1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 #include "opt_inet.h"
34 #include "opt_ipsec.h"
35 #include "opt_kern_tls.h"
36 #include "opt_mbuf_stress_test.h"
37 #include "opt_ratelimit.h"
38 #include "opt_route.h"
39 #include "opt_rss.h"
40 #include "opt_sctp.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/ktls.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/protosw.h>
52 #include <sys/sdt.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/sysctl.h>
56 #include <sys/ucred.h>
57
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #include <net/if_private.h>
61 #include <net/if_vlan_var.h>
62 #include <net/if_llatbl.h>
63 #include <net/ethernet.h>
64 #include <net/netisr.h>
65 #include <net/pfil.h>
66 #include <net/route.h>
67 #include <net/route/nhop.h>
68 #include <net/rss_config.h>
69 #include <net/vnet.h>
70
71 #include <netinet/in.h>
72 #include <netinet/in_fib.h>
73 #include <netinet/in_kdtrace.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/ip.h>
76 #include <netinet/in_fib.h>
77 #include <netinet/in_pcb.h>
78 #include <netinet/in_rss.h>
79 #include <netinet/in_var.h>
80 #include <netinet/ip_var.h>
81 #include <netinet/ip_options.h>
82
83 #include <netinet/udp.h>
84 #include <netinet/udp_var.h>
85
86 #if defined(SCTP) || defined(SCTP_SUPPORT)
87 #include <netinet/sctp.h>
88 #include <netinet/sctp_crc32.h>
89 #endif
90
91 #include <netipsec/ipsec_support.h>
92
93 #include <machine/in_cksum.h>
94
95 #include <security/mac/mac_framework.h>
96
97 #ifdef MBUF_STRESS_TEST
98 static int mbuf_frag_size = 0;
99 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
100 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
101 #endif
102
103 static void ip_mloopback(struct ifnet *, const struct mbuf *, int);
104
105 extern int in_mcast_loop;
106
107 static inline int
ip_output_pfil(struct mbuf ** mp,struct ifnet * ifp,int flags,struct inpcb * inp,struct sockaddr_in * dst,int * fibnum,int * error)108 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags,
109 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error)
110 {
111 struct m_tag *fwd_tag = NULL;
112 struct mbuf *m;
113 struct in_addr odst;
114 struct ip *ip;
115
116 m = *mp;
117 ip = mtod(m, struct ip *);
118
119 /* Run through list of hooks for output packets. */
120 odst.s_addr = ip->ip_dst.s_addr;
121 switch (pfil_mbuf_out(V_inet_pfil_head, mp, ifp, inp)) {
122 case PFIL_DROPPED:
123 *error = EACCES;
124 /* FALLTHROUGH */
125 case PFIL_CONSUMED:
126 return 1; /* Finished */
127 case PFIL_PASS:
128 *error = 0;
129 }
130 m = *mp;
131 ip = mtod(m, struct ip *);
132
133 /* See if destination IP address was changed by packet filter. */
134 if (odst.s_addr != ip->ip_dst.s_addr) {
135 m->m_flags |= M_SKIP_FIREWALL;
136 /* If destination is now ourself drop to ip_input(). */
137 if (in_localip(ip->ip_dst)) {
138 m->m_flags |= M_FASTFWD_OURS;
139 if (m->m_pkthdr.rcvif == NULL)
140 m->m_pkthdr.rcvif = V_loif;
141 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
142 m->m_pkthdr.csum_flags |=
143 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
144 m->m_pkthdr.csum_data = 0xffff;
145 }
146 m->m_pkthdr.csum_flags |=
147 CSUM_IP_CHECKED | CSUM_IP_VALID;
148 #if defined(SCTP) || defined(SCTP_SUPPORT)
149 if (m->m_pkthdr.csum_flags & CSUM_SCTP)
150 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
151 #endif
152 *error = netisr_queue(NETISR_IP, m);
153 return 1; /* Finished */
154 }
155
156 bzero(dst, sizeof(*dst));
157 dst->sin_family = AF_INET;
158 dst->sin_len = sizeof(*dst);
159 dst->sin_addr = ip->ip_dst;
160
161 return -1; /* Reloop */
162 }
163 /* See if fib was changed by packet filter. */
164 if ((*fibnum) != M_GETFIB(m)) {
165 m->m_flags |= M_SKIP_FIREWALL;
166 *fibnum = M_GETFIB(m);
167 return -1; /* Reloop for FIB change */
168 }
169
170 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
171 if (m->m_flags & M_FASTFWD_OURS) {
172 if (m->m_pkthdr.rcvif == NULL)
173 m->m_pkthdr.rcvif = V_loif;
174 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
175 m->m_pkthdr.csum_flags |=
176 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
177 m->m_pkthdr.csum_data = 0xffff;
178 }
179 #if defined(SCTP) || defined(SCTP_SUPPORT)
180 if (m->m_pkthdr.csum_flags & CSUM_SCTP)
181 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
182 #endif
183 m->m_pkthdr.csum_flags |=
184 CSUM_IP_CHECKED | CSUM_IP_VALID;
185
186 *error = netisr_queue(NETISR_IP, m);
187 return 1; /* Finished */
188 }
189 /* Or forward to some other address? */
190 if ((m->m_flags & M_IP_NEXTHOP) &&
191 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) {
192 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
193 m->m_flags |= M_SKIP_FIREWALL;
194 m->m_flags &= ~M_IP_NEXTHOP;
195 m_tag_delete(m, fwd_tag);
196
197 return -1; /* Reloop for CHANGE of dst */
198 }
199
200 return 0;
201 }
202
203 static int
ip_output_send(struct inpcb * inp,struct ifnet * ifp,struct mbuf * m,const struct sockaddr * gw,struct route * ro,bool stamp_tag)204 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m,
205 const struct sockaddr *gw, struct route *ro, bool stamp_tag)
206 {
207 #ifdef KERN_TLS
208 struct ktls_session *tls = NULL;
209 #endif
210 struct m_snd_tag *mst;
211 int error;
212
213 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
214 mst = NULL;
215
216 #ifdef KERN_TLS
217 /*
218 * If this is an unencrypted TLS record, save a reference to
219 * the record. This local reference is used to call
220 * ktls_output_eagain after the mbuf has been freed (thus
221 * dropping the mbuf's reference) in if_output.
222 */
223 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) {
224 tls = ktls_hold(m->m_next->m_epg_tls);
225 mst = tls->snd_tag;
226
227 /*
228 * If a TLS session doesn't have a valid tag, it must
229 * have had an earlier ifp mismatch, so drop this
230 * packet.
231 */
232 if (mst == NULL) {
233 m_freem(m);
234 error = EAGAIN;
235 goto done;
236 }
237 /*
238 * Always stamp tags that include NIC ktls.
239 */
240 stamp_tag = true;
241 }
242 #endif
243 #ifdef RATELIMIT
244 if (inp != NULL && mst == NULL) {
245 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 ||
246 (inp->inp_snd_tag != NULL &&
247 inp->inp_snd_tag->ifp != ifp))
248 in_pcboutput_txrtlmt(inp, ifp, m);
249
250 if (inp->inp_snd_tag != NULL)
251 mst = inp->inp_snd_tag;
252 }
253 #endif
254 if (stamp_tag && mst != NULL) {
255 KASSERT(m->m_pkthdr.rcvif == NULL,
256 ("trying to add a send tag to a forwarded packet"));
257 if (mst->ifp != ifp) {
258 m_freem(m);
259 error = EAGAIN;
260 goto done;
261 }
262
263 /* stamp send tag on mbuf */
264 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst);
265 m->m_pkthdr.csum_flags |= CSUM_SND_TAG;
266 }
267
268 error = (*ifp->if_output)(ifp, m, gw, ro);
269
270 done:
271 /* Check for route change invalidating send tags. */
272 #ifdef KERN_TLS
273 if (tls != NULL) {
274 if (error == EAGAIN)
275 error = ktls_output_eagain(inp, tls);
276 ktls_free(tls);
277 }
278 #endif
279 #ifdef RATELIMIT
280 if (error == EAGAIN)
281 in_pcboutput_eagain(inp);
282 #endif
283 return (error);
284 }
285
286 /* rte<>ro_flags translation */
287 static inline void
rt_update_ro_flags(struct route * ro,const struct nhop_object * nh)288 rt_update_ro_flags(struct route *ro, const struct nhop_object *nh)
289 {
290 int nh_flags = nh->nh_flags;
291
292 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW);
293
294 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0;
295 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0;
296 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0;
297 }
298
299 /*
300 * IP output. The packet in mbuf chain m contains a skeletal IP
301 * header (with len, off, ttl, proto, tos, src, dst).
302 * The mbuf chain containing the packet will be freed.
303 * The mbuf opt, if present, will not be freed.
304 * If route ro is present and has ro_rt initialized, route lookup would be
305 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
306 * then result of route lookup is stored in ro->ro_rt.
307 *
308 * In the IP forwarding case, the packet will arrive with options already
309 * inserted, so must have a NULL opt pointer.
310 */
311 int
ip_output(struct mbuf * m,struct mbuf * opt,struct route * ro,int flags,struct ip_moptions * imo,struct inpcb * inp)312 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
313 struct ip_moptions *imo, struct inpcb *inp)
314 {
315 struct ip *ip;
316 struct ifnet *ifp = NULL; /* keep compiler happy */
317 struct mbuf *m0;
318 int hlen = sizeof (struct ip);
319 int mtu = 0;
320 int error = 0;
321 int vlan_pcp = -1;
322 struct sockaddr_in *dst;
323 const struct sockaddr *gw;
324 struct in_ifaddr *ia = NULL;
325 struct in_addr src;
326 int isbroadcast;
327 uint16_t ip_len, ip_off;
328 struct route iproute;
329 uint32_t fibnum;
330 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
331 int no_route_but_check_spd = 0;
332 #endif
333
334 M_ASSERTPKTHDR(m);
335 NET_EPOCH_ASSERT();
336
337 if (inp != NULL) {
338 INP_LOCK_ASSERT(inp);
339 M_SETFIB(m, inp->inp_inc.inc_fibnum);
340 if ((flags & IP_NODEFAULTFLOWID) == 0) {
341 m->m_pkthdr.flowid = inp->inp_flowid;
342 M_HASHTYPE_SET(m, inp->inp_flowtype);
343 }
344 if ((inp->inp_flags2 & INP_2PCP_SET) != 0)
345 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >>
346 INP_2PCP_SHIFT;
347 #ifdef NUMA
348 m->m_pkthdr.numa_domain = inp->inp_numa_domain;
349 #endif
350 }
351
352 if (opt) {
353 int len = 0;
354 m = ip_insertoptions(m, opt, &len);
355 if (len != 0)
356 hlen = len; /* ip->ip_hl is updated above */
357 }
358 ip = mtod(m, struct ip *);
359 ip_len = ntohs(ip->ip_len);
360 ip_off = ntohs(ip->ip_off);
361
362 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
363 ip->ip_v = IPVERSION;
364 ip->ip_hl = hlen >> 2;
365 ip_fillid(ip);
366 } else {
367 /* Header already set, fetch hlen from there */
368 hlen = ip->ip_hl << 2;
369 }
370 if ((flags & IP_FORWARDING) == 0)
371 IPSTAT_INC(ips_localout);
372
373 /*
374 * dst/gw handling:
375 *
376 * gw is readonly but can point either to dst OR rt_gateway,
377 * therefore we need restore gw if we're redoing lookup.
378 */
379 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m);
380 if (ro == NULL) {
381 ro = &iproute;
382 bzero(ro, sizeof (*ro));
383 }
384 dst = (struct sockaddr_in *)&ro->ro_dst;
385 if (ro->ro_nh == NULL) {
386 dst->sin_family = AF_INET;
387 dst->sin_len = sizeof(*dst);
388 dst->sin_addr = ip->ip_dst;
389 }
390 gw = (const struct sockaddr *)dst;
391 again:
392 /*
393 * Validate route against routing table additions;
394 * a better/more specific route might have been added.
395 */
396 if (inp != NULL && ro->ro_nh != NULL)
397 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum);
398 /*
399 * If there is a cached route,
400 * check that it is to the same destination
401 * and is still up. If not, free it and try again.
402 * The address family should also be checked in case of sharing the
403 * cache with IPv6.
404 * Also check whether routing cache needs invalidation.
405 */
406 if (ro->ro_nh != NULL &&
407 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET ||
408 dst->sin_addr.s_addr != ip->ip_dst.s_addr))
409 RO_INVALIDATE_CACHE(ro);
410 ia = NULL;
411 /*
412 * If routing to interface only, short circuit routing lookup.
413 * The use of an all-ones broadcast address implies this; an
414 * interface is specified by the broadcast address of an interface,
415 * or the destination address of a ptp interface.
416 */
417 if (flags & IP_SENDONES) {
418 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst),
419 M_GETFIB(m)))) == NULL &&
420 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst),
421 M_GETFIB(m)))) == NULL) {
422 IPSTAT_INC(ips_noroute);
423 error = ENETUNREACH;
424 goto bad;
425 }
426 ip->ip_dst.s_addr = INADDR_BROADCAST;
427 dst->sin_addr = ip->ip_dst;
428 ifp = ia->ia_ifp;
429 mtu = ifp->if_mtu;
430 ip->ip_ttl = 1;
431 isbroadcast = 1;
432 src = IA_SIN(ia)->sin_addr;
433 } else if (flags & IP_ROUTETOIF) {
434 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst),
435 M_GETFIB(m)))) == NULL &&
436 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0,
437 M_GETFIB(m)))) == NULL) {
438 IPSTAT_INC(ips_noroute);
439 error = ENETUNREACH;
440 goto bad;
441 }
442 ifp = ia->ia_ifp;
443 mtu = ifp->if_mtu;
444 ip->ip_ttl = 1;
445 isbroadcast = ifp->if_flags & IFF_BROADCAST ?
446 in_ifaddr_broadcast(dst->sin_addr, ia) : 0;
447 src = IA_SIN(ia)->sin_addr;
448 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
449 imo != NULL && imo->imo_multicast_ifp != NULL) {
450 /*
451 * Bypass the normal routing lookup for multicast
452 * packets if the interface is specified.
453 */
454 ifp = imo->imo_multicast_ifp;
455 mtu = ifp->if_mtu;
456 IFP_TO_IA(ifp, ia);
457 isbroadcast = 0; /* fool gcc */
458 /* Interface may have no addresses. */
459 if (ia != NULL)
460 src = IA_SIN(ia)->sin_addr;
461 else
462 src.s_addr = INADDR_ANY;
463 } else if (ro != &iproute) {
464 if (ro->ro_nh == NULL) {
465 /*
466 * We want to do any cloning requested by the link
467 * layer, as this is probably required in all cases
468 * for correct operation (as it is for ARP).
469 */
470 uint32_t flowid;
471 flowid = m->m_pkthdr.flowid;
472 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0,
473 NHR_REF, flowid);
474
475 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) {
476 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
477 /*
478 * There is no route for this packet, but it is
479 * possible that a matching SPD entry exists.
480 */
481 no_route_but_check_spd = 1;
482 goto sendit;
483 #endif
484 IPSTAT_INC(ips_noroute);
485 error = EHOSTUNREACH;
486 goto bad;
487 }
488 }
489 struct nhop_object *nh = ro->ro_nh;
490
491 ia = ifatoia(nh->nh_ifa);
492 ifp = nh->nh_ifp;
493 counter_u64_add(nh->nh_pksent, 1);
494 rt_update_ro_flags(ro, nh);
495 if (nh->nh_flags & NHF_GATEWAY)
496 gw = &nh->gw_sa;
497 if (nh->nh_flags & NHF_HOST)
498 isbroadcast = (nh->nh_flags & NHF_BROADCAST);
499 else if ((ifp->if_flags & IFF_BROADCAST) && (gw->sa_family == AF_INET))
500 isbroadcast = in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia);
501 else
502 isbroadcast = 0;
503 mtu = nh->nh_mtu;
504 src = IA_SIN(ia)->sin_addr;
505 } else {
506 struct nhop_object *nh;
507
508 nh = fib4_lookup(M_GETFIB(m), dst->sin_addr, 0, NHR_NONE,
509 m->m_pkthdr.flowid);
510 if (nh == NULL) {
511 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
512 /*
513 * There is no route for this packet, but it is
514 * possible that a matching SPD entry exists.
515 */
516 no_route_but_check_spd = 1;
517 goto sendit;
518 #endif
519 IPSTAT_INC(ips_noroute);
520 error = EHOSTUNREACH;
521 goto bad;
522 }
523 ifp = nh->nh_ifp;
524 mtu = nh->nh_mtu;
525 rt_update_ro_flags(ro, nh);
526 if (nh->nh_flags & NHF_GATEWAY)
527 gw = &nh->gw_sa;
528 ia = ifatoia(nh->nh_ifa);
529 src = IA_SIN(ia)->sin_addr;
530 isbroadcast = (((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) ==
531 (NHF_HOST | NHF_BROADCAST)) ||
532 ((ifp->if_flags & IFF_BROADCAST) &&
533 (gw->sa_family == AF_INET) &&
534 in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia)));
535 }
536
537 /* Catch a possible divide by zero later. */
538 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p",
539 __func__, mtu, ro,
540 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp));
541
542 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
543 m->m_flags |= M_MCAST;
544 /*
545 * IP destination address is multicast. Make sure "gw"
546 * still points to the address in "ro". (It may have been
547 * changed to point to a gateway address, above.)
548 */
549 gw = (const struct sockaddr *)dst;
550 /*
551 * See if the caller provided any multicast options
552 */
553 if (imo != NULL) {
554 ip->ip_ttl = imo->imo_multicast_ttl;
555 if (imo->imo_multicast_vif != -1)
556 ip->ip_src.s_addr =
557 ip_mcast_src ?
558 ip_mcast_src(imo->imo_multicast_vif) :
559 INADDR_ANY;
560 } else
561 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
562 /*
563 * Confirm that the outgoing interface supports multicast.
564 */
565 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
566 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
567 IPSTAT_INC(ips_noroute);
568 error = ENETUNREACH;
569 goto bad;
570 }
571 }
572 /*
573 * If source address not specified yet, use address
574 * of outgoing interface.
575 */
576 if (ip->ip_src.s_addr == INADDR_ANY)
577 ip->ip_src = src;
578
579 if ((imo == NULL && in_mcast_loop) ||
580 (imo && imo->imo_multicast_loop)) {
581 /*
582 * Loop back multicast datagram if not expressly
583 * forbidden to do so, even if we are not a member
584 * of the group; ip_input() will filter it later,
585 * thus deferring a hash lookup and mutex acquisition
586 * at the expense of a cheap copy using m_copym().
587 */
588 ip_mloopback(ifp, m, hlen);
589 } else {
590 /*
591 * If we are acting as a multicast router, perform
592 * multicast forwarding as if the packet had just
593 * arrived on the interface to which we are about
594 * to send. The multicast forwarding function
595 * recursively calls this function, using the
596 * IP_FORWARDING flag to prevent infinite recursion.
597 *
598 * Multicasts that are looped back by ip_mloopback(),
599 * above, will be forwarded by the ip_input() routine,
600 * if necessary.
601 */
602 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
603 /*
604 * If rsvp daemon is not running, do not
605 * set ip_moptions. This ensures that the packet
606 * is multicast and not just sent down one link
607 * as prescribed by rsvpd.
608 */
609 if (!V_rsvp_on)
610 imo = NULL;
611 if (ip_mforward &&
612 ip_mforward(ip, ifp, m, imo) != 0) {
613 m_freem(m);
614 goto done;
615 }
616 }
617 }
618
619 /*
620 * Multicasts with a time-to-live of zero may be looped-
621 * back, above, but must not be transmitted on a network.
622 * Also, multicasts addressed to the loopback interface
623 * are not sent -- the above call to ip_mloopback() will
624 * loop back a copy. ip_input() will drop the copy if
625 * this host does not belong to the destination group on
626 * the loopback interface.
627 */
628 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
629 m_freem(m);
630 goto done;
631 }
632
633 goto sendit;
634 }
635
636 /*
637 * If the source address is not specified yet, use the address
638 * of the outoing interface.
639 */
640 if (ip->ip_src.s_addr == INADDR_ANY)
641 ip->ip_src = src;
642
643 /*
644 * Look for broadcast address and
645 * verify user is allowed to send
646 * such a packet.
647 */
648 if (isbroadcast) {
649 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
650 error = EADDRNOTAVAIL;
651 goto bad;
652 }
653 if ((flags & IP_ALLOWBROADCAST) == 0) {
654 error = EACCES;
655 goto bad;
656 }
657 /* don't allow broadcast messages to be fragmented */
658 if (ip_len > mtu) {
659 error = EMSGSIZE;
660 goto bad;
661 }
662 m->m_flags |= M_BCAST;
663 } else {
664 m->m_flags &= ~M_BCAST;
665 }
666
667 sendit:
668 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
669 if (IPSEC_ENABLED(ipv4)) {
670 struct ip ip_hdr;
671
672 if ((error = IPSEC_OUTPUT(ipv4, ifp, m, inp, mtu)) != 0) {
673 if (error == EINPROGRESS)
674 error = 0;
675 goto done;
676 }
677
678 /* Update variables that are affected by ipsec4_output(). */
679 m_copydata(m, 0, sizeof(ip_hdr), (char *)&ip_hdr);
680 hlen = ip_hdr.ip_hl << 2;
681 }
682
683 /*
684 * Check if there was a route for this packet; return error if not.
685 */
686 if (no_route_but_check_spd) {
687 IPSTAT_INC(ips_noroute);
688 error = EHOSTUNREACH;
689 goto bad;
690 }
691 #endif /* IPSEC */
692
693 /* Jump over all PFIL processing if hooks are not active. */
694 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) {
695 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum,
696 &error)) {
697 case 1: /* Finished */
698 goto done;
699
700 case 0: /* Continue normally */
701 ip = mtod(m, struct ip *);
702 ip_len = ntohs(ip->ip_len);
703 break;
704
705 case -1: /* Need to try again */
706 /* Reset everything for a new round */
707 if (ro != NULL) {
708 RO_NHFREE(ro);
709 ro->ro_prepend = NULL;
710 }
711 gw = (const struct sockaddr *)dst;
712 ip = mtod(m, struct ip *);
713 goto again;
714 }
715 }
716
717 if (vlan_pcp > -1)
718 EVL_APPLY_PRI(m, vlan_pcp);
719
720 /* IN_LOOPBACK must not appear on the wire - RFC1122. */
721 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) ||
722 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) {
723 if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
724 IPSTAT_INC(ips_badaddr);
725 error = EADDRNOTAVAIL;
726 goto bad;
727 }
728 }
729
730 /* Ensure the packet data is mapped if the interface requires it. */
731 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) {
732 struct mbuf *m1;
733
734 error = mb_unmapped_to_ext(m, &m1);
735 if (error != 0) {
736 if (error == EINVAL) {
737 if_printf(ifp, "TLS packet\n");
738 /* XXXKIB */
739 } else if (error == ENOMEM) {
740 error = ENOBUFS;
741 }
742 IPSTAT_INC(ips_odropped);
743 goto bad;
744 } else {
745 m = m1;
746 }
747 }
748
749 m->m_pkthdr.csum_flags |= CSUM_IP;
750 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
751 in_delayed_cksum(m);
752 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
753 }
754 #if defined(SCTP) || defined(SCTP_SUPPORT)
755 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
756 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
757 m->m_pkthdr.csum_flags &= ~CSUM_SCTP;
758 }
759 #endif
760
761 /*
762 * If small enough for interface, or the interface will take
763 * care of the fragmentation for us, we can just send directly.
764 * Note that if_vxlan could have requested TSO even though the outer
765 * frame is UDP. It is correct to not fragment such datagrams and
766 * instead just pass them on to the driver.
767 */
768 if (ip_len <= mtu ||
769 (m->m_pkthdr.csum_flags & ifp->if_hwassist &
770 (CSUM_TSO | CSUM_INNER_TSO)) != 0) {
771 ip->ip_sum = 0;
772 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
773 ip->ip_sum = in_cksum(m, hlen);
774 m->m_pkthdr.csum_flags &= ~CSUM_IP;
775 }
776
777 /*
778 * Record statistics for this interface address.
779 * With CSUM_TSO the byte/packet count will be slightly
780 * incorrect because we count the IP+TCP headers only
781 * once instead of for every generated packet.
782 */
783 if (!(flags & IP_FORWARDING) && ia) {
784 if (m->m_pkthdr.csum_flags &
785 (CSUM_TSO | CSUM_INNER_TSO))
786 counter_u64_add(ia->ia_ifa.ifa_opackets,
787 m->m_pkthdr.len / m->m_pkthdr.tso_segsz);
788 else
789 counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
790
791 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len);
792 }
793 #ifdef MBUF_STRESS_TEST
794 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
795 m = m_fragment(m, M_NOWAIT, mbuf_frag_size);
796 #endif
797 /*
798 * Reset layer specific mbuf flags
799 * to avoid confusing lower layers.
800 */
801 m_clrprotoflags(m);
802 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
803 error = ip_output_send(inp, ifp, m, gw, ro,
804 (flags & IP_NO_SND_TAG_RL) ? false : true);
805 goto done;
806 }
807
808 /* Balk when DF bit is set or the interface didn't support TSO. */
809 if ((ip_off & IP_DF) ||
810 (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) {
811 error = EMSGSIZE;
812 IPSTAT_INC(ips_cantfrag);
813 goto bad;
814 }
815
816 /*
817 * Too large for interface; fragment if possible. If successful,
818 * on return, m will point to a list of packets to be sent.
819 */
820 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist);
821 if (error)
822 goto bad;
823 for (; m; m = m0) {
824 m0 = m->m_nextpkt;
825 m->m_nextpkt = 0;
826 if (error == 0) {
827 /* Record statistics for this interface address. */
828 if (ia != NULL) {
829 counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
830 counter_u64_add(ia->ia_ifa.ifa_obytes,
831 m->m_pkthdr.len);
832 }
833 /*
834 * Reset layer specific mbuf flags
835 * to avoid confusing upper layers.
836 */
837 m_clrprotoflags(m);
838
839 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp,
840 mtod(m, struct ip *), NULL);
841 error = ip_output_send(inp, ifp, m, gw, ro, true);
842 } else
843 m_freem(m);
844 }
845
846 if (error == 0)
847 IPSTAT_INC(ips_fragmented);
848
849 done:
850 return (error);
851 bad:
852 m_freem(m);
853 goto done;
854 }
855
856 /*
857 * Create a chain of fragments which fit the given mtu. m_frag points to the
858 * mbuf to be fragmented; on return it points to the chain with the fragments.
859 * Return 0 if no error. If error, m_frag may contain a partially built
860 * chain of fragments that should be freed by the caller.
861 *
862 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
863 */
864 int
ip_fragment(struct ip * ip,struct mbuf ** m_frag,int mtu,u_long if_hwassist_flags)865 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
866 u_long if_hwassist_flags)
867 {
868 int error = 0;
869 int hlen = ip->ip_hl << 2;
870 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */
871 int off;
872 struct mbuf *m0 = *m_frag; /* the original packet */
873 int firstlen;
874 struct mbuf **mnext;
875 int nfrags;
876 uint16_t ip_len, ip_off;
877
878 ip_len = ntohs(ip->ip_len);
879 ip_off = ntohs(ip->ip_off);
880
881 /*
882 * Packet shall not have "Don't Fragment" flag and have at least 8
883 * bytes of payload.
884 */
885 if (__predict_false((ip_off & IP_DF) || len < 8)) {
886 IPSTAT_INC(ips_cantfrag);
887 return (EMSGSIZE);
888 }
889
890 /*
891 * If the interface will not calculate checksums on
892 * fragmented packets, then do it here.
893 */
894 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
895 in_delayed_cksum(m0);
896 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
897 }
898 #if defined(SCTP) || defined(SCTP_SUPPORT)
899 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) {
900 sctp_delayed_cksum(m0, hlen);
901 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
902 }
903 #endif
904 if (len > PAGE_SIZE) {
905 /*
906 * Fragment large datagrams such that each segment
907 * contains a multiple of PAGE_SIZE amount of data,
908 * plus headers. This enables a receiver to perform
909 * page-flipping zero-copy optimizations.
910 *
911 * XXX When does this help given that sender and receiver
912 * could have different page sizes, and also mtu could
913 * be less than the receiver's page size ?
914 */
915 int newlen;
916
917 off = MIN(mtu, m0->m_pkthdr.len);
918
919 /*
920 * firstlen (off - hlen) must be aligned on an
921 * 8-byte boundary
922 */
923 if (off < hlen)
924 goto smart_frag_failure;
925 off = ((off - hlen) & ~7) + hlen;
926 newlen = (~PAGE_MASK) & mtu;
927 if ((newlen + sizeof (struct ip)) > mtu) {
928 /* we failed, go back the default */
929 smart_frag_failure:
930 newlen = len;
931 off = hlen + len;
932 }
933 len = newlen;
934
935 } else {
936 off = hlen + len;
937 }
938
939 firstlen = off - hlen;
940 mnext = &m0->m_nextpkt; /* pointer to next packet */
941
942 /*
943 * Loop through length of segment after first fragment,
944 * make new header and copy data of each part and link onto chain.
945 * Here, m0 is the original packet, m is the fragment being created.
946 * The fragments are linked off the m_nextpkt of the original
947 * packet, which after processing serves as the first fragment.
948 */
949 for (nfrags = 1; off < ip_len; off += len, nfrags++) {
950 struct ip *mhip; /* ip header on the fragment */
951 struct mbuf *m;
952 int mhlen = sizeof (struct ip);
953
954 m = m_gethdr(M_NOWAIT, MT_DATA);
955 if (m == NULL) {
956 error = ENOBUFS;
957 IPSTAT_INC(ips_odropped);
958 goto done;
959 }
960 /*
961 * Make sure the complete packet header gets copied
962 * from the originating mbuf to the newly created
963 * mbuf. This also ensures that existing firewall
964 * classification(s), VLAN tags and so on get copied
965 * to the resulting fragmented packet(s):
966 */
967 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) {
968 m_free(m);
969 error = ENOBUFS;
970 IPSTAT_INC(ips_odropped);
971 goto done;
972 }
973 /*
974 * In the first mbuf, leave room for the link header, then
975 * copy the original IP header including options. The payload
976 * goes into an additional mbuf chain returned by m_copym().
977 */
978 m->m_data += max_linkhdr;
979 mhip = mtod(m, struct ip *);
980 *mhip = *ip;
981 if (hlen > sizeof (struct ip)) {
982 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
983 mhip->ip_v = IPVERSION;
984 mhip->ip_hl = mhlen >> 2;
985 }
986 m->m_len = mhlen;
987 /* XXX do we need to add ip_off below ? */
988 mhip->ip_off = ((off - hlen) >> 3) + ip_off;
989 if (off + len >= ip_len)
990 len = ip_len - off;
991 else
992 mhip->ip_off |= IP_MF;
993 mhip->ip_len = htons((u_short)(len + mhlen));
994 m->m_next = m_copym(m0, off, len, M_NOWAIT);
995 if (m->m_next == NULL) { /* copy failed */
996 m_free(m);
997 error = ENOBUFS; /* ??? */
998 IPSTAT_INC(ips_odropped);
999 goto done;
1000 }
1001 m->m_pkthdr.len = mhlen + len;
1002 #ifdef MAC
1003 mac_netinet_fragment(m0, m);
1004 #endif
1005 mhip->ip_off = htons(mhip->ip_off);
1006 mhip->ip_sum = 0;
1007 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
1008 mhip->ip_sum = in_cksum(m, mhlen);
1009 m->m_pkthdr.csum_flags &= ~CSUM_IP;
1010 }
1011 *mnext = m;
1012 mnext = &m->m_nextpkt;
1013 }
1014 IPSTAT_ADD(ips_ofragments, nfrags);
1015
1016 /*
1017 * Update first fragment by trimming what's been copied out
1018 * and updating header.
1019 */
1020 m_adj(m0, hlen + firstlen - ip_len);
1021 m0->m_pkthdr.len = hlen + firstlen;
1022 ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1023 ip->ip_off = htons(ip_off | IP_MF);
1024 ip->ip_sum = 0;
1025 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
1026 ip->ip_sum = in_cksum(m0, hlen);
1027 m0->m_pkthdr.csum_flags &= ~CSUM_IP;
1028 }
1029
1030 done:
1031 *m_frag = m0;
1032 return error;
1033 }
1034
1035 void
in_delayed_cksum(struct mbuf * m)1036 in_delayed_cksum(struct mbuf *m)
1037 {
1038 struct ip *ip;
1039 struct udphdr *uh;
1040 uint16_t cklen, csum, offset;
1041
1042 ip = mtod(m, struct ip *);
1043 offset = ip->ip_hl << 2 ;
1044
1045 if (m->m_pkthdr.csum_flags & CSUM_UDP) {
1046 /* if udp header is not in the first mbuf copy udplen */
1047 if (offset + sizeof(struct udphdr) > m->m_len) {
1048 m_copydata(m, offset + offsetof(struct udphdr,
1049 uh_ulen), sizeof(cklen), (caddr_t)&cklen);
1050 cklen = ntohs(cklen);
1051 } else {
1052 uh = (struct udphdr *)mtodo(m, offset);
1053 cklen = ntohs(uh->uh_ulen);
1054 }
1055 csum = in_cksum_skip(m, cklen + offset, offset);
1056 if (csum == 0)
1057 csum = 0xffff;
1058 } else {
1059 cklen = ntohs(ip->ip_len);
1060 csum = in_cksum_skip(m, cklen, offset);
1061 }
1062 offset += m->m_pkthdr.csum_data; /* checksum offset */
1063
1064 if (offset + sizeof(csum) > m->m_len)
1065 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum);
1066 else
1067 *(u_short *)mtodo(m, offset) = csum;
1068 }
1069
1070 /*
1071 * IP socket option processing.
1072 */
1073 int
ip_ctloutput(struct socket * so,struct sockopt * sopt)1074 ip_ctloutput(struct socket *so, struct sockopt *sopt)
1075 {
1076 struct inpcb *inp = sotoinpcb(so);
1077 int error, optval;
1078 #ifdef RSS
1079 uint32_t rss_bucket;
1080 int retval;
1081 #endif
1082
1083 error = optval = 0;
1084 if (sopt->sopt_level != IPPROTO_IP) {
1085 error = EINVAL;
1086
1087 if (sopt->sopt_level == SOL_SOCKET &&
1088 sopt->sopt_dir == SOPT_SET) {
1089 switch (sopt->sopt_name) {
1090 case SO_SETFIB:
1091 INP_WLOCK(inp);
1092 inp->inp_inc.inc_fibnum = so->so_fibnum;
1093 INP_WUNLOCK(inp);
1094 error = 0;
1095 break;
1096 case SO_MAX_PACING_RATE:
1097 #ifdef RATELIMIT
1098 INP_WLOCK(inp);
1099 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
1100 INP_WUNLOCK(inp);
1101 error = 0;
1102 #else
1103 error = EOPNOTSUPP;
1104 #endif
1105 break;
1106 default:
1107 break;
1108 }
1109 }
1110 return (error);
1111 }
1112
1113 switch (sopt->sopt_dir) {
1114 case SOPT_SET:
1115 switch (sopt->sopt_name) {
1116 case IP_OPTIONS:
1117 #ifdef notyet
1118 case IP_RETOPTS:
1119 #endif
1120 {
1121 struct mbuf *m;
1122 if (sopt->sopt_valsize > MLEN) {
1123 error = EMSGSIZE;
1124 break;
1125 }
1126 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
1127 if (m == NULL) {
1128 error = ENOBUFS;
1129 break;
1130 }
1131 m->m_len = sopt->sopt_valsize;
1132 error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1133 m->m_len);
1134 if (error) {
1135 m_free(m);
1136 break;
1137 }
1138 INP_WLOCK(inp);
1139 error = ip_pcbopts(inp, sopt->sopt_name, m);
1140 INP_WUNLOCK(inp);
1141 return (error);
1142 }
1143
1144 case IP_BINDANY:
1145 if (sopt->sopt_td != NULL) {
1146 error = priv_check(sopt->sopt_td,
1147 PRIV_NETINET_BINDANY);
1148 if (error)
1149 break;
1150 }
1151 /* FALLTHROUGH */
1152 case IP_TOS:
1153 case IP_TTL:
1154 case IP_MINTTL:
1155 case IP_RECVOPTS:
1156 case IP_RECVRETOPTS:
1157 case IP_ORIGDSTADDR:
1158 case IP_RECVDSTADDR:
1159 case IP_RECVTTL:
1160 case IP_RECVIF:
1161 case IP_ONESBCAST:
1162 case IP_DONTFRAG:
1163 case IP_RECVTOS:
1164 case IP_RECVFLOWID:
1165 #ifdef RSS
1166 case IP_RECVRSSBUCKETID:
1167 #endif
1168 case IP_VLAN_PCP:
1169 error = sooptcopyin(sopt, &optval, sizeof optval,
1170 sizeof optval);
1171 if (error)
1172 break;
1173
1174 switch (sopt->sopt_name) {
1175 case IP_TOS:
1176 inp->inp_ip_tos = optval;
1177 break;
1178
1179 case IP_TTL:
1180 inp->inp_ip_ttl = optval;
1181 break;
1182
1183 case IP_MINTTL:
1184 if (optval >= 0 && optval <= MAXTTL)
1185 inp->inp_ip_minttl = optval;
1186 else
1187 error = EINVAL;
1188 break;
1189
1190 #define OPTSET(bit) do { \
1191 INP_WLOCK(inp); \
1192 if (optval) \
1193 inp->inp_flags |= bit; \
1194 else \
1195 inp->inp_flags &= ~bit; \
1196 INP_WUNLOCK(inp); \
1197 } while (0)
1198
1199 #define OPTSET2(bit, val) do { \
1200 INP_WLOCK(inp); \
1201 if (val) \
1202 inp->inp_flags2 |= bit; \
1203 else \
1204 inp->inp_flags2 &= ~bit; \
1205 INP_WUNLOCK(inp); \
1206 } while (0)
1207
1208 case IP_RECVOPTS:
1209 OPTSET(INP_RECVOPTS);
1210 break;
1211
1212 case IP_RECVRETOPTS:
1213 OPTSET(INP_RECVRETOPTS);
1214 break;
1215
1216 case IP_RECVDSTADDR:
1217 OPTSET(INP_RECVDSTADDR);
1218 break;
1219
1220 case IP_ORIGDSTADDR:
1221 OPTSET2(INP_ORIGDSTADDR, optval);
1222 break;
1223
1224 case IP_RECVTTL:
1225 OPTSET(INP_RECVTTL);
1226 break;
1227
1228 case IP_RECVIF:
1229 OPTSET(INP_RECVIF);
1230 break;
1231
1232 case IP_ONESBCAST:
1233 OPTSET(INP_ONESBCAST);
1234 break;
1235 case IP_DONTFRAG:
1236 OPTSET(INP_DONTFRAG);
1237 break;
1238 case IP_BINDANY:
1239 OPTSET(INP_BINDANY);
1240 break;
1241 case IP_RECVTOS:
1242 OPTSET(INP_RECVTOS);
1243 break;
1244 case IP_RECVFLOWID:
1245 OPTSET2(INP_RECVFLOWID, optval);
1246 break;
1247 #ifdef RSS
1248 case IP_RECVRSSBUCKETID:
1249 OPTSET2(INP_RECVRSSBUCKETID, optval);
1250 break;
1251 #endif
1252 case IP_VLAN_PCP:
1253 if ((optval >= -1) && (optval <=
1254 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) {
1255 if (optval == -1) {
1256 INP_WLOCK(inp);
1257 inp->inp_flags2 &=
1258 ~(INP_2PCP_SET |
1259 INP_2PCP_MASK);
1260 INP_WUNLOCK(inp);
1261 } else {
1262 INP_WLOCK(inp);
1263 inp->inp_flags2 |=
1264 INP_2PCP_SET;
1265 inp->inp_flags2 &=
1266 ~INP_2PCP_MASK;
1267 inp->inp_flags2 |=
1268 optval << INP_2PCP_SHIFT;
1269 INP_WUNLOCK(inp);
1270 }
1271 } else
1272 error = EINVAL;
1273 break;
1274 }
1275 break;
1276 #undef OPTSET
1277 #undef OPTSET2
1278
1279 /*
1280 * Multicast socket options are processed by the in_mcast
1281 * module.
1282 */
1283 case IP_MULTICAST_IF:
1284 case IP_MULTICAST_VIF:
1285 case IP_MULTICAST_TTL:
1286 case IP_MULTICAST_LOOP:
1287 case IP_ADD_MEMBERSHIP:
1288 case IP_DROP_MEMBERSHIP:
1289 case IP_ADD_SOURCE_MEMBERSHIP:
1290 case IP_DROP_SOURCE_MEMBERSHIP:
1291 case IP_BLOCK_SOURCE:
1292 case IP_UNBLOCK_SOURCE:
1293 case IP_MSFILTER:
1294 case MCAST_JOIN_GROUP:
1295 case MCAST_LEAVE_GROUP:
1296 case MCAST_JOIN_SOURCE_GROUP:
1297 case MCAST_LEAVE_SOURCE_GROUP:
1298 case MCAST_BLOCK_SOURCE:
1299 case MCAST_UNBLOCK_SOURCE:
1300 error = inp_setmoptions(inp, sopt);
1301 break;
1302
1303 case IP_PORTRANGE:
1304 error = sooptcopyin(sopt, &optval, sizeof optval,
1305 sizeof optval);
1306 if (error)
1307 break;
1308
1309 INP_WLOCK(inp);
1310 switch (optval) {
1311 case IP_PORTRANGE_DEFAULT:
1312 inp->inp_flags &= ~(INP_LOWPORT);
1313 inp->inp_flags &= ~(INP_HIGHPORT);
1314 break;
1315
1316 case IP_PORTRANGE_HIGH:
1317 inp->inp_flags &= ~(INP_LOWPORT);
1318 inp->inp_flags |= INP_HIGHPORT;
1319 break;
1320
1321 case IP_PORTRANGE_LOW:
1322 inp->inp_flags &= ~(INP_HIGHPORT);
1323 inp->inp_flags |= INP_LOWPORT;
1324 break;
1325
1326 default:
1327 error = EINVAL;
1328 break;
1329 }
1330 INP_WUNLOCK(inp);
1331 break;
1332
1333 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1334 case IP_IPSEC_POLICY:
1335 if (IPSEC_ENABLED(ipv4)) {
1336 error = IPSEC_PCBCTL(ipv4, inp, sopt);
1337 break;
1338 }
1339 /* FALLTHROUGH */
1340 #endif /* IPSEC */
1341
1342 default:
1343 error = ENOPROTOOPT;
1344 break;
1345 }
1346 break;
1347
1348 case SOPT_GET:
1349 switch (sopt->sopt_name) {
1350 case IP_OPTIONS:
1351 case IP_RETOPTS:
1352 INP_RLOCK(inp);
1353 if (inp->inp_options) {
1354 struct mbuf *options;
1355
1356 options = m_copym(inp->inp_options, 0,
1357 M_COPYALL, M_NOWAIT);
1358 INP_RUNLOCK(inp);
1359 if (options != NULL) {
1360 error = sooptcopyout(sopt,
1361 mtod(options, char *),
1362 options->m_len);
1363 m_freem(options);
1364 } else
1365 error = ENOMEM;
1366 } else {
1367 INP_RUNLOCK(inp);
1368 sopt->sopt_valsize = 0;
1369 }
1370 break;
1371
1372 case IP_TOS:
1373 case IP_TTL:
1374 case IP_MINTTL:
1375 case IP_RECVOPTS:
1376 case IP_RECVRETOPTS:
1377 case IP_ORIGDSTADDR:
1378 case IP_RECVDSTADDR:
1379 case IP_RECVTTL:
1380 case IP_RECVIF:
1381 case IP_PORTRANGE:
1382 case IP_ONESBCAST:
1383 case IP_DONTFRAG:
1384 case IP_BINDANY:
1385 case IP_RECVTOS:
1386 case IP_FLOWID:
1387 case IP_FLOWTYPE:
1388 case IP_RECVFLOWID:
1389 #ifdef RSS
1390 case IP_RSSBUCKETID:
1391 case IP_RECVRSSBUCKETID:
1392 #endif
1393 case IP_VLAN_PCP:
1394 switch (sopt->sopt_name) {
1395 case IP_TOS:
1396 optval = inp->inp_ip_tos;
1397 break;
1398
1399 case IP_TTL:
1400 optval = inp->inp_ip_ttl;
1401 break;
1402
1403 case IP_MINTTL:
1404 optval = inp->inp_ip_minttl;
1405 break;
1406
1407 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1408 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0)
1409
1410 case IP_RECVOPTS:
1411 optval = OPTBIT(INP_RECVOPTS);
1412 break;
1413
1414 case IP_RECVRETOPTS:
1415 optval = OPTBIT(INP_RECVRETOPTS);
1416 break;
1417
1418 case IP_RECVDSTADDR:
1419 optval = OPTBIT(INP_RECVDSTADDR);
1420 break;
1421
1422 case IP_ORIGDSTADDR:
1423 optval = OPTBIT2(INP_ORIGDSTADDR);
1424 break;
1425
1426 case IP_RECVTTL:
1427 optval = OPTBIT(INP_RECVTTL);
1428 break;
1429
1430 case IP_RECVIF:
1431 optval = OPTBIT(INP_RECVIF);
1432 break;
1433
1434 case IP_PORTRANGE:
1435 if (inp->inp_flags & INP_HIGHPORT)
1436 optval = IP_PORTRANGE_HIGH;
1437 else if (inp->inp_flags & INP_LOWPORT)
1438 optval = IP_PORTRANGE_LOW;
1439 else
1440 optval = 0;
1441 break;
1442
1443 case IP_ONESBCAST:
1444 optval = OPTBIT(INP_ONESBCAST);
1445 break;
1446 case IP_DONTFRAG:
1447 optval = OPTBIT(INP_DONTFRAG);
1448 break;
1449 case IP_BINDANY:
1450 optval = OPTBIT(INP_BINDANY);
1451 break;
1452 case IP_RECVTOS:
1453 optval = OPTBIT(INP_RECVTOS);
1454 break;
1455 case IP_FLOWID:
1456 optval = inp->inp_flowid;
1457 break;
1458 case IP_FLOWTYPE:
1459 optval = inp->inp_flowtype;
1460 break;
1461 case IP_RECVFLOWID:
1462 optval = OPTBIT2(INP_RECVFLOWID);
1463 break;
1464 #ifdef RSS
1465 case IP_RSSBUCKETID:
1466 retval = rss_hash2bucket(inp->inp_flowid,
1467 inp->inp_flowtype,
1468 &rss_bucket);
1469 if (retval == 0)
1470 optval = rss_bucket;
1471 else
1472 error = EINVAL;
1473 break;
1474 case IP_RECVRSSBUCKETID:
1475 optval = OPTBIT2(INP_RECVRSSBUCKETID);
1476 break;
1477 #endif
1478 case IP_VLAN_PCP:
1479 if (OPTBIT2(INP_2PCP_SET)) {
1480 optval = (inp->inp_flags2 &
1481 INP_2PCP_MASK) >> INP_2PCP_SHIFT;
1482 } else {
1483 optval = -1;
1484 }
1485 break;
1486 }
1487 error = sooptcopyout(sopt, &optval, sizeof optval);
1488 break;
1489
1490 /*
1491 * Multicast socket options are processed by the in_mcast
1492 * module.
1493 */
1494 case IP_MULTICAST_IF:
1495 case IP_MULTICAST_VIF:
1496 case IP_MULTICAST_TTL:
1497 case IP_MULTICAST_LOOP:
1498 case IP_MSFILTER:
1499 error = inp_getmoptions(inp, sopt);
1500 break;
1501
1502 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1503 case IP_IPSEC_POLICY:
1504 if (IPSEC_ENABLED(ipv4)) {
1505 error = IPSEC_PCBCTL(ipv4, inp, sopt);
1506 break;
1507 }
1508 /* FALLTHROUGH */
1509 #endif /* IPSEC */
1510
1511 default:
1512 error = ENOPROTOOPT;
1513 break;
1514 }
1515 break;
1516 }
1517 return (error);
1518 }
1519
1520 /*
1521 * Routine called from ip_output() to loop back a copy of an IP multicast
1522 * packet to the input queue of a specified interface. Note that this
1523 * calls the output routine of the loopback "driver", but with an interface
1524 * pointer that might NOT be a loopback interface -- evil, but easier than
1525 * replicating that code here.
1526 */
1527 static void
ip_mloopback(struct ifnet * ifp,const struct mbuf * m,int hlen)1528 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen)
1529 {
1530 struct ip *ip;
1531 struct mbuf *copym;
1532
1533 /*
1534 * Make a deep copy of the packet because we're going to
1535 * modify the pack in order to generate checksums.
1536 */
1537 copym = m_dup(m, M_NOWAIT);
1538 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen))
1539 copym = m_pullup(copym, hlen);
1540 if (copym != NULL) {
1541 /* If needed, compute the checksum and mark it as valid. */
1542 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1543 in_delayed_cksum(copym);
1544 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1545 copym->m_pkthdr.csum_flags |=
1546 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1547 copym->m_pkthdr.csum_data = 0xffff;
1548 }
1549 /*
1550 * We don't bother to fragment if the IP length is greater
1551 * than the interface's MTU. Can this possibly matter?
1552 */
1553 ip = mtod(copym, struct ip *);
1554 ip->ip_sum = 0;
1555 ip->ip_sum = in_cksum(copym, hlen);
1556 if_simloop(ifp, copym, AF_INET, 0);
1557 }
1558 }
1559