1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 #include "opt_ktrace.h"
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/limits.h>
38 #include <sys/clock.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/sysproto.h>
42 #include <sys/resourcevar.h>
43 #include <sys/signalvar.h>
44 #include <sys/kernel.h>
45 #include <sys/sleepqueue.h>
46 #include <sys/syscallsubr.h>
47 #include <sys/sysctl.h>
48 #include <sys/priv.h>
49 #include <sys/proc.h>
50 #include <sys/posix4.h>
51 #include <sys/time.h>
52 #include <sys/timeffc.h>
53 #include <sys/timers.h>
54 #include <sys/timetc.h>
55 #include <sys/vnode.h>
56 #ifdef KTRACE
57 #include <sys/ktrace.h>
58 #endif
59
60 #include <vm/vm.h>
61 #include <vm/vm_extern.h>
62 #include <vm/uma.h>
63
64 #define MAX_CLOCKS (CLOCK_TAI+1)
65 #define CPUCLOCK_BIT 0x80000000
66 #define CPUCLOCK_PROCESS_BIT 0x40000000
67 #define CPUCLOCK_ID_MASK (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT))
68 #define MAKE_THREAD_CPUCLOCK(tid) (CPUCLOCK_BIT|(tid))
69 #define MAKE_PROCESS_CPUCLOCK(pid) \
70 (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid))
71
72 #define NS_PER_SEC 1000000000
73
74 static struct kclock posix_clocks[MAX_CLOCKS];
75 static uma_zone_t itimer_zone = NULL;
76
77 /*
78 * Time of day and interval timer support.
79 *
80 * These routines provide the kernel entry points to get and set
81 * the time-of-day and per-process interval timers. Subroutines
82 * here provide support for adding and subtracting timeval structures
83 * and decrementing interval timers, optionally reloading the interval
84 * timers when they expire.
85 */
86
87 static int settime(struct thread *, struct timeval *);
88 static void timevalfix(struct timeval *);
89 static int user_clock_nanosleep(struct thread *td, clockid_t clock_id,
90 int flags, const struct timespec *ua_rqtp,
91 struct timespec *ua_rmtp);
92
93 static void itimer_start(void);
94 static int itimer_init(void *, int, int);
95 static void itimer_fini(void *, int);
96 static void itimer_enter(struct itimer *);
97 static void itimer_leave(struct itimer *);
98 static struct itimer *itimer_find(struct proc *, int);
99 static void itimers_alloc(struct proc *);
100 static int realtimer_create(struct itimer *);
101 static int realtimer_gettime(struct itimer *, struct itimerspec *);
102 static int realtimer_settime(struct itimer *, int,
103 struct itimerspec *, struct itimerspec *);
104 static int realtimer_delete(struct itimer *);
105 static void realtimer_expire(void *);
106 static void realtimer_expire_l(struct itimer *it, bool proc_locked);
107
108 static void realitexpire(void *arg);
109
110 static int register_posix_clock(int, const struct kclock *);
111 static void itimer_fire(struct itimer *it);
112 static int itimespecfix(struct timespec *ts);
113
114 #define CLOCK_CALL(clock, call, arglist) \
115 ((*posix_clocks[clock].call) arglist)
116
117 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
118
119 static int
settime(struct thread * td,struct timeval * tv)120 settime(struct thread *td, struct timeval *tv)
121 {
122 struct timeval delta, tv1, tv2;
123 static struct timeval maxtime, laststep;
124 struct timespec ts;
125
126 microtime(&tv1);
127 delta = *tv;
128 timevalsub(&delta, &tv1);
129
130 /*
131 * If the system is secure, we do not allow the time to be
132 * set to a value earlier than 1 second less than the highest
133 * time we have yet seen. The worst a miscreant can do in
134 * this circumstance is "freeze" time. He couldn't go
135 * back to the past.
136 *
137 * We similarly do not allow the clock to be stepped more
138 * than one second, nor more than once per second. This allows
139 * a miscreant to make the clock march double-time, but no worse.
140 */
141 if (securelevel_gt(td->td_ucred, 1) != 0) {
142 if (delta.tv_sec < 0 || delta.tv_usec < 0) {
143 /*
144 * Update maxtime to latest time we've seen.
145 */
146 if (tv1.tv_sec > maxtime.tv_sec)
147 maxtime = tv1;
148 tv2 = *tv;
149 timevalsub(&tv2, &maxtime);
150 if (tv2.tv_sec < -1) {
151 tv->tv_sec = maxtime.tv_sec - 1;
152 printf("Time adjustment clamped to -1 second\n");
153 }
154 } else {
155 if (tv1.tv_sec == laststep.tv_sec)
156 return (EPERM);
157 if (delta.tv_sec > 1) {
158 tv->tv_sec = tv1.tv_sec + 1;
159 printf("Time adjustment clamped to +1 second\n");
160 }
161 laststep = *tv;
162 }
163 }
164
165 ts.tv_sec = tv->tv_sec;
166 ts.tv_nsec = tv->tv_usec * 1000;
167 tc_setclock(&ts);
168 resettodr();
169 return (0);
170 }
171
172 #ifndef _SYS_SYSPROTO_H_
173 struct clock_getcpuclockid2_args {
174 id_t id;
175 int which,
176 clockid_t *clock_id;
177 };
178 #endif
179 /* ARGSUSED */
180 int
sys_clock_getcpuclockid2(struct thread * td,struct clock_getcpuclockid2_args * uap)181 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap)
182 {
183 clockid_t clk_id;
184 int error;
185
186 error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id);
187 if (error == 0)
188 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
189 return (error);
190 }
191
192 int
kern_clock_getcpuclockid2(struct thread * td,id_t id,int which,clockid_t * clk_id)193 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which,
194 clockid_t *clk_id)
195 {
196 struct proc *p;
197 pid_t pid;
198 lwpid_t tid;
199 int error;
200
201 switch (which) {
202 case CPUCLOCK_WHICH_PID:
203 if (id != 0) {
204 error = pget(id, PGET_CANSEE | PGET_NOTID, &p);
205 if (error != 0)
206 return (error);
207 PROC_UNLOCK(p);
208 pid = id;
209 } else {
210 pid = td->td_proc->p_pid;
211 }
212 *clk_id = MAKE_PROCESS_CPUCLOCK(pid);
213 return (0);
214 case CPUCLOCK_WHICH_TID:
215 tid = id == 0 ? td->td_tid : id;
216 *clk_id = MAKE_THREAD_CPUCLOCK(tid);
217 return (0);
218 default:
219 return (EINVAL);
220 }
221 }
222
223 #ifndef _SYS_SYSPROTO_H_
224 struct clock_gettime_args {
225 clockid_t clock_id;
226 struct timespec *tp;
227 };
228 #endif
229 /* ARGSUSED */
230 int
sys_clock_gettime(struct thread * td,struct clock_gettime_args * uap)231 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap)
232 {
233 struct timespec ats;
234 int error;
235
236 error = kern_clock_gettime(td, uap->clock_id, &ats);
237 if (error == 0)
238 error = copyout(&ats, uap->tp, sizeof(ats));
239
240 return (error);
241 }
242
243 static inline void
cputick2timespec(uint64_t runtime,struct timespec * ats)244 cputick2timespec(uint64_t runtime, struct timespec *ats)
245 {
246 uint64_t tr;
247 tr = cpu_tickrate();
248 ats->tv_sec = runtime / tr;
249 ats->tv_nsec = ((runtime % tr) * 1000000000ULL) / tr;
250 }
251
252 void
kern_thread_cputime(struct thread * targettd,struct timespec * ats)253 kern_thread_cputime(struct thread *targettd, struct timespec *ats)
254 {
255 uint64_t runtime, curtime, switchtime;
256
257 if (targettd == NULL) { /* current thread */
258 spinlock_enter();
259 switchtime = PCPU_GET(switchtime);
260 curtime = cpu_ticks();
261 runtime = curthread->td_runtime;
262 spinlock_exit();
263 runtime += curtime - switchtime;
264 } else {
265 PROC_LOCK_ASSERT(targettd->td_proc, MA_OWNED);
266 thread_lock(targettd);
267 runtime = targettd->td_runtime;
268 thread_unlock(targettd);
269 }
270 cputick2timespec(runtime, ats);
271 }
272
273 void
kern_process_cputime(struct proc * targetp,struct timespec * ats)274 kern_process_cputime(struct proc *targetp, struct timespec *ats)
275 {
276 uint64_t runtime;
277 struct rusage ru;
278
279 PROC_LOCK_ASSERT(targetp, MA_OWNED);
280 PROC_STATLOCK(targetp);
281 rufetch(targetp, &ru);
282 runtime = targetp->p_rux.rux_runtime;
283 if (curthread->td_proc == targetp)
284 runtime += cpu_ticks() - PCPU_GET(switchtime);
285 PROC_STATUNLOCK(targetp);
286 cputick2timespec(runtime, ats);
287 }
288
289 static int
get_cputime(struct thread * td,clockid_t clock_id,struct timespec * ats)290 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats)
291 {
292 struct proc *p, *p2;
293 struct thread *td2;
294 lwpid_t tid;
295 pid_t pid;
296 int error;
297
298 p = td->td_proc;
299 if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) {
300 tid = clock_id & CPUCLOCK_ID_MASK;
301 td2 = tdfind(tid, p->p_pid);
302 if (td2 == NULL)
303 return (EINVAL);
304 kern_thread_cputime(td2, ats);
305 PROC_UNLOCK(td2->td_proc);
306 } else {
307 pid = clock_id & CPUCLOCK_ID_MASK;
308 error = pget(pid, PGET_CANSEE, &p2);
309 if (error != 0)
310 return (EINVAL);
311 kern_process_cputime(p2, ats);
312 PROC_UNLOCK(p2);
313 }
314 return (0);
315 }
316
317 int
kern_clock_gettime(struct thread * td,clockid_t clock_id,struct timespec * ats)318 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
319 {
320 struct timeval sys, user;
321 struct sysclock_snap clk;
322 struct bintime bt;
323 struct proc *p;
324 int error;
325
326 p = td->td_proc;
327 switch (clock_id) {
328 case CLOCK_REALTIME: /* Default to precise. */
329 case CLOCK_REALTIME_PRECISE:
330 nanotime(ats);
331 break;
332 case CLOCK_REALTIME_FAST:
333 getnanotime(ats);
334 break;
335 case CLOCK_TAI:
336 sysclock_getsnapshot(&clk, 0);
337 error = sysclock_snap2bintime(&clk, &bt, clk.sysclock_active,
338 clk.sysclock_active == SYSCLOCK_FFWD ? FFCLOCK_LERP : 0);
339 if (error != 0)
340 return (error);
341 bintime2timespec(&bt, ats);
342 break;
343 case CLOCK_VIRTUAL:
344 PROC_LOCK(p);
345 PROC_STATLOCK(p);
346 calcru(p, &user, &sys);
347 PROC_STATUNLOCK(p);
348 PROC_UNLOCK(p);
349 TIMEVAL_TO_TIMESPEC(&user, ats);
350 break;
351 case CLOCK_PROF:
352 PROC_LOCK(p);
353 PROC_STATLOCK(p);
354 calcru(p, &user, &sys);
355 PROC_STATUNLOCK(p);
356 PROC_UNLOCK(p);
357 timevaladd(&user, &sys);
358 TIMEVAL_TO_TIMESPEC(&user, ats);
359 break;
360 case CLOCK_MONOTONIC: /* Default to precise. */
361 case CLOCK_MONOTONIC_PRECISE:
362 case CLOCK_UPTIME:
363 case CLOCK_UPTIME_PRECISE:
364 nanouptime(ats);
365 break;
366 case CLOCK_UPTIME_FAST:
367 case CLOCK_MONOTONIC_FAST:
368 getnanouptime(ats);
369 break;
370 case CLOCK_SECOND:
371 ats->tv_sec = time_second;
372 ats->tv_nsec = 0;
373 break;
374 case CLOCK_THREAD_CPUTIME_ID:
375 kern_thread_cputime(NULL, ats);
376 break;
377 case CLOCK_PROCESS_CPUTIME_ID:
378 PROC_LOCK(p);
379 kern_process_cputime(p, ats);
380 PROC_UNLOCK(p);
381 break;
382 default:
383 if ((int)clock_id >= 0)
384 return (EINVAL);
385 return (get_cputime(td, clock_id, ats));
386 }
387 return (0);
388 }
389
390 #ifndef _SYS_SYSPROTO_H_
391 struct clock_settime_args {
392 clockid_t clock_id;
393 const struct timespec *tp;
394 };
395 #endif
396 /* ARGSUSED */
397 int
sys_clock_settime(struct thread * td,struct clock_settime_args * uap)398 sys_clock_settime(struct thread *td, struct clock_settime_args *uap)
399 {
400 struct timespec ats;
401 int error;
402
403 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
404 return (error);
405 return (kern_clock_settime(td, uap->clock_id, &ats));
406 }
407
408 static int allow_insane_settime = 0;
409 SYSCTL_INT(_debug, OID_AUTO, allow_insane_settime, CTLFLAG_RWTUN,
410 &allow_insane_settime, 0,
411 "do not perform possibly restrictive checks on settime(2) args");
412
413 int
kern_clock_settime(struct thread * td,clockid_t clock_id,struct timespec * ats)414 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
415 {
416 struct timeval atv;
417 int error;
418
419 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
420 return (error);
421 if (clock_id != CLOCK_REALTIME)
422 return (EINVAL);
423 if (!timespecvalid_interval(ats))
424 return (EINVAL);
425 if (!allow_insane_settime &&
426 (ats->tv_sec > 8000ULL * 365 * 24 * 60 * 60 ||
427 ats->tv_sec < utc_offset()))
428 return (EINVAL);
429 /* XXX Don't convert nsec->usec and back */
430 TIMESPEC_TO_TIMEVAL(&atv, ats);
431 error = settime(td, &atv);
432 return (error);
433 }
434
435 #ifndef _SYS_SYSPROTO_H_
436 struct clock_getres_args {
437 clockid_t clock_id;
438 struct timespec *tp;
439 };
440 #endif
441 int
sys_clock_getres(struct thread * td,struct clock_getres_args * uap)442 sys_clock_getres(struct thread *td, struct clock_getres_args *uap)
443 {
444 struct timespec ts;
445 int error;
446
447 if (uap->tp == NULL)
448 return (0);
449
450 error = kern_clock_getres(td, uap->clock_id, &ts);
451 if (error == 0)
452 error = copyout(&ts, uap->tp, sizeof(ts));
453 return (error);
454 }
455
456 int
kern_clock_getres(struct thread * td,clockid_t clock_id,struct timespec * ts)457 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
458 {
459
460 ts->tv_sec = 0;
461 switch (clock_id) {
462 case CLOCK_REALTIME:
463 case CLOCK_REALTIME_FAST:
464 case CLOCK_REALTIME_PRECISE:
465 case CLOCK_TAI:
466 case CLOCK_MONOTONIC:
467 case CLOCK_MONOTONIC_FAST:
468 case CLOCK_MONOTONIC_PRECISE:
469 case CLOCK_UPTIME:
470 case CLOCK_UPTIME_FAST:
471 case CLOCK_UPTIME_PRECISE:
472 /*
473 * Round up the result of the division cheaply by adding 1.
474 * Rounding up is especially important if rounding down
475 * would give 0. Perfect rounding is unimportant.
476 */
477 ts->tv_nsec = NS_PER_SEC / tc_getfrequency() + 1;
478 break;
479 case CLOCK_VIRTUAL:
480 case CLOCK_PROF:
481 /* Accurately round up here because we can do so cheaply. */
482 ts->tv_nsec = howmany(NS_PER_SEC, hz);
483 break;
484 case CLOCK_SECOND:
485 ts->tv_sec = 1;
486 ts->tv_nsec = 0;
487 break;
488 case CLOCK_THREAD_CPUTIME_ID:
489 case CLOCK_PROCESS_CPUTIME_ID:
490 cputime:
491 ts->tv_nsec = 1000000000 / cpu_tickrate() + 1;
492 break;
493 default:
494 if ((int)clock_id < 0)
495 goto cputime;
496 return (EINVAL);
497 }
498 return (0);
499 }
500
501 int
kern_nanosleep(struct thread * td,struct timespec * rqt,struct timespec * rmt)502 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
503 {
504
505 return (kern_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, rqt,
506 rmt));
507 }
508
509 static __read_mostly bool nanosleep_precise = true;
510 SYSCTL_BOOL(_kern_timecounter, OID_AUTO, nanosleep_precise, CTLFLAG_RW,
511 &nanosleep_precise, 0, "clock_nanosleep() with CLOCK_REALTIME, "
512 "CLOCK_MONOTONIC, CLOCK_UPTIME and nanosleep(2) use precise clock");
513 static uint8_t nanowait[MAXCPU];
514
515 int
kern_clock_nanosleep(struct thread * td,clockid_t clock_id,int flags,const struct timespec * rqt,struct timespec * rmt)516 kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags,
517 const struct timespec *rqt, struct timespec *rmt)
518 {
519 struct timespec ts, now;
520 sbintime_t sbt, sbtt, prec, tmp;
521 time_t over;
522 int error;
523 bool is_abs_real, precise;
524
525 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= NS_PER_SEC)
526 return (EINVAL);
527 if ((flags & ~TIMER_ABSTIME) != 0)
528 return (EINVAL);
529 switch (clock_id) {
530 case CLOCK_REALTIME:
531 case CLOCK_TAI:
532 precise = nanosleep_precise;
533 is_abs_real = (flags & TIMER_ABSTIME) != 0;
534 break;
535 case CLOCK_REALTIME_PRECISE:
536 precise = true;
537 is_abs_real = (flags & TIMER_ABSTIME) != 0;
538 break;
539 case CLOCK_REALTIME_FAST:
540 case CLOCK_SECOND:
541 precise = false;
542 is_abs_real = (flags & TIMER_ABSTIME) != 0;
543 break;
544 case CLOCK_MONOTONIC:
545 case CLOCK_UPTIME:
546 precise = nanosleep_precise;
547 is_abs_real = false;
548 break;
549 case CLOCK_MONOTONIC_PRECISE:
550 case CLOCK_UPTIME_PRECISE:
551 precise = true;
552 is_abs_real = false;
553 break;
554 case CLOCK_MONOTONIC_FAST:
555 case CLOCK_UPTIME_FAST:
556 precise = false;
557 is_abs_real = false;
558 break;
559 case CLOCK_VIRTUAL:
560 case CLOCK_PROF:
561 case CLOCK_PROCESS_CPUTIME_ID:
562 return (ENOTSUP);
563 case CLOCK_THREAD_CPUTIME_ID:
564 default:
565 return (EINVAL);
566 }
567 do {
568 ts = *rqt;
569 if ((flags & TIMER_ABSTIME) != 0) {
570 if (is_abs_real)
571 td->td_rtcgen =
572 atomic_load_acq_int(&rtc_generation);
573 error = kern_clock_gettime(td, clock_id, &now);
574 KASSERT(error == 0, ("kern_clock_gettime: %d", error));
575 timespecsub(&ts, &now, &ts);
576 }
577 if (ts.tv_sec < 0 || (ts.tv_sec == 0 && ts.tv_nsec == 0)) {
578 error = EWOULDBLOCK;
579 break;
580 }
581 if (ts.tv_sec > INT32_MAX / 2) {
582 over = ts.tv_sec - INT32_MAX / 2;
583 ts.tv_sec -= over;
584 } else
585 over = 0;
586 tmp = tstosbt(ts);
587 if (precise) {
588 prec = 0;
589 sbt = sbinuptime();
590 } else {
591 prec = tmp >> tc_precexp;
592 if (TIMESEL(&sbt, tmp))
593 sbt += tc_tick_sbt;
594 }
595 sbt += tmp;
596 error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp",
597 sbt, prec, C_ABSOLUTE);
598 } while (error == 0 && is_abs_real && td->td_rtcgen == 0);
599 td->td_rtcgen = 0;
600 if (error != EWOULDBLOCK) {
601 if (TIMESEL(&sbtt, tmp))
602 sbtt += tc_tick_sbt;
603 if (sbtt >= sbt)
604 return (0);
605 if (error == ERESTART)
606 error = EINTR;
607 if ((flags & TIMER_ABSTIME) == 0 && rmt != NULL) {
608 ts = sbttots(sbt - sbtt);
609 ts.tv_sec += over;
610 if (ts.tv_sec < 0)
611 timespecclear(&ts);
612 *rmt = ts;
613 }
614 return (error);
615 }
616 return (0);
617 }
618
619 #ifndef _SYS_SYSPROTO_H_
620 struct nanosleep_args {
621 struct timespec *rqtp;
622 struct timespec *rmtp;
623 };
624 #endif
625 /* ARGSUSED */
626 int
sys_nanosleep(struct thread * td,struct nanosleep_args * uap)627 sys_nanosleep(struct thread *td, struct nanosleep_args *uap)
628 {
629
630 return (user_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME,
631 uap->rqtp, uap->rmtp));
632 }
633
634 #ifndef _SYS_SYSPROTO_H_
635 struct clock_nanosleep_args {
636 clockid_t clock_id;
637 int flags;
638 struct timespec *rqtp;
639 struct timespec *rmtp;
640 };
641 #endif
642 /* ARGSUSED */
643 int
sys_clock_nanosleep(struct thread * td,struct clock_nanosleep_args * uap)644 sys_clock_nanosleep(struct thread *td, struct clock_nanosleep_args *uap)
645 {
646 int error;
647
648 error = user_clock_nanosleep(td, uap->clock_id, uap->flags, uap->rqtp,
649 uap->rmtp);
650 return (kern_posix_error(td, error));
651 }
652
653 static int
user_clock_nanosleep(struct thread * td,clockid_t clock_id,int flags,const struct timespec * ua_rqtp,struct timespec * ua_rmtp)654 user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags,
655 const struct timespec *ua_rqtp, struct timespec *ua_rmtp)
656 {
657 struct timespec rmt, rqt;
658 int error, error2;
659
660 error = copyin(ua_rqtp, &rqt, sizeof(rqt));
661 if (error)
662 return (error);
663 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
664 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
665 error2 = copyout(&rmt, ua_rmtp, sizeof(rmt));
666 if (error2 != 0)
667 error = error2;
668 }
669 return (error);
670 }
671
672 #ifndef _SYS_SYSPROTO_H_
673 struct gettimeofday_args {
674 struct timeval *tp;
675 struct timezone *tzp;
676 };
677 #endif
678 /* ARGSUSED */
679 int
sys_gettimeofday(struct thread * td,struct gettimeofday_args * uap)680 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap)
681 {
682 struct timeval atv;
683 struct timezone rtz;
684 int error = 0;
685
686 if (uap->tp) {
687 microtime(&atv);
688 error = copyout(&atv, uap->tp, sizeof (atv));
689 }
690 if (error == 0 && uap->tzp != NULL) {
691 rtz.tz_minuteswest = 0;
692 rtz.tz_dsttime = 0;
693 error = copyout(&rtz, uap->tzp, sizeof (rtz));
694 }
695 return (error);
696 }
697
698 #ifndef _SYS_SYSPROTO_H_
699 struct settimeofday_args {
700 struct timeval *tv;
701 struct timezone *tzp;
702 };
703 #endif
704 /* ARGSUSED */
705 int
sys_settimeofday(struct thread * td,struct settimeofday_args * uap)706 sys_settimeofday(struct thread *td, struct settimeofday_args *uap)
707 {
708 struct timeval atv, *tvp;
709 struct timezone atz, *tzp;
710 int error;
711
712 if (uap->tv) {
713 error = copyin(uap->tv, &atv, sizeof(atv));
714 if (error)
715 return (error);
716 tvp = &atv;
717 } else
718 tvp = NULL;
719 if (uap->tzp) {
720 error = copyin(uap->tzp, &atz, sizeof(atz));
721 if (error)
722 return (error);
723 tzp = &atz;
724 } else
725 tzp = NULL;
726 return (kern_settimeofday(td, tvp, tzp));
727 }
728
729 int
kern_settimeofday(struct thread * td,struct timeval * tv,struct timezone * tzp)730 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
731 {
732 int error;
733
734 error = priv_check(td, PRIV_SETTIMEOFDAY);
735 if (error)
736 return (error);
737 /* Verify all parameters before changing time. */
738 if (tv) {
739 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 ||
740 tv->tv_sec < 0)
741 return (EINVAL);
742 error = settime(td, tv);
743 }
744 return (error);
745 }
746
747 /*
748 * Get value of an interval timer. The process virtual and profiling virtual
749 * time timers are kept in the p_stats area, since they can be swapped out.
750 * These are kept internally in the way they are specified externally: in
751 * time until they expire.
752 *
753 * The real time interval timer is kept in the process table slot for the
754 * process, and its value (it_value) is kept as an absolute time rather than
755 * as a delta, so that it is easy to keep periodic real-time signals from
756 * drifting.
757 *
758 * Virtual time timers are processed in the hardclock() routine of
759 * kern_clock.c. The real time timer is processed by a timeout routine,
760 * called from the softclock() routine. Since a callout may be delayed in
761 * real time due to interrupt processing in the system, it is possible for
762 * the real time timeout routine (realitexpire, given below), to be delayed
763 * in real time past when it is supposed to occur. It does not suffice,
764 * therefore, to reload the real timer .it_value from the real time timers
765 * .it_interval. Rather, we compute the next time in absolute time the timer
766 * should go off.
767 */
768 #ifndef _SYS_SYSPROTO_H_
769 struct getitimer_args {
770 u_int which;
771 struct itimerval *itv;
772 };
773 #endif
774 int
sys_getitimer(struct thread * td,struct getitimer_args * uap)775 sys_getitimer(struct thread *td, struct getitimer_args *uap)
776 {
777 struct itimerval aitv;
778 int error;
779
780 error = kern_getitimer(td, uap->which, &aitv);
781 if (error != 0)
782 return (error);
783 return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
784 }
785
786 int
kern_getitimer(struct thread * td,u_int which,struct itimerval * aitv)787 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
788 {
789 struct proc *p = td->td_proc;
790 struct timeval ctv;
791
792 if (which > ITIMER_PROF)
793 return (EINVAL);
794
795 if (which == ITIMER_REAL) {
796 /*
797 * Convert from absolute to relative time in .it_value
798 * part of real time timer. If time for real time timer
799 * has passed return 0, else return difference between
800 * current time and time for the timer to go off.
801 */
802 PROC_LOCK(p);
803 *aitv = p->p_realtimer;
804 PROC_UNLOCK(p);
805 if (timevalisset(&aitv->it_value)) {
806 microuptime(&ctv);
807 if (timevalcmp(&aitv->it_value, &ctv, <))
808 timevalclear(&aitv->it_value);
809 else
810 timevalsub(&aitv->it_value, &ctv);
811 }
812 } else {
813 PROC_ITIMLOCK(p);
814 *aitv = p->p_stats->p_timer[which];
815 PROC_ITIMUNLOCK(p);
816 }
817 #ifdef KTRACE
818 if (KTRPOINT(td, KTR_STRUCT))
819 ktritimerval(aitv);
820 #endif
821 return (0);
822 }
823
824 #ifndef _SYS_SYSPROTO_H_
825 struct setitimer_args {
826 u_int which;
827 struct itimerval *itv, *oitv;
828 };
829 #endif
830 int
sys_setitimer(struct thread * td,struct setitimer_args * uap)831 sys_setitimer(struct thread *td, struct setitimer_args *uap)
832 {
833 struct itimerval aitv, oitv;
834 int error;
835
836 if (uap->itv == NULL) {
837 uap->itv = uap->oitv;
838 return (sys_getitimer(td, (struct getitimer_args *)uap));
839 }
840
841 if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
842 return (error);
843 error = kern_setitimer(td, uap->which, &aitv, &oitv);
844 if (error != 0 || uap->oitv == NULL)
845 return (error);
846 return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
847 }
848
849 int
kern_setitimer(struct thread * td,u_int which,struct itimerval * aitv,struct itimerval * oitv)850 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
851 struct itimerval *oitv)
852 {
853 struct proc *p = td->td_proc;
854 struct timeval ctv;
855 sbintime_t sbt, pr;
856
857 if (aitv == NULL)
858 return (kern_getitimer(td, which, oitv));
859
860 if (which > ITIMER_PROF)
861 return (EINVAL);
862 #ifdef KTRACE
863 if (KTRPOINT(td, KTR_STRUCT))
864 ktritimerval(aitv);
865 #endif
866 if (itimerfix(&aitv->it_value) ||
867 aitv->it_value.tv_sec > INT32_MAX / 2)
868 return (EINVAL);
869 if (!timevalisset(&aitv->it_value))
870 timevalclear(&aitv->it_interval);
871 else if (itimerfix(&aitv->it_interval) ||
872 aitv->it_interval.tv_sec > INT32_MAX / 2)
873 return (EINVAL);
874
875 if (which == ITIMER_REAL) {
876 PROC_LOCK(p);
877 if (timevalisset(&p->p_realtimer.it_value))
878 callout_stop(&p->p_itcallout);
879 microuptime(&ctv);
880 if (timevalisset(&aitv->it_value)) {
881 pr = tvtosbt(aitv->it_value) >> tc_precexp;
882 timevaladd(&aitv->it_value, &ctv);
883 sbt = tvtosbt(aitv->it_value);
884 callout_reset_sbt(&p->p_itcallout, sbt, pr,
885 realitexpire, p, C_ABSOLUTE);
886 }
887 *oitv = p->p_realtimer;
888 p->p_realtimer = *aitv;
889 PROC_UNLOCK(p);
890 if (timevalisset(&oitv->it_value)) {
891 if (timevalcmp(&oitv->it_value, &ctv, <))
892 timevalclear(&oitv->it_value);
893 else
894 timevalsub(&oitv->it_value, &ctv);
895 }
896 } else {
897 if (aitv->it_interval.tv_sec == 0 &&
898 aitv->it_interval.tv_usec != 0 &&
899 aitv->it_interval.tv_usec < tick)
900 aitv->it_interval.tv_usec = tick;
901 if (aitv->it_value.tv_sec == 0 &&
902 aitv->it_value.tv_usec != 0 &&
903 aitv->it_value.tv_usec < tick)
904 aitv->it_value.tv_usec = tick;
905 PROC_ITIMLOCK(p);
906 *oitv = p->p_stats->p_timer[which];
907 p->p_stats->p_timer[which] = *aitv;
908 PROC_ITIMUNLOCK(p);
909 }
910 #ifdef KTRACE
911 if (KTRPOINT(td, KTR_STRUCT))
912 ktritimerval(oitv);
913 #endif
914 return (0);
915 }
916
917 static void
realitexpire_reset_callout(struct proc * p,sbintime_t * isbtp)918 realitexpire_reset_callout(struct proc *p, sbintime_t *isbtp)
919 {
920 sbintime_t prec;
921
922 if ((p->p_flag & P_WEXIT) != 0)
923 return;
924 prec = isbtp == NULL ? tvtosbt(p->p_realtimer.it_interval) : *isbtp;
925 callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value),
926 prec >> tc_precexp, realitexpire, p, C_ABSOLUTE);
927 }
928
929 void
itimer_proc_continue(struct proc * p)930 itimer_proc_continue(struct proc *p)
931 {
932 struct timeval ctv;
933 struct itimer *it;
934 int id;
935
936 PROC_LOCK_ASSERT(p, MA_OWNED);
937
938 if ((p->p_flag2 & P2_ITSTOPPED) != 0) {
939 p->p_flag2 &= ~P2_ITSTOPPED;
940 microuptime(&ctv);
941 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >=))
942 realitexpire(p);
943 else
944 realitexpire_reset_callout(p, NULL);
945 }
946
947 if (p->p_itimers != NULL) {
948 for (id = 3; id < TIMER_MAX; id++) {
949 it = p->p_itimers->its_timers[id];
950 if (it == NULL)
951 continue;
952 if ((it->it_flags & ITF_PSTOPPED) != 0) {
953 ITIMER_LOCK(it);
954 if ((it->it_flags & ITF_PSTOPPED) != 0) {
955 it->it_flags &= ~ITF_PSTOPPED;
956 if ((it->it_flags & ITF_DELETING) == 0)
957 realtimer_expire_l(it, true);
958 }
959 ITIMER_UNLOCK(it);
960 }
961 }
962 }
963 }
964
965 /*
966 * Real interval timer expired:
967 * send process whose timer expired an alarm signal.
968 * If time is not set up to reload, then just return.
969 * Else compute next time timer should go off which is > current time.
970 * This is where delay in processing this timeout causes multiple
971 * SIGALRM calls to be compressed into one.
972 * tvtohz() always adds 1 to allow for the time until the next clock
973 * interrupt being strictly less than 1 clock tick, but we don't want
974 * that here since we want to appear to be in sync with the clock
975 * interrupt even when we're delayed.
976 */
977 static void
realitexpire(void * arg)978 realitexpire(void *arg)
979 {
980 struct proc *p;
981 struct timeval ctv;
982 sbintime_t isbt;
983
984 p = (struct proc *)arg;
985 kern_psignal(p, SIGALRM);
986 if (!timevalisset(&p->p_realtimer.it_interval)) {
987 timevalclear(&p->p_realtimer.it_value);
988 return;
989 }
990
991 isbt = tvtosbt(p->p_realtimer.it_interval);
992 if (isbt >= sbt_timethreshold)
993 getmicrouptime(&ctv);
994 else
995 microuptime(&ctv);
996 do {
997 timevaladd(&p->p_realtimer.it_value,
998 &p->p_realtimer.it_interval);
999 } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=));
1000
1001 if (P_SHOULDSTOP(p) || P_KILLED(p)) {
1002 p->p_flag2 |= P2_ITSTOPPED;
1003 return;
1004 }
1005
1006 p->p_flag2 &= ~P2_ITSTOPPED;
1007 realitexpire_reset_callout(p, &isbt);
1008 }
1009
1010 /*
1011 * Check that a proposed value to load into the .it_value or
1012 * .it_interval part of an interval timer is acceptable, and
1013 * fix it to have at least minimal value (i.e. if it is less
1014 * than the resolution of the clock, round it up.)
1015 */
1016 int
itimerfix(struct timeval * tv)1017 itimerfix(struct timeval *tv)
1018 {
1019
1020 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1021 return (EINVAL);
1022 if (tv->tv_sec == 0 && tv->tv_usec != 0 &&
1023 tv->tv_usec < (u_int)tick / 16)
1024 tv->tv_usec = (u_int)tick / 16;
1025 return (0);
1026 }
1027
1028 /*
1029 * Decrement an interval timer by a specified number
1030 * of microseconds, which must be less than a second,
1031 * i.e. < 1000000. If the timer expires, then reload
1032 * it. In this case, carry over (usec - old value) to
1033 * reduce the value reloaded into the timer so that
1034 * the timer does not drift. This routine assumes
1035 * that it is called in a context where the timers
1036 * on which it is operating cannot change in value.
1037 */
1038 int
itimerdecr(struct itimerval * itp,int usec)1039 itimerdecr(struct itimerval *itp, int usec)
1040 {
1041
1042 if (itp->it_value.tv_usec < usec) {
1043 if (itp->it_value.tv_sec == 0) {
1044 /* expired, and already in next interval */
1045 usec -= itp->it_value.tv_usec;
1046 goto expire;
1047 }
1048 itp->it_value.tv_usec += 1000000;
1049 itp->it_value.tv_sec--;
1050 }
1051 itp->it_value.tv_usec -= usec;
1052 usec = 0;
1053 if (timevalisset(&itp->it_value))
1054 return (1);
1055 /* expired, exactly at end of interval */
1056 expire:
1057 if (timevalisset(&itp->it_interval)) {
1058 itp->it_value = itp->it_interval;
1059 itp->it_value.tv_usec -= usec;
1060 if (itp->it_value.tv_usec < 0) {
1061 itp->it_value.tv_usec += 1000000;
1062 itp->it_value.tv_sec--;
1063 }
1064 } else
1065 itp->it_value.tv_usec = 0; /* sec is already 0 */
1066 return (0);
1067 }
1068
1069 /*
1070 * Add and subtract routines for timevals.
1071 * N.B.: subtract routine doesn't deal with
1072 * results which are before the beginning,
1073 * it just gets very confused in this case.
1074 * Caveat emptor.
1075 */
1076 void
timevaladd(struct timeval * t1,const struct timeval * t2)1077 timevaladd(struct timeval *t1, const struct timeval *t2)
1078 {
1079
1080 t1->tv_sec += t2->tv_sec;
1081 t1->tv_usec += t2->tv_usec;
1082 timevalfix(t1);
1083 }
1084
1085 void
timevalsub(struct timeval * t1,const struct timeval * t2)1086 timevalsub(struct timeval *t1, const struct timeval *t2)
1087 {
1088
1089 t1->tv_sec -= t2->tv_sec;
1090 t1->tv_usec -= t2->tv_usec;
1091 timevalfix(t1);
1092 }
1093
1094 static void
timevalfix(struct timeval * t1)1095 timevalfix(struct timeval *t1)
1096 {
1097
1098 if (t1->tv_usec < 0) {
1099 t1->tv_sec--;
1100 t1->tv_usec += 1000000;
1101 }
1102 if (t1->tv_usec >= 1000000) {
1103 t1->tv_sec++;
1104 t1->tv_usec -= 1000000;
1105 }
1106 }
1107
1108 /*
1109 * ratecheck(): simple time-based rate-limit checking.
1110 */
1111 int
ratecheck(struct timeval * lasttime,const struct timeval * mininterval)1112 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1113 {
1114 struct timeval tv, delta;
1115 int rv = 0;
1116
1117 getmicrouptime(&tv); /* NB: 10ms precision */
1118 delta = tv;
1119 timevalsub(&delta, lasttime);
1120
1121 /*
1122 * check for 0,0 is so that the message will be seen at least once,
1123 * even if interval is huge.
1124 */
1125 if (timevalcmp(&delta, mininterval, >=) ||
1126 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1127 *lasttime = tv;
1128 rv = 1;
1129 }
1130
1131 return (rv);
1132 }
1133
1134 /*
1135 * eventratecheck(): events per second limitation.
1136 *
1137 * Return 0 if the limit is to be enforced (e.g. the caller
1138 * should ignore the event because of the rate limitation).
1139 *
1140 * maxeps of 0 always causes zero to be returned. maxeps of -1
1141 * always causes 1 to be returned; this effectively defeats rate
1142 * limiting.
1143 *
1144 * Note that we maintain the struct timeval for compatibility
1145 * with other bsd systems. We reuse the storage and just monitor
1146 * clock ticks for minimal overhead.
1147 */
1148 int
eventratecheck(struct timeval * lasttime,int * cureps,int maxeps)1149 eventratecheck(struct timeval *lasttime, int *cureps, int maxeps)
1150 {
1151 int now;
1152
1153 /*
1154 * Reset the last time and counter if this is the first call
1155 * or more than a second has passed since the last update of
1156 * lasttime.
1157 */
1158 now = ticks;
1159 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
1160 lasttime->tv_sec = now;
1161 *cureps = 1;
1162 return (maxeps != 0);
1163 } else {
1164 (*cureps)++; /* NB: ignore potential overflow */
1165 return (maxeps < 0 || *cureps <= maxeps);
1166 }
1167 }
1168
1169 static void
itimer_start(void)1170 itimer_start(void)
1171 {
1172 static const struct kclock rt_clock = {
1173 .timer_create = realtimer_create,
1174 .timer_delete = realtimer_delete,
1175 .timer_settime = realtimer_settime,
1176 .timer_gettime = realtimer_gettime,
1177 };
1178
1179 itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
1180 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
1181 register_posix_clock(CLOCK_REALTIME, &rt_clock);
1182 register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
1183 register_posix_clock(CLOCK_TAI, &rt_clock);
1184 p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
1185 p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
1186 p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
1187 }
1188
1189 static int
register_posix_clock(int clockid,const struct kclock * clk)1190 register_posix_clock(int clockid, const struct kclock *clk)
1191 {
1192 if ((unsigned)clockid >= MAX_CLOCKS) {
1193 printf("%s: invalid clockid\n", __func__);
1194 return (0);
1195 }
1196 posix_clocks[clockid] = *clk;
1197 return (1);
1198 }
1199
1200 static int
itimer_init(void * mem,int size,int flags)1201 itimer_init(void *mem, int size, int flags)
1202 {
1203 struct itimer *it;
1204
1205 it = (struct itimer *)mem;
1206 mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
1207 return (0);
1208 }
1209
1210 static void
itimer_fini(void * mem,int size)1211 itimer_fini(void *mem, int size)
1212 {
1213 struct itimer *it;
1214
1215 it = (struct itimer *)mem;
1216 mtx_destroy(&it->it_mtx);
1217 }
1218
1219 static void
itimer_enter(struct itimer * it)1220 itimer_enter(struct itimer *it)
1221 {
1222
1223 mtx_assert(&it->it_mtx, MA_OWNED);
1224 it->it_usecount++;
1225 }
1226
1227 static void
itimer_leave(struct itimer * it)1228 itimer_leave(struct itimer *it)
1229 {
1230
1231 mtx_assert(&it->it_mtx, MA_OWNED);
1232 KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
1233
1234 if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
1235 wakeup(it);
1236 }
1237
1238 #ifndef _SYS_SYSPROTO_H_
1239 struct ktimer_create_args {
1240 clockid_t clock_id;
1241 struct sigevent * evp;
1242 int * timerid;
1243 };
1244 #endif
1245 int
sys_ktimer_create(struct thread * td,struct ktimer_create_args * uap)1246 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap)
1247 {
1248 struct sigevent *evp, ev;
1249 int id;
1250 int error;
1251
1252 if (uap->evp == NULL) {
1253 evp = NULL;
1254 } else {
1255 error = copyin(uap->evp, &ev, sizeof(ev));
1256 if (error != 0)
1257 return (error);
1258 evp = &ev;
1259 }
1260 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
1261 if (error == 0) {
1262 error = copyout(&id, uap->timerid, sizeof(int));
1263 if (error != 0)
1264 kern_ktimer_delete(td, id);
1265 }
1266 return (error);
1267 }
1268
1269 int
kern_ktimer_create(struct thread * td,clockid_t clock_id,struct sigevent * evp,int * timerid,int preset_id)1270 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp,
1271 int *timerid, int preset_id)
1272 {
1273 struct proc *p = td->td_proc;
1274 struct itimer *it;
1275 int id;
1276 int error;
1277
1278 if (clock_id < 0 || clock_id >= MAX_CLOCKS)
1279 return (EINVAL);
1280
1281 if (posix_clocks[clock_id].timer_create == NULL)
1282 return (EINVAL);
1283
1284 if (evp != NULL) {
1285 if (evp->sigev_notify != SIGEV_NONE &&
1286 evp->sigev_notify != SIGEV_SIGNAL &&
1287 evp->sigev_notify != SIGEV_THREAD_ID)
1288 return (EINVAL);
1289 if ((evp->sigev_notify == SIGEV_SIGNAL ||
1290 evp->sigev_notify == SIGEV_THREAD_ID) &&
1291 !_SIG_VALID(evp->sigev_signo))
1292 return (EINVAL);
1293 }
1294
1295 if (p->p_itimers == NULL)
1296 itimers_alloc(p);
1297
1298 it = uma_zalloc(itimer_zone, M_WAITOK);
1299 it->it_flags = 0;
1300 it->it_usecount = 0;
1301 timespecclear(&it->it_time.it_value);
1302 timespecclear(&it->it_time.it_interval);
1303 it->it_overrun = 0;
1304 it->it_overrun_last = 0;
1305 it->it_clockid = clock_id;
1306 it->it_proc = p;
1307 ksiginfo_init(&it->it_ksi);
1308 it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
1309 error = CLOCK_CALL(clock_id, timer_create, (it));
1310 if (error != 0)
1311 goto out;
1312
1313 PROC_LOCK(p);
1314 if (preset_id != -1) {
1315 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
1316 id = preset_id;
1317 if (p->p_itimers->its_timers[id] != NULL) {
1318 PROC_UNLOCK(p);
1319 error = 0;
1320 goto out;
1321 }
1322 } else {
1323 /*
1324 * Find a free timer slot, skipping those reserved
1325 * for setitimer().
1326 */
1327 for (id = 3; id < TIMER_MAX; id++)
1328 if (p->p_itimers->its_timers[id] == NULL)
1329 break;
1330 if (id == TIMER_MAX) {
1331 PROC_UNLOCK(p);
1332 error = EAGAIN;
1333 goto out;
1334 }
1335 }
1336 p->p_itimers->its_timers[id] = it;
1337 if (evp != NULL)
1338 it->it_sigev = *evp;
1339 else {
1340 it->it_sigev.sigev_notify = SIGEV_SIGNAL;
1341 switch (clock_id) {
1342 default:
1343 case CLOCK_REALTIME:
1344 case CLOCK_TAI:
1345 it->it_sigev.sigev_signo = SIGALRM;
1346 break;
1347 case CLOCK_VIRTUAL:
1348 it->it_sigev.sigev_signo = SIGVTALRM;
1349 break;
1350 case CLOCK_PROF:
1351 it->it_sigev.sigev_signo = SIGPROF;
1352 break;
1353 }
1354 it->it_sigev.sigev_value.sival_int = id;
1355 }
1356
1357 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1358 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1359 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
1360 it->it_ksi.ksi_code = SI_TIMER;
1361 it->it_ksi.ksi_value = it->it_sigev.sigev_value;
1362 it->it_ksi.ksi_timerid = id;
1363 }
1364 PROC_UNLOCK(p);
1365 *timerid = id;
1366 return (0);
1367
1368 out:
1369 ITIMER_LOCK(it);
1370 CLOCK_CALL(it->it_clockid, timer_delete, (it));
1371 ITIMER_UNLOCK(it);
1372 uma_zfree(itimer_zone, it);
1373 return (error);
1374 }
1375
1376 #ifndef _SYS_SYSPROTO_H_
1377 struct ktimer_delete_args {
1378 int timerid;
1379 };
1380 #endif
1381 int
sys_ktimer_delete(struct thread * td,struct ktimer_delete_args * uap)1382 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
1383 {
1384
1385 return (kern_ktimer_delete(td, uap->timerid));
1386 }
1387
1388 static struct itimer *
itimer_find(struct proc * p,int timerid)1389 itimer_find(struct proc *p, int timerid)
1390 {
1391 struct itimer *it;
1392
1393 PROC_LOCK_ASSERT(p, MA_OWNED);
1394 if ((p->p_itimers == NULL) ||
1395 (timerid < 0) || (timerid >= TIMER_MAX) ||
1396 (it = p->p_itimers->its_timers[timerid]) == NULL) {
1397 return (NULL);
1398 }
1399 ITIMER_LOCK(it);
1400 if ((it->it_flags & ITF_DELETING) != 0) {
1401 ITIMER_UNLOCK(it);
1402 it = NULL;
1403 }
1404 return (it);
1405 }
1406
1407 int
kern_ktimer_delete(struct thread * td,int timerid)1408 kern_ktimer_delete(struct thread *td, int timerid)
1409 {
1410 struct proc *p = td->td_proc;
1411 struct itimer *it;
1412
1413 PROC_LOCK(p);
1414 it = itimer_find(p, timerid);
1415 if (it == NULL) {
1416 PROC_UNLOCK(p);
1417 return (EINVAL);
1418 }
1419 PROC_UNLOCK(p);
1420
1421 it->it_flags |= ITF_DELETING;
1422 while (it->it_usecount > 0) {
1423 it->it_flags |= ITF_WANTED;
1424 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
1425 }
1426 it->it_flags &= ~ITF_WANTED;
1427 CLOCK_CALL(it->it_clockid, timer_delete, (it));
1428 ITIMER_UNLOCK(it);
1429
1430 PROC_LOCK(p);
1431 if (KSI_ONQ(&it->it_ksi))
1432 sigqueue_take(&it->it_ksi);
1433 p->p_itimers->its_timers[timerid] = NULL;
1434 PROC_UNLOCK(p);
1435 uma_zfree(itimer_zone, it);
1436 return (0);
1437 }
1438
1439 #ifndef _SYS_SYSPROTO_H_
1440 struct ktimer_settime_args {
1441 int timerid;
1442 int flags;
1443 const struct itimerspec * value;
1444 struct itimerspec * ovalue;
1445 };
1446 #endif
1447 int
sys_ktimer_settime(struct thread * td,struct ktimer_settime_args * uap)1448 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
1449 {
1450 struct itimerspec val, oval, *ovalp;
1451 int error;
1452
1453 error = copyin(uap->value, &val, sizeof(val));
1454 if (error != 0)
1455 return (error);
1456 ovalp = uap->ovalue != NULL ? &oval : NULL;
1457 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
1458 if (error == 0 && uap->ovalue != NULL)
1459 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
1460 return (error);
1461 }
1462
1463 int
kern_ktimer_settime(struct thread * td,int timer_id,int flags,struct itimerspec * val,struct itimerspec * oval)1464 kern_ktimer_settime(struct thread *td, int timer_id, int flags,
1465 struct itimerspec *val, struct itimerspec *oval)
1466 {
1467 struct proc *p;
1468 struct itimer *it;
1469 int error;
1470
1471 p = td->td_proc;
1472 PROC_LOCK(p);
1473 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
1474 PROC_UNLOCK(p);
1475 error = EINVAL;
1476 } else {
1477 PROC_UNLOCK(p);
1478 itimer_enter(it);
1479 error = CLOCK_CALL(it->it_clockid, timer_settime, (it,
1480 flags, val, oval));
1481 itimer_leave(it);
1482 ITIMER_UNLOCK(it);
1483 }
1484 return (error);
1485 }
1486
1487 #ifndef _SYS_SYSPROTO_H_
1488 struct ktimer_gettime_args {
1489 int timerid;
1490 struct itimerspec * value;
1491 };
1492 #endif
1493 int
sys_ktimer_gettime(struct thread * td,struct ktimer_gettime_args * uap)1494 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
1495 {
1496 struct itimerspec val;
1497 int error;
1498
1499 error = kern_ktimer_gettime(td, uap->timerid, &val);
1500 if (error == 0)
1501 error = copyout(&val, uap->value, sizeof(val));
1502 return (error);
1503 }
1504
1505 int
kern_ktimer_gettime(struct thread * td,int timer_id,struct itimerspec * val)1506 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val)
1507 {
1508 struct proc *p;
1509 struct itimer *it;
1510 int error;
1511
1512 p = td->td_proc;
1513 PROC_LOCK(p);
1514 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
1515 PROC_UNLOCK(p);
1516 error = EINVAL;
1517 } else {
1518 PROC_UNLOCK(p);
1519 itimer_enter(it);
1520 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val));
1521 itimer_leave(it);
1522 ITIMER_UNLOCK(it);
1523 }
1524 return (error);
1525 }
1526
1527 #ifndef _SYS_SYSPROTO_H_
1528 struct timer_getoverrun_args {
1529 int timerid;
1530 };
1531 #endif
1532 int
sys_ktimer_getoverrun(struct thread * td,struct ktimer_getoverrun_args * uap)1533 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
1534 {
1535
1536 return (kern_ktimer_getoverrun(td, uap->timerid));
1537 }
1538
1539 int
kern_ktimer_getoverrun(struct thread * td,int timer_id)1540 kern_ktimer_getoverrun(struct thread *td, int timer_id)
1541 {
1542 struct proc *p = td->td_proc;
1543 struct itimer *it;
1544 int error ;
1545
1546 PROC_LOCK(p);
1547 if (timer_id < 3 ||
1548 (it = itimer_find(p, timer_id)) == NULL) {
1549 PROC_UNLOCK(p);
1550 error = EINVAL;
1551 } else {
1552 td->td_retval[0] = it->it_overrun_last;
1553 ITIMER_UNLOCK(it);
1554 PROC_UNLOCK(p);
1555 error = 0;
1556 }
1557 return (error);
1558 }
1559
1560 static int
realtimer_create(struct itimer * it)1561 realtimer_create(struct itimer *it)
1562 {
1563 callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
1564 return (0);
1565 }
1566
1567 static int
realtimer_delete(struct itimer * it)1568 realtimer_delete(struct itimer *it)
1569 {
1570 mtx_assert(&it->it_mtx, MA_OWNED);
1571
1572 /*
1573 * clear timer's value and interval to tell realtimer_expire
1574 * to not rearm the timer.
1575 */
1576 timespecclear(&it->it_time.it_value);
1577 timespecclear(&it->it_time.it_interval);
1578 ITIMER_UNLOCK(it);
1579 callout_drain(&it->it_callout);
1580 ITIMER_LOCK(it);
1581 return (0);
1582 }
1583
1584 static int
realtimer_gettime(struct itimer * it,struct itimerspec * ovalue)1585 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
1586 {
1587 struct timespec cts;
1588 int error;
1589
1590 mtx_assert(&it->it_mtx, MA_OWNED);
1591
1592 error = kern_clock_gettime(curthread, it->it_clockid, &cts);
1593 if (error != 0)
1594 return (error);
1595
1596 *ovalue = it->it_time;
1597 if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
1598 timespecsub(&ovalue->it_value, &cts, &ovalue->it_value);
1599 if (ovalue->it_value.tv_sec < 0 ||
1600 (ovalue->it_value.tv_sec == 0 &&
1601 ovalue->it_value.tv_nsec == 0)) {
1602 ovalue->it_value.tv_sec = 0;
1603 ovalue->it_value.tv_nsec = 1;
1604 }
1605 }
1606 return (0);
1607 }
1608
1609 static int
realtimer_settime(struct itimer * it,int flags,struct itimerspec * value,struct itimerspec * ovalue)1610 realtimer_settime(struct itimer *it, int flags, struct itimerspec *value,
1611 struct itimerspec *ovalue)
1612 {
1613 struct timespec cts, ts;
1614 struct timeval tv;
1615 struct itimerspec val;
1616 int error;
1617
1618 mtx_assert(&it->it_mtx, MA_OWNED);
1619
1620 val = *value;
1621 if (itimespecfix(&val.it_value))
1622 return (EINVAL);
1623
1624 if (timespecisset(&val.it_value)) {
1625 if (itimespecfix(&val.it_interval))
1626 return (EINVAL);
1627 } else {
1628 timespecclear(&val.it_interval);
1629 }
1630
1631 if (ovalue != NULL)
1632 realtimer_gettime(it, ovalue);
1633
1634 it->it_time = val;
1635 if (timespecisset(&val.it_value)) {
1636 error = kern_clock_gettime(curthread, it->it_clockid, &cts);
1637 if (error != 0)
1638 return (error);
1639
1640 ts = val.it_value;
1641 if ((flags & TIMER_ABSTIME) == 0) {
1642 /* Convert to absolute time. */
1643 timespecadd(&it->it_time.it_value, &cts,
1644 &it->it_time.it_value);
1645 } else {
1646 timespecsub(&ts, &cts, &ts);
1647 /*
1648 * We don't care if ts is negative, tztohz will
1649 * fix it.
1650 */
1651 }
1652 TIMESPEC_TO_TIMEVAL(&tv, &ts);
1653 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
1654 it);
1655 } else {
1656 callout_stop(&it->it_callout);
1657 }
1658
1659 return (0);
1660 }
1661
1662 int
itimer_accept(struct proc * p,int timerid,ksiginfo_t * ksi)1663 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
1664 {
1665 struct itimer *it;
1666
1667 PROC_LOCK_ASSERT(p, MA_OWNED);
1668 it = itimer_find(p, timerid);
1669 if (it != NULL) {
1670 ksi->ksi_overrun = it->it_overrun;
1671 it->it_overrun_last = it->it_overrun;
1672 it->it_overrun = 0;
1673 ITIMER_UNLOCK(it);
1674 return (0);
1675 }
1676 return (EINVAL);
1677 }
1678
1679 static int
itimespecfix(struct timespec * ts)1680 itimespecfix(struct timespec *ts)
1681 {
1682
1683 if (!timespecvalid_interval(ts))
1684 return (EINVAL);
1685 if ((UINT64_MAX - ts->tv_nsec) / NS_PER_SEC < ts->tv_sec)
1686 return (EINVAL);
1687 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1688 ts->tv_nsec = tick * 1000;
1689 return (0);
1690 }
1691
1692 #define timespectons(tsp) \
1693 ((uint64_t)(tsp)->tv_sec * NS_PER_SEC + (tsp)->tv_nsec)
1694 #define timespecfromns(ns) (struct timespec){ \
1695 .tv_sec = (ns) / NS_PER_SEC, \
1696 .tv_nsec = (ns) % NS_PER_SEC \
1697 }
1698
1699 static void
realtimer_expire_l(struct itimer * it,bool proc_locked)1700 realtimer_expire_l(struct itimer *it, bool proc_locked)
1701 {
1702 struct timespec cts, ts;
1703 struct timeval tv;
1704 struct proc *p;
1705 uint64_t interval, now, overruns, value;
1706 int error;
1707
1708 error = kern_clock_gettime(curthread, it->it_clockid, &cts);
1709
1710 /* Only fire if time is reached. */
1711 if (error == 0 && timespeccmp(&cts, &it->it_time.it_value, >=)) {
1712 if (timespecisset(&it->it_time.it_interval)) {
1713 timespecadd(&it->it_time.it_value,
1714 &it->it_time.it_interval,
1715 &it->it_time.it_value);
1716
1717 interval = timespectons(&it->it_time.it_interval);
1718 value = timespectons(&it->it_time.it_value);
1719 now = timespectons(&cts);
1720
1721 if (now >= value) {
1722 /*
1723 * We missed at least one period.
1724 */
1725 overruns = howmany(now - value + 1, interval);
1726 if (it->it_overrun + overruns >=
1727 it->it_overrun &&
1728 it->it_overrun + overruns <= INT_MAX) {
1729 it->it_overrun += (int)overruns;
1730 } else {
1731 it->it_overrun = INT_MAX;
1732 it->it_ksi.ksi_errno = ERANGE;
1733 }
1734 value =
1735 now + interval - (now - value) % interval;
1736 it->it_time.it_value = timespecfromns(value);
1737 }
1738 } else {
1739 /* single shot timer ? */
1740 timespecclear(&it->it_time.it_value);
1741 }
1742
1743 p = it->it_proc;
1744 if (timespecisset(&it->it_time.it_value)) {
1745 if (P_SHOULDSTOP(p) || P_KILLED(p)) {
1746 it->it_flags |= ITF_PSTOPPED;
1747 } else {
1748 timespecsub(&it->it_time.it_value, &cts, &ts);
1749 TIMESPEC_TO_TIMEVAL(&tv, &ts);
1750 callout_reset(&it->it_callout, tvtohz(&tv),
1751 realtimer_expire, it);
1752 }
1753 }
1754
1755 itimer_enter(it);
1756 ITIMER_UNLOCK(it);
1757 if (proc_locked)
1758 PROC_UNLOCK(p);
1759 itimer_fire(it);
1760 if (proc_locked)
1761 PROC_LOCK(p);
1762 ITIMER_LOCK(it);
1763 itimer_leave(it);
1764 } else if (timespecisset(&it->it_time.it_value)) {
1765 p = it->it_proc;
1766 if (P_SHOULDSTOP(p) || P_KILLED(p)) {
1767 it->it_flags |= ITF_PSTOPPED;
1768 } else {
1769 ts = it->it_time.it_value;
1770 timespecsub(&ts, &cts, &ts);
1771 TIMESPEC_TO_TIMEVAL(&tv, &ts);
1772 callout_reset(&it->it_callout, tvtohz(&tv),
1773 realtimer_expire, it);
1774 }
1775 }
1776 }
1777
1778 /* Timeout callback for realtime timer */
1779 static void
realtimer_expire(void * arg)1780 realtimer_expire(void *arg)
1781 {
1782 realtimer_expire_l(arg, false);
1783 }
1784
1785 static void
itimer_fire(struct itimer * it)1786 itimer_fire(struct itimer *it)
1787 {
1788 struct proc *p = it->it_proc;
1789 struct thread *td;
1790
1791 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1792 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1793 if (sigev_findtd(p, &it->it_sigev, &td) != 0) {
1794 ITIMER_LOCK(it);
1795 timespecclear(&it->it_time.it_value);
1796 timespecclear(&it->it_time.it_interval);
1797 callout_stop(&it->it_callout);
1798 ITIMER_UNLOCK(it);
1799 return;
1800 }
1801 if (!KSI_ONQ(&it->it_ksi)) {
1802 it->it_ksi.ksi_errno = 0;
1803 ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev);
1804 tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi);
1805 } else {
1806 if (it->it_overrun < INT_MAX)
1807 it->it_overrun++;
1808 else
1809 it->it_ksi.ksi_errno = ERANGE;
1810 }
1811 PROC_UNLOCK(p);
1812 }
1813 }
1814
1815 static void
itimers_alloc(struct proc * p)1816 itimers_alloc(struct proc *p)
1817 {
1818 struct itimers *its;
1819
1820 its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
1821 PROC_LOCK(p);
1822 if (p->p_itimers == NULL) {
1823 p->p_itimers = its;
1824 PROC_UNLOCK(p);
1825 }
1826 else {
1827 PROC_UNLOCK(p);
1828 free(its, M_SUBPROC);
1829 }
1830 }
1831
1832 /* Clean up timers when some process events are being triggered. */
1833 static void
itimers_event_exit_exec(int start_idx,struct proc * p)1834 itimers_event_exit_exec(int start_idx, struct proc *p)
1835 {
1836 struct itimers *its;
1837 struct itimer *it;
1838 int i;
1839
1840 its = p->p_itimers;
1841 if (its == NULL)
1842 return;
1843
1844 for (i = start_idx; i < TIMER_MAX; ++i) {
1845 if ((it = its->its_timers[i]) != NULL)
1846 kern_ktimer_delete(curthread, i);
1847 }
1848 if (its->its_timers[0] == NULL && its->its_timers[1] == NULL &&
1849 its->its_timers[2] == NULL) {
1850 /* Synchronize with itimer_proc_continue(). */
1851 PROC_LOCK(p);
1852 p->p_itimers = NULL;
1853 PROC_UNLOCK(p);
1854 free(its, M_SUBPROC);
1855 }
1856 }
1857
1858 void
itimers_exec(struct proc * p)1859 itimers_exec(struct proc *p)
1860 {
1861 /*
1862 * According to susv3, XSI interval timers should be inherited
1863 * by new image.
1864 */
1865 itimers_event_exit_exec(3, p);
1866 }
1867
1868 void
itimers_exit(struct proc * p)1869 itimers_exit(struct proc *p)
1870 {
1871 itimers_event_exit_exec(0, p);
1872 }
1873