xref: /freebsd/sys/dev/otus/if_otus.c (revision 785edcc2af5ae32c24f5caf5b9552f62bdae33ee)
1 /*	$OpenBSD: if_otus.c,v 1.49 2015/11/24 13:33:18 mpi Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2015 Adrian Chadd <adrian@FreeBSD.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Atheros AR9001U chipset.
22  */
23 
24 #include <sys/cdefs.h>
25 #include "opt_wlan.h"
26 
27 #include <sys/param.h>
28 #include <sys/endian.h>
29 #include <sys/sockio.h>
30 #include <sys/mbuf.h>
31 #include <sys/kernel.h>
32 #include <sys/malloc.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/conf.h>
36 #include <sys/bus.h>
37 #include <sys/rman.h>
38 #include <sys/firmware.h>
39 #include <sys/module.h>
40 #include <sys/taskqueue.h>
41 
42 #include <machine/bus.h>
43 #include <machine/resource.h>
44 
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_arp.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/in_var.h>
55 #include <netinet/if_ether.h>
56 #include <netinet/ip.h>
57 
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_regdomain.h>
60 #include <net80211/ieee80211_radiotap.h>
61 #include <net80211/ieee80211_ratectl.h>
62 #ifdef	IEEE80211_SUPPORT_SUPERG
63 #include <net80211/ieee80211_superg.h>
64 #endif
65 
66 #include <dev/usb/usb.h>
67 #include <dev/usb/usbdi.h>
68 #include "usbdevs.h"
69 
70 #define USB_DEBUG_VAR otus_debug
71 #include <dev/usb/usb_debug.h>
72 
73 #include "if_otusreg.h"
74 
75 static int otus_debug = 0;
76 static SYSCTL_NODE(_hw_usb, OID_AUTO, otus, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
77     "USB otus");
78 SYSCTL_INT(_hw_usb_otus, OID_AUTO, debug, CTLFLAG_RWTUN, &otus_debug, 0,
79     "Debug level");
80 #define	OTUS_DEBUG_XMIT		0x00000001
81 #define	OTUS_DEBUG_RECV		0x00000002
82 #define	OTUS_DEBUG_TXDONE	0x00000004
83 #define	OTUS_DEBUG_RXDONE	0x00000008
84 #define	OTUS_DEBUG_CMD		0x00000010
85 #define	OTUS_DEBUG_CMDDONE	0x00000020
86 #define	OTUS_DEBUG_RESET	0x00000040
87 #define	OTUS_DEBUG_STATE	0x00000080
88 #define	OTUS_DEBUG_CMDNOTIFY	0x00000100
89 #define	OTUS_DEBUG_REGIO	0x00000200
90 #define	OTUS_DEBUG_IRQ		0x00000400
91 #define	OTUS_DEBUG_TXCOMP	0x00000800
92 #define	OTUS_DEBUG_RX_BUFFER	0x00001000
93 #define	OTUS_DEBUG_ANY		0xffffffff
94 
95 #define	OTUS_DPRINTF(sc, dm, ...) \
96 	do { \
97 		if ((dm == OTUS_DEBUG_ANY) || (dm & otus_debug)) \
98 			device_printf(sc->sc_dev, __VA_ARGS__); \
99 	} while (0)
100 #define	OTUS_DEV(v, p) { USB_VPI(v, p, 0) }
101 static const STRUCT_USB_HOST_ID otus_devs[] = {
102 	OTUS_DEV(USB_VENDOR_ACCTON,		USB_PRODUCT_ACCTON_WN7512),
103 	OTUS_DEV(USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_3CRUSBN275),
104 	OTUS_DEV(USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_TG121N),
105 	OTUS_DEV(USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_AR9170),
106 	OTUS_DEV(USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_WN612),
107 	OTUS_DEV(USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_WN821NV2),
108 	OTUS_DEV(USB_VENDOR_AVM,		USB_PRODUCT_AVM_FRITZWLAN),
109 	OTUS_DEV(USB_VENDOR_CACE,		USB_PRODUCT_CACE_AIRPCAPNX),
110 	OTUS_DEV(USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA130D1),
111 	OTUS_DEV(USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA160A1),
112 	OTUS_DEV(USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA160A2),
113 	OTUS_DEV(USB_VENDOR_IODATA,		USB_PRODUCT_IODATA_WNGDNUS2),
114 	OTUS_DEV(USB_VENDOR_NEC,		USB_PRODUCT_NEC_WL300NUG),
115 	OTUS_DEV(USB_VENDOR_NETGEAR,		USB_PRODUCT_NETGEAR_WN111V2),
116 	OTUS_DEV(USB_VENDOR_NETGEAR,		USB_PRODUCT_NETGEAR_WNA1000),
117 	OTUS_DEV(USB_VENDOR_NETGEAR,		USB_PRODUCT_NETGEAR_WNDA3100),
118 	OTUS_DEV(USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GW_US300),
119 	OTUS_DEV(USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_O8494),
120 	OTUS_DEV(USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_WNC0600),
121 	OTUS_DEV(USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_UB81),
122 	OTUS_DEV(USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_UB82),
123 	OTUS_DEV(USB_VENDOR_ZYDAS,		USB_PRODUCT_ZYDAS_ZD1221),
124 	OTUS_DEV(USB_VENDOR_ZYXEL,		USB_PRODUCT_ZYXEL_NWD271N),
125 };
126 
127 static device_probe_t otus_match;
128 static device_attach_t otus_attach;
129 static device_detach_t otus_detach;
130 
131 static int	otus_attachhook(struct otus_softc *);
132 static void	otus_getradiocaps(struct ieee80211com *, int, int *,
133 		    struct ieee80211_channel[]);
134 int		otus_load_firmware(struct otus_softc *, const char *,
135 		    uint32_t);
136 int		otus_open_pipes(struct otus_softc *);
137 void		otus_close_pipes(struct otus_softc *);
138 
139 static int	otus_alloc_tx_cmd_list(struct otus_softc *);
140 static void	otus_free_tx_cmd_list(struct otus_softc *);
141 
142 static int	otus_alloc_rx_list(struct otus_softc *);
143 static void	otus_free_rx_list(struct otus_softc *);
144 static int	otus_alloc_tx_list(struct otus_softc *);
145 static void	otus_free_tx_list(struct otus_softc *);
146 static void	otus_free_list(struct otus_softc *, struct otus_data [], int);
147 static struct otus_data *_otus_getbuf(struct otus_softc *);
148 static struct otus_data *otus_getbuf(struct otus_softc *);
149 static void	otus_freebuf(struct otus_softc *, struct otus_data *);
150 
151 static struct otus_tx_cmd *_otus_get_txcmd(struct otus_softc *);
152 static struct otus_tx_cmd *otus_get_txcmd(struct otus_softc *);
153 static void	otus_free_txcmd(struct otus_softc *, struct otus_tx_cmd *);
154 
155 void		otus_next_scan(void *, int);
156 static void	otus_tx_task(void *, int pending);
157 void		otus_do_async(struct otus_softc *,
158 		    void (*)(struct otus_softc *, void *), void *, int);
159 int		otus_newstate(struct ieee80211vap *, enum ieee80211_state,
160 		    int);
161 int		otus_cmd(struct otus_softc *, uint8_t, const void *, int,
162 		    void *, int);
163 void		otus_write(struct otus_softc *, uint32_t, uint32_t);
164 int		otus_write_barrier(struct otus_softc *);
165 static struct	ieee80211_node *otus_node_alloc(struct ieee80211vap *vap,
166 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
167 int		otus_read_eeprom(struct otus_softc *);
168 void		otus_newassoc(struct ieee80211_node *, int);
169 void		otus_cmd_rxeof(struct otus_softc *, uint8_t *, int);
170 void		otus_sub_rxeof(struct otus_softc *, uint8_t *, int,
171 		    struct mbufq *);
172 static int	otus_tx(struct otus_softc *, struct ieee80211_node *,
173 		    struct mbuf *, struct otus_data *,
174 		    const struct ieee80211_bpf_params *);
175 int		otus_ioctl(if_t, u_long, caddr_t);
176 int		otus_set_multi(struct otus_softc *);
177 static int	otus_updateedca(struct ieee80211com *);
178 static void	otus_updateedca_locked(struct otus_softc *);
179 static void	otus_updateslot(struct otus_softc *);
180 static void	otus_set_operating_mode(struct otus_softc *sc);
181 static void	otus_set_rx_filter(struct otus_softc *sc);
182 int		otus_init_mac(struct otus_softc *);
183 uint32_t	otus_phy_get_def(struct otus_softc *, uint32_t);
184 int		otus_set_board_values(struct otus_softc *,
185 		    struct ieee80211_channel *);
186 int		otus_program_phy(struct otus_softc *,
187 		    struct ieee80211_channel *);
188 int		otus_set_rf_bank4(struct otus_softc *,
189 		    struct ieee80211_channel *);
190 void		otus_get_delta_slope(uint32_t, uint32_t *, uint32_t *);
191 static int	otus_set_chan(struct otus_softc *, struct ieee80211_channel *,
192 		    int);
193 int		otus_set_key(struct ieee80211com *, struct ieee80211_node *,
194 		    struct ieee80211_key *);
195 void		otus_set_key_cb(struct otus_softc *, void *);
196 void		otus_delete_key(struct ieee80211com *, struct ieee80211_node *,
197 		    struct ieee80211_key *);
198 void		otus_delete_key_cb(struct otus_softc *, void *);
199 void		otus_calibrate_to(void *, int);
200 int		otus_set_bssid(struct otus_softc *, const uint8_t *);
201 int		otus_set_macaddr(struct otus_softc *, const uint8_t *);
202 void		otus_led_newstate_type1(struct otus_softc *);
203 void		otus_led_newstate_type2(struct otus_softc *);
204 void		otus_led_newstate_type3(struct otus_softc *);
205 int		otus_init(struct otus_softc *sc);
206 void		otus_stop(struct otus_softc *sc);
207 
208 static device_method_t otus_methods[] = {
209 	DEVMETHOD(device_probe,		otus_match),
210 	DEVMETHOD(device_attach,	otus_attach),
211 	DEVMETHOD(device_detach,	otus_detach),
212 
213 	DEVMETHOD_END
214 };
215 
216 static driver_t otus_driver = {
217 	.name = "otus",
218 	.methods = otus_methods,
219 	.size = sizeof(struct otus_softc)
220 };
221 
222 DRIVER_MODULE(otus, uhub, otus_driver, NULL, NULL);
223 MODULE_DEPEND(otus, wlan, 1, 1, 1);
224 MODULE_DEPEND(otus, usb, 1, 1, 1);
225 MODULE_DEPEND(otus, firmware, 1, 1, 1);
226 MODULE_VERSION(otus, 1);
227 
228 static usb_callback_t	otus_bulk_tx_callback;
229 static usb_callback_t	otus_bulk_rx_callback;
230 static usb_callback_t	otus_bulk_irq_callback;
231 static usb_callback_t	otus_bulk_cmd_callback;
232 
233 static const struct usb_config otus_config[OTUS_N_XFER] = {
234 	[OTUS_BULK_TX] = {
235 	.type = UE_BULK,
236 	.endpoint = UE_ADDR_ANY,
237 	.direction = UE_DIR_OUT,
238 	.bufsize = 0x200,
239 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
240 	.callback = otus_bulk_tx_callback,
241 	.timeout = 5000,	/* ms */
242 	},
243 	[OTUS_BULK_RX] = {
244 	.type = UE_BULK,
245 	.endpoint = UE_ADDR_ANY,
246 	.direction = UE_DIR_IN,
247 	.bufsize = OTUS_RXBUFSZ,
248 	.flags = { .ext_buffer = 1, .pipe_bof = 1,.short_xfer_ok = 1,},
249 	.callback = otus_bulk_rx_callback,
250 	},
251 	[OTUS_BULK_IRQ] = {
252 	.type = UE_INTERRUPT,
253 	.endpoint = UE_ADDR_ANY,
254 	.direction = UE_DIR_IN,
255 	.bufsize = OTUS_MAX_CTRLSZ,
256 	.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
257 	.callback = otus_bulk_irq_callback,
258 	},
259 	[OTUS_BULK_CMD] = {
260 	.type = UE_INTERRUPT,
261 	.endpoint = UE_ADDR_ANY,
262 	.direction = UE_DIR_OUT,
263 	.bufsize = OTUS_MAX_CTRLSZ,
264 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
265 	.callback = otus_bulk_cmd_callback,
266 	.timeout = 5000,	/* ms */
267 	},
268 };
269 
270 static int
otus_match(device_t self)271 otus_match(device_t self)
272 {
273 	struct usb_attach_arg *uaa = device_get_ivars(self);
274 
275 	if (uaa->usb_mode != USB_MODE_HOST ||
276 	    uaa->info.bIfaceIndex != 0 ||
277 	    uaa->info.bConfigIndex != 0)
278 	return (ENXIO);
279 
280 	return (usbd_lookup_id_by_uaa(otus_devs, sizeof(otus_devs), uaa));
281 }
282 
283 static int
otus_attach(device_t self)284 otus_attach(device_t self)
285 {
286 	struct usb_attach_arg *uaa = device_get_ivars(self);
287 	struct otus_softc *sc = device_get_softc(self);
288 	int error;
289 	uint8_t iface_index;
290 
291 	device_set_usb_desc(self);
292 	sc->sc_udev = uaa->device;
293 	sc->sc_dev = self;
294 
295 	mtx_init(&sc->sc_mtx, device_get_nameunit(self), MTX_NETWORK_LOCK,
296 	    MTX_DEF);
297 
298 	TIMEOUT_TASK_INIT(taskqueue_thread, &sc->scan_to, 0, otus_next_scan, sc);
299 	TIMEOUT_TASK_INIT(taskqueue_thread, &sc->calib_to, 0, otus_calibrate_to, sc);
300 	TASK_INIT(&sc->tx_task, 0, otus_tx_task, sc);
301 	mbufq_init(&sc->sc_snd, ifqmaxlen);
302 
303 	iface_index = 0;
304 	error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer,
305 	    otus_config, OTUS_N_XFER, sc, &sc->sc_mtx);
306 	if (error) {
307 		device_printf(sc->sc_dev,
308 		    "could not allocate USB transfers, err=%s\n",
309 		    usbd_errstr(error));
310 		goto fail_usb;
311 	}
312 
313 	if ((error = otus_open_pipes(sc)) != 0) {
314 		device_printf(sc->sc_dev, "%s: could not open pipes\n",
315 		    __func__);
316 		goto fail;
317 	}
318 
319 	/* XXX check return status; fail out if appropriate */
320 	if (otus_attachhook(sc) != 0)
321 		goto fail;
322 
323 	return (0);
324 
325 fail:
326 	otus_close_pipes(sc);
327 fail_usb:
328 	mtx_destroy(&sc->sc_mtx);
329 	return (ENXIO);
330 }
331 
332 static int
otus_detach(device_t self)333 otus_detach(device_t self)
334 {
335 	struct otus_softc *sc = device_get_softc(self);
336 	struct ieee80211com *ic = &sc->sc_ic;
337 
338 	otus_stop(sc);
339 
340 	usbd_transfer_unsetup(sc->sc_xfer, OTUS_N_XFER);
341 
342 	taskqueue_drain_timeout(taskqueue_thread, &sc->scan_to);
343 	taskqueue_drain_timeout(taskqueue_thread, &sc->calib_to);
344 	taskqueue_drain(taskqueue_thread, &sc->tx_task);
345 
346 	otus_close_pipes(sc);
347 #if 0
348 	/* Wait for all queued asynchronous commands to complete. */
349 	usb_rem_wait_task(sc->sc_udev, &sc->sc_task);
350 
351 	usbd_ref_wait(sc->sc_udev);
352 #endif
353 
354 	ieee80211_ifdetach(ic);
355 	mtx_destroy(&sc->sc_mtx);
356 	return 0;
357 }
358 
359 static void
otus_delay_ms(struct otus_softc * sc,int ms)360 otus_delay_ms(struct otus_softc *sc, int ms)
361 {
362 
363 	DELAY(1000 * ms);
364 }
365 
366 static struct ieee80211vap *
otus_vap_create(struct ieee80211com * ic,const char name[IFNAMSIZ],int unit,enum ieee80211_opmode opmode,int flags,const uint8_t bssid[IEEE80211_ADDR_LEN],const uint8_t mac[IEEE80211_ADDR_LEN])367 otus_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
368     enum ieee80211_opmode opmode, int flags,
369     const uint8_t bssid[IEEE80211_ADDR_LEN],
370     const uint8_t mac[IEEE80211_ADDR_LEN])
371 {
372 	struct otus_vap *uvp;
373 	struct ieee80211vap *vap;
374 
375 	if (!TAILQ_EMPTY(&ic->ic_vaps))	 /* only one at a time */
376 		return (NULL);
377 
378 	uvp =  malloc(sizeof(struct otus_vap), M_80211_VAP, M_WAITOK | M_ZERO);
379 	vap = &uvp->vap;
380 
381 	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
382 	    flags, bssid) != 0) {
383 		/* out of memory */
384 		free(uvp, M_80211_VAP);
385 		return (NULL);
386 	}
387 
388 	/* override state transition machine */
389 	uvp->newstate = vap->iv_newstate;
390 	vap->iv_newstate = otus_newstate;
391 
392 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
393 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
394 
395 	ieee80211_ratectl_init(vap);
396 
397 	/* complete setup */
398 	ieee80211_vap_attach(vap, ieee80211_media_change,
399 	    ieee80211_media_status, mac);
400 	ic->ic_opmode = opmode;
401 
402 	return (vap);
403 }
404 
405 static void
otus_vap_delete(struct ieee80211vap * vap)406 otus_vap_delete(struct ieee80211vap *vap)
407 {
408 	struct otus_vap *uvp = OTUS_VAP(vap);
409 
410 	ieee80211_ratectl_deinit(vap);
411 	ieee80211_vap_detach(vap);
412 	free(uvp, M_80211_VAP);
413 }
414 
415 static void
otus_parent(struct ieee80211com * ic)416 otus_parent(struct ieee80211com *ic)
417 {
418 	struct otus_softc *sc = ic->ic_softc;
419 	int startall = 0;
420 
421 	if (ic->ic_nrunning > 0) {
422 		if (!sc->sc_running) {
423 			otus_init(sc);
424 			startall = 1;
425 		} else {
426 			(void) otus_set_multi(sc);
427 		}
428 	} else if (sc->sc_running)
429 		otus_stop(sc);
430 
431 	if (startall)
432 		ieee80211_start_all(ic);
433 }
434 
435 static void
otus_drain_mbufq(struct otus_softc * sc)436 otus_drain_mbufq(struct otus_softc *sc)
437 {
438 	struct mbuf *m;
439 	struct ieee80211_node *ni;
440 
441 	OTUS_LOCK_ASSERT(sc);
442 	while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
443 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
444 		m->m_pkthdr.rcvif = NULL;
445 		ieee80211_free_node(ni);
446 		m_freem(m);
447 	}
448 }
449 
450 static void
otus_tx_start(struct otus_softc * sc)451 otus_tx_start(struct otus_softc *sc)
452 {
453 
454 	taskqueue_enqueue(taskqueue_thread, &sc->tx_task);
455 }
456 
457 static int
otus_transmit(struct ieee80211com * ic,struct mbuf * m)458 otus_transmit(struct ieee80211com *ic, struct mbuf *m)
459 {
460 	struct otus_softc *sc = ic->ic_softc;
461 	int error;
462 
463 	OTUS_LOCK(sc);
464 	if (! sc->sc_running) {
465 		OTUS_UNLOCK(sc);
466 		return (ENXIO);
467 	}
468 
469 	/* XXX TODO: handle fragments */
470 	error = mbufq_enqueue(&sc->sc_snd, m);
471 	if (error) {
472 		OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT,
473 		    "%s: mbufq_enqueue failed: %d\n",
474 		    __func__,
475 		    error);
476 		OTUS_UNLOCK(sc);
477 		return (error);
478 	}
479 	OTUS_UNLOCK(sc);
480 
481 	/* Kick TX */
482 	otus_tx_start(sc);
483 
484 	return (0);
485 }
486 
487 static void
_otus_start(struct otus_softc * sc)488 _otus_start(struct otus_softc *sc)
489 {
490 	struct ieee80211_node *ni;
491 	struct otus_data *bf;
492 	struct mbuf *m;
493 
494 	OTUS_LOCK_ASSERT(sc);
495 
496 	while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
497 		bf = otus_getbuf(sc);
498 		if (bf == NULL) {
499 			OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT,
500 			    "%s: failed to get buffer\n", __func__);
501 			mbufq_prepend(&sc->sc_snd, m);
502 			break;
503 		}
504 
505 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
506 		m->m_pkthdr.rcvif = NULL;
507 
508 		if (otus_tx(sc, ni, m, bf, NULL) != 0) {
509 			OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT,
510 			    "%s: failed to transmit\n", __func__);
511 			if_inc_counter(ni->ni_vap->iv_ifp,
512 			    IFCOUNTER_OERRORS, 1);
513 			otus_freebuf(sc, bf);
514 			ieee80211_free_node(ni);
515 			m_freem(m);
516 			break;
517 		}
518 	}
519 }
520 
521 static void
otus_tx_task(void * arg,int pending)522 otus_tx_task(void *arg, int pending)
523 {
524 	struct otus_softc *sc = arg;
525 
526 	OTUS_LOCK(sc);
527 	_otus_start(sc);
528 	OTUS_UNLOCK(sc);
529 }
530 
531 static int
otus_raw_xmit(struct ieee80211_node * ni,struct mbuf * m,const struct ieee80211_bpf_params * params)532 otus_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
533     const struct ieee80211_bpf_params *params)
534 {
535 	struct ieee80211com *ic= ni->ni_ic;
536 	struct otus_softc *sc = ic->ic_softc;
537 	struct otus_data *bf = NULL;
538 	int error = 0;
539 
540 	/* Don't transmit if we're not running */
541 	OTUS_LOCK(sc);
542 	if (! sc->sc_running) {
543 		error = ENETDOWN;
544 		goto error;
545 	}
546 
547 	bf = otus_getbuf(sc);
548 	if (bf == NULL) {
549 		error = ENOBUFS;
550 		goto error;
551 	}
552 
553 	if (otus_tx(sc, ni, m, bf, params) != 0) {
554 		error = EIO;
555 		goto error;
556 	}
557 
558 	OTUS_UNLOCK(sc);
559 	return (0);
560 error:
561 	if (bf)
562 		otus_freebuf(sc, bf);
563 	OTUS_UNLOCK(sc);
564 	m_freem(m);
565 	return (error);
566 }
567 
568 static void
otus_update_chw(struct ieee80211com * ic)569 otus_update_chw(struct ieee80211com *ic)
570 {
571 
572 	printf("%s: TODO\n", __func__);
573 }
574 
575 static void
otus_set_channel(struct ieee80211com * ic)576 otus_set_channel(struct ieee80211com *ic)
577 {
578 	struct otus_softc *sc = ic->ic_softc;
579 	OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "%s: set channel: %d\n",
580 	    __func__,
581 	    ic->ic_curchan->ic_freq);
582 
583 	OTUS_LOCK(sc);
584 	(void) otus_set_chan(sc, ic->ic_curchan, 0);
585 	OTUS_UNLOCK(sc);
586 }
587 
588 static int
otus_ampdu_enable(struct ieee80211_node * ni,struct ieee80211_tx_ampdu * tap)589 otus_ampdu_enable(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
590 {
591 
592 	/* For now, no A-MPDU TX support in the driver */
593 	return (0);
594 }
595 
596 static void
otus_scan_start(struct ieee80211com * ic)597 otus_scan_start(struct ieee80211com *ic)
598 {
599 
600 //	printf("%s: TODO\n", __func__);
601 }
602 
603 static void
otus_scan_end(struct ieee80211com * ic)604 otus_scan_end(struct ieee80211com *ic)
605 {
606 
607 //	printf("%s: TODO\n", __func__);
608 }
609 
610 static void
otus_update_mcast(struct ieee80211com * ic)611 otus_update_mcast(struct ieee80211com *ic)
612 {
613 	struct otus_softc *sc = ic->ic_softc;
614 
615 	(void) otus_set_multi(sc);
616 }
617 
618 static int
otus_attachhook(struct otus_softc * sc)619 otus_attachhook(struct otus_softc *sc)
620 {
621 	struct ieee80211com *ic = &sc->sc_ic;
622 	usb_device_request_t req;
623 	uint32_t in, out;
624 	int error;
625 
626 	/* Not locked */
627 	error = otus_load_firmware(sc, "otusfw_init", AR_FW_INIT_ADDR);
628 	if (error != 0) {
629 		device_printf(sc->sc_dev, "%s: could not load %s firmware\n",
630 		    __func__, "init");
631 		return (ENXIO);
632 	}
633 
634 	/* XXX not locked? */
635 	otus_delay_ms(sc, 1000);
636 
637 	/* Not locked */
638 	error = otus_load_firmware(sc, "otusfw_main", AR_FW_MAIN_ADDR);
639 	if (error != 0) {
640 		device_printf(sc->sc_dev, "%s: could not load %s firmware\n",
641 		    __func__, "main");
642 		return (ENXIO);
643 	}
644 
645 	OTUS_LOCK(sc);
646 
647 	/* Tell device that firmware transfer is complete. */
648 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
649 	req.bRequest = AR_FW_DOWNLOAD_COMPLETE;
650 	USETW(req.wValue, 0);
651 	USETW(req.wIndex, 0);
652 	USETW(req.wLength, 0);
653 	if (usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, &req, NULL,
654 	    0, NULL, 250) != 0) {
655 		OTUS_UNLOCK(sc);
656 		device_printf(sc->sc_dev,
657 		    "%s: firmware initialization failed\n",
658 		    __func__);
659 		return (ENXIO);
660 	}
661 
662 	/* Send an ECHO command to check that everything is settled. */
663 	in = 0xbadc0ffe;
664 	if (otus_cmd(sc, AR_CMD_ECHO, &in, sizeof in, &out, sizeof(out)) != 0) {
665 		OTUS_UNLOCK(sc);
666 		device_printf(sc->sc_dev,
667 		    "%s: echo command failed\n", __func__);
668 		return (ENXIO);
669 	}
670 	if (in != out) {
671 		OTUS_UNLOCK(sc);
672 		device_printf(sc->sc_dev,
673 		    "%s: echo reply mismatch: 0x%08x!=0x%08x\n",
674 		    __func__, in, out);
675 		return (ENXIO);
676 	}
677 
678 	/* Read entire EEPROM. */
679 	if (otus_read_eeprom(sc) != 0) {
680 		OTUS_UNLOCK(sc);
681 		device_printf(sc->sc_dev,
682 		    "%s: could not read EEPROM\n",
683 		    __func__);
684 		return (ENXIO);
685 	}
686 
687 	OTUS_UNLOCK(sc);
688 
689 	sc->txmask = sc->eeprom.baseEepHeader.txMask;
690 	sc->rxmask = sc->eeprom.baseEepHeader.rxMask;
691 	sc->capflags = sc->eeprom.baseEepHeader.opCapFlags;
692 	IEEE80211_ADDR_COPY(ic->ic_macaddr, sc->eeprom.baseEepHeader.macAddr);
693 	sc->sc_led_newstate = otus_led_newstate_type3;	/* XXX */
694 
695 	if (sc->txmask == 0x5)
696 		ic->ic_txstream = 2;
697 	else
698 		ic->ic_txstream = 1;
699 
700 	if (sc->rxmask == 0x5)
701 		ic->ic_rxstream = 2;
702 	else
703 		ic->ic_rxstream = 1;
704 
705 	device_printf(sc->sc_dev,
706 	    "MAC/BBP AR9170, RF AR%X, MIMO %dT%dR, address %s\n",
707 	    (sc->capflags & AR5416_OPFLAGS_11A) ?
708 		0x9104 : ((sc->txmask == 0x5) ? 0x9102 : 0x9101),
709 	    (sc->txmask == 0x5) ? 2 : 1, (sc->rxmask == 0x5) ? 2 : 1,
710 	    ether_sprintf(ic->ic_macaddr));
711 
712 	ic->ic_softc = sc;
713 	ic->ic_name = device_get_nameunit(sc->sc_dev);
714 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
715 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
716 
717 	/* Set device capabilities. */
718 	ic->ic_caps =
719 	    IEEE80211_C_STA |		/* station mode */
720 #if 0
721 	    IEEE80211_C_BGSCAN |	/* Background scan. */
722 #endif
723 	    IEEE80211_C_SHPREAMBLE |	/* Short preamble supported. */
724 	    IEEE80211_C_WME |		/* WME/QoS */
725 	    IEEE80211_C_SHSLOT |	/* Short slot time supported. */
726 	    IEEE80211_C_FF |		/* Atheros fast-frames supported. */
727 	    IEEE80211_C_MONITOR |	/* Enable monitor mode */
728 	    IEEE80211_C_SWAMSDUTX |	/* Do software A-MSDU TX */
729 	    IEEE80211_C_WPA;		/* WPA/RSN. */
730 
731 	/*
732 	 * Although A-MPDU RX is fine, A-MPDU TX apparently has some
733 	 * hardware bugs.  Looking at Linux carl9170, it has a work-around
734 	 * that forces all frames into the AC_BE queue regardless of
735 	 * the actual QoS queue.
736 	 */
737 	ic->ic_htcaps =
738 	    IEEE80211_HTC_HT |
739 #if 0
740 	    IEEE80211_HTC_AMPDU |
741 #endif
742 	    IEEE80211_HTC_AMSDU |
743 	    IEEE80211_HTCAP_MAXAMSDU_3839 |
744 	    IEEE80211_HTCAP_SMPS_OFF;
745 
746 	ic->ic_flags_ext |= IEEE80211_FEXT_SEQNO_OFFLOAD;
747 
748 	otus_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
749 	    ic->ic_channels);
750 
751 	ieee80211_ifattach(ic);
752 	ic->ic_raw_xmit = otus_raw_xmit;
753 	ic->ic_scan_start = otus_scan_start;
754 	ic->ic_scan_end = otus_scan_end;
755 	ic->ic_set_channel = otus_set_channel;
756 	ic->ic_getradiocaps = otus_getradiocaps;
757 	ic->ic_vap_create = otus_vap_create;
758 	ic->ic_vap_delete = otus_vap_delete;
759 	ic->ic_update_mcast = otus_update_mcast;
760 	ic->ic_update_promisc = otus_update_mcast;
761 	ic->ic_parent = otus_parent;
762 	ic->ic_transmit = otus_transmit;
763 	ic->ic_update_chw = otus_update_chw;
764 	ic->ic_ampdu_enable = otus_ampdu_enable;
765 	ic->ic_wme.wme_update = otus_updateedca;
766 	ic->ic_newassoc = otus_newassoc;
767 	ic->ic_node_alloc = otus_node_alloc;
768 
769 #ifdef notyet
770 	ic->ic_set_key = otus_set_key;
771 	ic->ic_delete_key = otus_delete_key;
772 #endif
773 
774 	ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr,
775 	    sizeof(sc->sc_txtap), OTUS_TX_RADIOTAP_PRESENT,
776 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
777 	    OTUS_RX_RADIOTAP_PRESENT);
778 
779 	return (0);
780 }
781 
782 static void
otus_getradiocaps(struct ieee80211com * ic,int maxchans,int * nchans,struct ieee80211_channel chans[])783 otus_getradiocaps(struct ieee80211com *ic,
784     int maxchans, int *nchans, struct ieee80211_channel chans[])
785 {
786 	struct otus_softc *sc = ic->ic_softc;
787 	uint8_t bands[IEEE80211_MODE_BYTES];
788 
789 	/* Set supported .11b and .11g rates. */
790 	memset(bands, 0, sizeof(bands));
791 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) {
792 		setbit(bands, IEEE80211_MODE_11B);
793 		setbit(bands, IEEE80211_MODE_11G);
794 		setbit(bands, IEEE80211_MODE_11NG);
795 		ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
796 		    ar_chans, 14, bands, 0);
797 	}
798 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) {
799 		setbit(bands, IEEE80211_MODE_11A);
800 		setbit(bands, IEEE80211_MODE_11NA);
801 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
802                     &ar_chans[14], nitems(ar_chans) - 14, bands, 0);
803 	}
804 }
805 
806 int
otus_load_firmware(struct otus_softc * sc,const char * name,uint32_t addr)807 otus_load_firmware(struct otus_softc *sc, const char *name, uint32_t addr)
808 {
809 	usb_device_request_t req;
810 	char *ptr;
811 	const struct firmware *fw;
812 	int mlen, error, size;
813 
814 	error = 0;
815 
816 	/* Read firmware image from the filesystem. */
817 	if ((fw = firmware_get(name)) == NULL) {
818 		device_printf(sc->sc_dev,
819 		    "%s: failed loadfirmware of file %s\n", __func__, name);
820 		return (ENXIO);
821 	}
822 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
823 	req.bRequest = AR_FW_DOWNLOAD;
824 	USETW(req.wIndex, 0);
825 
826 	OTUS_LOCK(sc);
827 
828 	/* XXX const */
829 	ptr = __DECONST(char *, fw->data);
830 	size = fw->datasize;
831 	addr >>= 8;
832 	while (size > 0) {
833 		mlen = MIN(size, 4096);
834 
835 		USETW(req.wValue, addr);
836 		USETW(req.wLength, mlen);
837 		if (usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
838 		    &req, ptr, 0, NULL, 250) != 0) {
839 			error = EIO;
840 			break;
841 		}
842 		addr += mlen >> 8;
843 		ptr  += mlen;
844 		size -= mlen;
845 	}
846 
847 	OTUS_UNLOCK(sc);
848 
849 	firmware_put(fw, FIRMWARE_UNLOAD);
850 	if (error != 0)
851 		device_printf(sc->sc_dev,
852 		    "%s: %s: error=%d\n", __func__, name, error);
853 	return error;
854 }
855 
856 int
otus_open_pipes(struct otus_softc * sc)857 otus_open_pipes(struct otus_softc *sc)
858 {
859 #if 0
860 	int isize, error;
861 	int i;
862 #endif
863 	int error;
864 
865 	OTUS_UNLOCK_ASSERT(sc);
866 
867 	if ((error = otus_alloc_tx_cmd_list(sc)) != 0) {
868 		device_printf(sc->sc_dev,
869 		    "%s: could not allocate command xfer\n",
870 		    __func__);
871 		goto fail;
872 	}
873 
874 	if ((error = otus_alloc_tx_list(sc)) != 0) {
875 		device_printf(sc->sc_dev, "%s: could not allocate Tx xfers\n",
876 		    __func__);
877 		goto fail;
878 	}
879 
880 	if ((error = otus_alloc_rx_list(sc)) != 0) {
881 		device_printf(sc->sc_dev, "%s: could not allocate Rx xfers\n",
882 		    __func__);
883 		goto fail;
884 	}
885 
886 	/* Enable RX transfers; needed for initial firmware messages */
887 	OTUS_LOCK(sc);
888 	usbd_transfer_start(sc->sc_xfer[OTUS_BULK_RX]);
889 	usbd_transfer_start(sc->sc_xfer[OTUS_BULK_IRQ]);
890 	OTUS_UNLOCK(sc);
891 	return 0;
892 
893 fail:	otus_close_pipes(sc);
894 	return error;
895 }
896 
897 void
otus_close_pipes(struct otus_softc * sc)898 otus_close_pipes(struct otus_softc *sc)
899 {
900 
901 	OTUS_LOCK(sc);
902 	otus_free_tx_cmd_list(sc);
903 	otus_free_tx_list(sc);
904 	otus_free_rx_list(sc);
905 	OTUS_UNLOCK(sc);
906 
907 	usbd_transfer_unsetup(sc->sc_xfer, OTUS_N_XFER);
908 }
909 
910 static void
otus_free_cmd_list(struct otus_softc * sc,struct otus_tx_cmd cmd[],int ndata)911 otus_free_cmd_list(struct otus_softc *sc, struct otus_tx_cmd cmd[], int ndata)
912 {
913 	int i;
914 
915 	/* XXX TODO: someone has to have waken up waiters! */
916 	for (i = 0; i < ndata; i++) {
917 		struct otus_tx_cmd *dp = &cmd[i];
918 
919 		if (dp->buf != NULL) {
920 			free(dp->buf, M_USBDEV);
921 			dp->buf = NULL;
922 		}
923 	}
924 }
925 
926 static int
otus_alloc_cmd_list(struct otus_softc * sc,struct otus_tx_cmd cmd[],int ndata,int maxsz)927 otus_alloc_cmd_list(struct otus_softc *sc, struct otus_tx_cmd cmd[],
928     int ndata, int maxsz)
929 {
930 	int i, error;
931 
932 	for (i = 0; i < ndata; i++) {
933 		struct otus_tx_cmd *dp = &cmd[i];
934 		dp->buf = malloc(maxsz, M_USBDEV, M_NOWAIT | M_ZERO);
935 		dp->odata = NULL;
936 		if (dp->buf == NULL) {
937 			device_printf(sc->sc_dev,
938 			    "could not allocate buffer\n");
939 			error = ENOMEM;
940 			goto fail;
941 		}
942 	}
943 
944 	return (0);
945 fail:
946 	otus_free_cmd_list(sc, cmd, ndata);
947 	return (error);
948 }
949 
950 static int
otus_alloc_tx_cmd_list(struct otus_softc * sc)951 otus_alloc_tx_cmd_list(struct otus_softc *sc)
952 {
953 	int error, i;
954 
955 	error = otus_alloc_cmd_list(sc, sc->sc_cmd, OTUS_CMD_LIST_COUNT,
956 	    OTUS_MAX_TXCMDSZ);
957 	if (error != 0)
958 		return (error);
959 
960 	STAILQ_INIT(&sc->sc_cmd_active);
961 	STAILQ_INIT(&sc->sc_cmd_inactive);
962 	STAILQ_INIT(&sc->sc_cmd_pending);
963 	STAILQ_INIT(&sc->sc_cmd_waiting);
964 
965 	for (i = 0; i < OTUS_CMD_LIST_COUNT; i++)
966 		STAILQ_INSERT_HEAD(&sc->sc_cmd_inactive, &sc->sc_cmd[i],
967 		    next_cmd);
968 
969 	return (0);
970 }
971 
972 static void
otus_free_tx_cmd_list(struct otus_softc * sc)973 otus_free_tx_cmd_list(struct otus_softc *sc)
974 {
975 
976 	/*
977 	 * XXX TODO: something needs to wake up any pending/sleeping
978 	 * waiters!
979 	 */
980 	STAILQ_INIT(&sc->sc_cmd_active);
981 	STAILQ_INIT(&sc->sc_cmd_inactive);
982 	STAILQ_INIT(&sc->sc_cmd_pending);
983 	STAILQ_INIT(&sc->sc_cmd_waiting);
984 
985 	otus_free_cmd_list(sc, sc->sc_cmd, OTUS_CMD_LIST_COUNT);
986 }
987 
988 static int
otus_alloc_list(struct otus_softc * sc,struct otus_data data[],int ndata,int maxsz)989 otus_alloc_list(struct otus_softc *sc, struct otus_data data[],
990     int ndata, int maxsz)
991 {
992 	int i, error;
993 
994 	for (i = 0; i < ndata; i++) {
995 		struct otus_data *dp = &data[i];
996 		dp->sc = sc;
997 		dp->m = NULL;
998 		dp->buf = malloc(maxsz, M_USBDEV, M_NOWAIT | M_ZERO);
999 		if (dp->buf == NULL) {
1000 			device_printf(sc->sc_dev,
1001 			    "could not allocate buffer\n");
1002 			error = ENOMEM;
1003 			goto fail;
1004 		}
1005 		dp->ni = NULL;
1006 	}
1007 
1008 	return (0);
1009 fail:
1010 	otus_free_list(sc, data, ndata);
1011 	return (error);
1012 }
1013 
1014 static int
otus_alloc_rx_list(struct otus_softc * sc)1015 otus_alloc_rx_list(struct otus_softc *sc)
1016 {
1017 	int error, i;
1018 
1019 	error = otus_alloc_list(sc, sc->sc_rx, OTUS_RX_LIST_COUNT,
1020 	    OTUS_RXBUFSZ);
1021 	if (error != 0)
1022 		return (error);
1023 
1024 	STAILQ_INIT(&sc->sc_rx_active);
1025 	STAILQ_INIT(&sc->sc_rx_inactive);
1026 
1027 	for (i = 0; i < OTUS_RX_LIST_COUNT; i++)
1028 		STAILQ_INSERT_HEAD(&sc->sc_rx_inactive, &sc->sc_rx[i], next);
1029 
1030 	return (0);
1031 }
1032 
1033 static int
otus_alloc_tx_list(struct otus_softc * sc)1034 otus_alloc_tx_list(struct otus_softc *sc)
1035 {
1036 	int error, i;
1037 
1038 	error = otus_alloc_list(sc, sc->sc_tx, OTUS_TX_LIST_COUNT,
1039 	    OTUS_TXBUFSZ);
1040 	if (error != 0)
1041 		return (error);
1042 
1043 	STAILQ_INIT(&sc->sc_tx_inactive);
1044 
1045 	for (i = 0; i != OTUS_N_XFER; i++) {
1046 		STAILQ_INIT(&sc->sc_tx_active[i]);
1047 		STAILQ_INIT(&sc->sc_tx_pending[i]);
1048 	}
1049 
1050 	for (i = 0; i < OTUS_TX_LIST_COUNT; i++) {
1051 		STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, &sc->sc_tx[i], next);
1052 	}
1053 
1054 	return (0);
1055 }
1056 
1057 static void
otus_free_tx_list(struct otus_softc * sc)1058 otus_free_tx_list(struct otus_softc *sc)
1059 {
1060 	int i;
1061 
1062 	/* prevent further allocations from TX list(s) */
1063 	STAILQ_INIT(&sc->sc_tx_inactive);
1064 
1065 	for (i = 0; i != OTUS_N_XFER; i++) {
1066 		STAILQ_INIT(&sc->sc_tx_active[i]);
1067 		STAILQ_INIT(&sc->sc_tx_pending[i]);
1068 	}
1069 
1070 	otus_free_list(sc, sc->sc_tx, OTUS_TX_LIST_COUNT);
1071 }
1072 
1073 static void
otus_free_rx_list(struct otus_softc * sc)1074 otus_free_rx_list(struct otus_softc *sc)
1075 {
1076 	/* prevent further allocations from RX list(s) */
1077 	STAILQ_INIT(&sc->sc_rx_inactive);
1078 	STAILQ_INIT(&sc->sc_rx_active);
1079 
1080 	otus_free_list(sc, sc->sc_rx, OTUS_RX_LIST_COUNT);
1081 }
1082 
1083 static void
otus_free_list(struct otus_softc * sc,struct otus_data data[],int ndata)1084 otus_free_list(struct otus_softc *sc, struct otus_data data[], int ndata)
1085 {
1086 	int i;
1087 
1088 	for (i = 0; i < ndata; i++) {
1089 		struct otus_data *dp = &data[i];
1090 
1091 		if (dp->buf != NULL) {
1092 			free(dp->buf, M_USBDEV);
1093 			dp->buf = NULL;
1094 		}
1095 		if (dp->ni != NULL) {
1096 			ieee80211_free_node(dp->ni);
1097 			dp->ni = NULL;
1098 		}
1099 	}
1100 }
1101 
1102 static struct otus_data *
_otus_getbuf(struct otus_softc * sc)1103 _otus_getbuf(struct otus_softc *sc)
1104 {
1105 	struct otus_data *bf;
1106 
1107 	bf = STAILQ_FIRST(&sc->sc_tx_inactive);
1108 	if (bf != NULL)
1109 		STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next);
1110 	else
1111 		bf = NULL;
1112 	/* XXX bzero? */
1113 	return (bf);
1114 }
1115 
1116 static struct otus_data *
otus_getbuf(struct otus_softc * sc)1117 otus_getbuf(struct otus_softc *sc)
1118 {
1119 	struct otus_data *bf;
1120 
1121 	OTUS_LOCK_ASSERT(sc);
1122 
1123 	bf = _otus_getbuf(sc);
1124 	return (bf);
1125 }
1126 
1127 static void
otus_freebuf(struct otus_softc * sc,struct otus_data * bf)1128 otus_freebuf(struct otus_softc *sc, struct otus_data *bf)
1129 {
1130 
1131 	OTUS_LOCK_ASSERT(sc);
1132 	STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, bf, next);
1133 }
1134 
1135 static struct otus_tx_cmd *
_otus_get_txcmd(struct otus_softc * sc)1136 _otus_get_txcmd(struct otus_softc *sc)
1137 {
1138 	struct otus_tx_cmd *bf;
1139 
1140 	bf = STAILQ_FIRST(&sc->sc_cmd_inactive);
1141 	if (bf != NULL)
1142 		STAILQ_REMOVE_HEAD(&sc->sc_cmd_inactive, next_cmd);
1143 	else
1144 		bf = NULL;
1145 	return (bf);
1146 }
1147 
1148 static struct otus_tx_cmd *
otus_get_txcmd(struct otus_softc * sc)1149 otus_get_txcmd(struct otus_softc *sc)
1150 {
1151 	struct otus_tx_cmd *bf;
1152 
1153 	OTUS_LOCK_ASSERT(sc);
1154 
1155 	bf = _otus_get_txcmd(sc);
1156 	if (bf == NULL) {
1157 		device_printf(sc->sc_dev, "%s: no tx cmd buffers\n",
1158 		    __func__);
1159 	}
1160 	return (bf);
1161 }
1162 
1163 static void
otus_free_txcmd(struct otus_softc * sc,struct otus_tx_cmd * bf)1164 otus_free_txcmd(struct otus_softc *sc, struct otus_tx_cmd *bf)
1165 {
1166 
1167 	OTUS_LOCK_ASSERT(sc);
1168 	STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, bf, next_cmd);
1169 }
1170 
1171 void
otus_next_scan(void * arg,int pending)1172 otus_next_scan(void *arg, int pending)
1173 {
1174 #if 0
1175 	struct otus_softc *sc = arg;
1176 
1177 	if (usbd_is_dying(sc->sc_udev))
1178 		return;
1179 
1180 	usbd_ref_incr(sc->sc_udev);
1181 
1182 	if (sc->sc_ic.ic_state == IEEE80211_S_SCAN)
1183 		ieee80211_next_scan(&sc->sc_ic.ic_if);
1184 
1185 	usbd_ref_decr(sc->sc_udev);
1186 #endif
1187 }
1188 
1189 int
otus_newstate(struct ieee80211vap * vap,enum ieee80211_state nstate,int arg)1190 otus_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1191 {
1192 	struct otus_vap *uvp = OTUS_VAP(vap);
1193 	struct ieee80211com *ic = vap->iv_ic;
1194 	struct otus_softc *sc = ic->ic_softc;
1195 	enum ieee80211_state ostate;
1196 
1197 	ostate = vap->iv_state;
1198 	OTUS_DPRINTF(sc, OTUS_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1199 	    ieee80211_state_name[ostate],
1200 	    ieee80211_state_name[nstate]);
1201 
1202 	IEEE80211_UNLOCK(ic);
1203 
1204 	OTUS_LOCK(sc);
1205 
1206 	/* XXX TODO: more fleshing out! */
1207 
1208 	switch (nstate) {
1209 	case IEEE80211_S_INIT:
1210 		otus_set_operating_mode(sc);
1211 		otus_set_rx_filter(sc);
1212 		break;
1213 	case IEEE80211_S_RUN:
1214 		if (ic->ic_opmode == IEEE80211_M_STA) {
1215 			otus_updateslot(sc);
1216 			otus_set_operating_mode(sc);
1217 			otus_set_rx_filter(sc);
1218 
1219 			/* Start calibration timer. */
1220 			taskqueue_enqueue_timeout(taskqueue_thread,
1221 			    &sc->calib_to, hz);
1222 		}
1223 		break;
1224 	default:
1225 		break;
1226 	}
1227 
1228 	/* XXX TODO: calibration? */
1229 
1230 	sc->sc_led_newstate(sc);
1231 
1232 	OTUS_UNLOCK(sc);
1233 	IEEE80211_LOCK(ic);
1234 	return (uvp->newstate(vap, nstate, arg));
1235 }
1236 
1237 int
otus_cmd(struct otus_softc * sc,uint8_t code,const void * idata,int ilen,void * odata,int odatalen)1238 otus_cmd(struct otus_softc *sc, uint8_t code, const void *idata, int ilen,
1239     void *odata, int odatalen)
1240 {
1241 	struct otus_tx_cmd *cmd;
1242 	struct ar_cmd_hdr *hdr;
1243 	int xferlen, error;
1244 
1245 	OTUS_LOCK_ASSERT(sc);
1246 
1247 	/* Always bulk-out a multiple of 4 bytes. */
1248 	xferlen = (sizeof (*hdr) + ilen + 3) & ~3;
1249 	if (xferlen > OTUS_MAX_TXCMDSZ) {
1250 		device_printf(sc->sc_dev, "%s: command (0x%02x) size (%d) > %d\n",
1251 		    __func__,
1252 		    code,
1253 		    xferlen,
1254 		    OTUS_MAX_TXCMDSZ);
1255 		return (EIO);
1256 	}
1257 
1258 	cmd = otus_get_txcmd(sc);
1259 	if (cmd == NULL) {
1260 		device_printf(sc->sc_dev, "%s: failed to get buf\n",
1261 		    __func__);
1262 		return (EIO);
1263 	}
1264 
1265 	hdr = (struct ar_cmd_hdr *)cmd->buf;
1266 	hdr->code  = code;
1267 	hdr->len   = ilen;
1268 	hdr->token = ++sc->token;	/* Don't care about endianness. */
1269 	cmd->token = hdr->token;
1270 	/* XXX TODO: check max cmd length? */
1271 	memcpy((uint8_t *)&hdr[1], idata, ilen);
1272 
1273 	OTUS_DPRINTF(sc, OTUS_DEBUG_CMD,
1274 	    "%s: sending command code=0x%02x len=%d token=%d\n",
1275 	    __func__, code, ilen, hdr->token);
1276 
1277 	cmd->odata = odata;
1278 	cmd->odatalen = odatalen;
1279 	cmd->buflen = xferlen;
1280 
1281 	/* Queue the command to the endpoint */
1282 	STAILQ_INSERT_TAIL(&sc->sc_cmd_pending, cmd, next_cmd);
1283 	usbd_transfer_start(sc->sc_xfer[OTUS_BULK_CMD]);
1284 
1285 	/* Sleep on the command; wait for it to complete */
1286 	error = msleep(cmd, &sc->sc_mtx, PCATCH, "otuscmd", hz);
1287 
1288 	/*
1289 	 * At this point we don't own cmd any longer; it'll be
1290 	 * freed by the cmd bulk path or the RX notification
1291 	 * path.  If the data is made available then it'll be copied
1292 	 * to the caller.  All that is left to do is communicate
1293 	 * status back to the caller.
1294 	 */
1295 	if (error != 0) {
1296 		device_printf(sc->sc_dev,
1297 		    "%s: timeout waiting for command 0x%02x reply\n",
1298 		    __func__, code);
1299 	}
1300 	return error;
1301 }
1302 
1303 void
otus_write(struct otus_softc * sc,uint32_t reg,uint32_t val)1304 otus_write(struct otus_softc *sc, uint32_t reg, uint32_t val)
1305 {
1306 
1307 	OTUS_LOCK_ASSERT(sc);
1308 
1309 	sc->write_buf[sc->write_idx].reg = htole32(reg);
1310 	sc->write_buf[sc->write_idx].val = htole32(val);
1311 
1312 	if (++sc->write_idx > (AR_MAX_WRITE_IDX-1))
1313 		(void)otus_write_barrier(sc);
1314 }
1315 
1316 int
otus_write_barrier(struct otus_softc * sc)1317 otus_write_barrier(struct otus_softc *sc)
1318 {
1319 	int error;
1320 
1321 	OTUS_LOCK_ASSERT(sc);
1322 
1323 	if (sc->write_idx == 0)
1324 		return 0;	/* Nothing to flush. */
1325 
1326 	OTUS_DPRINTF(sc, OTUS_DEBUG_REGIO, "%s: called; %d updates\n",
1327 	    __func__,
1328 	    sc->write_idx);
1329 
1330 	error = otus_cmd(sc, AR_CMD_WREG, sc->write_buf,
1331 	    sizeof (sc->write_buf[0]) * sc->write_idx, NULL, 0);
1332 	sc->write_idx = 0;
1333 	return error;
1334 }
1335 
1336 static struct ieee80211_node *
otus_node_alloc(struct ieee80211vap * vap,const uint8_t mac[IEEE80211_ADDR_LEN])1337 otus_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1338 {
1339 
1340 	return malloc(sizeof (struct otus_node), M_80211_NODE,
1341 	    M_NOWAIT | M_ZERO);
1342 }
1343 
1344 int
otus_read_eeprom(struct otus_softc * sc)1345 otus_read_eeprom(struct otus_softc *sc)
1346 {
1347 	uint32_t regs[8], reg;
1348 	uint8_t *eep;
1349 	int i, j, error;
1350 
1351 	OTUS_LOCK_ASSERT(sc);
1352 
1353 	/* Read EEPROM by blocks of 32 bytes. */
1354 	eep = (uint8_t *)&sc->eeprom;
1355 	reg = AR_EEPROM_OFFSET;
1356 	for (i = 0; i < sizeof (sc->eeprom) / 32; i++) {
1357 		for (j = 0; j < 8; j++, reg += 4)
1358 			regs[j] = htole32(reg);
1359 		error = otus_cmd(sc, AR_CMD_RREG, regs, sizeof regs, eep, 32);
1360 		if (error != 0)
1361 			break;
1362 		eep += 32;
1363 	}
1364 	return error;
1365 }
1366 
1367 void
otus_newassoc(struct ieee80211_node * ni,int isnew)1368 otus_newassoc(struct ieee80211_node *ni, int isnew)
1369 {
1370 	struct ieee80211com *ic = ni->ni_ic;
1371 	struct otus_softc *sc = ic->ic_softc;
1372 	struct otus_node *on = OTUS_NODE(ni);
1373 
1374 	OTUS_DPRINTF(sc, OTUS_DEBUG_STATE, "new assoc isnew=%d addr=%s\n",
1375 	    isnew, ether_sprintf(ni->ni_macaddr));
1376 
1377 	on->tx_done = 0;
1378 	on->tx_err = 0;
1379 	on->tx_retries = 0;
1380 }
1381 
1382 static void
otus_cmd_handle_response(struct otus_softc * sc,struct ar_cmd_hdr * hdr)1383 otus_cmd_handle_response(struct otus_softc *sc, struct ar_cmd_hdr *hdr)
1384 {
1385 	struct otus_tx_cmd *cmd;
1386 
1387 	OTUS_LOCK_ASSERT(sc);
1388 
1389 	OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE,
1390 	    "%s: received reply code=0x%02x len=%d token=%d\n",
1391 	    __func__,
1392 	    hdr->code, hdr->len, hdr->token);
1393 
1394 	/*
1395 	 * Walk the list, freeing items that aren't ours,
1396 	 * stopping when we hit our token.
1397 	 */
1398 	while ((cmd = STAILQ_FIRST(&sc->sc_cmd_waiting)) != NULL) {
1399 		STAILQ_REMOVE_HEAD(&sc->sc_cmd_waiting, next_cmd);
1400 		OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE,
1401 		    "%s: cmd=%p; hdr.token=%d, cmd.token=%d\n",
1402 		    __func__,
1403 		    cmd,
1404 		    (int) hdr->token,
1405 		    (int) cmd->token);
1406 		if (hdr->token == cmd->token) {
1407 			/* Copy answer into caller's supplied buffer. */
1408 			if (cmd->odata != NULL) {
1409 				if (hdr->len != cmd->odatalen) {
1410 					device_printf(sc->sc_dev,
1411 					    "%s: code 0x%02x, len=%d, olen=%d\n",
1412 					    __func__,
1413 					    (int) hdr->code,
1414 					    (int) hdr->len,
1415 					    (int) cmd->odatalen);
1416 				}
1417 				memcpy(cmd->odata, &hdr[1],
1418 				    MIN(cmd->odatalen, hdr->len));
1419 			}
1420 			wakeup(cmd);
1421 		}
1422 
1423 		STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, cmd, next_cmd);
1424 	}
1425 }
1426 
1427 void
otus_cmd_rxeof(struct otus_softc * sc,uint8_t * buf,int len)1428 otus_cmd_rxeof(struct otus_softc *sc, uint8_t *buf, int len)
1429 {
1430 	struct ieee80211com *ic = &sc->sc_ic;
1431 	struct ar_cmd_hdr *hdr;
1432 
1433 	OTUS_LOCK_ASSERT(sc);
1434 
1435 	if (__predict_false(len < sizeof (*hdr))) {
1436 		OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE,
1437 		    "cmd too small %d\n", len);
1438 		return;
1439 	}
1440 	hdr = (struct ar_cmd_hdr *)buf;
1441 	if (__predict_false(sizeof (*hdr) + hdr->len > len ||
1442 	    sizeof (*hdr) + hdr->len > 64)) {
1443 		OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE,
1444 		    "cmd too large %d\n", hdr->len);
1445 		return;
1446 	}
1447 
1448 	OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE,
1449 	    "%s: code=%.02x\n",
1450 	    __func__,
1451 	    hdr->code);
1452 
1453 	/*
1454 	 * This has to reach into the cmd queue "waiting for
1455 	 * an RX response" list, grab the head entry and check
1456 	 * if we need to wake anyone up.
1457 	 */
1458 	if ((hdr->code & 0xc0) != 0xc0) {
1459 		otus_cmd_handle_response(sc, hdr);
1460 		return;
1461 	}
1462 
1463 	/* Received unsolicited notification. */
1464 	switch (hdr->code & 0x3f) {
1465 	case AR_EVT_BEACON:
1466 		break;
1467 	case AR_EVT_TX_COMP:
1468 	{
1469 		struct ar_evt_tx_comp *tx = (struct ar_evt_tx_comp *)&hdr[1];
1470 		struct ieee80211_node *ni;
1471 
1472 		ni = ieee80211_find_node(&ic->ic_sta, tx->macaddr);
1473 		if (ni == NULL) {
1474 			device_printf(sc->sc_dev,
1475 			    "%s: txcomp on unknown node (%s)\n",
1476 			    __func__,
1477 			    ether_sprintf(tx->macaddr));
1478 			break;
1479 		}
1480 
1481 		OTUS_DPRINTF(sc, OTUS_DEBUG_TXCOMP,
1482 		    "tx completed %s status=%d phy=0x%x\n",
1483 		    ether_sprintf(tx->macaddr), le16toh(tx->status),
1484 		    le32toh(tx->phy));
1485 
1486 		switch (le16toh(tx->status)) {
1487 		case AR_TX_STATUS_COMP:
1488 #if 0
1489 			ackfailcnt = 0;
1490 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
1491 			    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
1492 #endif
1493 			/*
1494 			 * We don't get the above; only error notifications.
1495 			 * Sigh.  So, don't worry about this.
1496 			 */
1497 			break;
1498 		case AR_TX_STATUS_RETRY_COMP:
1499 			OTUS_NODE(ni)->tx_retries++;
1500 			break;
1501 		case AR_TX_STATUS_FAILED:
1502 			OTUS_NODE(ni)->tx_err++;
1503 			break;
1504 		}
1505 		ieee80211_free_node(ni);
1506 		break;
1507 	}
1508 	case AR_EVT_TBTT:
1509 		break;
1510 	case AR_EVT_DO_BB_RESET:
1511 		/*
1512 		 * This is "tell driver to reset baseband" from ar9170-fw.
1513 		 *
1514 		 * I'm not sure what we should do here, so I'm going to
1515 		 * fall through; it gets generated when RTSRetryCnt internally
1516 		 * reaches '5' - I guess the firmware authors thought that
1517 		 * meant that the BB may have gone deaf or something.
1518 		 */
1519 	default:
1520 		device_printf(sc->sc_dev,
1521 		    "%s: received notification code=0x%02x len=%d\n",
1522 		    __func__,
1523 		    hdr->code, hdr->len);
1524 	}
1525 }
1526 
1527 /*
1528  * Handle a single MPDU.
1529  *
1530  * This may be a single MPDU, or it may be a sub-frame from an A-MPDU.
1531  * In the latter case some of the header details need to be adjusted.
1532  */
1533 void
otus_sub_rxeof(struct otus_softc * sc,uint8_t * buf,int len,struct mbufq * rxq)1534 otus_sub_rxeof(struct otus_softc *sc, uint8_t *buf, int len, struct mbufq *rxq)
1535 {
1536 	struct ieee80211com *ic = &sc->sc_ic;
1537 	struct ieee80211_rx_stats rxs;
1538 #if 0
1539 	struct ieee80211_node *ni;
1540 #endif
1541 	struct ar_rx_macstatus *mac_status = NULL;
1542 	struct ar_rx_phystatus *phy_status = NULL;
1543 	struct ieee80211_frame *wh;
1544 	struct mbuf *m;
1545 //	int s;
1546 
1547 	if (otus_debug & OTUS_DEBUG_RX_BUFFER) {
1548 		device_printf(sc->sc_dev, "%s: %*D\n",
1549 		    __func__, len, buf, "-");
1550 	}
1551 
1552 	/*
1553 	 * Before any data path stuff - check to see if this is a command
1554 	 * response.
1555 	 *
1556 	 * All bits in the PLCP header are set to 1 for non-MPDU.
1557 	 */
1558 	if ((len >= AR_PLCP_HDR_LEN) &&
1559 	    memcmp(buf, AR_PLCP_HDR_INTR, AR_PLCP_HDR_LEN) == 0) {
1560 		otus_cmd_rxeof(sc, buf + AR_PLCP_HDR_LEN,
1561 		    len - AR_PLCP_HDR_LEN);
1562 		return;
1563 	}
1564 
1565 	/*
1566 	 * First step - get the status for the given frame.
1567 	 * This will tell us whether it's a single MPDU or
1568 	 * an A-MPDU subframe.
1569 	 */
1570 	if (len < sizeof(*mac_status)) {
1571 		OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE,
1572 		    "%s: sub-xfer too short (no mac_status) (len %d)\n",
1573 		    __func__, len);
1574 		counter_u64_add(ic->ic_ierrors, 1);
1575 		return;
1576 	}
1577 	/*
1578 	 * Remove the mac_status from the payload length.
1579 	 *
1580 	 * Note: cheating, don't reallocate the buffer!
1581 	 */
1582 	mac_status = (struct ar_rx_macstatus *)(buf + len - sizeof(*mac_status));
1583 	len -= sizeof(*mac_status);
1584 
1585 	OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "%s: mac status=0x%x\n",
1586 	    __func__, mac_status->status);
1587 
1588 	/*
1589 	 * Next - check the MAC status before doing anything else.
1590 	 * Extract out the PLCP header for single and first frames;
1591 	 * since there's a single RX path we can shove PLCP headers
1592 	 * from both into sc->ar_last_rx_plcp[] so it can be reused.
1593 	 */
1594 	if (((mac_status->status & AR_RX_STATUS_MPDU_MASK) == AR_RX_STATUS_MPDU_SINGLE) ||
1595 	    ((mac_status->status & AR_RX_STATUS_MPDU_MASK) == AR_RX_STATUS_MPDU_FIRST)) {
1596 		/*
1597 		 * Ok, we need to at least have a PLCP header at
1598 		 * this point.
1599 		 */
1600 		if (len < AR_PLCP_HDR_LEN) {
1601 			OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE,
1602 			    "%s sub-xfer too short (no mac+plcp) (len %d\n)",
1603 			    __func__, len);
1604 			counter_u64_add(ic->ic_ierrors, 1);
1605 			return;
1606 		}
1607 		memcpy(sc->ar_last_rx_plcp, buf, AR_PLCP_HDR_LEN);
1608 
1609 		/*
1610 		 * At this point we can just consume the PLCP header.
1611 		 * The beginning of the frame should thus be data.
1612 		 */
1613 		buf += AR_PLCP_HDR_LEN;
1614 		len -= AR_PLCP_HDR_LEN;
1615 	}
1616 
1617 	/*
1618 	 * Next - see if we have a PHY status.
1619 	 *
1620 	 * The PHY status is at the end of the final A-MPDU subframe
1621 	 * or a single MPDU frame.
1622 	 *
1623 	 * We'll use this to tag frames with noise floor / RSSI
1624 	 * if they have valid information.
1625 	 */
1626 	if (((mac_status->status & AR_RX_STATUS_MPDU_MASK) == AR_RX_STATUS_MPDU_SINGLE) ||
1627 	    ((mac_status->status & AR_RX_STATUS_MPDU_MASK) == AR_RX_STATUS_MPDU_LAST)) {
1628 		if (len < sizeof(*phy_status)) {
1629 			OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE,
1630 			    "%s sub-xfer too short (no phy status) (len %d\n)",
1631 			    __func__, len);
1632 			counter_u64_add(ic->ic_ierrors, 1);
1633 			return;
1634 		}
1635 		/*
1636 		 * Take a pointer to the phy status and remove the length
1637 		 * from the end of the buffer.
1638 		 *
1639 		 * Note: we're cheating here; don't reallocate the buffer!
1640 		 */
1641 		phy_status = (struct ar_rx_phystatus *)
1642 		    (buf + len - sizeof(*phy_status));
1643 		len -= sizeof(*phy_status);
1644 	}
1645 
1646 	/*
1647 	 * Middle frames just have a MAC status (stripped above.)
1648 	 * No PHY status, and PLCP is from ar_last_rx_plcp.
1649 	 */
1650 
1651 	/*
1652 	 * Discard error frames; don't discard BAD_RA (eg monitor mode);
1653 	 * let net80211 do that
1654 	 */
1655 	if (__predict_false((mac_status->error & ~AR_RX_ERROR_BAD_RA) != 0)) {
1656 		OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "error frame 0x%02x\n", mac_status->error);
1657 		if (mac_status->error & AR_RX_ERROR_FCS) {
1658 			OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "bad FCS\n");
1659 		} else if (mac_status->error & AR_RX_ERROR_MMIC) {
1660 			/* Report Michael MIC failures to net80211. */
1661 #if 0
1662 			ieee80211_notify_michael_failure(ni->ni_vap, wh, keyidx);
1663 #endif
1664 			device_printf(sc->sc_dev, "%s: MIC failure\n", __func__);
1665 		}
1666 		counter_u64_add(ic->ic_ierrors, 1);
1667 		return;
1668 	}
1669 
1670 	/*
1671 	 * Make sure there's room for an 802.11 header + FCS.
1672 	 *
1673 	 * Note: a CTS/ACK is 14 bytes (FC, DUR, RA, FCS).
1674 	 * Making it IEEE80211_MIN_LEN misses CTS/ACKs.
1675 	 *
1676 	 * This won't be tossed at this point; eventually once
1677 	 * rx radiotap is implemented this will allow for
1678 	 * CTS/ACK frames.  Passing them up to net80211 will
1679 	 * currently make it angry (too short packets.)
1680 	 */
1681 	if (len < 2 + 2 + IEEE80211_ADDR_LEN + IEEE80211_CRC_LEN) {
1682 		OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE,
1683 		    "%s: too short for 802.11 (len %d)\n",
1684 		    __func__, len);
1685 		counter_u64_add(ic->ic_ierrors, 1);
1686 		return;
1687 	}
1688 
1689 	len -= IEEE80211_CRC_LEN;	/* strip 802.11 FCS */
1690 	wh = (struct ieee80211_frame *) buf;
1691 
1692 	/*
1693 	 * The firmware does seem to spit out a bunch of frames
1694 	 * with invalid frame control values here.  Just toss them
1695 	 * rather than letting net80211 get angry and log.
1696 	 */
1697 	if (!IEEE80211_IS_FC0_CHECK_VER(wh, IEEE80211_FC0_VERSION_0)) {
1698 		OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE,
1699 		    "%s: invalid 802.11 fc version (firmware bug?)\n",
1700 		        __func__);
1701 		counter_u64_add(ic->ic_ierrors, 1);
1702 		return;
1703 	}
1704 
1705 	m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR);
1706 	if (m == NULL) {
1707 		device_printf(sc->sc_dev, "%s: failed m_get2() (len=%d)\n",
1708 		    __func__, len);
1709 		counter_u64_add(ic->ic_ierrors, 1);
1710 		return;
1711 	}
1712 
1713 	/* Finalize mbuf. */
1714 	memcpy(mtod(m, uint8_t *), wh, len);
1715 	m->m_pkthdr.len = m->m_len = len;
1716 
1717 	/* XXX TODO: add setting rx radiotap fields here */
1718 
1719 	/*
1720 	 * Ok, check the frame length and toss if it's too short
1721 	 * for net80211.  This will toss ACK/CTS.
1722 	 */
1723 	if (m->m_len < IEEE80211_MIN_LEN) {
1724 		/* XXX TODO: add radiotap receive here */
1725 		m_free(m); m = NULL;
1726 		return;
1727 	}
1728 
1729 	/* Add RSSI to this mbuf if we have a PHY header */
1730 	bzero(&rxs, sizeof(rxs));
1731 	rxs.r_flags = IEEE80211_R_NF;
1732 	rxs.c_nf = sc->sc_nf[0];	/* XXX chain 0 != combined rssi/nf */
1733 	if (phy_status != NULL) {
1734 		rxs.r_flags |= IEEE80211_R_RSSI;
1735 		rxs.c_rssi = phy_status->rssi;
1736 	}
1737 	/* XXX TODO: add MIMO RSSI/NF as well */
1738 	if (ieee80211_add_rx_params(m, &rxs) == 0) {
1739 		counter_u64_add(ic->ic_ierrors, 1);
1740 		return;
1741 	}
1742 
1743 	/* XXX make a method */
1744 	STAILQ_INSERT_TAIL(&rxq->mq_head, m, m_stailqpkt);
1745 
1746 #if 0
1747 	OTUS_UNLOCK(sc);
1748 	ni = ieee80211_find_rxnode(ic, wh);
1749 	rxi.rxi_flags = 0;
1750 	rxi.rxi_rssi = tail->rssi;
1751 	rxi.rxi_tstamp = 0;	/* unused */
1752 	ieee80211_input(ifp, m, ni, &rxi);
1753 
1754 	/* Node is no longer needed. */
1755 	ieee80211_release_node(ic, ni);
1756 	OTUS_LOCK(sc);
1757 #endif
1758 }
1759 
1760 static void
otus_rxeof(struct usb_xfer * xfer,struct otus_data * data,struct mbufq * rxq)1761 otus_rxeof(struct usb_xfer *xfer, struct otus_data *data, struct mbufq *rxq)
1762 {
1763 	struct otus_softc *sc = usbd_xfer_softc(xfer);
1764 	caddr_t buf = data->buf;
1765 	struct ar_rx_head *head;
1766 	uint16_t hlen;
1767 	int len, offset = 0;
1768 
1769 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
1770 
1771 	OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE,
1772 	    "%s: transfer completed; len=%d\n",
1773 	    __func__, len);
1774 	if (otus_debug & OTUS_DEBUG_RX_BUFFER) {
1775 		device_printf(sc->sc_dev, "%s: %*D\n",
1776 		    __func__, len, buf, "-");
1777 	}
1778 
1779 	while (len >= sizeof (*head)) {
1780 		head = (struct ar_rx_head *)buf;
1781 		if (__predict_false(head->tag != htole16(AR_RX_HEAD_TAG))) {
1782 			OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE,
1783 			    "tag not valid 0x%x\n", le16toh(head->tag));
1784 			break;
1785 		}
1786 		hlen = le16toh(head->len);
1787 		OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "%s: hlen=%d\n",
1788 		    __func__, hlen);
1789 		if (__predict_false(sizeof (*head) + hlen > len)) {
1790 			OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE,
1791 			    "xfer too short %d/%d\n", len, hlen);
1792 			break;
1793 		}
1794 		/* Process sub-xfer. */
1795 		otus_sub_rxeof(sc, (uint8_t *) (((uint8_t *) buf) + 4), hlen, rxq);
1796 
1797 		/* Next sub-xfer is aligned on a 32-bit boundary. */
1798 		hlen = (sizeof (*head) + hlen + 3) & ~3;
1799 		offset += hlen;
1800 		OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE,
1801 		    "%s: rounded size is %d, next packet starts at %d\n",
1802 		    __func__, hlen, offset);
1803 		buf += hlen;
1804 		len -= hlen;
1805 	}
1806 	OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "%s: done!\n", __func__);
1807 }
1808 
1809 static void
otus_bulk_rx_callback(struct usb_xfer * xfer,usb_error_t error)1810 otus_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
1811 {
1812 	struct otus_softc *sc = usbd_xfer_softc(xfer);
1813 	struct ieee80211com *ic = &sc->sc_ic;
1814 	struct ieee80211_frame *wh;
1815 	struct ieee80211_node *ni;
1816 	struct mbuf *m;
1817 	struct mbufq scrx;
1818 	struct otus_data *data;
1819 
1820 	OTUS_LOCK_ASSERT(sc);
1821 
1822 	mbufq_init(&scrx, 1024);
1823 
1824 #if 0
1825 	device_printf(sc->sc_dev, "%s: called; state=%d; error=%d\n",
1826 	    __func__,
1827 	    USB_GET_STATE(xfer),
1828 	    error);
1829 #endif
1830 
1831 	switch (USB_GET_STATE(xfer)) {
1832 	case USB_ST_TRANSFERRED:
1833 		data = STAILQ_FIRST(&sc->sc_rx_active);
1834 		if (data == NULL)
1835 			goto tr_setup;
1836 		STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
1837 		otus_rxeof(xfer, data, &scrx);
1838 		STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
1839 		/* FALLTHROUGH */
1840 	case USB_ST_SETUP:
1841 tr_setup:
1842 		/*
1843 		 * XXX TODO: what if sc_rx isn't empty, but data
1844 		 * is empty?  Then we leak mbufs.
1845 		 */
1846 		data = STAILQ_FIRST(&sc->sc_rx_inactive);
1847 		if (data == NULL) {
1848 			//KASSERT(m == NULL, ("mbuf isn't NULL"));
1849 			return;
1850 		}
1851 		STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next);
1852 		STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next);
1853 		usbd_xfer_set_frame_data(xfer, 0, data->buf,
1854 		    usbd_xfer_max_len(xfer));
1855 		usbd_transfer_submit(xfer);
1856 		/*
1857 		 * To avoid LOR we should unlock our private mutex here to call
1858 		 * ieee80211_input() because here is at the end of a USB
1859 		 * callback and safe to unlock.
1860 		 */
1861 		OTUS_UNLOCK(sc);
1862 		while ((m = mbufq_dequeue(&scrx)) != NULL) {
1863 			wh = mtod(m, struct ieee80211_frame *);
1864 			ni = ieee80211_find_rxnode(ic,
1865 			    (struct ieee80211_frame_min *)wh);
1866 			if (ni != NULL) {
1867 				if (ni->ni_flags & IEEE80211_NODE_HT)
1868 					m->m_flags |= M_AMPDU;
1869 				(void)ieee80211_input_mimo(ni, m);
1870 				ieee80211_free_node(ni);
1871 			} else
1872 				(void)ieee80211_input_mimo_all(ic, m);
1873 		}
1874 #ifdef	IEEE80211_SUPPORT_SUPERG
1875 		ieee80211_ff_age_all(ic, 100);
1876 #endif
1877 		OTUS_LOCK(sc);
1878 		break;
1879 	default:
1880 		/* needs it to the inactive queue due to a error. */
1881 		data = STAILQ_FIRST(&sc->sc_rx_active);
1882 		if (data != NULL) {
1883 			STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
1884 			STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
1885 		}
1886 		if (error != USB_ERR_CANCELLED) {
1887 			usbd_xfer_set_stall(xfer);
1888 			counter_u64_add(ic->ic_ierrors, 1);
1889 			goto tr_setup;
1890 		}
1891 		break;
1892 	}
1893 }
1894 
1895 static void
otus_txeof(struct usb_xfer * xfer,struct otus_data * data)1896 otus_txeof(struct usb_xfer *xfer, struct otus_data *data)
1897 {
1898 	struct otus_softc *sc = usbd_xfer_softc(xfer);
1899 
1900 	OTUS_DPRINTF(sc, OTUS_DEBUG_TXDONE,
1901 	    "%s: called; data=%p\n", __func__, data);
1902 
1903 	OTUS_LOCK_ASSERT(sc);
1904 
1905 	if (sc->sc_tx_n_active == 0) {
1906 		device_printf(sc->sc_dev,
1907 		    "%s: completed but tx_active=0\n",
1908 		    __func__);
1909 	} else {
1910 		sc->sc_tx_n_active--;
1911 	}
1912 
1913 	if (data->m) {
1914 		/* XXX status? */
1915 		/* XXX we get TX status via the RX path.. */
1916 		ieee80211_tx_complete(data->ni, data->m, 0);
1917 		data->m = NULL;
1918 		data->ni = NULL;
1919 	}
1920 }
1921 
1922 static void
otus_txcmdeof(struct usb_xfer * xfer,struct otus_tx_cmd * cmd)1923 otus_txcmdeof(struct usb_xfer *xfer, struct otus_tx_cmd *cmd)
1924 {
1925 	struct otus_softc *sc = usbd_xfer_softc(xfer);
1926 
1927 	OTUS_LOCK_ASSERT(sc);
1928 
1929 	OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE,
1930 	    "%s: called; data=%p; odata=%p\n",
1931 	    __func__, cmd, cmd->odata);
1932 
1933 	/*
1934 	 * Non-response commands still need wakeup so the caller
1935 	 * knows it was submitted and completed OK; response commands should
1936 	 * wait until they're ACKed by the firmware with a response.
1937 	 */
1938 	if (cmd->odata) {
1939 		STAILQ_INSERT_TAIL(&sc->sc_cmd_waiting, cmd, next_cmd);
1940 	} else {
1941 		wakeup(cmd);
1942 		otus_free_txcmd(sc, cmd);
1943 	}
1944 }
1945 
1946 static void
otus_bulk_tx_callback(struct usb_xfer * xfer,usb_error_t error)1947 otus_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error)
1948 {
1949 	uint8_t which = OTUS_BULK_TX;
1950 	struct otus_softc *sc = usbd_xfer_softc(xfer);
1951 	struct ieee80211com *ic = &sc->sc_ic;
1952 	struct otus_data *data;
1953 
1954 	OTUS_LOCK_ASSERT(sc);
1955 
1956 	switch (USB_GET_STATE(xfer)) {
1957 	case USB_ST_TRANSFERRED:
1958 		data = STAILQ_FIRST(&sc->sc_tx_active[which]);
1959 		if (data == NULL)
1960 			goto tr_setup;
1961 		OTUS_DPRINTF(sc, OTUS_DEBUG_TXDONE,
1962 		    "%s: transfer done %p\n", __func__, data);
1963 		STAILQ_REMOVE_HEAD(&sc->sc_tx_active[which], next);
1964 		otus_txeof(xfer, data);
1965 		otus_freebuf(sc, data);
1966 		/* FALLTHROUGH */
1967 	case USB_ST_SETUP:
1968 tr_setup:
1969 		data = STAILQ_FIRST(&sc->sc_tx_pending[which]);
1970 		if (data == NULL) {
1971 			OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT,
1972 			    "%s: empty pending queue sc %p\n", __func__, sc);
1973 			sc->sc_tx_n_active = 0;
1974 			goto finish;
1975 		}
1976 		STAILQ_REMOVE_HEAD(&sc->sc_tx_pending[which], next);
1977 		STAILQ_INSERT_TAIL(&sc->sc_tx_active[which], data, next);
1978 		usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen);
1979 		OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT,
1980 		    "%s: submitting transfer %p\n", __func__, data);
1981 		usbd_transfer_submit(xfer);
1982 		sc->sc_tx_n_active++;
1983 		break;
1984 	default:
1985 		data = STAILQ_FIRST(&sc->sc_tx_active[which]);
1986 		if (data != NULL) {
1987 			STAILQ_REMOVE_HEAD(&sc->sc_tx_active[which], next);
1988 			otus_txeof(xfer, data);
1989 			otus_freebuf(sc, data);
1990 		}
1991 		counter_u64_add(ic->ic_oerrors, 1);
1992 
1993 		if (error != USB_ERR_CANCELLED) {
1994 			usbd_xfer_set_stall(xfer);
1995 			goto tr_setup;
1996 		}
1997 		break;
1998 	}
1999 
2000 finish:
2001 #ifdef	IEEE80211_SUPPORT_SUPERG
2002 	/*
2003 	 * If the TX active queue drops below a certain
2004 	 * threshold, ensure we age fast-frames out so they're
2005 	 * transmitted.
2006 	 */
2007 	if (sc->sc_tx_n_active < 2) {
2008 		/* XXX ew - net80211 should defer this for us! */
2009 		OTUS_UNLOCK(sc);
2010 		ieee80211_ff_flush(ic, WME_AC_VO);
2011 		ieee80211_ff_flush(ic, WME_AC_VI);
2012 		ieee80211_ff_flush(ic, WME_AC_BE);
2013 		ieee80211_ff_flush(ic, WME_AC_BK);
2014 		OTUS_LOCK(sc);
2015 	}
2016 #endif
2017 	/* Kick TX */
2018 	otus_tx_start(sc);
2019 }
2020 
2021 static void
otus_bulk_cmd_callback(struct usb_xfer * xfer,usb_error_t error)2022 otus_bulk_cmd_callback(struct usb_xfer *xfer, usb_error_t error)
2023 {
2024 	struct otus_softc *sc = usbd_xfer_softc(xfer);
2025 #if 0
2026 	struct ieee80211com *ic = &sc->sc_ic;
2027 #endif
2028 	struct otus_tx_cmd *cmd;
2029 
2030 	OTUS_LOCK_ASSERT(sc);
2031 
2032 	switch (USB_GET_STATE(xfer)) {
2033 	case USB_ST_TRANSFERRED:
2034 		cmd = STAILQ_FIRST(&sc->sc_cmd_active);
2035 		if (cmd == NULL)
2036 			goto tr_setup;
2037 		OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE,
2038 		    "%s: transfer done %p\n", __func__, cmd);
2039 		STAILQ_REMOVE_HEAD(&sc->sc_cmd_active, next_cmd);
2040 		otus_txcmdeof(xfer, cmd);
2041 		/* FALLTHROUGH */
2042 	case USB_ST_SETUP:
2043 tr_setup:
2044 		cmd = STAILQ_FIRST(&sc->sc_cmd_pending);
2045 		if (cmd == NULL) {
2046 			OTUS_DPRINTF(sc, OTUS_DEBUG_CMD,
2047 			    "%s: empty pending queue sc %p\n", __func__, sc);
2048 			return;
2049 		}
2050 		STAILQ_REMOVE_HEAD(&sc->sc_cmd_pending, next_cmd);
2051 		STAILQ_INSERT_TAIL(&sc->sc_cmd_active, cmd, next_cmd);
2052 		usbd_xfer_set_frame_data(xfer, 0, cmd->buf, cmd->buflen);
2053 		OTUS_DPRINTF(sc, OTUS_DEBUG_CMD,
2054 		    "%s: submitting transfer %p; buf=%p, buflen=%d\n", __func__, cmd, cmd->buf, cmd->buflen);
2055 		usbd_transfer_submit(xfer);
2056 		break;
2057 	default:
2058 		cmd = STAILQ_FIRST(&sc->sc_cmd_active);
2059 		if (cmd != NULL) {
2060 			STAILQ_REMOVE_HEAD(&sc->sc_cmd_active, next_cmd);
2061 			otus_txcmdeof(xfer, cmd);
2062 		}
2063 
2064 		if (error != USB_ERR_CANCELLED) {
2065 			usbd_xfer_set_stall(xfer);
2066 			goto tr_setup;
2067 		}
2068 		break;
2069 	}
2070 }
2071 
2072 /*
2073  * This isn't used by carl9170; it however may be used by the
2074  * initial bootloader.
2075  */
2076 static void
otus_bulk_irq_callback(struct usb_xfer * xfer,usb_error_t error)2077 otus_bulk_irq_callback(struct usb_xfer *xfer, usb_error_t error)
2078 {
2079 	struct otus_softc *sc = usbd_xfer_softc(xfer);
2080 	int actlen;
2081 	int sumlen;
2082 
2083 	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
2084 	OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ,
2085 	    "%s: called; state=%d\n", __func__, USB_GET_STATE(xfer));
2086 
2087 	switch (USB_GET_STATE(xfer)) {
2088 	case USB_ST_TRANSFERRED:
2089 		/*
2090 		 * Read usb frame data, if any.
2091 		 * "actlen" has the total length for all frames
2092 		 * transferred.
2093 		 */
2094 		OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ,
2095 		    "%s: comp; %d bytes\n",
2096 		    __func__,
2097 		    actlen);
2098 #if 0
2099 		pc = usbd_xfer_get_frame(xfer, 0);
2100 		otus_dump_usb_rx_page(sc, pc, actlen);
2101 #endif
2102 		/* XXX fallthrough */
2103 	case USB_ST_SETUP:
2104 		/*
2105 		 * Setup xfer frame lengths/count and data
2106 		 */
2107 		OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ, "%s: setup\n", __func__);
2108 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
2109 		usbd_transfer_submit(xfer);
2110 		break;
2111 
2112 	default: /* Error */
2113 		/*
2114 		 * Print error message and clear stall
2115 		 * for example.
2116 		 */
2117 		OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ, "%s: ERROR?\n", __func__);
2118 		break;
2119 	}
2120 }
2121 
2122 /*
2123  * Map net80211 rate to hw rate for otus MAC/PHY.
2124  */
2125 static uint8_t
otus_rate_to_hw_rate(struct otus_softc * sc,uint8_t rate)2126 otus_rate_to_hw_rate(struct otus_softc *sc, uint8_t rate)
2127 {
2128 	int is_2ghz;
2129 
2130 	is_2ghz = !! (IEEE80211_IS_CHAN_2GHZ(sc->sc_ic.ic_curchan));
2131 
2132 	/* MCS check */
2133 	if (rate & 0x80) {
2134 		return rate;
2135 	}
2136 
2137 	switch (rate) {
2138 	/* CCK */
2139 	case 2:
2140 		return (0x0);
2141 	case 4:
2142 		return (0x1);
2143 	case 11:
2144 		return (0x2);
2145 	case 22:
2146 		return (0x3);
2147 	/* OFDM */
2148 	case 12:
2149 		return (0xb);
2150 	case 18:
2151 		return (0xf);
2152 	case 24:
2153 		return (0xa);
2154 	case 36:
2155 		return (0xe);
2156 	case 48:
2157 		return (0x9);
2158 	case 72:
2159 		return (0xd);
2160 	case 96:
2161 		return (0x8);
2162 	case 108:
2163 		return (0xc);
2164 	default:
2165 		device_printf(sc->sc_dev, "%s: unknown rate '%d'\n",
2166 		    __func__, (int) rate);
2167 	case 0:
2168 		if (is_2ghz)
2169 			return (0x0);	/* 1MB CCK */
2170 		else
2171 			return (0xb);	/* 6MB OFDM */
2172 	}
2173 }
2174 
2175 static int
otus_hw_rate_is_ht(struct otus_softc * sc,uint8_t hw_rate)2176 otus_hw_rate_is_ht(struct otus_softc *sc, uint8_t hw_rate)
2177 {
2178 
2179 	return !! (hw_rate & 0x80);
2180 }
2181 
2182 static int
otus_hw_rate_is_ofdm(struct otus_softc * sc,uint8_t hw_rate)2183 otus_hw_rate_is_ofdm(struct otus_softc *sc, uint8_t hw_rate)
2184 {
2185 
2186 	switch (hw_rate) {
2187 	case 0x0:
2188 	case 0x1:
2189 	case 0x2:
2190 	case 0x3:
2191 		return (0);
2192 	default:
2193 		return (1);
2194 	}
2195 }
2196 
2197 static void
otus_tx_update_ratectl(struct otus_softc * sc,struct ieee80211_node * ni)2198 otus_tx_update_ratectl(struct otus_softc *sc, struct ieee80211_node *ni)
2199 {
2200 	struct ieee80211_ratectl_tx_stats *txs = &sc->sc_txs;
2201 	struct otus_node *on = OTUS_NODE(ni);
2202 
2203 	txs->flags = IEEE80211_RATECTL_TX_STATS_NODE |
2204 		     IEEE80211_RATECTL_TX_STATS_RETRIES;
2205 	txs->ni = ni;
2206 	txs->nframes = on->tx_done;
2207 	txs->nsuccess = on->tx_done - on->tx_err;
2208 	txs->nretries = on->tx_retries;
2209 
2210 	ieee80211_ratectl_tx_update(ni->ni_vap, txs);
2211 	on->tx_done = on->tx_err = on->tx_retries = 0;
2212 }
2213 
2214 /*
2215  * XXX TODO: support tx bpf parameters for configuration!
2216  *
2217  * Relevant pieces:
2218  *
2219  * ac = params->ibp_pri & 3;
2220  * rate = params->ibp_rate0;
2221  * params->ibp_flags & IEEE80211_BPF_NOACK
2222  * params->ibp_flags & IEEE80211_BPF_RTS
2223  * params->ibp_flags & IEEE80211_BPF_CTS
2224  * tx->rts_ntries = params->ibp_try1;
2225  * tx->data_ntries = params->ibp_try0;
2226  */
2227 static int
otus_tx(struct otus_softc * sc,struct ieee80211_node * ni,struct mbuf * m,struct otus_data * data,const struct ieee80211_bpf_params * params)2228 otus_tx(struct otus_softc *sc, struct ieee80211_node *ni, struct mbuf *m,
2229     struct otus_data *data, const struct ieee80211_bpf_params *params)
2230 {
2231 	const struct ieee80211_txparam *tp = ni->ni_txparms;
2232 	struct ieee80211com *ic = &sc->sc_ic;
2233 	struct ieee80211vap *vap = ni->ni_vap;
2234 	struct ieee80211_frame *wh;
2235 	struct ieee80211_key *k;
2236 	struct ar_tx_head *head;
2237 	uint32_t phyctl;
2238 	uint16_t macctl, qos;
2239 	uint8_t qid, rate;
2240 	int hasqos, xferlen, type, ismcast;
2241 
2242 	wh = mtod(m, struct ieee80211_frame *);
2243 
2244 	ieee80211_output_seqno_assign(ni, -1, m);
2245 
2246 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2247 		k = ieee80211_crypto_encap(ni, m);
2248 		if (k == NULL) {
2249 			device_printf(sc->sc_dev,
2250 			    "%s: m=%p: ieee80211_crypto_encap returns NULL\n",
2251 			    __func__,
2252 			    m);
2253 			return (ENOBUFS);
2254 		}
2255 		wh = mtod(m, struct ieee80211_frame *);
2256 	}
2257 
2258 	/* Calculate transfer length; ensure data buffer is large enough */
2259 	xferlen = sizeof (*head) + m->m_pkthdr.len;
2260 	if (xferlen > OTUS_TXBUFSZ) {
2261 		device_printf(sc->sc_dev,
2262 		    "%s: 802.11 TX frame is %d bytes, max %d bytes\n",
2263 		    __func__,
2264 		    xferlen,
2265 		    OTUS_TXBUFSZ);
2266 		return (ENOBUFS);
2267 	}
2268 
2269 	hasqos = !! IEEE80211_QOS_HAS_SEQ(wh);
2270 
2271 	if (hasqos) {
2272 		uint8_t tid;
2273 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2274 		tid = qos & IEEE80211_QOS_TID;
2275 		qid = TID_TO_WME_AC(tid);
2276 	} else {
2277 		qos = 0;
2278 		qid = WME_AC_BE;
2279 	}
2280 
2281 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2282 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2283 
2284 	/* Pickup a rate index. */
2285 	if (params != NULL)
2286 		rate = otus_rate_to_hw_rate(sc, params->ibp_rate0);
2287 	else if (!!(m->m_flags & M_EAPOL) || type != IEEE80211_FC0_TYPE_DATA)
2288 		rate = otus_rate_to_hw_rate(sc, tp->mgmtrate);
2289 	else if (ismcast)
2290 		rate = otus_rate_to_hw_rate(sc, tp->mcastrate);
2291 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2292 		rate = otus_rate_to_hw_rate(sc, tp->ucastrate);
2293 	else {
2294 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2295 		rate = otus_rate_to_hw_rate(sc,
2296 		    ieee80211_node_get_txrate_dot11rate(ni));
2297 	}
2298 
2299 	phyctl = 0;
2300 	macctl = AR_TX_MAC_BACKOFF | AR_TX_MAC_HW_DUR | AR_TX_MAC_QID(qid);
2301 
2302 	/*
2303 	 * XXX TODO: params for NOACK, ACK, RTS, CTS, etc
2304 	 */
2305 	if (ismcast ||
2306 	    (hasqos && ((qos & IEEE80211_QOS_ACKPOLICY) ==
2307 	     IEEE80211_QOS_ACKPOLICY_NOACK)))
2308 		macctl |= AR_TX_MAC_NOACK;
2309 
2310 	if (!ismcast) {
2311 		if (m->m_pkthdr.len + IEEE80211_CRC_LEN >= vap->iv_rtsthreshold)
2312 			macctl |= AR_TX_MAC_RTS;
2313 		else if (otus_hw_rate_is_ht(sc, rate)) {
2314 			if (ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)
2315 				macctl |= AR_TX_MAC_RTS;
2316 		} else if (ic->ic_flags & IEEE80211_F_USEPROT) {
2317 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2318 				macctl |= AR_TX_MAC_CTS;
2319 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2320 				macctl |= AR_TX_MAC_RTS;
2321 		}
2322 	}
2323 
2324 	phyctl |= AR_TX_PHY_MCS(rate & 0x7f); /* Note: MCS rates are 0x80 and above */
2325 	if (otus_hw_rate_is_ht(sc, rate)) {
2326 		phyctl |= AR_TX_PHY_MT_HT;
2327 		/* Always use all tx antennas for now, just to be safe */
2328 		phyctl |= AR_TX_PHY_ANTMSK(sc->txmask);
2329 
2330 		/* Heavy clip */
2331 		phyctl |= (rate & 0x7) << AR_TX_PHY_TX_HEAVY_CLIP_SHIFT;
2332 	} else if (otus_hw_rate_is_ofdm(sc, rate)) {
2333 		phyctl |= AR_TX_PHY_MT_OFDM;
2334 		/* Always use all tx antennas for now, just to be safe */
2335 		phyctl |= AR_TX_PHY_ANTMSK(sc->txmask);
2336 	} else {	/* CCK */
2337 		phyctl |= AR_TX_PHY_MT_CCK;
2338 		phyctl |= AR_TX_PHY_ANTMSK(sc->txmask);
2339 	}
2340 
2341 	/* Update net80211 with the current counters */
2342 	otus_tx_update_ratectl(sc, ni);
2343 
2344 	/* Update rate control stats for frames that are ACK'ed. */
2345 	if (!(macctl & AR_TX_MAC_NOACK))
2346 		OTUS_NODE(ni)->tx_done++;
2347 
2348 	/* Fill Tx descriptor. */
2349 	head = (struct ar_tx_head *)data->buf;
2350 	head->len = htole16(m->m_pkthdr.len + IEEE80211_CRC_LEN);
2351 	head->macctl = htole16(macctl);
2352 	head->phyctl = htole32(phyctl);
2353 
2354 	m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)&head[1]);
2355 
2356 	data->buflen = xferlen;
2357 	data->ni = ni;
2358 	data->m = m;
2359 
2360 	OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT,
2361 	    "%s: tx: m=%p; data=%p; len=%d mac=0x%04x phy=0x%08x "
2362 	    "rate=0x%02x, dot11rate=%d\n",
2363 	    __func__, m, data, le16toh(head->len), macctl, phyctl,
2364 	    (int) rate,
2365 	    (int) ieee80211_node_get_txrate_dot11rate(ni));
2366 
2367 	/* Submit transfer */
2368 	STAILQ_INSERT_TAIL(&sc->sc_tx_pending[OTUS_BULK_TX], data, next);
2369 	usbd_transfer_start(sc->sc_xfer[OTUS_BULK_TX]);
2370 
2371 	return 0;
2372 }
2373 
2374 static u_int
otus_hash_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)2375 otus_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2376 {
2377 	uint32_t val, *hashes = arg;
2378 
2379 	val = le32dec(LLADDR(sdl) + 4);
2380 	/* Get address byte 5 */
2381 	val = val & 0x0000ff00;
2382 	val = val >> 8;
2383 
2384 	/* As per below, shift it >> 2 to get only 6 bits */
2385 	val = val >> 2;
2386 	if (val < 32)
2387 		hashes[0] |= 1 << val;
2388 	else
2389 		hashes[1] |= 1 << (val - 32);
2390 
2391 	return (1);
2392 }
2393 
2394 int
otus_set_multi(struct otus_softc * sc)2395 otus_set_multi(struct otus_softc *sc)
2396 {
2397 	struct ieee80211com *ic = &sc->sc_ic;
2398 	uint32_t hashes[2];
2399 	int r;
2400 
2401 	if (ic->ic_allmulti > 0 || ic->ic_promisc > 0 ||
2402 	    ic->ic_opmode == IEEE80211_M_MONITOR) {
2403 		hashes[0] = 0xffffffff;
2404 		hashes[1] = 0xffffffff;
2405 	} else {
2406 		struct ieee80211vap *vap;
2407 
2408 		hashes[0] = hashes[1] = 0;
2409 		TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
2410 			if_foreach_llmaddr(vap->iv_ifp, otus_hash_maddr,
2411 			    hashes);
2412 	}
2413 #if 0
2414 	/* XXX openbsd code */
2415 	while (enm != NULL) {
2416 		bit = enm->enm_addrlo[5] >> 2;
2417 		if (bit < 32)
2418 			hashes[0] |= 1 << bit;
2419 		else
2420 			hashes[1] |= 1 << (bit - 32);
2421 		ETHER_NEXT_MULTI(step, enm);
2422 	}
2423 #endif
2424 
2425 	hashes[1] |= 1U << 31;	/* Make sure the broadcast bit is set. */
2426 
2427 	OTUS_LOCK(sc);
2428 	otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_L, hashes[0]);
2429 	otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_H, hashes[1]);
2430 	r = otus_write_barrier(sc);
2431 	/* XXX operating mode? filter? */
2432 	OTUS_UNLOCK(sc);
2433 	return (r);
2434 }
2435 
2436 static int
otus_updateedca(struct ieee80211com * ic)2437 otus_updateedca(struct ieee80211com *ic)
2438 {
2439 	struct otus_softc *sc = ic->ic_softc;
2440 
2441 	OTUS_LOCK(sc);
2442 	/*
2443 	 * XXX TODO: take temporary copy of EDCA information
2444 	 * when scheduling this so we have a more time-correct view
2445 	 * of things.
2446 	 * XXX TODO: this can be done on the net80211 level
2447 	 */
2448 	otus_updateedca_locked(sc);
2449 	OTUS_UNLOCK(sc);
2450 	return (0);
2451 }
2452 
2453 static void
otus_updateedca_locked(struct otus_softc * sc)2454 otus_updateedca_locked(struct otus_softc *sc)
2455 {
2456 #define EXP2(val)	((1 << (val)) - 1)
2457 #define AIFS(val)	((val) * 9 + 10)
2458 	struct chanAccParams chp;
2459 	struct ieee80211com *ic = &sc->sc_ic;
2460 	const struct wmeParams *edca;
2461 
2462 	ieee80211_wme_ic_getparams(ic, &chp);
2463 
2464 	OTUS_LOCK_ASSERT(sc);
2465 
2466 	edca = chp.cap_wmeParams;
2467 
2468 	/* Set CWmin/CWmax values. */
2469 	otus_write(sc, AR_MAC_REG_AC0_CW,
2470 	    EXP2(edca[WME_AC_BE].wmep_logcwmax) << 16 |
2471 	    EXP2(edca[WME_AC_BE].wmep_logcwmin));
2472 	otus_write(sc, AR_MAC_REG_AC1_CW,
2473 	    EXP2(edca[WME_AC_BK].wmep_logcwmax) << 16 |
2474 	    EXP2(edca[WME_AC_BK].wmep_logcwmin));
2475 	otus_write(sc, AR_MAC_REG_AC2_CW,
2476 	    EXP2(edca[WME_AC_VI].wmep_logcwmax) << 16 |
2477 	    EXP2(edca[WME_AC_VI].wmep_logcwmin));
2478 	otus_write(sc, AR_MAC_REG_AC3_CW,
2479 	    EXP2(edca[WME_AC_VO].wmep_logcwmax) << 16 |
2480 	    EXP2(edca[WME_AC_VO].wmep_logcwmin));
2481 	otus_write(sc, AR_MAC_REG_AC4_CW,		/* Special TXQ. */
2482 	    EXP2(edca[WME_AC_VO].wmep_logcwmax) << 16 |
2483 	    EXP2(edca[WME_AC_VO].wmep_logcwmin));
2484 
2485 	/* Set AIFSN values. */
2486 	otus_write(sc, AR_MAC_REG_AC1_AC0_AIFS,
2487 	    AIFS(edca[WME_AC_VI].wmep_aifsn) << 24 |
2488 	    AIFS(edca[WME_AC_BK].wmep_aifsn) << 12 |
2489 	    AIFS(edca[WME_AC_BE].wmep_aifsn));
2490 	otus_write(sc, AR_MAC_REG_AC3_AC2_AIFS,
2491 	    AIFS(edca[WME_AC_VO].wmep_aifsn) << 16 |	/* Special TXQ. */
2492 	    AIFS(edca[WME_AC_VO].wmep_aifsn) <<  4 |
2493 	    AIFS(edca[WME_AC_VI].wmep_aifsn) >>  8);
2494 
2495 	/* Set TXOP limit. */
2496 	otus_write(sc, AR_MAC_REG_AC1_AC0_TXOP,
2497 	    edca[WME_AC_BK].wmep_txopLimit << 16 |
2498 	    edca[WME_AC_BE].wmep_txopLimit);
2499 	otus_write(sc, AR_MAC_REG_AC3_AC2_TXOP,
2500 	    edca[WME_AC_VO].wmep_txopLimit << 16 |
2501 	    edca[WME_AC_VI].wmep_txopLimit);
2502 
2503 	/* XXX ACK policy? */
2504 
2505 	(void)otus_write_barrier(sc);
2506 
2507 #undef AIFS
2508 #undef EXP2
2509 }
2510 
2511 static void
otus_updateslot(struct otus_softc * sc)2512 otus_updateslot(struct otus_softc *sc)
2513 {
2514 	struct ieee80211com *ic = &sc->sc_ic;
2515 	uint32_t slottime;
2516 
2517 	OTUS_LOCK_ASSERT(sc);
2518 
2519 	slottime = IEEE80211_GET_SLOTTIME(ic);
2520 	otus_write(sc, AR_MAC_REG_SLOT_TIME, slottime << 10);
2521 	(void)otus_write_barrier(sc);
2522 }
2523 
2524 /*
2525  * Things to do based on 2GHz or 5GHz:
2526  *
2527  * + slottime
2528  * + dyn_sifs_ack
2529  * + rts_cts_rate
2530  * + slot time
2531  * + mac_rates
2532  * + mac_tpc
2533  *
2534  * And in the transmit path
2535  * + tpc: carl9170_tx_rate_tpc_chains
2536  * + carl9170_tx_physet()
2537  * + disable short premable tx
2538  */
2539 
2540 int
otus_init_mac(struct otus_softc * sc)2541 otus_init_mac(struct otus_softc *sc)
2542 {
2543 	int error;
2544 
2545 	OTUS_LOCK_ASSERT(sc);
2546 
2547 	otus_write(sc, AR_MAC_REG_ACK_EXTENSION, 0x40);
2548 	otus_write(sc, AR_MAC_REG_RETRY_MAX, 0);
2549 	otus_write(sc, AR_MAC_REG_RX_THRESHOLD, 0xc1f80);
2550 	otus_write(sc, AR_MAC_REG_RX_PE_DELAY, 0x70);
2551 	otus_write(sc, AR_MAC_REG_EIFS_AND_SIFS, 0xa144000);
2552 	otus_write(sc, AR_MAC_REG_SLOT_TIME, 9 << 10);
2553 	otus_write(sc, AR_MAC_REG_TID_CFACK_CFEND_RATE, 0x19000000);
2554 	/* NAV protects ACK only (in TXOP). */
2555 	otus_write(sc, AR_MAC_REG_TXOP_DURATION, 0x201);
2556 	/* Set beacon Tx power to 0x7. */
2557 	otus_write(sc, AR_MAC_REG_BCN_HT1, 0x8000170);
2558 	otus_write(sc, AR_MAC_REG_BACKOFF_PROTECT, 0x105);
2559 	otus_write(sc, AR_MAC_REG_AMPDU_FACTOR, 0x10000a);
2560 
2561 	otus_set_rx_filter(sc);
2562 
2563 	otus_write(sc, AR_MAC_REG_BASIC_RATE, 0x150f);
2564 	otus_write(sc, AR_MAC_REG_MANDATORY_RATE, 0x150f);
2565 	otus_write(sc, AR_MAC_REG_RTS_CTS_RATE, 0x10b01bb);
2566 	otus_write(sc, AR_MAC_REG_ACK_TPC, 0x4003c1e);
2567 
2568 	/* Enable LED0 and LED1. */
2569 	otus_write(sc, AR_GPIO_REG_PORT_TYPE, 0x3);
2570 	otus_write(sc, AR_GPIO_REG_PORT_DATA, 0x3);
2571 	/* Switch MAC to OTUS interface. */
2572 	otus_write(sc, 0x1c3600, 0x3);
2573 	otus_write(sc, AR_MAC_REG_AMPDU_RX_THRESH, 0xffff);
2574 	otus_write(sc, AR_MAC_REG_MISC_680, 0xf00008);
2575 	/* Disable Rx timeout (workaround). */
2576 	otus_write(sc, AR_MAC_REG_RX_TIMEOUT, 0);
2577 
2578 	/* Set USB Rx stream mode maximum frame number to 2. */
2579 	otus_write(sc, 0x1e1110, 0x4);
2580 	/* Set USB Rx stream mode timeout to 10us. */
2581 	otus_write(sc, 0x1e1114, 0x80);
2582 
2583 	/* Set clock frequency to 88/80MHz. */
2584 	otus_write(sc, AR_PWR_REG_CLOCK_SEL, 0x73);
2585 	/* Set WLAN DMA interrupt mode: generate intr per packet. */
2586 	otus_write(sc, AR_MAC_REG_TXRX_MPI, 0x110011);
2587 	otus_write(sc, AR_MAC_REG_FCS_SELECT, 0x4);
2588 	otus_write(sc, AR_MAC_REG_TXOP_NOT_ENOUGH_INDICATION, 0x141e0f48);
2589 
2590 	/* Disable HW decryption for now. */
2591 	otus_write(sc, AR_MAC_REG_ENCRYPTION, 0x78);
2592 
2593 	if ((error = otus_write_barrier(sc)) != 0)
2594 		return error;
2595 
2596 	/* Set default EDCA parameters. */
2597 	otus_updateedca_locked(sc);
2598 
2599 	return 0;
2600 }
2601 
2602 /*
2603  * Return default value for PHY register based on current operating mode.
2604  */
2605 uint32_t
otus_phy_get_def(struct otus_softc * sc,uint32_t reg)2606 otus_phy_get_def(struct otus_softc *sc, uint32_t reg)
2607 {
2608 	int i;
2609 
2610 	for (i = 0; i < nitems(ar5416_phy_regs); i++)
2611 		if (AR_PHY(ar5416_phy_regs[i]) == reg)
2612 			return sc->phy_vals[i];
2613 	return 0;	/* Register not found. */
2614 }
2615 
2616 /*
2617  * Update PHY's programming based on vendor-specific data stored in EEPROM.
2618  * This is for FEM-type devices only.
2619  */
2620 int
otus_set_board_values(struct otus_softc * sc,struct ieee80211_channel * c)2621 otus_set_board_values(struct otus_softc *sc, struct ieee80211_channel *c)
2622 {
2623 	const struct ModalEepHeader *eep;
2624 	uint32_t tmp, offset;
2625 
2626 	if (IEEE80211_IS_CHAN_5GHZ(c))
2627 		eep = &sc->eeprom.modalHeader[0];
2628 	else
2629 		eep = &sc->eeprom.modalHeader[1];
2630 
2631 	/* Offset of chain 2. */
2632 	offset = 2 * 0x1000;
2633 
2634 	tmp = le32toh(eep->antCtrlCommon);
2635 	otus_write(sc, AR_PHY_SWITCH_COM, tmp);
2636 
2637 	tmp = le32toh(eep->antCtrlChain[0]);
2638 	otus_write(sc, AR_PHY_SWITCH_CHAIN_0, tmp);
2639 
2640 	tmp = le32toh(eep->antCtrlChain[1]);
2641 	otus_write(sc, AR_PHY_SWITCH_CHAIN_0 + offset, tmp);
2642 
2643 	if (1 /* sc->sc_sco == AR_SCO_SCN */) {
2644 		tmp = otus_phy_get_def(sc, AR_PHY_SETTLING);
2645 		tmp &= ~(0x7f << 7);
2646 		tmp |= (eep->switchSettling & 0x7f) << 7;
2647 		otus_write(sc, AR_PHY_SETTLING, tmp);
2648 	}
2649 
2650 	tmp = otus_phy_get_def(sc, AR_PHY_DESIRED_SZ);
2651 	tmp &= ~0xffff;
2652 	tmp |= eep->pgaDesiredSize << 8 | eep->adcDesiredSize;
2653 	otus_write(sc, AR_PHY_DESIRED_SZ, tmp);
2654 
2655 	tmp = eep->txEndToXpaOff << 24 | eep->txEndToXpaOff << 16 |
2656 	      eep->txFrameToXpaOn << 8 | eep->txFrameToXpaOn;
2657 	otus_write(sc, AR_PHY_RF_CTL4, tmp);
2658 
2659 	tmp = otus_phy_get_def(sc, AR_PHY_RF_CTL3);
2660 	tmp &= ~(0xff << 16);
2661 	tmp |= eep->txEndToRxOn << 16;
2662 	otus_write(sc, AR_PHY_RF_CTL3, tmp);
2663 
2664 	tmp = otus_phy_get_def(sc, AR_PHY_CCA);
2665 	tmp &= ~(0x7f << 12);
2666 	tmp |= (eep->thresh62 & 0x7f) << 12;
2667 	otus_write(sc, AR_PHY_CCA, tmp);
2668 
2669 	tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN);
2670 	tmp &= ~(0x3f << 12);
2671 	tmp |= (eep->txRxAttenCh[0] & 0x3f) << 12;
2672 	otus_write(sc, AR_PHY_RXGAIN, tmp);
2673 
2674 	tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN + offset);
2675 	tmp &= ~(0x3f << 12);
2676 	tmp |= (eep->txRxAttenCh[1] & 0x3f) << 12;
2677 	otus_write(sc, AR_PHY_RXGAIN + offset, tmp);
2678 
2679 	tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ);
2680 	tmp &= ~(0x3f << 18);
2681 	tmp |= (eep->rxTxMarginCh[0] & 0x3f) << 18;
2682 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2683 		tmp &= ~(0xf << 10);
2684 		tmp |= (eep->bswMargin[0] & 0xf) << 10;
2685 	}
2686 	otus_write(sc, AR_PHY_GAIN_2GHZ, tmp);
2687 
2688 	tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ + offset);
2689 	tmp &= ~(0x3f << 18);
2690 	tmp |= (eep->rxTxMarginCh[1] & 0x3f) << 18;
2691 	otus_write(sc, AR_PHY_GAIN_2GHZ + offset, tmp);
2692 
2693 	tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4);
2694 	tmp &= ~(0x3f << 5 | 0x1f);
2695 	tmp |= (eep->iqCalICh[0] & 0x3f) << 5 | (eep->iqCalQCh[0] & 0x1f);
2696 	otus_write(sc, AR_PHY_TIMING_CTRL4, tmp);
2697 
2698 	tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4 + offset);
2699 	tmp &= ~(0x3f << 5 | 0x1f);
2700 	tmp |= (eep->iqCalICh[1] & 0x3f) << 5 | (eep->iqCalQCh[1] & 0x1f);
2701 	otus_write(sc, AR_PHY_TIMING_CTRL4 + offset, tmp);
2702 
2703 	tmp = otus_phy_get_def(sc, AR_PHY_TPCRG1);
2704 	tmp &= ~(0xf << 16);
2705 	tmp |= (eep->xpd & 0xf) << 16;
2706 	otus_write(sc, AR_PHY_TPCRG1, tmp);
2707 
2708 	return otus_write_barrier(sc);
2709 }
2710 
2711 int
otus_program_phy(struct otus_softc * sc,struct ieee80211_channel * c)2712 otus_program_phy(struct otus_softc *sc, struct ieee80211_channel *c)
2713 {
2714 	const uint32_t *vals;
2715 	int error, i;
2716 
2717 	/* Select PHY programming based on band and bandwidth. */
2718 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
2719 		if (IEEE80211_IS_CHAN_HT40(c))
2720 			vals = ar5416_phy_vals_2ghz_40mhz;
2721 		else
2722 			vals = ar5416_phy_vals_2ghz_20mhz;
2723 	} else {
2724 		if (IEEE80211_IS_CHAN_HT40(c))
2725 			vals = ar5416_phy_vals_5ghz_40mhz;
2726 		else
2727 			vals = ar5416_phy_vals_5ghz_20mhz;
2728 	}
2729 	for (i = 0; i < nitems(ar5416_phy_regs); i++)
2730 		otus_write(sc, AR_PHY(ar5416_phy_regs[i]), vals[i]);
2731 	sc->phy_vals = vals;
2732 
2733 	if (sc->eeprom.baseEepHeader.deviceType == 0x80)	/* FEM */
2734 		if ((error = otus_set_board_values(sc, c)) != 0)
2735 			return error;
2736 
2737 	/* Initial Tx power settings. */
2738 	otus_write(sc, AR_PHY_POWER_TX_RATE_MAX, 0x7f);
2739 	otus_write(sc, AR_PHY_POWER_TX_RATE1, 0x3f3f3f3f);
2740 	otus_write(sc, AR_PHY_POWER_TX_RATE2, 0x3f3f3f3f);
2741 	otus_write(sc, AR_PHY_POWER_TX_RATE3, 0x3f3f3f3f);
2742 	otus_write(sc, AR_PHY_POWER_TX_RATE4, 0x3f3f3f3f);
2743 	otus_write(sc, AR_PHY_POWER_TX_RATE5, 0x3f3f3f3f);
2744 	otus_write(sc, AR_PHY_POWER_TX_RATE6, 0x3f3f3f3f);
2745 	otus_write(sc, AR_PHY_POWER_TX_RATE7, 0x3f3f3f3f);
2746 	otus_write(sc, AR_PHY_POWER_TX_RATE8, 0x3f3f3f3f);
2747 	otus_write(sc, AR_PHY_POWER_TX_RATE9, 0x3f3f3f3f);
2748 
2749 	if (IEEE80211_IS_CHAN_2GHZ(c))
2750 		otus_write(sc, AR_PWR_REG_PLL_ADDAC, 0x5163);
2751 	else
2752 		otus_write(sc, AR_PWR_REG_PLL_ADDAC, 0x5143);
2753 
2754 	return otus_write_barrier(sc);
2755 }
2756 
2757 static __inline uint8_t
otus_reverse_bits(uint8_t v)2758 otus_reverse_bits(uint8_t v)
2759 {
2760 	v = ((v >> 1) & 0x55) | ((v & 0x55) << 1);
2761 	v = ((v >> 2) & 0x33) | ((v & 0x33) << 2);
2762 	v = ((v >> 4) & 0x0f) | ((v & 0x0f) << 4);
2763 	return v;
2764 }
2765 
2766 int
otus_set_rf_bank4(struct otus_softc * sc,struct ieee80211_channel * c)2767 otus_set_rf_bank4(struct otus_softc *sc, struct ieee80211_channel *c)
2768 {
2769 	uint8_t chansel, d0, d1;
2770 	uint16_t data;
2771 	int error;
2772 
2773 	OTUS_LOCK_ASSERT(sc);
2774 
2775 	d0 = 0;
2776 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2777 		chansel = (c->ic_freq - 4800) / 5;
2778 		if (chansel & 1)
2779 			d0 |= AR_BANK4_AMODE_REFSEL(2);
2780 		else
2781 			d0 |= AR_BANK4_AMODE_REFSEL(1);
2782 	} else {
2783 		d0 |= AR_BANK4_AMODE_REFSEL(2);
2784 		if (c->ic_freq == 2484) {	/* CH 14 */
2785 			d0 |= AR_BANK4_BMODE_LF_SYNTH_FREQ;
2786 			chansel = 10 + (c->ic_freq - 2274) / 5;
2787 		} else
2788 			chansel = 16 + (c->ic_freq - 2272) / 5;
2789 		chansel <<= 2;
2790 	}
2791 	d0 |= AR_BANK4_ADDR(1) | AR_BANK4_CHUP;
2792 	d1 = otus_reverse_bits(chansel);
2793 
2794 	/* Write bits 0-4 of d0 and d1. */
2795 	data = (d1 & 0x1f) << 5 | (d0 & 0x1f);
2796 	otus_write(sc, AR_PHY(44), data);
2797 	/* Write bits 5-7 of d0 and d1. */
2798 	data = (d1 >> 5) << 5 | (d0 >> 5);
2799 	otus_write(sc, AR_PHY(58), data);
2800 
2801 	if ((error = otus_write_barrier(sc)) == 0)
2802 		otus_delay_ms(sc, 10);
2803 	return error;
2804 }
2805 
2806 void
otus_get_delta_slope(uint32_t coeff,uint32_t * exponent,uint32_t * mantissa)2807 otus_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa)
2808 {
2809 #define COEFF_SCALE_SHIFT	24
2810 	uint32_t exp, man;
2811 
2812 	/* exponent = 14 - floor(log2(coeff)) */
2813 	for (exp = 31; exp > 0; exp--)
2814 		if (coeff & (1 << exp))
2815 			break;
2816 	KASSERT(exp != 0, ("exp"));
2817 	exp = 14 - (exp - COEFF_SCALE_SHIFT);
2818 
2819 	/* mantissa = floor(coeff * 2^exponent + 0.5) */
2820 	man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1));
2821 
2822 	*mantissa = man >> (COEFF_SCALE_SHIFT - exp);
2823 	*exponent = exp - 16;
2824 #undef COEFF_SCALE_SHIFT
2825 }
2826 
2827 static int
otus_set_chan(struct otus_softc * sc,struct ieee80211_channel * c,int assoc)2828 otus_set_chan(struct otus_softc *sc, struct ieee80211_channel *c, int assoc)
2829 {
2830 	struct ieee80211com *ic = &sc->sc_ic;
2831 	struct ar_cmd_frequency cmd;
2832 	struct ar_rsp_frequency rsp;
2833 	const uint32_t *vals;
2834 	uint32_t coeff, exp, man, tmp;
2835 	uint8_t code;
2836 	int error, chan, i;
2837 
2838 	error = 0;
2839 	chan = ieee80211_chan2ieee(ic, c);
2840 
2841 	OTUS_DPRINTF(sc, OTUS_DEBUG_RESET,
2842 	    "setting channel %d (%dMHz)\n", chan, c->ic_freq);
2843 
2844 	tmp = IEEE80211_IS_CHAN_2GHZ(c) ? 0x105 : 0x104;
2845 	otus_write(sc, AR_MAC_REG_DYNAMIC_SIFS_ACK, tmp);
2846 	if ((error = otus_write_barrier(sc)) != 0)
2847 		goto finish;
2848 
2849 	/* Disable BB Heavy Clip. */
2850 	otus_write(sc, AR_PHY_HEAVY_CLIP_ENABLE, 0x200);
2851 	if ((error = otus_write_barrier(sc)) != 0)
2852 		goto finish;
2853 
2854 	/* XXX Is that FREQ_START ? */
2855 	error = otus_cmd(sc, AR_CMD_FREQ_STRAT, NULL, 0, NULL, 0);
2856 	if (error != 0)
2857 		goto finish;
2858 
2859 	/* Reprogram PHY and RF on channel band or bandwidth changes. */
2860 	if (sc->bb_reset || c->ic_flags != sc->sc_curchan->ic_flags) {
2861 		OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "band switch\n");
2862 
2863 		/* Cold/Warm reset BB/ADDA. */
2864 		otus_write(sc, AR_PWR_REG_RESET, sc->bb_reset ? 0x800 : 0x400);
2865 		if ((error = otus_write_barrier(sc)) != 0)
2866 			goto finish;
2867 		otus_write(sc, AR_PWR_REG_RESET, 0);
2868 		if ((error = otus_write_barrier(sc)) != 0)
2869 			goto finish;
2870 		sc->bb_reset = 0;
2871 
2872 		if ((error = otus_program_phy(sc, c)) != 0) {
2873 			device_printf(sc->sc_dev,
2874 			    "%s: could not program PHY\n",
2875 			    __func__);
2876 			goto finish;
2877 		}
2878 
2879 		/* Select RF programming based on band. */
2880 		if (IEEE80211_IS_CHAN_5GHZ(c))
2881 			vals = ar5416_banks_vals_5ghz;
2882 		else
2883 			vals = ar5416_banks_vals_2ghz;
2884 		for (i = 0; i < nitems(ar5416_banks_regs); i++)
2885 			otus_write(sc, AR_PHY(ar5416_banks_regs[i]), vals[i]);
2886 		if ((error = otus_write_barrier(sc)) != 0) {
2887 			device_printf(sc->sc_dev,
2888 			    "%s: could not program RF\n",
2889 			    __func__);
2890 			goto finish;
2891 		}
2892 		code = AR_CMD_RF_INIT;
2893 	} else {
2894 		code = AR_CMD_FREQUENCY;
2895 	}
2896 
2897 	if ((error = otus_set_rf_bank4(sc, c)) != 0)
2898 		goto finish;
2899 
2900 	tmp = (sc->txmask == 0x5) ? 0x340 : 0x240;
2901 	otus_write(sc, AR_PHY_TURBO, tmp);
2902 	if ((error = otus_write_barrier(sc)) != 0)
2903 		goto finish;
2904 
2905 	/* Send firmware command to set channel. */
2906 	cmd.freq = htole32((uint32_t)c->ic_freq * 1000);
2907 	cmd.dynht2040 = htole32(0);
2908 	cmd.htena = htole32(1);
2909 	/* Set Delta Slope (exponent and mantissa). */
2910 	coeff = (100 << 24) / c->ic_freq;
2911 	otus_get_delta_slope(coeff, &exp, &man);
2912 	cmd.dsc_exp = htole32(exp);
2913 	cmd.dsc_man = htole32(man);
2914 	OTUS_DPRINTF(sc, OTUS_DEBUG_RESET,
2915 	    "ds coeff=%u exp=%u man=%u\n", coeff, exp, man);
2916 	/* For Short GI, coeff is 9/10 that of normal coeff. */
2917 	coeff = (9 * coeff) / 10;
2918 	otus_get_delta_slope(coeff, &exp, &man);
2919 	cmd.dsc_shgi_exp = htole32(exp);
2920 	cmd.dsc_shgi_man = htole32(man);
2921 	OTUS_DPRINTF(sc, OTUS_DEBUG_RESET,
2922 	    "ds shgi coeff=%u exp=%u man=%u\n", coeff, exp, man);
2923 	/* Set wait time for AGC and noise calibration (100 or 200ms). */
2924 	cmd.check_loop_count = assoc ? htole32(2000) : htole32(1000);
2925 	OTUS_DPRINTF(sc, OTUS_DEBUG_RESET,
2926 	    "%s\n", (code == AR_CMD_RF_INIT) ? "RF_INIT" : "FREQUENCY");
2927 	error = otus_cmd(sc, code, &cmd, sizeof cmd, &rsp, sizeof(rsp));
2928 	if (error != 0)
2929 		goto finish;
2930 	if ((rsp.status & htole32(AR_CAL_ERR_AGC | AR_CAL_ERR_NF_VAL)) != 0) {
2931 		OTUS_DPRINTF(sc, OTUS_DEBUG_RESET,
2932 		    "status=0x%x\n", le32toh(rsp.status));
2933 		/* Force cold reset on next channel. */
2934 		sc->bb_reset = 1;
2935 	}
2936 #ifdef USB_DEBUG
2937 	if (otus_debug & OTUS_DEBUG_RESET) {
2938 		device_printf(sc->sc_dev, "calibration status=0x%x\n",
2939 		    le32toh(rsp.status));
2940 		for (i = 0; i < 2; i++) {	/* 2 Rx chains */
2941 			/* Sign-extend 9-bit NF values. */
2942 			device_printf(sc->sc_dev,
2943 			    "noisefloor chain %d=%d\n", i,
2944 			    (((int32_t)le32toh(rsp.nf[i])) << 4) >> 23);
2945 			device_printf(sc->sc_dev,
2946 			    "noisefloor ext chain %d=%d\n", i,
2947 			    ((int32_t)le32toh(rsp.nf_ext[i])) >> 23);
2948 		}
2949 	}
2950 #endif
2951 	for (i = 0; i < OTUS_NUM_CHAINS; i++) {
2952 		sc->sc_nf[i] = ((((int32_t)le32toh(rsp.nf[i])) << 4) >> 23);
2953 	}
2954 	sc->sc_curchan = c;
2955 finish:
2956 	return (error);
2957 }
2958 
2959 #ifdef notyet
2960 int
otus_set_key(struct ieee80211com * ic,struct ieee80211_node * ni,struct ieee80211_key * k)2961 otus_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2962     struct ieee80211_key *k)
2963 {
2964 	struct otus_softc *sc = ic->ic_softc;
2965 	struct otus_cmd_key cmd;
2966 
2967 	/* Defer setting of WEP keys until interface is brought up. */
2968 	if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
2969 	    (IFF_UP | IFF_RUNNING))
2970 		return 0;
2971 
2972 	/* Do it in a process context. */
2973 	cmd.key = *k;
2974 	cmd.associd = (ni != NULL) ? ni->ni_associd : 0;
2975 	otus_do_async(sc, otus_set_key_cb, &cmd, sizeof cmd);
2976 	return 0;
2977 }
2978 
2979 void
otus_set_key_cb(struct otus_softc * sc,void * arg)2980 otus_set_key_cb(struct otus_softc *sc, void *arg)
2981 {
2982 	struct otus_cmd_key *cmd = arg;
2983 	struct ieee80211_key *k = &cmd->key;
2984 	struct ar_cmd_ekey key;
2985 	uint16_t cipher;
2986 	int error;
2987 
2988 	memset(&key, 0, sizeof key);
2989 	if (k->k_flags & IEEE80211_KEY_GROUP) {
2990 		key.uid = htole16(k->k_id);
2991 		IEEE80211_ADDR_COPY(key.macaddr, sc->sc_ic.ic_myaddr);
2992 		key.macaddr[0] |= 0x80;
2993 	} else {
2994 		key.uid = htole16(OTUS_UID(cmd->associd));
2995 		IEEE80211_ADDR_COPY(key.macaddr, ni->ni_macaddr);
2996 	}
2997 	key.kix = htole16(0);
2998 	/* Map net80211 cipher to hardware. */
2999 	switch (k->k_cipher) {
3000 	case IEEE80211_CIPHER_WEP40:
3001 		cipher = AR_CIPHER_WEP64;
3002 		break;
3003 	case IEEE80211_CIPHER_WEP104:
3004 		cipher = AR_CIPHER_WEP128;
3005 		break;
3006 	case IEEE80211_CIPHER_TKIP:
3007 		cipher = AR_CIPHER_TKIP;
3008 		break;
3009 	case IEEE80211_CIPHER_CCMP:
3010 		cipher = AR_CIPHER_AES;
3011 		break;
3012 	default:
3013 		return;
3014 	}
3015 	key.cipher = htole16(cipher);
3016 	memcpy(key.key, k->k_key, MIN(k->k_len, 16));
3017 	error = otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL, 0);
3018 	if (error != 0 || k->k_cipher != IEEE80211_CIPHER_TKIP)
3019 		return;
3020 
3021 	/* TKIP: set Tx/Rx MIC Key. */
3022 	key.kix = htole16(1);
3023 	memcpy(key.key, k->k_key + 16, 16);
3024 	(void)otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL, 0);
3025 }
3026 
3027 void
otus_delete_key(struct ieee80211com * ic,struct ieee80211_node * ni,struct ieee80211_key * k)3028 otus_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
3029     struct ieee80211_key *k)
3030 {
3031 	struct otus_softc *sc = ic->ic_softc;
3032 	struct otus_cmd_key cmd;
3033 
3034 	if (!(ic->ic_if.if_flags & IFF_RUNNING) ||
3035 	    ic->ic_state != IEEE80211_S_RUN)
3036 		return;	/* Nothing to do. */
3037 
3038 	/* Do it in a process context. */
3039 	cmd.key = *k;
3040 	cmd.associd = (ni != NULL) ? ni->ni_associd : 0;
3041 	otus_do_async(sc, otus_delete_key_cb, &cmd, sizeof cmd);
3042 }
3043 
3044 void
otus_delete_key_cb(struct otus_softc * sc,void * arg)3045 otus_delete_key_cb(struct otus_softc *sc, void *arg)
3046 {
3047 	struct otus_cmd_key *cmd = arg;
3048 	struct ieee80211_key *k = &cmd->key;
3049 	uint32_t uid;
3050 
3051 	if (k->k_flags & IEEE80211_KEY_GROUP)
3052 		uid = htole32(k->k_id);
3053 	else
3054 		uid = htole32(OTUS_UID(cmd->associd));
3055 	(void)otus_cmd(sc, AR_CMD_DKEY, &uid, sizeof uid, NULL, 0);
3056 }
3057 #endif
3058 
3059 /*
3060  * XXX TODO: check if we have to be doing any calibration in the host
3061  * or whether it's purely a firmware thing.
3062  */
3063 void
otus_calibrate_to(void * arg,int pending)3064 otus_calibrate_to(void *arg, int pending)
3065 {
3066 #if 0
3067 	struct otus_softc *sc = arg;
3068 
3069 	device_printf(sc->sc_dev, "%s: called\n", __func__);
3070 	struct ieee80211com *ic = &sc->sc_ic;
3071 	struct ieee80211_node *ni;
3072 
3073 	if (usbd_is_dying(sc->sc_udev))
3074 		return;
3075 
3076 	usbd_ref_incr(sc->sc_udev);
3077 
3078 	ni = ic->ic_bss;
3079 	ieee80211_amrr_choose(&sc->amrr, ni, &((struct otus_node *)ni)->amn);
3080 
3081 	if (!usbd_is_dying(sc->sc_udev))
3082 		timeout_add_sec(&sc->calib_to, 1);
3083 
3084 	usbd_ref_decr(sc->sc_udev);
3085 #endif
3086 }
3087 
3088 int
otus_set_bssid(struct otus_softc * sc,const uint8_t * bssid)3089 otus_set_bssid(struct otus_softc *sc, const uint8_t *bssid)
3090 {
3091 
3092 	OTUS_LOCK_ASSERT(sc);
3093 
3094 	otus_write(sc, AR_MAC_REG_BSSID_L,
3095 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
3096 	otus_write(sc, AR_MAC_REG_BSSID_H,
3097 	    bssid[4] | bssid[5] << 8);
3098 	return otus_write_barrier(sc);
3099 }
3100 
3101 int
otus_set_macaddr(struct otus_softc * sc,const uint8_t * addr)3102 otus_set_macaddr(struct otus_softc *sc, const uint8_t *addr)
3103 {
3104 	OTUS_LOCK_ASSERT(sc);
3105 
3106 	otus_write(sc, AR_MAC_REG_MAC_ADDR_L,
3107 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
3108 	otus_write(sc, AR_MAC_REG_MAC_ADDR_H,
3109 	    addr[4] | addr[5] << 8);
3110 	return otus_write_barrier(sc);
3111 }
3112 
3113 /* Default single-LED. */
3114 void
otus_led_newstate_type1(struct otus_softc * sc)3115 otus_led_newstate_type1(struct otus_softc *sc)
3116 {
3117 	/* TBD */
3118 	device_printf(sc->sc_dev, "%s: TODO\n", __func__);
3119 }
3120 
3121 /* NETGEAR, dual-LED. */
3122 void
otus_led_newstate_type2(struct otus_softc * sc)3123 otus_led_newstate_type2(struct otus_softc *sc)
3124 {
3125 	/* TBD */
3126 	device_printf(sc->sc_dev, "%s: TODO\n", __func__);
3127 }
3128 
3129 /* NETGEAR, single-LED/3 colors (blue, red, purple.) */
3130 void
otus_led_newstate_type3(struct otus_softc * sc)3131 otus_led_newstate_type3(struct otus_softc *sc)
3132 {
3133 #if 0
3134 	struct ieee80211com *ic = &sc->sc_ic;
3135 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3136 
3137 	uint32_t state = sc->led_state;
3138 
3139 	OTUS_LOCK_ASSERT(sc);
3140 
3141 	if (!vap) {
3142 		state = 0;	/* led off */
3143 	} else if (vap->iv_state == IEEE80211_S_INIT) {
3144 		state = 0;	/* LED off. */
3145 	} else if (vap->iv_state == IEEE80211_S_RUN) {
3146 		/* Associated, LED always on. */
3147 		if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan))
3148 			state = AR_LED0_ON;	/* 2GHz=>Red. */
3149 		else
3150 			state = AR_LED1_ON;	/* 5GHz=>Blue. */
3151 	} else {
3152 		/* Scanning, blink LED. */
3153 		state ^= AR_LED0_ON | AR_LED1_ON;
3154 		if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan))
3155 			state &= ~AR_LED1_ON;
3156 		else
3157 			state &= ~AR_LED0_ON;
3158 	}
3159 	if (state != sc->led_state) {
3160 		otus_write(sc, AR_GPIO_REG_PORT_DATA, state);
3161 		if (otus_write_barrier(sc) == 0)
3162 			sc->led_state = state;
3163 	}
3164 #endif
3165 }
3166 
3167 static uint8_t zero_macaddr[IEEE80211_ADDR_LEN] = { 0,0,0,0,0,0 };
3168 
3169 /*
3170  * Set up operating mode, MAC/BSS address and RX filter.
3171  */
3172 static void
otus_set_operating_mode(struct otus_softc * sc)3173 otus_set_operating_mode(struct otus_softc *sc)
3174 {
3175 	struct ieee80211com *ic = &sc->sc_ic;
3176 	struct ieee80211vap *vap;
3177 	uint32_t cam_mode = AR_MAC_CAM_DEFAULTS;
3178 	uint32_t rx_ctrl = AR_MAC_RX_CTRL_DEAGG | AR_MAC_RX_CTRL_SHORT_FILTER;
3179 	uint32_t sniffer = AR_MAC_SNIFFER_DEFAULTS;
3180 	uint32_t enc_mode = 0x78; /* XXX */
3181 	const uint8_t *macaddr;
3182 	uint8_t bssid[IEEE80211_ADDR_LEN];
3183 	struct ieee80211_node *ni;
3184 
3185 	OTUS_LOCK_ASSERT(sc);
3186 
3187 	/*
3188 	 * If we're in sniffer mode or we don't have a MAC
3189 	 * address assigned, ensure it gets reset to all-zero.
3190 	 */
3191 	IEEE80211_ADDR_COPY(bssid, zero_macaddr);
3192 	vap = TAILQ_FIRST(&ic->ic_vaps);
3193 	macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
3194 
3195 	switch (ic->ic_opmode) {
3196 	case IEEE80211_M_STA:
3197 		if (vap) {
3198 			ni = ieee80211_ref_node(vap->iv_bss);
3199 			IEEE80211_ADDR_COPY(bssid, ni->ni_bssid);
3200 			ieee80211_free_node(ni);
3201 		}
3202 		cam_mode |= AR_MAC_CAM_STA;
3203 		rx_ctrl |= AR_MAC_RX_CTRL_PASS_TO_HOST;
3204 		break;
3205 	case IEEE80211_M_MONITOR:
3206 		/*
3207 		 * Note: monitor mode ends up causing the MAC to
3208 		 * generate ACK frames for everything it sees.
3209 		 * So don't do that; instead just put it in STA mode
3210 		 * and disable RX filters.
3211 		 */
3212 	default:
3213 		cam_mode |= AR_MAC_CAM_STA;
3214 		rx_ctrl |= AR_MAC_RX_CTRL_PASS_TO_HOST;
3215 		break;
3216 	}
3217 
3218 	/*
3219 	 * TODO: if/when we do hardware encryption, ensure it's
3220 	 * disabled if the NIC is in monitor mode.
3221 	 */
3222 	otus_write(sc, AR_MAC_REG_SNIFFER, sniffer);
3223 	otus_write(sc, AR_MAC_REG_CAM_MODE, cam_mode);
3224 	otus_write(sc, AR_MAC_REG_ENCRYPTION, enc_mode);
3225 	otus_write(sc, AR_MAC_REG_RX_CONTROL, rx_ctrl);
3226 	otus_set_macaddr(sc, macaddr);
3227 	otus_set_bssid(sc, bssid);
3228 	/* XXX barrier? */
3229 }
3230 
3231 static void
otus_set_rx_filter(struct otus_softc * sc)3232 otus_set_rx_filter(struct otus_softc *sc)
3233 {
3234 //	struct ieee80211com *ic = &sc->sc_ic;
3235 
3236 	OTUS_LOCK_ASSERT(sc);
3237 
3238 #if 0
3239 	if (ic->ic_allmulti > 0 || ic->ic_promisc > 0 ||
3240 	    ic->ic_opmode == IEEE80211_M_MONITOR) {
3241 		otus_write(sc, AR_MAC_REG_FRAMETYPE_FILTER, 0xff00ffff);
3242 	} else {
3243 #endif
3244 		/* Filter any control frames, BAR is bit 24. */
3245 		otus_write(sc, AR_MAC_REG_FRAMETYPE_FILTER, 0x0500ffff);
3246 #if 0
3247 	}
3248 #endif
3249 }
3250 
3251 int
otus_init(struct otus_softc * sc)3252 otus_init(struct otus_softc *sc)
3253 {
3254 	struct ieee80211com *ic = &sc->sc_ic;
3255 	int error;
3256 
3257 	OTUS_UNLOCK_ASSERT(sc);
3258 
3259 	OTUS_LOCK(sc);
3260 
3261 	/* Drain any pending TX frames */
3262 	otus_drain_mbufq(sc);
3263 
3264 	/* Init MAC */
3265 	if ((error = otus_init_mac(sc)) != 0) {
3266 		OTUS_UNLOCK(sc);
3267 		device_printf(sc->sc_dev,
3268 		    "%s: could not initialize MAC\n", __func__);
3269 		return error;
3270 	}
3271 
3272 	otus_set_operating_mode(sc);
3273 	otus_set_rx_filter(sc);
3274 	(void) otus_set_operating_mode(sc);
3275 
3276 	sc->bb_reset = 1;	/* Force cold reset. */
3277 
3278 	if ((error = otus_set_chan(sc, ic->ic_curchan, 0)) != 0) {
3279 		OTUS_UNLOCK(sc);
3280 		device_printf(sc->sc_dev,
3281 		    "%s: could not set channel\n", __func__);
3282 		return error;
3283 	}
3284 
3285 	/* Start Rx. */
3286 	otus_write(sc, AR_MAC_REG_DMA_TRIGGER, 0x100);
3287 	(void)otus_write_barrier(sc);
3288 
3289 	sc->sc_running = 1;
3290 
3291 	OTUS_UNLOCK(sc);
3292 	return 0;
3293 }
3294 
3295 void
otus_stop(struct otus_softc * sc)3296 otus_stop(struct otus_softc *sc)
3297 {
3298 #if 0
3299 	int s;
3300 #endif
3301 
3302 	OTUS_UNLOCK_ASSERT(sc);
3303 
3304 	OTUS_LOCK(sc);
3305 	sc->sc_running = 0;
3306 	sc->sc_tx_timer = 0;
3307 	OTUS_UNLOCK(sc);
3308 
3309 	taskqueue_drain_timeout(taskqueue_thread, &sc->scan_to);
3310 	taskqueue_drain_timeout(taskqueue_thread, &sc->calib_to);
3311 	taskqueue_drain(taskqueue_thread, &sc->tx_task);
3312 
3313 	OTUS_LOCK(sc);
3314 	sc->sc_running = 0;
3315 	/* Stop Rx. */
3316 	otus_write(sc, AR_MAC_REG_DMA_TRIGGER, 0);
3317 	(void)otus_write_barrier(sc);
3318 
3319 	/* Drain any pending TX frames */
3320 	otus_drain_mbufq(sc);
3321 
3322 	OTUS_UNLOCK(sc);
3323 }
3324