class = LOCK_CLASS(lock);
927
928 if (witness_cold)
929 panic("lock (%s) %s destroyed while witness_cold",
930 class->lc_name, lock->lo_name);
931
932 /* XXX: need to verify that no one holds the lock */
933 if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
934 return;
935 w = lock->lo_witness;
936
937 mtx_lock_spin(&w_mtx);
938 MPASS(w->w_refcount > 0);
939 w->w_refcount--;
940
941 if (w->w_refcount == 0)
942 depart(w);
943 mtx_unlock_spin(&w_mtx);
944 }
945
946 #ifdef DDB
947 static void
witness_ddb_compute_levels(void)948 witness_ddb_compute_levels(void)
949 {
950 struct witness *w;
951
952 /*
953 * First clear all levels.
954 */
955 STAILQ_FOREACH(w, &w_all, w_list)
956 w->w_ddb_level = -1;
957
958 /*
959 * Look for locks with no parents and level all their descendants.
960 */
961 STAILQ_FOREACH(w, &w_all, w_list) {
962 /* If the witness has ancestors (is not a root), skip it. */
963 if (w->w_num_ancestors > 0)
964 continue;
965 witness_ddb_level_descendants(w, 0);
966 }
967 }
968
969 static void
witness_ddb_level_descendants(struct witness * w,int l)970 witness_ddb_level_descendants(struct witness *w, int l)
971 {
972 int i;
973
974 if (w->w_ddb_level >= l)
975 return;
976
977 w->w_ddb_level = l;
978 l++;
979
980 for (i = 1; i <= w_max_used_index; i++) {
981 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
982 witness_ddb_level_descendants(&w_data[i], l);
983 }
984 }
985
986 static void
witness_ddb_display_descendants(int (* prnt)(const char * fmt,...),struct witness * w,int indent)987 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
988 struct witness *w, int indent)
989 {
990 int i;
991
992 for (i = 0; i < indent; i++)
993 prnt(" ");
994 prnt("%s (type: %s, depth: %d, active refs: %d)",
995 w->w_name, w->w_class->lc_name,
996 w->w_ddb_level, w->w_refcount);
997 if (w->w_displayed) {
998 prnt(" -- (already displayed)\n");
999 return;
1000 }
1001 w->w_displayed = 1;
1002 if (w->w_file != NULL && w->w_line != 0)
1003 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
1004 w->w_line);
1005 else
1006 prnt(" -- never acquired\n");
1007 indent++;
1008 WITNESS_INDEX_ASSERT(w->w_index);
1009 for (i = 1; i <= w_max_used_index; i++) {
1010 if (db_pager_quit)
1011 return;
1012 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
1013 witness_ddb_display_descendants(prnt, &w_data[i],
1014 indent);
1015 }
1016 }
1017
1018 static void
witness_ddb_display_list(int (* prnt)(const char * fmt,...),struct witness_list * list)1019 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
1020 struct witness_list *list)
1021 {
1022 struct witness *w;
1023
1024 STAILQ_FOREACH(w, list, w_typelist) {
1025 if (w->w_file == NULL || w->w_ddb_level > 0)
1026 continue;
1027
1028 /* This lock has no anscestors - display its descendants. */
1029 witness_ddb_display_descendants(prnt, w, 0);
1030 if (db_pager_quit)
1031 return;
1032 }
1033 }
1034
1035 static void
witness_ddb_display(int (* prnt)(const char * fmt,...))1036 witness_ddb_display(int(*prnt)(const char *fmt, ...))
1037 {
1038 struct witness *w;
1039
1040 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1041 witness_ddb_compute_levels();
1042
1043 /* Clear all the displayed flags. */
1044 STAILQ_FOREACH(w, &w_all, w_list)
1045 w->w_displayed = 0;
1046
1047 /*
1048 * First, handle sleep locks which have been acquired at least
1049 * once.
1050 */
1051 prnt("Sleep locks:\n");
1052 witness_ddb_display_list(prnt, &w_sleep);
1053 if (db_pager_quit)
1054 return;
1055
1056 /*
1057 * Now do spin locks which have been acquired at least once.
1058 */
1059 prnt("\nSpin locks:\n");
1060 witness_ddb_display_list(prnt, &w_spin);
1061 if (db_pager_quit)
1062 return;
1063
1064 /*
1065 * Finally, any locks which have not been acquired yet.
1066 */
1067 prnt("\nLocks which were never acquired:\n");
1068 STAILQ_FOREACH(w, &w_all, w_list) {
1069 if (w->w_file != NULL || w->w_refcount == 0)
1070 continue;
1071 prnt("%s (type: %s, depth: %d)\n", w->w_name,
1072 w->w_class->lc_name, w->w_ddb_level);
1073 if (db_pager_quit)
1074 return;
1075 }
1076 }
1077 #endif /* DDB */
1078
1079 int
witness_defineorder(struct lock_object * lock1,struct lock_object * lock2)1080 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1081 {
1082
1083 if (witness_watch == -1 || KERNEL_PANICKED())
1084 return (0);
1085
1086 /* Require locks that witness knows about. */
1087 if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1088 lock2->lo_witness == NULL)
1089 return (EINVAL);
1090
1091 mtx_assert(&w_mtx, MA_NOTOWNED);
1092 mtx_lock_spin(&w_mtx);
1093
1094 /*
1095 * If we already have either an explicit or implied lock order that
1096 * is the other way around, then return an error.
1097 */
1098 if (witness_watch &&
1099 isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1100 mtx_unlock_spin(&w_mtx);
1101 return (EDOOFUS);
1102 }
1103
1104 /* Try to add the new order. */
1105 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1106 lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1107 itismychild(lock1->lo_witness, lock2->lo_witness);
1108 mtx_unlock_spin(&w_mtx);
1109 return (0);
1110 }
1111
1112 void
witness_checkorder(struct lock_object * lock,int flags,const char * file,int line,struct lock_object * interlock)1113 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1114 int line, struct lock_object *interlock)
1115 {
1116 struct lock_list_entry *lock_list, *lle;
1117 struct lock_instance *lock1, *lock2, *plock;
1118 struct lock_class *class, *iclass;
1119 struct witness *w, *w1;
1120 struct thread *td;
1121 int i, j;
1122
1123 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1124 KERNEL_PANICKED())
1125 return;
1126
1127 w = lock->lo_witness;
1128 class = LOCK_CLASS(lock);
1129 td = curthread;
1130
1131 if (class->lc_flags & LC_SLEEPLOCK) {
1132 /*
1133 * Since spin locks include a critical section, this check
1134 * implicitly enforces a lock order of all sleep locks before
1135 * all spin locks.
1136 */
1137 if (td->td_critnest != 0 && !kdb_active)
1138 kassert_panic("acquiring blockable sleep lock with "
1139 "spinlock or critical section held (%s) %s @ %s:%d",
1140 class->lc_name, lock->lo_name,
1141 fixup_filename(file), line);
1142
1143 /*
1144 * If this is the first lock acquired then just return as
1145 * no order checking is needed.
1146 */
1147 lock_list = td->td_sleeplocks;
1148 if (lock_list == NULL || lock_list->ll_count == 0)
1149 return;
1150 } else {
1151 /*
1152 * If this is the first lock, just return as no order
1153 * checking is needed. Avoid problems with thread
1154 * migration pinning the thread while checking if
1155 * spinlocks are held. If at least one spinlock is held
1156 * the thread is in a safe path and it is allowed to
1157 * unpin it.
1158 */
1159 sched_pin();
1160 lock_list = PCPU_GET(spinlocks);
1161 if (lock_list == NULL || lock_list->ll_count == 0) {
1162 sched_unpin();
1163 return;
1164 }
1165 sched_unpin();
1166 }
1167
1168 /*
1169 * Check to see if we are recursing on a lock we already own. If
1170 * so, make sure that we don't mismatch exclusive and shared lock
1171 * acquires.
1172 */
1173 lock1 = find_instance(lock_list, lock);
1174 if (lock1 != NULL) {
1175 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1176 (flags & LOP_EXCLUSIVE) == 0) {
1177 witness_output("shared lock of (%s) %s @ %s:%d\n",
1178 class->lc_name, lock->lo_name,
1179 fixup_filename(file), line);
1180 witness_output("while exclusively locked from %s:%d\n",
1181 fixup_filename(lock1->li_file), lock1->li_line);
1182 kassert_panic("excl->share");
1183 }
1184 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1185 (flags & LOP_EXCLUSIVE) != 0) {
1186 witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1187 class->lc_name, lock->lo_name,
1188 fixup_filename(file), line);
1189 witness_output("while share locked from %s:%d\n",
1190 fixup_filename(lock1->li_file), lock1->li_line);
1191 kassert_panic("share->excl");
1192 }
1193 return;
1194 }
1195
1196 /* Warn if the interlock is not locked exactly once. */
1197 if (interlock != NULL) {
1198 iclass = LOCK_CLASS(interlock);
1199 lock1 = find_instance(lock_list, interlock);
1200 if (lock1 == NULL)
1201 kassert_panic("interlock (%s) %s not locked @ %s:%d",
1202 iclass->lc_name, interlock->lo_name,
1203 fixup_filename(file), line);
1204 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1205 kassert_panic("interlock (%s) %s recursed @ %s:%d",
1206 iclass->lc_name, interlock->lo_name,
1207 fixup_filename(file), line);
1208 }
1209
1210 /*
1211 * Find the previously acquired lock, but ignore interlocks.
1212 */
1213 plock = &lock_list->ll_children[lock_list->ll_count - 1];
1214 if (interlock != NULL && plock->li_lock == interlock) {
1215 if (lock_list->ll_count > 1)
1216 plock =
1217 &lock_list->ll_children[lock_list->ll_count - 2];
1218 else {
1219 lle = lock_list->ll_next;
1220
1221 /*
1222 * The interlock is the only lock we hold, so
1223 * simply return.
1224 */
1225 if (lle == NULL)
1226 return;
1227 plock = &lle->ll_children[lle->ll_count - 1];
1228 }
1229 }
1230
1231 /*
1232 * Try to perform most checks without a lock. If this succeeds we
1233 * can skip acquiring the lock and return success. Otherwise we redo
1234 * the check with the lock held to handle races with concurrent updates.
1235 */
1236 w1 = plock->li_lock->lo_witness;
1237 if (witness_lock_order_check(w1, w))
1238 return;
1239
1240 mtx_lock_spin(&w_mtx);
1241 if (witness_lock_order_check(w1, w)) {
1242 mtx_unlock_spin(&w_mtx);
1243 return;
1244 }
1245 witness_lock_order_add(w1, w);
1246
1247 /*
1248 * Check for duplicate locks of the same type. Note that we only
1249 * have to check for this on the last lock we just acquired. Any
1250 * other cases will be caught as lock order violations.
1251 */
1252 if (w1 == w) {
1253 i = w->w_index;
1254 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1255 !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1256 w_rmatrix[i][i] |= WITNESS_REVERSAL;
1257 w->w_reversed = 1;
1258 mtx_unlock_spin(&w_mtx);
1259 witness_output(
1260 "acquiring duplicate lock of same type: \"%s\"\n",
1261 w->w_name);
1262 witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1263 fixup_filename(plock->li_file), plock->li_line);
1264 witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1265 fixup_filename(file), line);
1266 witness_debugger(1, __func__);
1267 } else
1268 mtx_unlock_spin(&w_mtx);
1269 return;
1270 }
1271 mtx_assert(&w_mtx, MA_OWNED);
1272
1273 /*
1274 * If we know that the lock we are acquiring comes after
1275 * the lock we most recently acquired in the lock order tree,
1276 * then there is no need for any further checks.
1277 */
1278 if (isitmychild(w1, w))
1279 goto out;
1280
1281 for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1282 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1283 struct stack pstack;
1284 bool pstackv, trace;
1285
1286 MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1287 lock1 = &lle->ll_children[i];
1288
1289 /*
1290 * Ignore the interlock.
1291 */
1292 if (interlock == lock1->li_lock)
1293 continue;
1294
1295 /*
1296 * If this lock doesn't undergo witness checking,
1297 * then skip it.
1298 */
1299 w1 = lock1->li_lock->lo_witness;
1300 if (w1 == NULL) {
1301 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1302 ("lock missing witness structure"));
1303 continue;
1304 }
1305
1306 /*
1307 * If we are locking Giant and this is a sleepable
1308 * lock, then skip it.
1309 */
1310 if ((lock1->li_flags & LI_SLEEPABLE) != 0 &&
1311 lock == &Giant.lock_object)
1312 continue;
1313
1314 /*
1315 * If we are locking a sleepable lock and this lock
1316 * is Giant, then skip it.
1317 */
1318 if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1319 (flags & LOP_NOSLEEP) == 0 &&
1320 lock1->li_lock == &Giant.lock_object)
1321 continue;
1322
1323 /*
1324 * If we are locking a sleepable lock and this lock
1325 * isn't sleepable, we want to treat it as a lock
1326 * order violation to enfore a general lock order of
1327 * sleepable locks before non-sleepable locks.
1328 */
1329 if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1330 (flags & LOP_NOSLEEP) == 0 &&
1331 (lock1->li_flags & LI_SLEEPABLE) == 0)
1332 goto reversal;
1333
1334 /*
1335 * If we are locking Giant and this is a non-sleepable
1336 * lock, then treat it as a reversal.
1337 */
1338 if ((lock1->li_flags & LI_SLEEPABLE) == 0 &&
1339 lock == &Giant.lock_object)
1340 goto reversal;
1341
1342 /*
1343 * Check the lock order hierarchy for a reveresal.
1344 */
1345 if (!isitmydescendant(w, w1))
1346 continue;
1347 reversal:
1348
1349 /*
1350 * We have a lock order violation, check to see if it
1351 * is allowed or has already been yelled about.
1352 */
1353
1354 /* Bail if this violation is known */
1355 if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1356 goto out;
1357
1358 /* Record this as a violation */
1359 w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1360 w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1361 w->w_reversed = w1->w_reversed = 1;
1362 witness_increment_graph_generation();
1363
1364 /*
1365 * If the lock order is blessed, bail before logging
1366 * anything. We don't look for other lock order
1367 * violations though, which may be a bug.
1368 */
1369 if (blessed(w, w1))
1370 goto out;
1371
1372 trace = atomic_load_int(&witness_trace);
1373 if (trace) {
1374 struct witness_lock_order_data *data;
1375
1376 pstackv = false;
1377 data = witness_lock_order_get(w, w1);
1378 if (data != NULL) {
1379 stack_copy(&data->wlod_stack,
1380 &pstack);
1381 pstackv = true;
1382 }
1383 }
1384 mtx_unlock_spin(&w_mtx);
1385
1386 #ifdef WITNESS_NO_VNODE
1387 /*
1388 * There are known LORs between VNODE locks. They are
1389 * not an indication of a bug. VNODE locks are flagged
1390 * as such (LO_IS_VNODE) and we don't yell if the LOR
1391 * is between 2 VNODE locks.
1392 */
1393 if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1394 (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1395 return;
1396 #endif
1397
1398 /*
1399 * Ok, yell about it.
1400 */
1401 if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1402 (flags & LOP_NOSLEEP) == 0 &&
1403 (lock1->li_flags & LI_SLEEPABLE) == 0)
1404 witness_output(
1405 "lock order reversal: (sleepable after non-sleepable)\n");
1406 else if ((lock1->li_flags & LI_SLEEPABLE) == 0
1407 && lock == &Giant.lock_object)
1408 witness_output(
1409 "lock order reversal: (Giant after non-sleepable)\n");
1410 else
1411 witness_output("lock order reversal:\n");
1412
1413 /*
1414 * Try to locate an earlier lock with
1415 * witness w in our list.
1416 */
1417 do {
1418 lock2 = &lle->ll_children[i];
1419 MPASS(lock2->li_lock != NULL);
1420 if (lock2->li_lock->lo_witness == w)
1421 break;
1422 if (i == 0 && lle->ll_next != NULL) {
1423 lle = lle->ll_next;
1424 i = lle->ll_count - 1;
1425 MPASS(i >= 0 && i < LOCK_NCHILDREN);
1426 } else
1427 i--;
1428 } while (i >= 0);
1429 if (i < 0) {
1430 witness_output(" 1st %p %s (%s, %s) @ %s:%d\n",
1431 lock1->li_lock, lock1->li_lock->lo_name,
1432 w1->w_name, w1->w_class->lc_name,
1433 fixup_filename(lock1->li_file),
1434 lock1->li_line);
1435 witness_output(" 2nd %p %s (%s, %s) @ %s:%d\n",
1436 lock, lock->lo_name, w->w_name,
1437 w->w_class->lc_name, fixup_filename(file),
1438 line);
1439 } else {
1440 struct witness *w2 = lock2->li_lock->lo_witness;
1441
1442 witness_output(" 1st %p %s (%s, %s) @ %s:%d\n",
1443 lock2->li_lock, lock2->li_lock->lo_name,
1444 w2->w_name, w2->w_class->lc_name,
1445 fixup_filename(lock2->li_file),
1446 lock2->li_line);
1447 witness_output(" 2nd %p %s (%s, %s) @ %s:%d\n",
1448 lock1->li_lock, lock1->li_lock->lo_name,
1449 w1->w_name, w1->w_class->lc_name,
1450 fixup_filename(lock1->li_file),
1451 lock1->li_line);
1452 witness_output(" 3rd %p %s (%s, %s) @ %s:%d\n", lock,
1453 lock->lo_name, w->w_name,
1454 w->w_class->lc_name, fixup_filename(file),
1455 line);
1456 }
1457 if (trace) {
1458 char buf[64];
1459 struct sbuf sb;
1460
1461 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1462 sbuf_set_drain(&sb, witness_output_drain,
1463 NULL);
1464
1465 if (pstackv) {
1466 sbuf_printf(&sb,
1467 "lock order %s -> %s established at:\n",
1468 w->w_name, w1->w_name);
1469 stack_sbuf_print_flags(&sb, &pstack,
1470 M_NOWAIT, STACK_SBUF_FMT_LONG);
1471 }
1472
1473 sbuf_printf(&sb,
1474 "lock order %s -> %s attempted at:\n",
1475 w1->w_name, w->w_name);
1476 stack_save(&pstack);
1477 stack_sbuf_print_flags(&sb, &pstack, M_NOWAIT,
1478 STACK_SBUF_FMT_LONG);
1479
1480 sbuf_finish(&sb);
1481 sbuf_delete(&sb);
1482 }
1483 witness_enter_debugger(__func__);
1484 return;
1485 }
1486 }
1487
1488 /*
1489 * If requested, build a new lock order. However, don't build a new
1490 * relationship between a sleepable lock and Giant if it is in the
1491 * wrong direction. The correct lock order is that sleepable locks
1492 * always come before Giant.
1493 */
1494 if (flags & LOP_NEWORDER &&
1495 !(plock->li_lock == &Giant.lock_object &&
1496 (lock->lo_flags & LO_SLEEPABLE) != 0 &&
1497 (flags & LOP_NOSLEEP) == 0)) {
1498 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1499 w->w_name, plock->li_lock->lo_witness->w_name);
1500 itismychild(plock->li_lock->lo_witness, w);
1501 }
1502 out:
1503 mtx_unlock_spin(&w_mtx);
1504 }
1505
1506 void
witness_lock(struct lock_object * lock,int flags,const char * file,int line)1507 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1508 {
1509 struct lock_list_entry **lock_list, *lle;
1510 struct lock_instance *instance;
1511 struct witness *w;
1512 struct thread *td;
1513
1514 if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1515 KERNEL_PANICKED())
1516 return;
1517 w = lock->lo_witness;
1518 td = curthread;
1519
1520 /* Determine lock list for this lock. */
1521 if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1522 lock_list = &td->td_sleeplocks;
1523 else
1524 lock_list = PCPU_PTR(spinlocks);
1525
1526 /* Check to see if we are recursing on a lock we already own. */
1527 instance = find_instance(*lock_list, lock);
1528 if (instance != NULL) {
1529 instance->li_flags++;
1530 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1531 td->td_proc->p_pid, lock->lo_name,
1532 instance->li_flags & LI_RECURSEMASK);
1533 instance->li_file = file;
1534 instance->li_line = line;
1535 return;
1536 }
1537
1538 /* Update per-witness last file and line acquire. */
1539 w->w_file = file;
1540 w->w_line = line;
1541
1542 /* Find the next open lock instance in the list and fill it. */
1543 lle = *lock_list;
1544 if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1545 lle = witness_lock_list_get();
1546 if (lle == NULL)
1547 return;
1548 lle->ll_next = *lock_list;
1549 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1550 td->td_proc->p_pid, lle);
1551 *lock_list = lle;
1552 }
1553 instance = &lle->ll_children[lle->ll_count++];
1554 instance->li_lock = lock;
1555 instance->li_line = line;
1556 instance->li_file = file;
1557 instance->li_flags = 0;
1558 if ((flags & LOP_EXCLUSIVE) != 0)
1559 instance->li_flags |= LI_EXCLUSIVE;
1560 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && (flags & LOP_NOSLEEP) == 0)
1561 instance->li_flags |= LI_SLEEPABLE;
1562 CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1563 td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1564 }
1565
1566 void
witness_upgrade(struct lock_object * lock,int flags,const char * file,int line)1567 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1568 {
1569 struct lock_instance *instance;
1570 struct lock_class *class;
1571
1572 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1573 if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
1574 return;
1575 class = LOCK_CLASS(lock);
1576 if (witness_watch) {
1577 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1578 kassert_panic(
1579 "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1580 class->lc_name, lock->lo_name,
1581 fixup_filename(file), line);
1582 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1583 kassert_panic(
1584 "upgrade of non-sleep lock (%s) %s @ %s:%d",
1585 class->lc_name, lock->lo_name,
1586 fixup_filename(file), line);
1587 }
1588 instance = find_instance(curthread->td_sleeplocks, lock);
1589 if (instance == NULL) {
1590 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1591 class->lc_name, lock->lo_name,
1592 fixup_filename(file), line);
1593 return;
1594 }
1595 if (witness_watch) {
1596 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1597 kassert_panic(
1598 "upgrade of exclusive lock (%s) %s @ %s:%d",
1599 class->lc_name, lock->lo_name,
1600 fixup_filename(file), line);
1601 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1602 kassert_panic(
1603 "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1604 class->lc_name, lock->lo_name,
1605 instance->li_flags & LI_RECURSEMASK,
1606 fixup_filename(file), line);
1607 }
1608 instance->li_flags |= LI_EXCLUSIVE;
1609 }
1610
1611 void
witness_downgrade(struct lock_object * lock,int flags,const char * file,int line)1612 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1613 int line)
1614 {
1615 struct lock_instance *instance;
1616 struct lock_class *class;
1617
1618 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1619 if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
1620 return;
1621 class = LOCK_CLASS(lock);
1622 if (witness_watch) {
1623 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1624 kassert_panic(
1625 "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1626 class->lc_name, lock->lo_name,
1627 fixup_filename(file), line);
1628 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1629 kassert_panic(
1630 "downgrade of non-sleep lock (%s) %s @ %s:%d",
1631 class->lc_name, lock->lo_name,
1632 fixup_filename(file), line);
1633 }
1634 instance = find_instance(curthread->td_sleeplocks, lock);
1635 if (instance == NULL) {
1636 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1637 class->lc_name, lock->lo_name,
1638 fixup_filename(file), line);
1639 return;
1640 }
1641 if (witness_watch) {
1642 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1643 kassert_panic(
1644 "downgrade of shared lock (%s) %s @ %s:%d",
1645 class->lc_name, lock->lo_name,
1646 fixup_filename(file), line);
1647 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1648 kassert_panic(
1649 "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1650 class->lc_name, lock->lo_name,
1651 instance->li_flags & LI_RECURSEMASK,
1652 fixup_filename(file), line);
1653 }
1654 instance->li_flags &= ~LI_EXCLUSIVE;
1655 }
1656
1657 void
witness_unlock(struct lock_object * lock,int flags,const char * file,int line)1658 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1659 {
1660 struct lock_list_entry **lock_list, *lle;
1661 struct lock_instance *instance;
1662 struct lock_class *class;
1663 struct thread *td;
1664 register_t s;
1665 int i, j;
1666
1667 if (witness_cold || lock->lo_witness == NULL || KERNEL_PANICKED())
1668 return;
1669 td = curthread;
1670 class = LOCK_CLASS(lock);
1671
1672 /* Find lock instance associated with this lock. */
1673 if (class->lc_flags & LC_SLEEPLOCK)
1674 lock_list = &td->td_sleeplocks;
1675 else
1676 lock_list = PCPU_PTR(spinlocks);
1677 lle = *lock_list;
1678 for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1679 for (i = 0; i < (*lock_list)->ll_count; i++) {
1680 instance = &(*lock_list)->ll_children[i];
1681 if (instance->li_lock == lock)
1682 goto found;
1683 }
1684
1685 /*
1686 * When disabling WITNESS through witness_watch we could end up in
1687 * having registered locks in the td_sleeplocks queue.
1688 * We have to make sure we flush these queues, so just search for
1689 * eventual register locks and remove them.
1690 */
1691 if (witness_watch > 0) {
1692 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1693 lock->lo_name, fixup_filename(file), line);
1694 return;
1695 } else {
1696 return;
1697 }
1698 found:
1699
1700 /* First, check for shared/exclusive mismatches. */
1701 if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1702 (flags & LOP_EXCLUSIVE) == 0) {
1703 witness_output("shared unlock of (%s) %s @ %s:%d\n",
1704 class->lc_name, lock->lo_name, fixup_filename(file), line);
1705 witness_output("while exclusively locked from %s:%d\n",
1706 fixup_filename(instance->li_file), instance->li_line);
1707 kassert_panic("excl->ushare");
1708 }
1709 if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1710 (flags & LOP_EXCLUSIVE) != 0) {
1711 witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1712 class->lc_name, lock->lo_name, fixup_filename(file), line);
1713 witness_output("while share locked from %s:%d\n",
1714 fixup_filename(instance->li_file),
1715 instance->li_line);
1716 kassert_panic("share->uexcl");
1717 }
1718 /* If we are recursed, unrecurse. */
1719 if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1720 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1721 td->td_proc->p_pid, instance->li_lock->lo_name,
1722 instance->li_flags);
1723 instance->li_flags--;
1724 return;
1725 }
1726 /* The lock is now being dropped, check for NORELEASE flag */
1727 if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1728 witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1729 class->lc_name, lock->lo_name, fixup_filename(file), line);
1730 kassert_panic("lock marked norelease");
1731 }
1732
1733 /* Otherwise, remove this item from the list. */
1734 s = intr_disable();
1735 CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1736 td->td_proc->p_pid, instance->li_lock->lo_name,
1737 (*lock_list)->ll_count - 1);
1738 for (j = i; j < (*lock_list)->ll_count - 1; j++)
1739 (*lock_list)->ll_children[j] =
1740 (*lock_list)->ll_children[j + 1];
1741 (*lock_list)->ll_count--;
1742 intr_restore(s);
1743
1744 /*
1745 * In order to reduce contention on w_mtx, we want to keep always an
1746 * head object into lists so that frequent allocation from the
1747 * free witness pool (and subsequent locking) is avoided.
1748 * In order to maintain the current code simple, when the head
1749 * object is totally unloaded it means also that we do not have
1750 * further objects in the list, so the list ownership needs to be
1751 * hand over to another object if the current head needs to be freed.
1752 */
1753 if ((*lock_list)->ll_count == 0) {
1754 if (*lock_list == lle) {
1755 if (lle->ll_next == NULL)
1756 return;
1757 } else
1758 lle = *lock_list;
1759 *lock_list = lle->ll_next;
1760 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1761 td->td_proc->p_pid, lle);
1762 witness_lock_list_free(lle);
1763 }
1764 }
1765
1766 void
witness_thread_exit(struct thread * td)1767 witness_thread_exit(struct thread *td)
1768 {
1769 struct lock_list_entry *lle;
1770 int i, n;
1771
1772 lle = td->td_sleeplocks;
1773 if (lle == NULL || KERNEL_PANICKED())
1774 return;
1775 if (lle->ll_count != 0) {
1776 for (n = 0; lle != NULL; lle = lle->ll_next)
1777 for (i = lle->ll_count - 1; i >= 0; i--) {
1778 if (n == 0)
1779 witness_output(
1780 "Thread %p exiting with the following locks held:\n", td);
1781 n++;
1782 witness_list_lock(&lle->ll_children[i],
1783 witness_output);
1784
1785 }
1786 kassert_panic(
1787 "Thread %p cannot exit while holding sleeplocks\n", td);
1788 }
1789 witness_lock_list_free(lle);
1790 }
1791
1792 /*
1793 * Warn if any locks other than 'lock' are held. Flags can be passed in to
1794 * exempt Giant and sleepable locks from the checks as well. If any
1795 * non-exempt locks are held, then a supplied message is printed to the
1796 * output channel along with a list of the offending locks. If indicated in the
1797 * flags then a failure results in a panic as well.
1798 */
1799 int
witness_warn(int flags,struct lock_object * lock,const char * fmt,...)1800 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1801 {
1802 struct lock_list_entry *lock_list, *lle;
1803 struct lock_instance *lock1;
1804 struct thread *td;
1805 va_list ap;
1806 int i, n;
1807
1808 if (witness_cold || witness_watch < 1 || KERNEL_PANICKED())
1809 return (0);
1810 n = 0;
1811 td = curthread;
1812 for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1813 for (i = lle->ll_count - 1; i >= 0; i--) {
1814 lock1 = &lle->ll_children[i];
1815 if (lock1->li_lock == lock)
1816 continue;
1817 if (flags & WARN_GIANTOK &&
1818 lock1->li_lock == &Giant.lock_object)
1819 continue;
1820 if (flags & WARN_SLEEPOK &&
1821 (lock1->li_flags & LI_SLEEPABLE) != 0)
1822 continue;
1823 if (n == 0) {
1824 va_start(ap, fmt);
1825 vprintf(fmt, ap);
1826 va_end(ap);
1827 printf(" with the following %slocks held:\n",
1828 (flags & WARN_SLEEPOK) != 0 ?
1829 "non-sleepable " : "");
1830 }
1831 n++;
1832 witness_list_lock(lock1, printf);
1833 }
1834
1835 /*
1836 * Pin the thread in order to avoid problems with thread migration.
1837 * Once that all verifies are passed about spinlocks ownership,
1838 * the thread is in a safe path and it can be unpinned.
1839 */
1840 sched_pin();
1841 lock_list = PCPU_GET(spinlocks);
1842 if (lock_list != NULL && lock_list->ll_count != 0) {
1843 sched_unpin();
1844
1845 /*
1846 * We should only have one spinlock and as long as
1847 * the flags cannot match for this locks class,
1848 * check if the first spinlock is the one curthread
1849 * should hold.
1850 */
1851 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1852 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1853 lock1->li_lock == lock && n == 0)
1854 return (0);
1855
1856 va_start(ap, fmt);
1857 vprintf(fmt, ap);
1858 va_end(ap);
1859 printf(" with the following %slocks held:\n",
1860 (flags & WARN_SLEEPOK) != 0 ? "non-sleepable " : "");
1861 n += witness_list_locks(&lock_list, printf);
1862 } else
1863 sched_unpin();
1864 if (flags & WARN_PANIC && n)
1865 kassert_panic("%s", __func__);
1866 else
1867 witness_debugger(n, __func__);
1868 return (n);
1869 }
1870
1871 const char *
witness_file(struct lock_object * lock)1872 witness_file(struct lock_object *lock)
1873 {
1874 struct witness *w;
1875
1876 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1877 return ("?");
1878 w = lock->lo_witness;
1879 return (w->w_file);
1880 }
1881
1882 int
witness_line(struct lock_object * lock)1883 witness_line(struct lock_object *lock)
1884 {
1885 struct witness *w;
1886
1887 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1888 return (0);
1889 w = lock->lo_witness;
1890 return (w->w_line);
1891 }
1892
1893 static struct witness *
enroll(const char * description,struct lock_class * lock_class)1894 enroll(const char *description, struct lock_class *lock_class)
1895 {
1896 struct witness *w;
1897
1898 MPASS(description != NULL);
1899
1900 if (witness_watch == -1 || KERNEL_PANICKED())
1901 return (NULL);
1902 if ((lock_class->lc_flags & LC_SPINLOCK)) {
1903 if (witness_skipspin)
1904 return (NULL);
1905 } else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) {
1906 kassert_panic("lock class %s is not sleep or spin",
1907 lock_class->lc_name);
1908 return (NULL);
1909 }
1910
1911 mtx_lock_spin(&w_mtx);
1912 w = witness_hash_get(description);
1913 if (w)
1914 goto found;
1915 if ((w = witness_get()) == NULL)
1916 return (NULL);
1917 MPASS(strlen(description) < MAX_W_NAME);
1918 strcpy(w->w_name, description);
1919 w->w_class = lock_class;
1920 w->w_refcount = 1;
1921 STAILQ_INSERT_HEAD(&w_all, w, w_list);
1922 if (lock_class->lc_flags & LC_SPINLOCK) {
1923 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1924 w_spin_cnt++;
1925 } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1926 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1927 w_sleep_cnt++;
1928 }
1929
1930 /* Insert new witness into the hash */
1931 witness_hash_put(w);
1932 witness_increment_graph_generation();
1933 mtx_unlock_spin(&w_mtx);
1934 return (w);
1935 found:
1936 w->w_refcount++;
1937 if (w->w_refcount == 1)
1938 w->w_class = lock_class;
1939 mtx_unlock_spin(&w_mtx);
1940 if (lock_class != w->w_class)
1941 kassert_panic(
1942 "lock (%s) %s does not match earlier (%s) lock",
1943 description, lock_class->lc_name,
1944 w->w_class->lc_name);
1945 return (w);
1946 }
1947
1948 static void
depart(struct witness * w)1949 depart(struct witness *w)
1950 {
1951
1952 MPASS(w->w_refcount == 0);
1953 if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1954 w_sleep_cnt--;
1955 } else {
1956 w_spin_cnt--;
1957 }
1958 /*
1959 * Set file to NULL as it may point into a loadable module.
1960 */
1961 w->w_file = NULL;
1962 w->w_line = 0;
1963 witness_increment_graph_generation();
1964 }
1965
1966 static void
adopt(struct witness * parent,struct witness * child)1967 adopt(struct witness *parent, struct witness *child)
1968 {
1969 int pi, ci, i, j;
1970
1971 if (witness_cold == 0)
1972 mtx_assert(&w_mtx, MA_OWNED);
1973
1974 /* If the relationship is already known, there's no work to be done. */
1975 if (isitmychild(parent, child))
1976 return;
1977
1978 /* When the structure of the graph changes, bump up the generation. */
1979 witness_increment_graph_generation();
1980
1981 /*
1982 * The hard part ... create the direct relationship, then propagate all
1983 * indirect relationships.
1984 */
1985 pi = parent->w_index;
1986 ci = child->w_index;
1987 WITNESS_INDEX_ASSERT(pi);
1988 WITNESS_INDEX_ASSERT(ci);
1989 MPASS(pi != ci);
1990 w_rmatrix[pi][ci] |= WITNESS_PARENT;
1991 w_rmatrix[ci][pi] |= WITNESS_CHILD;
1992
1993 /*
1994 * If parent was not already an ancestor of child,
1995 * then we increment the descendant and ancestor counters.
1996 */
1997 if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1998 parent->w_num_descendants++;
1999 child->w_num_ancestors++;
2000 }
2001
2002 /*
2003 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
2004 * an ancestor of 'pi' during this loop.
2005 */
2006 for (i = 1; i <= w_max_used_index; i++) {
2007 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
2008 (i != pi))
2009 continue;
2010
2011 /* Find each descendant of 'i' and mark it as a descendant. */
2012 for (j = 1; j <= w_max_used_index; j++) {
2013 /*
2014 * Skip children that are already marked as
2015 * descendants of 'i'.
2016 */
2017 if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
2018 continue;
2019
2020 /*
2021 * We are only interested in descendants of 'ci'. Note
2022 * that 'ci' itself is counted as a descendant of 'ci'.
2023 */
2024 if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
2025 (j != ci))
2026 continue;
2027 w_rmatrix[i][j] |= WITNESS_ANCESTOR;
2028 w_rmatrix[j][i] |= WITNESS_DESCENDANT;
2029 w_data[i].w_num_descendants++;
2030 w_data[j].w_num_ancestors++;
2031
2032 /*
2033 * Make sure we aren't marking a node as both an
2034 * ancestor and descendant. We should have caught
2035 * this as a lock order reversal earlier.
2036 */
2037 if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
2038 (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
2039 printf("witness rmatrix paradox! [%d][%d]=%d "
2040 "both ancestor and descendant\n",
2041 i, j, w_rmatrix[i][j]);
2042 kdb_backtrace();
2043 printf("Witness disabled.\n");
2044 witness_watch = -1;
2045 }
2046 if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
2047 (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
2048 printf("witness rmatrix paradox! [%d][%d]=%d "
2049 "both ancestor and descendant\n",
2050 j, i, w_rmatrix[j][i]);
2051 kdb_backtrace();
2052 printf("Witness disabled.\n");
2053 witness_watch = -1;
2054 }
2055 }
2056 }
2057 }
2058
2059 static void
itismychild(struct witness * parent,struct witness * child)2060 itismychild(struct witness *parent, struct witness *child)
2061 {
2062 int unlocked;
2063
2064 MPASS(child != NULL && parent != NULL);
2065 if (witness_cold == 0)
2066 mtx_assert(&w_mtx, MA_OWNED);
2067
2068 if (!witness_lock_type_equal(parent, child)) {
2069 if (witness_cold == 0) {
2070 unlocked = 1;
2071 mtx_unlock_spin(&w_mtx);
2072 } else {
2073 unlocked = 0;
2074 }
2075 kassert_panic(
2076 "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
2077 "the same lock type", __func__, parent->w_name,
2078 parent->w_class->lc_name, child->w_name,
2079 child->w_class->lc_name);
2080 if (unlocked)
2081 mtx_lock_spin(&w_mtx);
2082 }
2083 adopt(parent, child);
2084 }
2085
2086 /*
2087 * Generic code for the isitmy*() functions. The rmask parameter is the
2088 * expected relationship of w1 to w2.
2089 */
2090 static int
_isitmyx(struct witness * w1,struct witness * w2,int rmask,const char * fname)2091 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2092 {
2093 unsigned char r1, r2;
2094 int i1, i2;
2095
2096 i1 = w1->w_index;
2097 i2 = w2->w_index;
2098 WITNESS_INDEX_ASSERT(i1);
2099 WITNESS_INDEX_ASSERT(i2);
2100 r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2101 r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2102
2103 /* The flags on one better be the inverse of the flags on the other */
2104 if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2105 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2106 /* Don't squawk if we're potentially racing with an update. */
2107 if (!mtx_owned(&w_mtx))
2108 return (0);
2109 printf("%s: rmatrix mismatch between %s (index %d) and %s "
2110 "(index %d): w_rmatrix[%d][%d] == %hhx but "
2111 "w_rmatrix[%d][%d] == %hhx\n",
2112 fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2113 i2, i1, r2);
2114 kdb_backtrace();
2115 printf("Witness disabled.\n");
2116 witness_watch = -1;
2117 }
2118 return (r1 & rmask);
2119 }
2120
2121 /*
2122 * Checks if @child is a direct child of @parent.
2123 */
2124 static int
isitmychild(struct witness * parent,struct witness * child)2125 isitmychild(struct witness *parent, struct witness *child)
2126 {
2127
2128 return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2129 }
2130
2131 /*
2132 * Checks if @descendant is a direct or inderect descendant of @ancestor.
2133 */
2134 static int
isitmydescendant(struct witness * ancestor,struct witness * descendant)2135 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2136 {
2137
2138 return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2139 __func__));
2140 }
2141
2142 static int
blessed(struct witness * w1,struct witness * w2)2143 blessed(struct witness *w1, struct witness *w2)
2144 {
2145 int i;
2146 struct witness_blessed *b;
2147
2148 for (i = 0; i < nitems(blessed_list); i++) {
2149 b = &blessed_list[i];
2150 if (strcmp(w1->w_name, b->b_lock1) == 0) {
2151 if (strcmp(w2->w_name, b->b_lock2) == 0)
2152 return (1);
2153 continue;
2154 }
2155 if (strcmp(w1->w_name, b->b_lock2) == 0)
2156 if (strcmp(w2->w_name, b->b_lock1) == 0)
2157 return (1);
2158 }
2159 return (0);
2160 }
2161
2162 static struct witness *
witness_get(void)2163 witness_get(void)
2164 {
2165 struct witness *w;
2166 int index;
2167
2168 if (witness_cold == 0)
2169 mtx_assert(&w_mtx, MA_OWNED);
2170
2171 if (witness_watch == -1) {
2172 mtx_unlock_spin(&w_mtx);
2173 return (NULL);
2174 }
2175 if (STAILQ_EMPTY(&w_free)) {
2176 witness_watch = -1;
2177 mtx_unlock_spin(&w_mtx);
2178 printf("WITNESS: unable to allocate a new witness object\n");
2179 return (NULL);
2180 }
2181 w = STAILQ_FIRST(&w_free);
2182 STAILQ_REMOVE_HEAD(&w_free, w_list);
2183 w_free_cnt--;
2184 index = w->w_index;
2185 MPASS(index > 0 && index == w_max_used_index+1 &&
2186 index < witness_count);
2187 bzero(w, sizeof(*w));
2188 w->w_index = index;
2189 if (index > w_max_used_index)
2190 w_max_used_index = index;
2191 return (w);
2192 }
2193
2194 static void
witness_free(struct witness * w)2195 witness_free(struct witness *w)
2196 {
2197
2198 STAILQ_INSERT_HEAD(&w_free, w, w_list);
2199 w_free_cnt++;
2200 }
2201
2202 static struct lock_list_entry *
witness_lock_list_get(void)2203 witness_lock_list_get(void)
2204 {
2205 struct lock_list_entry *lle;
2206
2207 if (witness_watch == -1)
2208 return (NULL);
2209 mtx_lock_spin(&w_mtx);
2210 lle = w_lock_list_free;
2211 if (lle == NULL) {
2212 witness_watch = -1;
2213 mtx_unlock_spin(&w_mtx);
2214 printf("%s: witness exhausted\n", __func__);
2215 return (NULL);
2216 }
2217 w_lock_list_free = lle->ll_next;
2218 mtx_unlock_spin(&w_mtx);
2219 bzero(lle, sizeof(*lle));
2220 return (lle);
2221 }
2222
2223 static void
witness_lock_list_free(struct lock_list_entry * lle)2224 witness_lock_list_free(struct lock_list_entry *lle)
2225 {
2226
2227 mtx_lock_spin(&w_mtx);
2228 lle->ll_next = w_lock_list_free;
2229 w_lock_list_free = lle;
2230 mtx_unlock_spin(&w_mtx);
2231 }
2232
2233 static struct lock_instance *
find_instance(struct lock_list_entry * list,const struct lock_object * lock)2234 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2235 {
2236 struct lock_list_entry *lle;
2237 struct lock_instance *instance;
2238 int i;
2239
2240 for (lle = list; lle != NULL; lle = lle->ll_next)
2241 for (i = lle->ll_count - 1; i >= 0; i--) {
2242 instance = &lle->ll_children[i];
2243 if (instance->li_lock == lock)
2244 return (instance);
2245 }
2246 return (NULL);
2247 }
2248
2249 static void
witness_list_lock(struct lock_instance * instance,int (* prnt)(const char * fmt,...))2250 witness_list_lock(struct lock_instance *instance,
2251 int (*prnt)(const char *fmt, ...))
2252 {
2253 struct lock_object *lock;
2254
2255 lock = instance->li_lock;
2256 prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2257 "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2258 if (lock->lo_witness->w_name != lock->lo_name)
2259 prnt(" (%s)", lock->lo_witness->w_name);
2260 prnt(" r = %d (%p) locked @ %s:%d\n",
2261 instance->li_flags & LI_RECURSEMASK, lock,
2262 fixup_filename(instance->li_file), instance->li_line);
2263 }
2264
2265 static int
witness_output(const char * fmt,...)2266 witness_output(const char *fmt, ...)
2267 {
2268 va_list ap;
2269 int ret;
2270
2271 va_start(ap, fmt);
2272 ret = witness_voutput(fmt, ap);
2273 va_end(ap);
2274 return (ret);
2275 }
2276
2277 static int
witness_voutput(const char * fmt,va_list ap)2278 witness_voutput(const char *fmt, va_list ap)
2279 {
2280 int ret;
2281
2282 ret = 0;
2283 switch (witness_channel) {
2284 case WITNESS_CONSOLE:
2285 ret = vprintf(fmt, ap);
2286 break;
2287 case WITNESS_LOG:
2288 vlog(LOG_NOTICE, fmt, ap);
2289 break;
2290 case WITNESS_NONE:
2291 break;
2292 }
2293 return (ret);
2294 }
2295
2296 #ifdef DDB
2297 static int
witness_thread_has_locks(struct thread * td)2298 witness_thread_has_locks(struct thread *td)
2299 {
2300
2301 if (td->td_sleeplocks == NULL)
2302 return (0);
2303 return (td->td_sleeplocks->ll_count != 0);
2304 }
2305
2306 static int
witness_proc_has_locks(struct proc * p)2307 witness_proc_has_locks(struct proc *p)
2308 {
2309 struct thread *td;
2310
2311 FOREACH_THREAD_IN_PROC(p, td) {
2312 if (witness_thread_has_locks(td))
2313 return (1);
2314 }
2315 return (0);
2316 }
2317 #endif
2318
2319 int
witness_list_locks(struct lock_list_entry ** lock_list,int (* prnt)(const char * fmt,...))2320 witness_list_locks(struct lock_list_entry **lock_list,
2321 int (*prnt)(const char *fmt, ...))
2322 {
2323 struct lock_list_entry *lle;
2324 int i, nheld;
2325
2326 nheld = 0;
2327 for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2328 for (i = lle->ll_count - 1; i >= 0; i--) {
2329 witness_list_lock(&lle->ll_children[i], prnt);
2330 nheld++;
2331 }
2332 return (nheld);
2333 }
2334
2335 /*
2336 * This is a bit risky at best. We call this function when we have timed
2337 * out acquiring a spin lock, and we assume that the other CPU is stuck
2338 * with this lock held. So, we go groveling around in the other CPU's
2339 * per-cpu data to try to find the lock instance for this spin lock to
2340 * see when it was last acquired.
2341 */
2342 void
witness_display_spinlock(struct lock_object * lock,struct thread * owner,int (* prnt)(const char * fmt,...))2343 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2344 int (*prnt)(const char *fmt, ...))
2345 {
2346 struct lock_instance *instance;
2347 struct pcpu *pc;
2348
2349 if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2350 return;
2351 pc = pcpu_find(owner->td_oncpu);
2352 instance = find_instance(pc->pc_spinlocks, lock);
2353 if (instance != NULL)
2354 witness_list_lock(instance, prnt);
2355 }
2356
2357 void
witness_save(struct lock_object * lock,const char ** filep,int * linep)2358 witness_save(struct lock_object *lock, const char **filep, int *linep)
2359 {
2360 struct lock_list_entry *lock_list;
2361 struct lock_instance *instance;
2362 struct lock_class *class;
2363
2364 /* Initialize for KMSAN's benefit. */
2365 *filep = NULL;
2366 *linep = 0;
2367
2368 /*
2369 * This function is used independently in locking code to deal with
2370 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2371 * is gone.
2372 */
2373 if (SCHEDULER_STOPPED())
2374 return;
2375 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2376 if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2377 return;
2378 class = LOCK_CLASS(lock);
2379 if (class->lc_flags & LC_SLEEPLOCK)
2380 lock_list = curthread->td_sleeplocks;
2381 else {
2382 if (witness_skipspin)
2383 return;
2384 lock_list = PCPU_GET(spinlocks);
2385 }
2386 instance = find_instance(lock_list, lock);
2387 if (instance == NULL) {
2388 kassert_panic("%s: lock (%s) %s not locked", __func__,
2389 class->lc_name, lock->lo_name);
2390 return;
2391 }
2392 *filep = instance->li_file;
2393 *linep = instance->li_line;
2394 }
2395
2396 void
witness_restore(struct lock_object * lock,const char * file,int line)2397 witness_restore(struct lock_object *lock, const char *file, int line)
2398 {
2399 struct lock_list_entry *lock_list;
2400 struct lock_instance *instance;
2401 struct lock_class *class;
2402
2403 /*
2404 * This function is used independently in locking code to deal with
2405 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2406 * is gone.
2407 */
2408 if (SCHEDULER_STOPPED())
2409 return;
2410 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2411 if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2412 return;
2413 class = LOCK_CLASS(lock);
2414 if (class->lc_flags & LC_SLEEPLOCK)
2415 lock_list = curthread->td_sleeplocks;
2416 else {
2417 if (witness_skipspin)
2418 return;
2419 lock_list = PCPU_GET(spinlocks);
2420 }
2421 instance = find_instance(lock_list, lock);
2422 if (instance == NULL)
2423 kassert_panic("%s: lock (%s) %s not locked", __func__,
2424 class->lc_name, lock->lo_name);
2425 lock->lo_witness->w_file = file;
2426 lock->lo_witness->w_line = line;
2427 if (instance == NULL)
2428 return;
2429 instance->li_file = file;
2430 instance->li_line = line;
2431 }
2432
2433 static bool
witness_find_instance(const struct lock_object * lock,struct lock_instance ** instance)2434 witness_find_instance(const struct lock_object *lock,
2435 struct lock_instance **instance)
2436 {
2437 #ifdef INVARIANT_SUPPORT
2438 struct lock_class *class;
2439
2440 if (lock->lo_witness == NULL || witness_watch < 1 || KERNEL_PANICKED())
2441 return (false);
2442 class = LOCK_CLASS(lock);
2443 if ((class->lc_flags & LC_SLEEPLOCK) != 0) {
2444 *instance = find_instance(curthread->td_sleeplocks, lock);
2445 return (true);
2446 } else if ((class->lc_flags & LC_SPINLOCK) != 0) {
2447 *instance = find_instance(PCPU_GET(spinlocks), lock);
2448 return (true);
2449 } else {
2450 kassert_panic("Lock (%s) %s is not sleep or spin!",
2451 class->lc_name, lock->lo_name);
2452 return (false);
2453 }
2454 #else
2455 return (false);
2456 #endif
2457 }
2458
2459 void
witness_assert(const struct lock_object * lock,int flags,const char * file,int line)2460 witness_assert(const struct lock_object *lock, int flags, const char *file,
2461 int line)
2462 {
2463 #ifdef INVARIANT_SUPPORT
2464 struct lock_instance *instance;
2465 struct lock_class *class;
2466
2467 if (!witness_find_instance(lock, &instance))
2468 return;
2469 class = LOCK_CLASS(lock);
2470 switch (flags) {
2471 case LA_UNLOCKED:
2472 if (instance != NULL)
2473 kassert_panic("Lock (%s) %s locked @ %s:%d.",
2474 class->lc_name, lock->lo_name,
2475 fixup_filename(file), line);
2476 break;
2477 case LA_LOCKED:
2478 case LA_LOCKED | LA_RECURSED:
2479 case LA_LOCKED | LA_NOTRECURSED:
2480 case LA_SLOCKED:
2481 case LA_SLOCKED | LA_RECURSED:
2482 case LA_SLOCKED | LA_NOTRECURSED:
2483 case LA_XLOCKED:
2484 case LA_XLOCKED | LA_RECURSED:
2485 case LA_XLOCKED | LA_NOTRECURSED:
2486 if (instance == NULL) {
2487 kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2488 class->lc_name, lock->lo_name,
2489 fixup_filename(file), line);
2490 break;
2491 }
2492 if ((flags & LA_XLOCKED) != 0 &&
2493 (instance->li_flags & LI_EXCLUSIVE) == 0)
2494 kassert_panic(
2495 "Lock (%s) %s not exclusively locked @ %s:%d.",
2496 class->lc_name, lock->lo_name,
2497 fixup_filename(file), line);
2498 if ((flags & LA_SLOCKED) != 0 &&
2499 (instance->li_flags & LI_EXCLUSIVE) != 0)
2500 kassert_panic(
2501 "Lock (%s) %s exclusively locked @ %s:%d.",
2502 class->lc_name, lock->lo_name,
2503 fixup_filename(file), line);
2504 if ((flags & LA_RECURSED) != 0 &&
2505 (instance->li_flags & LI_RECURSEMASK) == 0)
2506 kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2507 class->lc_name, lock->lo_name,
2508 fixup_filename(file), line);
2509 if ((flags & LA_NOTRECURSED) != 0 &&
2510 (instance->li_flags & LI_RECURSEMASK) != 0)
2511 kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2512 class->lc_name, lock->lo_name,
2513 fixup_filename(file), line);
2514 break;
2515 default:
2516 kassert_panic("Invalid lock assertion at %s:%d.",
2517 fixup_filename(file), line);
2518 }
2519 #endif /* INVARIANT_SUPPORT */
2520 }
2521
2522 /*
2523 * Checks the ownership of the lock by curthread, consulting the witness list.
2524 * Returns:
2525 * 0 if witness is disabled or did not work
2526 * -1 if not owned
2527 * 1 if owned
2528 */
2529 int
witness_is_owned(const struct lock_object * lock)2530 witness_is_owned(const struct lock_object *lock)
2531 {
2532 #ifdef INVARIANT_SUPPORT
2533 struct lock_instance *instance;
2534
2535 if (!witness_find_instance(lock, &instance))
2536 return (0);
2537 return (instance == NULL ? -1 : 1);
2538 #else
2539 return (0);
2540 #endif
2541 }
2542
2543 static void
witness_setflag(struct lock_object * lock,int flag,int set)2544 witness_setflag(struct lock_object *lock, int flag, int set)
2545 {
2546 struct lock_list_entry *lock_list;
2547 struct lock_instance *instance;
2548 struct lock_class *class;
2549
2550 if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2551 return;
2552 class = LOCK_CLASS(lock);
2553 if (class->lc_flags & LC_SLEEPLOCK)
2554 lock_list = curthread->td_sleeplocks;
2555 else {
2556 if (witness_skipspin)
2557 return;
2558 lock_list = PCPU_GET(spinlocks);
2559 }
2560 instance = find_instance(lock_list, lock);
2561 if (instance == NULL) {
2562 kassert_panic("%s: lock (%s) %s not locked", __func__,
2563 class->lc_name, lock->lo_name);
2564 return;
2565 }
2566
2567 if (set)
2568 instance->li_flags |= flag;
2569 else
2570 instance->li_flags &= ~flag;
2571 }
2572
2573 void
witness_norelease(struct lock_object * lock)2574 witness_norelease(struct lock_object *lock)
2575 {
2576
2577 witness_setflag(lock, LI_NORELEASE, 1);
2578 }
2579
2580 void
witness_releaseok(struct lock_object * lock)2581 witness_releaseok(struct lock_object *lock)
2582 {
2583
2584 witness_setflag(lock, LI_NORELEASE, 0);
2585 }
2586
2587 #ifdef DDB
2588 static void
witness_ddb_list(struct thread * td)2589 witness_ddb_list(struct thread *td)
2590 {
2591
2592 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2593 KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2594
2595 if (witness_watch < 1)
2596 return;
2597
2598 witness_list_locks(&td->td_sleeplocks, db_printf);
2599
2600 /*
2601 * We only handle spinlocks if td == curthread. This is somewhat broken
2602 * if td is currently executing on some other CPU and holds spin locks
2603 * as we won't display those locks. If we had a MI way of getting
2604 * the per-cpu data for a given cpu then we could use
2605 * td->td_oncpu to get the list of spinlocks for this thread
2606 * and "fix" this.
2607 *
2608 * That still wouldn't really fix this unless we locked the scheduler
2609 * lock or stopped the other CPU to make sure it wasn't changing the
2610 * list out from under us. It is probably best to just not try to
2611 * handle threads on other CPU's for now.
2612 */
2613 if (td == curthread && PCPU_GET(spinlocks) != NULL)
2614 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2615 }
2616
DB_SHOW_COMMAND(locks,db_witness_list)2617 DB_SHOW_COMMAND(locks, db_witness_list)
2618 {
2619 struct thread *td;
2620
2621 if (have_addr)
2622 td = db_lookup_thread(addr, true);
2623 else
2624 td = kdb_thread;
2625 witness_ddb_list(td);
2626 }
2627
DB_SHOW_ALL_COMMAND(locks,db_witness_list_all)2628 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2629 {
2630 struct thread *td;
2631 struct proc *p;
2632
2633 /*
2634 * It would be nice to list only threads and processes that actually
2635 * held sleep locks, but that information is currently not exported
2636 * by WITNESS.
2637 */
2638 FOREACH_PROC_IN_SYSTEM(p) {
2639 if (!witness_proc_has_locks(p))
2640 continue;
2641 FOREACH_THREAD_IN_PROC(p, td) {
2642 if (!witness_thread_has_locks(td))
2643 continue;
2644 db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2645 p->p_comm, td, td->td_tid);
2646 witness_ddb_list(td);
2647 if (db_pager_quit)
2648 return;
2649 }
2650 }
2651 }
2652 DB_SHOW_ALIAS_FLAGS(alllocks, db_witness_list_all, DB_CMD_MEMSAFE);
2653
DB_SHOW_COMMAND_FLAGS(witness,db_witness_display,DB_CMD_MEMSAFE)2654 DB_SHOW_COMMAND_FLAGS(witness, db_witness_display, DB_CMD_MEMSAFE)
2655 {
2656
2657 witness_ddb_display(db_printf);
2658 }
2659 #endif
2660
2661 static void
sbuf_print_witness_badstacks(struct sbuf * sb,size_t * oldidx)2662 sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx)
2663 {
2664 struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2665 struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2666 int generation, i, j;
2667
2668 tmp_data1 = NULL;
2669 tmp_data2 = NULL;
2670 tmp_w1 = NULL;
2671 tmp_w2 = NULL;
2672
2673 /* Allocate and init temporary storage space. */
2674 tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2675 tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2676 tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2677 M_WAITOK | M_ZERO);
2678 tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2679 M_WAITOK | M_ZERO);
2680 stack_zero(&tmp_data1->wlod_stack);
2681 stack_zero(&tmp_data2->wlod_stack);
2682
2683 restart:
2684 mtx_lock_spin(&w_mtx);
2685 generation = w_generation;
2686 mtx_unlock_spin(&w_mtx);
2687 sbuf_printf(sb, "Number of known direct relationships is %d\n",
2688 w_lohash.wloh_count);
2689 for (i = 1; i < w_max_used_index; i++) {
2690 mtx_lock_spin(&w_mtx);
2691 if (generation != w_generation) {
2692 mtx_unlock_spin(&w_mtx);
2693
2694 /* The graph has changed, try again. */
2695 *oldidx = 0;
2696 sbuf_clear(sb);
2697 goto restart;
2698 }
2699
2700 w1 = &w_data[i];
2701 if (w1->w_reversed == 0) {
2702 mtx_unlock_spin(&w_mtx);
2703 continue;
2704 }
2705
2706 /* Copy w1 locally so we can release the spin lock. */
2707 *tmp_w1 = *w1;
2708 mtx_unlock_spin(&w_mtx);
2709
2710 if (tmp_w1->w_reversed == 0)
2711 continue;
2712 for (j = 1; j < w_max_used_index; j++) {
2713 if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2714 continue;
2715
2716 mtx_lock_spin(&w_mtx);
2717 if (generation != w_generation) {
2718 mtx_unlock_spin(&w_mtx);
2719
2720 /* The graph has changed, try again. */
2721 *oldidx = 0;
2722 sbuf_clear(sb);
2723 goto restart;
2724 }
2725
2726 w2 = &w_data[j];
2727 data1 = witness_lock_order_get(w1, w2);
2728 data2 = witness_lock_order_get(w2, w1);
2729
2730 /*
2731 * Copy information locally so we can release the
2732 * spin lock.
2733 */
2734 *tmp_w2 = *w2;
2735
2736 if (data1) {
2737 stack_zero(&tmp_data1->wlod_stack);
2738 stack_copy(&data1->wlod_stack,
2739 &tmp_data1->wlod_stack);
2740 }
2741 if (data2 && data2 != data1) {
2742 stack_zero(&tmp_data2->wlod_stack);
2743 stack_copy(&data2->wlod_stack,
2744 &tmp_data2->wlod_stack);
2745 }
2746 mtx_unlock_spin(&w_mtx);
2747
2748 if (blessed(tmp_w1, tmp_w2))
2749 continue;
2750
2751 sbuf_printf(sb,
2752 "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2753 tmp_w1->w_name, tmp_w1->w_class->lc_name,
2754 tmp_w2->w_name, tmp_w2->w_class->lc_name);
2755 if (data1) {
2756 sbuf_printf(sb,
2757 "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2758 tmp_w1->w_name, tmp_w1->w_class->lc_name,
2759 tmp_w2->w_name, tmp_w2->w_class->lc_name);
2760 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2761 sbuf_putc(sb, '\n');
2762 }
2763 if (data2 && data2 != data1) {
2764 sbuf_printf(sb,
2765 "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2766 tmp_w2->w_name, tmp_w2->w_class->lc_name,
2767 tmp_w1->w_name, tmp_w1->w_class->lc_name);
2768 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2769 sbuf_putc(sb, '\n');
2770 }
2771 }
2772 }
2773 mtx_lock_spin(&w_mtx);
2774 if (generation != w_generation) {
2775 mtx_unlock_spin(&w_mtx);
2776
2777 /*
2778 * The graph changed while we were printing stack data,
2779 * try again.
2780 */
2781 *oldidx = 0;
2782 sbuf_clear(sb);
2783 goto restart;
2784 }
2785 mtx_unlock_spin(&w_mtx);
2786
2787 /* Free temporary storage space. */
2788 free(tmp_data1, M_TEMP);
2789 free(tmp_data2, M_TEMP);
2790 free(tmp_w1, M_TEMP);
2791 free(tmp_w2, M_TEMP);
2792 }
2793
2794 static int
sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)2795 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2796 {
2797 struct sbuf *sb;
2798 int error;
2799
2800 if (witness_watch < 1) {
2801 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2802 return (error);
2803 }
2804 if (witness_cold) {
2805 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2806 return (error);
2807 }
2808 error = 0;
2809 sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2810 if (sb == NULL)
2811 return (ENOMEM);
2812
2813 sbuf_print_witness_badstacks(sb, &req->oldidx);
2814
2815 sbuf_finish(sb);
2816 error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2817 sbuf_delete(sb);
2818
2819 return (error);
2820 }
2821
2822 #ifdef DDB
2823 static int
sbuf_db_printf_drain(void * arg __unused,const char * data,int len)2824 sbuf_db_printf_drain(void *arg __unused, const char *data, int len)
2825 {
2826
2827 return (db_printf("%.*s", len, data));
2828 }
2829
DB_SHOW_COMMAND_FLAGS(badstacks,db_witness_badstacks,DB_CMD_MEMSAFE)2830 DB_SHOW_COMMAND_FLAGS(badstacks, db_witness_badstacks, DB_CMD_MEMSAFE)
2831 {
2832 struct sbuf sb;
2833 char buffer[128];
2834 size_t dummy;
2835
2836 sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN);
2837 sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL);
2838 sbuf_print_witness_badstacks(&sb, &dummy);
2839 sbuf_finish(&sb);
2840 }
2841 #endif
2842
2843 static int
sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)2844 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2845 {
2846 static const struct {
2847 enum witness_channel channel;
2848 const char *name;
2849 } channels[] = {
2850 { WITNESS_CONSOLE, "console" },
2851 { WITNESS_LOG, "log" },
2852 { WITNESS_NONE, "none" },
2853 };
2854 char buf[16];
2855 u_int i;
2856 int error;
2857
2858 buf[0] = '\0';
2859 for (i = 0; i < nitems(channels); i++)
2860 if (witness_channel == channels[i].channel) {
2861 snprintf(buf, sizeof(buf), "%s", channels[i].name);
2862 break;
2863 }
2864
2865 error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2866 if (error != 0 || req->newptr == NULL)
2867 return (error);
2868
2869 error = EINVAL;
2870 for (i = 0; i < nitems(channels); i++)
2871 if (strcmp(channels[i].name, buf) == 0) {
2872 witness_channel = channels[i].channel;
2873 error = 0;
2874 break;
2875 }
2876 return (error);
2877 }
2878
2879 static int
sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)2880 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2881 {
2882 struct witness *w;
2883 struct sbuf *sb;
2884 int error;
2885
2886 #ifdef __i386__
2887 error = SYSCTL_OUT(req, w_notallowed, sizeof(w_notallowed));
2888 return (error);
2889 #endif
2890
2891 if (witness_watch < 1) {
2892 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2893 return (error);
2894 }
2895 if (witness_cold) {
2896 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2897 return (error);
2898 }
2899 error = 0;
2900
2901 error = sysctl_wire_old_buffer(req, 0);
2902 if (error != 0)
2903 return (error);
2904 sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2905 if (sb == NULL)
2906 return (ENOMEM);
2907 sbuf_putc(sb, '\n');
2908
2909 mtx_lock_spin(&w_mtx);
2910 STAILQ_FOREACH(w, &w_all, w_list)
2911 w->w_displayed = 0;
2912 STAILQ_FOREACH(w, &w_all, w_list)
2913 witness_add_fullgraph(sb, w);
2914 mtx_unlock_spin(&w_mtx);
2915
2916 /*
2917 * Close the sbuf and return to userland.
2918 */
2919 error = sbuf_finish(sb);
2920 sbuf_delete(sb);
2921
2922 return (error);
2923 }
2924
2925 static int
sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)2926 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2927 {
2928 int error, value;
2929
2930 value = witness_watch;
2931 error = sysctl_handle_int(oidp, &value, 0, req);
2932 if (error != 0 || req->newptr == NULL)
2933 return (error);
2934 if (value > 1 || value < -1 ||
2935 (witness_watch == -1 && value != witness_watch))
2936 return (EINVAL);
2937 witness_watch = value;
2938 return (0);
2939 }
2940
2941 static void
witness_add_fullgraph(struct sbuf * sb,struct witness * w)2942 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2943 {
2944 int i;
2945
2946 if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2947 return;
2948 w->w_displayed = 1;
2949
2950 WITNESS_INDEX_ASSERT(w->w_index);
2951 for (i = 1; i <= w_max_used_index; i++) {
2952 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2953 sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2954 w_data[i].w_name);
2955 witness_add_fullgraph(sb, &w_data[i]);
2956 }
2957 }
2958 }
2959
2960 /*
2961 * A simple hash function. Takes a key pointer and a key size. If size == 0,
2962 * interprets the key as a string and reads until the null
2963 * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2964 * hash value computed from the key.
2965 */
2966 static uint32_t
witness_hash_djb2(const uint8_t * key,uint32_t size)2967 witness_hash_djb2(const uint8_t *key, uint32_t size)
2968 {
2969 unsigned int hash = 5381;
2970 int i;
2971
2972 /* hash = hash * 33 + key[i] */
2973 if (size)
2974 for (i = 0; i < size; i++)
2975 hash = ((hash << 5) + hash) + (unsigned int)key[i];
2976 else
2977 for (i = 0; key[i] != 0; i++)
2978 hash = ((hash << 5) + hash) + (unsigned int)key[i];
2979
2980 return (hash);
2981 }
2982
2983 /*
2984 * Initializes the two witness hash tables. Called exactly once from
2985 * witness_initialize().
2986 */
2987 static void
witness_init_hash_tables(void)2988 witness_init_hash_tables(void)
2989 {
2990 int i;
2991
2992 MPASS(witness_cold);
2993
2994 /* Initialize the hash tables. */
2995 for (i = 0; i < WITNESS_HASH_SIZE; i++)
2996 w_hash.wh_array[i] = NULL;
2997
2998 w_hash.wh_size = WITNESS_HASH_SIZE;
2999 w_hash.wh_count = 0;
3000
3001 /* Initialize the lock order data hash. */
3002 w_lofree = NULL;
3003 for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
3004 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
3005 w_lodata[i].wlod_next = w_lofree;
3006 w_lofree = &w_lodata[i];
3007 }
3008 w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
3009 w_lohash.wloh_count = 0;
3010 for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
3011 w_lohash.wloh_array[i] = NULL;
3012 }
3013
3014 static struct witness *
witness_hash_get(const char * key)3015 witness_hash_get(const char *key)
3016 {
3017 struct witness *w;
3018 uint32_t hash;
3019
3020 MPASS(key != NULL);
3021 if (witness_cold == 0)
3022 mtx_assert(&w_mtx, MA_OWNED);
3023 hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
3024 w = w_hash.wh_array[hash];
3025 while (w != NULL) {
3026 if (strcmp(w->w_name, key) == 0)
3027 goto out;
3028 w = w->w_hash_next;
3029 }
3030
3031 out:
3032 return (w);
3033 }
3034
3035 static void
witness_hash_put(struct witness * w)3036 witness_hash_put(struct witness *w)
3037 {
3038 uint32_t hash;
3039
3040 MPASS(w != NULL);
3041 MPASS(w->w_name != NULL);
3042 if (witness_cold == 0)
3043 mtx_assert(&w_mtx, MA_OWNED);
3044 KASSERT(witness_hash_get(w->w_name) == NULL,
3045 ("%s: trying to add a hash entry that already exists!", __func__));
3046 KASSERT(w->w_hash_next == NULL,
3047 ("%s: w->w_hash_next != NULL", __func__));
3048
3049 hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
3050 w->w_hash_next = w_hash.wh_array[hash];
3051 w_hash.wh_array[hash] = w;
3052 w_hash.wh_count++;
3053 }
3054
3055 static struct witness_lock_order_data *
witness_lock_order_get(struct witness * parent,struct witness * child)3056 witness_lock_order_get(struct witness *parent, struct witness *child)
3057 {
3058 struct witness_lock_order_data *data = NULL;
3059 struct witness_lock_order_key key;
3060 unsigned int hash;
3061
3062 MPASS(parent != NULL && child != NULL);
3063 key.from = parent->w_index;
3064 key.to = child->w_index;
3065 WITNESS_INDEX_ASSERT(key.from);
3066 WITNESS_INDEX_ASSERT(key.to);
3067 if ((w_rmatrix[parent->w_index][child->w_index]
3068 & WITNESS_LOCK_ORDER_KNOWN) == 0)
3069 goto out;
3070
3071 hash = witness_hash_djb2((const char*)&key,
3072 sizeof(key)) % w_lohash.wloh_size;
3073 data = w_lohash.wloh_array[hash];
3074 while (data != NULL) {
3075 if (witness_lock_order_key_equal(&data->wlod_key, &key))
3076 break;
3077 data = data->wlod_next;
3078 }
3079
3080 out:
3081 return (data);
3082 }
3083
3084 /*
3085 * Verify that parent and child have a known relationship, are not the same,
3086 * and child is actually a child of parent. This is done without w_mtx
3087 * to avoid contention in the common case.
3088 */
3089 static int
witness_lock_order_check(struct witness * parent,struct witness * child)3090 witness_lock_order_check(struct witness *parent, struct witness *child)
3091 {
3092
3093 if (parent != child &&
3094 w_rmatrix[parent->w_index][child->w_index]
3095 & WITNESS_LOCK_ORDER_KNOWN &&
3096 isitmychild(parent, child))
3097 return (1);
3098
3099 return (0);
3100 }
3101
3102 static int
witness_lock_order_add(struct witness * parent,struct witness * child)3103 witness_lock_order_add(struct witness *parent, struct witness *child)
3104 {
3105 struct witness_lock_order_data *data = NULL;
3106 struct witness_lock_order_key key;
3107 unsigned int hash;
3108
3109 MPASS(parent != NULL && child != NULL);
3110 key.from = parent->w_index;
3111 key.to = child->w_index;
3112 WITNESS_INDEX_ASSERT(key.from);
3113 WITNESS_INDEX_ASSERT(key.to);
3114 if (w_rmatrix[parent->w_index][child->w_index]
3115 & WITNESS_LOCK_ORDER_KNOWN)
3116 return (1);
3117
3118 hash = witness_hash_djb2((const char*)&key,
3119 sizeof(key)) % w_lohash.wloh_size;
3120 w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
3121 data = w_lofree;
3122 if (data == NULL)
3123 return (0);
3124 w_lofree = data->wlod_next;
3125 data->wlod_next = w_lohash.wloh_array[hash];
3126 data->wlod_key = key;
3127 w_lohash.wloh_array[hash] = data;
3128 w_lohash.wloh_count++;
3129 stack_save(&data->wlod_stack);
3130 return (1);
3131 }
3132
3133 /* Call this whenever the structure of the witness graph changes. */
3134 static void
witness_increment_graph_generation(void)3135 witness_increment_graph_generation(void)
3136 {
3137
3138 if (witness_cold == 0)
3139 mtx_assert(&w_mtx, MA_OWNED);
3140 w_generation++;
3141 }
3142
3143 static int
witness_output_drain(void * arg __unused,const char * data,int len)3144 witness_output_drain(void *arg __unused, const char *data, int len)
3145 {
3146
3147 witness_output("%.*s", len, data);
3148 return (len);
3149 }
3150
3151 static void
witness_debugger(int cond,const char * msg)3152 witness_debugger(int cond, const char *msg)
3153 {
3154 char buf[32];
3155 struct sbuf sb;
3156 struct stack st;
3157
3158 if (!cond)
3159 return;
3160
3161 if (witness_trace) {
3162 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3163 sbuf_set_drain(&sb, witness_output_drain, NULL);
3164
3165 stack_save(&st);
3166 witness_output("stack backtrace:\n");
3167 stack_sbuf_print_ddb(&sb, &st);
3168
3169 sbuf_finish(&sb);
3170 }
3171
3172 witness_enter_debugger(msg);
3173 }
3174
3175 static void
witness_enter_debugger(const char * msg)3176 witness_enter_debugger(const char *msg)
3177 {
3178 #ifdef KDB
3179 if (witness_kdb)
3180 kdb_enter(KDB_WHY_WITNESS, msg);
3181 #endif
3182 }
3183