1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001-2024, Intel Corporation
5 * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
6 * Copyright (c) 2024 Kevin Bowling <kbowling@FreeBSD.org>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33
34 #define em_mac_min e1000_82571
35 #define igb_mac_min e1000_82575
36
37 /*********************************************************************
38 * Driver version:
39 *********************************************************************/
40 static const char em_driver_version[] = "7.7.8-fbsd";
41 static const char igb_driver_version[] = "2.5.28-fbsd";
42
43 /*********************************************************************
44 * PCI Device ID Table
45 *
46 * Used by probe to select devices to load on
47 * Last field stores an index into e1000_strings
48 * Last entry must be all 0s
49 *
50 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
51 *********************************************************************/
52
53 static const pci_vendor_info_t em_vendor_info_array[] =
54 {
55 /* Intel(R) - lem-class legacy devices */
56 PVID(0x8086, E1000_DEV_ID_82540EM,
57 "Intel(R) Legacy PRO/1000 MT 82540EM"),
58 PVID(0x8086, E1000_DEV_ID_82540EM_LOM,
59 "Intel(R) Legacy PRO/1000 MT 82540EM (LOM)"),
60 PVID(0x8086, E1000_DEV_ID_82540EP,
61 "Intel(R) Legacy PRO/1000 MT 82540EP"),
62 PVID(0x8086, E1000_DEV_ID_82540EP_LOM,
63 "Intel(R) Legacy PRO/1000 MT 82540EP (LOM)"),
64 PVID(0x8086, E1000_DEV_ID_82540EP_LP,
65 "Intel(R) Legacy PRO/1000 MT 82540EP (Mobile)"),
66
67 PVID(0x8086, E1000_DEV_ID_82541EI,
68 "Intel(R) Legacy PRO/1000 MT 82541EI (Copper)"),
69 PVID(0x8086, E1000_DEV_ID_82541ER,
70 "Intel(R) Legacy PRO/1000 82541ER"),
71 PVID(0x8086, E1000_DEV_ID_82541ER_LOM,
72 "Intel(R) Legacy PRO/1000 MT 82541ER"),
73 PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE,
74 "Intel(R) Legacy PRO/1000 MT 82541EI (Mobile)"),
75 PVID(0x8086, E1000_DEV_ID_82541GI,
76 "Intel(R) Legacy PRO/1000 MT 82541GI"),
77 PVID(0x8086, E1000_DEV_ID_82541GI_LF,
78 "Intel(R) Legacy PRO/1000 GT 82541PI"),
79 PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE,
80 "Intel(R) Legacy PRO/1000 MT 82541GI (Mobile)"),
81
82 PVID(0x8086, E1000_DEV_ID_82542,
83 "Intel(R) Legacy PRO/1000 82542 (Fiber)"),
84
85 PVID(0x8086, E1000_DEV_ID_82543GC_FIBER,
86 "Intel(R) Legacy PRO/1000 F 82543GC (Fiber)"),
87 PVID(0x8086, E1000_DEV_ID_82543GC_COPPER,
88 "Intel(R) Legacy PRO/1000 T 82543GC (Copper)"),
89
90 PVID(0x8086, E1000_DEV_ID_82544EI_COPPER,
91 "Intel(R) Legacy PRO/1000 XT 82544EI (Copper)"),
92 PVID(0x8086, E1000_DEV_ID_82544EI_FIBER,
93 "Intel(R) Legacy PRO/1000 XF 82544EI (Fiber)"),
94 PVID(0x8086, E1000_DEV_ID_82544GC_COPPER,
95 "Intel(R) Legacy PRO/1000 T 82544GC (Copper)"),
96 PVID(0x8086, E1000_DEV_ID_82544GC_LOM,
97 "Intel(R) Legacy PRO/1000 XT 82544GC (LOM)"),
98
99 PVID(0x8086, E1000_DEV_ID_82545EM_COPPER,
100 "Intel(R) Legacy PRO/1000 MT 82545EM (Copper)"),
101 PVID(0x8086, E1000_DEV_ID_82545EM_FIBER,
102 "Intel(R) Legacy PRO/1000 MF 82545EM (Fiber)"),
103 PVID(0x8086, E1000_DEV_ID_82545GM_COPPER,
104 "Intel(R) Legacy PRO/1000 MT 82545GM (Copper)"),
105 PVID(0x8086, E1000_DEV_ID_82545GM_FIBER,
106 "Intel(R) Legacy PRO/1000 MF 82545GM (Fiber)"),
107 PVID(0x8086, E1000_DEV_ID_82545GM_SERDES,
108 "Intel(R) Legacy PRO/1000 MB 82545GM (SERDES)"),
109
110 PVID(0x8086, E1000_DEV_ID_82546EB_COPPER,
111 "Intel(R) Legacy PRO/1000 MT 82546EB (Copper)"),
112 PVID(0x8086, E1000_DEV_ID_82546EB_FIBER,
113 "Intel(R) Legacy PRO/1000 MF 82546EB (Fiber)"),
114 PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER,
115 "Intel(R) Legacy PRO/1000 MT 82546EB (Quad Copper"),
116 PVID(0x8086, E1000_DEV_ID_82546GB_COPPER,
117 "Intel(R) Legacy PRO/1000 MT 82546GB (Copper)"),
118 PVID(0x8086, E1000_DEV_ID_82546GB_FIBER,
119 "Intel(R) Legacy PRO/1000 MF 82546GB (Fiber)"),
120 PVID(0x8086, E1000_DEV_ID_82546GB_SERDES,
121 "Intel(R) Legacy PRO/1000 MB 82546GB (SERDES)"),
122 PVID(0x8086, E1000_DEV_ID_82546GB_PCIE,
123 "Intel(R) Legacy PRO/1000 P 82546GB (PCIe)"),
124 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER,
125 "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
126 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3,
127 "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
128
129 PVID(0x8086, E1000_DEV_ID_82547EI,
130 "Intel(R) Legacy PRO/1000 CT 82547EI"),
131 PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE,
132 "Intel(R) Legacy PRO/1000 CT 82547EI (Mobile)"),
133 PVID(0x8086, E1000_DEV_ID_82547GI,
134 "Intel(R) Legacy PRO/1000 CT 82547GI"),
135
136 /* Intel(R) - em-class devices */
137 PVID(0x8086, E1000_DEV_ID_82571EB_COPPER,
138 "Intel(R) PRO/1000 PT 82571EB/82571GB (Copper)"),
139 PVID(0x8086, E1000_DEV_ID_82571EB_FIBER,
140 "Intel(R) PRO/1000 PF 82571EB/82571GB (Fiber)"),
141 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES,
142 "Intel(R) PRO/1000 PB 82571EB (SERDES)"),
143 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL,
144 "Intel(R) PRO/1000 82571EB (Dual Mezzanine)"),
145 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD,
146 "Intel(R) PRO/1000 82571EB (Quad Mezzanine)"),
147 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER,
148 "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
149 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP,
150 "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
151 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER,
152 "Intel(R) PRO/1000 PF 82571EB (Quad Fiber)"),
153 PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER,
154 "Intel(R) PRO/1000 PT 82571PT (Quad Copper)"),
155 PVID(0x8086, E1000_DEV_ID_82572EI,
156 "Intel(R) PRO/1000 PT 82572EI (Copper)"),
157 PVID(0x8086, E1000_DEV_ID_82572EI_COPPER,
158 "Intel(R) PRO/1000 PT 82572EI (Copper)"),
159 PVID(0x8086, E1000_DEV_ID_82572EI_FIBER,
160 "Intel(R) PRO/1000 PF 82572EI (Fiber)"),
161 PVID(0x8086, E1000_DEV_ID_82572EI_SERDES,
162 "Intel(R) PRO/1000 82572EI (SERDES)"),
163 PVID(0x8086, E1000_DEV_ID_82573E,
164 "Intel(R) PRO/1000 82573E (Copper)"),
165 PVID(0x8086, E1000_DEV_ID_82573E_IAMT,
166 "Intel(R) PRO/1000 82573E AMT (Copper)"),
167 PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 82573L"),
168 PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) 82583V"),
169 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT,
170 "Intel(R) 80003ES2LAN (Copper)"),
171 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT,
172 "Intel(R) 80003ES2LAN (SERDES)"),
173 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT,
174 "Intel(R) 80003ES2LAN (Dual Copper)"),
175 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT,
176 "Intel(R) 80003ES2LAN (Dual SERDES)"),
177 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT,
178 "Intel(R) 82566MM ICH8 AMT (Mobile)"),
179 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) 82566DM ICH8 AMT"),
180 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) 82566DC ICH8"),
181 PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) 82562V ICH8"),
182 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) 82562GT ICH8"),
183 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) 82562G ICH8"),
184 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) 82566MC ICH8"),
185 PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) 82567V-3 ICH8"),
186 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT,
187 "Intel(R) 82567LM ICH9 AMT"),
188 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT,
189 "Intel(R) 82566DM-2 ICH9 AMT"),
190 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) 82566DC-2 ICH9"),
191 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) 82567LF ICH9"),
192 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) 82567V ICH9"),
193 PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) 82562V-2 ICH9"),
194 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) 82562GT-2 ICH9"),
195 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) 82562G-2 ICH9"),
196 PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) 82567LM-4 ICH9"),
197 PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) Gigabit CT 82574L"),
198 PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) 82574L-Apple"),
199 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) 82567LM-2 ICH10"),
200 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) 82567LF-2 ICH10"),
201 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) 82567V-2 ICH10"),
202 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) 82567LM-3 ICH10"),
203 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) 82567LF-3 ICH10"),
204 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) 82567V-4 ICH10"),
205 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) 82577LM"),
206 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) 82577LC"),
207 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) 82578DM"),
208 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) 82578DC"),
209 PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) 82579LM"),
210 PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) 82579V"),
211 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) I217-LM LPT"),
212 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) I217-V LPT"),
213 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM,
214 "Intel(R) I218-LM LPTLP"),
215 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) I218-V LPTLP"),
216 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) I218-LM (2)"),
217 PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) I218-V (2)"),
218 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) I218-LM (3)"),
219 PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) I218-V (3)"),
220 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) I219-LM SPT"),
221 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) I219-V SPT"),
222 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2,
223 "Intel(R) I219-LM SPT-H(2)"),
224 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2,
225 "Intel(R) I219-V SPT-H(2)"),
226 PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3,
227 "Intel(R) I219-LM LBG(3)"),
228 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4,
229 "Intel(R) I219-LM SPT(4)"),
230 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) I219-V SPT(4)"),
231 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5,
232 "Intel(R) I219-LM SPT(5)"),
233 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) I219-V SPT(5)"),
234 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6,
235 "Intel(R) I219-LM CNP(6)"),
236 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) I219-V CNP(6)"),
237 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7,
238 "Intel(R) I219-LM CNP(7)"),
239 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) I219-V CNP(7)"),
240 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8,
241 "Intel(R) I219-LM ICP(8)"),
242 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) I219-V ICP(8)"),
243 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9,
244 "Intel(R) I219-LM ICP(9)"),
245 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) I219-V ICP(9)"),
246 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10,
247 "Intel(R) I219-LM CMP(10)"),
248 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10,
249 "Intel(R) I219-V CMP(10)"),
250 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11,
251 "Intel(R) I219-LM CMP(11)"),
252 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11,
253 "Intel(R) I219-V CMP(11)"),
254 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12,
255 "Intel(R) I219-LM CMP(12)"),
256 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12,
257 "Intel(R) I219-V CMP(12)"),
258 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM13,
259 "Intel(R) I219-LM TGP(13)"),
260 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V13,
261 "Intel(R) I219-V TGP(13)"),
262 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM14,
263 "Intel(R) I219-LM TGP(14)"),
264 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V14,
265 "Intel(R) I219-V GTP(14)"),
266 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM15,
267 "Intel(R) I219-LM TGP(15)"),
268 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V15,
269 "Intel(R) I219-V TGP(15)"),
270 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM16,
271 "Intel(R) I219-LM ADL(16)"),
272 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V16,
273 "Intel(R) I219-V ADL(16)"),
274 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM17,
275 "Intel(R) I219-LM ADL(17)"),
276 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V17,
277 "Intel(R) I219-V ADL(17)"),
278 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM18,
279 "Intel(R) I219-LM MTP(18)"),
280 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V18,
281 "Intel(R) I219-V MTP(18)"),
282 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM19,
283 "Intel(R) I219-LM ADL(19)"),
284 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V19,
285 "Intel(R) I219-V ADL(19)"),
286 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM20,
287 "Intel(R) I219-LM LNL(20)"),
288 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V20,
289 "Intel(R) I219-V LNL(20)"),
290 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM21,
291 "Intel(R) I219-LM LNL(21)"),
292 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V21,
293 "Intel(R) I219-V LNL(21)"),
294 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM22,
295 "Intel(R) I219-LM RPL(22)"),
296 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V22,
297 "Intel(R) I219-V RPL(22)"),
298 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM23,
299 "Intel(R) I219-LM RPL(23)"),
300 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V23,
301 "Intel(R) I219-V RPL(23)"),
302 PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_LM24,
303 "Intel(R) I219-LM ARL(24)"),
304 PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_V24,
305 "Intel(R) I219-V ARL(24)"),
306 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM25,
307 "Intel(R) I219-LM PTP(25)"),
308 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V25,
309 "Intel(R) I219-V PTP(25)"),
310 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM26,
311 "Intel(R) I219-LM PTP(26)"),
312 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V26,
313 "Intel(R) I219-V PTP(26)"),
314 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM27,
315 "Intel(R) I219-LM PTP(27)"),
316 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V27,
317 "Intel(R) I219-V PTP(27)"),
318 /* required last entry */
319 PVID_END
320 };
321
322 static const pci_vendor_info_t igb_vendor_info_array[] =
323 {
324 /* Intel(R) - igb-class devices */
325 PVID(0x8086, E1000_DEV_ID_82575EB_COPPER,
326 "Intel(R) PRO/1000 82575EB (Copper)"),
327 PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES,
328 "Intel(R) PRO/1000 82575EB (SERDES)"),
329 PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER,
330 "Intel(R) PRO/1000 VT 82575GB (Quad Copper)"),
331 PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 82576"),
332 PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 82576NS"),
333 PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES,
334 "Intel(R) PRO/1000 82576NS (SERDES)"),
335 PVID(0x8086, E1000_DEV_ID_82576_FIBER,
336 "Intel(R) PRO/1000 EF 82576 (Dual Fiber)"),
337 PVID(0x8086, E1000_DEV_ID_82576_SERDES,
338 "Intel(R) PRO/1000 82576 (Dual SERDES)"),
339 PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD,
340 "Intel(R) PRO/1000 ET 82576 (Quad SERDES)"),
341 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER,
342 "Intel(R) PRO/1000 ET 82576 (Quad Copper)"),
343 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2,
344 "Intel(R) PRO/1000 ET(2) 82576 (Quad Copper)"),
345 PVID(0x8086, E1000_DEV_ID_82576_VF,
346 "Intel(R) PRO/1000 82576 Virtual Function"),
347 PVID(0x8086, E1000_DEV_ID_82580_COPPER,
348 "Intel(R) I340 82580 (Copper)"),
349 PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) I340 82580 (Fiber)"),
350 PVID(0x8086, E1000_DEV_ID_82580_SERDES,
351 "Intel(R) I340 82580 (SERDES)"),
352 PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) I340 82580 (SGMII)"),
353 PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL,
354 "Intel(R) I340-T2 82580 (Dual Copper)"),
355 PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER,
356 "Intel(R) I340-F4 82580 (Quad Fiber)"),
357 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES,
358 "Intel(R) DH89XXCC (SERDES)"),
359 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII,
360 "Intel(R) I347-AT4 DH89XXCC"),
361 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) DH89XXCC (SFP)"),
362 PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE,
363 "Intel(R) DH89XXCC (Backplane)"),
364 PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) I350 (Copper)"),
365 PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) I350 (Fiber)"),
366 PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) I350 (SERDES)"),
367 PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) I350 (SGMII)"),
368 PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) I350 Virtual Function"),
369 PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) I210 (Copper)"),
370 PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT,
371 "Intel(R) I210 IT (Copper)"),
372 PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) I210 (OEM)"),
373 PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS,
374 "Intel(R) I210 Flashless (Copper)"),
375 PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS,
376 "Intel(R) I210 Flashless (SERDES)"),
377 PVID(0x8086, E1000_DEV_ID_I210_SGMII_FLASHLESS,
378 "Intel(R) I210 Flashless (SGMII)"),
379 PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) I210 (Fiber)"),
380 PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) I210 (SERDES)"),
381 PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) I210 (SGMII)"),
382 PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) I211 (Copper)"),
383 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS,
384 "Intel(R) I354 (1.0 GbE Backplane)"),
385 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS,
386 "Intel(R) I354 (2.5 GbE Backplane)"),
387 PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) I354 (SGMII)"),
388 /* required last entry */
389 PVID_END
390 };
391
392 /*********************************************************************
393 * Function prototypes
394 *********************************************************************/
395 static void *em_register(device_t);
396 static void *igb_register(device_t);
397 static int em_if_attach_pre(if_ctx_t);
398 static int em_if_attach_post(if_ctx_t);
399 static int em_if_detach(if_ctx_t);
400 static int em_if_shutdown(if_ctx_t);
401 static int em_if_suspend(if_ctx_t);
402 static int em_if_resume(if_ctx_t);
403
404 static int em_if_tx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int,
405 int);
406 static int em_if_rx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int,
407 int);
408 static void em_if_queues_free(if_ctx_t);
409
410 static uint64_t em_if_get_vf_counter(if_ctx_t, ift_counter);
411 static uint64_t em_if_get_counter(if_ctx_t, ift_counter);
412 static void em_if_init(if_ctx_t);
413 static void em_if_stop(if_ctx_t);
414 static void em_if_media_status(if_ctx_t, struct ifmediareq *);
415 static int em_if_media_change(if_ctx_t);
416 static int em_if_mtu_set(if_ctx_t, uint32_t);
417 static void em_if_timer(if_ctx_t, uint16_t);
418 static void em_if_vlan_register(if_ctx_t, u16);
419 static void em_if_vlan_unregister(if_ctx_t, u16);
420 static void em_if_watchdog_reset(if_ctx_t);
421 static bool em_if_needs_restart(if_ctx_t, enum iflib_restart_event);
422
423 static void em_identify_hardware(if_ctx_t);
424 static int em_allocate_pci_resources(if_ctx_t);
425 static void em_free_pci_resources(if_ctx_t);
426 static void em_reset(if_ctx_t);
427 static int em_setup_interface(if_ctx_t);
428 static int em_setup_msix(if_ctx_t);
429
430 static void em_initialize_transmit_unit(if_ctx_t);
431 static void em_initialize_receive_unit(if_ctx_t);
432
433 static void em_if_intr_enable(if_ctx_t);
434 static void em_if_intr_disable(if_ctx_t);
435 static void igb_if_intr_enable(if_ctx_t);
436 static void igb_if_intr_disable(if_ctx_t);
437 static int em_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
438 static int em_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
439 static int igb_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
440 static int igb_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
441 static void em_if_multi_set(if_ctx_t);
442 static void em_if_update_admin_status(if_ctx_t);
443 static void em_if_debug(if_ctx_t);
444 static void em_update_vf_stats_counters(struct e1000_softc *);
445 static void em_update_stats_counters(struct e1000_softc *);
446 static void em_add_hw_stats(struct e1000_softc *);
447 static int em_if_set_promisc(if_ctx_t, int);
448 static bool em_if_vlan_filter_capable(if_ctx_t);
449 static bool em_if_vlan_filter_used(if_ctx_t);
450 static void em_if_vlan_filter_enable(struct e1000_softc *);
451 static void em_if_vlan_filter_disable(struct e1000_softc *);
452 static void em_if_vlan_filter_write(struct e1000_softc *);
453 static void em_setup_vlan_hw_support(if_ctx_t ctx);
454 static int em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
455 static void em_print_nvm_info(struct e1000_softc *);
456 static void em_fw_version_locked(if_ctx_t);
457 static void em_sbuf_fw_version(struct e1000_fw_version *, struct sbuf *);
458 static void em_print_fw_version(struct e1000_softc *);
459 static int em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS);
460 static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
461 static int em_get_rs(SYSCTL_HANDLER_ARGS);
462 static void em_print_debug_info(struct e1000_softc *);
463 static int em_is_valid_ether_addr(u8 *);
464 static void em_newitr(struct e1000_softc *, struct em_rx_queue *,
465 struct tx_ring *, struct rx_ring *);
466 static bool em_automask_tso(if_ctx_t);
467 static int em_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS);
468 static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
469 static void em_add_int_delay_sysctl(struct e1000_softc *, const char *,
470 const char *, struct em_int_delay_info *, int, int);
471 /* Management and WOL Support */
472 static void em_init_manageability(struct e1000_softc *);
473 static void em_release_manageability(struct e1000_softc *);
474 static void em_get_hw_control(struct e1000_softc *);
475 static void em_release_hw_control(struct e1000_softc *);
476 static void em_get_wakeup(if_ctx_t);
477 static void em_enable_wakeup(if_ctx_t);
478 static int em_enable_phy_wakeup(struct e1000_softc *);
479 static void em_disable_aspm(struct e1000_softc *);
480
481 int em_intr(void *);
482
483 /* MSI-X handlers */
484 static int em_if_msix_intr_assign(if_ctx_t, int);
485 static int em_msix_link(void *);
486 static void em_handle_link(void *);
487
488 static void em_enable_vectors_82574(if_ctx_t);
489
490 static int em_set_flowcntl(SYSCTL_HANDLER_ARGS);
491 static int em_sysctl_eee(SYSCTL_HANDLER_ARGS);
492 static int igb_sysctl_dmac(SYSCTL_HANDLER_ARGS);
493 static void em_if_led_func(if_ctx_t, int);
494
495 static int em_get_regs(SYSCTL_HANDLER_ARGS);
496
497 static void lem_smartspeed(struct e1000_softc *);
498 static void igb_configure_queues(struct e1000_softc *);
499 static void em_flush_desc_rings(struct e1000_softc *);
500
501
502 /*********************************************************************
503 * FreeBSD Device Interface Entry Points
504 *********************************************************************/
505 static device_method_t em_methods[] = {
506 /* Device interface */
507 DEVMETHOD(device_register, em_register),
508 DEVMETHOD(device_probe, iflib_device_probe),
509 DEVMETHOD(device_attach, iflib_device_attach),
510 DEVMETHOD(device_detach, iflib_device_detach),
511 DEVMETHOD(device_shutdown, iflib_device_shutdown),
512 DEVMETHOD(device_suspend, iflib_device_suspend),
513 DEVMETHOD(device_resume, iflib_device_resume),
514 DEVMETHOD_END
515 };
516
517 static device_method_t igb_methods[] = {
518 /* Device interface */
519 DEVMETHOD(device_register, igb_register),
520 DEVMETHOD(device_probe, iflib_device_probe),
521 DEVMETHOD(device_attach, iflib_device_attach),
522 DEVMETHOD(device_detach, iflib_device_detach),
523 DEVMETHOD(device_shutdown, iflib_device_shutdown),
524 DEVMETHOD(device_suspend, iflib_device_suspend),
525 DEVMETHOD(device_resume, iflib_device_resume),
526 DEVMETHOD_END
527 };
528
529
530 static driver_t em_driver = {
531 "em", em_methods, sizeof(struct e1000_softc),
532 };
533
534 DRIVER_MODULE(em, pci, em_driver, 0, 0);
535
536 MODULE_DEPEND(em, pci, 1, 1, 1);
537 MODULE_DEPEND(em, ether, 1, 1, 1);
538 MODULE_DEPEND(em, iflib, 1, 1, 1);
539
540 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
541
542 static driver_t igb_driver = {
543 "igb", igb_methods, sizeof(struct e1000_softc),
544 };
545
546 DRIVER_MODULE(igb, pci, igb_driver, 0, 0);
547
548 MODULE_DEPEND(igb, pci, 1, 1, 1);
549 MODULE_DEPEND(igb, ether, 1, 1, 1);
550 MODULE_DEPEND(igb, iflib, 1, 1, 1);
551
552 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
553
554 static device_method_t em_if_methods[] = {
555 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
556 DEVMETHOD(ifdi_attach_post, em_if_attach_post),
557 DEVMETHOD(ifdi_detach, em_if_detach),
558 DEVMETHOD(ifdi_shutdown, em_if_shutdown),
559 DEVMETHOD(ifdi_suspend, em_if_suspend),
560 DEVMETHOD(ifdi_resume, em_if_resume),
561 DEVMETHOD(ifdi_init, em_if_init),
562 DEVMETHOD(ifdi_stop, em_if_stop),
563 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
564 DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
565 DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
566 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
567 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
568 DEVMETHOD(ifdi_queues_free, em_if_queues_free),
569 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
570 DEVMETHOD(ifdi_multi_set, em_if_multi_set),
571 DEVMETHOD(ifdi_media_status, em_if_media_status),
572 DEVMETHOD(ifdi_media_change, em_if_media_change),
573 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
574 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
575 DEVMETHOD(ifdi_timer, em_if_timer),
576 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
577 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
578 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
579 DEVMETHOD(ifdi_get_counter, em_if_get_counter),
580 DEVMETHOD(ifdi_led_func, em_if_led_func),
581 DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
582 DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
583 DEVMETHOD(ifdi_debug, em_if_debug),
584 DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
585 DEVMETHOD_END
586 };
587
588 static driver_t em_if_driver = {
589 "em_if", em_if_methods, sizeof(struct e1000_softc)
590 };
591
592 static device_method_t igb_if_methods[] = {
593 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
594 DEVMETHOD(ifdi_attach_post, em_if_attach_post),
595 DEVMETHOD(ifdi_detach, em_if_detach),
596 DEVMETHOD(ifdi_shutdown, em_if_shutdown),
597 DEVMETHOD(ifdi_suspend, em_if_suspend),
598 DEVMETHOD(ifdi_resume, em_if_resume),
599 DEVMETHOD(ifdi_init, em_if_init),
600 DEVMETHOD(ifdi_stop, em_if_stop),
601 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
602 DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
603 DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
604 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
605 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
606 DEVMETHOD(ifdi_queues_free, em_if_queues_free),
607 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
608 DEVMETHOD(ifdi_multi_set, em_if_multi_set),
609 DEVMETHOD(ifdi_media_status, em_if_media_status),
610 DEVMETHOD(ifdi_media_change, em_if_media_change),
611 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
612 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
613 DEVMETHOD(ifdi_timer, em_if_timer),
614 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
615 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
616 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
617 DEVMETHOD(ifdi_get_counter, em_if_get_counter),
618 DEVMETHOD(ifdi_led_func, em_if_led_func),
619 DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
620 DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
621 DEVMETHOD(ifdi_debug, em_if_debug),
622 DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
623 DEVMETHOD_END
624 };
625
626 static driver_t igb_if_driver = {
627 "igb_if", igb_if_methods, sizeof(struct e1000_softc)
628 };
629
630 /*********************************************************************
631 * Tunable default values.
632 *********************************************************************/
633
634 #define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000)
635 #define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024)
636
637 /* Allow common code without TSO */
638 #ifndef CSUM_TSO
639 #define CSUM_TSO 0
640 #endif
641
642 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
643 "EM driver parameters");
644
645 static int em_disable_crc_stripping = 0;
646 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
647 &em_disable_crc_stripping, 0, "Disable CRC Stripping");
648
649 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
650 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
651 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN,
652 &em_tx_int_delay_dflt, 0, "Default transmit interrupt delay in usecs");
653 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN,
654 &em_rx_int_delay_dflt, 0, "Default receive interrupt delay in usecs");
655
656 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
657 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
658 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
659 &em_tx_abs_int_delay_dflt, 0,
660 "Default transmit interrupt delay limit in usecs");
661 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
662 &em_rx_abs_int_delay_dflt, 0,
663 "Default receive interrupt delay limit in usecs");
664
665 static int em_smart_pwr_down = false;
666 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN,
667 &em_smart_pwr_down,
668 0, "Set to true to leave smart power down enabled on newer adapters");
669
670 static bool em_unsupported_tso = false;
671 SYSCTL_BOOL(_hw_em, OID_AUTO, unsupported_tso, CTLFLAG_RDTUN,
672 &em_unsupported_tso, 0, "Allow unsupported em(4) TSO configurations");
673
674 /* Controls whether promiscuous also shows bad packets */
675 static int em_debug_sbp = false;
676 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
677 "Show bad packets in promiscuous mode");
678
679 /* Energy efficient ethernet - default to OFF */
680 static int eee_setting = 1;
681 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
682 "Enable Energy Efficient Ethernet");
683
684 /*
685 * AIM: Adaptive Interrupt Moderation
686 * which means that the interrupt rate is varied over time based on the
687 * traffic for that interrupt vector
688 */
689 static int em_enable_aim = 1;
690 SYSCTL_INT(_hw_em, OID_AUTO, enable_aim, CTLFLAG_RWTUN, &em_enable_aim,
691 0, "Enable adaptive interrupt moderation (1=normal, 2=lowlatency)");
692
693 /*
694 ** Tuneable Interrupt rate
695 */
696 static int em_max_interrupt_rate = EM_INTS_DEFAULT;
697 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
698 &em_max_interrupt_rate, 0, "Maximum interrupts per second");
699
700 /* Global used in WOL setup with multiport cards */
701 static int global_quad_port_a = 0;
702
703 extern struct if_txrx igb_txrx;
704 extern struct if_txrx em_txrx;
705 extern struct if_txrx lem_txrx;
706
707 static struct if_shared_ctx em_sctx_init = {
708 .isc_magic = IFLIB_MAGIC,
709 .isc_q_align = PAGE_SIZE,
710 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
711 .isc_tx_maxsegsize = PAGE_SIZE,
712 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
713 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
714 .isc_rx_maxsize = MJUM9BYTES,
715 .isc_rx_nsegments = 1,
716 .isc_rx_maxsegsize = MJUM9BYTES,
717 .isc_nfl = 1,
718 .isc_nrxqs = 1,
719 .isc_ntxqs = 1,
720 .isc_admin_intrcnt = 1,
721 .isc_vendor_info = em_vendor_info_array,
722 .isc_driver_version = em_driver_version,
723 .isc_driver = &em_if_driver,
724 .isc_flags =
725 IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
726
727 .isc_nrxd_min = {EM_MIN_RXD},
728 .isc_ntxd_min = {EM_MIN_TXD},
729 .isc_nrxd_max = {EM_MAX_RXD},
730 .isc_ntxd_max = {EM_MAX_TXD},
731 .isc_nrxd_default = {EM_DEFAULT_RXD},
732 .isc_ntxd_default = {EM_DEFAULT_TXD},
733 };
734
735 static struct if_shared_ctx igb_sctx_init = {
736 .isc_magic = IFLIB_MAGIC,
737 .isc_q_align = PAGE_SIZE,
738 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
739 .isc_tx_maxsegsize = PAGE_SIZE,
740 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
741 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
742 .isc_rx_maxsize = MJUM9BYTES,
743 .isc_rx_nsegments = 1,
744 .isc_rx_maxsegsize = MJUM9BYTES,
745 .isc_nfl = 1,
746 .isc_nrxqs = 1,
747 .isc_ntxqs = 1,
748 .isc_admin_intrcnt = 1,
749 .isc_vendor_info = igb_vendor_info_array,
750 .isc_driver_version = igb_driver_version,
751 .isc_driver = &igb_if_driver,
752 .isc_flags =
753 IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
754
755 .isc_nrxd_min = {EM_MIN_RXD},
756 .isc_ntxd_min = {EM_MIN_TXD},
757 .isc_nrxd_max = {IGB_MAX_RXD},
758 .isc_ntxd_max = {IGB_MAX_TXD},
759 .isc_nrxd_default = {EM_DEFAULT_RXD},
760 .isc_ntxd_default = {EM_DEFAULT_TXD},
761 };
762
763 /*****************************************************************
764 *
765 * Dump Registers
766 *
767 ****************************************************************/
768 #define IGB_REGS_LEN 739
769
em_get_regs(SYSCTL_HANDLER_ARGS)770 static int em_get_regs(SYSCTL_HANDLER_ARGS)
771 {
772 struct e1000_softc *sc = (struct e1000_softc *)arg1;
773 struct e1000_hw *hw = &sc->hw;
774 struct sbuf *sb;
775 u32 *regs_buff;
776 int rc;
777
778 regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
779 memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
780
781 rc = sysctl_wire_old_buffer(req, 0);
782 MPASS(rc == 0);
783 if (rc != 0) {
784 free(regs_buff, M_DEVBUF);
785 return (rc);
786 }
787
788 sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
789 MPASS(sb != NULL);
790 if (sb == NULL) {
791 free(regs_buff, M_DEVBUF);
792 return (ENOMEM);
793 }
794
795 /* General Registers */
796 regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
797 regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
798 regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
799 regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
800 regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
801 regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
802 regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
803 regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
804 regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
805 regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
806 regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
807 regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
808 regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
809 regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
810 regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
811 regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
812 regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
813 regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
814 regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
815 regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
816 regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
817 regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
818
819 sbuf_printf(sb, "General Registers\n");
820 sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
821 sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
822 sbuf_printf(sb, "\tCTRL_EXT\t %08x\n\n", regs_buff[2]);
823
824 sbuf_printf(sb, "Interrupt Registers\n");
825 sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
826
827 sbuf_printf(sb, "RX Registers\n");
828 sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
829 sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
830 sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
831 sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
832 sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
833 sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
834 sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
835
836 sbuf_printf(sb, "TX Registers\n");
837 sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
838 sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
839 sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
840 sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
841 sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
842 sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
843 sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
844 sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
845 sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
846 sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
847 sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
848
849 free(regs_buff, M_DEVBUF);
850
851 #ifdef DUMP_DESCS
852 {
853 if_softc_ctx_t scctx = sc->shared;
854 struct rx_ring *rxr = &rx_que->rxr;
855 struct tx_ring *txr = &tx_que->txr;
856 int ntxd = scctx->isc_ntxd[0];
857 int nrxd = scctx->isc_nrxd[0];
858 int j;
859
860 for (j = 0; j < nrxd; j++) {
861 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
862 u32 length = le32toh(rxr->rx_base[j].wb.upper.length);
863 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08"
864 PRIx64 " Error:%d Length:%d\n",
865 j, rxr->rx_base[j].read.buffer_addr, staterr, length);
866 }
867
868 for (j = 0; j < min(ntxd, 256); j++) {
869 unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
870
871 sbuf_printf(sb,
872 "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x"
873 " eop: %d DD=%d\n",
874 j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
875 buf->eop != -1 ?
876 txr->tx_base[buf->eop].upper.fields.status &
877 E1000_TXD_STAT_DD : 0);
878
879 }
880 }
881 #endif
882
883 rc = sbuf_finish(sb);
884 sbuf_delete(sb);
885 return(rc);
886 }
887
888 static void *
em_register(device_t dev)889 em_register(device_t dev)
890 {
891 return (&em_sctx_init);
892 }
893
894 static void *
igb_register(device_t dev)895 igb_register(device_t dev)
896 {
897 return (&igb_sctx_init);
898 }
899
900 static int
em_set_num_queues(if_ctx_t ctx)901 em_set_num_queues(if_ctx_t ctx)
902 {
903 struct e1000_softc *sc = iflib_get_softc(ctx);
904 int maxqueues;
905
906 /* Sanity check based on HW */
907 switch (sc->hw.mac.type) {
908 case e1000_82576:
909 case e1000_82580:
910 case e1000_i350:
911 case e1000_i354:
912 maxqueues = 8;
913 break;
914 case e1000_i210:
915 case e1000_82575:
916 maxqueues = 4;
917 break;
918 case e1000_i211:
919 case e1000_82574:
920 maxqueues = 2;
921 break;
922 default:
923 maxqueues = 1;
924 break;
925 }
926
927 return (maxqueues);
928 }
929
930 #define LEM_CAPS \
931 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
932 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
933 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6
934
935 #define EM_CAPS \
936 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
937 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
938 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \
939 IFCAP_TSO6
940
941 #define IGB_CAPS \
942 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
943 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
944 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \
945 IFCAP_TSO6
946
947 /*********************************************************************
948 * Device initialization routine
949 *
950 * The attach entry point is called when the driver is being loaded.
951 * This routine identifies the type of hardware, allocates all resources
952 * and initializes the hardware.
953 *
954 * return 0 on success, positive on failure
955 *********************************************************************/
956 static int
em_if_attach_pre(if_ctx_t ctx)957 em_if_attach_pre(if_ctx_t ctx)
958 {
959 struct e1000_softc *sc;
960 if_softc_ctx_t scctx;
961 device_t dev;
962 struct e1000_hw *hw;
963 struct sysctl_oid_list *child;
964 struct sysctl_ctx_list *ctx_list;
965 int error = 0;
966
967 INIT_DEBUGOUT("em_if_attach_pre: begin");
968 dev = iflib_get_dev(ctx);
969 sc = iflib_get_softc(ctx);
970
971 sc->ctx = sc->osdep.ctx = ctx;
972 sc->dev = sc->osdep.dev = dev;
973 scctx = sc->shared = iflib_get_softc_ctx(ctx);
974 sc->media = iflib_get_media(ctx);
975 hw = &sc->hw;
976
977 /* Determine hardware and mac info */
978 em_identify_hardware(ctx);
979
980 /* SYSCTL stuff */
981 ctx_list = device_get_sysctl_ctx(dev);
982 child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
983
984 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "nvm",
985 CTLTYPE_INT | CTLFLAG_RW, sc, 0,
986 em_sysctl_nvm_info, "I", "NVM Information");
987
988 sc->enable_aim = em_enable_aim;
989 SYSCTL_ADD_INT(ctx_list, child, OID_AUTO, "enable_aim",
990 CTLFLAG_RW, &sc->enable_aim, 0,
991 "Interrupt Moderation (1=normal, 2=lowlatency)");
992
993 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fw_version",
994 CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
995 em_sysctl_print_fw_version, "A",
996 "Prints FW/NVM Versions");
997
998 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "debug",
999 CTLTYPE_INT | CTLFLAG_RW, sc, 0,
1000 em_sysctl_debug_info, "I", "Debug Information");
1001
1002 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fc",
1003 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
1004 em_set_flowcntl, "I", "Flow Control");
1005
1006 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "reg_dump",
1007 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
1008 em_get_regs, "A", "Dump Registers");
1009
1010 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "rs_dump",
1011 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
1012 em_get_rs, "I", "Dump RS indexes");
1013
1014 if (hw->mac.type >= e1000_i350) {
1015 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "dmac",
1016 CTLTYPE_INT | CTLFLAG_RW, sc, 0,
1017 igb_sysctl_dmac, "I", "DMA Coalesce");
1018 }
1019
1020 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
1021 "tso_tcp_flags_mask_first_segment",
1022 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1023 sc, 0, em_sysctl_tso_tcp_flags_mask, "IU",
1024 "TSO TCP flags mask for first segment");
1025
1026 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
1027 "tso_tcp_flags_mask_middle_segment",
1028 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1029 sc, 1, em_sysctl_tso_tcp_flags_mask, "IU",
1030 "TSO TCP flags mask for middle segment");
1031
1032 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
1033 "tso_tcp_flags_mask_last_segment",
1034 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1035 sc, 2, em_sysctl_tso_tcp_flags_mask, "IU",
1036 "TSO TCP flags mask for last segment");
1037
1038 scctx->isc_tx_nsegments = EM_MAX_SCATTER;
1039 scctx->isc_nrxqsets_max =
1040 scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
1041 if (bootverbose)
1042 device_printf(dev, "attach_pre capping queues at %d\n",
1043 scctx->isc_ntxqsets_max);
1044
1045 if (hw->mac.type >= igb_mac_min) {
1046 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] *
1047 sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
1048 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] *
1049 sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
1050 scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
1051 scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
1052 scctx->isc_txrx = &igb_txrx;
1053 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
1054 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
1055 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
1056 scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
1057 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
1058 CSUM_IP6_TCP | CSUM_IP6_UDP;
1059 if (hw->mac.type != e1000_82575)
1060 scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
1061 /*
1062 ** Some new devices, as with ixgbe, now may
1063 ** use a different BAR, so we need to keep
1064 ** track of which is used.
1065 */
1066 scctx->isc_msix_bar = pci_msix_table_bar(dev);
1067 } else if (hw->mac.type >= em_mac_min) {
1068 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] *
1069 sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
1070 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] *
1071 sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
1072 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
1073 scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
1074 scctx->isc_txrx = &em_txrx;
1075 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
1076 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
1077 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
1078 scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
1079 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO |
1080 CSUM_IP6_TCP | CSUM_IP6_UDP;
1081
1082 /* Disable TSO on all em(4) until ring stalls are debugged */
1083 scctx->isc_capenable &= ~IFCAP_TSO;
1084
1085 /*
1086 * Disable TSO on SPT due to errata that downclocks DMA
1087 * performance
1088 * i218-i219 Specification Update 1.5.4.5
1089 */
1090 if (hw->mac.type == e1000_pch_spt)
1091 scctx->isc_capenable &= ~IFCAP_TSO;
1092
1093 /*
1094 * We support MSI-X with 82574 only, but indicate to iflib(4)
1095 * that it shall give MSI at least a try with other devices.
1096 */
1097 if (hw->mac.type == e1000_82574) {
1098 scctx->isc_msix_bar = pci_msix_table_bar(dev);
1099 } else {
1100 scctx->isc_msix_bar = -1;
1101 scctx->isc_disable_msix = 1;
1102 }
1103 } else {
1104 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) *
1105 sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
1106 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) *
1107 sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
1108 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
1109 scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
1110 scctx->isc_txrx = &lem_txrx;
1111 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
1112 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
1113 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
1114 scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
1115 if (em_unsupported_tso)
1116 scctx->isc_capabilities |= IFCAP_TSO6;
1117 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO |
1118 CSUM_IP6_TCP | CSUM_IP6_UDP;
1119
1120 /* Disable TSO on all lem(4) until ring stalls debugged */
1121 scctx->isc_capenable &= ~IFCAP_TSO;
1122
1123 /* 82541ER doesn't do HW tagging */
1124 if (hw->device_id == E1000_DEV_ID_82541ER ||
1125 hw->device_id == E1000_DEV_ID_82541ER_LOM) {
1126 scctx->isc_capabilities &= ~IFCAP_VLAN_HWTAGGING;
1127 scctx->isc_capenable = scctx->isc_capabilities;
1128 }
1129 /* This is the first e1000 chip and it does not do offloads */
1130 if (hw->mac.type == e1000_82542) {
1131 scctx->isc_capabilities &= ~(IFCAP_HWCSUM |
1132 IFCAP_VLAN_HWCSUM | IFCAP_HWCSUM_IPV6 |
1133 IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWFILTER |
1134 IFCAP_TSO | IFCAP_VLAN_HWTSO);
1135 scctx->isc_capenable = scctx->isc_capabilities;
1136 }
1137 /* These can't do TSO for various reasons */
1138 if (hw->mac.type < e1000_82544 ||
1139 hw->mac.type == e1000_82547 ||
1140 hw->mac.type == e1000_82547_rev_2) {
1141 scctx->isc_capabilities &=
1142 ~(IFCAP_TSO |IFCAP_VLAN_HWTSO);
1143 scctx->isc_capenable = scctx->isc_capabilities;
1144 }
1145 /* XXXKB: No IPv6 before this? */
1146 if (hw->mac.type < e1000_82545){
1147 scctx->isc_capabilities &= ~IFCAP_HWCSUM_IPV6;
1148 scctx->isc_capenable = scctx->isc_capabilities;
1149 }
1150 /*
1151 * "PCI/PCI-X SDM 4.0" page 33 (b):
1152 * FDX requirement on these chips
1153 */
1154 if (hw->mac.type == e1000_82547 ||
1155 hw->mac.type == e1000_82547_rev_2)
1156 scctx->isc_capenable &= ~(IFCAP_HWCSUM |
1157 IFCAP_VLAN_HWCSUM | IFCAP_HWCSUM_IPV6);
1158
1159 /* INTx only */
1160 scctx->isc_msix_bar = 0;
1161 }
1162
1163 /* Setup PCI resources */
1164 if (em_allocate_pci_resources(ctx)) {
1165 device_printf(dev, "Allocation of PCI resources failed\n");
1166 error = ENXIO;
1167 goto err_pci;
1168 }
1169
1170 /*
1171 ** For ICH8 and family we need to
1172 ** map the flash memory, and this
1173 ** must happen after the MAC is
1174 ** identified
1175 */
1176 if ((hw->mac.type == e1000_ich8lan) ||
1177 (hw->mac.type == e1000_ich9lan) ||
1178 (hw->mac.type == e1000_ich10lan) ||
1179 (hw->mac.type == e1000_pchlan) ||
1180 (hw->mac.type == e1000_pch2lan) ||
1181 (hw->mac.type == e1000_pch_lpt)) {
1182 int rid = EM_BAR_TYPE_FLASH;
1183 sc->flash = bus_alloc_resource_any(dev,
1184 SYS_RES_MEMORY, &rid, RF_ACTIVE);
1185 if (sc->flash == NULL) {
1186 device_printf(dev, "Mapping of Flash failed\n");
1187 error = ENXIO;
1188 goto err_pci;
1189 }
1190 /* This is used in the shared code */
1191 hw->flash_address = (u8 *)sc->flash;
1192 sc->osdep.flash_bus_space_tag =
1193 rman_get_bustag(sc->flash);
1194 sc->osdep.flash_bus_space_handle =
1195 rman_get_bushandle(sc->flash);
1196 }
1197 /*
1198 ** In the new SPT device flash is not a
1199 ** separate BAR, rather it is also in BAR0,
1200 ** so use the same tag and an offset handle for the
1201 ** FLASH read/write macros in the shared code.
1202 */
1203 else if (hw->mac.type >= e1000_pch_spt) {
1204 sc->osdep.flash_bus_space_tag = sc->osdep.mem_bus_space_tag;
1205 sc->osdep.flash_bus_space_handle =
1206 sc->osdep.mem_bus_space_handle + E1000_FLASH_BASE_ADDR;
1207 }
1208
1209 /* Do Shared Code initialization */
1210 error = e1000_setup_init_funcs(hw, true);
1211 if (error) {
1212 device_printf(dev, "Setup of Shared code failed, error %d\n",
1213 error);
1214 error = ENXIO;
1215 goto err_pci;
1216 }
1217
1218 em_setup_msix(ctx);
1219 e1000_get_bus_info(hw);
1220
1221 /* Set up some sysctls for the tunable interrupt delays */
1222 if (hw->mac.type < igb_mac_min) {
1223 em_add_int_delay_sysctl(sc, "rx_int_delay",
1224 "receive interrupt delay in usecs", &sc->rx_int_delay,
1225 E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
1226 em_add_int_delay_sysctl(sc, "tx_int_delay",
1227 "transmit interrupt delay in usecs", &sc->tx_int_delay,
1228 E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
1229 }
1230 if (hw->mac.type >= e1000_82540 && hw->mac.type < igb_mac_min) {
1231 em_add_int_delay_sysctl(sc, "rx_abs_int_delay",
1232 "receive interrupt delay limit in usecs",
1233 &sc->rx_abs_int_delay,
1234 E1000_REGISTER(hw, E1000_RADV), em_rx_abs_int_delay_dflt);
1235 em_add_int_delay_sysctl(sc, "tx_abs_int_delay",
1236 "transmit interrupt delay limit in usecs",
1237 &sc->tx_abs_int_delay,
1238 E1000_REGISTER(hw, E1000_TADV), em_tx_abs_int_delay_dflt);
1239 }
1240
1241 hw->mac.autoneg = DO_AUTO_NEG;
1242 hw->phy.autoneg_wait_to_complete = false;
1243 hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1244
1245 if (hw->mac.type < em_mac_min) {
1246 e1000_init_script_state_82541(hw, true);
1247 e1000_set_tbi_compatibility_82543(hw, true);
1248 }
1249 /* Copper options */
1250 if (hw->phy.media_type == e1000_media_type_copper) {
1251 hw->phy.mdix = AUTO_ALL_MODES;
1252 hw->phy.disable_polarity_correction = false;
1253 hw->phy.ms_type = EM_MASTER_SLAVE;
1254 }
1255
1256 /*
1257 * Set the frame limits assuming
1258 * standard ethernet sized frames.
1259 */
1260 scctx->isc_max_frame_size = hw->mac.max_frame_size =
1261 ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
1262
1263 /*
1264 * This controls when hardware reports transmit completion
1265 * status.
1266 */
1267 hw->mac.report_tx_early = 1;
1268
1269 /* Allocate multicast array memory. */
1270 sc->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1271 MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1272 if (sc->mta == NULL) {
1273 device_printf(dev,
1274 "Can not allocate multicast setup array\n");
1275 error = ENOMEM;
1276 goto err_late;
1277 }
1278
1279 /* Clear the IFCAP_TSO auto mask */
1280 sc->tso_automasked = 0;
1281
1282 /* Check SOL/IDER usage */
1283 if (e1000_check_reset_block(hw))
1284 device_printf(dev,
1285 "PHY reset is blocked due to SOL/IDER session.\n");
1286
1287 /* Sysctl for setting Energy Efficient Ethernet */
1288 if (hw->mac.type < igb_mac_min)
1289 hw->dev_spec.ich8lan.eee_disable = eee_setting;
1290 else
1291 hw->dev_spec._82575.eee_disable = eee_setting;
1292 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "eee_control",
1293 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
1294 em_sysctl_eee, "I", "Disable Energy Efficient Ethernet");
1295
1296 /*
1297 ** Start from a known state, this is
1298 ** important in reading the nvm and
1299 ** mac from that.
1300 */
1301 e1000_reset_hw(hw);
1302
1303 /* Make sure we have a good EEPROM before we read from it */
1304 if (e1000_validate_nvm_checksum(hw) < 0) {
1305 /*
1306 ** Some PCI-E parts fail the first check due to
1307 ** the link being in sleep state, call it again,
1308 ** if it fails a second time its a real issue.
1309 */
1310 if (e1000_validate_nvm_checksum(hw) < 0) {
1311 device_printf(dev,
1312 "The EEPROM Checksum Is Not Valid\n");
1313 error = EIO;
1314 goto err_late;
1315 }
1316 }
1317
1318 /* Copy the permanent MAC address out of the EEPROM */
1319 if (e1000_read_mac_addr(hw) < 0) {
1320 device_printf(dev,
1321 "EEPROM read error while reading MAC address\n");
1322 error = EIO;
1323 goto err_late;
1324 }
1325
1326 if (!em_is_valid_ether_addr(hw->mac.addr)) {
1327 if (sc->vf_ifp) {
1328 ether_gen_addr(iflib_get_ifp(ctx),
1329 (struct ether_addr *)hw->mac.addr);
1330 } else {
1331 device_printf(dev, "Invalid MAC address\n");
1332 error = EIO;
1333 goto err_late;
1334 }
1335 }
1336
1337 /* Save the EEPROM/NVM versions, must be done under IFLIB_CTX_LOCK */
1338 em_fw_version_locked(ctx);
1339
1340 em_print_fw_version(sc);
1341
1342 /*
1343 * Get Wake-on-Lan and Management info for later use
1344 */
1345 em_get_wakeup(ctx);
1346
1347 /* Enable only WOL MAGIC by default */
1348 scctx->isc_capenable &= ~IFCAP_WOL;
1349 if (sc->wol != 0)
1350 scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1351
1352 iflib_set_mac(ctx, hw->mac.addr);
1353
1354 return (0);
1355
1356 err_late:
1357 em_release_hw_control(sc);
1358 err_pci:
1359 em_free_pci_resources(ctx);
1360 free(sc->mta, M_DEVBUF);
1361
1362 return (error);
1363 }
1364
1365 static int
em_if_attach_post(if_ctx_t ctx)1366 em_if_attach_post(if_ctx_t ctx)
1367 {
1368 struct e1000_softc *sc = iflib_get_softc(ctx);
1369 struct e1000_hw *hw = &sc->hw;
1370 int error = 0;
1371
1372 /* Setup OS specific network interface */
1373 error = em_setup_interface(ctx);
1374 if (error != 0) {
1375 device_printf(sc->dev, "Interface setup failed: %d\n", error);
1376 goto err_late;
1377 }
1378
1379 em_reset(ctx);
1380
1381 /* Initialize statistics */
1382 if (sc->vf_ifp)
1383 sc->ustats.vf_stats = (struct e1000_vf_stats){};
1384 else
1385 sc->ustats.stats = (struct e1000_hw_stats){};
1386
1387 em_update_stats_counters(sc);
1388 hw->mac.get_link_status = 1;
1389 em_if_update_admin_status(ctx);
1390 em_add_hw_stats(sc);
1391
1392 /* Non-AMT based hardware can now take control from firmware */
1393 if (sc->has_manage && !sc->has_amt)
1394 em_get_hw_control(sc);
1395
1396 INIT_DEBUGOUT("em_if_attach_post: end");
1397
1398 return (0);
1399
1400 err_late:
1401 /*
1402 * Upon em_if_attach_post() error, iflib calls em_if_detach() to
1403 * free resources
1404 */
1405 return (error);
1406 }
1407
1408 /*********************************************************************
1409 * Device removal routine
1410 *
1411 * The detach entry point is called when the driver is being removed.
1412 * This routine stops the adapter and deallocates all the resources
1413 * that were allocated for driver operation.
1414 *
1415 * return 0 on success, positive on failure
1416 *********************************************************************/
1417 static int
em_if_detach(if_ctx_t ctx)1418 em_if_detach(if_ctx_t ctx)
1419 {
1420 struct e1000_softc *sc = iflib_get_softc(ctx);
1421
1422 INIT_DEBUGOUT("em_if_detach: begin");
1423
1424 e1000_phy_hw_reset(&sc->hw);
1425
1426 em_release_manageability(sc);
1427 em_release_hw_control(sc);
1428 em_free_pci_resources(ctx);
1429 free(sc->mta, M_DEVBUF);
1430 sc->mta = NULL;
1431
1432 return (0);
1433 }
1434
1435 /*********************************************************************
1436 *
1437 * Shutdown entry point
1438 *
1439 **********************************************************************/
1440
1441 static int
em_if_shutdown(if_ctx_t ctx)1442 em_if_shutdown(if_ctx_t ctx)
1443 {
1444 return em_if_suspend(ctx);
1445 }
1446
1447 /*
1448 * Suspend/resume device methods.
1449 */
1450 static int
em_if_suspend(if_ctx_t ctx)1451 em_if_suspend(if_ctx_t ctx)
1452 {
1453 struct e1000_softc *sc = iflib_get_softc(ctx);
1454
1455 em_release_manageability(sc);
1456 em_release_hw_control(sc);
1457 em_enable_wakeup(ctx);
1458 return (0);
1459 }
1460
1461 static int
em_if_resume(if_ctx_t ctx)1462 em_if_resume(if_ctx_t ctx)
1463 {
1464 struct e1000_softc *sc = iflib_get_softc(ctx);
1465
1466 if (sc->hw.mac.type == e1000_pch2lan)
1467 e1000_resume_workarounds_pchlan(&sc->hw);
1468 em_if_init(ctx);
1469 em_init_manageability(sc);
1470
1471 return(0);
1472 }
1473
1474 static int
em_if_mtu_set(if_ctx_t ctx,uint32_t mtu)1475 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1476 {
1477 int max_frame_size;
1478 struct e1000_softc *sc = iflib_get_softc(ctx);
1479 if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1480
1481 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1482
1483 switch (sc->hw.mac.type) {
1484 case e1000_82571:
1485 case e1000_82572:
1486 case e1000_ich9lan:
1487 case e1000_ich10lan:
1488 case e1000_pch2lan:
1489 case e1000_pch_lpt:
1490 case e1000_pch_spt:
1491 case e1000_pch_cnp:
1492 case e1000_pch_tgp:
1493 case e1000_pch_adp:
1494 case e1000_pch_mtp:
1495 case e1000_pch_ptp:
1496 case e1000_82574:
1497 case e1000_82583:
1498 case e1000_80003es2lan:
1499 /* 9K Jumbo Frame size */
1500 max_frame_size = 9234;
1501 break;
1502 case e1000_pchlan:
1503 max_frame_size = 4096;
1504 break;
1505 case e1000_82542:
1506 case e1000_ich8lan:
1507 /* Adapters that do not support jumbo frames */
1508 max_frame_size = ETHER_MAX_LEN;
1509 break;
1510 default:
1511 if (sc->hw.mac.type >= igb_mac_min)
1512 max_frame_size = 9234;
1513 else /* lem */
1514 max_frame_size = MAX_JUMBO_FRAME_SIZE;
1515 }
1516 if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1517 return (EINVAL);
1518 }
1519
1520 scctx->isc_max_frame_size = sc->hw.mac.max_frame_size =
1521 mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1522 return (0);
1523 }
1524
1525 /*********************************************************************
1526 * Init entry point
1527 *
1528 * This routine is used in two ways. It is used by the stack as
1529 * init entry point in network interface structure. It is also used
1530 * by the driver as a hw/sw initialization routine to get to a
1531 * consistent state.
1532 *
1533 **********************************************************************/
1534 static void
em_if_init(if_ctx_t ctx)1535 em_if_init(if_ctx_t ctx)
1536 {
1537 struct e1000_softc *sc = iflib_get_softc(ctx);
1538 if_softc_ctx_t scctx = sc->shared;
1539 if_t ifp = iflib_get_ifp(ctx);
1540 struct em_tx_queue *tx_que;
1541 int i;
1542
1543 INIT_DEBUGOUT("em_if_init: begin");
1544
1545 /* Get the latest mac address, User can use a LAA */
1546 bcopy(if_getlladdr(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1547
1548 /* Put the address into the Receive Address Array */
1549 e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1550
1551 /*
1552 * With the 82571 adapter, RAR[0] may be overwritten
1553 * when the other port is reset, we make a duplicate
1554 * in RAR[14] for that eventuality, this assures
1555 * the interface continues to function.
1556 */
1557 if (sc->hw.mac.type == e1000_82571) {
1558 e1000_set_laa_state_82571(&sc->hw, true);
1559 e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1560 E1000_RAR_ENTRIES - 1);
1561 }
1562
1563 /* Initialize the hardware */
1564 em_reset(ctx);
1565 em_if_update_admin_status(ctx);
1566
1567 for (i = 0, tx_que = sc->tx_queues; i < sc->tx_num_queues;
1568 i++, tx_que++) {
1569 struct tx_ring *txr = &tx_que->txr;
1570
1571 txr->tx_rs_cidx = txr->tx_rs_pidx;
1572
1573 /* Initialize the last processed descriptor to be the end of
1574 * the ring, rather than the start, so that we avoid an
1575 * off-by-one error when calculating how many descriptors are
1576 * done in the credits_update function.
1577 */
1578 txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1579 }
1580
1581 /* Setup VLAN support, basic and offload if available */
1582 E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1583
1584 /* Clear bad data from Rx FIFOs */
1585 if (sc->hw.mac.type >= igb_mac_min && !sc->vf_ifp)
1586 e1000_rx_fifo_flush_base(&sc->hw);
1587
1588 /* Configure for OS presence */
1589 em_init_manageability(sc);
1590
1591 /* Prepare transmit descriptors and buffers */
1592 em_initialize_transmit_unit(ctx);
1593
1594 /* Setup Multicast table */
1595 em_if_multi_set(ctx);
1596
1597 sc->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1598 em_initialize_receive_unit(ctx);
1599
1600 /* Set up VLAN support and filter */
1601 em_setup_vlan_hw_support(ctx);
1602
1603 /* Don't lose promiscuous settings */
1604 em_if_set_promisc(ctx, if_getflags(ifp));
1605
1606 if (sc->hw.mac.ops.clear_hw_cntrs != NULL)
1607 sc->hw.mac.ops.clear_hw_cntrs(&sc->hw);
1608
1609 /* MSI-X configuration for 82574 */
1610 if (sc->hw.mac.type == e1000_82574) {
1611 int tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1612
1613 tmp |= E1000_CTRL_EXT_PBA_CLR;
1614 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1615 /* Set the IVAR - interrupt vector routing. */
1616 E1000_WRITE_REG(&sc->hw, E1000_IVAR, sc->ivars);
1617 } else if (sc->intr_type == IFLIB_INTR_MSIX) {
1618 /* Set up queue routing */
1619 igb_configure_queues(sc);
1620 }
1621
1622 /* this clears any pending interrupts */
1623 E1000_READ_REG(&sc->hw, E1000_ICR);
1624 E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1625
1626 /* AMT based hardware can now take control from firmware */
1627 if (sc->has_manage && sc->has_amt)
1628 em_get_hw_control(sc);
1629
1630 /* Set Energy Efficient Ethernet */
1631 if (sc->hw.mac.type >= igb_mac_min &&
1632 sc->hw.phy.media_type == e1000_media_type_copper) {
1633 if (sc->hw.mac.type == e1000_i354)
1634 e1000_set_eee_i354(&sc->hw, true, true);
1635 else
1636 e1000_set_eee_i350(&sc->hw, true, true);
1637 }
1638 }
1639
1640 enum itr_latency_target {
1641 itr_latency_disabled = 0,
1642 itr_latency_lowest = 1,
1643 itr_latency_low = 2,
1644 itr_latency_bulk = 3
1645 };
1646 /*********************************************************************
1647 *
1648 * Helper to calculate next (E)ITR value for AIM
1649 *
1650 *********************************************************************/
1651 static void
em_newitr(struct e1000_softc * sc,struct em_rx_queue * que,struct tx_ring * txr,struct rx_ring * rxr)1652 em_newitr(struct e1000_softc *sc, struct em_rx_queue *que,
1653 struct tx_ring *txr, struct rx_ring *rxr)
1654 {
1655 struct e1000_hw *hw = &sc->hw;
1656 unsigned long bytes, bytes_per_packet, packets;
1657 unsigned long rxbytes, rxpackets, txbytes, txpackets;
1658 u32 newitr;
1659 u8 nextlatency;
1660
1661 rxbytes = atomic_load_long(&rxr->rx_bytes);
1662 txbytes = atomic_load_long(&txr->tx_bytes);
1663
1664 /* Idle, do nothing */
1665 if (txbytes == 0 && rxbytes == 0)
1666 return;
1667
1668 newitr = 0;
1669
1670 if (sc->enable_aim) {
1671 nextlatency = rxr->rx_nextlatency;
1672
1673 /* Use half default (4K) ITR if sub-gig */
1674 if (sc->link_speed != 1000) {
1675 newitr = EM_INTS_4K;
1676 goto em_set_next_itr;
1677 }
1678 /* Want at least enough packet buffer for two frames to AIM */
1679 if (sc->shared->isc_max_frame_size * 2 > (sc->pba << 10)) {
1680 newitr = em_max_interrupt_rate;
1681 sc->enable_aim = 0;
1682 goto em_set_next_itr;
1683 }
1684
1685 bytes = bytes_per_packet = 0;
1686 /* Get largest values from the associated tx and rx ring */
1687 txpackets = atomic_load_long(&txr->tx_packets);
1688 if (txpackets != 0) {
1689 bytes = txbytes;
1690 bytes_per_packet = txbytes / txpackets;
1691 packets = txpackets;
1692 }
1693 rxpackets = atomic_load_long(&rxr->rx_packets);
1694 if (rxpackets != 0) {
1695 bytes = lmax(bytes, rxbytes);
1696 bytes_per_packet =
1697 lmax(bytes_per_packet, rxbytes / rxpackets);
1698 packets = lmax(packets, rxpackets);
1699 }
1700
1701 /* Latency state machine */
1702 switch (nextlatency) {
1703 case itr_latency_disabled: /* Bootstrapping */
1704 nextlatency = itr_latency_low;
1705 break;
1706 case itr_latency_lowest: /* 70k ints/s */
1707 /* TSO and jumbo frames */
1708 if (bytes_per_packet > 8000)
1709 nextlatency = itr_latency_bulk;
1710 else if ((packets < 5) && (bytes > 512))
1711 nextlatency = itr_latency_low;
1712 break;
1713 case itr_latency_low: /* 20k ints/s */
1714 if (bytes > 10000) {
1715 /* Handle TSO */
1716 if (bytes_per_packet > 8000)
1717 nextlatency = itr_latency_bulk;
1718 else if ((packets < 10) ||
1719 (bytes_per_packet > 1200))
1720 nextlatency = itr_latency_bulk;
1721 else if (packets > 35)
1722 nextlatency = itr_latency_lowest;
1723 } else if (bytes_per_packet > 2000) {
1724 nextlatency = itr_latency_bulk;
1725 } else if (packets < 3 && bytes < 512) {
1726 nextlatency = itr_latency_lowest;
1727 }
1728 break;
1729 case itr_latency_bulk: /* 4k ints/s */
1730 if (bytes > 25000) {
1731 if (packets > 35)
1732 nextlatency = itr_latency_low;
1733 } else if (bytes < 1500)
1734 nextlatency = itr_latency_low;
1735 break;
1736 default:
1737 nextlatency = itr_latency_low;
1738 device_printf(sc->dev,
1739 "Unexpected newitr transition %d\n", nextlatency);
1740 break;
1741 }
1742
1743 /* Trim itr_latency_lowest for default AIM setting */
1744 if (sc->enable_aim == 1 && nextlatency == itr_latency_lowest)
1745 nextlatency = itr_latency_low;
1746
1747 /* Request new latency */
1748 rxr->rx_nextlatency = nextlatency;
1749 } else {
1750 /* We may have toggled to AIM disabled */
1751 nextlatency = itr_latency_disabled;
1752 rxr->rx_nextlatency = nextlatency;
1753 }
1754
1755 /* ITR state machine */
1756 switch(nextlatency) {
1757 case itr_latency_lowest:
1758 newitr = EM_INTS_70K;
1759 break;
1760 case itr_latency_low:
1761 newitr = EM_INTS_20K;
1762 break;
1763 case itr_latency_bulk:
1764 newitr = EM_INTS_4K;
1765 break;
1766 case itr_latency_disabled:
1767 default:
1768 newitr = em_max_interrupt_rate;
1769 break;
1770 }
1771
1772 em_set_next_itr:
1773 if (hw->mac.type >= igb_mac_min) {
1774 newitr = IGB_INTS_TO_EITR(newitr);
1775
1776 if (hw->mac.type == e1000_82575)
1777 newitr |= newitr << 16;
1778 else
1779 newitr |= E1000_EITR_CNT_IGNR;
1780
1781 if (newitr != que->itr_setting) {
1782 que->itr_setting = newitr;
1783 E1000_WRITE_REG(hw, E1000_EITR(que->msix),
1784 que->itr_setting);
1785 }
1786 } else {
1787 newitr = EM_INTS_TO_ITR(newitr);
1788
1789 if (newitr != que->itr_setting) {
1790 que->itr_setting = newitr;
1791 if (hw->mac.type == e1000_82574 && que->msix) {
1792 E1000_WRITE_REG(hw,
1793 E1000_EITR_82574(que->msix),
1794 que->itr_setting);
1795 } else {
1796 E1000_WRITE_REG(hw, E1000_ITR,
1797 que->itr_setting);
1798 }
1799 }
1800 }
1801 }
1802
1803 /*********************************************************************
1804 *
1805 * Fast Legacy/MSI Combined Interrupt Service routine
1806 *
1807 *********************************************************************/
1808 int
em_intr(void * arg)1809 em_intr(void *arg)
1810 {
1811 struct e1000_softc *sc = arg;
1812 struct e1000_hw *hw = &sc->hw;
1813 struct em_rx_queue *que = &sc->rx_queues[0];
1814 struct tx_ring *txr = &sc->tx_queues[0].txr;
1815 struct rx_ring *rxr = &que->rxr;
1816 if_ctx_t ctx = sc->ctx;
1817 u32 reg_icr;
1818
1819 reg_icr = E1000_READ_REG(hw, E1000_ICR);
1820
1821 /* Hot eject? */
1822 if (reg_icr == 0xffffffff)
1823 return FILTER_STRAY;
1824
1825 /* Definitely not our interrupt. */
1826 if (reg_icr == 0x0)
1827 return FILTER_STRAY;
1828
1829 /*
1830 * Starting with the 82571 chip, bit 31 should be used to
1831 * determine whether the interrupt belongs to us.
1832 */
1833 if (hw->mac.type >= e1000_82571 &&
1834 (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1835 return FILTER_STRAY;
1836
1837 /*
1838 * Only MSI-X interrupts have one-shot behavior by taking advantage
1839 * of the EIAC register. Thus, explicitly disable interrupts. This
1840 * also works around the MSI message reordering errata on certain
1841 * systems.
1842 */
1843 IFDI_INTR_DISABLE(ctx);
1844
1845 /* Link status change */
1846 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1847 em_handle_link(ctx);
1848
1849 if (reg_icr & E1000_ICR_RXO)
1850 sc->rx_overruns++;
1851
1852 if (hw->mac.type >= e1000_82540)
1853 em_newitr(sc, que, txr, rxr);
1854
1855 /* Reset state */
1856 txr->tx_bytes = 0;
1857 txr->tx_packets = 0;
1858 rxr->rx_bytes = 0;
1859 rxr->rx_packets = 0;
1860
1861 return (FILTER_SCHEDULE_THREAD);
1862 }
1863
1864 static int
em_if_rx_queue_intr_enable(if_ctx_t ctx,uint16_t rxqid)1865 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1866 {
1867 struct e1000_softc *sc = iflib_get_softc(ctx);
1868 struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1869
1870 E1000_WRITE_REG(&sc->hw, E1000_IMS, rxq->eims);
1871 return (0);
1872 }
1873
1874 static int
em_if_tx_queue_intr_enable(if_ctx_t ctx,uint16_t txqid)1875 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1876 {
1877 struct e1000_softc *sc = iflib_get_softc(ctx);
1878 struct em_tx_queue *txq = &sc->tx_queues[txqid];
1879
1880 E1000_WRITE_REG(&sc->hw, E1000_IMS, txq->eims);
1881 return (0);
1882 }
1883
1884 static int
igb_if_rx_queue_intr_enable(if_ctx_t ctx,uint16_t rxqid)1885 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1886 {
1887 struct e1000_softc *sc = iflib_get_softc(ctx);
1888 struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1889
1890 E1000_WRITE_REG(&sc->hw, E1000_EIMS, rxq->eims);
1891 return (0);
1892 }
1893
1894 static int
igb_if_tx_queue_intr_enable(if_ctx_t ctx,uint16_t txqid)1895 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1896 {
1897 struct e1000_softc *sc = iflib_get_softc(ctx);
1898 struct em_tx_queue *txq = &sc->tx_queues[txqid];
1899
1900 E1000_WRITE_REG(&sc->hw, E1000_EIMS, txq->eims);
1901 return (0);
1902 }
1903
1904 /*********************************************************************
1905 *
1906 * MSI-X RX Interrupt Service routine
1907 *
1908 **********************************************************************/
1909 static int
em_msix_que(void * arg)1910 em_msix_que(void *arg)
1911 {
1912 struct em_rx_queue *que = arg;
1913 struct e1000_softc *sc = que->sc;
1914 struct tx_ring *txr = &sc->tx_queues[que->msix].txr;
1915 struct rx_ring *rxr = &que->rxr;
1916
1917 ++que->irqs;
1918
1919 em_newitr(sc, que, txr, rxr);
1920
1921 /* Reset state */
1922 txr->tx_bytes = 0;
1923 txr->tx_packets = 0;
1924 rxr->rx_bytes = 0;
1925 rxr->rx_packets = 0;
1926
1927 return (FILTER_SCHEDULE_THREAD);
1928 }
1929
1930 /*********************************************************************
1931 *
1932 * MSI-X Link Fast Interrupt Service routine
1933 *
1934 **********************************************************************/
1935 static int
em_msix_link(void * arg)1936 em_msix_link(void *arg)
1937 {
1938 struct e1000_softc *sc = arg;
1939 u32 reg_icr;
1940
1941 ++sc->link_irq;
1942 MPASS(sc->hw.back != NULL);
1943 reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1944
1945 if (reg_icr & E1000_ICR_RXO)
1946 sc->rx_overruns++;
1947
1948 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1949 em_handle_link(sc->ctx);
1950
1951 /* Re-arm unconditionally */
1952 if (sc->hw.mac.type >= igb_mac_min) {
1953 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1954 E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->link_mask);
1955 } else if (sc->hw.mac.type == e1000_82574) {
1956 E1000_WRITE_REG(&sc->hw, E1000_IMS,
1957 E1000_IMS_LSC | E1000_IMS_OTHER);
1958 /*
1959 * Because we must read the ICR for this interrupt it may
1960 * clear other causes using autoclear, for this reason we
1961 * simply create a soft interrupt for all these vectors.
1962 */
1963 if (reg_icr)
1964 E1000_WRITE_REG(&sc->hw, E1000_ICS, sc->ims);
1965 } else
1966 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1967
1968 return (FILTER_HANDLED);
1969 }
1970
1971 static void
em_handle_link(void * context)1972 em_handle_link(void *context)
1973 {
1974 if_ctx_t ctx = context;
1975 struct e1000_softc *sc = iflib_get_softc(ctx);
1976
1977 sc->hw.mac.get_link_status = 1;
1978 iflib_admin_intr_deferred(ctx);
1979 }
1980
1981 /*********************************************************************
1982 *
1983 * Media Ioctl callback
1984 *
1985 * This routine is called whenever the user queries the status of
1986 * the interface using ifconfig.
1987 *
1988 **********************************************************************/
1989 static void
em_if_media_status(if_ctx_t ctx,struct ifmediareq * ifmr)1990 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1991 {
1992 struct e1000_softc *sc = iflib_get_softc(ctx);
1993 u_char fiber_type = IFM_1000_SX;
1994
1995 INIT_DEBUGOUT("em_if_media_status: begin");
1996
1997 iflib_admin_intr_deferred(ctx);
1998
1999 ifmr->ifm_status = IFM_AVALID;
2000 ifmr->ifm_active = IFM_ETHER;
2001
2002 if (!sc->link_active) {
2003 return;
2004 }
2005
2006 ifmr->ifm_status |= IFM_ACTIVE;
2007
2008 if ((sc->hw.phy.media_type == e1000_media_type_fiber) ||
2009 (sc->hw.phy.media_type == e1000_media_type_internal_serdes)) {
2010 if (sc->hw.mac.type == e1000_82545)
2011 fiber_type = IFM_1000_LX;
2012 ifmr->ifm_active |= fiber_type | IFM_FDX;
2013 } else {
2014 switch (sc->link_speed) {
2015 case 10:
2016 ifmr->ifm_active |= IFM_10_T;
2017 break;
2018 case 100:
2019 ifmr->ifm_active |= IFM_100_TX;
2020 break;
2021 case 1000:
2022 ifmr->ifm_active |= IFM_1000_T;
2023 break;
2024 }
2025 if (sc->link_duplex == FULL_DUPLEX)
2026 ifmr->ifm_active |= IFM_FDX;
2027 else
2028 ifmr->ifm_active |= IFM_HDX;
2029 }
2030 }
2031
2032 /*********************************************************************
2033 *
2034 * Media Ioctl callback
2035 *
2036 * This routine is called when the user changes speed/duplex using
2037 * media/mediopt option with ifconfig.
2038 *
2039 **********************************************************************/
2040 static int
em_if_media_change(if_ctx_t ctx)2041 em_if_media_change(if_ctx_t ctx)
2042 {
2043 struct e1000_softc *sc = iflib_get_softc(ctx);
2044 struct ifmedia *ifm = iflib_get_media(ctx);
2045
2046 INIT_DEBUGOUT("em_if_media_change: begin");
2047
2048 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2049 return (EINVAL);
2050
2051 switch (IFM_SUBTYPE(ifm->ifm_media)) {
2052 case IFM_AUTO:
2053 sc->hw.mac.autoneg = DO_AUTO_NEG;
2054 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
2055 break;
2056 case IFM_1000_LX:
2057 case IFM_1000_SX:
2058 case IFM_1000_T:
2059 sc->hw.mac.autoneg = DO_AUTO_NEG;
2060 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
2061 break;
2062 case IFM_100_TX:
2063 sc->hw.mac.autoneg = false;
2064 sc->hw.phy.autoneg_advertised = 0;
2065 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2066 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
2067 else
2068 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
2069 break;
2070 case IFM_10_T:
2071 sc->hw.mac.autoneg = false;
2072 sc->hw.phy.autoneg_advertised = 0;
2073 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2074 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
2075 else
2076 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
2077 break;
2078 default:
2079 device_printf(sc->dev, "Unsupported media type\n");
2080 }
2081
2082 em_if_init(ctx);
2083
2084 return (0);
2085 }
2086
2087 static int
em_if_set_promisc(if_ctx_t ctx,int flags)2088 em_if_set_promisc(if_ctx_t ctx, int flags)
2089 {
2090 struct e1000_softc *sc = iflib_get_softc(ctx);
2091 if_t ifp = iflib_get_ifp(ctx);
2092 u32 reg_rctl;
2093 int mcnt = 0;
2094
2095 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2096 reg_rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_UPE);
2097 if (flags & IFF_ALLMULTI)
2098 mcnt = MAX_NUM_MULTICAST_ADDRESSES;
2099 else
2100 mcnt = min(if_llmaddr_count(ifp),
2101 MAX_NUM_MULTICAST_ADDRESSES);
2102
2103 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
2104 reg_rctl &= (~E1000_RCTL_MPE);
2105 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2106
2107 if (flags & IFF_PROMISC) {
2108 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2109 em_if_vlan_filter_disable(sc);
2110 /* Turn this on if you want to see bad packets */
2111 if (em_debug_sbp)
2112 reg_rctl |= E1000_RCTL_SBP;
2113 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2114 } else {
2115 if (flags & IFF_ALLMULTI) {
2116 reg_rctl |= E1000_RCTL_MPE;
2117 reg_rctl &= ~E1000_RCTL_UPE;
2118 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2119 }
2120 if (em_if_vlan_filter_used(ctx))
2121 em_if_vlan_filter_enable(sc);
2122 }
2123 return (0);
2124 }
2125
2126 static u_int
em_copy_maddr(void * arg,struct sockaddr_dl * sdl,u_int idx)2127 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx)
2128 {
2129 u8 *mta = arg;
2130
2131 if (idx == MAX_NUM_MULTICAST_ADDRESSES)
2132 return (0);
2133
2134 bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
2135
2136 return (1);
2137 }
2138
2139 /*********************************************************************
2140 * Multicast Update
2141 *
2142 * This routine is called whenever multicast address list is updated.
2143 *
2144 **********************************************************************/
2145 static void
em_if_multi_set(if_ctx_t ctx)2146 em_if_multi_set(if_ctx_t ctx)
2147 {
2148 struct e1000_softc *sc = iflib_get_softc(ctx);
2149 if_t ifp = iflib_get_ifp(ctx);
2150 u8 *mta; /* Multicast array memory */
2151 u32 reg_rctl = 0;
2152 int mcnt = 0;
2153
2154 IOCTL_DEBUGOUT("em_set_multi: begin");
2155
2156 mta = sc->mta;
2157 bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
2158
2159 if (sc->hw.mac.type == e1000_82542 &&
2160 sc->hw.revision_id == E1000_REVISION_2) {
2161 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2162 if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2163 e1000_pci_clear_mwi(&sc->hw);
2164 reg_rctl |= E1000_RCTL_RST;
2165 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2166 msec_delay(5);
2167 }
2168
2169 mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
2170
2171 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
2172 e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
2173
2174 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2175
2176 if (if_getflags(ifp) & IFF_PROMISC)
2177 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2178 else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES ||
2179 if_getflags(ifp) & IFF_ALLMULTI) {
2180 reg_rctl |= E1000_RCTL_MPE;
2181 reg_rctl &= ~E1000_RCTL_UPE;
2182 } else
2183 reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2184
2185 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2186
2187 if (sc->hw.mac.type == e1000_82542 &&
2188 sc->hw.revision_id == E1000_REVISION_2) {
2189 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2190 reg_rctl &= ~E1000_RCTL_RST;
2191 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2192 msec_delay(5);
2193 if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2194 e1000_pci_set_mwi(&sc->hw);
2195 }
2196 }
2197
2198 /*********************************************************************
2199 * Timer routine
2200 *
2201 * This routine schedules em_if_update_admin_status() to check for
2202 * link status and to gather statistics as well as to perform some
2203 * controller-specific hardware patting.
2204 *
2205 **********************************************************************/
2206 static void
em_if_timer(if_ctx_t ctx,uint16_t qid)2207 em_if_timer(if_ctx_t ctx, uint16_t qid)
2208 {
2209 if (qid != 0)
2210 return;
2211
2212 iflib_admin_intr_deferred(ctx);
2213 }
2214
2215 static void
em_if_update_admin_status(if_ctx_t ctx)2216 em_if_update_admin_status(if_ctx_t ctx)
2217 {
2218 struct e1000_softc *sc = iflib_get_softc(ctx);
2219 struct e1000_hw *hw = &sc->hw;
2220 device_t dev = iflib_get_dev(ctx);
2221 u32 link_check, thstat, ctrl;
2222 bool automasked = false;
2223
2224 link_check = thstat = ctrl = 0;
2225 /* Get the cached link value or read phy for real */
2226 switch (hw->phy.media_type) {
2227 case e1000_media_type_copper:
2228 if (hw->mac.get_link_status) {
2229 if (hw->mac.type == e1000_pch_spt)
2230 msec_delay(50);
2231 /* Do the work to read phy */
2232 e1000_check_for_link(hw);
2233 link_check = !hw->mac.get_link_status;
2234 if (link_check) /* ESB2 fix */
2235 e1000_cfg_on_link_up(hw);
2236 } else {
2237 link_check = true;
2238 }
2239 break;
2240 case e1000_media_type_fiber:
2241 e1000_check_for_link(hw);
2242 link_check =
2243 (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
2244 break;
2245 case e1000_media_type_internal_serdes:
2246 e1000_check_for_link(hw);
2247 link_check = hw->mac.serdes_has_link;
2248 break;
2249 /* VF device is type_unknown */
2250 case e1000_media_type_unknown:
2251 e1000_check_for_link(hw);
2252 link_check = !hw->mac.get_link_status;
2253 /* FALLTHROUGH */
2254 default:
2255 break;
2256 }
2257
2258 /* Check for thermal downshift or shutdown */
2259 if (hw->mac.type == e1000_i350) {
2260 thstat = E1000_READ_REG(hw, E1000_THSTAT);
2261 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
2262 }
2263
2264 /* Now check for a transition */
2265 if (link_check && (sc->link_active == 0)) {
2266 e1000_get_speed_and_duplex(hw, &sc->link_speed,
2267 &sc->link_duplex);
2268 /* Check if we must disable SPEED_MODE bit on PCI-E */
2269 if ((sc->link_speed != SPEED_1000) &&
2270 ((hw->mac.type == e1000_82571) ||
2271 (hw->mac.type == e1000_82572))) {
2272 int tarc0;
2273 tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2274 tarc0 &= ~TARC_SPEED_MODE_BIT;
2275 E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2276 }
2277 if (bootverbose)
2278 device_printf(dev, "Link is up %d Mbps %s\n",
2279 sc->link_speed,
2280 ((sc->link_duplex == FULL_DUPLEX) ?
2281 "Full Duplex" : "Half Duplex"));
2282 sc->link_active = 1;
2283 sc->smartspeed = 0;
2284 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
2285 E1000_CTRL_EXT_LINK_MODE_GMII &&
2286 (thstat & E1000_THSTAT_LINK_THROTTLE))
2287 device_printf(dev, "Link: thermal downshift\n");
2288 /* Delay Link Up for Phy update */
2289 if (((hw->mac.type == e1000_i210) ||
2290 (hw->mac.type == e1000_i211)) &&
2291 (hw->phy.id == I210_I_PHY_ID))
2292 msec_delay(I210_LINK_DELAY);
2293 /* Reset if the media type changed. */
2294 if (hw->dev_spec._82575.media_changed &&
2295 hw->mac.type >= igb_mac_min) {
2296 hw->dev_spec._82575.media_changed = false;
2297 sc->flags |= IGB_MEDIA_RESET;
2298 em_reset(ctx);
2299 }
2300 /* Only do TSO on gigabit for older chips due to errata */
2301 if (hw->mac.type < igb_mac_min)
2302 automasked = em_automask_tso(ctx);
2303
2304 /* Automasking resets the interface so don't mark it up yet */
2305 if (!automasked)
2306 iflib_link_state_change(ctx, LINK_STATE_UP,
2307 IF_Mbps(sc->link_speed));
2308 } else if (!link_check && (sc->link_active == 1)) {
2309 sc->link_speed = 0;
2310 sc->link_duplex = 0;
2311 sc->link_active = 0;
2312 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
2313 }
2314 em_update_stats_counters(sc);
2315
2316 /* Reset LAA into RAR[0] on 82571 */
2317 if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
2318 e1000_rar_set(hw, hw->mac.addr, 0);
2319
2320 if (hw->mac.type < em_mac_min)
2321 lem_smartspeed(sc);
2322 }
2323
2324 static void
em_if_watchdog_reset(if_ctx_t ctx)2325 em_if_watchdog_reset(if_ctx_t ctx)
2326 {
2327 struct e1000_softc *sc = iflib_get_softc(ctx);
2328
2329 /*
2330 * Just count the event; iflib(4) will already trigger a
2331 * sufficient reset of the controller.
2332 */
2333 sc->watchdog_events++;
2334 }
2335
2336 /*********************************************************************
2337 *
2338 * This routine disables all traffic on the adapter by issuing a
2339 * global reset on the MAC.
2340 *
2341 **********************************************************************/
2342 static void
em_if_stop(if_ctx_t ctx)2343 em_if_stop(if_ctx_t ctx)
2344 {
2345 struct e1000_softc *sc = iflib_get_softc(ctx);
2346
2347 INIT_DEBUGOUT("em_if_stop: begin");
2348
2349 /* I219 needs special flushing to avoid hangs */
2350 if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min)
2351 em_flush_desc_rings(sc);
2352
2353 e1000_reset_hw(&sc->hw);
2354 if (sc->hw.mac.type >= e1000_82544 && !sc->vf_ifp)
2355 E1000_WRITE_REG(&sc->hw, E1000_WUFC, 0);
2356
2357 e1000_led_off(&sc->hw);
2358 e1000_cleanup_led(&sc->hw);
2359 }
2360
2361 /*********************************************************************
2362 *
2363 * Determine hardware revision.
2364 *
2365 **********************************************************************/
2366 static void
em_identify_hardware(if_ctx_t ctx)2367 em_identify_hardware(if_ctx_t ctx)
2368 {
2369 device_t dev = iflib_get_dev(ctx);
2370 struct e1000_softc *sc = iflib_get_softc(ctx);
2371
2372 /* Make sure our PCI config space has the necessary stuff set */
2373 sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2374
2375 /* Save off the information about this board */
2376 sc->hw.vendor_id = pci_get_vendor(dev);
2377 sc->hw.device_id = pci_get_device(dev);
2378 sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
2379 sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
2380 sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
2381
2382 /* Do Shared Code Init and Setup */
2383 if (e1000_set_mac_type(&sc->hw)) {
2384 device_printf(dev, "Setup init failure\n");
2385 return;
2386 }
2387
2388 /* Are we a VF device? */
2389 if ((sc->hw.mac.type == e1000_vfadapt) ||
2390 (sc->hw.mac.type == e1000_vfadapt_i350))
2391 sc->vf_ifp = 1;
2392 else
2393 sc->vf_ifp = 0;
2394 }
2395
2396 static int
em_allocate_pci_resources(if_ctx_t ctx)2397 em_allocate_pci_resources(if_ctx_t ctx)
2398 {
2399 struct e1000_softc *sc = iflib_get_softc(ctx);
2400 device_t dev = iflib_get_dev(ctx);
2401 int rid, val;
2402
2403 rid = PCIR_BAR(0);
2404 sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2405 RF_ACTIVE);
2406 if (sc->memory == NULL) {
2407 device_printf(dev,
2408 "Unable to allocate bus resource: memory\n");
2409 return (ENXIO);
2410 }
2411 sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
2412 sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
2413 #ifdef INVARIANTS
2414 sc->osdep.mem_bus_space_size = rman_get_size(sc->memory);
2415 #endif
2416 sc->hw.hw_addr = (u8 *)&sc->osdep.mem_bus_space_handle;
2417
2418 /* Only older adapters use IO mapping */
2419 if (sc->hw.mac.type < em_mac_min && sc->hw.mac.type > e1000_82543) {
2420 /* Figure our where our IO BAR is ? */
2421 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
2422 val = pci_read_config(dev, rid, 4);
2423 if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2424 break;
2425 }
2426 rid += 4;
2427 /* check for 64bit BAR */
2428 if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2429 rid += 4;
2430 }
2431 if (rid >= PCIR_CIS) {
2432 device_printf(dev, "Unable to locate IO BAR\n");
2433 return (ENXIO);
2434 }
2435 sc->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2436 &rid, RF_ACTIVE);
2437 if (sc->ioport == NULL) {
2438 device_printf(dev,
2439 "Unable to allocate bus resource: ioport\n");
2440 return (ENXIO);
2441 }
2442 sc->hw.io_base = 0;
2443 sc->osdep.io_bus_space_tag =
2444 rman_get_bustag(sc->ioport);
2445 sc->osdep.io_bus_space_handle =
2446 rman_get_bushandle(sc->ioport);
2447 }
2448
2449 sc->hw.back = &sc->osdep;
2450
2451 return (0);
2452 }
2453
2454 /*********************************************************************
2455 *
2456 * Set up the MSI-X Interrupt handlers
2457 *
2458 **********************************************************************/
2459 static int
em_if_msix_intr_assign(if_ctx_t ctx,int msix)2460 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
2461 {
2462 struct e1000_softc *sc = iflib_get_softc(ctx);
2463 struct em_rx_queue *rx_que = sc->rx_queues;
2464 struct em_tx_queue *tx_que = sc->tx_queues;
2465 int error, rid, i, vector = 0, rx_vectors;
2466 char buf[16];
2467
2468 /* First set up ring resources */
2469 for (i = 0; i < sc->rx_num_queues; i++, rx_que++, vector++) {
2470 rid = vector + 1;
2471 snprintf(buf, sizeof(buf), "rxq%d", i);
2472 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid,
2473 IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
2474 if (error) {
2475 device_printf(iflib_get_dev(ctx),
2476 "Failed to allocate que int %d err: %d",
2477 i, error);
2478 sc->rx_num_queues = i + 1;
2479 goto fail;
2480 }
2481
2482 rx_que->msix = vector;
2483
2484 /*
2485 * Set the bit to enable interrupt
2486 * in E1000_IMS -- bits 20 and 21
2487 * are for RX0 and RX1, note this has
2488 * NOTHING to do with the MSI-X vector
2489 */
2490 if (sc->hw.mac.type == e1000_82574) {
2491 rx_que->eims = 1 << (20 + i);
2492 sc->ims |= rx_que->eims;
2493 sc->ivars |= (8 | rx_que->msix) << (i * 4);
2494 } else if (sc->hw.mac.type == e1000_82575)
2495 rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2496 else
2497 rx_que->eims = 1 << vector;
2498 }
2499 rx_vectors = vector;
2500
2501 vector = 0;
2502 for (i = 0; i < sc->tx_num_queues; i++, tx_que++, vector++) {
2503 snprintf(buf, sizeof(buf), "txq%d", i);
2504 tx_que = &sc->tx_queues[i];
2505 iflib_softirq_alloc_generic(ctx,
2506 &sc->rx_queues[i % sc->rx_num_queues].que_irq,
2507 IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2508
2509 tx_que->msix = (vector % sc->rx_num_queues);
2510
2511 /*
2512 * Set the bit to enable interrupt
2513 * in E1000_IMS -- bits 22 and 23
2514 * are for TX0 and TX1, note this has
2515 * NOTHING to do with the MSI-X vector
2516 */
2517 if (sc->hw.mac.type == e1000_82574) {
2518 tx_que->eims = 1 << (22 + i);
2519 sc->ims |= tx_que->eims;
2520 sc->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2521 } else if (sc->hw.mac.type == e1000_82575) {
2522 tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2523 } else {
2524 tx_que->eims = 1 << i;
2525 }
2526 }
2527
2528 /* Link interrupt */
2529 rid = rx_vectors + 1;
2530 error = iflib_irq_alloc_generic(ctx, &sc->irq, rid, IFLIB_INTR_ADMIN,
2531 em_msix_link, sc, 0, "aq");
2532
2533 if (error) {
2534 device_printf(iflib_get_dev(ctx),
2535 "Failed to register admin handler");
2536 goto fail;
2537 }
2538 sc->linkvec = rx_vectors;
2539 if (sc->hw.mac.type < igb_mac_min) {
2540 sc->ivars |= (8 | rx_vectors) << 16;
2541 sc->ivars |= 0x80000000;
2542 /* Enable the "Other" interrupt type for link status change */
2543 sc->ims |= E1000_IMS_OTHER;
2544 }
2545
2546 return (0);
2547 fail:
2548 iflib_irq_free(ctx, &sc->irq);
2549 rx_que = sc->rx_queues;
2550 for (int i = 0; i < sc->rx_num_queues; i++, rx_que++)
2551 iflib_irq_free(ctx, &rx_que->que_irq);
2552 return (error);
2553 }
2554
2555 static void
igb_configure_queues(struct e1000_softc * sc)2556 igb_configure_queues(struct e1000_softc *sc)
2557 {
2558 struct e1000_hw *hw = &sc->hw;
2559 struct em_rx_queue *rx_que;
2560 struct em_tx_queue *tx_que;
2561 u32 tmp, ivar = 0, newitr = 0;
2562
2563 /* First turn on RSS capability */
2564 if (hw->mac.type != e1000_82575)
2565 E1000_WRITE_REG(hw, E1000_GPIE,
2566 E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2567 E1000_GPIE_PBA | E1000_GPIE_NSICR);
2568
2569 /* Turn on MSI-X */
2570 switch (hw->mac.type) {
2571 case e1000_82580:
2572 case e1000_i350:
2573 case e1000_i354:
2574 case e1000_i210:
2575 case e1000_i211:
2576 case e1000_vfadapt:
2577 case e1000_vfadapt_i350:
2578 /* RX entries */
2579 for (int i = 0; i < sc->rx_num_queues; i++) {
2580 u32 index = i >> 1;
2581 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2582 rx_que = &sc->rx_queues[i];
2583 if (i & 1) {
2584 ivar &= 0xFF00FFFF;
2585 ivar |= (rx_que->msix | E1000_IVAR_VALID) <<
2586 16;
2587 } else {
2588 ivar &= 0xFFFFFF00;
2589 ivar |= rx_que->msix | E1000_IVAR_VALID;
2590 }
2591 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2592 }
2593 /* TX entries */
2594 for (int i = 0; i < sc->tx_num_queues; i++) {
2595 u32 index = i >> 1;
2596 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2597 tx_que = &sc->tx_queues[i];
2598 if (i & 1) {
2599 ivar &= 0x00FFFFFF;
2600 ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2601 24;
2602 } else {
2603 ivar &= 0xFFFF00FF;
2604 ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2605 8;
2606 }
2607 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2608 sc->que_mask |= tx_que->eims;
2609 }
2610
2611 /* And for the link interrupt */
2612 ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2613 sc->link_mask = 1 << sc->linkvec;
2614 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2615 break;
2616 case e1000_82576:
2617 /* RX entries */
2618 for (int i = 0; i < sc->rx_num_queues; i++) {
2619 u32 index = i & 0x7; /* Each IVAR has two entries */
2620 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2621 rx_que = &sc->rx_queues[i];
2622 if (i < 8) {
2623 ivar &= 0xFFFFFF00;
2624 ivar |= rx_que->msix | E1000_IVAR_VALID;
2625 } else {
2626 ivar &= 0xFF00FFFF;
2627 ivar |= (rx_que->msix | E1000_IVAR_VALID) <<
2628 16;
2629 }
2630 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2631 sc->que_mask |= rx_que->eims;
2632 }
2633 /* TX entries */
2634 for (int i = 0; i < sc->tx_num_queues; i++) {
2635 u32 index = i & 0x7; /* Each IVAR has two entries */
2636 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2637 tx_que = &sc->tx_queues[i];
2638 if (i < 8) {
2639 ivar &= 0xFFFF00FF;
2640 ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2641 8;
2642 } else {
2643 ivar &= 0x00FFFFFF;
2644 ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2645 24;
2646 }
2647 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2648 sc->que_mask |= tx_que->eims;
2649 }
2650
2651 /* And for the link interrupt */
2652 ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2653 sc->link_mask = 1 << sc->linkvec;
2654 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2655 break;
2656
2657 case e1000_82575:
2658 /* enable MSI-X support*/
2659 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2660 tmp |= E1000_CTRL_EXT_PBA_CLR;
2661 /* Auto-Mask interrupts upon ICR read. */
2662 tmp |= E1000_CTRL_EXT_EIAME;
2663 tmp |= E1000_CTRL_EXT_IRCA;
2664 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2665
2666 /* Queues */
2667 for (int i = 0; i < sc->rx_num_queues; i++) {
2668 rx_que = &sc->rx_queues[i];
2669 tmp = E1000_EICR_RX_QUEUE0 << i;
2670 tmp |= E1000_EICR_TX_QUEUE0 << i;
2671 rx_que->eims = tmp;
2672 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), i,
2673 rx_que->eims);
2674 sc->que_mask |= rx_que->eims;
2675 }
2676
2677 /* Link */
2678 E1000_WRITE_REG(hw, E1000_MSIXBM(sc->linkvec),
2679 E1000_EIMS_OTHER);
2680 sc->link_mask |= E1000_EIMS_OTHER;
2681 default:
2682 break;
2683 }
2684
2685 /* Set the igb starting interrupt rate */
2686 if (em_max_interrupt_rate > 0) {
2687 newitr = IGB_INTS_TO_EITR(em_max_interrupt_rate);
2688
2689 if (hw->mac.type == e1000_82575)
2690 newitr |= newitr << 16;
2691 else
2692 newitr |= E1000_EITR_CNT_IGNR;
2693
2694 for (int i = 0; i < sc->rx_num_queues; i++) {
2695 rx_que = &sc->rx_queues[i];
2696 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2697 }
2698 }
2699
2700 return;
2701 }
2702
2703 static void
em_free_pci_resources(if_ctx_t ctx)2704 em_free_pci_resources(if_ctx_t ctx)
2705 {
2706 struct e1000_softc *sc = iflib_get_softc(ctx);
2707 struct em_rx_queue *que = sc->rx_queues;
2708 device_t dev = iflib_get_dev(ctx);
2709
2710 /* Release all MSI-X queue resources */
2711 if (sc->intr_type == IFLIB_INTR_MSIX)
2712 iflib_irq_free(ctx, &sc->irq);
2713
2714 if (que != NULL) {
2715 for (int i = 0; i < sc->rx_num_queues; i++, que++) {
2716 iflib_irq_free(ctx, &que->que_irq);
2717 }
2718 }
2719
2720 if (sc->memory != NULL) {
2721 bus_release_resource(dev, SYS_RES_MEMORY,
2722 rman_get_rid(sc->memory), sc->memory);
2723 sc->memory = NULL;
2724 }
2725
2726 if (sc->flash != NULL) {
2727 bus_release_resource(dev, SYS_RES_MEMORY,
2728 rman_get_rid(sc->flash), sc->flash);
2729 sc->flash = NULL;
2730 }
2731
2732 if (sc->ioport != NULL) {
2733 bus_release_resource(dev, SYS_RES_IOPORT,
2734 rman_get_rid(sc->ioport), sc->ioport);
2735 sc->ioport = NULL;
2736 }
2737 }
2738
2739 /* Set up MSI or MSI-X */
2740 static int
em_setup_msix(if_ctx_t ctx)2741 em_setup_msix(if_ctx_t ctx)
2742 {
2743 struct e1000_softc *sc = iflib_get_softc(ctx);
2744
2745 if (sc->hw.mac.type == e1000_82574) {
2746 em_enable_vectors_82574(ctx);
2747 }
2748 return (0);
2749 }
2750
2751 /*********************************************************************
2752 *
2753 * Workaround for SmartSpeed on 82541 and 82547 controllers
2754 *
2755 **********************************************************************/
2756 static void
lem_smartspeed(struct e1000_softc * sc)2757 lem_smartspeed(struct e1000_softc *sc)
2758 {
2759 u16 phy_tmp;
2760
2761 if (sc->link_active || (sc->hw.phy.type != e1000_phy_igp) ||
2762 sc->hw.mac.autoneg == 0 ||
2763 (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2764 return;
2765
2766 if (sc->smartspeed == 0) {
2767 /* If Master/Slave config fault is asserted twice,
2768 * we assume back-to-back */
2769 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2770 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2771 return;
2772 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2773 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2774 e1000_read_phy_reg(&sc->hw,
2775 PHY_1000T_CTRL, &phy_tmp);
2776 if(phy_tmp & CR_1000T_MS_ENABLE) {
2777 phy_tmp &= ~CR_1000T_MS_ENABLE;
2778 e1000_write_phy_reg(&sc->hw,
2779 PHY_1000T_CTRL, phy_tmp);
2780 sc->smartspeed++;
2781 if(sc->hw.mac.autoneg &&
2782 !e1000_copper_link_autoneg(&sc->hw) &&
2783 !e1000_read_phy_reg(&sc->hw,
2784 PHY_CONTROL, &phy_tmp)) {
2785 phy_tmp |= (MII_CR_AUTO_NEG_EN |
2786 MII_CR_RESTART_AUTO_NEG);
2787 e1000_write_phy_reg(&sc->hw,
2788 PHY_CONTROL, phy_tmp);
2789 }
2790 }
2791 }
2792 return;
2793 } else if(sc->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2794 /* If still no link, perhaps using 2/3 pair cable */
2795 e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2796 phy_tmp |= CR_1000T_MS_ENABLE;
2797 e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2798 if(sc->hw.mac.autoneg &&
2799 !e1000_copper_link_autoneg(&sc->hw) &&
2800 !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2801 phy_tmp |= (MII_CR_AUTO_NEG_EN |
2802 MII_CR_RESTART_AUTO_NEG);
2803 e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2804 }
2805 }
2806 /* Restart process after EM_SMARTSPEED_MAX iterations */
2807 if(sc->smartspeed++ == EM_SMARTSPEED_MAX)
2808 sc->smartspeed = 0;
2809 }
2810
2811 /*********************************************************************
2812 *
2813 * Initialize the DMA Coalescing feature
2814 *
2815 **********************************************************************/
2816 static void
igb_init_dmac(struct e1000_softc * sc,u32 pba)2817 igb_init_dmac(struct e1000_softc *sc, u32 pba)
2818 {
2819 device_t dev = sc->dev;
2820 struct e1000_hw *hw = &sc->hw;
2821 u32 dmac, reg = ~E1000_DMACR_DMAC_EN;
2822 u16 hwm;
2823 u16 max_frame_size;
2824
2825 if (hw->mac.type == e1000_i211)
2826 return;
2827
2828 max_frame_size = sc->shared->isc_max_frame_size;
2829 if (hw->mac.type > e1000_82580) {
2830
2831 if (sc->dmac == 0) { /* Disabling it */
2832 E1000_WRITE_REG(hw, E1000_DMACR, reg);
2833 return;
2834 } else
2835 device_printf(dev, "DMA Coalescing enabled\n");
2836
2837 /* Set starting threshold */
2838 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2839
2840 hwm = 64 * pba - max_frame_size / 16;
2841 if (hwm < 64 * (pba - 6))
2842 hwm = 64 * (pba - 6);
2843 reg = E1000_READ_REG(hw, E1000_FCRTC);
2844 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2845 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2846 & E1000_FCRTC_RTH_COAL_MASK);
2847 E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2848
2849
2850 dmac = pba - max_frame_size / 512;
2851 if (dmac < pba - 10)
2852 dmac = pba - 10;
2853 reg = E1000_READ_REG(hw, E1000_DMACR);
2854 reg &= ~E1000_DMACR_DMACTHR_MASK;
2855 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2856 & E1000_DMACR_DMACTHR_MASK);
2857
2858 /* transition to L0x or L1 if available..*/
2859 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2860
2861 /* Check if status is 2.5Gb backplane connection
2862 * before configuration of watchdog timer, which is
2863 * in msec values in 12.8usec intervals
2864 * watchdog timer= msec values in 32usec intervals
2865 * for non 2.5Gb connection
2866 */
2867 if (hw->mac.type == e1000_i354) {
2868 int status = E1000_READ_REG(hw, E1000_STATUS);
2869 if ((status & E1000_STATUS_2P5_SKU) &&
2870 (!(status & E1000_STATUS_2P5_SKU_OVER)))
2871 reg |= ((sc->dmac * 5) >> 6);
2872 else
2873 reg |= (sc->dmac >> 5);
2874 } else {
2875 reg |= (sc->dmac >> 5);
2876 }
2877
2878 E1000_WRITE_REG(hw, E1000_DMACR, reg);
2879
2880 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2881
2882 /* Set the interval before transition */
2883 reg = E1000_READ_REG(hw, E1000_DMCTLX);
2884 if (hw->mac.type == e1000_i350)
2885 reg |= IGB_DMCTLX_DCFLUSH_DIS;
2886 /*
2887 ** in 2.5Gb connection, TTLX unit is 0.4 usec
2888 ** which is 0x4*2 = 0xA. But delay is still 4 usec
2889 */
2890 if (hw->mac.type == e1000_i354) {
2891 int status = E1000_READ_REG(hw, E1000_STATUS);
2892 if ((status & E1000_STATUS_2P5_SKU) &&
2893 (!(status & E1000_STATUS_2P5_SKU_OVER)))
2894 reg |= 0xA;
2895 else
2896 reg |= 0x4;
2897 } else {
2898 reg |= 0x4;
2899 }
2900
2901 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2902
2903 /* free space in tx packet buffer to wake from DMA coal */
2904 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2905 (2 * max_frame_size)) >> 6);
2906
2907 /* make low power state decision controlled by DMA coal */
2908 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2909 reg &= ~E1000_PCIEMISC_LX_DECISION;
2910 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2911
2912 } else if (hw->mac.type == e1000_82580) {
2913 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2914 E1000_WRITE_REG(hw, E1000_PCIEMISC,
2915 reg & ~E1000_PCIEMISC_LX_DECISION);
2916 E1000_WRITE_REG(hw, E1000_DMACR, 0);
2917 }
2918 }
2919 /*********************************************************************
2920 * The 3 following flush routines are used as a workaround in the
2921 * I219 client parts and only for them.
2922 *
2923 * em_flush_tx_ring - remove all descriptors from the tx_ring
2924 *
2925 * We want to clear all pending descriptors from the TX ring.
2926 * zeroing happens when the HW reads the regs. We assign the ring itself as
2927 * the data of the next descriptor. We don't care about the data we are about
2928 * to reset the HW.
2929 **********************************************************************/
2930 static void
em_flush_tx_ring(struct e1000_softc * sc)2931 em_flush_tx_ring(struct e1000_softc *sc)
2932 {
2933 struct e1000_hw *hw = &sc->hw;
2934 struct tx_ring *txr = &sc->tx_queues->txr;
2935 struct e1000_tx_desc *txd;
2936 u32 tctl, txd_lower = E1000_TXD_CMD_IFCS;
2937 u16 size = 512;
2938
2939 tctl = E1000_READ_REG(hw, E1000_TCTL);
2940 E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN);
2941
2942 txd = &txr->tx_base[txr->tx_cidx_processed];
2943
2944 /* Just use the ring as a dummy buffer addr */
2945 txd->buffer_addr = txr->tx_paddr;
2946 txd->lower.data = htole32(txd_lower | size);
2947 txd->upper.data = 0;
2948
2949 /* flush descriptors to memory before notifying the HW */
2950 wmb();
2951
2952 E1000_WRITE_REG(hw, E1000_TDT(0), txr->tx_cidx_processed);
2953 mb();
2954 usec_delay(250);
2955 }
2956
2957 /*********************************************************************
2958 * em_flush_rx_ring - remove all descriptors from the rx_ring
2959 *
2960 * Mark all descriptors in the RX ring as consumed and disable the rx ring
2961 **********************************************************************/
2962 static void
em_flush_rx_ring(struct e1000_softc * sc)2963 em_flush_rx_ring(struct e1000_softc *sc)
2964 {
2965 struct e1000_hw *hw = &sc->hw;
2966 u32 rctl, rxdctl;
2967
2968 rctl = E1000_READ_REG(hw, E1000_RCTL);
2969 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2970 E1000_WRITE_FLUSH(hw);
2971 usec_delay(150);
2972
2973 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
2974 /* zero the lower 14 bits (prefetch and host thresholds) */
2975 rxdctl &= 0xffffc000;
2976 /*
2977 * update thresholds: prefetch threshold to 31, host threshold to 1
2978 * and make sure the granularity is "descriptors" and not
2979 * "cache lines"
2980 */
2981 rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
2982 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl);
2983
2984 /* momentarily enable the RX ring for the changes to take effect */
2985 E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN);
2986 E1000_WRITE_FLUSH(hw);
2987 usec_delay(150);
2988 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2989 }
2990
2991 /*********************************************************************
2992 * em_flush_desc_rings - remove all descriptors from the descriptor rings
2993 *
2994 * In I219, the descriptor rings must be emptied before resetting the HW
2995 * or before changing the device state to D3 during runtime (runtime PM).
2996 *
2997 * Failure to do this will cause the HW to enter a unit hang state which can
2998 * only be released by PCI reset on the device
2999 *
3000 **********************************************************************/
3001 static void
em_flush_desc_rings(struct e1000_softc * sc)3002 em_flush_desc_rings(struct e1000_softc *sc)
3003 {
3004 struct e1000_hw *hw = &sc->hw;
3005 device_t dev = sc->dev;
3006 u16 hang_state;
3007 u32 fext_nvm11, tdlen;
3008
3009 /* First, disable MULR fix in FEXTNVM11 */
3010 fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
3011 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3012 E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
3013
3014 /* do nothing if we're not in faulty state, or the queue is empty */
3015 tdlen = E1000_READ_REG(hw, E1000_TDLEN(0));
3016 hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
3017 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3018 return;
3019 em_flush_tx_ring(sc);
3020
3021 /* recheck, maybe the fault is caused by the rx ring */
3022 hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
3023 if (hang_state & FLUSH_DESC_REQUIRED)
3024 em_flush_rx_ring(sc);
3025 }
3026
3027
3028 /*********************************************************************
3029 *
3030 * Initialize the hardware to a configuration as specified by the
3031 * sc structure.
3032 *
3033 **********************************************************************/
3034 static void
em_reset(if_ctx_t ctx)3035 em_reset(if_ctx_t ctx)
3036 {
3037 device_t dev = iflib_get_dev(ctx);
3038 struct e1000_softc *sc = iflib_get_softc(ctx);
3039 if_t ifp = iflib_get_ifp(ctx);
3040 struct e1000_hw *hw = &sc->hw;
3041 u32 rx_buffer_size;
3042 u32 pba;
3043
3044 INIT_DEBUGOUT("em_reset: begin");
3045 /* Let the firmware know the OS is in control */
3046 em_get_hw_control(sc);
3047
3048 /* Set up smart power down as default off on newer adapters. */
3049 if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
3050 hw->mac.type == e1000_82572)) {
3051 u16 phy_tmp = 0;
3052
3053 /* Speed up time to link by disabling smart power down. */
3054 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
3055 phy_tmp &= ~IGP02E1000_PM_SPD;
3056 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
3057 }
3058
3059 /*
3060 * Packet Buffer Allocation (PBA)
3061 * Writing PBA sets the receive portion of the buffer
3062 * the remainder is used for the transmit buffer.
3063 */
3064 switch (hw->mac.type) {
3065 /* 82547: Total Packet Buffer is 40K */
3066 case e1000_82547:
3067 case e1000_82547_rev_2:
3068 if (hw->mac.max_frame_size > 8192)
3069 pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
3070 else
3071 pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
3072 break;
3073 /* 82571/82572/80003es2lan: Total Packet Buffer is 48K */
3074 case e1000_82571:
3075 case e1000_82572:
3076 case e1000_80003es2lan:
3077 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
3078 break;
3079 /* 82573: Total Packet Buffer is 32K */
3080 case e1000_82573:
3081 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
3082 break;
3083 case e1000_82574:
3084 case e1000_82583:
3085 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
3086 break;
3087 case e1000_ich8lan:
3088 pba = E1000_PBA_8K;
3089 break;
3090 case e1000_ich9lan:
3091 case e1000_ich10lan:
3092 /* Boost Receive side for jumbo frames */
3093 if (hw->mac.max_frame_size > 4096)
3094 pba = E1000_PBA_14K;
3095 else
3096 pba = E1000_PBA_10K;
3097 break;
3098 case e1000_pchlan:
3099 case e1000_pch2lan:
3100 case e1000_pch_lpt:
3101 case e1000_pch_spt:
3102 case e1000_pch_cnp:
3103 case e1000_pch_tgp:
3104 case e1000_pch_adp:
3105 case e1000_pch_mtp:
3106 case e1000_pch_ptp:
3107 pba = E1000_PBA_26K;
3108 break;
3109 case e1000_82575:
3110 pba = E1000_PBA_32K;
3111 break;
3112 case e1000_82576:
3113 case e1000_vfadapt:
3114 pba = E1000_READ_REG(hw, E1000_RXPBS);
3115 pba &= E1000_RXPBS_SIZE_MASK_82576;
3116 break;
3117 case e1000_82580:
3118 case e1000_i350:
3119 case e1000_i354:
3120 case e1000_vfadapt_i350:
3121 pba = E1000_READ_REG(hw, E1000_RXPBS);
3122 pba = e1000_rxpbs_adjust_82580(pba);
3123 break;
3124 case e1000_i210:
3125 case e1000_i211:
3126 pba = E1000_PBA_34K;
3127 break;
3128 default:
3129 /* Remaining devices assumed to have Packet Buffer of 64K. */
3130 if (hw->mac.max_frame_size > 8192)
3131 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
3132 else
3133 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
3134 }
3135
3136 /* Special needs in case of Jumbo frames */
3137 if ((hw->mac.type == e1000_82575) && (if_getmtu(ifp) > ETHERMTU)) {
3138 u32 tx_space, min_tx, min_rx;
3139 pba = E1000_READ_REG(hw, E1000_PBA);
3140 tx_space = pba >> 16;
3141 pba &= 0xffff;
3142 min_tx = (hw->mac.max_frame_size +
3143 sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
3144 min_tx = roundup2(min_tx, 1024);
3145 min_tx >>= 10;
3146 min_rx = hw->mac.max_frame_size;
3147 min_rx = roundup2(min_rx, 1024);
3148 min_rx >>= 10;
3149 if (tx_space < min_tx &&
3150 ((min_tx - tx_space) < pba)) {
3151 pba = pba - (min_tx - tx_space);
3152 /*
3153 * if short on rx space, rx wins
3154 * and must trump tx adjustment
3155 */
3156 if (pba < min_rx)
3157 pba = min_rx;
3158 }
3159 E1000_WRITE_REG(hw, E1000_PBA, pba);
3160 }
3161
3162 if (hw->mac.type < igb_mac_min)
3163 E1000_WRITE_REG(hw, E1000_PBA, pba);
3164
3165 INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
3166
3167 /*
3168 * These parameters control the automatic generation (Tx) and
3169 * response (Rx) to Ethernet PAUSE frames.
3170 * - High water mark should allow for at least two frames to be
3171 * received after sending an XOFF.
3172 * - Low water mark works best when it is very near the high water
3173 mark.
3174 * This allows the receiver to restart by sending XON when it has
3175 * drained a bit. Here we use an arbitrary value of 1500 which will
3176 * restart after one full frame is pulled from the buffer. There
3177 * could be several smaller frames in the buffer and if so they will
3178 * not trigger the XON until their total number reduces the buffer
3179 * by 1500.
3180 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
3181 */
3182 rx_buffer_size = (pba & 0xffff) << 10;
3183 hw->fc.high_water = rx_buffer_size -
3184 roundup2(hw->mac.max_frame_size, 1024);
3185 hw->fc.low_water = hw->fc.high_water - 1500;
3186
3187 if (sc->fc) /* locally set flow control value? */
3188 hw->fc.requested_mode = sc->fc;
3189 else
3190 hw->fc.requested_mode = e1000_fc_full;
3191
3192 if (hw->mac.type == e1000_80003es2lan)
3193 hw->fc.pause_time = 0xFFFF;
3194 else
3195 hw->fc.pause_time = EM_FC_PAUSE_TIME;
3196
3197 hw->fc.send_xon = true;
3198
3199 /* Device specific overrides/settings */
3200 switch (hw->mac.type) {
3201 case e1000_pchlan:
3202 /* Workaround: no TX flow ctrl for PCH */
3203 hw->fc.requested_mode = e1000_fc_rx_pause;
3204 hw->fc.pause_time = 0xFFFF; /* override */
3205 if (if_getmtu(ifp) > ETHERMTU) {
3206 hw->fc.high_water = 0x3500;
3207 hw->fc.low_water = 0x1500;
3208 } else {
3209 hw->fc.high_water = 0x5000;
3210 hw->fc.low_water = 0x3000;
3211 }
3212 hw->fc.refresh_time = 0x1000;
3213 break;
3214 case e1000_pch2lan:
3215 case e1000_pch_lpt:
3216 case e1000_pch_spt:
3217 case e1000_pch_cnp:
3218 case e1000_pch_tgp:
3219 case e1000_pch_adp:
3220 case e1000_pch_mtp:
3221 case e1000_pch_ptp:
3222 hw->fc.high_water = 0x5C20;
3223 hw->fc.low_water = 0x5048;
3224 hw->fc.pause_time = 0x0650;
3225 hw->fc.refresh_time = 0x0400;
3226 /* Jumbos need adjusted PBA */
3227 if (if_getmtu(ifp) > ETHERMTU)
3228 E1000_WRITE_REG(hw, E1000_PBA, 12);
3229 else
3230 E1000_WRITE_REG(hw, E1000_PBA, 26);
3231 break;
3232 case e1000_82575:
3233 case e1000_82576:
3234 /* 8-byte granularity */
3235 hw->fc.low_water = hw->fc.high_water - 8;
3236 break;
3237 case e1000_82580:
3238 case e1000_i350:
3239 case e1000_i354:
3240 case e1000_i210:
3241 case e1000_i211:
3242 case e1000_vfadapt:
3243 case e1000_vfadapt_i350:
3244 /* 16-byte granularity */
3245 hw->fc.low_water = hw->fc.high_water - 16;
3246 break;
3247 case e1000_ich9lan:
3248 case e1000_ich10lan:
3249 if (if_getmtu(ifp) > ETHERMTU) {
3250 hw->fc.high_water = 0x2800;
3251 hw->fc.low_water = hw->fc.high_water - 8;
3252 break;
3253 }
3254 /* FALLTHROUGH */
3255 default:
3256 if (hw->mac.type == e1000_80003es2lan)
3257 hw->fc.pause_time = 0xFFFF;
3258 break;
3259 }
3260
3261 /* I219 needs some special flushing to avoid hangs */
3262 if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min)
3263 em_flush_desc_rings(sc);
3264
3265 /* Issue a global reset */
3266 e1000_reset_hw(hw);
3267 if (!sc->vf_ifp) {
3268 if (hw->mac.type >= igb_mac_min) {
3269 E1000_WRITE_REG(hw, E1000_WUC, 0);
3270 } else {
3271 E1000_WRITE_REG(hw, E1000_WUFC, 0);
3272 em_disable_aspm(sc);
3273 }
3274 }
3275 if (sc->flags & IGB_MEDIA_RESET) {
3276 e1000_setup_init_funcs(hw, true);
3277 e1000_get_bus_info(hw);
3278 sc->flags &= ~IGB_MEDIA_RESET;
3279 }
3280 /* and a re-init */
3281 if (e1000_init_hw(hw) < 0) {
3282 device_printf(dev, "Hardware Initialization Failed\n");
3283 return;
3284 }
3285 if (hw->mac.type >= igb_mac_min)
3286 igb_init_dmac(sc, pba);
3287
3288 /* Save the final PBA off if it needs to be used elsewhere i.e. AIM */
3289 sc->pba = pba;
3290
3291 E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
3292 e1000_get_phy_info(hw);
3293 e1000_check_for_link(hw);
3294 }
3295
3296 /*
3297 * Initialise the RSS mapping for NICs that support multiple transmit/
3298 * receive rings.
3299 */
3300
3301 #define RSSKEYLEN 10
3302 static void
em_initialize_rss_mapping(struct e1000_softc * sc)3303 em_initialize_rss_mapping(struct e1000_softc *sc)
3304 {
3305 uint8_t rss_key[4 * RSSKEYLEN];
3306 uint32_t reta = 0;
3307 struct e1000_hw *hw = &sc->hw;
3308 int i;
3309
3310 /*
3311 * Configure RSS key
3312 */
3313 arc4rand(rss_key, sizeof(rss_key), 0);
3314 for (i = 0; i < RSSKEYLEN; ++i) {
3315 uint32_t rssrk = 0;
3316
3317 rssrk = EM_RSSRK_VAL(rss_key, i);
3318 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
3319 }
3320
3321 /*
3322 * Configure RSS redirect table in following fashion:
3323 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
3324 */
3325 for (i = 0; i < sizeof(reta); ++i) {
3326 uint32_t q;
3327
3328 q = (i % sc->rx_num_queues) << 7;
3329 reta |= q << (8 * i);
3330 }
3331
3332 for (i = 0; i < 32; ++i)
3333 E1000_WRITE_REG(hw, E1000_RETA(i), reta);
3334
3335 E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
3336 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3337 E1000_MRQC_RSS_FIELD_IPV4 |
3338 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
3339 E1000_MRQC_RSS_FIELD_IPV6_EX |
3340 E1000_MRQC_RSS_FIELD_IPV6);
3341 }
3342
3343 static void
igb_initialize_rss_mapping(struct e1000_softc * sc)3344 igb_initialize_rss_mapping(struct e1000_softc *sc)
3345 {
3346 struct e1000_hw *hw = &sc->hw;
3347 int i;
3348 int queue_id;
3349 u32 reta;
3350 u32 rss_key[10], mrqc, shift = 0;
3351
3352 /* XXX? */
3353 if (hw->mac.type == e1000_82575)
3354 shift = 6;
3355
3356 /*
3357 * The redirection table controls which destination
3358 * queue each bucket redirects traffic to.
3359 * Each DWORD represents four queues, with the LSB
3360 * being the first queue in the DWORD.
3361 *
3362 * This just allocates buckets to queues using round-robin
3363 * allocation.
3364 *
3365 * NOTE: It Just Happens to line up with the default
3366 * RSS allocation method.
3367 */
3368
3369 /* Warning FM follows */
3370 reta = 0;
3371 for (i = 0; i < 128; i++) {
3372 #ifdef RSS
3373 queue_id = rss_get_indirection_to_bucket(i);
3374 /*
3375 * If we have more queues than buckets, we'll
3376 * end up mapping buckets to a subset of the
3377 * queues.
3378 *
3379 * If we have more buckets than queues, we'll
3380 * end up instead assigning multiple buckets
3381 * to queues.
3382 *
3383 * Both are suboptimal, but we need to handle
3384 * the case so we don't go out of bounds
3385 * indexing arrays and such.
3386 */
3387 queue_id = queue_id % sc->rx_num_queues;
3388 #else
3389 queue_id = (i % sc->rx_num_queues);
3390 #endif
3391 /* Adjust if required */
3392 queue_id = queue_id << shift;
3393
3394 /*
3395 * The low 8 bits are for hash value (n+0);
3396 * The next 8 bits are for hash value (n+1), etc.
3397 */
3398 reta = reta >> 8;
3399 reta = reta | ( ((uint32_t) queue_id) << 24);
3400 if ((i & 3) == 3) {
3401 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3402 reta = 0;
3403 }
3404 }
3405
3406 /* Now fill in hash table */
3407
3408 /*
3409 * MRQC: Multiple Receive Queues Command
3410 * Set queuing to RSS control, number depends on the device.
3411 */
3412 mrqc = E1000_MRQC_ENABLE_RSS_MQ;
3413
3414 #ifdef RSS
3415 /* XXX ew typecasting */
3416 rss_getkey((uint8_t *) &rss_key);
3417 #else
3418 arc4rand(&rss_key, sizeof(rss_key), 0);
3419 #endif
3420 for (i = 0; i < 10; i++)
3421 E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
3422
3423 /*
3424 * Configure the RSS fields to hash upon.
3425 */
3426 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
3427 E1000_MRQC_RSS_FIELD_IPV4_TCP);
3428 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
3429 E1000_MRQC_RSS_FIELD_IPV6_TCP);
3430 mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
3431 E1000_MRQC_RSS_FIELD_IPV6_UDP);
3432 mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
3433 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3434
3435 E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
3436 }
3437
3438 /*********************************************************************
3439 *
3440 * Setup networking device structure and register interface media.
3441 *
3442 **********************************************************************/
3443 static int
em_setup_interface(if_ctx_t ctx)3444 em_setup_interface(if_ctx_t ctx)
3445 {
3446 if_t ifp = iflib_get_ifp(ctx);
3447 struct e1000_softc *sc = iflib_get_softc(ctx);
3448 if_softc_ctx_t scctx = sc->shared;
3449
3450 INIT_DEBUGOUT("em_setup_interface: begin");
3451
3452 /* Single Queue */
3453 if (sc->tx_num_queues == 1) {
3454 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
3455 if_setsendqready(ifp);
3456 }
3457
3458 /*
3459 * Specify the media types supported by this adapter and register
3460 * callbacks to update media and link information
3461 */
3462 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
3463 sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
3464 u_char fiber_type = IFM_1000_SX; /* default type */
3465
3466 if (sc->hw.mac.type == e1000_82545)
3467 fiber_type = IFM_1000_LX;
3468 ifmedia_add(sc->media,
3469 IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
3470 ifmedia_add(sc->media, IFM_ETHER | fiber_type, 0, NULL);
3471 } else {
3472 ifmedia_add(sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
3473 ifmedia_add(sc->media,
3474 IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
3475 ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
3476 ifmedia_add(sc->media,
3477 IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
3478 if (sc->hw.phy.type != e1000_phy_ife) {
3479 ifmedia_add(sc->media,
3480 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
3481 ifmedia_add(sc->media,
3482 IFM_ETHER | IFM_1000_T, 0, NULL);
3483 }
3484 }
3485 ifmedia_add(sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
3486 ifmedia_set(sc->media, IFM_ETHER | IFM_AUTO);
3487 return (0);
3488 }
3489
3490 static int
em_if_tx_queues_alloc(if_ctx_t ctx,caddr_t * vaddrs,uint64_t * paddrs,int ntxqs,int ntxqsets)3491 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
3492 int ntxqs, int ntxqsets)
3493 {
3494 struct e1000_softc *sc = iflib_get_softc(ctx);
3495 if_softc_ctx_t scctx = sc->shared;
3496 int error = E1000_SUCCESS;
3497 struct em_tx_queue *que;
3498 int i, j;
3499
3500 MPASS(sc->tx_num_queues > 0);
3501 MPASS(sc->tx_num_queues == ntxqsets);
3502
3503 /* First allocate the top level queue structs */
3504 if (!(sc->tx_queues =
3505 (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
3506 sc->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
3507 device_printf(iflib_get_dev(ctx),
3508 "Unable to allocate queue memory\n");
3509 return(ENOMEM);
3510 }
3511
3512 for (i = 0, que = sc->tx_queues; i < sc->tx_num_queues; i++, que++) {
3513 /* Set up some basics */
3514
3515 struct tx_ring *txr = &que->txr;
3516 txr->sc = que->sc = sc;
3517 que->me = txr->me = i;
3518
3519 /* Allocate report status array */
3520 if (!(txr->tx_rsq =
3521 (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0],
3522 M_DEVBUF, M_NOWAIT | M_ZERO))) {
3523 device_printf(iflib_get_dev(ctx),
3524 "failed to allocate rs_idxs memory\n");
3525 error = ENOMEM;
3526 goto fail;
3527 }
3528 for (j = 0; j < scctx->isc_ntxd[0]; j++)
3529 txr->tx_rsq[j] = QIDX_INVALID;
3530 /* get the virtual and physical address of hardware queues */
3531 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
3532 txr->tx_paddr = paddrs[i*ntxqs];
3533 }
3534
3535 if (bootverbose)
3536 device_printf(iflib_get_dev(ctx),
3537 "allocated for %d tx_queues\n", sc->tx_num_queues);
3538 return (0);
3539 fail:
3540 em_if_queues_free(ctx);
3541 return (error);
3542 }
3543
3544 static int
em_if_rx_queues_alloc(if_ctx_t ctx,caddr_t * vaddrs,uint64_t * paddrs,int nrxqs,int nrxqsets)3545 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
3546 int nrxqs, int nrxqsets)
3547 {
3548 struct e1000_softc *sc = iflib_get_softc(ctx);
3549 int error = E1000_SUCCESS;
3550 struct em_rx_queue *que;
3551 int i;
3552
3553 MPASS(sc->rx_num_queues > 0);
3554 MPASS(sc->rx_num_queues == nrxqsets);
3555
3556 /* First allocate the top level queue structs */
3557 if (!(sc->rx_queues =
3558 (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
3559 sc->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
3560 device_printf(iflib_get_dev(ctx),
3561 "Unable to allocate queue memory\n");
3562 error = ENOMEM;
3563 goto fail;
3564 }
3565
3566 for (i = 0, que = sc->rx_queues; i < nrxqsets; i++, que++) {
3567 /* Set up some basics */
3568 struct rx_ring *rxr = &que->rxr;
3569 rxr->sc = que->sc = sc;
3570 rxr->que = que;
3571 que->me = rxr->me = i;
3572
3573 /* get the virtual and physical address of hardware queues */
3574 rxr->rx_base =
3575 (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
3576 rxr->rx_paddr = paddrs[i*nrxqs];
3577 }
3578
3579 if (bootverbose)
3580 device_printf(iflib_get_dev(ctx),
3581 "allocated for %d rx_queues\n", sc->rx_num_queues);
3582
3583 return (0);
3584 fail:
3585 em_if_queues_free(ctx);
3586 return (error);
3587 }
3588
3589 static void
em_if_queues_free(if_ctx_t ctx)3590 em_if_queues_free(if_ctx_t ctx)
3591 {
3592 struct e1000_softc *sc = iflib_get_softc(ctx);
3593 struct em_tx_queue *tx_que = sc->tx_queues;
3594 struct em_rx_queue *rx_que = sc->rx_queues;
3595
3596 if (tx_que != NULL) {
3597 for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
3598 struct tx_ring *txr = &tx_que->txr;
3599 if (txr->tx_rsq == NULL)
3600 break;
3601
3602 free(txr->tx_rsq, M_DEVBUF);
3603 txr->tx_rsq = NULL;
3604 }
3605 free(sc->tx_queues, M_DEVBUF);
3606 sc->tx_queues = NULL;
3607 }
3608
3609 if (rx_que != NULL) {
3610 free(sc->rx_queues, M_DEVBUF);
3611 sc->rx_queues = NULL;
3612 }
3613 }
3614
3615 /*********************************************************************
3616 *
3617 * Enable transmit unit.
3618 *
3619 **********************************************************************/
3620 static void
em_initialize_transmit_unit(if_ctx_t ctx)3621 em_initialize_transmit_unit(if_ctx_t ctx)
3622 {
3623 struct e1000_softc *sc = iflib_get_softc(ctx);
3624 if_softc_ctx_t scctx = sc->shared;
3625 struct em_tx_queue *que;
3626 struct tx_ring *txr;
3627 struct e1000_hw *hw = &sc->hw;
3628 u32 tctl, txdctl = 0, tarc, tipg = 0;
3629
3630 INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
3631
3632 for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
3633 u64 bus_addr;
3634 caddr_t offp, endp;
3635
3636 que = &sc->tx_queues[i];
3637 txr = &que->txr;
3638 bus_addr = txr->tx_paddr;
3639
3640 /* Clear checksum offload context. */
3641 offp = (caddr_t)&txr->csum_flags;
3642 endp = (caddr_t)(txr + 1);
3643 bzero(offp, endp - offp);
3644
3645 /* Base and Len of TX Ring */
3646 E1000_WRITE_REG(hw, E1000_TDLEN(i),
3647 scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3648 E1000_WRITE_REG(hw, E1000_TDBAH(i), (u32)(bus_addr >> 32));
3649 E1000_WRITE_REG(hw, E1000_TDBAL(i), (u32)bus_addr);
3650 /* Init the HEAD/TAIL indices */
3651 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3652 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3653
3654 HW_DEBUGOUT2("Base = %x, Length = %x\n",
3655 E1000_READ_REG(hw, E1000_TDBAL(i)),
3656 E1000_READ_REG(hw, E1000_TDLEN(i)));
3657
3658 txdctl = 0; /* clear txdctl */
3659 txdctl |= 0x1f; /* PTHRESH */
3660 txdctl |= 1 << 8; /* HTHRESH */
3661 txdctl |= 1 << 16;/* WTHRESH */
3662 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3663 txdctl |= E1000_TXDCTL_GRAN;
3664 txdctl |= 1 << 25; /* LWTHRESH */
3665
3666 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3667 }
3668
3669 /* Set the default values for the Tx Inter Packet Gap timer */
3670 switch (hw->mac.type) {
3671 case e1000_80003es2lan:
3672 tipg = DEFAULT_82543_TIPG_IPGR1;
3673 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3674 E1000_TIPG_IPGR2_SHIFT;
3675 break;
3676 case e1000_82542:
3677 tipg = DEFAULT_82542_TIPG_IPGT;
3678 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3679 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3680 break;
3681 default:
3682 if (hw->phy.media_type == e1000_media_type_fiber ||
3683 hw->phy.media_type == e1000_media_type_internal_serdes)
3684 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3685 else
3686 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3687 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3688 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3689 }
3690
3691 if (hw->mac.type < igb_mac_min) {
3692 E1000_WRITE_REG(hw, E1000_TIPG, tipg);
3693 E1000_WRITE_REG(hw, E1000_TIDV, sc->tx_int_delay.value);
3694
3695 if (sc->tx_int_delay.value > 0)
3696 sc->txd_cmd |= E1000_TXD_CMD_IDE;
3697 }
3698
3699 if (hw->mac.type >= e1000_82540)
3700 E1000_WRITE_REG(hw, E1000_TADV, sc->tx_abs_int_delay.value);
3701
3702 if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) {
3703 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3704 tarc |= TARC_SPEED_MODE_BIT;
3705 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3706 } else if (hw->mac.type == e1000_80003es2lan) {
3707 /* errata: program both queues to unweighted RR */
3708 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3709 tarc |= 1;
3710 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3711 tarc = E1000_READ_REG(hw, E1000_TARC(1));
3712 tarc |= 1;
3713 E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3714 } else if (hw->mac.type == e1000_82574) {
3715 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3716 tarc |= TARC_ERRATA_BIT;
3717 if ( sc->tx_num_queues > 1) {
3718 tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3719 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3720 E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3721 } else
3722 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3723 }
3724
3725 /* Program the Transmit Control Register */
3726 tctl = E1000_READ_REG(hw, E1000_TCTL);
3727 tctl &= ~E1000_TCTL_CT;
3728 tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3729 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3730
3731 if (hw->mac.type >= e1000_82571 && hw->mac.type < igb_mac_min)
3732 tctl |= E1000_TCTL_MULR;
3733
3734 /* This write will effectively turn on the transmit unit. */
3735 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
3736
3737 /* SPT and KBL errata workarounds */
3738 if (hw->mac.type == e1000_pch_spt) {
3739 u32 reg;
3740 reg = E1000_READ_REG(hw, E1000_IOSFPC);
3741 reg |= E1000_RCTL_RDMTS_HEX;
3742 E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3743 /* i218-i219 Specification Update 1.5.4.5 */
3744 reg = E1000_READ_REG(hw, E1000_TARC(0));
3745 reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3746 reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3747 E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3748 }
3749 }
3750
3751 /*********************************************************************
3752 *
3753 * Enable receive unit.
3754 *
3755 **********************************************************************/
3756 #define BSIZEPKT_ROUNDUP ((1<<E1000_SRRCTL_BSIZEPKT_SHIFT)-1)
3757
3758 static void
em_initialize_receive_unit(if_ctx_t ctx)3759 em_initialize_receive_unit(if_ctx_t ctx)
3760 {
3761 struct e1000_softc *sc = iflib_get_softc(ctx);
3762 if_softc_ctx_t scctx = sc->shared;
3763 if_t ifp = iflib_get_ifp(ctx);
3764 struct e1000_hw *hw = &sc->hw;
3765 struct em_rx_queue *que;
3766 int i;
3767 uint32_t rctl, rxcsum;
3768
3769 INIT_DEBUGOUT("em_initialize_receive_units: begin");
3770
3771 /*
3772 * Make sure receives are disabled while setting
3773 * up the descriptor ring
3774 */
3775 rctl = E1000_READ_REG(hw, E1000_RCTL);
3776 /* Do not disable if ever enabled on this hardware */
3777 if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3778 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3779
3780 /* Setup the Receive Control Register */
3781 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3782 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3783 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3784 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3785
3786 /* Do not store bad packets */
3787 rctl &= ~E1000_RCTL_SBP;
3788
3789 /* Enable Long Packet receive */
3790 if (if_getmtu(ifp) > ETHERMTU)
3791 rctl |= E1000_RCTL_LPE;
3792 else
3793 rctl &= ~E1000_RCTL_LPE;
3794
3795 /* Strip the CRC */
3796 if (!em_disable_crc_stripping)
3797 rctl |= E1000_RCTL_SECRC;
3798
3799 /* lem/em default interrupt moderation */
3800 if (hw->mac.type < igb_mac_min) {
3801 if (hw->mac.type >= e1000_82540) {
3802 E1000_WRITE_REG(hw, E1000_RADV,
3803 sc->rx_abs_int_delay.value);
3804
3805 /* Set the default interrupt throttling rate */
3806 E1000_WRITE_REG(hw, E1000_ITR,
3807 EM_INTS_TO_ITR(em_max_interrupt_rate));
3808 }
3809
3810 /* XXX TEMPORARY WORKAROUND: on some systems with 82573
3811 * long latencies are observed, like Lenovo X60. This
3812 * change eliminates the problem, but since having positive
3813 * values in RDTR is a known source of problems on other
3814 * platforms another solution is being sought.
3815 */
3816 if (hw->mac.type == e1000_82573)
3817 E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3818 else
3819 E1000_WRITE_REG(hw, E1000_RDTR,
3820 sc->rx_int_delay.value);
3821 }
3822
3823 if (hw->mac.type >= em_mac_min && !sc->vf_ifp) {
3824 uint32_t rfctl;
3825 /* Use extended rx descriptor formats */
3826 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3827 rfctl |= E1000_RFCTL_EXTEN;
3828
3829 /*
3830 * When using MSI-X interrupts we need to throttle
3831 * using the EITR register (82574 only)
3832 */
3833 if (hw->mac.type == e1000_82574) {
3834 for (int i = 0; i < 4; i++)
3835 E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3836 EM_INTS_TO_ITR(em_max_interrupt_rate));
3837 /* Disable accelerated acknowledge */
3838 rfctl |= E1000_RFCTL_ACK_DIS;
3839 }
3840 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3841 }
3842
3843 /*
3844 * Set up L3 and L4 csum Rx descriptor offloads only on Physical
3845 * Functions. Virtual Functions have no access to this register.
3846 */
3847 if (!sc->vf_ifp) {
3848 rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3849 if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3850 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3851 if (hw->mac.type > e1000_82575)
3852 rxcsum |= E1000_RXCSUM_CRCOFL;
3853 else if (hw->mac.type < em_mac_min &&
3854 if_getcapenable(ifp) & IFCAP_HWCSUM_IPV6)
3855 rxcsum |= E1000_RXCSUM_IPV6OFL;
3856 } else {
3857 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3858 if (hw->mac.type > e1000_82575)
3859 rxcsum &= ~E1000_RXCSUM_CRCOFL;
3860 else if (hw->mac.type < em_mac_min)
3861 rxcsum &= ~E1000_RXCSUM_IPV6OFL;
3862 }
3863
3864 if (sc->rx_num_queues > 1) {
3865 /* RSS hash needed in the Rx descriptor */
3866 rxcsum |= E1000_RXCSUM_PCSD;
3867
3868 if (hw->mac.type >= igb_mac_min)
3869 igb_initialize_rss_mapping(sc);
3870 else
3871 em_initialize_rss_mapping(sc);
3872 }
3873 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3874 }
3875
3876 for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) {
3877 struct rx_ring *rxr = &que->rxr;
3878 /* Setup the Base and Length of the Rx Descriptor Ring */
3879 u64 bus_addr = rxr->rx_paddr;
3880 #if 0
3881 u32 rdt = sc->rx_num_queues -1; /* default */
3882 #endif
3883
3884 E1000_WRITE_REG(hw, E1000_RDLEN(i),
3885 scctx->isc_nrxd[0] *
3886 sizeof(union e1000_rx_desc_extended));
3887 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3888 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3889 /* Setup the Head and Tail Descriptor Pointers */
3890 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3891 E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3892 }
3893
3894 /*
3895 * Set PTHRESH for improved jumbo performance
3896 * According to 10.2.5.11 of Intel 82574 Datasheet,
3897 * RXDCTL(1) is written whenever RXDCTL(0) is written.
3898 * Only write to RXDCTL(1) if there is a need for different
3899 * settings.
3900 */
3901 if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan ||
3902 hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) {
3903 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3904 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3905 } else if (hw->mac.type == e1000_82574) {
3906 for (int i = 0; i < sc->rx_num_queues; i++) {
3907 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3908 rxdctl |= 0x20; /* PTHRESH */
3909 rxdctl |= 4 << 8; /* HTHRESH */
3910 rxdctl |= 4 << 16;/* WTHRESH */
3911 rxdctl |= 1 << 24; /* Switch to granularity */
3912 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3913 }
3914 } else if (hw->mac.type >= igb_mac_min) {
3915 u32 psize, srrctl = 0;
3916
3917 if (if_getmtu(ifp) > ETHERMTU) {
3918 psize = scctx->isc_max_frame_size;
3919 /* are we on a vlan? */
3920 if (if_vlantrunkinuse(ifp))
3921 psize += VLAN_TAG_SIZE;
3922
3923 if (sc->vf_ifp)
3924 e1000_rlpml_set_vf(hw, psize);
3925 else
3926 E1000_WRITE_REG(hw, E1000_RLPML, psize);
3927 }
3928
3929 /* Set maximum packet buffer len */
3930 srrctl |= (sc->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >>
3931 E1000_SRRCTL_BSIZEPKT_SHIFT;
3932
3933 /*
3934 * If TX flow control is disabled and there's >1 queue
3935 * defined, enable DROP.
3936 *
3937 * This drops frames rather than hanging the RX MAC for all
3938 * queues.
3939 */
3940 if ((sc->rx_num_queues > 1) &&
3941 (sc->fc == e1000_fc_none ||
3942 sc->fc == e1000_fc_rx_pause)) {
3943 srrctl |= E1000_SRRCTL_DROP_EN;
3944 }
3945 /* Setup the Base and Length of the Rx Descriptor Rings */
3946 for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues;
3947 i++, que++) {
3948 struct rx_ring *rxr = &que->rxr;
3949 u64 bus_addr = rxr->rx_paddr;
3950 u32 rxdctl;
3951
3952 #ifdef notyet
3953 /* Configure for header split? -- ignore for now */
3954 rxr->hdr_split = igb_header_split;
3955 #else
3956 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3957 #endif
3958
3959 E1000_WRITE_REG(hw, E1000_RDLEN(i),
3960 scctx->isc_nrxd[0] *
3961 sizeof(struct e1000_rx_desc));
3962 E1000_WRITE_REG(hw, E1000_RDBAH(i),
3963 (uint32_t)(bus_addr >> 32));
3964 E1000_WRITE_REG(hw, E1000_RDBAL(i),
3965 (uint32_t)bus_addr);
3966 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3967 /* Enable this Queue */
3968 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3969 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3970 rxdctl &= 0xFFF00000;
3971 rxdctl |= IGB_RX_PTHRESH;
3972 rxdctl |= IGB_RX_HTHRESH << 8;
3973 rxdctl |= IGB_RX_WTHRESH << 16;
3974 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3975 }
3976 } else if (hw->mac.type >= e1000_pch2lan) {
3977 if (if_getmtu(ifp) > ETHERMTU)
3978 e1000_lv_jumbo_workaround_ich8lan(hw, true);
3979 else
3980 e1000_lv_jumbo_workaround_ich8lan(hw, false);
3981 }
3982
3983 /* Make sure VLAN Filters are off */
3984 rctl &= ~E1000_RCTL_VFE;
3985
3986 /* Set up packet buffer size, overridden by per queue srrctl on igb */
3987 if (hw->mac.type < igb_mac_min) {
3988 if (sc->rx_mbuf_sz > 2048 && sc->rx_mbuf_sz <= 4096)
3989 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3990 else if (sc->rx_mbuf_sz > 4096 && sc->rx_mbuf_sz <= 8192)
3991 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3992 else if (sc->rx_mbuf_sz > 8192)
3993 rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX;
3994 else {
3995 rctl |= E1000_RCTL_SZ_2048;
3996 rctl &= ~E1000_RCTL_BSEX;
3997 }
3998 } else
3999 rctl |= E1000_RCTL_SZ_2048;
4000
4001 /*
4002 * rctl bits 11:10 are as follows
4003 * lem: reserved
4004 * em: DTYPE
4005 * igb: reserved
4006 * and should be 00 on all of the above
4007 */
4008 rctl &= ~0x00000C00;
4009
4010 /* Write out the settings */
4011 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4012
4013 return;
4014 }
4015
4016 static void
em_if_vlan_register(if_ctx_t ctx,u16 vtag)4017 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
4018 {
4019 struct e1000_softc *sc = iflib_get_softc(ctx);
4020 u32 index, bit;
4021
4022 index = (vtag >> 5) & 0x7F;
4023 bit = vtag & 0x1F;
4024 sc->shadow_vfta[index] |= (1 << bit);
4025 ++sc->num_vlans;
4026 em_if_vlan_filter_write(sc);
4027 }
4028
4029 static void
em_if_vlan_unregister(if_ctx_t ctx,u16 vtag)4030 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
4031 {
4032 struct e1000_softc *sc = iflib_get_softc(ctx);
4033 u32 index, bit;
4034
4035 index = (vtag >> 5) & 0x7F;
4036 bit = vtag & 0x1F;
4037 sc->shadow_vfta[index] &= ~(1 << bit);
4038 --sc->num_vlans;
4039 em_if_vlan_filter_write(sc);
4040 }
4041
4042 static bool
em_if_vlan_filter_capable(if_ctx_t ctx)4043 em_if_vlan_filter_capable(if_ctx_t ctx)
4044 {
4045 if_t ifp = iflib_get_ifp(ctx);
4046
4047 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) &&
4048 !em_disable_crc_stripping)
4049 return (true);
4050
4051 return (false);
4052 }
4053
4054 static bool
em_if_vlan_filter_used(if_ctx_t ctx)4055 em_if_vlan_filter_used(if_ctx_t ctx)
4056 {
4057 struct e1000_softc *sc = iflib_get_softc(ctx);
4058
4059 if (!em_if_vlan_filter_capable(ctx))
4060 return (false);
4061
4062 for (int i = 0; i < EM_VFTA_SIZE; i++)
4063 if (sc->shadow_vfta[i] != 0)
4064 return (true);
4065
4066 return (false);
4067 }
4068
4069 static void
em_if_vlan_filter_enable(struct e1000_softc * sc)4070 em_if_vlan_filter_enable(struct e1000_softc *sc)
4071 {
4072 struct e1000_hw *hw = &sc->hw;
4073 u32 reg;
4074
4075 reg = E1000_READ_REG(hw, E1000_RCTL);
4076 reg &= ~E1000_RCTL_CFIEN;
4077 reg |= E1000_RCTL_VFE;
4078 E1000_WRITE_REG(hw, E1000_RCTL, reg);
4079 }
4080
4081 static void
em_if_vlan_filter_disable(struct e1000_softc * sc)4082 em_if_vlan_filter_disable(struct e1000_softc *sc)
4083 {
4084 struct e1000_hw *hw = &sc->hw;
4085 u32 reg;
4086
4087 reg = E1000_READ_REG(hw, E1000_RCTL);
4088 reg &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
4089 E1000_WRITE_REG(hw, E1000_RCTL, reg);
4090 }
4091
4092 static void
em_if_vlan_filter_write(struct e1000_softc * sc)4093 em_if_vlan_filter_write(struct e1000_softc *sc)
4094 {
4095 struct e1000_hw *hw = &sc->hw;
4096
4097 if (sc->vf_ifp)
4098 return;
4099
4100 /* Disable interrupts for lem(4) devices during the filter change */
4101 if (hw->mac.type < em_mac_min)
4102 em_if_intr_disable(sc->ctx);
4103
4104 for (int i = 0; i < EM_VFTA_SIZE; i++)
4105 if (sc->shadow_vfta[i] != 0) {
4106 /* XXXKB: incomplete VF support, we returned above */
4107 if (sc->vf_ifp)
4108 e1000_vfta_set_vf(hw, sc->shadow_vfta[i],
4109 true);
4110 else
4111 e1000_write_vfta(hw, i, sc->shadow_vfta[i]);
4112 }
4113
4114 /* Re-enable interrupts for lem-class devices */
4115 if (hw->mac.type < em_mac_min)
4116 em_if_intr_enable(sc->ctx);
4117 }
4118
4119 static void
em_setup_vlan_hw_support(if_ctx_t ctx)4120 em_setup_vlan_hw_support(if_ctx_t ctx)
4121 {
4122 struct e1000_softc *sc = iflib_get_softc(ctx);
4123 struct e1000_hw *hw = &sc->hw;
4124 if_t ifp = iflib_get_ifp(ctx);
4125 u32 reg;
4126
4127 /* XXXKB: Return early if we are a VF until VF decap and filter
4128 * management is ready and tested.
4129 */
4130 if (sc->vf_ifp)
4131 return;
4132
4133 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
4134 !em_disable_crc_stripping) {
4135 reg = E1000_READ_REG(hw, E1000_CTRL);
4136 reg |= E1000_CTRL_VME;
4137 E1000_WRITE_REG(hw, E1000_CTRL, reg);
4138 } else {
4139 reg = E1000_READ_REG(hw, E1000_CTRL);
4140 reg &= ~E1000_CTRL_VME;
4141 E1000_WRITE_REG(hw, E1000_CTRL, reg);
4142 }
4143
4144 /* If we aren't doing HW filtering, we're done */
4145 if (!em_if_vlan_filter_capable(ctx)) {
4146 em_if_vlan_filter_disable(sc);
4147 return;
4148 }
4149
4150 /*
4151 * A soft reset zero's out the VFTA, so
4152 * we need to repopulate it now.
4153 * We also insert VLAN 0 in the filter list, so we pass VLAN 0 tagged
4154 * traffic through. This will write the entire table.
4155 */
4156 em_if_vlan_register(ctx, 0);
4157
4158 /* Enable the Filter Table */
4159 em_if_vlan_filter_enable(sc);
4160 }
4161
4162 static void
em_if_intr_enable(if_ctx_t ctx)4163 em_if_intr_enable(if_ctx_t ctx)
4164 {
4165 struct e1000_softc *sc = iflib_get_softc(ctx);
4166 struct e1000_hw *hw = &sc->hw;
4167 u32 ims_mask = IMS_ENABLE_MASK;
4168
4169 if (sc->intr_type == IFLIB_INTR_MSIX) {
4170 E1000_WRITE_REG(hw, EM_EIAC, sc->ims);
4171 ims_mask |= sc->ims;
4172 }
4173
4174 E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
4175 E1000_WRITE_FLUSH(hw);
4176 }
4177
4178 static void
em_if_intr_disable(if_ctx_t ctx)4179 em_if_intr_disable(if_ctx_t ctx)
4180 {
4181 struct e1000_softc *sc = iflib_get_softc(ctx);
4182 struct e1000_hw *hw = &sc->hw;
4183
4184 if (sc->intr_type == IFLIB_INTR_MSIX)
4185 E1000_WRITE_REG(hw, EM_EIAC, 0);
4186 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4187 E1000_WRITE_FLUSH(hw);
4188 }
4189
4190 static void
igb_if_intr_enable(if_ctx_t ctx)4191 igb_if_intr_enable(if_ctx_t ctx)
4192 {
4193 struct e1000_softc *sc = iflib_get_softc(ctx);
4194 struct e1000_hw *hw = &sc->hw;
4195 u32 mask;
4196
4197 if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
4198 mask = (sc->que_mask | sc->link_mask);
4199 E1000_WRITE_REG(hw, E1000_EIAC, mask);
4200 E1000_WRITE_REG(hw, E1000_EIAM, mask);
4201 E1000_WRITE_REG(hw, E1000_EIMS, mask);
4202 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
4203 } else
4204 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
4205 E1000_WRITE_FLUSH(hw);
4206 }
4207
4208 static void
igb_if_intr_disable(if_ctx_t ctx)4209 igb_if_intr_disable(if_ctx_t ctx)
4210 {
4211 struct e1000_softc *sc = iflib_get_softc(ctx);
4212 struct e1000_hw *hw = &sc->hw;
4213
4214 if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
4215 E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
4216 E1000_WRITE_REG(hw, E1000_EIAC, 0);
4217 }
4218 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4219 E1000_WRITE_FLUSH(hw);
4220 }
4221
4222 /*
4223 * Bit of a misnomer, what this really means is
4224 * to enable OS management of the system... aka
4225 * to disable special hardware management features
4226 */
4227 static void
em_init_manageability(struct e1000_softc * sc)4228 em_init_manageability(struct e1000_softc *sc)
4229 {
4230 /* A shared code workaround */
4231 #define E1000_82542_MANC2H E1000_MANC2H
4232 if (sc->has_manage) {
4233 int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
4234 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
4235
4236 /* disable hardware interception of ARP */
4237 manc &= ~(E1000_MANC_ARP_EN);
4238
4239 /* enable receiving management packets to the host */
4240 manc |= E1000_MANC_EN_MNG2HOST;
4241 #define E1000_MNG2HOST_PORT_623 (1 << 5)
4242 #define E1000_MNG2HOST_PORT_664 (1 << 6)
4243 manc2h |= E1000_MNG2HOST_PORT_623;
4244 manc2h |= E1000_MNG2HOST_PORT_664;
4245 E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
4246 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
4247 }
4248 }
4249
4250 /*
4251 * Give control back to hardware management
4252 * controller if there is one.
4253 */
4254 static void
em_release_manageability(struct e1000_softc * sc)4255 em_release_manageability(struct e1000_softc *sc)
4256 {
4257 if (sc->has_manage) {
4258 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
4259
4260 /* re-enable hardware interception of ARP */
4261 manc |= E1000_MANC_ARP_EN;
4262 manc &= ~E1000_MANC_EN_MNG2HOST;
4263
4264 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
4265 }
4266 }
4267
4268 /*
4269 * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
4270 * For ASF and Pass Through versions of f/w this means
4271 * that the driver is loaded. For AMT version type f/w
4272 * this means that the network i/f is open.
4273 */
4274 static void
em_get_hw_control(struct e1000_softc * sc)4275 em_get_hw_control(struct e1000_softc *sc)
4276 {
4277 u32 ctrl_ext, swsm;
4278
4279 if (sc->vf_ifp)
4280 return;
4281
4282 if (sc->hw.mac.type == e1000_82573) {
4283 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
4284 E1000_WRITE_REG(&sc->hw, E1000_SWSM,
4285 swsm | E1000_SWSM_DRV_LOAD);
4286 return;
4287 }
4288 /* else */
4289 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
4290 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
4291 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
4292 }
4293
4294 /*
4295 * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
4296 * For ASF and Pass Through versions of f/w this means that
4297 * the driver is no longer loaded. For AMT versions of the
4298 * f/w this means that the network i/f is closed.
4299 */
4300 static void
em_release_hw_control(struct e1000_softc * sc)4301 em_release_hw_control(struct e1000_softc *sc)
4302 {
4303 u32 ctrl_ext, swsm;
4304
4305 if (!sc->has_manage)
4306 return;
4307
4308 if (sc->hw.mac.type == e1000_82573) {
4309 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
4310 E1000_WRITE_REG(&sc->hw, E1000_SWSM,
4311 swsm & ~E1000_SWSM_DRV_LOAD);
4312 return;
4313 }
4314 /* else */
4315 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
4316 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
4317 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
4318 return;
4319 }
4320
4321 static int
em_is_valid_ether_addr(u8 * addr)4322 em_is_valid_ether_addr(u8 *addr)
4323 {
4324 char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
4325
4326 if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
4327 return (false);
4328 }
4329
4330 return (true);
4331 }
4332
4333 static bool
em_automask_tso(if_ctx_t ctx)4334 em_automask_tso(if_ctx_t ctx)
4335 {
4336 struct e1000_softc *sc = iflib_get_softc(ctx);
4337 if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
4338 if_t ifp = iflib_get_ifp(ctx);
4339
4340 if (!em_unsupported_tso && sc->link_speed &&
4341 sc->link_speed != SPEED_1000 &&
4342 scctx->isc_capenable & IFCAP_TSO) {
4343 device_printf(sc->dev,
4344 "Disabling TSO for 10/100 Ethernet.\n");
4345 sc->tso_automasked = scctx->isc_capenable & IFCAP_TSO;
4346 scctx->isc_capenable &= ~IFCAP_TSO;
4347 if_setcapenablebit(ifp, 0, IFCAP_TSO);
4348 /* iflib_init_locked handles ifnet hwassistbits */
4349 iflib_request_reset(ctx);
4350 return true;
4351 } else if (sc->link_speed == SPEED_1000 && sc->tso_automasked) {
4352 device_printf(sc->dev, "Re-enabling TSO for GbE.\n");
4353 scctx->isc_capenable |= sc->tso_automasked;
4354 if_setcapenablebit(ifp, sc->tso_automasked, 0);
4355 sc->tso_automasked = 0;
4356 /* iflib_init_locked handles ifnet hwassistbits */
4357 iflib_request_reset(ctx);
4358 return true;
4359 }
4360
4361 return false;
4362 }
4363
4364 /*
4365 ** Parse the interface capabilities with regard
4366 ** to both system management and wake-on-lan for
4367 ** later use.
4368 */
4369 static void
em_get_wakeup(if_ctx_t ctx)4370 em_get_wakeup(if_ctx_t ctx)
4371 {
4372 struct e1000_softc *sc = iflib_get_softc(ctx);
4373 device_t dev = iflib_get_dev(ctx);
4374 u16 eeprom_data = 0, device_id, apme_mask;
4375
4376 sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
4377 apme_mask = EM_EEPROM_APME;
4378
4379 switch (sc->hw.mac.type) {
4380 case e1000_82542:
4381 case e1000_82543:
4382 case e1000_vfadapt:
4383 case e1000_vfadapt_i350:
4384 break;
4385 case e1000_82544:
4386 e1000_read_nvm(&sc->hw,
4387 NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
4388 apme_mask = EM_82544_APME;
4389 break;
4390 case e1000_82546:
4391 case e1000_82546_rev_3:
4392 if (sc->hw.bus.func == 1) {
4393 e1000_read_nvm(&sc->hw,
4394 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4395 break;
4396 } else
4397 e1000_read_nvm(&sc->hw,
4398 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4399 break;
4400 case e1000_82573:
4401 case e1000_82583:
4402 sc->has_amt = true;
4403 /* FALLTHROUGH */
4404 case e1000_82571:
4405 case e1000_82572:
4406 case e1000_80003es2lan:
4407 if (sc->hw.bus.func == 1) {
4408 e1000_read_nvm(&sc->hw,
4409 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4410 break;
4411 } else
4412 e1000_read_nvm(&sc->hw,
4413 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4414 break;
4415 case e1000_ich8lan:
4416 case e1000_ich9lan:
4417 case e1000_ich10lan:
4418 case e1000_pchlan:
4419 case e1000_pch2lan:
4420 case e1000_pch_lpt:
4421 case e1000_pch_spt:
4422 case e1000_82575: /* listing all igb devices */
4423 case e1000_82576:
4424 case e1000_82580:
4425 case e1000_i350:
4426 case e1000_i354:
4427 case e1000_i210:
4428 case e1000_i211:
4429 apme_mask = E1000_WUC_APME;
4430 sc->has_amt = true;
4431 eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC);
4432 break;
4433 default:
4434 e1000_read_nvm(&sc->hw,
4435 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4436 break;
4437 }
4438 if (eeprom_data & apme_mask)
4439 sc->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
4440 /*
4441 * We have the eeprom settings, now apply the special cases
4442 * where the eeprom may be wrong or the board won't support
4443 * wake on lan on a particular port
4444 */
4445 device_id = pci_get_device(dev);
4446 switch (device_id) {
4447 case E1000_DEV_ID_82546GB_PCIE:
4448 sc->wol = 0;
4449 break;
4450 case E1000_DEV_ID_82546EB_FIBER:
4451 case E1000_DEV_ID_82546GB_FIBER:
4452 /* Wake events only supported on port A for dual fiber
4453 * regardless of eeprom setting */
4454 if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
4455 E1000_STATUS_FUNC_1)
4456 sc->wol = 0;
4457 break;
4458 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
4459 /* if quad port adapter, disable WoL on all but port A */
4460 if (global_quad_port_a != 0)
4461 sc->wol = 0;
4462 /* Reset for multiple quad port adapters */
4463 if (++global_quad_port_a == 4)
4464 global_quad_port_a = 0;
4465 break;
4466 case E1000_DEV_ID_82571EB_FIBER:
4467 /* Wake events only supported on port A for dual fiber
4468 * regardless of eeprom setting */
4469 if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
4470 E1000_STATUS_FUNC_1)
4471 sc->wol = 0;
4472 break;
4473 case E1000_DEV_ID_82571EB_QUAD_COPPER:
4474 case E1000_DEV_ID_82571EB_QUAD_FIBER:
4475 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
4476 /* if quad port adapter, disable WoL on all but port A */
4477 if (global_quad_port_a != 0)
4478 sc->wol = 0;
4479 /* Reset for multiple quad port adapters */
4480 if (++global_quad_port_a == 4)
4481 global_quad_port_a = 0;
4482 break;
4483 }
4484 }
4485
4486
4487 /*
4488 * Enable PCI Wake On Lan capability
4489 */
4490 static void
em_enable_wakeup(if_ctx_t ctx)4491 em_enable_wakeup(if_ctx_t ctx)
4492 {
4493 struct e1000_softc *sc = iflib_get_softc(ctx);
4494 device_t dev = iflib_get_dev(ctx);
4495 if_t ifp = iflib_get_ifp(ctx);
4496 int error = 0;
4497 u32 ctrl, ctrl_ext, rctl;
4498
4499 if (!pci_has_pm(dev))
4500 return;
4501
4502 /*
4503 * Determine type of Wakeup: note that wol
4504 * is set with all bits on by default.
4505 */
4506 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
4507 sc->wol &= ~E1000_WUFC_MAG;
4508
4509 if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
4510 sc->wol &= ~E1000_WUFC_EX;
4511
4512 if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
4513 sc->wol &= ~E1000_WUFC_MC;
4514 else {
4515 rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
4516 rctl |= E1000_RCTL_MPE;
4517 E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
4518 }
4519
4520 if (!(sc->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
4521 goto pme;
4522
4523 /* Advertise the wakeup capability */
4524 ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
4525 ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
4526 E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
4527
4528 /* Keep the laser running on Fiber adapters */
4529 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
4530 sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
4531 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
4532 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
4533 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, ctrl_ext);
4534 }
4535
4536 if ((sc->hw.mac.type == e1000_ich8lan) ||
4537 (sc->hw.mac.type == e1000_pchlan) ||
4538 (sc->hw.mac.type == e1000_ich9lan) ||
4539 (sc->hw.mac.type == e1000_ich10lan))
4540 e1000_suspend_workarounds_ich8lan(&sc->hw);
4541
4542 if ( sc->hw.mac.type >= e1000_pchlan) {
4543 error = em_enable_phy_wakeup(sc);
4544 if (error)
4545 goto pme;
4546 } else {
4547 /* Enable wakeup by the MAC */
4548 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
4549 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
4550 }
4551
4552 if (sc->hw.phy.type == e1000_phy_igp_3)
4553 e1000_igp3_phy_powerdown_workaround_ich8lan(&sc->hw);
4554
4555 pme:
4556 if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
4557 pci_enable_pme(dev);
4558
4559 return;
4560 }
4561
4562 /*
4563 * WOL in the newer chipset interfaces (pchlan)
4564 * require thing to be copied into the phy
4565 */
4566 static int
em_enable_phy_wakeup(struct e1000_softc * sc)4567 em_enable_phy_wakeup(struct e1000_softc *sc)
4568 {
4569 struct e1000_hw *hw = &sc->hw;
4570 u32 mreg, ret = 0;
4571 u16 preg;
4572
4573 /* copy MAC RARs to PHY RARs */
4574 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
4575
4576 /* copy MAC MTA to PHY MTA */
4577 for (int i = 0; i < hw->mac.mta_reg_count; i++) {
4578 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
4579 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
4580 e1000_write_phy_reg(hw, BM_MTA(i) + 1,
4581 (u16)((mreg >> 16) & 0xFFFF));
4582 }
4583
4584 /* configure PHY Rx Control register */
4585 e1000_read_phy_reg(hw, BM_RCTL, &preg);
4586 mreg = E1000_READ_REG(hw, E1000_RCTL);
4587 if (mreg & E1000_RCTL_UPE)
4588 preg |= BM_RCTL_UPE;
4589 if (mreg & E1000_RCTL_MPE)
4590 preg |= BM_RCTL_MPE;
4591 preg &= ~(BM_RCTL_MO_MASK);
4592 if (mreg & E1000_RCTL_MO_3)
4593 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
4594 << BM_RCTL_MO_SHIFT);
4595 if (mreg & E1000_RCTL_BAM)
4596 preg |= BM_RCTL_BAM;
4597 if (mreg & E1000_RCTL_PMCF)
4598 preg |= BM_RCTL_PMCF;
4599 mreg = E1000_READ_REG(hw, E1000_CTRL);
4600 if (mreg & E1000_CTRL_RFCE)
4601 preg |= BM_RCTL_RFCE;
4602 e1000_write_phy_reg(hw, BM_RCTL, preg);
4603
4604 /* enable PHY wakeup in MAC register */
4605 E1000_WRITE_REG(hw, E1000_WUC,
4606 E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
4607 E1000_WRITE_REG(hw, E1000_WUFC, sc->wol);
4608
4609 /* configure and enable PHY wakeup in PHY registers */
4610 e1000_write_phy_reg(hw, BM_WUFC, sc->wol);
4611 e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN);
4612
4613 /* activate PHY wakeup */
4614 ret = hw->phy.ops.acquire(hw);
4615 if (ret) {
4616 printf("Could not acquire PHY\n");
4617 return ret;
4618 }
4619 e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4620 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
4621 ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
4622 if (ret) {
4623 printf("Could not read PHY page 769\n");
4624 goto out;
4625 }
4626 preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
4627 ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
4628 if (ret)
4629 printf("Could not set PHY Host Wakeup bit\n");
4630 out:
4631 hw->phy.ops.release(hw);
4632
4633 return ret;
4634 }
4635
4636 static void
em_if_led_func(if_ctx_t ctx,int onoff)4637 em_if_led_func(if_ctx_t ctx, int onoff)
4638 {
4639 struct e1000_softc *sc = iflib_get_softc(ctx);
4640
4641 if (onoff) {
4642 e1000_setup_led(&sc->hw);
4643 e1000_led_on(&sc->hw);
4644 } else {
4645 e1000_led_off(&sc->hw);
4646 e1000_cleanup_led(&sc->hw);
4647 }
4648 }
4649
4650 /*
4651 * Disable the L0S and L1 LINK states
4652 */
4653 static void
em_disable_aspm(struct e1000_softc * sc)4654 em_disable_aspm(struct e1000_softc *sc)
4655 {
4656 int base, reg;
4657 u16 link_cap,link_ctrl;
4658 device_t dev = sc->dev;
4659
4660 switch (sc->hw.mac.type) {
4661 case e1000_82573:
4662 case e1000_82574:
4663 case e1000_82583:
4664 break;
4665 default:
4666 return;
4667 }
4668 if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
4669 return;
4670 reg = base + PCIER_LINK_CAP;
4671 link_cap = pci_read_config(dev, reg, 2);
4672 if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
4673 return;
4674 reg = base + PCIER_LINK_CTL;
4675 link_ctrl = pci_read_config(dev, reg, 2);
4676 link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
4677 pci_write_config(dev, reg, link_ctrl, 2);
4678 return;
4679 }
4680
4681 /**********************************************************************
4682 *
4683 * Update the board statistics counters.
4684 *
4685 **********************************************************************/
4686 static void
em_update_stats_counters(struct e1000_softc * sc)4687 em_update_stats_counters(struct e1000_softc *sc)
4688 {
4689 struct e1000_hw_stats *stats;
4690 u64 prev_xoffrxc;
4691
4692 if (sc->vf_ifp) {
4693 em_update_vf_stats_counters(sc);
4694 return;
4695 }
4696
4697 stats = &sc->ustats.stats;
4698 prev_xoffrxc = stats->xoffrxc;
4699
4700 if(sc->hw.phy.media_type == e1000_media_type_copper ||
4701 (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
4702 stats->symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
4703 stats->sec += E1000_READ_REG(&sc->hw, E1000_SEC);
4704 }
4705 stats->crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
4706 stats->mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
4707 stats->scc += E1000_READ_REG(&sc->hw, E1000_SCC);
4708 stats->ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
4709
4710 stats->mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
4711 stats->latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
4712 stats->colc += E1000_READ_REG(&sc->hw, E1000_COLC);
4713 stats->dc += E1000_READ_REG(&sc->hw, E1000_DC);
4714 stats->rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
4715 stats->xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
4716 stats->xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
4717 stats->xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
4718 /*
4719 ** For watchdog management we need to know if we have been
4720 ** paused during the last interval, so capture that here.
4721 */
4722 if (stats->xoffrxc != prev_xoffrxc)
4723 sc->shared->isc_pause_frames = 1;
4724 stats->xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
4725 stats->fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
4726 stats->prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
4727 stats->prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
4728 stats->prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
4729 stats->prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
4730 stats->prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
4731 stats->prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
4732 stats->gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
4733 stats->bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
4734 stats->mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
4735 stats->gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
4736
4737 /* For the 64-bit byte counters the low dword must be read first. */
4738 /* Both registers clear on the read of the high dword */
4739
4740 stats->gorc += E1000_READ_REG(&sc->hw, E1000_GORCL) +
4741 ((u64)E1000_READ_REG(&sc->hw, E1000_GORCH) << 32);
4742 stats->gotc += E1000_READ_REG(&sc->hw, E1000_GOTCL) +
4743 ((u64)E1000_READ_REG(&sc->hw, E1000_GOTCH) << 32);
4744
4745 stats->rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
4746 stats->ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
4747 stats->rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
4748 stats->roc += E1000_READ_REG(&sc->hw, E1000_ROC);
4749 stats->rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
4750
4751 stats->mgprc += E1000_READ_REG(&sc->hw, E1000_MGTPRC);
4752 stats->mgpdc += E1000_READ_REG(&sc->hw, E1000_MGTPDC);
4753 stats->mgptc += E1000_READ_REG(&sc->hw, E1000_MGTPTC);
4754
4755 stats->tor += E1000_READ_REG(&sc->hw, E1000_TORH);
4756 stats->tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
4757
4758 stats->tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
4759 stats->tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
4760 stats->ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
4761 stats->ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
4762 stats->ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
4763 stats->ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
4764 stats->ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
4765 stats->ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
4766 stats->mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
4767 stats->bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
4768
4769 /* Interrupt Counts */
4770
4771 stats->iac += E1000_READ_REG(&sc->hw, E1000_IAC);
4772 stats->icrxptc += E1000_READ_REG(&sc->hw, E1000_ICRXPTC);
4773 stats->icrxatc += E1000_READ_REG(&sc->hw, E1000_ICRXATC);
4774 stats->ictxptc += E1000_READ_REG(&sc->hw, E1000_ICTXPTC);
4775 stats->ictxatc += E1000_READ_REG(&sc->hw, E1000_ICTXATC);
4776 stats->ictxqec += E1000_READ_REG(&sc->hw, E1000_ICTXQEC);
4777 stats->ictxqmtc += E1000_READ_REG(&sc->hw, E1000_ICTXQMTC);
4778 stats->icrxdmtc += E1000_READ_REG(&sc->hw, E1000_ICRXDMTC);
4779 stats->icrxoc += E1000_READ_REG(&sc->hw, E1000_ICRXOC);
4780
4781 if (sc->hw.mac.type >= e1000_82543) {
4782 stats->algnerrc +=
4783 E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
4784 stats->rxerrc +=
4785 E1000_READ_REG(&sc->hw, E1000_RXERRC);
4786 stats->tncrs +=
4787 E1000_READ_REG(&sc->hw, E1000_TNCRS);
4788 stats->cexterr +=
4789 E1000_READ_REG(&sc->hw, E1000_CEXTERR);
4790 stats->tsctc +=
4791 E1000_READ_REG(&sc->hw, E1000_TSCTC);
4792 stats->tsctfc +=
4793 E1000_READ_REG(&sc->hw, E1000_TSCTFC);
4794 }
4795 }
4796
4797 static void
em_update_vf_stats_counters(struct e1000_softc * sc)4798 em_update_vf_stats_counters(struct e1000_softc *sc)
4799 {
4800 struct e1000_vf_stats *stats;
4801
4802 if (sc->link_speed == 0)
4803 return;
4804
4805 stats = &sc->ustats.vf_stats;
4806
4807 UPDATE_VF_REG(E1000_VFGPRC,
4808 stats->last_gprc, stats->gprc);
4809 UPDATE_VF_REG(E1000_VFGORC,
4810 stats->last_gorc, stats->gorc);
4811 UPDATE_VF_REG(E1000_VFGPTC,
4812 stats->last_gptc, stats->gptc);
4813 UPDATE_VF_REG(E1000_VFGOTC,
4814 stats->last_gotc, stats->gotc);
4815 UPDATE_VF_REG(E1000_VFMPRC,
4816 stats->last_mprc, stats->mprc);
4817 }
4818
4819 static uint64_t
em_if_get_vf_counter(if_ctx_t ctx,ift_counter cnt)4820 em_if_get_vf_counter(if_ctx_t ctx, ift_counter cnt)
4821 {
4822 struct e1000_softc *sc = iflib_get_softc(ctx);
4823 if_t ifp = iflib_get_ifp(ctx);
4824
4825 switch (cnt) {
4826 case IFCOUNTER_IERRORS:
4827 return sc->dropped_pkts;
4828 case IFCOUNTER_OERRORS:
4829 return (if_get_counter_default(ifp, cnt) +
4830 sc->watchdog_events);
4831 default:
4832 return (if_get_counter_default(ifp, cnt));
4833 }
4834 }
4835
4836 static uint64_t
em_if_get_counter(if_ctx_t ctx,ift_counter cnt)4837 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4838 {
4839 struct e1000_softc *sc = iflib_get_softc(ctx);
4840 struct e1000_hw_stats *stats;
4841 if_t ifp = iflib_get_ifp(ctx);
4842
4843 if (sc->vf_ifp)
4844 return (em_if_get_vf_counter(ctx, cnt));
4845
4846 stats = &sc->ustats.stats;
4847
4848 switch (cnt) {
4849 case IFCOUNTER_COLLISIONS:
4850 return (stats->colc);
4851 case IFCOUNTER_IERRORS:
4852 return (sc->dropped_pkts + stats->rxerrc +
4853 stats->crcerrs + stats->algnerrc +
4854 stats->ruc + stats->roc +
4855 stats->mpc + stats->cexterr);
4856 case IFCOUNTER_OERRORS:
4857 return (if_get_counter_default(ifp, cnt) +
4858 stats->ecol + stats->latecol + sc->watchdog_events);
4859 default:
4860 return (if_get_counter_default(ifp, cnt));
4861 }
4862 }
4863
4864 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized
4865 * @ctx: iflib context
4866 * @event: event code to check
4867 *
4868 * Defaults to returning false for unknown events.
4869 *
4870 * @returns true if iflib needs to reinit the interface
4871 */
4872 static bool
em_if_needs_restart(if_ctx_t ctx __unused,enum iflib_restart_event event)4873 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
4874 {
4875 switch (event) {
4876 case IFLIB_RESTART_VLAN_CONFIG:
4877 default:
4878 return (false);
4879 }
4880 }
4881
4882 /* Export a single 32-bit register via a read-only sysctl. */
4883 static int
em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)4884 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4885 {
4886 struct e1000_softc *sc;
4887 u_int val;
4888
4889 sc = oidp->oid_arg1;
4890 val = E1000_READ_REG(&sc->hw, oidp->oid_arg2);
4891 return (sysctl_handle_int(oidp, &val, 0, req));
4892 }
4893
4894 /* Per queue holdoff interrupt rate handler */
4895 static int
em_sysctl_interrupt_rate_handler(SYSCTL_HANDLER_ARGS)4896 em_sysctl_interrupt_rate_handler(SYSCTL_HANDLER_ARGS)
4897 {
4898 struct em_rx_queue *rque;
4899 struct em_tx_queue *tque;
4900 struct e1000_hw *hw;
4901 int error;
4902 u32 reg, usec, rate;
4903
4904 bool tx = oidp->oid_arg2;
4905
4906 if (tx) {
4907 tque = oidp->oid_arg1;
4908 hw = &tque->sc->hw;
4909 if (hw->mac.type >= igb_mac_min)
4910 reg = E1000_READ_REG(hw, E1000_EITR(tque->me));
4911 else if (hw->mac.type == e1000_82574 && tque->msix)
4912 reg = E1000_READ_REG(hw, E1000_EITR_82574(tque->me));
4913 else
4914 reg = E1000_READ_REG(hw, E1000_ITR);
4915 } else {
4916 rque = oidp->oid_arg1;
4917 hw = &rque->sc->hw;
4918 if (hw->mac.type >= igb_mac_min)
4919 reg = E1000_READ_REG(hw, E1000_EITR(rque->msix));
4920 else if (hw->mac.type == e1000_82574 && rque->msix)
4921 reg = E1000_READ_REG(hw,
4922 E1000_EITR_82574(rque->msix));
4923 else
4924 reg = E1000_READ_REG(hw, E1000_ITR);
4925 }
4926
4927 if (hw->mac.type < igb_mac_min) {
4928 if (reg > 0)
4929 rate = EM_INTS_TO_ITR(reg);
4930 else
4931 rate = 0;
4932 } else {
4933 usec = (reg & IGB_QVECTOR_MASK);
4934 if (usec > 0)
4935 rate = IGB_INTS_TO_EITR(usec);
4936 else
4937 rate = 0;
4938 }
4939
4940 error = sysctl_handle_int(oidp, &rate, 0, req);
4941 if (error || !req->newptr)
4942 return error;
4943 return 0;
4944 }
4945
4946 /*
4947 * Add sysctl variables, one per statistic, to the system.
4948 */
4949 static void
em_add_hw_stats(struct e1000_softc * sc)4950 em_add_hw_stats(struct e1000_softc *sc)
4951 {
4952 device_t dev = iflib_get_dev(sc->ctx);
4953 struct em_tx_queue *tx_que = sc->tx_queues;
4954 struct em_rx_queue *rx_que = sc->rx_queues;
4955
4956 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4957 struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4958 struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4959 struct e1000_hw_stats *stats;
4960
4961 struct sysctl_oid *stat_node, *queue_node, *int_node;
4962 struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4963
4964 #define QUEUE_NAME_LEN 32
4965 char namebuf[QUEUE_NAME_LEN];
4966
4967 /* Driver Statistics */
4968 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4969 CTLFLAG_RD, &sc->dropped_pkts,
4970 "Driver dropped packets");
4971 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4972 CTLFLAG_RD, &sc->link_irq,
4973 "Link MSI-X IRQ Handled");
4974 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4975 CTLFLAG_RD, &sc->rx_overruns,
4976 "RX overruns");
4977 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4978 CTLFLAG_RD, &sc->watchdog_events,
4979 "Watchdog timeouts");
4980 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4981 CTLTYPE_UINT | CTLFLAG_RD,
4982 sc, E1000_CTRL, em_sysctl_reg_handler, "IU",
4983 "Device Control Register");
4984 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4985 CTLTYPE_UINT | CTLFLAG_RD,
4986 sc, E1000_RCTL, em_sysctl_reg_handler, "IU",
4987 "Receiver Control Register");
4988 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4989 CTLFLAG_RD, &sc->hw.fc.high_water, 0,
4990 "Flow Control High Watermark");
4991 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4992 CTLFLAG_RD, &sc->hw.fc.low_water, 0,
4993 "Flow Control Low Watermark");
4994
4995 for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
4996 struct tx_ring *txr = &tx_que->txr;
4997 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4998 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4999 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
5000 queue_list = SYSCTL_CHILDREN(queue_node);
5001
5002 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
5003 CTLTYPE_UINT | CTLFLAG_RD, tx_que,
5004 true, em_sysctl_interrupt_rate_handler,
5005 "IU", "Interrupt Rate");
5006
5007 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
5008 CTLTYPE_UINT | CTLFLAG_RD, sc,
5009 E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
5010 "Transmit Descriptor Head");
5011 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
5012 CTLTYPE_UINT | CTLFLAG_RD, sc,
5013 E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
5014 "Transmit Descriptor Tail");
5015 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
5016 CTLFLAG_RD, &txr->tx_irq,
5017 "Queue MSI-X Transmit Interrupts");
5018 }
5019
5020 for (int j = 0; j < sc->rx_num_queues; j++, rx_que++) {
5021 struct rx_ring *rxr = &rx_que->rxr;
5022 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
5023 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
5024 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
5025 queue_list = SYSCTL_CHILDREN(queue_node);
5026
5027 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
5028 CTLTYPE_UINT | CTLFLAG_RD, rx_que,
5029 false, em_sysctl_interrupt_rate_handler,
5030 "IU", "Interrupt Rate");
5031
5032 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
5033 CTLTYPE_UINT | CTLFLAG_RD, sc,
5034 E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
5035 "Receive Descriptor Head");
5036 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
5037 CTLTYPE_UINT | CTLFLAG_RD, sc,
5038 E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
5039 "Receive Descriptor Tail");
5040 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
5041 CTLFLAG_RD, &rxr->rx_irq,
5042 "Queue MSI-X Receive Interrupts");
5043 }
5044
5045 /* MAC stats get their own sub node */
5046 stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
5047 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
5048 stat_list = SYSCTL_CHILDREN(stat_node);
5049
5050 /*
5051 ** VF adapter has a very limited set of stats
5052 ** since its not managing the metal, so to speak.
5053 */
5054 if (sc->vf_ifp) {
5055 struct e1000_vf_stats *vfstats = &sc->ustats.vf_stats;
5056
5057 SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
5058 CTLFLAG_RD, &vfstats->gprc,
5059 "Good Packets Received");
5060 SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
5061 CTLFLAG_RD, &vfstats->gptc,
5062 "Good Packets Transmitted");
5063 SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
5064 CTLFLAG_RD, &vfstats->gorc,
5065 "Good Octets Received");
5066 SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
5067 CTLFLAG_RD, &vfstats->gotc,
5068 "Good Octets Transmitted");
5069 SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
5070 CTLFLAG_RD, &vfstats->mprc,
5071 "Multicast Packets Received");
5072 return;
5073 }
5074
5075 stats = &sc->ustats.stats;
5076
5077 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
5078 CTLFLAG_RD, &stats->ecol,
5079 "Excessive collisions");
5080 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
5081 CTLFLAG_RD, &stats->scc,
5082 "Single collisions");
5083 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
5084 CTLFLAG_RD, &stats->mcc,
5085 "Multiple collisions");
5086 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
5087 CTLFLAG_RD, &stats->latecol,
5088 "Late collisions");
5089 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
5090 CTLFLAG_RD, &stats->colc,
5091 "Collision Count");
5092 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
5093 CTLFLAG_RD, &stats->symerrs,
5094 "Symbol Errors");
5095 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
5096 CTLFLAG_RD, &stats->sec,
5097 "Sequence Errors");
5098 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
5099 CTLFLAG_RD, &stats->dc,
5100 "Defer Count");
5101 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
5102 CTLFLAG_RD, &stats->mpc,
5103 "Missed Packets");
5104 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_length_errors",
5105 CTLFLAG_RD, &stats->rlec,
5106 "Receive Length Errors");
5107 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
5108 CTLFLAG_RD, &stats->rnbc,
5109 "Receive No Buffers");
5110 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
5111 CTLFLAG_RD, &stats->ruc,
5112 "Receive Undersize");
5113 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
5114 CTLFLAG_RD, &stats->rfc,
5115 "Fragmented Packets Received ");
5116 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
5117 CTLFLAG_RD, &stats->roc,
5118 "Oversized Packets Received");
5119 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
5120 CTLFLAG_RD, &stats->rjc,
5121 "Recevied Jabber");
5122 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
5123 CTLFLAG_RD, &stats->rxerrc,
5124 "Receive Errors");
5125 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
5126 CTLFLAG_RD, &stats->crcerrs,
5127 "CRC errors");
5128 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
5129 CTLFLAG_RD, &stats->algnerrc,
5130 "Alignment Errors");
5131 /* On 82575 these are collision counts */
5132 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
5133 CTLFLAG_RD, &stats->cexterr,
5134 "Collision/Carrier extension errors");
5135 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
5136 CTLFLAG_RD, &stats->xonrxc,
5137 "XON Received");
5138 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
5139 CTLFLAG_RD, &stats->xontxc,
5140 "XON Transmitted");
5141 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
5142 CTLFLAG_RD, &stats->xoffrxc,
5143 "XOFF Received");
5144 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
5145 CTLFLAG_RD, &stats->xofftxc,
5146 "XOFF Transmitted");
5147 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "unsupported_fc_recvd",
5148 CTLFLAG_RD, &stats->fcruc,
5149 "Unsupported Flow Control Received");
5150 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_recvd",
5151 CTLFLAG_RD, &stats->mgprc,
5152 "Management Packets Received");
5153 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_drop",
5154 CTLFLAG_RD, &stats->mgpdc,
5155 "Management Packets Dropped");
5156 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_txd",
5157 CTLFLAG_RD, &stats->mgptc,
5158 "Management Packets Transmitted");
5159
5160 /* Packet Reception Stats */
5161 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
5162 CTLFLAG_RD, &stats->tpr,
5163 "Total Packets Received ");
5164 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
5165 CTLFLAG_RD, &stats->gprc,
5166 "Good Packets Received");
5167 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
5168 CTLFLAG_RD, &stats->bprc,
5169 "Broadcast Packets Received");
5170 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
5171 CTLFLAG_RD, &stats->mprc,
5172 "Multicast Packets Received");
5173 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
5174 CTLFLAG_RD, &stats->prc64,
5175 "64 byte frames received ");
5176 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
5177 CTLFLAG_RD, &stats->prc127,
5178 "65-127 byte frames received");
5179 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
5180 CTLFLAG_RD, &stats->prc255,
5181 "128-255 byte frames received");
5182 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
5183 CTLFLAG_RD, &stats->prc511,
5184 "256-511 byte frames received");
5185 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
5186 CTLFLAG_RD, &stats->prc1023,
5187 "512-1023 byte frames received");
5188 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
5189 CTLFLAG_RD, &stats->prc1522,
5190 "1023-1522 byte frames received");
5191 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
5192 CTLFLAG_RD, &stats->gorc,
5193 "Good Octets Received");
5194
5195 /* Packet Transmission Stats */
5196 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
5197 CTLFLAG_RD, &stats->gotc,
5198 "Good Octets Transmitted");
5199 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
5200 CTLFLAG_RD, &stats->tpt,
5201 "Total Packets Transmitted");
5202 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
5203 CTLFLAG_RD, &stats->gptc,
5204 "Good Packets Transmitted");
5205 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
5206 CTLFLAG_RD, &stats->bptc,
5207 "Broadcast Packets Transmitted");
5208 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
5209 CTLFLAG_RD, &stats->mptc,
5210 "Multicast Packets Transmitted");
5211 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
5212 CTLFLAG_RD, &stats->ptc64,
5213 "64 byte frames transmitted ");
5214 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
5215 CTLFLAG_RD, &stats->ptc127,
5216 "65-127 byte frames transmitted");
5217 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
5218 CTLFLAG_RD, &stats->ptc255,
5219 "128-255 byte frames transmitted");
5220 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
5221 CTLFLAG_RD, &stats->ptc511,
5222 "256-511 byte frames transmitted");
5223 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
5224 CTLFLAG_RD, &stats->ptc1023,
5225 "512-1023 byte frames transmitted");
5226 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
5227 CTLFLAG_RD, &stats->ptc1522,
5228 "1024-1522 byte frames transmitted");
5229 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
5230 CTLFLAG_RD, &stats->tsctc,
5231 "TSO Contexts Transmitted");
5232 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
5233 CTLFLAG_RD, &stats->tsctfc,
5234 "TSO Contexts Failed");
5235
5236 /* Interrupt Stats */
5237 int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
5238 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
5239 int_list = SYSCTL_CHILDREN(int_node);
5240
5241 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
5242 CTLFLAG_RD, &stats->iac,
5243 "Interrupt Assertion Count");
5244
5245 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
5246 CTLFLAG_RD, &stats->icrxptc,
5247 "Interrupt Cause Rx Pkt Timer Expire Count");
5248
5249 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
5250 CTLFLAG_RD, &stats->icrxatc,
5251 "Interrupt Cause Rx Abs Timer Expire Count");
5252
5253 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
5254 CTLFLAG_RD, &stats->ictxptc,
5255 "Interrupt Cause Tx Pkt Timer Expire Count");
5256
5257 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
5258 CTLFLAG_RD, &stats->ictxatc,
5259 "Interrupt Cause Tx Abs Timer Expire Count");
5260
5261 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
5262 CTLFLAG_RD, &stats->ictxqec,
5263 "Interrupt Cause Tx Queue Empty Count");
5264
5265 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
5266 CTLFLAG_RD, &stats->ictxqmtc,
5267 "Interrupt Cause Tx Queue Min Thresh Count");
5268
5269 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
5270 CTLFLAG_RD, &stats->icrxdmtc,
5271 "Interrupt Cause Rx Desc Min Thresh Count");
5272
5273 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
5274 CTLFLAG_RD, &stats->icrxoc,
5275 "Interrupt Cause Receiver Overrun Count");
5276 }
5277
5278 static void
em_fw_version_locked(if_ctx_t ctx)5279 em_fw_version_locked(if_ctx_t ctx)
5280 {
5281 struct e1000_softc *sc = iflib_get_softc(ctx);
5282 struct e1000_hw *hw = &sc->hw;
5283 struct e1000_fw_version *fw_ver = &sc->fw_ver;
5284 uint16_t eep = 0;
5285
5286 /*
5287 * em_fw_version_locked() must run under the IFLIB_CTX_LOCK to meet
5288 * the NVM locking model, so we do it in em_if_attach_pre() and store
5289 * the info in the softc
5290 */
5291 ASSERT_CTX_LOCK_HELD(hw);
5292
5293 *fw_ver = (struct e1000_fw_version){0};
5294
5295 if (hw->mac.type >= igb_mac_min) {
5296 /*
5297 * Use the Shared Code for igb(4)
5298 */
5299 e1000_get_fw_version(hw, fw_ver);
5300 } else {
5301 /*
5302 * Otherwise, EEPROM version should be present on (almost?)
5303 * all devices here
5304 */
5305 if(e1000_read_nvm(hw, NVM_VERSION, 1, &eep)) {
5306 INIT_DEBUGOUT("can't get EEPROM version");
5307 return;
5308 }
5309
5310 fw_ver->eep_major = (eep & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT;
5311 fw_ver->eep_minor = (eep & NVM_MINOR_MASK) >> NVM_MINOR_SHIFT;
5312 fw_ver->eep_build = (eep & NVM_IMAGE_ID_MASK);
5313 }
5314 }
5315
5316 static void
em_sbuf_fw_version(struct e1000_fw_version * fw_ver,struct sbuf * buf)5317 em_sbuf_fw_version(struct e1000_fw_version *fw_ver, struct sbuf *buf)
5318 {
5319 const char *space = "";
5320
5321 if (fw_ver->eep_major || fw_ver->eep_minor || fw_ver->eep_build) {
5322 sbuf_printf(buf, "EEPROM V%d.%d-%d", fw_ver->eep_major,
5323 fw_ver->eep_minor, fw_ver->eep_build);
5324 space = " ";
5325 }
5326
5327 if (fw_ver->invm_major || fw_ver->invm_minor ||
5328 fw_ver->invm_img_type) {
5329 sbuf_printf(buf, "%sNVM V%d.%d imgtype%d",
5330 space, fw_ver->invm_major, fw_ver->invm_minor,
5331 fw_ver->invm_img_type);
5332 space = " ";
5333 }
5334
5335 if (fw_ver->or_valid) {
5336 sbuf_printf(buf, "%sOption ROM V%d-b%d-p%d",
5337 space, fw_ver->or_major, fw_ver->or_build,
5338 fw_ver->or_patch);
5339 space = " ";
5340 }
5341
5342 if (fw_ver->etrack_id)
5343 sbuf_printf(buf, "%seTrack 0x%08x", space, fw_ver->etrack_id);
5344 }
5345
5346 static void
em_print_fw_version(struct e1000_softc * sc)5347 em_print_fw_version(struct e1000_softc *sc )
5348 {
5349 device_t dev = sc->dev;
5350 struct sbuf *buf;
5351 int error = 0;
5352
5353 buf = sbuf_new_auto();
5354 if (!buf) {
5355 device_printf(dev, "Could not allocate sbuf for output.\n");
5356 return;
5357 }
5358
5359 em_sbuf_fw_version(&sc->fw_ver, buf);
5360
5361 error = sbuf_finish(buf);
5362 if (error)
5363 device_printf(dev, "Error finishing sbuf: %d\n", error);
5364 else if (sbuf_len(buf))
5365 device_printf(dev, "%s\n", sbuf_data(buf));
5366
5367 sbuf_delete(buf);
5368 }
5369
5370 static int
em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS)5371 em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS)
5372 {
5373 struct e1000_softc *sc = (struct e1000_softc *)arg1;
5374 device_t dev = sc->dev;
5375 struct sbuf *buf;
5376 int error = 0;
5377
5378 buf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
5379 if (!buf) {
5380 device_printf(dev, "Could not allocate sbuf for output.\n");
5381 return (ENOMEM);
5382 }
5383
5384 em_sbuf_fw_version(&sc->fw_ver, buf);
5385
5386 error = sbuf_finish(buf);
5387 if (error)
5388 device_printf(dev, "Error finishing sbuf: %d\n", error);
5389
5390 sbuf_delete(buf);
5391
5392 return (0);
5393 }
5394
5395 /**********************************************************************
5396 *
5397 * This routine provides a way to dump out the adapter eeprom,
5398 * often a useful debug/service tool. This only dumps the first
5399 * 32 words, stuff that matters is in that extent.
5400 *
5401 **********************************************************************/
5402 static int
em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)5403 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
5404 {
5405 struct e1000_softc *sc = (struct e1000_softc *)arg1;
5406 int error;
5407 int result;
5408
5409 result = -1;
5410 error = sysctl_handle_int(oidp, &result, 0, req);
5411
5412 if (error || !req->newptr)
5413 return (error);
5414
5415 /*
5416 * This value will cause a hex dump of the
5417 * first 32 16-bit words of the EEPROM to
5418 * the screen.
5419 */
5420 if (result == 1)
5421 em_print_nvm_info(sc);
5422
5423 return (error);
5424 }
5425
5426 static void
em_print_nvm_info(struct e1000_softc * sc)5427 em_print_nvm_info(struct e1000_softc *sc)
5428 {
5429 struct e1000_hw *hw = &sc->hw;
5430 struct sx *iflib_ctx_lock = iflib_ctx_lock_get(sc->ctx);
5431 u16 eeprom_data;
5432 int i, j, row = 0;
5433
5434 /* Its a bit crude, but it gets the job done */
5435 printf("\nInterface EEPROM Dump:\n");
5436 printf("Offset\n0x0000 ");
5437
5438 /* We rely on the IFLIB_CTX_LOCK as part of NVM locking model */
5439 sx_xlock(iflib_ctx_lock);
5440 ASSERT_CTX_LOCK_HELD(hw);
5441 for (i = 0, j = 0; i < 32; i++, j++) {
5442 if (j == 8) { /* Make the offset block */
5443 j = 0; ++row;
5444 printf("\n0x00%x0 ",row);
5445 }
5446 e1000_read_nvm(hw, i, 1, &eeprom_data);
5447 printf("%04x ", eeprom_data);
5448 }
5449 sx_xunlock(iflib_ctx_lock);
5450 printf("\n");
5451 }
5452
5453 static int
em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)5454 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
5455 {
5456 struct em_int_delay_info *info;
5457 struct e1000_softc *sc;
5458 u32 regval;
5459 int error, usecs, ticks;
5460
5461 info = (struct em_int_delay_info *) arg1;
5462 usecs = info->value;
5463 error = sysctl_handle_int(oidp, &usecs, 0, req);
5464 if (error != 0 || req->newptr == NULL)
5465 return (error);
5466 if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
5467 return (EINVAL);
5468 info->value = usecs;
5469 ticks = EM_USECS_TO_TICKS(usecs);
5470
5471 sc = info->sc;
5472
5473 regval = E1000_READ_OFFSET(&sc->hw, info->offset);
5474 regval = (regval & ~0xffff) | (ticks & 0xffff);
5475 /* Handle a few special cases. */
5476 switch (info->offset) {
5477 case E1000_RDTR:
5478 break;
5479 case E1000_TIDV:
5480 if (ticks == 0) {
5481 sc->txd_cmd &= ~E1000_TXD_CMD_IDE;
5482 /* Don't write 0 into the TIDV register. */
5483 regval++;
5484 } else
5485 sc->txd_cmd |= E1000_TXD_CMD_IDE;
5486 break;
5487 }
5488 E1000_WRITE_OFFSET(&sc->hw, info->offset, regval);
5489 return (0);
5490 }
5491
5492 static int
em_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS)5493 em_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS)
5494 {
5495 struct e1000_softc *sc;
5496 u32 reg, val, shift;
5497 int error, mask;
5498
5499 sc = oidp->oid_arg1;
5500 switch (oidp->oid_arg2) {
5501 case 0:
5502 reg = E1000_DTXTCPFLGL;
5503 shift = 0;
5504 break;
5505 case 1:
5506 reg = E1000_DTXTCPFLGL;
5507 shift = 16;
5508 break;
5509 case 2:
5510 reg = E1000_DTXTCPFLGH;
5511 shift = 0;
5512 break;
5513 default:
5514 return (EINVAL);
5515 break;
5516 }
5517 val = E1000_READ_REG(&sc->hw, reg);
5518 mask = (val >> shift) & 0xfff;
5519 error = sysctl_handle_int(oidp, &mask, 0, req);
5520 if (error != 0 || req->newptr == NULL)
5521 return (error);
5522 if (mask < 0 || mask > 0xfff)
5523 return (EINVAL);
5524 val = (val & ~(0xfff << shift)) | (mask << shift);
5525 E1000_WRITE_REG(&sc->hw, reg, val);
5526 return (0);
5527 }
5528
5529 static void
em_add_int_delay_sysctl(struct e1000_softc * sc,const char * name,const char * description,struct em_int_delay_info * info,int offset,int value)5530 em_add_int_delay_sysctl(struct e1000_softc *sc, const char *name,
5531 const char *description, struct em_int_delay_info *info, int offset,
5532 int value)
5533 {
5534 info->sc = sc;
5535 info->offset = offset;
5536 info->value = value;
5537 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
5538 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
5539 OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
5540 info, 0, em_sysctl_int_delay, "I", description);
5541 }
5542
5543 /*
5544 * Set flow control using sysctl:
5545 * Flow control values:
5546 * 0 - off
5547 * 1 - rx pause
5548 * 2 - tx pause
5549 * 3 - full
5550 */
5551 static int
em_set_flowcntl(SYSCTL_HANDLER_ARGS)5552 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
5553 {
5554 int error;
5555 static int input = 3; /* default is full */
5556 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5557
5558 error = sysctl_handle_int(oidp, &input, 0, req);
5559
5560 if ((error) || (req->newptr == NULL))
5561 return (error);
5562
5563 if (input == sc->fc) /* no change? */
5564 return (error);
5565
5566 switch (input) {
5567 case e1000_fc_rx_pause:
5568 case e1000_fc_tx_pause:
5569 case e1000_fc_full:
5570 case e1000_fc_none:
5571 sc->hw.fc.requested_mode = input;
5572 sc->fc = input;
5573 break;
5574 default:
5575 /* Do nothing */
5576 return (error);
5577 }
5578
5579 sc->hw.fc.current_mode = sc->hw.fc.requested_mode;
5580 e1000_force_mac_fc(&sc->hw);
5581 return (error);
5582 }
5583
5584 /*
5585 * Manage DMA Coalesce:
5586 * Control values:
5587 * 0/1 - off/on
5588 * Legal timer values are:
5589 * 250,500,1000-10000 in thousands
5590 */
5591 static int
igb_sysctl_dmac(SYSCTL_HANDLER_ARGS)5592 igb_sysctl_dmac(SYSCTL_HANDLER_ARGS)
5593 {
5594 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5595 int error;
5596
5597 error = sysctl_handle_int(oidp, &sc->dmac, 0, req);
5598
5599 if ((error) || (req->newptr == NULL))
5600 return (error);
5601
5602 switch (sc->dmac) {
5603 case 0:
5604 /* Disabling */
5605 break;
5606 case 1: /* Just enable and use default */
5607 sc->dmac = 1000;
5608 break;
5609 case 250:
5610 case 500:
5611 case 1000:
5612 case 2000:
5613 case 3000:
5614 case 4000:
5615 case 5000:
5616 case 6000:
5617 case 7000:
5618 case 8000:
5619 case 9000:
5620 case 10000:
5621 /* Legal values - allow */
5622 break;
5623 default:
5624 /* Do nothing, illegal value */
5625 sc->dmac = 0;
5626 return (EINVAL);
5627 }
5628 /* Reinit the interface */
5629 em_if_init(sc->ctx);
5630 return (error);
5631 }
5632
5633 /*
5634 * Manage Energy Efficient Ethernet:
5635 * Control values:
5636 * 0/1 - enabled/disabled
5637 */
5638 static int
em_sysctl_eee(SYSCTL_HANDLER_ARGS)5639 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
5640 {
5641 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5642 int error, value;
5643
5644 if (sc->hw.mac.type < igb_mac_min)
5645 value = sc->hw.dev_spec.ich8lan.eee_disable;
5646 else
5647 value = sc->hw.dev_spec._82575.eee_disable;
5648 error = sysctl_handle_int(oidp, &value, 0, req);
5649 if (error || req->newptr == NULL)
5650 return (error);
5651 if (sc->hw.mac.type < igb_mac_min)
5652 sc->hw.dev_spec.ich8lan.eee_disable = (value != 0);
5653 else
5654 sc->hw.dev_spec._82575.eee_disable = (value != 0);
5655 em_if_init(sc->ctx);
5656
5657 return (0);
5658 }
5659
5660 static int
em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)5661 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
5662 {
5663 struct e1000_softc *sc;
5664 int error;
5665 int result;
5666
5667 result = -1;
5668 error = sysctl_handle_int(oidp, &result, 0, req);
5669
5670 if (error || !req->newptr)
5671 return (error);
5672
5673 if (result == 1) {
5674 sc = (struct e1000_softc *) arg1;
5675 em_print_debug_info(sc);
5676 }
5677
5678 return (error);
5679 }
5680
5681 static int
em_get_rs(SYSCTL_HANDLER_ARGS)5682 em_get_rs(SYSCTL_HANDLER_ARGS)
5683 {
5684 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5685 int error;
5686 int result;
5687
5688 result = 0;
5689 error = sysctl_handle_int(oidp, &result, 0, req);
5690
5691 if (error || !req->newptr || result != 1)
5692 return (error);
5693 em_dump_rs(sc);
5694
5695 return (error);
5696 }
5697
5698 static void
em_if_debug(if_ctx_t ctx)5699 em_if_debug(if_ctx_t ctx)
5700 {
5701 em_dump_rs(iflib_get_softc(ctx));
5702 }
5703
5704 /*
5705 * This routine is meant to be fluid, add whatever is
5706 * needed for debugging a problem. -jfv
5707 */
5708 static void
em_print_debug_info(struct e1000_softc * sc)5709 em_print_debug_info(struct e1000_softc *sc)
5710 {
5711 device_t dev = iflib_get_dev(sc->ctx);
5712 if_t ifp = iflib_get_ifp(sc->ctx);
5713 struct tx_ring *txr = &sc->tx_queues->txr;
5714 struct rx_ring *rxr = &sc->rx_queues->rxr;
5715
5716 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
5717 printf("Interface is RUNNING ");
5718 else
5719 printf("Interface is NOT RUNNING\n");
5720
5721 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
5722 printf("and INACTIVE\n");
5723 else
5724 printf("and ACTIVE\n");
5725
5726 for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
5727 device_printf(dev, "TX Queue %d ------\n", i);
5728 device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
5729 E1000_READ_REG(&sc->hw, E1000_TDH(i)),
5730 E1000_READ_REG(&sc->hw, E1000_TDT(i)));
5731
5732 }
5733 for (int j=0; j < sc->rx_num_queues; j++, rxr++) {
5734 device_printf(dev, "RX Queue %d ------\n", j);
5735 device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
5736 E1000_READ_REG(&sc->hw, E1000_RDH(j)),
5737 E1000_READ_REG(&sc->hw, E1000_RDT(j)));
5738 }
5739 }
5740
5741 /*
5742 * 82574 only:
5743 * Write a new value to the EEPROM increasing the number of MSI-X
5744 * vectors from 3 to 5, for proper multiqueue support.
5745 */
5746 static void
em_enable_vectors_82574(if_ctx_t ctx)5747 em_enable_vectors_82574(if_ctx_t ctx)
5748 {
5749 struct e1000_softc *sc = iflib_get_softc(ctx);
5750 struct e1000_hw *hw = &sc->hw;
5751 device_t dev = iflib_get_dev(ctx);
5752 u16 edata;
5753
5754 e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
5755 if (bootverbose)
5756 device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
5757 if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
5758 device_printf(dev, "Writing to eeprom: increasing "
5759 "reported MSI-X vectors from 3 to 5...\n");
5760 edata &= ~(EM_NVM_MSIX_N_MASK);
5761 edata |= 4 << EM_NVM_MSIX_N_SHIFT;
5762 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
5763 e1000_update_nvm_checksum(hw);
5764 device_printf(dev, "Writing to eeprom: done\n");
5765 }
5766 }
5767