xref: /freebsd/contrib/unbound/iterator/iter_utils.c (revision 46d2f61818f594174cafe31ee338c6e083fa1876)
1  /*
2   * iterator/iter_utils.c - iterative resolver module utility functions.
3   *
4   * Copyright (c) 2007, NLnet Labs. All rights reserved.
5   *
6   * This software is open source.
7   *
8   * Redistribution and use in source and binary forms, with or without
9   * modification, are permitted provided that the following conditions
10   * are met:
11   *
12   * Redistributions of source code must retain the above copyright notice,
13   * this list of conditions and the following disclaimer.
14   *
15   * Redistributions in binary form must reproduce the above copyright notice,
16   * this list of conditions and the following disclaimer in the documentation
17   * and/or other materials provided with the distribution.
18   *
19   * Neither the name of the NLNET LABS nor the names of its contributors may
20   * be used to endorse or promote products derived from this software without
21   * specific prior written permission.
22   *
23   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24   * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25   * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26   * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27   * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28   * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29   * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30   * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31   * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32   * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33   * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34   */
35  
36  /**
37   * \file
38   *
39   * This file contains functions to assist the iterator module.
40   * Configuration options. Forward zones.
41   */
42  #include "config.h"
43  #include "iterator/iter_utils.h"
44  #include "iterator/iterator.h"
45  #include "iterator/iter_hints.h"
46  #include "iterator/iter_fwd.h"
47  #include "iterator/iter_donotq.h"
48  #include "iterator/iter_delegpt.h"
49  #include "iterator/iter_priv.h"
50  #include "services/cache/infra.h"
51  #include "services/cache/dns.h"
52  #include "services/cache/rrset.h"
53  #include "services/outside_network.h"
54  #include "util/net_help.h"
55  #include "util/module.h"
56  #include "util/log.h"
57  #include "util/config_file.h"
58  #include "util/regional.h"
59  #include "util/data/msgparse.h"
60  #include "util/data/dname.h"
61  #include "util/random.h"
62  #include "util/fptr_wlist.h"
63  #include "validator/val_anchor.h"
64  #include "validator/val_kcache.h"
65  #include "validator/val_kentry.h"
66  #include "validator/val_utils.h"
67  #include "validator/val_sigcrypt.h"
68  #include "sldns/sbuffer.h"
69  #include "sldns/str2wire.h"
70  
71  /** time when nameserver glue is said to be 'recent' */
72  #define SUSPICION_RECENT_EXPIRY 86400
73  
74  /** if NAT64 is enabled and no NAT64 prefix is configured, first fall back to
75   * DNS64 prefix.  If that is not configured, fall back to this default value.
76   */
77  static const char DEFAULT_NAT64_PREFIX[] = "64:ff9b::/96";
78  
79  /** fillup fetch policy array */
80  static void
fetch_fill(struct iter_env * ie,const char * str)81  fetch_fill(struct iter_env* ie, const char* str)
82  {
83  	char* s = (char*)str, *e;
84  	int i;
85  	for(i=0; i<ie->max_dependency_depth+1; i++) {
86  		ie->target_fetch_policy[i] = strtol(s, &e, 10);
87  		if(s == e)
88  			fatal_exit("cannot parse fetch policy number %s", s);
89  		s = e;
90  	}
91  }
92  
93  /** Read config string that represents the target fetch policy */
94  static int
read_fetch_policy(struct iter_env * ie,const char * str)95  read_fetch_policy(struct iter_env* ie, const char* str)
96  {
97  	int count = cfg_count_numbers(str);
98  	if(count < 1) {
99  		log_err("Cannot parse target fetch policy: \"%s\"", str);
100  		return 0;
101  	}
102  	ie->max_dependency_depth = count - 1;
103  	ie->target_fetch_policy = (int*)calloc(
104  		(size_t)ie->max_dependency_depth+1, sizeof(int));
105  	if(!ie->target_fetch_policy) {
106  		log_err("alloc fetch policy: out of memory");
107  		return 0;
108  	}
109  	fetch_fill(ie, str);
110  	return 1;
111  }
112  
113  /** apply config caps whitelist items to name tree */
114  static int
caps_white_apply_cfg(rbtree_type * ntree,struct config_file * cfg)115  caps_white_apply_cfg(rbtree_type* ntree, struct config_file* cfg)
116  {
117  	struct config_strlist* p;
118  	for(p=cfg->caps_whitelist; p; p=p->next) {
119  		struct name_tree_node* n;
120  		size_t len;
121  		uint8_t* nm = sldns_str2wire_dname(p->str, &len);
122  		if(!nm) {
123  			log_err("could not parse %s", p->str);
124  			return 0;
125  		}
126  		n = (struct name_tree_node*)calloc(1, sizeof(*n));
127  		if(!n) {
128  			log_err("out of memory");
129  			free(nm);
130  			return 0;
131  		}
132  		n->node.key = n;
133  		n->name = nm;
134  		n->len = len;
135  		n->labs = dname_count_labels(nm);
136  		n->dclass = LDNS_RR_CLASS_IN;
137  		if(!name_tree_insert(ntree, n, nm, len, n->labs, n->dclass)) {
138  			/* duplicate element ignored, idempotent */
139  			free(n->name);
140  			free(n);
141  		}
142  	}
143  	name_tree_init_parents(ntree);
144  	return 1;
145  }
146  
147  int
iter_apply_cfg(struct iter_env * iter_env,struct config_file * cfg)148  iter_apply_cfg(struct iter_env* iter_env, struct config_file* cfg)
149  {
150  	const char *nat64_prefix;
151  	int i;
152  	/* target fetch policy */
153  	if(!read_fetch_policy(iter_env, cfg->target_fetch_policy))
154  		return 0;
155  	for(i=0; i<iter_env->max_dependency_depth+1; i++)
156  		verbose(VERB_QUERY, "target fetch policy for level %d is %d",
157  			i, iter_env->target_fetch_policy[i]);
158  
159  	if(!iter_env->donotq)
160  		iter_env->donotq = donotq_create();
161  	if(!iter_env->donotq || !donotq_apply_cfg(iter_env->donotq, cfg)) {
162  		log_err("Could not set donotqueryaddresses");
163  		return 0;
164  	}
165  	if(!iter_env->priv)
166  		iter_env->priv = priv_create();
167  	if(!iter_env->priv || !priv_apply_cfg(iter_env->priv, cfg)) {
168  		log_err("Could not set private addresses");
169  		return 0;
170  	}
171  	if(cfg->caps_whitelist) {
172  		if(!iter_env->caps_white)
173  			iter_env->caps_white = rbtree_create(name_tree_compare);
174  		if(!iter_env->caps_white || !caps_white_apply_cfg(
175  			iter_env->caps_white, cfg)) {
176  			log_err("Could not set capsforid whitelist");
177  			return 0;
178  		}
179  
180  	}
181  
182  	nat64_prefix = cfg->nat64_prefix;
183  	if(!nat64_prefix)
184  		nat64_prefix = cfg->dns64_prefix;
185  	if(!nat64_prefix)
186  		nat64_prefix = DEFAULT_NAT64_PREFIX;
187  	if(!netblockstrtoaddr(nat64_prefix, 0, &iter_env->nat64_prefix_addr,
188  		&iter_env->nat64_prefix_addrlen,
189  		&iter_env->nat64_prefix_net)) {
190  		log_err("cannot parse nat64-prefix netblock: %s", nat64_prefix);
191  		return 0;
192  	}
193  	if(!addr_is_ip6(&iter_env->nat64_prefix_addr,
194  		iter_env->nat64_prefix_addrlen)) {
195  		log_err("nat64-prefix is not IPv6: %s", cfg->nat64_prefix);
196  		return 0;
197  	}
198  	if(!prefixnet_is_nat64(iter_env->nat64_prefix_net)) {
199  		log_err("nat64-prefix length it not 32, 40, 48, 56, 64 or 96: %s",
200  			nat64_prefix);
201  		return 0;
202  	}
203  
204  	iter_env->supports_ipv6 = cfg->do_ip6;
205  	iter_env->supports_ipv4 = cfg->do_ip4;
206  	iter_env->use_nat64 = cfg->do_nat64;
207  	iter_env->outbound_msg_retry = cfg->outbound_msg_retry;
208  	iter_env->max_sent_count = cfg->max_sent_count;
209  	iter_env->max_query_restarts = cfg->max_query_restarts;
210  	return 1;
211  }
212  
213  /** filter out unsuitable targets
214   * @param iter_env: iterator environment with ipv6-support flag.
215   * @param env: module environment with infra cache.
216   * @param name: zone name
217   * @param namelen: length of name
218   * @param qtype: query type (host order).
219   * @param now: current time
220   * @param a: address in delegation point we are examining.
221   * @return an integer that signals the target suitability.
222   *	as follows:
223   *	-1: The address should be omitted from the list.
224   *	    Because:
225   *		o The address is bogus (DNSSEC validation failure).
226   *		o Listed as donotquery
227   *		o is ipv6 but no ipv6 support (in operating system).
228   *		o is ipv4 but no ipv4 support (in operating system).
229   *		o is lame
230   *	Otherwise, an rtt in milliseconds.
231   *	0 .. USEFUL_SERVER_TOP_TIMEOUT-1
232   *		The roundtrip time timeout estimate. less than 2 minutes.
233   *		Note that util/rtt.c has a MIN_TIMEOUT of 50 msec, thus
234   *		values 0 .. 49 are not used, unless that is changed.
235   *	USEFUL_SERVER_TOP_TIMEOUT
236   *		This value exactly is given for unresponsive blacklisted.
237   *	USEFUL_SERVER_TOP_TIMEOUT+1
238   *		For non-blacklisted servers: huge timeout, but has traffic.
239   *	USEFUL_SERVER_TOP_TIMEOUT*1 ..
240   *		parent-side lame servers get this penalty. A dispreferential
241   *		server. (lame in delegpt).
242   *	USEFUL_SERVER_TOP_TIMEOUT*2 ..
243   *		dnsseclame servers get penalty
244   *	USEFUL_SERVER_TOP_TIMEOUT*3 ..
245   *		recursion lame servers get penalty
246   *	UNKNOWN_SERVER_NICENESS
247   *		If no information is known about the server, this is
248   *		returned. 376 msec or so.
249   *	+BLACKLIST_PENALTY (of USEFUL_TOP_TIMEOUT*4) for dnssec failed IPs.
250   *
251   * When a final value is chosen that is dnsseclame ; dnsseclameness checking
252   * is turned off (so we do not discard the reply).
253   * When a final value is chosen that is recursionlame; RD bit is set on query.
254   * Because of the numbers this means recursionlame also have dnssec lameness
255   * checking turned off.
256   */
257  static int
iter_filter_unsuitable(struct iter_env * iter_env,struct module_env * env,uint8_t * name,size_t namelen,uint16_t qtype,time_t now,struct delegpt_addr * a)258  iter_filter_unsuitable(struct iter_env* iter_env, struct module_env* env,
259  	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
260  	struct delegpt_addr* a)
261  {
262  	int rtt, lame, reclame, dnsseclame;
263  	if(a->bogus)
264  		return -1; /* address of server is bogus */
265  	if(donotq_lookup(iter_env->donotq, &a->addr, a->addrlen)) {
266  		log_addr(VERB_ALGO, "skip addr on the donotquery list",
267  			&a->addr, a->addrlen);
268  		return -1; /* server is on the donotquery list */
269  	}
270  	if(!iter_env->supports_ipv6 && addr_is_ip6(&a->addr, a->addrlen)) {
271  		return -1; /* there is no ip6 available */
272  	}
273  	if(!iter_env->supports_ipv4 && !iter_env->use_nat64 &&
274  	   !addr_is_ip6(&a->addr, a->addrlen)) {
275  		return -1; /* there is no ip4 available */
276  	}
277  	/* check lameness - need zone , class info */
278  	if(infra_get_lame_rtt(env->infra_cache, &a->addr, a->addrlen,
279  		name, namelen, qtype, &lame, &dnsseclame, &reclame,
280  		&rtt, now)) {
281  		log_addr(VERB_ALGO, "servselect", &a->addr, a->addrlen);
282  		verbose(VERB_ALGO, "   rtt=%d%s%s%s%s%s", rtt,
283  			lame?" LAME":"",
284  			dnsseclame?" DNSSEC_LAME":"",
285  			a->dnsseclame?" ADDR_DNSSEC_LAME":"",
286  			reclame?" REC_LAME":"",
287  			a->lame?" ADDR_LAME":"");
288  		if(lame)
289  			return -1; /* server is lame */
290  		else if(rtt >= USEFUL_SERVER_TOP_TIMEOUT)
291  			/* server is unresponsive,
292  			 * we used to return TOP_TIMEOUT, but fairly useless,
293  			 * because if == TOP_TIMEOUT is dropped because
294  			 * blacklisted later, instead, remove it here, so
295  			 * other choices (that are not blacklisted) can be
296  			 * tried */
297  			return -1;
298  		/* select remainder from worst to best */
299  		else if(reclame)
300  			return rtt+USEFUL_SERVER_TOP_TIMEOUT*3; /* nonpref */
301  		else if(dnsseclame || a->dnsseclame)
302  			return rtt+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
303  		else if(a->lame)
304  			return rtt+USEFUL_SERVER_TOP_TIMEOUT+1; /* nonpref */
305  		else	return rtt;
306  	}
307  	/* no server information present */
308  	if(a->dnsseclame)
309  		return UNKNOWN_SERVER_NICENESS+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
310  	else if(a->lame)
311  		return USEFUL_SERVER_TOP_TIMEOUT+1+UNKNOWN_SERVER_NICENESS; /* nonpref */
312  	return UNKNOWN_SERVER_NICENESS;
313  }
314  
315  /** lookup RTT information, and also store fastest rtt (if any) */
316  static int
iter_fill_rtt(struct iter_env * iter_env,struct module_env * env,uint8_t * name,size_t namelen,uint16_t qtype,time_t now,struct delegpt * dp,int * best_rtt,struct sock_list * blacklist,size_t * num_suitable_results)317  iter_fill_rtt(struct iter_env* iter_env, struct module_env* env,
318  	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
319  	struct delegpt* dp, int* best_rtt, struct sock_list* blacklist,
320  	size_t* num_suitable_results)
321  {
322  	int got_it = 0;
323  	struct delegpt_addr* a;
324  	*num_suitable_results = 0;
325  
326  	if(dp->bogus)
327  		return 0; /* NS bogus, all bogus, nothing found */
328  	for(a=dp->result_list; a; a = a->next_result) {
329  		a->sel_rtt = iter_filter_unsuitable(iter_env, env,
330  			name, namelen, qtype, now, a);
331  		if(a->sel_rtt != -1) {
332  			if(sock_list_find(blacklist, &a->addr, a->addrlen))
333  				a->sel_rtt += BLACKLIST_PENALTY;
334  
335  			if(!got_it) {
336  				*best_rtt = a->sel_rtt;
337  				got_it = 1;
338  			} else if(a->sel_rtt < *best_rtt) {
339  				*best_rtt = a->sel_rtt;
340  			}
341  			(*num_suitable_results)++;
342  		}
343  	}
344  	return got_it;
345  }
346  
347  /** compare two rtts, return -1, 0 or 1 */
348  static int
rtt_compare(const void * x,const void * y)349  rtt_compare(const void* x, const void* y)
350  {
351  	if(*(int*)x == *(int*)y)
352  		return 0;
353  	if(*(int*)x > *(int*)y)
354  		return 1;
355  	return -1;
356  }
357  
358  /** get RTT for the Nth fastest server */
359  static int
nth_rtt(struct delegpt_addr * result_list,size_t num_results,size_t n)360  nth_rtt(struct delegpt_addr* result_list, size_t num_results, size_t n)
361  {
362  	int rtt_band;
363  	size_t i;
364  	int* rtt_list, *rtt_index;
365  
366  	if(num_results < 1 || n >= num_results) {
367  		return -1;
368  	}
369  
370  	rtt_list = calloc(num_results, sizeof(int));
371  	if(!rtt_list) {
372  		log_err("malloc failure: allocating rtt_list");
373  		return -1;
374  	}
375  	rtt_index = rtt_list;
376  
377  	for(i=0; i<num_results && result_list; i++) {
378  		if(result_list->sel_rtt != -1) {
379  			*rtt_index = result_list->sel_rtt;
380  			rtt_index++;
381  		}
382  		result_list=result_list->next_result;
383  	}
384  	qsort(rtt_list, num_results, sizeof(*rtt_list), rtt_compare);
385  
386  	log_assert(n > 0);
387  	rtt_band = rtt_list[n-1];
388  	free(rtt_list);
389  
390  	return rtt_band;
391  }
392  
393  /** filter the address list, putting best targets at front,
394   * returns number of best targets (or 0, no suitable targets) */
395  static int
iter_filter_order(struct iter_env * iter_env,struct module_env * env,uint8_t * name,size_t namelen,uint16_t qtype,time_t now,struct delegpt * dp,int * selected_rtt,int open_target,struct sock_list * blacklist,time_t prefetch)396  iter_filter_order(struct iter_env* iter_env, struct module_env* env,
397  	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
398  	struct delegpt* dp, int* selected_rtt, int open_target,
399  	struct sock_list* blacklist, time_t prefetch)
400  {
401  	int got_num = 0, low_rtt = 0, swap_to_front, rtt_band = RTT_BAND, nth;
402  	int alllame = 0;
403  	size_t num_results;
404  	struct delegpt_addr* a, *n, *prev=NULL;
405  
406  	/* fillup sel_rtt and find best rtt in the bunch */
407  	got_num = iter_fill_rtt(iter_env, env, name, namelen, qtype, now, dp,
408  		&low_rtt, blacklist, &num_results);
409  	if(got_num == 0)
410  		return 0;
411  	if(low_rtt >= USEFUL_SERVER_TOP_TIMEOUT &&
412  		/* If all missing (or not fully resolved) targets are lame,
413  		 * then use the remaining lame address. */
414  		((delegpt_count_missing_targets(dp, &alllame) > 0 && !alllame) ||
415  		open_target > 0)) {
416  		verbose(VERB_ALGO, "Bad choices, trying to get more choice");
417  		return 0; /* we want more choice. The best choice is a bad one.
418  			     return 0 to force the caller to fetch more */
419  	}
420  
421  	if(env->cfg->fast_server_permil != 0 && prefetch == 0 &&
422  		num_results > env->cfg->fast_server_num &&
423  		ub_random_max(env->rnd, 1000) < env->cfg->fast_server_permil) {
424  		/* the query is not prefetch, but for a downstream client,
425  		 * there are more servers available then the fastest N we want
426  		 * to choose from. Limit our choice to the fastest servers. */
427  		nth = nth_rtt(dp->result_list, num_results,
428  			env->cfg->fast_server_num);
429  		if(nth > 0) {
430  			rtt_band = nth - low_rtt;
431  			if(rtt_band > RTT_BAND)
432  				rtt_band = RTT_BAND;
433  		}
434  	}
435  
436  	got_num = 0;
437  	a = dp->result_list;
438  	while(a) {
439  		/* skip unsuitable targets */
440  		if(a->sel_rtt == -1) {
441  			prev = a;
442  			a = a->next_result;
443  			continue;
444  		}
445  		/* classify the server address and determine what to do */
446  		swap_to_front = 0;
447  		if(a->sel_rtt >= low_rtt && a->sel_rtt - low_rtt <= rtt_band) {
448  			got_num++;
449  			swap_to_front = 1;
450  		} else if(a->sel_rtt<low_rtt && low_rtt-a->sel_rtt<=rtt_band) {
451  			got_num++;
452  			swap_to_front = 1;
453  		}
454  		/* swap to front if necessary, or move to next result */
455  		if(swap_to_front && prev) {
456  			n = a->next_result;
457  			prev->next_result = n;
458  			a->next_result = dp->result_list;
459  			dp->result_list = a;
460  			a = n;
461  		} else {
462  			prev = a;
463  			a = a->next_result;
464  		}
465  	}
466  	*selected_rtt = low_rtt;
467  
468  	if (env->cfg->prefer_ip6) {
469  		int got_num6 = 0;
470  		int low_rtt6 = 0;
471  		int i;
472  		int attempt = -1; /* filter to make sure addresses have
473  		  less attempts on them than the first, to force round
474  		  robin when all the IPv6 addresses fail */
475  		int num4ok = 0; /* number ip4 at low attempt count */
476  		int num4_lowrtt = 0;
477  		prev = NULL;
478  		a = dp->result_list;
479  		for(i = 0; i < got_num; i++) {
480  			if(!a) break; /* robustness */
481  			swap_to_front = 0;
482  			if(a->addr.ss_family != AF_INET6 && attempt == -1) {
483  				/* if we only have ip4 at low attempt count,
484  				 * then ip6 is failing, and we need to
485  				 * select one of the remaining IPv4 addrs */
486  				attempt = a->attempts;
487  				num4ok++;
488  				num4_lowrtt = a->sel_rtt;
489  			} else if(a->addr.ss_family != AF_INET6 && attempt == a->attempts) {
490  				num4ok++;
491  				if(num4_lowrtt == 0 || a->sel_rtt < num4_lowrtt) {
492  					num4_lowrtt = a->sel_rtt;
493  				}
494  			}
495  			if(a->addr.ss_family == AF_INET6) {
496  				if(attempt == -1) {
497  					attempt = a->attempts;
498  				} else if(a->attempts > attempt) {
499  					break;
500  				}
501  				got_num6++;
502  				swap_to_front = 1;
503  				if(low_rtt6 == 0 || a->sel_rtt < low_rtt6) {
504  					low_rtt6 = a->sel_rtt;
505  				}
506  			}
507  			/* swap to front if IPv6, or move to next result */
508  			if(swap_to_front && prev) {
509  				n = a->next_result;
510  				prev->next_result = n;
511  				a->next_result = dp->result_list;
512  				dp->result_list = a;
513  				a = n;
514  			} else {
515  				prev = a;
516  				a = a->next_result;
517  			}
518  		}
519  		if(got_num6 > 0) {
520  			got_num = got_num6;
521  			*selected_rtt = low_rtt6;
522  		} else if(num4ok > 0) {
523  			got_num = num4ok;
524  			*selected_rtt = num4_lowrtt;
525  		}
526  	} else if (env->cfg->prefer_ip4) {
527  		int got_num4 = 0;
528  		int low_rtt4 = 0;
529  		int i;
530  		int attempt = -1; /* filter to make sure addresses have
531  		  less attempts on them than the first, to force round
532  		  robin when all the IPv4 addresses fail */
533  		int num6ok = 0; /* number ip6 at low attempt count */
534  		int num6_lowrtt = 0;
535  		prev = NULL;
536  		a = dp->result_list;
537  		for(i = 0; i < got_num; i++) {
538  			if(!a) break; /* robustness */
539  			swap_to_front = 0;
540  			if(a->addr.ss_family != AF_INET && attempt == -1) {
541  				/* if we only have ip6 at low attempt count,
542  				 * then ip4 is failing, and we need to
543  				 * select one of the remaining IPv6 addrs */
544  				attempt = a->attempts;
545  				num6ok++;
546  				num6_lowrtt = a->sel_rtt;
547  			} else if(a->addr.ss_family != AF_INET && attempt == a->attempts) {
548  				num6ok++;
549  				if(num6_lowrtt == 0 || a->sel_rtt < num6_lowrtt) {
550  					num6_lowrtt = a->sel_rtt;
551  				}
552  			}
553  			if(a->addr.ss_family == AF_INET) {
554  				if(attempt == -1) {
555  					attempt = a->attempts;
556  				} else if(a->attempts > attempt) {
557  					break;
558  				}
559  				got_num4++;
560  				swap_to_front = 1;
561  				if(low_rtt4 == 0 || a->sel_rtt < low_rtt4) {
562  					low_rtt4 = a->sel_rtt;
563  				}
564  			}
565  			/* swap to front if IPv4, or move to next result */
566  			if(swap_to_front && prev) {
567  				n = a->next_result;
568  				prev->next_result = n;
569  				a->next_result = dp->result_list;
570  				dp->result_list = a;
571  				a = n;
572  			} else {
573  				prev = a;
574  				a = a->next_result;
575  			}
576  		}
577  		if(got_num4 > 0) {
578  			got_num = got_num4;
579  			*selected_rtt = low_rtt4;
580  		} else if(num6ok > 0) {
581  			got_num = num6ok;
582  			*selected_rtt = num6_lowrtt;
583  		}
584  	}
585  	return got_num;
586  }
587  
588  struct delegpt_addr*
iter_server_selection(struct iter_env * iter_env,struct module_env * env,struct delegpt * dp,uint8_t * name,size_t namelen,uint16_t qtype,int * dnssec_lame,int * chase_to_rd,int open_target,struct sock_list * blacklist,time_t prefetch)589  iter_server_selection(struct iter_env* iter_env,
590  	struct module_env* env, struct delegpt* dp,
591  	uint8_t* name, size_t namelen, uint16_t qtype, int* dnssec_lame,
592  	int* chase_to_rd, int open_target, struct sock_list* blacklist,
593  	time_t prefetch)
594  {
595  	int sel;
596  	int selrtt;
597  	struct delegpt_addr* a, *prev;
598  	int num = iter_filter_order(iter_env, env, name, namelen, qtype,
599  		*env->now, dp, &selrtt, open_target, blacklist, prefetch);
600  
601  	if(num == 0)
602  		return NULL;
603  	verbose(VERB_ALGO, "selrtt %d", selrtt);
604  	if(selrtt > BLACKLIST_PENALTY) {
605  		if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*3) {
606  			verbose(VERB_ALGO, "chase to "
607  				"blacklisted recursion lame server");
608  			*chase_to_rd = 1;
609  		}
610  		if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*2) {
611  			verbose(VERB_ALGO, "chase to "
612  				"blacklisted dnssec lame server");
613  			*dnssec_lame = 1;
614  		}
615  	} else {
616  		if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*3) {
617  			verbose(VERB_ALGO, "chase to recursion lame server");
618  			*chase_to_rd = 1;
619  		}
620  		if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*2) {
621  			verbose(VERB_ALGO, "chase to dnssec lame server");
622  			*dnssec_lame = 1;
623  		}
624  		if(selrtt == USEFUL_SERVER_TOP_TIMEOUT) {
625  			verbose(VERB_ALGO, "chase to blacklisted lame server");
626  			return NULL;
627  		}
628  	}
629  
630  	if(num == 1) {
631  		a = dp->result_list;
632  		if(++a->attempts < iter_env->outbound_msg_retry)
633  			return a;
634  		dp->result_list = a->next_result;
635  		return a;
636  	}
637  
638  	/* randomly select a target from the list */
639  	log_assert(num > 1);
640  	/* grab secure random number, to pick unexpected server.
641  	 * also we need it to be threadsafe. */
642  	sel = ub_random_max(env->rnd, num);
643  	a = dp->result_list;
644  	prev = NULL;
645  	while(sel > 0 && a) {
646  		prev = a;
647  		a = a->next_result;
648  		sel--;
649  	}
650  	if(!a)  /* robustness */
651  		return NULL;
652  	if(++a->attempts < iter_env->outbound_msg_retry)
653  		return a;
654  	/* remove it from the delegation point result list */
655  	if(prev)
656  		prev->next_result = a->next_result;
657  	else	dp->result_list = a->next_result;
658  	return a;
659  }
660  
661  struct dns_msg*
dns_alloc_msg(sldns_buffer * pkt,struct msg_parse * msg,struct regional * region)662  dns_alloc_msg(sldns_buffer* pkt, struct msg_parse* msg,
663  	struct regional* region)
664  {
665  	struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
666  		sizeof(struct dns_msg));
667  	if(!m)
668  		return NULL;
669  	memset(m, 0, sizeof(*m));
670  	if(!parse_create_msg(pkt, msg, NULL, &m->qinfo, &m->rep, region)) {
671  		log_err("malloc failure: allocating incoming dns_msg");
672  		return NULL;
673  	}
674  	return m;
675  }
676  
677  struct dns_msg*
dns_copy_msg(struct dns_msg * from,struct regional * region)678  dns_copy_msg(struct dns_msg* from, struct regional* region)
679  {
680  	struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
681  		sizeof(struct dns_msg));
682  	if(!m)
683  		return NULL;
684  	m->qinfo = from->qinfo;
685  	if(!(m->qinfo.qname = regional_alloc_init(region, from->qinfo.qname,
686  		from->qinfo.qname_len)))
687  		return NULL;
688  	if(!(m->rep = reply_info_copy(from->rep, NULL, region)))
689  		return NULL;
690  	return m;
691  }
692  
693  void
iter_dns_store(struct module_env * env,struct query_info * msgqinf,struct reply_info * msgrep,int is_referral,time_t leeway,int pside,struct regional * region,uint16_t flags,time_t qstarttime)694  iter_dns_store(struct module_env* env, struct query_info* msgqinf,
695  	struct reply_info* msgrep, int is_referral, time_t leeway, int pside,
696  	struct regional* region, uint16_t flags, time_t qstarttime)
697  {
698  	if(!dns_cache_store(env, msgqinf, msgrep, is_referral, leeway,
699  		pside, region, flags, qstarttime))
700  		log_err("out of memory: cannot store data in cache");
701  }
702  
703  int
iter_ns_probability(struct ub_randstate * rnd,int n,int m)704  iter_ns_probability(struct ub_randstate* rnd, int n, int m)
705  {
706  	int sel;
707  	if(n == m) /* 100% chance */
708  		return 1;
709  	/* we do not need secure random numbers here, but
710  	 * we do need it to be threadsafe, so we use this */
711  	sel = ub_random_max(rnd, m);
712  	return (sel < n);
713  }
714  
715  /** detect dependency cycle for query and target */
716  static int
causes_cycle(struct module_qstate * qstate,uint8_t * name,size_t namelen,uint16_t t,uint16_t c)717  causes_cycle(struct module_qstate* qstate, uint8_t* name, size_t namelen,
718  	uint16_t t, uint16_t c)
719  {
720  	struct query_info qinf;
721  	qinf.qname = name;
722  	qinf.qname_len = namelen;
723  	qinf.qtype = t;
724  	qinf.qclass = c;
725  	qinf.local_alias = NULL;
726  	fptr_ok(fptr_whitelist_modenv_detect_cycle(
727  		qstate->env->detect_cycle));
728  	return (*qstate->env->detect_cycle)(qstate, &qinf,
729  		(uint16_t)(BIT_RD|BIT_CD), qstate->is_priming,
730  		qstate->is_valrec);
731  }
732  
733  void
iter_mark_cycle_targets(struct module_qstate * qstate,struct delegpt * dp)734  iter_mark_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
735  {
736  	struct delegpt_ns* ns;
737  	for(ns = dp->nslist; ns; ns = ns->next) {
738  		if(ns->resolved)
739  			continue;
740  		/* see if this ns as target causes dependency cycle */
741  		if(causes_cycle(qstate, ns->name, ns->namelen,
742  			LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass) ||
743  		   causes_cycle(qstate, ns->name, ns->namelen,
744  			LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
745  			log_nametypeclass(VERB_QUERY, "skipping target due "
746  			 	"to dependency cycle (harden-glue: no may "
747  				"fix some of the cycles)",
748  				ns->name, LDNS_RR_TYPE_A,
749  				qstate->qinfo.qclass);
750  			ns->resolved = 1;
751  		}
752  	}
753  }
754  
755  void
iter_mark_pside_cycle_targets(struct module_qstate * qstate,struct delegpt * dp)756  iter_mark_pside_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
757  {
758  	struct delegpt_ns* ns;
759  	for(ns = dp->nslist; ns; ns = ns->next) {
760  		if(ns->done_pside4 && ns->done_pside6)
761  			continue;
762  		/* see if this ns as target causes dependency cycle */
763  		if(causes_cycle(qstate, ns->name, ns->namelen,
764  			LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
765  			log_nametypeclass(VERB_QUERY, "skipping target due "
766  			 	"to dependency cycle", ns->name,
767  				LDNS_RR_TYPE_A, qstate->qinfo.qclass);
768  			ns->done_pside4 = 1;
769  		}
770  		if(causes_cycle(qstate, ns->name, ns->namelen,
771  			LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass)) {
772  			log_nametypeclass(VERB_QUERY, "skipping target due "
773  			 	"to dependency cycle", ns->name,
774  				LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass);
775  			ns->done_pside6 = 1;
776  		}
777  	}
778  }
779  
780  int
iter_dp_is_useless(struct query_info * qinfo,uint16_t qflags,struct delegpt * dp,int supports_ipv4,int supports_ipv6,int use_nat64)781  iter_dp_is_useless(struct query_info* qinfo, uint16_t qflags,
782  	struct delegpt* dp, int supports_ipv4, int supports_ipv6,
783  	int use_nat64)
784  {
785  	struct delegpt_ns* ns;
786  	struct delegpt_addr* a;
787  
788  	if(supports_ipv6 && use_nat64)
789  		supports_ipv4 = 1;
790  
791  	/* check:
792  	 *      o RD qflag is on.
793  	 *      o no addresses are provided.
794  	 *      o all NS items are required glue.
795  	 * OR
796  	 *      o RD qflag is on.
797  	 *      o no addresses are provided.
798  	 *      o the query is for one of the nameservers in dp,
799  	 *        and that nameserver is a glue-name for this dp.
800  	 */
801  	if(!(qflags&BIT_RD))
802  		return 0;
803  	/* either available or unused targets,
804  	 * if they exist, the dp is not useless. */
805  	for(a = dp->usable_list; a; a = a->next_usable) {
806  		if(!addr_is_ip6(&a->addr, a->addrlen) && supports_ipv4)
807  			return 0;
808  		else if(addr_is_ip6(&a->addr, a->addrlen) && supports_ipv6)
809  			return 0;
810  	}
811  	for(a = dp->result_list; a; a = a->next_result) {
812  		if(!addr_is_ip6(&a->addr, a->addrlen) && supports_ipv4)
813  			return 0;
814  		else if(addr_is_ip6(&a->addr, a->addrlen) && supports_ipv6)
815  			return 0;
816  	}
817  
818  	/* see if query is for one of the nameservers, which is glue */
819  	if( ((qinfo->qtype == LDNS_RR_TYPE_A && supports_ipv4) ||
820  		(qinfo->qtype == LDNS_RR_TYPE_AAAA && supports_ipv6)) &&
821  		dname_subdomain_c(qinfo->qname, dp->name) &&
822  		delegpt_find_ns(dp, qinfo->qname, qinfo->qname_len))
823  		return 1;
824  
825  	for(ns = dp->nslist; ns; ns = ns->next) {
826  		if(ns->resolved) /* skip failed targets */
827  			continue;
828  		if(!dname_subdomain_c(ns->name, dp->name))
829  			return 0; /* one address is not required glue */
830  	}
831  	return 1;
832  }
833  
834  int
iter_qname_indicates_dnssec(struct module_env * env,struct query_info * qinfo)835  iter_qname_indicates_dnssec(struct module_env* env, struct query_info *qinfo)
836  {
837  	struct trust_anchor* a;
838  	if(!env || !env->anchors || !qinfo || !qinfo->qname)
839  		return 0;
840  	/* a trust anchor exists above the name? */
841  	if((a=anchors_lookup(env->anchors, qinfo->qname, qinfo->qname_len,
842  		qinfo->qclass))) {
843  		if(a->numDS == 0 && a->numDNSKEY == 0) {
844  			/* insecure trust point */
845  			lock_basic_unlock(&a->lock);
846  			return 0;
847  		}
848  		lock_basic_unlock(&a->lock);
849  		return 1;
850  	}
851  	/* no trust anchor above it. */
852  	return 0;
853  }
854  
855  int
iter_indicates_dnssec(struct module_env * env,struct delegpt * dp,struct dns_msg * msg,uint16_t dclass)856  iter_indicates_dnssec(struct module_env* env, struct delegpt* dp,
857          struct dns_msg* msg, uint16_t dclass)
858  {
859  	struct trust_anchor* a;
860  	/* information not available, !env->anchors can be common */
861  	if(!env || !env->anchors || !dp || !dp->name)
862  		return 0;
863  	/* a trust anchor exists with this name, RRSIGs expected */
864  	if((a=anchor_find(env->anchors, dp->name, dp->namelabs, dp->namelen,
865  		dclass))) {
866  		if(a->numDS == 0 && a->numDNSKEY == 0) {
867  			/* insecure trust point */
868  			lock_basic_unlock(&a->lock);
869  			return 0;
870  		}
871  		lock_basic_unlock(&a->lock);
872  		return 1;
873  	}
874  	/* see if DS rrset was given, in AUTH section */
875  	if(msg && msg->rep &&
876  		reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
877  		LDNS_RR_TYPE_DS, dclass))
878  		return 1;
879  	/* look in key cache */
880  	if(env->key_cache) {
881  		struct key_entry_key* kk = key_cache_obtain(env->key_cache,
882  			dp->name, dp->namelen, dclass, env->scratch, *env->now);
883  		if(kk) {
884  			if(query_dname_compare(kk->name, dp->name) == 0) {
885  			  if(key_entry_isgood(kk) || key_entry_isbad(kk)) {
886  				regional_free_all(env->scratch);
887  				return 1;
888  			  } else if(key_entry_isnull(kk)) {
889  				regional_free_all(env->scratch);
890  				return 0;
891  			  }
892  			}
893  			regional_free_all(env->scratch);
894  		}
895  	}
896  	return 0;
897  }
898  
899  int
iter_msg_has_dnssec(struct dns_msg * msg)900  iter_msg_has_dnssec(struct dns_msg* msg)
901  {
902  	size_t i;
903  	if(!msg || !msg->rep)
904  		return 0;
905  	for(i=0; i<msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
906  		if(((struct packed_rrset_data*)msg->rep->rrsets[i]->
907  			entry.data)->rrsig_count > 0)
908  			return 1;
909  	}
910  	/* empty message has no DNSSEC info, with DNSSEC the reply is
911  	 * not empty (NSEC) */
912  	return 0;
913  }
914  
iter_msg_from_zone(struct dns_msg * msg,struct delegpt * dp,enum response_type type,uint16_t dclass)915  int iter_msg_from_zone(struct dns_msg* msg, struct delegpt* dp,
916          enum response_type type, uint16_t dclass)
917  {
918  	if(!msg || !dp || !msg->rep || !dp->name)
919  		return 0;
920  	/* SOA RRset - always from reply zone */
921  	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
922  		LDNS_RR_TYPE_SOA, dclass) ||
923  	   reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
924  		LDNS_RR_TYPE_SOA, dclass))
925  		return 1;
926  	if(type == RESPONSE_TYPE_REFERRAL) {
927  		size_t i;
928  		/* if it adds a single label, i.e. we expect .com,
929  		 * and referral to example.com. NS ... , then origin zone
930  		 * is .com. For a referral to sub.example.com. NS ... then
931  		 * we do not know, since example.com. may be in between. */
932  		for(i=0; i<msg->rep->an_numrrsets+msg->rep->ns_numrrsets;
933  			i++) {
934  			struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
935  			if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS &&
936  				ntohs(s->rk.rrset_class) == dclass) {
937  				int l = dname_count_labels(s->rk.dname);
938  				if(l == dp->namelabs + 1 &&
939  					dname_strict_subdomain(s->rk.dname,
940  					l, dp->name, dp->namelabs))
941  					return 1;
942  			}
943  		}
944  		return 0;
945  	}
946  	log_assert(type==RESPONSE_TYPE_ANSWER || type==RESPONSE_TYPE_CNAME);
947  	/* not a referral, and not lame delegation (upwards), so,
948  	 * any NS rrset must be from the zone itself */
949  	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
950  		LDNS_RR_TYPE_NS, dclass) ||
951  	   reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
952  		LDNS_RR_TYPE_NS, dclass))
953  		return 1;
954  	/* a DNSKEY set is expected at the zone apex as well */
955  	/* this is for 'minimal responses' for DNSKEYs */
956  	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
957  		LDNS_RR_TYPE_DNSKEY, dclass))
958  		return 1;
959  	return 0;
960  }
961  
962  /**
963   * check equality of two rrsets
964   * @param k1: rrset
965   * @param k2: rrset
966   * @return true if equal
967   */
968  static int
rrset_equal(struct ub_packed_rrset_key * k1,struct ub_packed_rrset_key * k2)969  rrset_equal(struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2)
970  {
971  	struct packed_rrset_data* d1 = (struct packed_rrset_data*)
972  		k1->entry.data;
973  	struct packed_rrset_data* d2 = (struct packed_rrset_data*)
974  		k2->entry.data;
975  	size_t i, t;
976  	if(k1->rk.dname_len != k2->rk.dname_len ||
977  		k1->rk.flags != k2->rk.flags ||
978  		k1->rk.type != k2->rk.type ||
979  		k1->rk.rrset_class != k2->rk.rrset_class ||
980  		query_dname_compare(k1->rk.dname, k2->rk.dname) != 0)
981  		return 0;
982  	if(	/* do not check ttl: d1->ttl != d2->ttl || */
983  		d1->count != d2->count ||
984  		d1->rrsig_count != d2->rrsig_count ||
985  		d1->trust != d2->trust ||
986  		d1->security != d2->security)
987  		return 0;
988  	t = d1->count + d1->rrsig_count;
989  	for(i=0; i<t; i++) {
990  		if(d1->rr_len[i] != d2->rr_len[i] ||
991  			/* no ttl check: d1->rr_ttl[i] != d2->rr_ttl[i] ||*/
992  			memcmp(d1->rr_data[i], d2->rr_data[i],
993  				d1->rr_len[i]) != 0)
994  			return 0;
995  	}
996  	return 1;
997  }
998  
999  /** compare rrsets and sort canonically.  Compares rrset name, type, class.
1000   * return 0 if equal, +1 if x > y, and -1 if x < y.
1001   */
1002  static int
rrset_canonical_sort_cmp(const void * x,const void * y)1003  rrset_canonical_sort_cmp(const void* x, const void* y)
1004  {
1005  	struct ub_packed_rrset_key* rrx = *(struct ub_packed_rrset_key**)x;
1006  	struct ub_packed_rrset_key* rry = *(struct ub_packed_rrset_key**)y;
1007  	int r = dname_canonical_compare(rrx->rk.dname, rry->rk.dname);
1008  	if(r != 0)
1009  		return r;
1010  	if(rrx->rk.type != rry->rk.type) {
1011  		if(ntohs(rrx->rk.type) > ntohs(rry->rk.type))
1012  			return 1;
1013  		else	return -1;
1014  	}
1015  	if(rrx->rk.rrset_class != rry->rk.rrset_class) {
1016  		if(ntohs(rrx->rk.rrset_class) > ntohs(rry->rk.rrset_class))
1017  			return 1;
1018  		else	return -1;
1019  	}
1020  	return 0;
1021  }
1022  
1023  int
reply_equal(struct reply_info * p,struct reply_info * q,struct regional * region)1024  reply_equal(struct reply_info* p, struct reply_info* q, struct regional* region)
1025  {
1026  	size_t i;
1027  	struct ub_packed_rrset_key** sorted_p, **sorted_q;
1028  	if(p->flags != q->flags ||
1029  		p->qdcount != q->qdcount ||
1030  		/* do not check TTL, this may differ */
1031  		/*
1032  		p->ttl != q->ttl ||
1033  		p->prefetch_ttl != q->prefetch_ttl ||
1034  		*/
1035  		p->security != q->security ||
1036  		p->an_numrrsets != q->an_numrrsets ||
1037  		p->ns_numrrsets != q->ns_numrrsets ||
1038  		p->ar_numrrsets != q->ar_numrrsets ||
1039  		p->rrset_count != q->rrset_count)
1040  		return 0;
1041  	/* sort the rrsets in the authority and additional sections before
1042  	 * compare, the query and answer sections are ordered in the sequence
1043  	 * they should have (eg. one after the other for aliases). */
1044  	sorted_p = (struct ub_packed_rrset_key**)regional_alloc_init(
1045  		region, p->rrsets, sizeof(*sorted_p)*p->rrset_count);
1046  	if(!sorted_p) return 0;
1047  	log_assert(p->an_numrrsets + p->ns_numrrsets + p->ar_numrrsets <=
1048  		p->rrset_count);
1049  	qsort(sorted_p + p->an_numrrsets, p->ns_numrrsets,
1050  		sizeof(*sorted_p), rrset_canonical_sort_cmp);
1051  	qsort(sorted_p + p->an_numrrsets + p->ns_numrrsets, p->ar_numrrsets,
1052  		sizeof(*sorted_p), rrset_canonical_sort_cmp);
1053  
1054  	sorted_q = (struct ub_packed_rrset_key**)regional_alloc_init(
1055  		region, q->rrsets, sizeof(*sorted_q)*q->rrset_count);
1056  	if(!sorted_q) {
1057  		regional_free_all(region);
1058  		return 0;
1059  	}
1060  	log_assert(q->an_numrrsets + q->ns_numrrsets + q->ar_numrrsets <=
1061  		q->rrset_count);
1062  	qsort(sorted_q + q->an_numrrsets, q->ns_numrrsets,
1063  		sizeof(*sorted_q), rrset_canonical_sort_cmp);
1064  	qsort(sorted_q + q->an_numrrsets + q->ns_numrrsets, q->ar_numrrsets,
1065  		sizeof(*sorted_q), rrset_canonical_sort_cmp);
1066  
1067  	/* compare the rrsets */
1068  	for(i=0; i<p->rrset_count; i++) {
1069  		if(!rrset_equal(sorted_p[i], sorted_q[i])) {
1070  			if(!rrset_canonical_equal(region, sorted_p[i],
1071  				sorted_q[i])) {
1072  				regional_free_all(region);
1073  				return 0;
1074  			}
1075  		}
1076  	}
1077  	regional_free_all(region);
1078  	return 1;
1079  }
1080  
1081  void
caps_strip_reply(struct reply_info * rep)1082  caps_strip_reply(struct reply_info* rep)
1083  {
1084  	size_t i;
1085  	if(!rep) return;
1086  	/* see if message is a referral, in which case the additional and
1087  	 * NS record cannot be removed */
1088  	/* referrals have the AA flag unset (strict check, not elsewhere in
1089  	 * unbound, but for 0x20 this is very convenient). */
1090  	if(!(rep->flags&BIT_AA))
1091  		return;
1092  	/* remove the additional section from the reply */
1093  	if(rep->ar_numrrsets != 0) {
1094  		verbose(VERB_ALGO, "caps fallback: removing additional section");
1095  		rep->rrset_count -= rep->ar_numrrsets;
1096  		rep->ar_numrrsets = 0;
1097  	}
1098  	/* is there an NS set in the authority section to remove? */
1099  	/* the failure case (Cisco firewalls) only has one rrset in authsec */
1100  	for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) {
1101  		struct ub_packed_rrset_key* s = rep->rrsets[i];
1102  		if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS) {
1103  			/* remove NS rrset and break from loop (loop limits
1104  			 * have changed) */
1105  			/* move last rrset into this position (there is no
1106  			 * additional section any more) */
1107  			verbose(VERB_ALGO, "caps fallback: removing NS rrset");
1108  			if(i < rep->rrset_count-1)
1109  				rep->rrsets[i]=rep->rrsets[rep->rrset_count-1];
1110  			rep->rrset_count --;
1111  			rep->ns_numrrsets --;
1112  			break;
1113  		}
1114  	}
1115  }
1116  
caps_failed_rcode(struct reply_info * rep)1117  int caps_failed_rcode(struct reply_info* rep)
1118  {
1119  	return !(FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NOERROR ||
1120  		FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NXDOMAIN);
1121  }
1122  
1123  void
iter_store_parentside_rrset(struct module_env * env,struct ub_packed_rrset_key * rrset)1124  iter_store_parentside_rrset(struct module_env* env,
1125  	struct ub_packed_rrset_key* rrset)
1126  {
1127  	struct rrset_ref ref;
1128  	rrset = packed_rrset_copy_alloc(rrset, env->alloc, *env->now);
1129  	if(!rrset) {
1130  		log_err("malloc failure in store_parentside_rrset");
1131  		return;
1132  	}
1133  	rrset->rk.flags |= PACKED_RRSET_PARENT_SIDE;
1134  	rrset->entry.hash = rrset_key_hash(&rrset->rk);
1135  	ref.key = rrset;
1136  	ref.id = rrset->id;
1137  	/* ignore ret: if it was in the cache, ref updated */
1138  	(void)rrset_cache_update(env->rrset_cache, &ref, env->alloc, *env->now);
1139  }
1140  
1141  /** fetch NS record from reply, if any */
1142  static struct ub_packed_rrset_key*
reply_get_NS_rrset(struct reply_info * rep)1143  reply_get_NS_rrset(struct reply_info* rep)
1144  {
1145  	size_t i;
1146  	for(i=0; i<rep->rrset_count; i++) {
1147  		if(rep->rrsets[i]->rk.type == htons(LDNS_RR_TYPE_NS)) {
1148  			return rep->rrsets[i];
1149  		}
1150  	}
1151  	return NULL;
1152  }
1153  
1154  void
iter_store_parentside_NS(struct module_env * env,struct reply_info * rep)1155  iter_store_parentside_NS(struct module_env* env, struct reply_info* rep)
1156  {
1157  	struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
1158  	if(rrset) {
1159  		log_rrset_key(VERB_ALGO, "store parent-side NS", rrset);
1160  		iter_store_parentside_rrset(env, rrset);
1161  	}
1162  }
1163  
iter_store_parentside_neg(struct module_env * env,struct query_info * qinfo,struct reply_info * rep)1164  void iter_store_parentside_neg(struct module_env* env,
1165          struct query_info* qinfo, struct reply_info* rep)
1166  {
1167  	/* TTL: NS from referral in iq->deleg_msg,
1168  	 *      or first RR from iq->response,
1169  	 *      or servfail5secs if !iq->response */
1170  	time_t ttl = NORR_TTL;
1171  	struct ub_packed_rrset_key* neg;
1172  	struct packed_rrset_data* newd;
1173  	if(rep) {
1174  		struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
1175  		if(!rrset && rep->rrset_count != 0) rrset = rep->rrsets[0];
1176  		if(rrset) ttl = ub_packed_rrset_ttl(rrset);
1177  	}
1178  	/* create empty rrset to store */
1179  	neg = (struct ub_packed_rrset_key*)regional_alloc(env->scratch,
1180  	                sizeof(struct ub_packed_rrset_key));
1181  	if(!neg) {
1182  		log_err("out of memory in store_parentside_neg");
1183  		return;
1184  	}
1185  	memset(&neg->entry, 0, sizeof(neg->entry));
1186  	neg->entry.key = neg;
1187  	neg->rk.type = htons(qinfo->qtype);
1188  	neg->rk.rrset_class = htons(qinfo->qclass);
1189  	neg->rk.flags = 0;
1190  	neg->rk.dname = regional_alloc_init(env->scratch, qinfo->qname,
1191  		qinfo->qname_len);
1192  	if(!neg->rk.dname) {
1193  		log_err("out of memory in store_parentside_neg");
1194  		return;
1195  	}
1196  	neg->rk.dname_len = qinfo->qname_len;
1197  	neg->entry.hash = rrset_key_hash(&neg->rk);
1198  	newd = (struct packed_rrset_data*)regional_alloc_zero(env->scratch,
1199  		sizeof(struct packed_rrset_data) + sizeof(size_t) +
1200  		sizeof(uint8_t*) + sizeof(time_t) + sizeof(uint16_t));
1201  	if(!newd) {
1202  		log_err("out of memory in store_parentside_neg");
1203  		return;
1204  	}
1205  	neg->entry.data = newd;
1206  	newd->ttl = ttl;
1207  	/* entry must have one RR, otherwise not valid in cache.
1208  	 * put in one RR with empty rdata: those are ignored as nameserver */
1209  	newd->count = 1;
1210  	newd->rrsig_count = 0;
1211  	newd->trust = rrset_trust_ans_noAA;
1212  	newd->rr_len = (size_t*)((uint8_t*)newd +
1213  		sizeof(struct packed_rrset_data));
1214  	newd->rr_len[0] = 0 /* zero len rdata */ + sizeof(uint16_t);
1215  	packed_rrset_ptr_fixup(newd);
1216  	newd->rr_ttl[0] = newd->ttl;
1217  	sldns_write_uint16(newd->rr_data[0], 0 /* zero len rdata */);
1218  	/* store it */
1219  	log_rrset_key(VERB_ALGO, "store parent-side negative", neg);
1220  	iter_store_parentside_rrset(env, neg);
1221  }
1222  
1223  int
iter_lookup_parent_NS_from_cache(struct module_env * env,struct delegpt * dp,struct regional * region,struct query_info * qinfo)1224  iter_lookup_parent_NS_from_cache(struct module_env* env, struct delegpt* dp,
1225  	struct regional* region, struct query_info* qinfo)
1226  {
1227  	struct ub_packed_rrset_key* akey;
1228  	akey = rrset_cache_lookup(env->rrset_cache, dp->name,
1229  		dp->namelen, LDNS_RR_TYPE_NS, qinfo->qclass,
1230  		PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1231  	if(akey) {
1232  		log_rrset_key(VERB_ALGO, "found parent-side NS in cache", akey);
1233  		dp->has_parent_side_NS = 1;
1234  		/* and mark the new names as lame */
1235  		if(!delegpt_rrset_add_ns(dp, region, akey, 1)) {
1236  			lock_rw_unlock(&akey->entry.lock);
1237  			return 0;
1238  		}
1239  		lock_rw_unlock(&akey->entry.lock);
1240  	}
1241  	return 1;
1242  }
1243  
iter_lookup_parent_glue_from_cache(struct module_env * env,struct delegpt * dp,struct regional * region,struct query_info * qinfo)1244  int iter_lookup_parent_glue_from_cache(struct module_env* env,
1245          struct delegpt* dp, struct regional* region, struct query_info* qinfo)
1246  {
1247  	struct ub_packed_rrset_key* akey;
1248  	struct delegpt_ns* ns;
1249  	size_t num = delegpt_count_targets(dp);
1250  	for(ns = dp->nslist; ns; ns = ns->next) {
1251  		if(ns->cache_lookup_count > ITERATOR_NAME_CACHELOOKUP_MAX_PSIDE)
1252  			continue;
1253  		ns->cache_lookup_count++;
1254  		/* get cached parentside A */
1255  		akey = rrset_cache_lookup(env->rrset_cache, ns->name,
1256  			ns->namelen, LDNS_RR_TYPE_A, qinfo->qclass,
1257  			PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1258  		if(akey) {
1259  			log_rrset_key(VERB_ALGO, "found parent-side", akey);
1260  			ns->done_pside4 = 1;
1261  			/* a negative-cache-element has no addresses it adds */
1262  			if(!delegpt_add_rrset_A(dp, region, akey, 1, NULL))
1263  				log_err("malloc failure in lookup_parent_glue");
1264  			lock_rw_unlock(&akey->entry.lock);
1265  		}
1266  		/* get cached parentside AAAA */
1267  		akey = rrset_cache_lookup(env->rrset_cache, ns->name,
1268  			ns->namelen, LDNS_RR_TYPE_AAAA, qinfo->qclass,
1269  			PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1270  		if(akey) {
1271  			log_rrset_key(VERB_ALGO, "found parent-side", akey);
1272  			ns->done_pside6 = 1;
1273  			/* a negative-cache-element has no addresses it adds */
1274  			if(!delegpt_add_rrset_AAAA(dp, region, akey, 1, NULL))
1275  				log_err("malloc failure in lookup_parent_glue");
1276  			lock_rw_unlock(&akey->entry.lock);
1277  		}
1278  	}
1279  	/* see if new (but lame) addresses have become available */
1280  	return delegpt_count_targets(dp) != num;
1281  }
1282  
1283  int
iter_get_next_root(struct iter_hints * hints,struct iter_forwards * fwd,uint16_t * c)1284  iter_get_next_root(struct iter_hints* hints, struct iter_forwards* fwd,
1285  	uint16_t* c)
1286  {
1287  	uint16_t c1 = *c, c2 = *c;
1288  	int r1, r2;
1289  	int nolock = 1;
1290  
1291  	/* prelock both forwards and hints for atomic read. */
1292  	lock_rw_rdlock(&fwd->lock);
1293  	lock_rw_rdlock(&hints->lock);
1294  	r1 = hints_next_root(hints, &c1, nolock);
1295  	r2 = forwards_next_root(fwd, &c2, nolock);
1296  	lock_rw_unlock(&fwd->lock);
1297  	lock_rw_unlock(&hints->lock);
1298  
1299  	if(!r1 && !r2) /* got none, end of list */
1300  		return 0;
1301  	else if(!r1) /* got one, return that */
1302  		*c = c2;
1303  	else if(!r2)
1304  		*c = c1;
1305  	else if(c1 < c2) /* got both take smallest */
1306  		*c = c1;
1307  	else	*c = c2;
1308  	return 1;
1309  }
1310  
1311  void
iter_scrub_ds(struct dns_msg * msg,struct ub_packed_rrset_key * ns,uint8_t * z)1312  iter_scrub_ds(struct dns_msg* msg, struct ub_packed_rrset_key* ns, uint8_t* z)
1313  {
1314  	/* Only the DS record for the delegation itself is expected.
1315  	 * We allow DS for everything between the bailiwick and the
1316  	 * zonecut, thus DS records must be at or above the zonecut.
1317  	 * And the DS records must be below the server authority zone.
1318  	 * The answer section is already scrubbed. */
1319  	size_t i = msg->rep->an_numrrsets;
1320  	while(i < (msg->rep->an_numrrsets + msg->rep->ns_numrrsets)) {
1321  		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1322  		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS &&
1323  			(!ns || !dname_subdomain_c(ns->rk.dname, s->rk.dname)
1324  			|| query_dname_compare(z, s->rk.dname) == 0)) {
1325  			log_nametypeclass(VERB_ALGO, "removing irrelevant DS",
1326  				s->rk.dname, ntohs(s->rk.type),
1327  				ntohs(s->rk.rrset_class));
1328  			memmove(msg->rep->rrsets+i, msg->rep->rrsets+i+1,
1329  				sizeof(struct ub_packed_rrset_key*) *
1330  				(msg->rep->rrset_count-i-1));
1331  			msg->rep->ns_numrrsets--;
1332  			msg->rep->rrset_count--;
1333  			/* stay at same i, but new record */
1334  			continue;
1335  		}
1336  		i++;
1337  	}
1338  }
1339  
1340  void
iter_scrub_nxdomain(struct dns_msg * msg)1341  iter_scrub_nxdomain(struct dns_msg* msg)
1342  {
1343  	if(msg->rep->an_numrrsets == 0)
1344  		return;
1345  
1346  	memmove(msg->rep->rrsets, msg->rep->rrsets+msg->rep->an_numrrsets,
1347  		sizeof(struct ub_packed_rrset_key*) *
1348  		(msg->rep->rrset_count-msg->rep->an_numrrsets));
1349  	msg->rep->rrset_count -= msg->rep->an_numrrsets;
1350  	msg->rep->an_numrrsets = 0;
1351  }
1352  
iter_dec_attempts(struct delegpt * dp,int d,int outbound_msg_retry)1353  void iter_dec_attempts(struct delegpt* dp, int d, int outbound_msg_retry)
1354  {
1355  	struct delegpt_addr* a;
1356  	for(a=dp->target_list; a; a = a->next_target) {
1357  		if(a->attempts >= outbound_msg_retry) {
1358  			/* add back to result list */
1359  			delegpt_add_to_result_list(dp, a);
1360  		}
1361  		if(a->attempts > d)
1362  			a->attempts -= d;
1363  		else a->attempts = 0;
1364  	}
1365  }
1366  
iter_merge_retry_counts(struct delegpt * dp,struct delegpt * old,int outbound_msg_retry)1367  void iter_merge_retry_counts(struct delegpt* dp, struct delegpt* old,
1368  	int outbound_msg_retry)
1369  {
1370  	struct delegpt_addr* a, *o, *prev;
1371  	for(a=dp->target_list; a; a = a->next_target) {
1372  		o = delegpt_find_addr(old, &a->addr, a->addrlen);
1373  		if(o) {
1374  			log_addr(VERB_ALGO, "copy attempt count previous dp",
1375  				&a->addr, a->addrlen);
1376  			a->attempts = o->attempts;
1377  		}
1378  	}
1379  	prev = NULL;
1380  	a = dp->usable_list;
1381  	while(a) {
1382  		if(a->attempts >= outbound_msg_retry) {
1383  			log_addr(VERB_ALGO, "remove from usable list dp",
1384  				&a->addr, a->addrlen);
1385  			/* remove from result list */
1386  			if(prev)
1387  				prev->next_usable = a->next_usable;
1388  			else	dp->usable_list = a->next_usable;
1389  			/* prev stays the same */
1390  			a = a->next_usable;
1391  			continue;
1392  		}
1393  		prev = a;
1394  		a = a->next_usable;
1395  	}
1396  }
1397  
1398  int
iter_ds_toolow(struct dns_msg * msg,struct delegpt * dp)1399  iter_ds_toolow(struct dns_msg* msg, struct delegpt* dp)
1400  {
1401  	/* if for query example.com, there is example.com SOA or a subdomain
1402  	 * of example.com, then we are too low and need to fetch NS. */
1403  	size_t i;
1404  	/* if we have a DNAME or CNAME we are probably wrong */
1405  	/* if we have a qtype DS in the answer section, its fine */
1406  	for(i=0; i < msg->rep->an_numrrsets; i++) {
1407  		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1408  		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DNAME ||
1409  			ntohs(s->rk.type) == LDNS_RR_TYPE_CNAME) {
1410  			/* not the right answer, maybe too low, check the
1411  			 * RRSIG signer name (if there is any) for a hint
1412  			 * that it is from the dp zone anyway */
1413  			uint8_t* sname;
1414  			size_t slen;
1415  			val_find_rrset_signer(s, &sname, &slen);
1416  			if(sname && query_dname_compare(dp->name, sname)==0)
1417  				return 0; /* it is fine, from the right dp */
1418  			return 1;
1419  		}
1420  		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS)
1421  			return 0; /* fine, we have a DS record */
1422  	}
1423  	for(i=msg->rep->an_numrrsets;
1424  		i < msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
1425  		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1426  		if(ntohs(s->rk.type) == LDNS_RR_TYPE_SOA) {
1427  			if(dname_subdomain_c(s->rk.dname, msg->qinfo.qname))
1428  				return 1; /* point is too low */
1429  			if(query_dname_compare(s->rk.dname, dp->name)==0)
1430  				return 0; /* right dp */
1431  		}
1432  		if(ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC ||
1433  			ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC3) {
1434  			uint8_t* sname;
1435  			size_t slen;
1436  			val_find_rrset_signer(s, &sname, &slen);
1437  			if(sname && query_dname_compare(dp->name, sname)==0)
1438  				return 0; /* it is fine, from the right dp */
1439  			return 1;
1440  		}
1441  	}
1442  	/* we do not know */
1443  	return 1;
1444  }
1445  
iter_dp_cangodown(struct query_info * qinfo,struct delegpt * dp)1446  int iter_dp_cangodown(struct query_info* qinfo, struct delegpt* dp)
1447  {
1448  	/* no delegation point, do not see how we can go down,
1449  	 * robust check, it should really exist */
1450  	if(!dp) return 0;
1451  
1452  	/* see if dp equals the qname, then we cannot go down further */
1453  	if(query_dname_compare(qinfo->qname, dp->name) == 0)
1454  		return 0;
1455  	/* if dp is one label above the name we also cannot go down further */
1456  	if(dname_count_labels(qinfo->qname) == dp->namelabs+1)
1457  		return 0;
1458  	return 1;
1459  }
1460  
1461  int
iter_stub_fwd_no_cache(struct module_qstate * qstate,struct query_info * qinf,uint8_t ** retdpname,size_t * retdpnamelen,uint8_t * dpname_storage,size_t dpname_storage_len)1462  iter_stub_fwd_no_cache(struct module_qstate *qstate, struct query_info *qinf,
1463  	uint8_t** retdpname, size_t* retdpnamelen, uint8_t* dpname_storage,
1464  	size_t dpname_storage_len)
1465  {
1466  	struct iter_hints_stub *stub;
1467  	struct delegpt *dp;
1468  	int nolock = 1;
1469  
1470  	/* Check for stub. */
1471  	/* Lock both forwards and hints for atomic read. */
1472  	lock_rw_rdlock(&qstate->env->fwds->lock);
1473  	lock_rw_rdlock(&qstate->env->hints->lock);
1474  	stub = hints_lookup_stub(qstate->env->hints, qinf->qname,
1475  	    qinf->qclass, NULL, nolock);
1476  	dp = forwards_lookup(qstate->env->fwds, qinf->qname, qinf->qclass,
1477  		nolock);
1478  
1479  	/* see if forward or stub is more pertinent */
1480  	if(stub && stub->dp && dp) {
1481  		if(dname_strict_subdomain(dp->name, dp->namelabs,
1482  			stub->dp->name, stub->dp->namelabs)) {
1483  			stub = NULL; /* ignore stub, forward is lower */
1484  		} else {
1485  			dp = NULL; /* ignore forward, stub is lower */
1486  		}
1487  	}
1488  
1489  	/* check stub */
1490  	if (stub != NULL && stub->dp != NULL) {
1491  		int stub_no_cache = stub->dp->no_cache;
1492  		lock_rw_unlock(&qstate->env->fwds->lock);
1493  		if(stub_no_cache) {
1494  			char qname[255+1];
1495  			char dpname[255+1];
1496  			dname_str(qinf->qname, qname);
1497  			dname_str(stub->dp->name, dpname);
1498  			verbose(VERB_ALGO, "stub for %s %s has no_cache", qname, dpname);
1499  		}
1500  		if(retdpname) {
1501  			if(stub->dp->namelen > dpname_storage_len) {
1502  				verbose(VERB_ALGO, "no cache stub dpname too long");
1503  				lock_rw_unlock(&qstate->env->hints->lock);
1504  				*retdpname = NULL;
1505  				*retdpnamelen = 0;
1506  				return stub_no_cache;
1507  			}
1508  			memmove(dpname_storage, stub->dp->name,
1509  				stub->dp->namelen);
1510  			*retdpname = dpname_storage;
1511  			*retdpnamelen = stub->dp->namelen;
1512  		}
1513  		lock_rw_unlock(&qstate->env->hints->lock);
1514  		return stub_no_cache;
1515  	}
1516  
1517  	/* Check for forward. */
1518  	if (dp) {
1519  		int dp_no_cache = dp->no_cache;
1520  		lock_rw_unlock(&qstate->env->hints->lock);
1521  		if(dp_no_cache) {
1522  			char qname[255+1];
1523  			char dpname[255+1];
1524  			dname_str(qinf->qname, qname);
1525  			dname_str(dp->name, dpname);
1526  			verbose(VERB_ALGO, "forward for %s %s has no_cache", qname, dpname);
1527  		}
1528  		if(retdpname) {
1529  			if(dp->namelen > dpname_storage_len) {
1530  				verbose(VERB_ALGO, "no cache dpname too long");
1531  				lock_rw_unlock(&qstate->env->fwds->lock);
1532  				*retdpname = NULL;
1533  				*retdpnamelen = 0;
1534  				return dp_no_cache;
1535  			}
1536  			memmove(dpname_storage, dp->name, dp->namelen);
1537  			*retdpname = dpname_storage;
1538  			*retdpnamelen = dp->namelen;
1539  		}
1540  		lock_rw_unlock(&qstate->env->fwds->lock);
1541  		return dp_no_cache;
1542  	}
1543  	lock_rw_unlock(&qstate->env->fwds->lock);
1544  	lock_rw_unlock(&qstate->env->hints->lock);
1545  	if(retdpname) {
1546  		*retdpname = NULL;
1547  		*retdpnamelen = 0;
1548  	}
1549  	return 0;
1550  }
1551  
iterator_set_ip46_support(struct module_stack * mods,struct module_env * env,struct outside_network * outnet)1552  void iterator_set_ip46_support(struct module_stack* mods,
1553  	struct module_env* env, struct outside_network* outnet)
1554  {
1555  	int m = modstack_find(mods, "iterator");
1556  	struct iter_env* ie = NULL;
1557  	if(m == -1)
1558  		return;
1559  	ie = (struct iter_env*)env->modinfo[m];
1560  	if(outnet->pending == NULL)
1561  		return; /* we are in testbound, no rbtree for UDP */
1562  	if(outnet->num_ip4 == 0)
1563  		ie->supports_ipv4 = 0;
1564  	if(outnet->num_ip6 == 0)
1565  		ie->supports_ipv6 = 0;
1566  }
1567  
1568  void
limit_nsec_ttl(struct dns_msg * msg)1569  limit_nsec_ttl(struct dns_msg* msg)
1570  {
1571  	/* Limit NSEC and NSEC3 TTL in response, RFC9077 */
1572  	size_t i;
1573  	int found = 0;
1574  	time_t soa_ttl = 0;
1575  	/* Limit the NSEC and NSEC3 TTL values to the SOA TTL and SOA minimum
1576  	 * TTL. That has already been applied to the SOA record ttl. */
1577  	for(i=0; i<msg->rep->rrset_count; i++) {
1578  		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1579  		if(ntohs(s->rk.type) == LDNS_RR_TYPE_SOA) {
1580  			struct packed_rrset_data* soadata = (struct packed_rrset_data*)s->entry.data;
1581  			found = 1;
1582  			soa_ttl = soadata->ttl;
1583  			break;
1584  		}
1585  	}
1586  	if(!found)
1587  		return;
1588  	for(i=0; i<msg->rep->rrset_count; i++) {
1589  		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1590  		if(ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC ||
1591  			ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC3) {
1592  			struct packed_rrset_data* data = (struct packed_rrset_data*)s->entry.data;
1593  			/* Limit the negative TTL. */
1594  			if(data->ttl > soa_ttl) {
1595  				if(verbosity >= VERB_ALGO) {
1596  					char buf[256];
1597  					snprintf(buf, sizeof(buf),
1598  						"limiting TTL %d of %s record to the SOA TTL of %d for",
1599  						(int)data->ttl, ((ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC)?"NSEC":"NSEC3"), (int)soa_ttl);
1600  					log_nametypeclass(VERB_ALGO, buf,
1601  						s->rk.dname, ntohs(s->rk.type),
1602  						ntohs(s->rk.rrset_class));
1603  				}
1604  				data->ttl = soa_ttl;
1605  			}
1606  		}
1607  	}
1608  }
1609