1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California.
6 * Copyright (c) 2005 Robert N. M. Watson
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include "opt_ktrace.h"
35
36 #define EXTERR_CATEGORY EXTERR_KTRACE
37 #include <sys/systm.h>
38 #include <sys/capsicum.h>
39 #include <sys/exterrvar.h>
40 #include <sys/fcntl.h>
41 #include <sys/kernel.h>
42 #include <sys/kthread.h>
43 #include <sys/ktrace.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/malloc.h>
47 #include <sys/mount.h>
48 #include <sys/namei.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/resourcevar.h>
52 #include <sys/socket.h>
53 #include <sys/stat.h>
54 #include <sys/sx.h>
55 #include <sys/sysctl.h>
56 #include <sys/sysent.h>
57 #include <sys/syslog.h>
58 #include <sys/sysproto.h>
59 #include <sys/unistd.h>
60 #include <sys/vnode.h>
61
62 #include <security/mac/mac_framework.h>
63
64 /*
65 * The ktrace facility allows the tracing of certain key events in user space
66 * processes, such as system calls, signal delivery, context switches, and
67 * user generated events using utrace(2). It works by streaming event
68 * records and data to a vnode associated with the process using the
69 * ktrace(2) system call. In general, records can be written directly from
70 * the context that generates the event. One important exception to this is
71 * during a context switch, where sleeping is not permitted. To handle this
72 * case, trace events are generated using in-kernel ktr_request records, and
73 * then delivered to disk at a convenient moment -- either immediately, the
74 * next traceable event, at system call return, or at process exit.
75 *
76 * When dealing with multiple threads or processes writing to the same event
77 * log, ordering guarantees are weak: specifically, if an event has multiple
78 * records (i.e., system call enter and return), they may be interlaced with
79 * records from another event. Process and thread ID information is provided
80 * in the record, and user applications can de-interlace events if required.
81 */
82
83 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
84
85 #ifdef KTRACE
86
87 FEATURE(ktrace, "Kernel support for system-call tracing");
88
89 #ifndef KTRACE_REQUEST_POOL
90 #define KTRACE_REQUEST_POOL 100
91 #endif
92
93 struct ktr_request {
94 struct ktr_header ktr_header;
95 void *ktr_buffer;
96 union {
97 struct ktr_proc_ctor ktr_proc_ctor;
98 struct ktr_cap_fail ktr_cap_fail;
99 struct ktr_syscall ktr_syscall;
100 struct ktr_sysret ktr_sysret;
101 struct ktr_genio ktr_genio;
102 struct ktr_psig ktr_psig;
103 struct ktr_csw ktr_csw;
104 struct ktr_fault ktr_fault;
105 struct ktr_faultend ktr_faultend;
106 struct ktr_struct_array ktr_struct_array;
107 struct ktr_exterr ktr_exterr;
108 } ktr_data;
109 STAILQ_ENTRY(ktr_request) ktr_list;
110 };
111
112 static const int data_lengths[] = {
113 [KTR_SYSCALL] = offsetof(struct ktr_syscall, ktr_args),
114 [KTR_SYSRET] = sizeof(struct ktr_sysret),
115 [KTR_NAMEI] = 0,
116 [KTR_GENIO] = sizeof(struct ktr_genio),
117 [KTR_PSIG] = sizeof(struct ktr_psig),
118 [KTR_CSW] = sizeof(struct ktr_csw),
119 [KTR_USER] = 0,
120 [KTR_STRUCT] = 0,
121 [KTR_SYSCTL] = 0,
122 [KTR_PROCCTOR] = sizeof(struct ktr_proc_ctor),
123 [KTR_PROCDTOR] = 0,
124 [KTR_CAPFAIL] = sizeof(struct ktr_cap_fail),
125 [KTR_FAULT] = sizeof(struct ktr_fault),
126 [KTR_FAULTEND] = sizeof(struct ktr_faultend),
127 [KTR_STRUCT_ARRAY] = sizeof(struct ktr_struct_array),
128 [KTR_ARGS] = 0,
129 [KTR_ENVS] = 0,
130 [KTR_EXTERR] = sizeof(struct ktr_exterr),
131 };
132
133 static STAILQ_HEAD(, ktr_request) ktr_free;
134
135 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
136 "KTRACE options");
137
138 static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
139 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
140
141 u_int ktr_geniosize = PAGE_SIZE;
142 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RWTUN, &ktr_geniosize,
143 0, "Maximum size of genio event payload");
144
145 /*
146 * Allow to not to send signal to traced process, in which context the
147 * ktr record is written. The limit is applied from the process that
148 * set up ktrace, so killing the traced process is not completely fair.
149 */
150 int ktr_filesize_limit_signal = 0;
151 SYSCTL_INT(_kern_ktrace, OID_AUTO, filesize_limit_signal, CTLFLAG_RWTUN,
152 &ktr_filesize_limit_signal, 0,
153 "Send SIGXFSZ to the traced process when the log size limit is exceeded");
154
155 static int print_message = 1;
156 static struct mtx ktrace_mtx;
157 static struct sx ktrace_sx;
158
159 struct ktr_io_params {
160 struct vnode *vp;
161 struct ucred *cr;
162 off_t lim;
163 u_int refs;
164 };
165
166 static void ktrace_init(void *dummy);
167 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
168 static u_int ktrace_resize_pool(u_int oldsize, u_int newsize);
169 static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type);
170 static struct ktr_request *ktr_getrequest(int type);
171 static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
172 static struct ktr_io_params *ktr_freeproc(struct proc *p);
173 static void ktr_freerequest(struct ktr_request *req);
174 static void ktr_freerequest_locked(struct ktr_request *req);
175 static void ktr_writerequest(struct thread *td, struct ktr_request *req);
176 static int ktrcanset(struct thread *,struct proc *);
177 static int ktrsetchildren(struct thread *, struct proc *, int, int,
178 struct ktr_io_params *);
179 static int ktrops(struct thread *, struct proc *, int, int,
180 struct ktr_io_params *);
181 static void ktrprocctor_entered(struct thread *, struct proc *);
182
183 /*
184 * ktrace itself generates events, such as context switches, which we do not
185 * wish to trace. Maintain a flag, TDP_INKTRACE, on each thread to determine
186 * whether or not it is in a region where tracing of events should be
187 * suppressed.
188 */
189 static void
ktrace_enter(struct thread * td)190 ktrace_enter(struct thread *td)
191 {
192
193 KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
194 td->td_pflags |= TDP_INKTRACE;
195 }
196
197 static void
ktrace_exit(struct thread * td)198 ktrace_exit(struct thread *td)
199 {
200
201 KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
202 td->td_pflags &= ~TDP_INKTRACE;
203 }
204
205 static void
ktrace_assert(struct thread * td)206 ktrace_assert(struct thread *td)
207 {
208
209 KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
210 }
211
212 static void
ast_ktrace(struct thread * td,int tda __unused)213 ast_ktrace(struct thread *td, int tda __unused)
214 {
215 KTRUSERRET(td);
216 }
217
218 static void
ktrace_init(void * dummy)219 ktrace_init(void *dummy)
220 {
221 struct ktr_request *req;
222 int i;
223
224 mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
225 sx_init(&ktrace_sx, "ktrace_sx");
226 STAILQ_INIT(&ktr_free);
227 for (i = 0; i < ktr_requestpool; i++) {
228 req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK |
229 M_ZERO);
230 STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
231 }
232 ast_register(TDA_KTRACE, ASTR_ASTF_REQUIRED, 0, ast_ktrace);
233 }
234 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
235
236 static int
sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)237 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
238 {
239 struct thread *td;
240 u_int newsize, oldsize, wantsize;
241 int error;
242
243 /* Handle easy read-only case first to avoid warnings from GCC. */
244 if (!req->newptr) {
245 oldsize = ktr_requestpool;
246 return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
247 }
248
249 error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
250 if (error)
251 return (error);
252 td = curthread;
253 ktrace_enter(td);
254 oldsize = ktr_requestpool;
255 newsize = ktrace_resize_pool(oldsize, wantsize);
256 ktrace_exit(td);
257 error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
258 if (error)
259 return (error);
260 if (wantsize > oldsize && newsize < wantsize)
261 return (ENOSPC);
262 return (0);
263 }
264 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool,
265 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &ktr_requestpool, 0,
266 sysctl_kern_ktrace_request_pool, "IU",
267 "Pool buffer size for ktrace(1)");
268
269 static u_int
ktrace_resize_pool(u_int oldsize,u_int newsize)270 ktrace_resize_pool(u_int oldsize, u_int newsize)
271 {
272 STAILQ_HEAD(, ktr_request) ktr_new;
273 struct ktr_request *req;
274 int bound;
275
276 print_message = 1;
277 bound = newsize - oldsize;
278 if (bound == 0)
279 return (ktr_requestpool);
280 if (bound < 0) {
281 mtx_lock(&ktrace_mtx);
282 /* Shrink pool down to newsize if possible. */
283 while (bound++ < 0) {
284 req = STAILQ_FIRST(&ktr_free);
285 if (req == NULL)
286 break;
287 STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
288 ktr_requestpool--;
289 free(req, M_KTRACE);
290 }
291 } else {
292 /* Grow pool up to newsize. */
293 STAILQ_INIT(&ktr_new);
294 while (bound-- > 0) {
295 req = malloc(sizeof(struct ktr_request), M_KTRACE,
296 M_WAITOK | M_ZERO);
297 STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list);
298 }
299 mtx_lock(&ktrace_mtx);
300 STAILQ_CONCAT(&ktr_free, &ktr_new);
301 ktr_requestpool += (newsize - oldsize);
302 }
303 mtx_unlock(&ktrace_mtx);
304 return (ktr_requestpool);
305 }
306
307 /* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */
308 CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) ==
309 (sizeof((struct thread *)NULL)->td_name));
310
311 static struct ktr_request *
ktr_getrequest_entered(struct thread * td,int type)312 ktr_getrequest_entered(struct thread *td, int type)
313 {
314 struct ktr_request *req;
315 struct proc *p = td->td_proc;
316 int pm;
317
318 mtx_lock(&ktrace_mtx);
319 if (!KTRCHECK(td, type)) {
320 mtx_unlock(&ktrace_mtx);
321 return (NULL);
322 }
323 req = STAILQ_FIRST(&ktr_free);
324 if (req != NULL) {
325 STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
326 req->ktr_header.ktr_type = type;
327 if (p->p_traceflag & KTRFAC_DROP) {
328 req->ktr_header.ktr_type |= KTR_DROP;
329 p->p_traceflag &= ~KTRFAC_DROP;
330 }
331 mtx_unlock(&ktrace_mtx);
332 nanotime(&req->ktr_header.ktr_time);
333 req->ktr_header.ktr_type |= KTR_VERSIONED;
334 req->ktr_header.ktr_pid = p->p_pid;
335 req->ktr_header.ktr_tid = td->td_tid;
336 req->ktr_header.ktr_cpu = PCPU_GET(cpuid);
337 req->ktr_header.ktr_version = KTR_VERSION1;
338 bcopy(td->td_name, req->ktr_header.ktr_comm,
339 sizeof(req->ktr_header.ktr_comm));
340 req->ktr_buffer = NULL;
341 req->ktr_header.ktr_len = 0;
342 } else {
343 p->p_traceflag |= KTRFAC_DROP;
344 pm = print_message;
345 print_message = 0;
346 mtx_unlock(&ktrace_mtx);
347 if (pm)
348 printf("Out of ktrace request objects.\n");
349 }
350 return (req);
351 }
352
353 static struct ktr_request *
ktr_getrequest(int type)354 ktr_getrequest(int type)
355 {
356 struct thread *td = curthread;
357 struct ktr_request *req;
358
359 ktrace_enter(td);
360 req = ktr_getrequest_entered(td, type);
361 if (req == NULL)
362 ktrace_exit(td);
363
364 return (req);
365 }
366
367 /*
368 * Some trace generation environments don't permit direct access to VFS,
369 * such as during a context switch where sleeping is not allowed. Under these
370 * circumstances, queue a request to the thread to be written asynchronously
371 * later.
372 */
373 static void
ktr_enqueuerequest(struct thread * td,struct ktr_request * req)374 ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
375 {
376
377 mtx_lock(&ktrace_mtx);
378 STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
379 mtx_unlock(&ktrace_mtx);
380 ast_sched(td, TDA_KTRACE);
381 }
382
383 /*
384 * Drain any pending ktrace records from the per-thread queue to disk. This
385 * is used both internally before committing other records, and also on
386 * system call return. We drain all the ones we can find at the time when
387 * drain is requested, but don't keep draining after that as those events
388 * may be approximately "after" the current event.
389 */
390 static void
ktr_drain(struct thread * td)391 ktr_drain(struct thread *td)
392 {
393 struct ktr_request *queued_req;
394 STAILQ_HEAD(, ktr_request) local_queue;
395
396 ktrace_assert(td);
397 sx_assert(&ktrace_sx, SX_XLOCKED);
398
399 STAILQ_INIT(&local_queue);
400
401 if (!STAILQ_EMPTY_ATOMIC(&td->td_proc->p_ktr)) {
402 mtx_lock(&ktrace_mtx);
403 STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
404 mtx_unlock(&ktrace_mtx);
405
406 while ((queued_req = STAILQ_FIRST(&local_queue))) {
407 STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
408 ktr_writerequest(td, queued_req);
409 ktr_freerequest(queued_req);
410 }
411 }
412 }
413
414 /*
415 * Submit a trace record for immediate commit to disk -- to be used only
416 * where entering VFS is OK. First drain any pending records that may have
417 * been cached in the thread.
418 */
419 static void
ktr_submitrequest(struct thread * td,struct ktr_request * req)420 ktr_submitrequest(struct thread *td, struct ktr_request *req)
421 {
422
423 ktrace_assert(td);
424
425 sx_xlock(&ktrace_sx);
426 ktr_drain(td);
427 ktr_writerequest(td, req);
428 ktr_freerequest(req);
429 sx_xunlock(&ktrace_sx);
430 ktrace_exit(td);
431 }
432
433 static void
ktr_freerequest(struct ktr_request * req)434 ktr_freerequest(struct ktr_request *req)
435 {
436
437 mtx_lock(&ktrace_mtx);
438 ktr_freerequest_locked(req);
439 mtx_unlock(&ktrace_mtx);
440 }
441
442 static void
ktr_freerequest_locked(struct ktr_request * req)443 ktr_freerequest_locked(struct ktr_request *req)
444 {
445
446 mtx_assert(&ktrace_mtx, MA_OWNED);
447 if (req->ktr_buffer != NULL)
448 free(req->ktr_buffer, M_KTRACE);
449 STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
450 }
451
452 static void
ktr_io_params_ref(struct ktr_io_params * kiop)453 ktr_io_params_ref(struct ktr_io_params *kiop)
454 {
455 mtx_assert(&ktrace_mtx, MA_OWNED);
456 kiop->refs++;
457 }
458
459 static struct ktr_io_params *
ktr_io_params_rele(struct ktr_io_params * kiop)460 ktr_io_params_rele(struct ktr_io_params *kiop)
461 {
462 mtx_assert(&ktrace_mtx, MA_OWNED);
463 if (kiop == NULL)
464 return (NULL);
465 KASSERT(kiop->refs > 0, ("kiop ref == 0 %p", kiop));
466 return (--(kiop->refs) == 0 ? kiop : NULL);
467 }
468
469 void
ktr_io_params_free(struct ktr_io_params * kiop)470 ktr_io_params_free(struct ktr_io_params *kiop)
471 {
472 if (kiop == NULL)
473 return;
474
475 MPASS(kiop->refs == 0);
476 vn_close(kiop->vp, FWRITE, kiop->cr, curthread);
477 crfree(kiop->cr);
478 free(kiop, M_KTRACE);
479 }
480
481 static struct ktr_io_params *
ktr_io_params_alloc(struct thread * td,struct vnode * vp)482 ktr_io_params_alloc(struct thread *td, struct vnode *vp)
483 {
484 struct ktr_io_params *res;
485
486 res = malloc(sizeof(struct ktr_io_params), M_KTRACE, M_WAITOK);
487 res->vp = vp;
488 res->cr = crhold(td->td_ucred);
489 res->lim = lim_cur(td, RLIMIT_FSIZE);
490 res->refs = 1;
491 return (res);
492 }
493
494 /*
495 * Disable tracing for a process and release all associated resources.
496 * The caller is responsible for releasing a reference on the returned
497 * vnode and credentials.
498 */
499 static struct ktr_io_params *
ktr_freeproc(struct proc * p)500 ktr_freeproc(struct proc *p)
501 {
502 struct ktr_io_params *kiop;
503 struct ktr_request *req;
504
505 PROC_LOCK_ASSERT(p, MA_OWNED);
506 mtx_assert(&ktrace_mtx, MA_OWNED);
507 kiop = ktr_io_params_rele(p->p_ktrioparms);
508 p->p_ktrioparms = NULL;
509 p->p_traceflag = 0;
510 while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) {
511 STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list);
512 ktr_freerequest_locked(req);
513 }
514 return (kiop);
515 }
516
517 struct vnode *
ktr_get_tracevp(struct proc * p,bool ref)518 ktr_get_tracevp(struct proc *p, bool ref)
519 {
520 struct vnode *vp;
521
522 PROC_LOCK_ASSERT(p, MA_OWNED);
523
524 if (p->p_ktrioparms != NULL) {
525 vp = p->p_ktrioparms->vp;
526 if (ref)
527 vrefact(vp);
528 } else {
529 vp = NULL;
530 }
531 return (vp);
532 }
533
534 void
ktrsyscall(int code,int narg,syscallarg_t args[])535 ktrsyscall(int code, int narg, syscallarg_t args[])
536 {
537 struct ktr_request *req;
538 struct ktr_syscall *ktp;
539 size_t buflen;
540 char *buf = NULL;
541
542 if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
543 return;
544
545 buflen = sizeof(register_t) * narg;
546 if (buflen > 0) {
547 buf = malloc(buflen, M_KTRACE, M_WAITOK);
548 bcopy(args, buf, buflen);
549 }
550 req = ktr_getrequest(KTR_SYSCALL);
551 if (req == NULL) {
552 if (buf != NULL)
553 free(buf, M_KTRACE);
554 return;
555 }
556 ktp = &req->ktr_data.ktr_syscall;
557 ktp->ktr_code = code;
558 ktp->ktr_narg = narg;
559 if (buflen > 0) {
560 req->ktr_header.ktr_len = buflen;
561 req->ktr_buffer = buf;
562 }
563 ktr_submitrequest(curthread, req);
564 }
565
566 void
ktrdata(int type,const void * data,size_t len)567 ktrdata(int type, const void *data, size_t len)
568 {
569 struct ktr_request *req;
570 void *buf;
571
572 if ((req = ktr_getrequest(type)) == NULL)
573 return;
574 buf = malloc(len, M_KTRACE, M_WAITOK);
575 bcopy(data, buf, len);
576 req->ktr_header.ktr_len = len;
577 req->ktr_buffer = buf;
578 ktr_submitrequest(curthread, req);
579 }
580
581 void
ktrsysret(int code,int error,register_t retval)582 ktrsysret(int code, int error, register_t retval)
583 {
584 struct ktr_request *req;
585 struct ktr_sysret *ktp;
586
587 if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
588 return;
589
590 req = ktr_getrequest(KTR_SYSRET);
591 if (req == NULL)
592 return;
593 ktp = &req->ktr_data.ktr_sysret;
594 ktp->ktr_code = code;
595 ktp->ktr_error = error;
596 ktp->ktr_retval = ((error == 0) ? retval: 0); /* what about val2 ? */
597 ktr_submitrequest(curthread, req);
598 }
599
600 /*
601 * When a setuid process execs, disable tracing.
602 *
603 * XXX: We toss any pending asynchronous records.
604 */
605 struct ktr_io_params *
ktrprocexec(struct proc * p)606 ktrprocexec(struct proc *p)
607 {
608 struct ktr_io_params *kiop;
609
610 PROC_LOCK_ASSERT(p, MA_OWNED);
611
612 kiop = p->p_ktrioparms;
613 if (kiop == NULL || priv_check_cred(kiop->cr, PRIV_DEBUG_DIFFCRED) == 0)
614 return (NULL);
615
616 mtx_lock(&ktrace_mtx);
617 kiop = ktr_freeproc(p);
618 mtx_unlock(&ktrace_mtx);
619 return (kiop);
620 }
621
622 /*
623 * When a process exits, drain per-process asynchronous trace records
624 * and disable tracing.
625 */
626 void
ktrprocexit(struct thread * td)627 ktrprocexit(struct thread *td)
628 {
629 struct ktr_request *req;
630 struct proc *p;
631 struct ktr_io_params *kiop;
632
633 p = td->td_proc;
634 if (p->p_traceflag == 0)
635 return;
636
637 ktrace_enter(td);
638 req = ktr_getrequest_entered(td, KTR_PROCDTOR);
639 if (req != NULL)
640 ktr_enqueuerequest(td, req);
641 sx_xlock(&ktrace_sx);
642 ktr_drain(td);
643 sx_xunlock(&ktrace_sx);
644 PROC_LOCK(p);
645 mtx_lock(&ktrace_mtx);
646 kiop = ktr_freeproc(p);
647 mtx_unlock(&ktrace_mtx);
648 PROC_UNLOCK(p);
649 ktr_io_params_free(kiop);
650 ktrace_exit(td);
651 }
652
653 static void
ktrprocctor_entered(struct thread * td,struct proc * p)654 ktrprocctor_entered(struct thread *td, struct proc *p)
655 {
656 struct ktr_proc_ctor *ktp;
657 struct ktr_request *req;
658 struct thread *td2;
659
660 ktrace_assert(td);
661 td2 = FIRST_THREAD_IN_PROC(p);
662 req = ktr_getrequest_entered(td2, KTR_PROCCTOR);
663 if (req == NULL)
664 return;
665 ktp = &req->ktr_data.ktr_proc_ctor;
666 ktp->sv_flags = p->p_sysent->sv_flags;
667 ktr_enqueuerequest(td2, req);
668 }
669
670 void
ktrprocctor(struct proc * p)671 ktrprocctor(struct proc *p)
672 {
673 struct thread *td = curthread;
674
675 if ((p->p_traceflag & KTRFAC_MASK) == 0)
676 return;
677
678 ktrace_enter(td);
679 ktrprocctor_entered(td, p);
680 ktrace_exit(td);
681 }
682
683 /*
684 * When a process forks, enable tracing in the new process if needed.
685 */
686 void
ktrprocfork(struct proc * p1,struct proc * p2)687 ktrprocfork(struct proc *p1, struct proc *p2)
688 {
689
690 MPASS(p2->p_ktrioparms == NULL);
691 MPASS(p2->p_traceflag == 0);
692
693 if (p1->p_traceflag == 0)
694 return;
695
696 PROC_LOCK(p1);
697 mtx_lock(&ktrace_mtx);
698 if (p1->p_traceflag & KTRFAC_INHERIT) {
699 p2->p_traceflag = p1->p_traceflag;
700 if ((p2->p_ktrioparms = p1->p_ktrioparms) != NULL)
701 p1->p_ktrioparms->refs++;
702 }
703 mtx_unlock(&ktrace_mtx);
704 PROC_UNLOCK(p1);
705
706 ktrprocctor(p2);
707 }
708
709 /*
710 * When a thread returns, drain any asynchronous records generated by the
711 * system call.
712 */
713 void
ktruserret(struct thread * td)714 ktruserret(struct thread *td)
715 {
716
717 ktrace_enter(td);
718 sx_xlock(&ktrace_sx);
719 ktr_drain(td);
720 sx_xunlock(&ktrace_sx);
721 ktrace_exit(td);
722 }
723
724 void
ktrnamei(const char * path)725 ktrnamei(const char *path)
726 {
727 struct ktr_request *req;
728 int namelen;
729 char *buf = NULL;
730
731 namelen = strlen(path);
732 if (namelen > 0) {
733 buf = malloc(namelen, M_KTRACE, M_WAITOK);
734 bcopy(path, buf, namelen);
735 }
736 req = ktr_getrequest(KTR_NAMEI);
737 if (req == NULL) {
738 if (buf != NULL)
739 free(buf, M_KTRACE);
740 return;
741 }
742 if (namelen > 0) {
743 req->ktr_header.ktr_len = namelen;
744 req->ktr_buffer = buf;
745 }
746 ktr_submitrequest(curthread, req);
747 }
748
749 void
ktrsysctl(int * name,u_int namelen)750 ktrsysctl(int *name, u_int namelen)
751 {
752 struct ktr_request *req;
753 u_int mib[CTL_MAXNAME + 2];
754 char *mibname;
755 size_t mibnamelen;
756 int error;
757
758 /* Lookup name of mib. */
759 KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long"));
760 mib[0] = 0;
761 mib[1] = 1;
762 bcopy(name, mib + 2, namelen * sizeof(*name));
763 mibnamelen = 128;
764 mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK);
765 error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen,
766 NULL, 0, &mibnamelen, 0);
767 if (error) {
768 free(mibname, M_KTRACE);
769 return;
770 }
771 req = ktr_getrequest(KTR_SYSCTL);
772 if (req == NULL) {
773 free(mibname, M_KTRACE);
774 return;
775 }
776 req->ktr_header.ktr_len = mibnamelen;
777 req->ktr_buffer = mibname;
778 ktr_submitrequest(curthread, req);
779 }
780
781 void
ktrgenio(int fd,enum uio_rw rw,struct uio * uio,int error)782 ktrgenio(int fd, enum uio_rw rw, struct uio *uio, int error)
783 {
784 struct ktr_request *req;
785 struct ktr_genio *ktg;
786 int datalen;
787 char *buf;
788
789 if (error != 0 && (rw == UIO_READ || error == EFAULT)) {
790 freeuio(uio);
791 return;
792 }
793 uio->uio_offset = 0;
794 uio->uio_rw = UIO_WRITE;
795 datalen = MIN(uio->uio_resid, ktr_geniosize);
796 buf = malloc(datalen, M_KTRACE, M_WAITOK);
797 error = uiomove(buf, datalen, uio);
798 freeuio(uio);
799 if (error) {
800 free(buf, M_KTRACE);
801 return;
802 }
803 req = ktr_getrequest(KTR_GENIO);
804 if (req == NULL) {
805 free(buf, M_KTRACE);
806 return;
807 }
808 ktg = &req->ktr_data.ktr_genio;
809 ktg->ktr_fd = fd;
810 ktg->ktr_rw = rw;
811 req->ktr_header.ktr_len = datalen;
812 req->ktr_buffer = buf;
813 ktr_submitrequest(curthread, req);
814 }
815
816 void
ktrpsig(int sig,sig_t action,sigset_t * mask,int code)817 ktrpsig(int sig, sig_t action, sigset_t *mask, int code)
818 {
819 struct thread *td = curthread;
820 struct ktr_request *req;
821 struct ktr_psig *kp;
822
823 req = ktr_getrequest(KTR_PSIG);
824 if (req == NULL)
825 return;
826 kp = &req->ktr_data.ktr_psig;
827 kp->signo = (char)sig;
828 kp->action = action;
829 kp->mask = *mask;
830 kp->code = code;
831 ktr_enqueuerequest(td, req);
832 ktrace_exit(td);
833 }
834
835 void
ktrcsw(int out,int user,const char * wmesg)836 ktrcsw(int out, int user, const char *wmesg)
837 {
838 struct thread *td = curthread;
839 struct ktr_request *req;
840 struct ktr_csw *kc;
841
842 if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
843 return;
844
845 req = ktr_getrequest(KTR_CSW);
846 if (req == NULL)
847 return;
848 kc = &req->ktr_data.ktr_csw;
849 kc->out = out;
850 kc->user = user;
851 if (wmesg != NULL)
852 strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg));
853 else
854 bzero(kc->wmesg, sizeof(kc->wmesg));
855 ktr_enqueuerequest(td, req);
856 ktrace_exit(td);
857 }
858
859 void
ktrstruct(const char * name,const void * data,size_t datalen)860 ktrstruct(const char *name, const void *data, size_t datalen)
861 {
862 struct ktr_request *req;
863 char *buf;
864 size_t buflen, namelen;
865
866 if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
867 return;
868
869 if (data == NULL)
870 datalen = 0;
871 namelen = strlen(name) + 1;
872 buflen = namelen + datalen;
873 buf = malloc(buflen, M_KTRACE, M_WAITOK);
874 strcpy(buf, name);
875 bcopy(data, buf + namelen, datalen);
876 if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) {
877 free(buf, M_KTRACE);
878 return;
879 }
880 req->ktr_buffer = buf;
881 req->ktr_header.ktr_len = buflen;
882 ktr_submitrequest(curthread, req);
883 }
884
885 void
ktrstruct_error(const char * name,const void * data,size_t datalen,int error)886 ktrstruct_error(const char *name, const void *data, size_t datalen, int error)
887 {
888
889 if (error == 0)
890 ktrstruct(name, data, datalen);
891 }
892
893 void
ktrstructarray(const char * name,enum uio_seg seg,const void * data,int num_items,size_t struct_size)894 ktrstructarray(const char *name, enum uio_seg seg, const void *data,
895 int num_items, size_t struct_size)
896 {
897 struct ktr_request *req;
898 struct ktr_struct_array *ksa;
899 char *buf;
900 size_t buflen, datalen, namelen;
901 int max_items;
902
903 if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
904 return;
905 if (num_items < 0)
906 return;
907
908 /* Trim array length to genio size. */
909 max_items = ktr_geniosize / struct_size;
910 if (num_items > max_items) {
911 if (max_items == 0)
912 num_items = 1;
913 else
914 num_items = max_items;
915 }
916 datalen = num_items * struct_size;
917
918 if (data == NULL)
919 datalen = 0;
920
921 namelen = strlen(name) + 1;
922 buflen = namelen + datalen;
923 buf = malloc(buflen, M_KTRACE, M_WAITOK);
924 strcpy(buf, name);
925 if (seg == UIO_SYSSPACE)
926 bcopy(data, buf + namelen, datalen);
927 else {
928 if (copyin(data, buf + namelen, datalen) != 0) {
929 free(buf, M_KTRACE);
930 return;
931 }
932 }
933 if ((req = ktr_getrequest(KTR_STRUCT_ARRAY)) == NULL) {
934 free(buf, M_KTRACE);
935 return;
936 }
937 ksa = &req->ktr_data.ktr_struct_array;
938 ksa->struct_size = struct_size;
939 req->ktr_buffer = buf;
940 req->ktr_header.ktr_len = buflen;
941 ktr_submitrequest(curthread, req);
942 }
943
944 void
ktrcapfail(enum ktr_cap_violation type,const void * data)945 ktrcapfail(enum ktr_cap_violation type, const void *data)
946 {
947 struct thread *td = curthread;
948 struct ktr_request *req;
949 struct ktr_cap_fail *kcf;
950 union ktr_cap_data *kcd;
951
952 if (__predict_false(td->td_pflags & TDP_INKTRACE))
953 return;
954 if (type != CAPFAIL_SYSCALL &&
955 (td->td_sa.callp->sy_flags & SYF_CAPENABLED) == 0)
956 return;
957
958 req = ktr_getrequest(KTR_CAPFAIL);
959 if (req == NULL)
960 return;
961 kcf = &req->ktr_data.ktr_cap_fail;
962 kcf->cap_type = type;
963 kcf->cap_code = td->td_sa.code;
964 kcf->cap_svflags = td->td_proc->p_sysent->sv_flags;
965 if (data != NULL) {
966 kcd = &kcf->cap_data;
967 switch (type) {
968 case CAPFAIL_NOTCAPABLE:
969 case CAPFAIL_INCREASE:
970 kcd->cap_needed = *(const cap_rights_t *)data;
971 kcd->cap_held = *((const cap_rights_t *)data + 1);
972 break;
973 case CAPFAIL_SYSCALL:
974 case CAPFAIL_SIGNAL:
975 case CAPFAIL_PROTO:
976 kcd->cap_int = *(const int *)data;
977 break;
978 case CAPFAIL_SOCKADDR: {
979 size_t len;
980
981 len = MIN(((const struct sockaddr *)data)->sa_len,
982 sizeof(kcd->cap_sockaddr));
983 memset(&kcd->cap_sockaddr, 0,
984 sizeof(kcd->cap_sockaddr));
985 memcpy(&kcd->cap_sockaddr, data, len);
986 break;
987 }
988 case CAPFAIL_NAMEI:
989 strlcpy(kcd->cap_path, data, MAXPATHLEN);
990 break;
991 case CAPFAIL_CPUSET:
992 default:
993 break;
994 }
995 }
996 ktr_enqueuerequest(td, req);
997 ktrace_exit(td);
998 }
999
1000 void
ktrfault(vm_offset_t vaddr,int type)1001 ktrfault(vm_offset_t vaddr, int type)
1002 {
1003 struct thread *td = curthread;
1004 struct ktr_request *req;
1005 struct ktr_fault *kf;
1006
1007 if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
1008 return;
1009
1010 req = ktr_getrequest(KTR_FAULT);
1011 if (req == NULL)
1012 return;
1013 kf = &req->ktr_data.ktr_fault;
1014 kf->vaddr = vaddr;
1015 kf->type = type;
1016 ktr_enqueuerequest(td, req);
1017 ktrace_exit(td);
1018 }
1019
1020 void
ktrfaultend(int result)1021 ktrfaultend(int result)
1022 {
1023 struct thread *td = curthread;
1024 struct ktr_request *req;
1025 struct ktr_faultend *kf;
1026
1027 if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
1028 return;
1029
1030 req = ktr_getrequest(KTR_FAULTEND);
1031 if (req == NULL)
1032 return;
1033 kf = &req->ktr_data.ktr_faultend;
1034 kf->result = result;
1035 ktr_enqueuerequest(td, req);
1036 ktrace_exit(td);
1037 }
1038
1039 void
ktrexterr(struct thread * td)1040 ktrexterr(struct thread *td)
1041 {
1042 struct ktr_request *req;
1043 struct ktr_exterr *ktre;
1044
1045 if (!KTRPOINT(td, KTR_EXTERR))
1046 return;
1047
1048 req = ktr_getrequest(KTR_EXTERR);
1049 if (req == NULL)
1050 return;
1051 ktre = &req->ktr_data.ktr_exterr;
1052 if (exterr_to_ue(td, &ktre->ue) == 0)
1053 ktr_enqueuerequest(td, req);
1054 else
1055 ktr_freerequest(req);
1056 ktrace_exit(td);
1057 }
1058 #endif /* KTRACE */
1059
1060 #ifndef KTRACE
1061 void
ktrexterr(struct thread * td __unused)1062 ktrexterr(struct thread *td __unused)
1063 {
1064 }
1065 #endif
1066
1067 /* Interface and common routines */
1068
1069 #ifndef _SYS_SYSPROTO_H_
1070 struct ktrace_args {
1071 char *fname;
1072 int ops;
1073 int facs;
1074 int pid;
1075 };
1076 #endif
1077 /* ARGSUSED */
1078 int
sys_ktrace(struct thread * td,struct ktrace_args * uap)1079 sys_ktrace(struct thread *td, struct ktrace_args *uap)
1080 {
1081 #ifdef KTRACE
1082 struct vnode *vp = NULL;
1083 struct proc *p;
1084 struct pgrp *pg;
1085 int facs = uap->facs & ~KTRFAC_ROOT;
1086 int ops = KTROP(uap->ops);
1087 int descend = uap->ops & KTRFLAG_DESCEND;
1088 int ret = 0;
1089 int flags, error = 0;
1090 struct nameidata nd;
1091 struct ktr_io_params *kiop, *old_kiop;
1092
1093 /*
1094 * Need something to (un)trace.
1095 */
1096 if (ops != KTROP_CLEARFILE && facs == 0)
1097 return (EINVAL);
1098
1099 kiop = NULL;
1100 if (ops != KTROP_CLEAR) {
1101 /*
1102 * an operation which requires a file argument.
1103 */
1104 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname);
1105 flags = FREAD | FWRITE | O_NOFOLLOW;
1106 error = vn_open(&nd, &flags, 0, NULL);
1107 if (error)
1108 return (error);
1109 NDFREE_PNBUF(&nd);
1110 vp = nd.ni_vp;
1111 VOP_UNLOCK(vp);
1112 if (vp->v_type != VREG) {
1113 (void)vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
1114 return (EACCES);
1115 }
1116 kiop = ktr_io_params_alloc(td, vp);
1117 }
1118
1119 /*
1120 * Clear all uses of the tracefile.
1121 */
1122 ktrace_enter(td);
1123 if (ops == KTROP_CLEARFILE) {
1124 restart:
1125 sx_slock(&allproc_lock);
1126 FOREACH_PROC_IN_SYSTEM(p) {
1127 old_kiop = NULL;
1128 PROC_LOCK(p);
1129 if (p->p_ktrioparms != NULL &&
1130 p->p_ktrioparms->vp == vp) {
1131 if (ktrcanset(td, p)) {
1132 mtx_lock(&ktrace_mtx);
1133 old_kiop = ktr_freeproc(p);
1134 mtx_unlock(&ktrace_mtx);
1135 } else
1136 error = EPERM;
1137 }
1138 PROC_UNLOCK(p);
1139 if (old_kiop != NULL) {
1140 sx_sunlock(&allproc_lock);
1141 ktr_io_params_free(old_kiop);
1142 goto restart;
1143 }
1144 }
1145 sx_sunlock(&allproc_lock);
1146 goto done;
1147 }
1148 /*
1149 * do it
1150 */
1151 sx_slock(&proctree_lock);
1152 if (uap->pid < 0) {
1153 /*
1154 * by process group
1155 */
1156 pg = pgfind(-uap->pid);
1157 if (pg == NULL) {
1158 sx_sunlock(&proctree_lock);
1159 error = ESRCH;
1160 goto done;
1161 }
1162
1163 /*
1164 * ktrops() may call vrele(). Lock pg_members
1165 * by the proctree_lock rather than pg_mtx.
1166 */
1167 PGRP_UNLOCK(pg);
1168 if (LIST_EMPTY(&pg->pg_members)) {
1169 sx_sunlock(&proctree_lock);
1170 error = ESRCH;
1171 goto done;
1172 }
1173 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1174 PROC_LOCK(p);
1175 if (descend)
1176 ret |= ktrsetchildren(td, p, ops, facs, kiop);
1177 else
1178 ret |= ktrops(td, p, ops, facs, kiop);
1179 }
1180 } else {
1181 /*
1182 * by pid
1183 */
1184 p = pfind(uap->pid);
1185 if (p == NULL) {
1186 error = ESRCH;
1187 sx_sunlock(&proctree_lock);
1188 goto done;
1189 }
1190 if (descend)
1191 ret |= ktrsetchildren(td, p, ops, facs, kiop);
1192 else
1193 ret |= ktrops(td, p, ops, facs, kiop);
1194 }
1195 sx_sunlock(&proctree_lock);
1196 if (!ret)
1197 error = EPERM;
1198 done:
1199 if (kiop != NULL) {
1200 mtx_lock(&ktrace_mtx);
1201 kiop = ktr_io_params_rele(kiop);
1202 mtx_unlock(&ktrace_mtx);
1203 ktr_io_params_free(kiop);
1204 }
1205 ktrace_exit(td);
1206 return (error);
1207 #else /* !KTRACE */
1208 return (ENOSYS);
1209 #endif /* KTRACE */
1210 }
1211
1212 /* ARGSUSED */
1213 int
sys_utrace(struct thread * td,struct utrace_args * uap)1214 sys_utrace(struct thread *td, struct utrace_args *uap)
1215 {
1216
1217 #ifdef KTRACE
1218 struct ktr_request *req;
1219 void *cp;
1220 int error;
1221
1222 if (!KTRPOINT(td, KTR_USER))
1223 return (0);
1224 if (uap->len > KTR_USER_MAXLEN)
1225 return (EINVAL);
1226 cp = malloc(uap->len, M_KTRACE, M_WAITOK);
1227 error = copyin(uap->addr, cp, uap->len);
1228 if (error) {
1229 free(cp, M_KTRACE);
1230 return (error);
1231 }
1232 req = ktr_getrequest(KTR_USER);
1233 if (req == NULL) {
1234 free(cp, M_KTRACE);
1235 return (ENOMEM);
1236 }
1237 req->ktr_buffer = cp;
1238 req->ktr_header.ktr_len = uap->len;
1239 ktr_submitrequest(td, req);
1240 return (0);
1241 #else /* !KTRACE */
1242 return (ENOSYS);
1243 #endif /* KTRACE */
1244 }
1245
1246 #ifdef KTRACE
1247 static int
ktrops(struct thread * td,struct proc * p,int ops,int facs,struct ktr_io_params * new_kiop)1248 ktrops(struct thread *td, struct proc *p, int ops, int facs,
1249 struct ktr_io_params *new_kiop)
1250 {
1251 struct ktr_io_params *old_kiop;
1252
1253 PROC_LOCK_ASSERT(p, MA_OWNED);
1254 if (!ktrcanset(td, p)) {
1255 PROC_UNLOCK(p);
1256 return (0);
1257 }
1258 if ((ops == KTROP_SET && p->p_state == PRS_NEW) ||
1259 p_cansee(td, p) != 0) {
1260 /*
1261 * Disallow setting trace points if the process is being born.
1262 * This avoids races with trace point inheritance in
1263 * ktrprocfork().
1264 */
1265 PROC_UNLOCK(p);
1266 return (0);
1267 }
1268 if ((p->p_flag & P_WEXIT) != 0) {
1269 /*
1270 * There's nothing to do if the process is exiting, but avoid
1271 * signaling an error.
1272 */
1273 PROC_UNLOCK(p);
1274 return (1);
1275 }
1276 old_kiop = NULL;
1277 mtx_lock(&ktrace_mtx);
1278 if (ops == KTROP_SET) {
1279 if (p->p_ktrioparms != NULL &&
1280 p->p_ktrioparms->vp != new_kiop->vp) {
1281 /* if trace file already in use, relinquish below */
1282 old_kiop = ktr_io_params_rele(p->p_ktrioparms);
1283 p->p_ktrioparms = NULL;
1284 }
1285 if (p->p_ktrioparms == NULL) {
1286 p->p_ktrioparms = new_kiop;
1287 ktr_io_params_ref(new_kiop);
1288 }
1289 p->p_traceflag |= facs;
1290 if (priv_check(td, PRIV_KTRACE) == 0)
1291 p->p_traceflag |= KTRFAC_ROOT;
1292 } else {
1293 /* KTROP_CLEAR */
1294 if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0)
1295 /* no more tracing */
1296 old_kiop = ktr_freeproc(p);
1297 }
1298 mtx_unlock(&ktrace_mtx);
1299 if ((p->p_traceflag & KTRFAC_MASK) != 0)
1300 ktrprocctor_entered(td, p);
1301 PROC_UNLOCK(p);
1302 ktr_io_params_free(old_kiop);
1303
1304 return (1);
1305 }
1306
1307 static int
ktrsetchildren(struct thread * td,struct proc * top,int ops,int facs,struct ktr_io_params * new_kiop)1308 ktrsetchildren(struct thread *td, struct proc *top, int ops, int facs,
1309 struct ktr_io_params *new_kiop)
1310 {
1311 struct proc *p;
1312 int ret = 0;
1313
1314 p = top;
1315 PROC_LOCK_ASSERT(p, MA_OWNED);
1316 sx_assert(&proctree_lock, SX_LOCKED);
1317 for (;;) {
1318 ret |= ktrops(td, p, ops, facs, new_kiop);
1319 /*
1320 * If this process has children, descend to them next,
1321 * otherwise do any siblings, and if done with this level,
1322 * follow back up the tree (but not past top).
1323 */
1324 if (!LIST_EMPTY(&p->p_children))
1325 p = LIST_FIRST(&p->p_children);
1326 else for (;;) {
1327 if (p == top)
1328 return (ret);
1329 if (LIST_NEXT(p, p_sibling)) {
1330 p = LIST_NEXT(p, p_sibling);
1331 break;
1332 }
1333 p = p->p_pptr;
1334 }
1335 PROC_LOCK(p);
1336 }
1337 /*NOTREACHED*/
1338 }
1339
1340 static void
ktr_writerequest(struct thread * td,struct ktr_request * req)1341 ktr_writerequest(struct thread *td, struct ktr_request *req)
1342 {
1343 struct ktr_io_params *kiop, *kiop1;
1344 struct ktr_header *kth;
1345 struct vnode *vp;
1346 struct proc *p;
1347 struct ucred *cred;
1348 struct uio auio;
1349 struct iovec aiov[3];
1350 struct mount *mp;
1351 off_t lim;
1352 int datalen, buflen;
1353 int error;
1354
1355 p = td->td_proc;
1356
1357 /*
1358 * We reference the kiop for use in I/O in case ktrace is
1359 * disabled on the process as we write out the request.
1360 */
1361 mtx_lock(&ktrace_mtx);
1362 kiop = p->p_ktrioparms;
1363
1364 /*
1365 * If kiop is NULL, it has been cleared out from under this
1366 * request, so just drop it.
1367 */
1368 if (kiop == NULL) {
1369 mtx_unlock(&ktrace_mtx);
1370 return;
1371 }
1372
1373 ktr_io_params_ref(kiop);
1374 vp = kiop->vp;
1375 cred = kiop->cr;
1376 lim = kiop->lim;
1377
1378 KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
1379 mtx_unlock(&ktrace_mtx);
1380
1381 kth = &req->ktr_header;
1382 KASSERT(((u_short)kth->ktr_type & ~KTR_TYPE) < nitems(data_lengths),
1383 ("data_lengths array overflow"));
1384 datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_TYPE];
1385 buflen = kth->ktr_len;
1386 auio.uio_iov = &aiov[0];
1387 auio.uio_offset = 0;
1388 auio.uio_segflg = UIO_SYSSPACE;
1389 auio.uio_rw = UIO_WRITE;
1390 aiov[0].iov_base = (caddr_t)kth;
1391 aiov[0].iov_len = sizeof(struct ktr_header);
1392 auio.uio_resid = sizeof(struct ktr_header);
1393 auio.uio_iovcnt = 1;
1394 auio.uio_td = td;
1395 if (datalen != 0) {
1396 aiov[1].iov_base = (caddr_t)&req->ktr_data;
1397 aiov[1].iov_len = datalen;
1398 auio.uio_resid += datalen;
1399 auio.uio_iovcnt++;
1400 kth->ktr_len += datalen;
1401 }
1402 if (buflen != 0) {
1403 KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
1404 aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
1405 aiov[auio.uio_iovcnt].iov_len = buflen;
1406 auio.uio_resid += buflen;
1407 auio.uio_iovcnt++;
1408 }
1409
1410 vn_start_write(vp, &mp, V_WAIT);
1411 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1412 td->td_ktr_io_lim = lim;
1413 #ifdef MAC
1414 error = mac_vnode_check_write(cred, NOCRED, vp);
1415 if (error == 0)
1416 #endif
1417 error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
1418 VOP_UNLOCK(vp);
1419 vn_finished_write(mp);
1420 if (error == 0) {
1421 mtx_lock(&ktrace_mtx);
1422 kiop = ktr_io_params_rele(kiop);
1423 mtx_unlock(&ktrace_mtx);
1424 ktr_io_params_free(kiop);
1425 return;
1426 }
1427
1428 /*
1429 * If error encountered, give up tracing on this vnode on this
1430 * process. Other processes might still be suitable for
1431 * writes to this vnode.
1432 */
1433 log(LOG_NOTICE,
1434 "ktrace write failed, errno %d, tracing stopped for pid %d\n",
1435 error, p->p_pid);
1436
1437 kiop1 = NULL;
1438 PROC_LOCK(p);
1439 mtx_lock(&ktrace_mtx);
1440 if (p->p_ktrioparms != NULL && p->p_ktrioparms->vp == vp)
1441 kiop1 = ktr_freeproc(p);
1442 kiop = ktr_io_params_rele(kiop);
1443 mtx_unlock(&ktrace_mtx);
1444 PROC_UNLOCK(p);
1445 ktr_io_params_free(kiop1);
1446 ktr_io_params_free(kiop);
1447 }
1448
1449 /*
1450 * Return true if caller has permission to set the ktracing state
1451 * of target. Essentially, the target can't possess any
1452 * more permissions than the caller. KTRFAC_ROOT signifies that
1453 * root previously set the tracing status on the target process, and
1454 * so, only root may further change it.
1455 */
1456 static int
ktrcanset(struct thread * td,struct proc * targetp)1457 ktrcanset(struct thread *td, struct proc *targetp)
1458 {
1459
1460 PROC_LOCK_ASSERT(targetp, MA_OWNED);
1461 if (targetp->p_traceflag & KTRFAC_ROOT &&
1462 priv_check(td, PRIV_KTRACE))
1463 return (0);
1464
1465 if (p_candebug(td, targetp) != 0)
1466 return (0);
1467
1468 return (1);
1469 }
1470
1471 #endif /* KTRACE */
1472