1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 * Copyright (c) 1994 John S. Dyson
7 * All rights reserved.
8 * Copyright (c) 1994 David Greenman
9 * All rights reserved.
10 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
11 * All rights reserved.
12 *
13 * This code is derived from software contributed to Berkeley by
14 * the Systems Programming Group of the University of Utah Computer
15 * Science Department and William Jolitz of UUNET Technologies Inc.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. All advertising materials mentioning features or use of this software
26 * must display the following acknowledgement:
27 * This product includes software developed by the University of
28 * California, Berkeley and its contributors.
29 * 4. Neither the name of the University nor the names of its contributors
30 * may be used to endorse or promote products derived from this software
31 * without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * SUCH DAMAGE.
44 */
45 /*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 * Copyright (c) 2018 The FreeBSD Foundation
49 * All rights reserved.
50 *
51 * This software was developed for the FreeBSD Project by Jake Burkholder,
52 * Safeport Network Services, and Network Associates Laboratories, the
53 * Security Research Division of Network Associates, Inc. under
54 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
55 * CHATS research program.
56 *
57 * Portions of this software were developed by
58 * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
59 * the FreeBSD Foundation.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 * 2. Redistributions in binary form must reproduce the above copyright
67 * notice, this list of conditions and the following disclaimer in the
68 * documentation and/or other materials provided with the distribution.
69 *
70 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
71 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
72 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
73 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
74 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
75 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
76 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
77 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
78 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
79 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
80 * SUCH DAMAGE.
81 */
82
83 #include <sys/cdefs.h>
84 /*
85 * Manages physical address maps.
86 *
87 * Since the information managed by this module is
88 * also stored by the logical address mapping module,
89 * this module may throw away valid virtual-to-physical
90 * mappings at almost any time. However, invalidations
91 * of virtual-to-physical mappings must be done as
92 * requested.
93 *
94 * In order to cope with hardware architectures which
95 * make virtual-to-physical map invalidates expensive,
96 * this module may delay invalidate or reduced protection
97 * operations until such time as they are actually
98 * necessary. This module is given full information as
99 * to which processors are currently using which maps,
100 * and to when physical maps must be made correct.
101 */
102
103 #include "opt_apic.h"
104 #include "opt_cpu.h"
105 #include "opt_pmap.h"
106 #include "opt_smp.h"
107 #include "opt_vm.h"
108
109 #include <sys/param.h>
110 #include <sys/systm.h>
111 #include <sys/kernel.h>
112 #include <sys/ktr.h>
113 #include <sys/lock.h>
114 #include <sys/malloc.h>
115 #include <sys/mman.h>
116 #include <sys/msgbuf.h>
117 #include <sys/mutex.h>
118 #include <sys/proc.h>
119 #include <sys/rwlock.h>
120 #include <sys/sbuf.h>
121 #include <sys/sf_buf.h>
122 #include <sys/sx.h>
123 #include <sys/vmmeter.h>
124 #include <sys/sched.h>
125 #include <sys/sysctl.h>
126 #include <sys/smp.h>
127 #include <sys/vmem.h>
128
129 #include <vm/vm.h>
130 #include <vm/vm_param.h>
131 #include <vm/vm_kern.h>
132 #include <vm/vm_page.h>
133 #include <vm/vm_map.h>
134 #include <vm/vm_object.h>
135 #include <vm/vm_extern.h>
136 #include <vm/vm_pageout.h>
137 #include <vm/vm_pager.h>
138 #include <vm/vm_phys.h>
139 #include <vm/vm_radix.h>
140 #include <vm/vm_reserv.h>
141 #include <vm/uma.h>
142
143 #ifdef DEV_APIC
144 #include <sys/bus.h>
145 #include <machine/intr_machdep.h>
146 #include <x86/apicvar.h>
147 #endif
148 #include <x86/ifunc.h>
149 #include <machine/bootinfo.h>
150 #include <machine/cpu.h>
151 #include <machine/cputypes.h>
152 #include <machine/md_var.h>
153 #include <machine/pcb.h>
154 #include <machine/specialreg.h>
155 #ifdef SMP
156 #include <machine/smp.h>
157 #endif
158 #include <machine/pmap_base.h>
159
160 #ifdef PV_STATS
161 #define PV_STAT(x) do { x ; } while (0)
162 #else
163 #define PV_STAT(x) do { } while (0)
164 #endif
165
166 #define pa_index(pa) ((pa) >> PDRSHIFT)
167 #define pa_to_pvh(pa) (&pv_table[pa_index(pa)])
168
169 /*
170 * PTmap is recursive pagemap at top of virtual address space.
171 * Within PTmap, the page directory can be found (third indirection).
172 */
173 #define PTmap ((pt_entry_t *)(PTDPTDI << PDRSHIFT))
174 #define PTD ((pd_entry_t *)((PTDPTDI << PDRSHIFT) + (PTDPTDI * PAGE_SIZE)))
175 #define PTDpde ((pd_entry_t *)((PTDPTDI << PDRSHIFT) + (PTDPTDI * PAGE_SIZE) + \
176 (PTDPTDI * PDESIZE)))
177
178 /*
179 * Translate a virtual address to the kernel virtual address of its page table
180 * entry (PTE). This can be used recursively. If the address of a PTE as
181 * previously returned by this macro is itself given as the argument, then the
182 * address of the page directory entry (PDE) that maps the PTE will be
183 * returned.
184 *
185 * This macro may be used before pmap_bootstrap() is called.
186 */
187 #define vtopte(va) (PTmap + i386_btop(va))
188
189 /*
190 * Get PDEs and PTEs for user/kernel address space
191 */
192 #define pmap_pde(m, v) (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
193 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
194
195 #define pmap_pde_v(pte) ((*(int *)pte & PG_V) != 0)
196 #define pmap_pte_w(pte) ((*(int *)pte & PG_W) != 0)
197 #define pmap_pte_m(pte) ((*(int *)pte & PG_M) != 0)
198 #define pmap_pte_u(pte) ((*(int *)pte & PG_A) != 0)
199 #define pmap_pte_v(pte) ((*(int *)pte & PG_V) != 0)
200
201 #define pmap_pte_set_w(pte, v) ((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
202 atomic_clear_int((u_int *)(pte), PG_W))
203 #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
204
205 static int pgeflag = 0; /* PG_G or-in */
206 static int pseflag = 0; /* PG_PS or-in */
207
208 static int nkpt = NKPT;
209
210 #ifdef PMAP_PAE_COMP
211 pt_entry_t pg_nx;
212 static uma_zone_t pdptzone;
213 #else
214 #define pg_nx 0
215 #endif
216
217 _Static_assert(VM_MAXUSER_ADDRESS == VADDR(TRPTDI, 0), "VM_MAXUSER_ADDRESS");
218 _Static_assert(VM_MAX_KERNEL_ADDRESS <= VADDR(PTDPTDI, 0),
219 "VM_MAX_KERNEL_ADDRESS");
220 _Static_assert(PMAP_MAP_LOW == VADDR(LOWPTDI, 0), "PMAP_MAP_LOW");
221 _Static_assert(KERNLOAD == (KERNPTDI << PDRSHIFT), "KERNLOAD");
222
223 extern int pat_works;
224 extern int pg_ps_enabled;
225
226 extern int elf32_nxstack;
227
228 #define PAT_INDEX_SIZE 8
229 static int pat_index[PAT_INDEX_SIZE]; /* cache mode to PAT index conversion */
230
231 /*
232 * pmap_mapdev support pre initialization (i.e. console)
233 */
234 #define PMAP_PREINIT_MAPPING_COUNT 8
235 static struct pmap_preinit_mapping {
236 vm_paddr_t pa;
237 vm_offset_t va;
238 vm_size_t sz;
239 int mode;
240 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
241 static int pmap_initialized;
242
243 static struct rwlock_padalign pvh_global_lock;
244
245 /*
246 * Data for the pv entry allocation mechanism
247 */
248 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
249 extern int pv_entry_max, pv_entry_count;
250 static int pv_entry_high_water = 0;
251 static struct md_page *pv_table;
252 extern int shpgperproc;
253
254 static struct pv_chunk *pv_chunkbase; /* KVA block for pv_chunks */
255 static int pv_maxchunks; /* How many chunks we have KVA for */
256 static vm_offset_t pv_vafree; /* freelist stored in the PTE */
257
258 /*
259 * All those kernel PT submaps that BSD is so fond of
260 */
261 static pt_entry_t *CMAP3;
262 static pd_entry_t *KPTD;
263 static caddr_t CADDR3;
264
265 /*
266 * Crashdump maps.
267 */
268 static caddr_t crashdumpmap;
269
270 static pt_entry_t *PMAP1 = NULL, *PMAP2, *PMAP3;
271 static pt_entry_t *PADDR1 = NULL, *PADDR2, *PADDR3;
272 #ifdef SMP
273 static int PMAP1cpu, PMAP3cpu;
274 extern int PMAP1changedcpu;
275 #endif
276 extern int PMAP1changed;
277 extern int PMAP1unchanged;
278 static struct mtx PMAP2mutex;
279
280 /*
281 * Internal flags for pmap_enter()'s helper functions.
282 */
283 #define PMAP_ENTER_NORECLAIM 0x1000000 /* Don't reclaim PV entries. */
284 #define PMAP_ENTER_NOREPLACE 0x2000000 /* Don't replace mappings. */
285
286 static void free_pv_chunk(struct pv_chunk *pc);
287 static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
288 static pv_entry_t get_pv_entry(pmap_t pmap, bool try);
289 static void pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
290 static bool pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
291 u_int flags);
292 #if VM_NRESERVLEVEL > 0
293 static void pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
294 #endif
295 static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
296 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
297 vm_offset_t va);
298 static int pmap_pvh_wired_mappings(struct md_page *pvh, int count);
299
300 static void pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
301 static bool pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
302 static int pmap_enter_4mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
303 vm_prot_t prot);
304 static int pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
305 u_int flags, vm_page_t m);
306 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
307 vm_page_t m, vm_prot_t prot, vm_page_t mpte);
308 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
309 bool allpte_PG_A_set);
310 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
311 pd_entry_t pde);
312 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
313 static bool pmap_is_modified_pvh(struct md_page *pvh);
314 static bool pmap_is_referenced_pvh(struct md_page *pvh);
315 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
316 static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
317 static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
318 #if VM_NRESERVLEVEL > 0
319 static bool pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
320 vm_page_t mpte);
321 #endif
322 static bool pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
323 vm_prot_t prot);
324 static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
325 static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
326 struct spglist *free);
327 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
328 struct spglist *free);
329 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
330 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free);
331 static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
332 struct spglist *free);
333 static void pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va);
334 static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
335 static bool pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
336 vm_page_t m);
337 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
338 pd_entry_t newpde);
339 static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
340
341 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
342
343 static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags);
344 static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free);
345 static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
346 static void pmap_pte_release(pt_entry_t *pte);
347 static int pmap_unuse_pt(pmap_t, vm_offset_t, struct spglist *);
348 #ifdef PMAP_PAE_COMP
349 static void *pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, int domain,
350 uint8_t *flags, int wait);
351 #endif
352 static void pmap_init_trm(void);
353 static void pmap_invalidate_all_int(pmap_t pmap);
354
355 static __inline void pagezero(void *page);
356
357 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
358 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
359
360 extern char _end[];
361 extern u_long physfree; /* phys addr of next free page */
362 extern u_long vm86phystk;/* PA of vm86/bios stack */
363 extern u_long vm86paddr;/* address of vm86 region */
364 extern int vm86pa; /* phys addr of vm86 region */
365 extern u_long KERNend; /* phys addr end of kernel (just after bss) */
366 #ifdef PMAP_PAE_COMP
367 pd_entry_t *IdlePTD_pae; /* phys addr of kernel PTD */
368 pdpt_entry_t *IdlePDPT; /* phys addr of kernel PDPT */
369 pt_entry_t *KPTmap_pae; /* address of kernel page tables */
370 #define IdlePTD IdlePTD_pae
371 #define KPTmap KPTmap_pae
372 #else
373 pd_entry_t *IdlePTD_nopae;
374 pt_entry_t *KPTmap_nopae;
375 #define IdlePTD IdlePTD_nopae
376 #define KPTmap KPTmap_nopae
377 #endif
378 extern u_long KPTphys; /* phys addr of kernel page tables */
379 extern u_long tramp_idleptd;
380
381 static u_long
allocpages(u_int cnt,u_long * physfree)382 allocpages(u_int cnt, u_long *physfree)
383 {
384 u_long res;
385
386 res = *physfree;
387 *physfree += PAGE_SIZE * cnt;
388 bzero((void *)res, PAGE_SIZE * cnt);
389 return (res);
390 }
391
392 static void
pmap_cold_map(u_long pa,u_long va,u_long cnt)393 pmap_cold_map(u_long pa, u_long va, u_long cnt)
394 {
395 pt_entry_t *pt;
396
397 for (pt = (pt_entry_t *)KPTphys + atop(va); cnt > 0;
398 cnt--, pt++, va += PAGE_SIZE, pa += PAGE_SIZE)
399 *pt = pa | PG_V | PG_RW | PG_A | PG_M;
400 }
401
402 static void
pmap_cold_mapident(u_long pa,u_long cnt)403 pmap_cold_mapident(u_long pa, u_long cnt)
404 {
405
406 pmap_cold_map(pa, pa, cnt);
407 }
408
409 _Static_assert(LOWPTDI * 2 * NBPDR == KERNBASE,
410 "Broken double-map of zero PTD");
411
412 static void
__CONCAT(PMTYPE,remap_lower)413 __CONCAT(PMTYPE, remap_lower)(bool enable)
414 {
415 int i;
416
417 for (i = 0; i < LOWPTDI; i++)
418 IdlePTD[i] = enable ? IdlePTD[LOWPTDI + i] : 0;
419 load_cr3(rcr3()); /* invalidate TLB */
420 }
421
422 /*
423 * Called from locore.s before paging is enabled. Sets up the first
424 * kernel page table. Since kernel is mapped with PA == VA, this code
425 * does not require relocations.
426 */
427 void
__CONCAT(PMTYPE,cold)428 __CONCAT(PMTYPE, cold)(void)
429 {
430 pt_entry_t *pt;
431 u_long a;
432 u_int cr3, ncr4;
433
434 physfree = (u_long)&_end;
435 if (bootinfo.bi_esymtab != 0)
436 physfree = bootinfo.bi_esymtab;
437 if (bootinfo.bi_kernend != 0)
438 physfree = bootinfo.bi_kernend;
439 physfree = roundup2(physfree, NBPDR);
440 KERNend = physfree;
441
442 /* Allocate Kernel Page Tables */
443 KPTphys = allocpages(NKPT, &physfree);
444 KPTmap = (pt_entry_t *)KPTphys;
445
446 /* Allocate Page Table Directory */
447 #ifdef PMAP_PAE_COMP
448 /* XXX only need 32 bytes (easier for now) */
449 IdlePDPT = (pdpt_entry_t *)allocpages(1, &physfree);
450 #endif
451 IdlePTD = (pd_entry_t *)allocpages(NPGPTD, &physfree);
452
453 /*
454 * Allocate KSTACK. Leave a guard page between IdlePTD and
455 * proc0kstack, to control stack overflow for thread0 and
456 * prevent corruption of the page table. We leak the guard
457 * physical memory due to 1:1 mappings.
458 */
459 allocpages(1, &physfree);
460 proc0kstack = allocpages(TD0_KSTACK_PAGES, &physfree);
461
462 /* vm86/bios stack */
463 vm86phystk = allocpages(1, &physfree);
464
465 /* pgtable + ext + IOPAGES */
466 vm86paddr = vm86pa = allocpages(3, &physfree);
467
468 /* Install page tables into PTD. Page table page 1 is wasted. */
469 for (a = 0; a < NKPT; a++)
470 IdlePTD[a] = (KPTphys + ptoa(a)) | PG_V | PG_RW | PG_A | PG_M;
471
472 #ifdef PMAP_PAE_COMP
473 /* PAE install PTD pointers into PDPT */
474 for (a = 0; a < NPGPTD; a++)
475 IdlePDPT[a] = ((u_int)IdlePTD + ptoa(a)) | PG_V;
476 #endif
477
478 /*
479 * Install recursive mapping for kernel page tables into
480 * itself.
481 */
482 for (a = 0; a < NPGPTD; a++)
483 IdlePTD[PTDPTDI + a] = ((u_int)IdlePTD + ptoa(a)) | PG_V |
484 PG_RW;
485
486 /*
487 * Initialize page table pages mapping physical address zero
488 * through the (physical) end of the kernel. Many of these
489 * pages must be reserved, and we reserve them all and map
490 * them linearly for convenience. We do this even if we've
491 * enabled PSE above; we'll just switch the corresponding
492 * kernel PDEs before we turn on paging.
493 *
494 * This and all other page table entries allow read and write
495 * access for various reasons. Kernel mappings never have any
496 * access restrictions.
497 */
498 pmap_cold_mapident(0, atop(NBPDR) * LOWPTDI);
499 pmap_cold_map(0, NBPDR * LOWPTDI, atop(NBPDR) * LOWPTDI);
500 pmap_cold_mapident(KERNBASE, atop(KERNend - KERNBASE));
501
502 /* Map page table directory */
503 #ifdef PMAP_PAE_COMP
504 pmap_cold_mapident((u_long)IdlePDPT, 1);
505 #endif
506 pmap_cold_mapident((u_long)IdlePTD, NPGPTD);
507
508 /* Map early KPTmap. It is really pmap_cold_mapident. */
509 pmap_cold_map(KPTphys, (u_long)KPTmap, NKPT);
510
511 /* Map proc0kstack */
512 pmap_cold_mapident(proc0kstack, TD0_KSTACK_PAGES);
513 /* ISA hole already mapped */
514
515 pmap_cold_mapident(vm86phystk, 1);
516 pmap_cold_mapident(vm86pa, 3);
517
518 /* Map page 0 into the vm86 page table */
519 *(pt_entry_t *)vm86pa = 0 | PG_RW | PG_U | PG_A | PG_M | PG_V;
520
521 /* ...likewise for the ISA hole for vm86 */
522 for (pt = (pt_entry_t *)vm86pa + atop(ISA_HOLE_START), a = 0;
523 a < atop(ISA_HOLE_LENGTH); a++, pt++)
524 *pt = (ISA_HOLE_START + ptoa(a)) | PG_RW | PG_U | PG_A |
525 PG_M | PG_V;
526
527 /* Enable PSE, PGE, VME, and PAE if configured. */
528 ncr4 = 0;
529 if ((cpu_feature & CPUID_PSE) != 0) {
530 ncr4 |= CR4_PSE;
531 pseflag = PG_PS;
532 /*
533 * Superpage mapping of the kernel text. Existing 4k
534 * page table pages are wasted.
535 */
536 for (a = KERNBASE; a < KERNend; a += NBPDR)
537 IdlePTD[a >> PDRSHIFT] = a | PG_PS | PG_A | PG_M |
538 PG_RW | PG_V;
539 }
540 if ((cpu_feature & CPUID_PGE) != 0) {
541 ncr4 |= CR4_PGE;
542 pgeflag = PG_G;
543 }
544 ncr4 |= (cpu_feature & CPUID_VME) != 0 ? CR4_VME : 0;
545 #ifdef PMAP_PAE_COMP
546 ncr4 |= CR4_PAE;
547 #endif
548 if (ncr4 != 0)
549 load_cr4(rcr4() | ncr4);
550
551 /* Now enable paging */
552 #ifdef PMAP_PAE_COMP
553 cr3 = (u_int)IdlePDPT;
554 if ((cpu_feature & CPUID_PAT) == 0)
555 wbinvd();
556 #else
557 cr3 = (u_int)IdlePTD;
558 #endif
559 tramp_idleptd = cr3;
560 load_cr3(cr3);
561 load_cr0(rcr0() | CR0_PG);
562
563 /*
564 * Now running relocated at KERNBASE where the system is
565 * linked to run.
566 */
567
568 /*
569 * Remove the lowest part of the double mapping of low memory
570 * to get some null pointer checks.
571 */
572 __CONCAT(PMTYPE, remap_lower)(false);
573
574 kernel_vm_end = /* 0 + */ NKPT * NBPDR;
575 #ifdef PMAP_PAE_COMP
576 i386_pmap_VM_NFREEORDER = VM_NFREEORDER_PAE;
577 i386_pmap_VM_LEVEL_0_ORDER = VM_LEVEL_0_ORDER_PAE;
578 i386_pmap_PDRSHIFT = PDRSHIFT_PAE;
579 #else
580 i386_pmap_VM_NFREEORDER = VM_NFREEORDER_NOPAE;
581 i386_pmap_VM_LEVEL_0_ORDER = VM_LEVEL_0_ORDER_NOPAE;
582 i386_pmap_PDRSHIFT = PDRSHIFT_NOPAE;
583 #endif
584 }
585
586 static void
__CONCAT(PMTYPE,set_nx)587 __CONCAT(PMTYPE, set_nx)(void)
588 {
589
590 #ifdef PMAP_PAE_COMP
591 if ((amd_feature & AMDID_NX) == 0)
592 return;
593 pg_nx = PG_NX;
594 elf32_nxstack = 1;
595 /* EFER.EFER_NXE is set in initializecpu(). */
596 #endif
597 }
598
599 /*
600 * Bootstrap the system enough to run with virtual memory.
601 *
602 * On the i386 this is called after pmap_cold() created initial
603 * kernel page table and enabled paging, and just syncs the pmap
604 * module with what has already been done.
605 */
606 static void
__CONCAT(PMTYPE,bootstrap)607 __CONCAT(PMTYPE, bootstrap)(vm_paddr_t firstaddr)
608 {
609 vm_offset_t va;
610 pt_entry_t *pte, *unused __unused;
611 struct pcpu *pc;
612 u_long res;
613 int i;
614
615 res = atop(firstaddr - (vm_paddr_t)KERNLOAD);
616
617 /*
618 * Initialize the first available kernel virtual address.
619 * However, using "firstaddr" may waste a few pages of the
620 * kernel virtual address space, because pmap_cold() may not
621 * have mapped every physical page that it allocated.
622 * Preferably, pmap_cold() would provide a first unused
623 * virtual address in addition to "firstaddr".
624 */
625 virtual_avail = (vm_offset_t)firstaddr;
626 virtual_end = VM_MAX_KERNEL_ADDRESS;
627
628 /*
629 * Initialize the kernel pmap (which is statically allocated).
630 * Count bootstrap data as being resident in case any of this data is
631 * later unmapped (using pmap_remove()) and freed.
632 */
633 PMAP_LOCK_INIT(kernel_pmap);
634 kernel_pmap->pm_pdir = IdlePTD;
635 #ifdef PMAP_PAE_COMP
636 kernel_pmap->pm_pdpt = IdlePDPT;
637 #endif
638 CPU_FILL(&kernel_pmap->pm_active); /* don't allow deactivation */
639 kernel_pmap->pm_stats.resident_count = res;
640 TAILQ_INIT(&kernel_pmap->pm_pvchunk);
641 vm_radix_init(&kernel_pmap->pm_root);
642
643 /*
644 * Initialize the global pv list lock.
645 */
646 rw_init(&pvh_global_lock, "pmap pv global");
647
648 /*
649 * Reserve some special page table entries/VA space for temporary
650 * mapping of pages.
651 */
652 #define SYSMAP(c, p, v, n) \
653 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
654
655 va = virtual_avail;
656 pte = vtopte(va);
657
658 /*
659 * Initialize temporary map objects on the current CPU for use
660 * during early boot.
661 * CMAP1/CMAP2 are used for zeroing and copying pages.
662 * CMAP3 is used for the boot-time memory test.
663 */
664 pc = get_pcpu();
665 mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
666 SYSMAP(caddr_t, pc->pc_cmap_pte1, pc->pc_cmap_addr1, 1)
667 SYSMAP(caddr_t, pc->pc_cmap_pte2, pc->pc_cmap_addr2, 1)
668 SYSMAP(vm_offset_t, pte, pc->pc_qmap_addr, 1)
669
670 SYSMAP(caddr_t, CMAP3, CADDR3, 1);
671
672 /*
673 * Crashdump maps.
674 */
675 SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
676
677 /*
678 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
679 */
680 SYSMAP(caddr_t, unused, ptvmmap, 1)
681
682 /*
683 * msgbufp is used to map the system message buffer.
684 */
685 SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
686
687 /*
688 * KPTmap is used by pmap_kextract().
689 *
690 * KPTmap is first initialized by pmap_cold(). However, that initial
691 * KPTmap can only support NKPT page table pages. Here, a larger
692 * KPTmap is created that can support KVA_PAGES page table pages.
693 */
694 SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
695
696 for (i = 0; i < NKPT; i++)
697 KPTD[i] = (KPTphys + ptoa(i)) | PG_RW | PG_V;
698
699 /*
700 * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
701 * respectively.
702 */
703 SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
704 SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
705 SYSMAP(pt_entry_t *, PMAP3, PADDR3, 1)
706
707 mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
708
709 virtual_avail = va;
710
711 /*
712 * Initialize the PAT MSR if present.
713 * pmap_init_pat() clears and sets CR4_PGE, which, as a
714 * side-effect, invalidates stale PG_G TLB entries that might
715 * have been created in our pre-boot environment. We assume
716 * that PAT support implies PGE and in reverse, PGE presence
717 * comes with PAT. Both features were added for Pentium Pro.
718 */
719 pmap_init_pat();
720 }
721
722 static void
pmap_init_reserved_pages(void)723 pmap_init_reserved_pages(void)
724 {
725 struct pcpu *pc;
726 vm_offset_t pages;
727 int i;
728
729 #ifdef PMAP_PAE_COMP
730 if (!pae_mode)
731 return;
732 #else
733 if (pae_mode)
734 return;
735 #endif
736 CPU_FOREACH(i) {
737 pc = pcpu_find(i);
738 mtx_init(&pc->pc_copyout_mlock, "cpmlk", NULL, MTX_DEF |
739 MTX_NEW);
740 pc->pc_copyout_maddr = kva_alloc(ptoa(2));
741 if (pc->pc_copyout_maddr == 0)
742 panic("unable to allocate non-sleepable copyout KVA");
743 sx_init(&pc->pc_copyout_slock, "cpslk");
744 pc->pc_copyout_saddr = kva_alloc(ptoa(2));
745 if (pc->pc_copyout_saddr == 0)
746 panic("unable to allocate sleepable copyout KVA");
747 pc->pc_pmap_eh_va = kva_alloc(ptoa(1));
748 if (pc->pc_pmap_eh_va == 0)
749 panic("unable to allocate pmap_extract_and_hold KVA");
750 pc->pc_pmap_eh_ptep = (char *)vtopte(pc->pc_pmap_eh_va);
751
752 /*
753 * Skip if the mappings have already been initialized,
754 * i.e. this is the BSP.
755 */
756 if (pc->pc_cmap_addr1 != 0)
757 continue;
758
759 mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
760 pages = kva_alloc(PAGE_SIZE * 3);
761 if (pages == 0)
762 panic("unable to allocate CMAP KVA");
763 pc->pc_cmap_pte1 = vtopte(pages);
764 pc->pc_cmap_pte2 = vtopte(pages + PAGE_SIZE);
765 pc->pc_cmap_addr1 = (caddr_t)pages;
766 pc->pc_cmap_addr2 = (caddr_t)(pages + PAGE_SIZE);
767 pc->pc_qmap_addr = pages + ptoa(2);
768 }
769 }
770
771 SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
772
773 /*
774 * Setup the PAT MSR.
775 */
776 static void
__CONCAT(PMTYPE,init_pat)777 __CONCAT(PMTYPE, init_pat)(void)
778 {
779 int pat_table[PAT_INDEX_SIZE];
780 uint64_t pat_msr;
781 u_long cr0, cr4;
782 int i;
783
784 /* Set default PAT index table. */
785 for (i = 0; i < PAT_INDEX_SIZE; i++)
786 pat_table[i] = -1;
787 pat_table[PAT_WRITE_BACK] = 0;
788 pat_table[PAT_WRITE_THROUGH] = 1;
789 pat_table[PAT_UNCACHEABLE] = 3;
790 pat_table[PAT_WRITE_COMBINING] = 3;
791 pat_table[PAT_WRITE_PROTECTED] = 3;
792 pat_table[PAT_UNCACHED] = 3;
793
794 /*
795 * Bail if this CPU doesn't implement PAT.
796 * We assume that PAT support implies PGE.
797 */
798 if ((cpu_feature & CPUID_PAT) == 0) {
799 for (i = 0; i < PAT_INDEX_SIZE; i++)
800 pat_index[i] = pat_table[i];
801 pat_works = 0;
802 return;
803 }
804
805 /*
806 * Due to some Intel errata, we can only safely use the lower 4
807 * PAT entries.
808 *
809 * Intel Pentium III Processor Specification Update
810 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
811 * or Mode C Paging)
812 *
813 * Intel Pentium IV Processor Specification Update
814 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
815 */
816 if (cpu_vendor_id == CPU_VENDOR_INTEL &&
817 !(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
818 pat_works = 0;
819
820 /* Initialize default PAT entries. */
821 pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
822 PAT_VALUE(1, PAT_WRITE_THROUGH) |
823 PAT_VALUE(2, PAT_UNCACHED) |
824 PAT_VALUE(3, PAT_UNCACHEABLE) |
825 PAT_VALUE(4, PAT_WRITE_BACK) |
826 PAT_VALUE(5, PAT_WRITE_THROUGH) |
827 PAT_VALUE(6, PAT_UNCACHED) |
828 PAT_VALUE(7, PAT_UNCACHEABLE);
829
830 if (pat_works) {
831 /*
832 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
833 * Program 5 and 6 as WP and WC.
834 * Leave 4 and 7 as WB and UC.
835 */
836 pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
837 pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
838 PAT_VALUE(6, PAT_WRITE_COMBINING);
839 pat_table[PAT_UNCACHED] = 2;
840 pat_table[PAT_WRITE_PROTECTED] = 5;
841 pat_table[PAT_WRITE_COMBINING] = 6;
842 } else {
843 /*
844 * Just replace PAT Index 2 with WC instead of UC-.
845 */
846 pat_msr &= ~PAT_MASK(2);
847 pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
848 pat_table[PAT_WRITE_COMBINING] = 2;
849 }
850
851 /* Disable PGE. */
852 cr4 = rcr4();
853 load_cr4(cr4 & ~CR4_PGE);
854
855 /* Disable caches (CD = 1, NW = 0). */
856 cr0 = rcr0();
857 load_cr0((cr0 & ~CR0_NW) | CR0_CD);
858
859 /* Flushes caches and TLBs. */
860 wbinvd();
861 invltlb();
862
863 /* Update PAT and index table. */
864 wrmsr(MSR_PAT, pat_msr);
865 for (i = 0; i < PAT_INDEX_SIZE; i++)
866 pat_index[i] = pat_table[i];
867
868 /* Flush caches and TLBs again. */
869 wbinvd();
870 invltlb();
871
872 /* Restore caches and PGE. */
873 load_cr0(cr0);
874 load_cr4(cr4);
875 }
876
877 #ifdef PMAP_PAE_COMP
878 static void *
pmap_pdpt_allocf(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * flags,int wait)879 pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
880 int wait)
881 {
882
883 /* Inform UMA that this allocator uses kernel_map/object. */
884 *flags = UMA_SLAB_KERNEL;
885 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain),
886 bytes, wait, 0x0ULL, 0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
887 }
888 #endif
889
890 /*
891 * Abuse the pte nodes for unmapped kva to thread a kva freelist through.
892 * Requirements:
893 * - Must deal with pages in order to ensure that none of the PG_* bits
894 * are ever set, PG_V in particular.
895 * - Assumes we can write to ptes without pte_store() atomic ops, even
896 * on PAE systems. This should be ok.
897 * - Assumes nothing will ever test these addresses for 0 to indicate
898 * no mapping instead of correctly checking PG_V.
899 * - Assumes a vm_offset_t will fit in a pte (true for i386).
900 * Because PG_V is never set, there can be no mappings to invalidate.
901 */
902 static vm_offset_t
pmap_ptelist_alloc(vm_offset_t * head)903 pmap_ptelist_alloc(vm_offset_t *head)
904 {
905 pt_entry_t *pte;
906 vm_offset_t va;
907
908 va = *head;
909 if (va == 0)
910 panic("pmap_ptelist_alloc: exhausted ptelist KVA");
911 pte = vtopte(va);
912 *head = *pte;
913 if (*head & PG_V)
914 panic("pmap_ptelist_alloc: va with PG_V set!");
915 *pte = 0;
916 return (va);
917 }
918
919 static void
pmap_ptelist_free(vm_offset_t * head,vm_offset_t va)920 pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
921 {
922 pt_entry_t *pte;
923
924 if (va & PG_V)
925 panic("pmap_ptelist_free: freeing va with PG_V set!");
926 pte = vtopte(va);
927 *pte = *head; /* virtual! PG_V is 0 though */
928 *head = va;
929 }
930
931 static void
pmap_ptelist_init(vm_offset_t * head,void * base,int npages)932 pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
933 {
934 int i;
935 vm_offset_t va;
936
937 *head = 0;
938 for (i = npages - 1; i >= 0; i--) {
939 va = (vm_offset_t)base + i * PAGE_SIZE;
940 pmap_ptelist_free(head, va);
941 }
942 }
943
944 /*
945 * Initialize the pmap module.
946 *
947 * Called by vm_mem_init(), to initialize any structures that the pmap
948 * system needs to map virtual memory.
949 */
950 static void
__CONCAT(PMTYPE,init)951 __CONCAT(PMTYPE, init)(void)
952 {
953 struct pmap_preinit_mapping *ppim;
954 vm_page_t mpte;
955 vm_size_t s;
956 int i, pv_npg;
957
958 /*
959 * Initialize the vm page array entries for the kernel pmap's
960 * page table pages.
961 */
962 PMAP_LOCK(kernel_pmap);
963 for (i = 0; i < NKPT; i++) {
964 mpte = PHYS_TO_VM_PAGE(KPTphys + ptoa(i));
965 KASSERT(mpte >= vm_page_array &&
966 mpte < &vm_page_array[vm_page_array_size],
967 ("pmap_init: page table page is out of range"));
968 mpte->pindex = i + KPTDI;
969 mpte->phys_addr = KPTphys + ptoa(i);
970 mpte->ref_count = 1;
971
972 /*
973 * Collect the page table pages that were replaced by a 2/4MB
974 * page. They are filled with equivalent 4KB page mappings.
975 */
976 if (pseflag != 0 &&
977 KERNBASE <= i << PDRSHIFT && i << PDRSHIFT < KERNend &&
978 pmap_insert_pt_page(kernel_pmap, mpte, true, true))
979 panic("pmap_init: pmap_insert_pt_page failed");
980 }
981 PMAP_UNLOCK(kernel_pmap);
982 vm_wire_add(NKPT);
983
984 /*
985 * Initialize the address space (zone) for the pv entries. Set a
986 * high water mark so that the system can recover from excessive
987 * numbers of pv entries.
988 */
989 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
990 pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
991 TUNABLE_INT_FETCH("vm.pmap.pv_entry_max", &pv_entry_max);
992 pv_entry_max = roundup(pv_entry_max, _NPCPV);
993 pv_entry_high_water = 9 * (pv_entry_max / 10);
994
995 /*
996 * If the kernel is running on a virtual machine, then it must assume
997 * that MCA is enabled by the hypervisor. Moreover, the kernel must
998 * be prepared for the hypervisor changing the vendor and family that
999 * are reported by CPUID. Consequently, the workaround for AMD Family
1000 * 10h Erratum 383 is enabled if the processor's feature set does not
1001 * include at least one feature that is only supported by older Intel
1002 * or newer AMD processors.
1003 */
1004 if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
1005 (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
1006 CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
1007 AMDID2_FMA4)) == 0)
1008 workaround_erratum383 = 1;
1009
1010 /*
1011 * Are large page mappings supported and enabled?
1012 */
1013 TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
1014 if (pseflag == 0)
1015 pg_ps_enabled = 0;
1016 else if (pg_ps_enabled) {
1017 KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1018 ("pmap_init: can't assign to pagesizes[1]"));
1019 pagesizes[1] = NBPDR;
1020 }
1021
1022 /*
1023 * Calculate the size of the pv head table for superpages.
1024 * Handle the possibility that "vm_phys_segs[...].end" is zero.
1025 */
1026 pv_npg = trunc_4mpage(vm_phys_segs[vm_phys_nsegs - 1].end -
1027 PAGE_SIZE) / NBPDR + 1;
1028
1029 /*
1030 * Allocate memory for the pv head table for superpages.
1031 */
1032 s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1033 s = round_page(s);
1034 pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
1035 for (i = 0; i < pv_npg; i++)
1036 TAILQ_INIT(&pv_table[i].pv_list);
1037
1038 pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
1039 pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
1040 if (pv_chunkbase == NULL)
1041 panic("pmap_init: not enough kvm for pv chunks");
1042 pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
1043 #ifdef PMAP_PAE_COMP
1044 pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
1045 NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
1046 UMA_ZONE_CONTIG | UMA_ZONE_VM | UMA_ZONE_NOFREE);
1047 uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
1048 #endif
1049
1050 pmap_initialized = 1;
1051 pmap_init_trm();
1052
1053 if (!bootverbose)
1054 return;
1055 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
1056 ppim = pmap_preinit_mapping + i;
1057 if (ppim->va == 0)
1058 continue;
1059 printf("PPIM %u: PA=%#jx, VA=%#x, size=%#x, mode=%#x\n", i,
1060 (uintmax_t)ppim->pa, ppim->va, ppim->sz, ppim->mode);
1061 }
1062
1063 }
1064
1065 extern u_long pmap_pde_demotions;
1066 extern u_long pmap_pde_mappings;
1067 extern u_long pmap_pde_p_failures;
1068 extern u_long pmap_pde_promotions;
1069
1070 /***************************************************
1071 * Low level helper routines.....
1072 ***************************************************/
1073
1074 static bool
__CONCAT(PMTYPE,is_valid_memattr)1075 __CONCAT(PMTYPE, is_valid_memattr)(pmap_t pmap __unused, vm_memattr_t mode)
1076 {
1077
1078 return (mode >= 0 && mode < PAT_INDEX_SIZE &&
1079 pat_index[(int)mode] >= 0);
1080 }
1081
1082 /*
1083 * Determine the appropriate bits to set in a PTE or PDE for a specified
1084 * caching mode.
1085 */
1086 static int
__CONCAT(PMTYPE,cache_bits)1087 __CONCAT(PMTYPE, cache_bits)(pmap_t pmap, int mode, bool is_pde)
1088 {
1089 int cache_bits, pat_flag, pat_idx;
1090
1091 if (!pmap_is_valid_memattr(pmap, mode))
1092 panic("Unknown caching mode %d\n", mode);
1093
1094 /* The PAT bit is different for PTE's and PDE's. */
1095 pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
1096
1097 /* Map the caching mode to a PAT index. */
1098 pat_idx = pat_index[mode];
1099
1100 /* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
1101 cache_bits = 0;
1102 if (pat_idx & 0x4)
1103 cache_bits |= pat_flag;
1104 if (pat_idx & 0x2)
1105 cache_bits |= PG_NC_PCD;
1106 if (pat_idx & 0x1)
1107 cache_bits |= PG_NC_PWT;
1108 return (cache_bits);
1109 }
1110
1111 static int
pmap_pat_index(pmap_t pmap,pt_entry_t pte,bool is_pde)1112 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
1113 {
1114 int pat_flag, pat_idx;
1115
1116 if ((cpu_feature & CPUID_PAT) == 0)
1117 return (0);
1118
1119 pat_idx = 0;
1120 /* The PAT bit is different for PTE's and PDE's. */
1121 pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
1122
1123 if ((pte & pat_flag) != 0)
1124 pat_idx |= 0x4;
1125 if ((pte & PG_NC_PCD) != 0)
1126 pat_idx |= 0x2;
1127 if ((pte & PG_NC_PWT) != 0)
1128 pat_idx |= 0x1;
1129
1130 /* See pmap_init_pat(). */
1131 if (pat_works) {
1132 if (pat_idx == 4)
1133 pat_idx = 0;
1134 if (pat_idx == 7)
1135 pat_idx = 3;
1136 } else {
1137 /* XXXKIB */
1138 }
1139
1140 return (pat_idx);
1141 }
1142
1143 static bool
__CONCAT(PMTYPE,ps_enabled)1144 __CONCAT(PMTYPE, ps_enabled)(pmap_t pmap __unused)
1145 {
1146
1147 return (pg_ps_enabled);
1148 }
1149
1150 /*
1151 * The caller is responsible for maintaining TLB consistency.
1152 */
1153 static void
pmap_kenter_pde(vm_offset_t va,pd_entry_t newpde)1154 pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
1155 {
1156 pd_entry_t *pde;
1157
1158 pde = pmap_pde(kernel_pmap, va);
1159 pde_store(pde, newpde);
1160 }
1161
1162 /*
1163 * After changing the page size for the specified virtual address in the page
1164 * table, flush the corresponding entries from the processor's TLB. Only the
1165 * calling processor's TLB is affected.
1166 *
1167 * The calling thread must be pinned to a processor.
1168 */
1169 static void
pmap_update_pde_invalidate(vm_offset_t va,pd_entry_t newpde)1170 pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
1171 {
1172
1173 if ((newpde & PG_PS) == 0)
1174 /* Demotion: flush a specific 2MB page mapping. */
1175 invlpg(va);
1176 else /* if ((newpde & PG_G) == 0) */
1177 /*
1178 * Promotion: flush every 4KB page mapping from the TLB
1179 * because there are too many to flush individually.
1180 */
1181 invltlb();
1182 }
1183
1184 #ifdef SMP
1185
1186 static void
pmap_curcpu_cb_dummy(pmap_t pmap __unused,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)1187 pmap_curcpu_cb_dummy(pmap_t pmap __unused, vm_offset_t addr1 __unused,
1188 vm_offset_t addr2 __unused)
1189 {
1190 }
1191
1192 /*
1193 * For SMP, these functions have to use the IPI mechanism for coherence.
1194 *
1195 * N.B.: Before calling any of the following TLB invalidation functions,
1196 * the calling processor must ensure that all stores updating a non-
1197 * kernel page table are globally performed. Otherwise, another
1198 * processor could cache an old, pre-update entry without being
1199 * invalidated. This can happen one of two ways: (1) The pmap becomes
1200 * active on another processor after its pm_active field is checked by
1201 * one of the following functions but before a store updating the page
1202 * table is globally performed. (2) The pmap becomes active on another
1203 * processor before its pm_active field is checked but due to
1204 * speculative loads one of the following functions stills reads the
1205 * pmap as inactive on the other processor.
1206 *
1207 * The kernel page table is exempt because its pm_active field is
1208 * immutable. The kernel page table is always active on every
1209 * processor.
1210 */
1211 static void
pmap_invalidate_page_int(pmap_t pmap,vm_offset_t va)1212 pmap_invalidate_page_int(pmap_t pmap, vm_offset_t va)
1213 {
1214 cpuset_t *mask, other_cpus;
1215 u_int cpuid;
1216
1217 sched_pin();
1218 if (pmap == kernel_pmap) {
1219 invlpg(va);
1220 mask = &all_cpus;
1221 } else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1222 mask = &all_cpus;
1223 } else {
1224 cpuid = PCPU_GET(cpuid);
1225 other_cpus = all_cpus;
1226 CPU_CLR(cpuid, &other_cpus);
1227 CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
1228 mask = &other_cpus;
1229 }
1230 smp_masked_invlpg(*mask, va, pmap, pmap_curcpu_cb_dummy);
1231 sched_unpin();
1232 }
1233
1234 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
1235 #define PMAP_INVLPG_THRESHOLD (4 * 1024 * PAGE_SIZE)
1236
1237 static void
pmap_invalidate_range_int(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)1238 pmap_invalidate_range_int(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1239 {
1240 cpuset_t *mask, other_cpus;
1241 vm_offset_t addr;
1242 u_int cpuid;
1243
1244 if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
1245 pmap_invalidate_all_int(pmap);
1246 return;
1247 }
1248
1249 sched_pin();
1250 if (pmap == kernel_pmap) {
1251 for (addr = sva; addr < eva; addr += PAGE_SIZE)
1252 invlpg(addr);
1253 mask = &all_cpus;
1254 } else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1255 mask = &all_cpus;
1256 } else {
1257 cpuid = PCPU_GET(cpuid);
1258 other_cpus = all_cpus;
1259 CPU_CLR(cpuid, &other_cpus);
1260 CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
1261 mask = &other_cpus;
1262 }
1263 smp_masked_invlpg_range(*mask, sva, eva, pmap, pmap_curcpu_cb_dummy);
1264 sched_unpin();
1265 }
1266
1267 static void
pmap_invalidate_all_int(pmap_t pmap)1268 pmap_invalidate_all_int(pmap_t pmap)
1269 {
1270 cpuset_t *mask, other_cpus;
1271 u_int cpuid;
1272
1273 sched_pin();
1274 if (pmap == kernel_pmap) {
1275 invltlb();
1276 mask = &all_cpus;
1277 } else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1278 mask = &all_cpus;
1279 } else {
1280 cpuid = PCPU_GET(cpuid);
1281 other_cpus = all_cpus;
1282 CPU_CLR(cpuid, &other_cpus);
1283 CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
1284 mask = &other_cpus;
1285 }
1286 smp_masked_invltlb(*mask, pmap, pmap_curcpu_cb_dummy);
1287 sched_unpin();
1288 }
1289
1290 static void
pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)1291 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,
1292 vm_offset_t addr1 __unused, vm_offset_t addr2 __unused)
1293 {
1294 wbinvd();
1295 }
1296
1297 static void
__CONCAT(PMTYPE,invalidate_cache)1298 __CONCAT(PMTYPE, invalidate_cache)(void)
1299 {
1300 smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
1301 }
1302
1303 struct pde_action {
1304 cpuset_t invalidate; /* processors that invalidate their TLB */
1305 vm_offset_t va;
1306 pd_entry_t *pde;
1307 pd_entry_t newpde;
1308 u_int store; /* processor that updates the PDE */
1309 };
1310
1311 static void
pmap_update_pde_kernel(void * arg)1312 pmap_update_pde_kernel(void *arg)
1313 {
1314 struct pde_action *act = arg;
1315 pd_entry_t *pde;
1316
1317 if (act->store == PCPU_GET(cpuid)) {
1318 pde = pmap_pde(kernel_pmap, act->va);
1319 pde_store(pde, act->newpde);
1320 }
1321 }
1322
1323 static void
pmap_update_pde_user(void * arg)1324 pmap_update_pde_user(void *arg)
1325 {
1326 struct pde_action *act = arg;
1327
1328 if (act->store == PCPU_GET(cpuid))
1329 pde_store(act->pde, act->newpde);
1330 }
1331
1332 static void
pmap_update_pde_teardown(void * arg)1333 pmap_update_pde_teardown(void *arg)
1334 {
1335 struct pde_action *act = arg;
1336
1337 if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
1338 pmap_update_pde_invalidate(act->va, act->newpde);
1339 }
1340
1341 /*
1342 * Change the page size for the specified virtual address in a way that
1343 * prevents any possibility of the TLB ever having two entries that map the
1344 * same virtual address using different page sizes. This is the recommended
1345 * workaround for Erratum 383 on AMD Family 10h processors. It prevents a
1346 * machine check exception for a TLB state that is improperly diagnosed as a
1347 * hardware error.
1348 */
1349 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)1350 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1351 {
1352 struct pde_action act;
1353 cpuset_t active, other_cpus;
1354 u_int cpuid;
1355
1356 sched_pin();
1357 cpuid = PCPU_GET(cpuid);
1358 other_cpus = all_cpus;
1359 CPU_CLR(cpuid, &other_cpus);
1360 if (pmap == kernel_pmap)
1361 active = all_cpus;
1362 else
1363 active = pmap->pm_active;
1364 if (CPU_OVERLAP(&active, &other_cpus)) {
1365 act.store = cpuid;
1366 act.invalidate = active;
1367 act.va = va;
1368 act.pde = pde;
1369 act.newpde = newpde;
1370 CPU_SET(cpuid, &active);
1371 smp_rendezvous_cpus(active,
1372 smp_no_rendezvous_barrier, pmap == kernel_pmap ?
1373 pmap_update_pde_kernel : pmap_update_pde_user,
1374 pmap_update_pde_teardown, &act);
1375 } else {
1376 if (pmap == kernel_pmap)
1377 pmap_kenter_pde(va, newpde);
1378 else
1379 pde_store(pde, newpde);
1380 if (CPU_ISSET(cpuid, &active))
1381 pmap_update_pde_invalidate(va, newpde);
1382 }
1383 sched_unpin();
1384 }
1385 #else /* !SMP */
1386 /*
1387 * Normal, non-SMP, 486+ invalidation functions.
1388 * We inline these within pmap.c for speed.
1389 */
1390 static void
pmap_invalidate_page_int(pmap_t pmap,vm_offset_t va)1391 pmap_invalidate_page_int(pmap_t pmap, vm_offset_t va)
1392 {
1393
1394 if (pmap == kernel_pmap)
1395 invlpg(va);
1396 }
1397
1398 static void
pmap_invalidate_range_int(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)1399 pmap_invalidate_range_int(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1400 {
1401 vm_offset_t addr;
1402
1403 if (pmap == kernel_pmap)
1404 for (addr = sva; addr < eva; addr += PAGE_SIZE)
1405 invlpg(addr);
1406 }
1407
1408 static void
pmap_invalidate_all_int(pmap_t pmap)1409 pmap_invalidate_all_int(pmap_t pmap)
1410 {
1411
1412 if (pmap == kernel_pmap)
1413 invltlb();
1414 }
1415
1416 static void
__CONCAT(PMTYPE,invalidate_cache)1417 __CONCAT(PMTYPE, invalidate_cache)(void)
1418 {
1419
1420 wbinvd();
1421 }
1422
1423 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)1424 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1425 {
1426
1427 if (pmap == kernel_pmap)
1428 pmap_kenter_pde(va, newpde);
1429 else
1430 pde_store(pde, newpde);
1431 if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1432 pmap_update_pde_invalidate(va, newpde);
1433 }
1434 #endif /* !SMP */
1435
1436 static void
__CONCAT(PMTYPE,invalidate_page)1437 __CONCAT(PMTYPE, invalidate_page)(pmap_t pmap, vm_offset_t va)
1438 {
1439
1440 pmap_invalidate_page_int(pmap, va);
1441 }
1442
1443 static void
__CONCAT(PMTYPE,invalidate_range)1444 __CONCAT(PMTYPE, invalidate_range)(pmap_t pmap, vm_offset_t sva,
1445 vm_offset_t eva)
1446 {
1447
1448 pmap_invalidate_range_int(pmap, sva, eva);
1449 }
1450
1451 static void
__CONCAT(PMTYPE,invalidate_all)1452 __CONCAT(PMTYPE, invalidate_all)(pmap_t pmap)
1453 {
1454
1455 pmap_invalidate_all_int(pmap);
1456 }
1457
1458 static void
pmap_invalidate_pde_page(pmap_t pmap,vm_offset_t va,pd_entry_t pde)1459 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1460 {
1461
1462 /*
1463 * When the PDE has PG_PROMOTED set, the 2- or 4MB page mapping was
1464 * created by a promotion that did not invalidate the 512 or 1024 4KB
1465 * page mappings that might exist in the TLB. Consequently, at this
1466 * point, the TLB may hold both 4KB and 2- or 4MB page mappings for
1467 * the address range [va, va + NBPDR). Therefore, the entire range
1468 * must be invalidated here. In contrast, when PG_PROMOTED is clear,
1469 * the TLB will not hold any 4KB page mappings for the address range
1470 * [va, va + NBPDR), and so a single INVLPG suffices to invalidate the
1471 * 2- or 4MB page mapping from the TLB.
1472 */
1473 if ((pde & PG_PROMOTED) != 0)
1474 pmap_invalidate_range_int(pmap, va, va + NBPDR - 1);
1475 else
1476 pmap_invalidate_page_int(pmap, va);
1477 }
1478
1479 /*
1480 * Are we current address space or kernel?
1481 */
1482 static __inline int
pmap_is_current(pmap_t pmap)1483 pmap_is_current(pmap_t pmap)
1484 {
1485
1486 return (pmap == kernel_pmap);
1487 }
1488
1489 /*
1490 * If the given pmap is not the current or kernel pmap, the returned pte must
1491 * be released by passing it to pmap_pte_release().
1492 */
1493 static pt_entry_t *
__CONCAT(PMTYPE,pte)1494 __CONCAT(PMTYPE, pte)(pmap_t pmap, vm_offset_t va)
1495 {
1496 pd_entry_t newpf;
1497 pd_entry_t *pde;
1498
1499 pde = pmap_pde(pmap, va);
1500 if (*pde & PG_PS)
1501 return (pde);
1502 if (*pde != 0) {
1503 /* are we current address space or kernel? */
1504 if (pmap_is_current(pmap))
1505 return (vtopte(va));
1506 mtx_lock(&PMAP2mutex);
1507 newpf = *pde & PG_FRAME;
1508 if ((*PMAP2 & PG_FRAME) != newpf) {
1509 *PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1510 pmap_invalidate_page_int(kernel_pmap,
1511 (vm_offset_t)PADDR2);
1512 }
1513 return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1514 }
1515 return (NULL);
1516 }
1517
1518 /*
1519 * Releases a pte that was obtained from pmap_pte(). Be prepared for the pte
1520 * being NULL.
1521 */
1522 static __inline void
pmap_pte_release(pt_entry_t * pte)1523 pmap_pte_release(pt_entry_t *pte)
1524 {
1525
1526 if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1527 mtx_unlock(&PMAP2mutex);
1528 }
1529
1530 /*
1531 * NB: The sequence of updating a page table followed by accesses to the
1532 * corresponding pages is subject to the situation described in the "AMD64
1533 * Architecture Programmer's Manual Volume 2: System Programming" rev. 3.23,
1534 * "7.3.1 Special Coherency Considerations". Therefore, issuing the INVLPG
1535 * right after modifying the PTE bits is crucial.
1536 */
1537 static __inline void
invlcaddr(void * caddr)1538 invlcaddr(void *caddr)
1539 {
1540
1541 invlpg((u_int)caddr);
1542 }
1543
1544 /*
1545 * Super fast pmap_pte routine best used when scanning
1546 * the pv lists. This eliminates many coarse-grained
1547 * invltlb calls. Note that many of the pv list
1548 * scans are across different pmaps. It is very wasteful
1549 * to do an entire invltlb for checking a single mapping.
1550 *
1551 * If the given pmap is not the current pmap, pvh_global_lock
1552 * must be held and curthread pinned to a CPU.
1553 */
1554 static pt_entry_t *
pmap_pte_quick(pmap_t pmap,vm_offset_t va)1555 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1556 {
1557 pd_entry_t newpf;
1558 pd_entry_t *pde;
1559
1560 pde = pmap_pde(pmap, va);
1561 if (*pde & PG_PS)
1562 return (pde);
1563 if (*pde != 0) {
1564 /* are we current address space or kernel? */
1565 if (pmap_is_current(pmap))
1566 return (vtopte(va));
1567 rw_assert(&pvh_global_lock, RA_WLOCKED);
1568 KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1569 newpf = *pde & PG_FRAME;
1570 if ((*PMAP1 & PG_FRAME) != newpf) {
1571 *PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1572 #ifdef SMP
1573 PMAP1cpu = PCPU_GET(cpuid);
1574 #endif
1575 invlcaddr(PADDR1);
1576 PMAP1changed++;
1577 } else
1578 #ifdef SMP
1579 if (PMAP1cpu != PCPU_GET(cpuid)) {
1580 PMAP1cpu = PCPU_GET(cpuid);
1581 invlcaddr(PADDR1);
1582 PMAP1changedcpu++;
1583 } else
1584 #endif
1585 PMAP1unchanged++;
1586 return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1587 }
1588 return (0);
1589 }
1590
1591 static pt_entry_t *
pmap_pte_quick3(pmap_t pmap,vm_offset_t va)1592 pmap_pte_quick3(pmap_t pmap, vm_offset_t va)
1593 {
1594 pd_entry_t newpf;
1595 pd_entry_t *pde;
1596
1597 pde = pmap_pde(pmap, va);
1598 if (*pde & PG_PS)
1599 return (pde);
1600 if (*pde != 0) {
1601 rw_assert(&pvh_global_lock, RA_WLOCKED);
1602 KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1603 newpf = *pde & PG_FRAME;
1604 if ((*PMAP3 & PG_FRAME) != newpf) {
1605 *PMAP3 = newpf | PG_RW | PG_V | PG_A | PG_M;
1606 #ifdef SMP
1607 PMAP3cpu = PCPU_GET(cpuid);
1608 #endif
1609 invlcaddr(PADDR3);
1610 PMAP1changed++;
1611 } else
1612 #ifdef SMP
1613 if (PMAP3cpu != PCPU_GET(cpuid)) {
1614 PMAP3cpu = PCPU_GET(cpuid);
1615 invlcaddr(PADDR3);
1616 PMAP1changedcpu++;
1617 } else
1618 #endif
1619 PMAP1unchanged++;
1620 return (PADDR3 + (i386_btop(va) & (NPTEPG - 1)));
1621 }
1622 return (0);
1623 }
1624
1625 static pt_entry_t
pmap_pte_ufast(pmap_t pmap,vm_offset_t va,pd_entry_t pde)1626 pmap_pte_ufast(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1627 {
1628 pt_entry_t *eh_ptep, pte, *ptep;
1629
1630 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1631 pde &= PG_FRAME;
1632 critical_enter();
1633 eh_ptep = (pt_entry_t *)PCPU_GET(pmap_eh_ptep);
1634 if ((*eh_ptep & PG_FRAME) != pde) {
1635 *eh_ptep = pde | PG_RW | PG_V | PG_A | PG_M;
1636 invlcaddr((void *)PCPU_GET(pmap_eh_va));
1637 }
1638 ptep = (pt_entry_t *)PCPU_GET(pmap_eh_va) + (i386_btop(va) &
1639 (NPTEPG - 1));
1640 pte = *ptep;
1641 critical_exit();
1642 return (pte);
1643 }
1644
1645 /*
1646 * Extract from the kernel page table the physical address that is mapped by
1647 * the given virtual address "va".
1648 *
1649 * This function may be used before pmap_bootstrap() is called.
1650 */
1651 static vm_paddr_t
__CONCAT(PMTYPE,kextract)1652 __CONCAT(PMTYPE, kextract)(vm_offset_t va)
1653 {
1654 vm_paddr_t pa;
1655
1656 if ((pa = pte_load(&PTD[va >> PDRSHIFT])) & PG_PS) {
1657 pa = (pa & PG_PS_FRAME) | (va & PDRMASK);
1658 } else {
1659 /*
1660 * Beware of a concurrent promotion that changes the PDE at
1661 * this point! For example, vtopte() must not be used to
1662 * access the PTE because it would use the new PDE. It is,
1663 * however, safe to use the old PDE because the page table
1664 * page is preserved by the promotion.
1665 */
1666 pa = KPTmap[i386_btop(va)];
1667 pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1668 }
1669 return (pa);
1670 }
1671
1672 /*
1673 * Routine: pmap_extract
1674 * Function:
1675 * Extract the physical page address associated
1676 * with the given map/virtual_address pair.
1677 */
1678 static vm_paddr_t
__CONCAT(PMTYPE,extract)1679 __CONCAT(PMTYPE, extract)(pmap_t pmap, vm_offset_t va)
1680 {
1681 vm_paddr_t rtval;
1682 pt_entry_t pte;
1683 pd_entry_t pde;
1684
1685 rtval = 0;
1686 PMAP_LOCK(pmap);
1687 pde = pmap->pm_pdir[va >> PDRSHIFT];
1688 if (pde != 0) {
1689 if ((pde & PG_PS) != 0)
1690 rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1691 else {
1692 pte = pmap_pte_ufast(pmap, va, pde);
1693 rtval = (pte & PG_FRAME) | (va & PAGE_MASK);
1694 }
1695 }
1696 PMAP_UNLOCK(pmap);
1697 return (rtval);
1698 }
1699
1700 /*
1701 * Routine: pmap_extract_and_hold
1702 * Function:
1703 * Atomically extract and hold the physical page
1704 * with the given pmap and virtual address pair
1705 * if that mapping permits the given protection.
1706 */
1707 static vm_page_t
__CONCAT(PMTYPE,extract_and_hold)1708 __CONCAT(PMTYPE, extract_and_hold)(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1709 {
1710 pd_entry_t pde;
1711 pt_entry_t pte;
1712 vm_page_t m;
1713
1714 m = NULL;
1715 PMAP_LOCK(pmap);
1716 pde = *pmap_pde(pmap, va);
1717 if (pde != 0) {
1718 if (pde & PG_PS) {
1719 if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0)
1720 m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1721 (va & PDRMASK));
1722 } else {
1723 pte = pmap_pte_ufast(pmap, va, pde);
1724 if (pte != 0 &&
1725 ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0))
1726 m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1727 }
1728 if (m != NULL && !vm_page_wire_mapped(m))
1729 m = NULL;
1730 }
1731 PMAP_UNLOCK(pmap);
1732 return (m);
1733 }
1734
1735 /***************************************************
1736 * Low level mapping routines.....
1737 ***************************************************/
1738
1739 /*
1740 * Add a wired page to the kva.
1741 * Note: not SMP coherent.
1742 *
1743 * This function may be used before pmap_bootstrap() is called.
1744 */
1745 static void
__CONCAT(PMTYPE,kenter)1746 __CONCAT(PMTYPE, kenter)(vm_offset_t va, vm_paddr_t pa)
1747 {
1748 pt_entry_t *pte;
1749
1750 pte = vtopte(va);
1751 pte_store(pte, pa | PG_RW | PG_V);
1752 }
1753
1754 static __inline void
pmap_kenter_attr(vm_offset_t va,vm_paddr_t pa,int mode)1755 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1756 {
1757 pt_entry_t *pte;
1758
1759 pte = vtopte(va);
1760 pte_store(pte, pa | PG_RW | PG_V | pmap_cache_bits(kernel_pmap,
1761 mode, false));
1762 }
1763
1764 /*
1765 * Remove a page from the kernel pagetables.
1766 * Note: not SMP coherent.
1767 *
1768 * This function may be used before pmap_bootstrap() is called.
1769 */
1770 static void
__CONCAT(PMTYPE,kremove)1771 __CONCAT(PMTYPE, kremove)(vm_offset_t va)
1772 {
1773 pt_entry_t *pte;
1774
1775 pte = vtopte(va);
1776 pte_clear(pte);
1777 }
1778
1779 /*
1780 * Used to map a range of physical addresses into kernel
1781 * virtual address space.
1782 *
1783 * The value passed in '*virt' is a suggested virtual address for
1784 * the mapping. Architectures which can support a direct-mapped
1785 * physical to virtual region can return the appropriate address
1786 * within that region, leaving '*virt' unchanged. Other
1787 * architectures should map the pages starting at '*virt' and
1788 * update '*virt' with the first usable address after the mapped
1789 * region.
1790 */
1791 static vm_offset_t
__CONCAT(PMTYPE,map)1792 __CONCAT(PMTYPE, map)(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end,
1793 int prot)
1794 {
1795 vm_offset_t va, sva;
1796 vm_paddr_t superpage_offset;
1797 pd_entry_t newpde;
1798
1799 va = *virt;
1800 /*
1801 * Does the physical address range's size and alignment permit at
1802 * least one superpage mapping to be created?
1803 */
1804 superpage_offset = start & PDRMASK;
1805 if ((end - start) - ((NBPDR - superpage_offset) & PDRMASK) >= NBPDR) {
1806 /*
1807 * Increase the starting virtual address so that its alignment
1808 * does not preclude the use of superpage mappings.
1809 */
1810 if ((va & PDRMASK) < superpage_offset)
1811 va = (va & ~PDRMASK) + superpage_offset;
1812 else if ((va & PDRMASK) > superpage_offset)
1813 va = ((va + PDRMASK) & ~PDRMASK) + superpage_offset;
1814 }
1815 sva = va;
1816 while (start < end) {
1817 if ((start & PDRMASK) == 0 && end - start >= NBPDR &&
1818 pseflag != 0) {
1819 KASSERT((va & PDRMASK) == 0,
1820 ("pmap_map: misaligned va %#x", va));
1821 newpde = start | PG_PS | PG_RW | PG_V;
1822 pmap_kenter_pde(va, newpde);
1823 va += NBPDR;
1824 start += NBPDR;
1825 } else {
1826 pmap_kenter(va, start);
1827 va += PAGE_SIZE;
1828 start += PAGE_SIZE;
1829 }
1830 }
1831 pmap_invalidate_range_int(kernel_pmap, sva, va);
1832 *virt = va;
1833 return (sva);
1834 }
1835
1836 /*
1837 * Add a list of wired pages to the kva
1838 * this routine is only used for temporary
1839 * kernel mappings that do not need to have
1840 * page modification or references recorded.
1841 * Note that old mappings are simply written
1842 * over. The page *must* be wired.
1843 * Note: SMP coherent. Uses a ranged shootdown IPI.
1844 */
1845 static void
__CONCAT(PMTYPE,qenter)1846 __CONCAT(PMTYPE, qenter)(vm_offset_t sva, vm_page_t *ma, int count)
1847 {
1848 pt_entry_t *endpte, oldpte, pa, *pte;
1849 vm_page_t m;
1850
1851 oldpte = 0;
1852 pte = vtopte(sva);
1853 endpte = pte + count;
1854 while (pte < endpte) {
1855 m = *ma++;
1856 pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(kernel_pmap,
1857 m->md.pat_mode, false);
1858 if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
1859 oldpte |= *pte;
1860 pte_store(pte, pa | pg_nx | PG_RW | PG_V);
1861 }
1862 pte++;
1863 }
1864 if (__predict_false((oldpte & PG_V) != 0))
1865 pmap_invalidate_range_int(kernel_pmap, sva, sva + count *
1866 PAGE_SIZE);
1867 }
1868
1869 /*
1870 * This routine tears out page mappings from the
1871 * kernel -- it is meant only for temporary mappings.
1872 * Note: SMP coherent. Uses a ranged shootdown IPI.
1873 */
1874 static void
__CONCAT(PMTYPE,qremove)1875 __CONCAT(PMTYPE, qremove)(vm_offset_t sva, int count)
1876 {
1877 vm_offset_t va;
1878
1879 va = sva;
1880 while (count-- > 0) {
1881 pmap_kremove(va);
1882 va += PAGE_SIZE;
1883 }
1884 pmap_invalidate_range_int(kernel_pmap, sva, va);
1885 }
1886
1887 /***************************************************
1888 * Page table page management routines.....
1889 ***************************************************/
1890 /*
1891 * Schedule the specified unused page table page to be freed. Specifically,
1892 * add the page to the specified list of pages that will be released to the
1893 * physical memory manager after the TLB has been updated.
1894 */
1895 static __inline void
pmap_add_delayed_free_list(vm_page_t m,struct spglist * free,bool set_PG_ZERO)1896 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, bool set_PG_ZERO)
1897 {
1898
1899 if (set_PG_ZERO)
1900 m->flags |= PG_ZERO;
1901 else
1902 m->flags &= ~PG_ZERO;
1903 SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1904 }
1905
1906 /*
1907 * Inserts the specified page table page into the specified pmap's collection
1908 * of idle page table pages. Each of a pmap's page table pages is responsible
1909 * for mapping a distinct range of virtual addresses. The pmap's collection is
1910 * ordered by this virtual address range.
1911 *
1912 * If "promoted" is false, then the page table page "mpte" must be zero filled;
1913 * "mpte"'s valid field will be set to 0.
1914 *
1915 * If "promoted" is true and "allpte_PG_A_set" is false, then "mpte" must
1916 * contain valid mappings with identical attributes except for PG_A; "mpte"'s
1917 * valid field will be set to 1.
1918 *
1919 * If "promoted" and "allpte_PG_A_set" are both true, then "mpte" must contain
1920 * valid mappings with identical attributes including PG_A; "mpte"'s valid
1921 * field will be set to VM_PAGE_BITS_ALL.
1922 */
1923 static __inline int
pmap_insert_pt_page(pmap_t pmap,vm_page_t mpte,bool promoted,bool allpte_PG_A_set)1924 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
1925 bool allpte_PG_A_set)
1926 {
1927
1928 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1929 KASSERT(promoted || !allpte_PG_A_set,
1930 ("a zero-filled PTP can't have PG_A set in every PTE"));
1931 mpte->valid = promoted ? (allpte_PG_A_set ? VM_PAGE_BITS_ALL : 1) : 0;
1932 return (vm_radix_insert(&pmap->pm_root, mpte));
1933 }
1934
1935 /*
1936 * Removes the page table page mapping the specified virtual address from the
1937 * specified pmap's collection of idle page table pages, and returns it.
1938 * Otherwise, returns NULL if there is no page table page corresponding to the
1939 * specified virtual address.
1940 */
1941 static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap,vm_offset_t va)1942 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
1943 {
1944
1945 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1946 return (vm_radix_remove(&pmap->pm_root, va >> PDRSHIFT));
1947 }
1948
1949 /*
1950 * Decrements a page table page's reference count, which is used to record the
1951 * number of valid page table entries within the page. If the reference count
1952 * drops to zero, then the page table page is unmapped. Returns true if the
1953 * page table page was unmapped and false otherwise.
1954 */
1955 static inline bool
pmap_unwire_ptp(pmap_t pmap,vm_page_t m,struct spglist * free)1956 pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1957 {
1958
1959 --m->ref_count;
1960 if (m->ref_count == 0) {
1961 _pmap_unwire_ptp(pmap, m, free);
1962 return (true);
1963 } else
1964 return (false);
1965 }
1966
1967 static void
_pmap_unwire_ptp(pmap_t pmap,vm_page_t m,struct spglist * free)1968 _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1969 {
1970
1971 /*
1972 * unmap the page table page
1973 */
1974 pmap->pm_pdir[m->pindex] = 0;
1975 --pmap->pm_stats.resident_count;
1976
1977 /*
1978 * There is not need to invalidate the recursive mapping since
1979 * we never instantiate such mapping for the usermode pmaps,
1980 * and never remove page table pages from the kernel pmap.
1981 * Put page on a list so that it is released since all TLB
1982 * shootdown is done.
1983 */
1984 MPASS(pmap != kernel_pmap);
1985 pmap_add_delayed_free_list(m, free, true);
1986 }
1987
1988 /*
1989 * After removing a page table entry, this routine is used to
1990 * conditionally free the page, and manage the reference count.
1991 */
1992 static int
pmap_unuse_pt(pmap_t pmap,vm_offset_t va,struct spglist * free)1993 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, struct spglist *free)
1994 {
1995 pd_entry_t ptepde;
1996 vm_page_t mpte;
1997
1998 if (pmap == kernel_pmap)
1999 return (0);
2000 ptepde = *pmap_pde(pmap, va);
2001 mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
2002 return (pmap_unwire_ptp(pmap, mpte, free));
2003 }
2004
2005 /*
2006 * Release a page table page reference after a failed attempt to create a
2007 * mapping.
2008 */
2009 static void
pmap_abort_ptp(pmap_t pmap,vm_offset_t va,vm_page_t mpte)2010 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
2011 {
2012 struct spglist free;
2013
2014 SLIST_INIT(&free);
2015 if (pmap_unwire_ptp(pmap, mpte, &free)) {
2016 /*
2017 * Although "va" was never mapped, paging-structure caches
2018 * could nonetheless have entries that refer to the freed
2019 * page table pages. Invalidate those entries.
2020 */
2021 pmap_invalidate_page_int(pmap, va);
2022 vm_page_free_pages_toq(&free, true);
2023 }
2024 }
2025
2026 /*
2027 * Initialize the pmap for the swapper process.
2028 */
2029 static void
__CONCAT(PMTYPE,pinit0)2030 __CONCAT(PMTYPE, pinit0)(pmap_t pmap)
2031 {
2032
2033 PMAP_LOCK_INIT(pmap);
2034 pmap->pm_pdir = IdlePTD;
2035 #ifdef PMAP_PAE_COMP
2036 pmap->pm_pdpt = IdlePDPT;
2037 #endif
2038 vm_radix_init(&pmap->pm_root);
2039 CPU_ZERO(&pmap->pm_active);
2040 TAILQ_INIT(&pmap->pm_pvchunk);
2041 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2042 pmap_activate_boot(pmap);
2043 }
2044
2045 /*
2046 * Initialize a preallocated and zeroed pmap structure,
2047 * such as one in a vmspace structure.
2048 */
2049 static int
__CONCAT(PMTYPE,pinit)2050 __CONCAT(PMTYPE, pinit)(pmap_t pmap)
2051 {
2052 int i;
2053
2054 /*
2055 * No need to allocate page table space yet but we do need a valid
2056 * page directory table.
2057 */
2058 if (pmap->pm_pdir == NULL) {
2059 pmap->pm_pdir = (pd_entry_t *)kva_alloc(NBPTD);
2060 if (pmap->pm_pdir == NULL)
2061 return (0);
2062 #ifdef PMAP_PAE_COMP
2063 pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
2064 KASSERT(((vm_offset_t)pmap->pm_pdpt &
2065 ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
2066 ("pmap_pinit: pdpt misaligned"));
2067 KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
2068 ("pmap_pinit: pdpt above 4g"));
2069 #endif
2070 vm_radix_init(&pmap->pm_root);
2071 }
2072 KASSERT(vm_radix_is_empty(&pmap->pm_root),
2073 ("pmap_pinit: pmap has reserved page table page(s)"));
2074
2075 /*
2076 * allocate the page directory page(s)
2077 */
2078 for (i = 0; i < NPGPTD; i++) {
2079 pmap->pm_ptdpg[i] = vm_page_alloc_noobj(VM_ALLOC_WIRED |
2080 VM_ALLOC_ZERO | VM_ALLOC_WAITOK);
2081 #ifdef PMAP_PAE_COMP
2082 pmap->pm_pdpt[i] = VM_PAGE_TO_PHYS(pmap->pm_ptdpg[i]) | PG_V;
2083 #endif
2084 }
2085
2086 pmap_qenter((vm_offset_t)pmap->pm_pdir, pmap->pm_ptdpg, NPGPTD);
2087 #ifdef PMAP_PAE_COMP
2088 if ((cpu_feature & CPUID_PAT) == 0) {
2089 pmap_invalidate_cache_range(
2090 trunc_page((vm_offset_t)pmap->pm_pdpt),
2091 round_page((vm_offset_t)pmap->pm_pdpt +
2092 NPGPTD * sizeof(pdpt_entry_t)));
2093 }
2094 #endif
2095
2096 /* Install the trampoline mapping. */
2097 pmap->pm_pdir[TRPTDI] = PTD[TRPTDI];
2098
2099 CPU_ZERO(&pmap->pm_active);
2100 TAILQ_INIT(&pmap->pm_pvchunk);
2101 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2102
2103 return (1);
2104 }
2105
2106 /*
2107 * this routine is called if the page table page is not
2108 * mapped correctly.
2109 */
2110 static vm_page_t
_pmap_allocpte(pmap_t pmap,u_int ptepindex,u_int flags)2111 _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags)
2112 {
2113 vm_paddr_t ptepa;
2114 vm_page_t m;
2115
2116 /*
2117 * Allocate a page table page.
2118 */
2119 if ((m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
2120 if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
2121 PMAP_UNLOCK(pmap);
2122 rw_wunlock(&pvh_global_lock);
2123 vm_wait(NULL);
2124 rw_wlock(&pvh_global_lock);
2125 PMAP_LOCK(pmap);
2126 }
2127
2128 /*
2129 * Indicate the need to retry. While waiting, the page table
2130 * page may have been allocated.
2131 */
2132 return (NULL);
2133 }
2134 m->pindex = ptepindex;
2135
2136 /*
2137 * Map the pagetable page into the process address space, if
2138 * it isn't already there.
2139 */
2140
2141 pmap->pm_stats.resident_count++;
2142
2143 ptepa = VM_PAGE_TO_PHYS(m);
2144 KASSERT((pmap->pm_pdir[ptepindex] & PG_V) == 0,
2145 ("%s: page directory entry %#jx is valid",
2146 __func__, (uintmax_t)pmap->pm_pdir[ptepindex]));
2147 pmap->pm_pdir[ptepindex] =
2148 (pd_entry_t)(ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
2149
2150 return (m);
2151 }
2152
2153 static vm_page_t
pmap_allocpte(pmap_t pmap,vm_offset_t va,u_int flags)2154 pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
2155 {
2156 u_int ptepindex;
2157 pd_entry_t ptepa;
2158 vm_page_t m;
2159
2160 /*
2161 * Calculate pagetable page index
2162 */
2163 ptepindex = va >> PDRSHIFT;
2164 retry:
2165 /*
2166 * Get the page directory entry
2167 */
2168 ptepa = pmap->pm_pdir[ptepindex];
2169
2170 /*
2171 * This supports switching from a 4MB page to a
2172 * normal 4K page.
2173 */
2174 if (ptepa & PG_PS) {
2175 (void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
2176 ptepa = pmap->pm_pdir[ptepindex];
2177 }
2178
2179 /*
2180 * If the page table page is mapped, we just increment the
2181 * hold count, and activate it.
2182 */
2183 if (ptepa) {
2184 m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
2185 m->ref_count++;
2186 } else {
2187 /*
2188 * Here if the pte page isn't mapped, or if it has
2189 * been deallocated.
2190 */
2191 m = _pmap_allocpte(pmap, ptepindex, flags);
2192 if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
2193 goto retry;
2194 }
2195 return (m);
2196 }
2197
2198 /***************************************************
2199 * Pmap allocation/deallocation routines.
2200 ***************************************************/
2201
2202 /*
2203 * Release any resources held by the given physical map.
2204 * Called when a pmap initialized by pmap_pinit is being released.
2205 * Should only be called if the map contains no valid mappings.
2206 */
2207 static void
__CONCAT(PMTYPE,release)2208 __CONCAT(PMTYPE, release)(pmap_t pmap)
2209 {
2210 vm_page_t m;
2211 int i;
2212
2213 KASSERT(pmap->pm_stats.resident_count == 0,
2214 ("pmap_release: pmap resident count %ld != 0",
2215 pmap->pm_stats.resident_count));
2216 KASSERT(vm_radix_is_empty(&pmap->pm_root),
2217 ("pmap_release: pmap has reserved page table page(s)"));
2218 KASSERT(CPU_EMPTY(&pmap->pm_active),
2219 ("releasing active pmap %p", pmap));
2220
2221 pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
2222
2223 for (i = 0; i < NPGPTD; i++) {
2224 m = pmap->pm_ptdpg[i];
2225 #ifdef PMAP_PAE_COMP
2226 KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
2227 ("pmap_release: got wrong ptd page"));
2228 #endif
2229 vm_page_unwire_noq(m);
2230 vm_page_free(m);
2231 }
2232 }
2233
2234 /*
2235 * grow the number of kernel page table entries, if needed
2236 */
2237 static void
__CONCAT(PMTYPE,growkernel)2238 __CONCAT(PMTYPE, growkernel)(vm_offset_t addr)
2239 {
2240 vm_paddr_t ptppaddr;
2241 vm_page_t nkpg;
2242 pd_entry_t newpdir;
2243
2244 mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2245 addr = roundup2(addr, NBPDR);
2246 if (addr - 1 >= vm_map_max(kernel_map))
2247 addr = vm_map_max(kernel_map);
2248 while (kernel_vm_end < addr) {
2249 if (pdir_pde(PTD, kernel_vm_end)) {
2250 kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2251 if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2252 kernel_vm_end = vm_map_max(kernel_map);
2253 break;
2254 }
2255 continue;
2256 }
2257
2258 nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
2259 VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2260 if (nkpg == NULL)
2261 panic("pmap_growkernel: no memory to grow kernel");
2262 nkpg->pindex = kernel_vm_end >> PDRSHIFT;
2263 nkpt++;
2264
2265 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2266 newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2267 pdir_pde(KPTD, kernel_vm_end) = newpdir;
2268
2269 pmap_kenter_pde(kernel_vm_end, newpdir);
2270 kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2271 if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2272 kernel_vm_end = vm_map_max(kernel_map);
2273 break;
2274 }
2275 }
2276 }
2277
2278 /***************************************************
2279 * page management routines.
2280 ***************************************************/
2281
2282 static const uint32_t pc_freemask[_NPCM] = {
2283 [0 ... _NPCM - 2] = PC_FREEN,
2284 [_NPCM - 1] = PC_FREEL
2285 };
2286
2287 #ifdef PV_STATS
2288 extern int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2289 extern long pv_entry_frees, pv_entry_allocs;
2290 extern int pv_entry_spare;
2291 #endif
2292
2293 /*
2294 * We are in a serious low memory condition. Resort to
2295 * drastic measures to free some pages so we can allocate
2296 * another pv entry chunk.
2297 */
2298 static vm_page_t
pmap_pv_reclaim(pmap_t locked_pmap)2299 pmap_pv_reclaim(pmap_t locked_pmap)
2300 {
2301 struct pch newtail;
2302 struct pv_chunk *pc;
2303 struct md_page *pvh;
2304 pd_entry_t *pde;
2305 pmap_t pmap;
2306 pt_entry_t *pte, tpte;
2307 pv_entry_t pv;
2308 vm_offset_t va;
2309 vm_page_t m, m_pc;
2310 struct spglist free;
2311 uint32_t inuse;
2312 int bit, field, freed;
2313
2314 PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2315 pmap = NULL;
2316 m_pc = NULL;
2317 SLIST_INIT(&free);
2318 TAILQ_INIT(&newtail);
2319 while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2320 SLIST_EMPTY(&free))) {
2321 TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2322 if (pmap != pc->pc_pmap) {
2323 if (pmap != NULL) {
2324 pmap_invalidate_all_int(pmap);
2325 if (pmap != locked_pmap)
2326 PMAP_UNLOCK(pmap);
2327 }
2328 pmap = pc->pc_pmap;
2329 /* Avoid deadlock and lock recursion. */
2330 if (pmap > locked_pmap)
2331 PMAP_LOCK(pmap);
2332 else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2333 pmap = NULL;
2334 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2335 continue;
2336 }
2337 }
2338
2339 /*
2340 * Destroy every non-wired, 4 KB page mapping in the chunk.
2341 */
2342 freed = 0;
2343 for (field = 0; field < _NPCM; field++) {
2344 for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2345 inuse != 0; inuse &= ~(1UL << bit)) {
2346 bit = bsfl(inuse);
2347 pv = &pc->pc_pventry[field * 32 + bit];
2348 va = pv->pv_va;
2349 pde = pmap_pde(pmap, va);
2350 if ((*pde & PG_PS) != 0)
2351 continue;
2352 pte = __CONCAT(PMTYPE, pte)(pmap, va);
2353 tpte = *pte;
2354 if ((tpte & PG_W) == 0)
2355 tpte = pte_load_clear(pte);
2356 pmap_pte_release(pte);
2357 if ((tpte & PG_W) != 0)
2358 continue;
2359 KASSERT(tpte != 0,
2360 ("pmap_pv_reclaim: pmap %p va %x zero pte",
2361 pmap, va));
2362 if ((tpte & PG_G) != 0)
2363 pmap_invalidate_page_int(pmap, va);
2364 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2365 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2366 vm_page_dirty(m);
2367 if ((tpte & PG_A) != 0)
2368 vm_page_aflag_set(m, PGA_REFERENCED);
2369 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2370 if (TAILQ_EMPTY(&m->md.pv_list) &&
2371 (m->flags & PG_FICTITIOUS) == 0) {
2372 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2373 if (TAILQ_EMPTY(&pvh->pv_list)) {
2374 vm_page_aflag_clear(m,
2375 PGA_WRITEABLE);
2376 }
2377 }
2378 pc->pc_map[field] |= 1UL << bit;
2379 pmap_unuse_pt(pmap, va, &free);
2380 freed++;
2381 }
2382 }
2383 if (freed == 0) {
2384 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2385 continue;
2386 }
2387 /* Every freed mapping is for a 4 KB page. */
2388 pmap->pm_stats.resident_count -= freed;
2389 PV_STAT(pv_entry_frees += freed);
2390 PV_STAT(pv_entry_spare += freed);
2391 pv_entry_count -= freed;
2392 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2393 for (field = 0; field < _NPCM; field++)
2394 if (pc->pc_map[field] != pc_freemask[field]) {
2395 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2396 pc_list);
2397 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2398
2399 /*
2400 * One freed pv entry in locked_pmap is
2401 * sufficient.
2402 */
2403 if (pmap == locked_pmap)
2404 goto out;
2405 break;
2406 }
2407 if (field == _NPCM) {
2408 PV_STAT(pv_entry_spare -= _NPCPV);
2409 PV_STAT(pc_chunk_count--);
2410 PV_STAT(pc_chunk_frees++);
2411 /* Entire chunk is free; return it. */
2412 m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2413 pmap_qremove((vm_offset_t)pc, 1);
2414 pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2415 break;
2416 }
2417 }
2418 out:
2419 TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2420 if (pmap != NULL) {
2421 pmap_invalidate_all_int(pmap);
2422 if (pmap != locked_pmap)
2423 PMAP_UNLOCK(pmap);
2424 }
2425 if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2426 m_pc = SLIST_FIRST(&free);
2427 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2428 /* Recycle a freed page table page. */
2429 m_pc->ref_count = 1;
2430 }
2431 vm_page_free_pages_toq(&free, true);
2432 return (m_pc);
2433 }
2434
2435 /*
2436 * free the pv_entry back to the free list
2437 */
2438 static void
free_pv_entry(pmap_t pmap,pv_entry_t pv)2439 free_pv_entry(pmap_t pmap, pv_entry_t pv)
2440 {
2441 struct pv_chunk *pc;
2442 int idx, field, bit;
2443
2444 rw_assert(&pvh_global_lock, RA_WLOCKED);
2445 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2446 PV_STAT(pv_entry_frees++);
2447 PV_STAT(pv_entry_spare++);
2448 pv_entry_count--;
2449 pc = pv_to_chunk(pv);
2450 idx = pv - &pc->pc_pventry[0];
2451 field = idx / 32;
2452 bit = idx % 32;
2453 pc->pc_map[field] |= 1ul << bit;
2454 for (idx = 0; idx < _NPCM; idx++)
2455 if (pc->pc_map[idx] != pc_freemask[idx]) {
2456 /*
2457 * 98% of the time, pc is already at the head of the
2458 * list. If it isn't already, move it to the head.
2459 */
2460 if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2461 pc)) {
2462 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2463 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2464 pc_list);
2465 }
2466 return;
2467 }
2468 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2469 free_pv_chunk(pc);
2470 }
2471
2472 static void
free_pv_chunk(struct pv_chunk * pc)2473 free_pv_chunk(struct pv_chunk *pc)
2474 {
2475 vm_page_t m;
2476
2477 TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2478 PV_STAT(pv_entry_spare -= _NPCPV);
2479 PV_STAT(pc_chunk_count--);
2480 PV_STAT(pc_chunk_frees++);
2481 /* entire chunk is free, return it */
2482 m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2483 pmap_qremove((vm_offset_t)pc, 1);
2484 vm_page_unwire_noq(m);
2485 vm_page_free(m);
2486 pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2487 }
2488
2489 /*
2490 * get a new pv_entry, allocating a block from the system
2491 * when needed.
2492 */
2493 static pv_entry_t
get_pv_entry(pmap_t pmap,bool try)2494 get_pv_entry(pmap_t pmap, bool try)
2495 {
2496 static const struct timeval printinterval = { 60, 0 };
2497 static struct timeval lastprint;
2498 int bit, field;
2499 pv_entry_t pv;
2500 struct pv_chunk *pc;
2501 vm_page_t m;
2502
2503 rw_assert(&pvh_global_lock, RA_WLOCKED);
2504 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2505 PV_STAT(pv_entry_allocs++);
2506 pv_entry_count++;
2507 if (pv_entry_count > pv_entry_high_water)
2508 if (ratecheck(&lastprint, &printinterval))
2509 printf("Approaching the limit on PV entries, consider "
2510 "increasing either the vm.pmap.shpgperproc or the "
2511 "vm.pmap.pv_entry_max tunable.\n");
2512 retry:
2513 pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2514 if (pc != NULL) {
2515 for (field = 0; field < _NPCM; field++) {
2516 if (pc->pc_map[field]) {
2517 bit = bsfl(pc->pc_map[field]);
2518 break;
2519 }
2520 }
2521 if (field < _NPCM) {
2522 pv = &pc->pc_pventry[field * 32 + bit];
2523 pc->pc_map[field] &= ~(1ul << bit);
2524 /* If this was the last item, move it to tail */
2525 for (field = 0; field < _NPCM; field++)
2526 if (pc->pc_map[field] != 0) {
2527 PV_STAT(pv_entry_spare--);
2528 return (pv); /* not full, return */
2529 }
2530 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2531 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2532 PV_STAT(pv_entry_spare--);
2533 return (pv);
2534 }
2535 }
2536 /*
2537 * Access to the ptelist "pv_vafree" is synchronized by the pvh
2538 * global lock. If "pv_vafree" is currently non-empty, it will
2539 * remain non-empty until pmap_ptelist_alloc() completes.
2540 */
2541 if (pv_vafree == 0 ||
2542 (m = vm_page_alloc_noobj(VM_ALLOC_WIRED)) == NULL) {
2543 if (try) {
2544 pv_entry_count--;
2545 PV_STAT(pc_chunk_tryfail++);
2546 return (NULL);
2547 }
2548 m = pmap_pv_reclaim(pmap);
2549 if (m == NULL)
2550 goto retry;
2551 }
2552 PV_STAT(pc_chunk_count++);
2553 PV_STAT(pc_chunk_allocs++);
2554 pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2555 pmap_qenter((vm_offset_t)pc, &m, 1);
2556 pc->pc_pmap = pmap;
2557 pc->pc_map[0] = pc_freemask[0] & ~1ul; /* preallocated bit 0 */
2558 for (field = 1; field < _NPCM; field++)
2559 pc->pc_map[field] = pc_freemask[field];
2560 TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2561 pv = &pc->pc_pventry[0];
2562 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2563 PV_STAT(pv_entry_spare += _NPCPV - 1);
2564 return (pv);
2565 }
2566
2567 static __inline pv_entry_t
pmap_pvh_remove(struct md_page * pvh,pmap_t pmap,vm_offset_t va)2568 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2569 {
2570 pv_entry_t pv;
2571
2572 rw_assert(&pvh_global_lock, RA_WLOCKED);
2573 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2574 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2575 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2576 break;
2577 }
2578 }
2579 return (pv);
2580 }
2581
2582 static void
pmap_pv_demote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa)2583 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2584 {
2585 struct md_page *pvh;
2586 pv_entry_t pv;
2587 vm_offset_t va_last;
2588 vm_page_t m;
2589
2590 rw_assert(&pvh_global_lock, RA_WLOCKED);
2591 KASSERT((pa & PDRMASK) == 0,
2592 ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2593
2594 /*
2595 * Transfer the 4mpage's pv entry for this mapping to the first
2596 * page's pv list.
2597 */
2598 pvh = pa_to_pvh(pa);
2599 va = trunc_4mpage(va);
2600 pv = pmap_pvh_remove(pvh, pmap, va);
2601 KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2602 m = PHYS_TO_VM_PAGE(pa);
2603 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2604 /* Instantiate the remaining NPTEPG - 1 pv entries. */
2605 va_last = va + NBPDR - PAGE_SIZE;
2606 do {
2607 m++;
2608 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2609 ("pmap_pv_demote_pde: page %p is not managed", m));
2610 va += PAGE_SIZE;
2611 pmap_insert_entry(pmap, va, m);
2612 } while (va < va_last);
2613 }
2614
2615 #if VM_NRESERVLEVEL > 0
2616 static void
pmap_pv_promote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa)2617 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2618 {
2619 struct md_page *pvh;
2620 pv_entry_t pv;
2621 vm_offset_t va_last;
2622 vm_page_t m;
2623
2624 rw_assert(&pvh_global_lock, RA_WLOCKED);
2625 KASSERT((pa & PDRMASK) == 0,
2626 ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2627
2628 /*
2629 * Transfer the first page's pv entry for this mapping to the
2630 * 4mpage's pv list. Aside from avoiding the cost of a call
2631 * to get_pv_entry(), a transfer avoids the possibility that
2632 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2633 * removes one of the mappings that is being promoted.
2634 */
2635 m = PHYS_TO_VM_PAGE(pa);
2636 va = trunc_4mpage(va);
2637 pv = pmap_pvh_remove(&m->md, pmap, va);
2638 KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2639 pvh = pa_to_pvh(pa);
2640 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2641 /* Free the remaining NPTEPG - 1 pv entries. */
2642 va_last = va + NBPDR - PAGE_SIZE;
2643 do {
2644 m++;
2645 va += PAGE_SIZE;
2646 pmap_pvh_free(&m->md, pmap, va);
2647 } while (va < va_last);
2648 }
2649 #endif /* VM_NRESERVLEVEL > 0 */
2650
2651 static void
pmap_pvh_free(struct md_page * pvh,pmap_t pmap,vm_offset_t va)2652 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2653 {
2654 pv_entry_t pv;
2655
2656 pv = pmap_pvh_remove(pvh, pmap, va);
2657 KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2658 free_pv_entry(pmap, pv);
2659 }
2660
2661 static void
pmap_remove_entry(pmap_t pmap,vm_page_t m,vm_offset_t va)2662 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2663 {
2664 struct md_page *pvh;
2665
2666 rw_assert(&pvh_global_lock, RA_WLOCKED);
2667 pmap_pvh_free(&m->md, pmap, va);
2668 if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
2669 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2670 if (TAILQ_EMPTY(&pvh->pv_list))
2671 vm_page_aflag_clear(m, PGA_WRITEABLE);
2672 }
2673 }
2674
2675 /*
2676 * Create a pv entry for page at pa for
2677 * (pmap, va).
2678 */
2679 static void
pmap_insert_entry(pmap_t pmap,vm_offset_t va,vm_page_t m)2680 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2681 {
2682 pv_entry_t pv;
2683
2684 rw_assert(&pvh_global_lock, RA_WLOCKED);
2685 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2686 pv = get_pv_entry(pmap, false);
2687 pv->pv_va = va;
2688 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2689 }
2690
2691 /*
2692 * Conditionally create a pv entry.
2693 */
2694 static bool
pmap_try_insert_pv_entry(pmap_t pmap,vm_offset_t va,vm_page_t m)2695 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2696 {
2697 pv_entry_t pv;
2698
2699 rw_assert(&pvh_global_lock, RA_WLOCKED);
2700 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2701 if (pv_entry_count < pv_entry_high_water &&
2702 (pv = get_pv_entry(pmap, true)) != NULL) {
2703 pv->pv_va = va;
2704 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2705 return (true);
2706 } else
2707 return (false);
2708 }
2709
2710 /*
2711 * Create the pv entries for each of the pages within a superpage.
2712 */
2713 static bool
pmap_pv_insert_pde(pmap_t pmap,vm_offset_t va,pd_entry_t pde,u_int flags)2714 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags)
2715 {
2716 struct md_page *pvh;
2717 pv_entry_t pv;
2718 bool noreclaim;
2719
2720 rw_assert(&pvh_global_lock, RA_WLOCKED);
2721 noreclaim = (flags & PMAP_ENTER_NORECLAIM) != 0;
2722 if ((noreclaim && pv_entry_count >= pv_entry_high_water) ||
2723 (pv = get_pv_entry(pmap, noreclaim)) == NULL)
2724 return (false);
2725 pv->pv_va = va;
2726 pvh = pa_to_pvh(pde & PG_PS_FRAME);
2727 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2728 return (true);
2729 }
2730
2731 /*
2732 * Fills a page table page with mappings to consecutive physical pages.
2733 */
2734 static void
pmap_fill_ptp(pt_entry_t * firstpte,pt_entry_t newpte)2735 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2736 {
2737 pt_entry_t *pte;
2738
2739 for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2740 *pte = newpte;
2741 newpte += PAGE_SIZE;
2742 }
2743 }
2744
2745 /*
2746 * Tries to demote a 2- or 4MB page mapping. If demotion fails, the
2747 * 2- or 4MB page mapping is invalidated.
2748 */
2749 static bool
pmap_demote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)2750 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2751 {
2752 pd_entry_t newpde, oldpde;
2753 pt_entry_t *firstpte, newpte;
2754 vm_paddr_t mptepa;
2755 vm_page_t mpte;
2756 struct spglist free;
2757 vm_offset_t sva;
2758
2759 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2760 oldpde = *pde;
2761 KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2762 ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2763 if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
2764 NULL) {
2765 KASSERT((oldpde & PG_W) == 0,
2766 ("pmap_demote_pde: page table page for a wired mapping"
2767 " is missing"));
2768
2769 /*
2770 * Invalidate the 2- or 4MB page mapping and return
2771 * "failure" if the mapping was never accessed or the
2772 * allocation of the new page table page fails.
2773 */
2774 if ((oldpde & PG_A) == 0 ||
2775 (mpte = vm_page_alloc_noobj(VM_ALLOC_WIRED)) == NULL) {
2776 SLIST_INIT(&free);
2777 sva = trunc_4mpage(va);
2778 pmap_remove_pde(pmap, pde, sva, &free);
2779 if ((oldpde & PG_G) == 0)
2780 pmap_invalidate_pde_page(pmap, sva, oldpde);
2781 vm_page_free_pages_toq(&free, true);
2782 CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2783 " in pmap %p", va, pmap);
2784 return (false);
2785 }
2786 mpte->pindex = va >> PDRSHIFT;
2787 if (pmap != kernel_pmap) {
2788 mpte->ref_count = NPTEPG;
2789 pmap->pm_stats.resident_count++;
2790 }
2791 }
2792 mptepa = VM_PAGE_TO_PHYS(mpte);
2793
2794 /*
2795 * If the page mapping is in the kernel's address space, then the
2796 * KPTmap can provide access to the page table page. Otherwise,
2797 * temporarily map the page table page (mpte) into the kernel's
2798 * address space at either PADDR1 or PADDR2.
2799 */
2800 if (pmap == kernel_pmap)
2801 firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2802 else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
2803 if ((*PMAP1 & PG_FRAME) != mptepa) {
2804 *PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2805 #ifdef SMP
2806 PMAP1cpu = PCPU_GET(cpuid);
2807 #endif
2808 invlcaddr(PADDR1);
2809 PMAP1changed++;
2810 } else
2811 #ifdef SMP
2812 if (PMAP1cpu != PCPU_GET(cpuid)) {
2813 PMAP1cpu = PCPU_GET(cpuid);
2814 invlcaddr(PADDR1);
2815 PMAP1changedcpu++;
2816 } else
2817 #endif
2818 PMAP1unchanged++;
2819 firstpte = PADDR1;
2820 } else {
2821 mtx_lock(&PMAP2mutex);
2822 if ((*PMAP2 & PG_FRAME) != mptepa) {
2823 *PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2824 pmap_invalidate_page_int(kernel_pmap,
2825 (vm_offset_t)PADDR2);
2826 }
2827 firstpte = PADDR2;
2828 }
2829 newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2830 KASSERT((oldpde & PG_A) != 0,
2831 ("pmap_demote_pde: oldpde is missing PG_A"));
2832 KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2833 ("pmap_demote_pde: oldpde is missing PG_M"));
2834 newpte = oldpde & ~PG_PS;
2835 if ((newpte & PG_PDE_PAT) != 0)
2836 newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2837
2838 /*
2839 * If the PTP is not leftover from an earlier promotion or it does not
2840 * have PG_A set in every PTE, then fill it. The new PTEs will all
2841 * have PG_A set.
2842 */
2843 if (!vm_page_all_valid(mpte))
2844 pmap_fill_ptp(firstpte, newpte);
2845
2846 KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2847 ("pmap_demote_pde: firstpte and newpte map different physical"
2848 " addresses"));
2849
2850 /*
2851 * If the mapping has changed attributes, update the PTEs.
2852 */
2853 if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2854 pmap_fill_ptp(firstpte, newpte);
2855
2856 /*
2857 * Demote the mapping. This pmap is locked. The old PDE has
2858 * PG_A set. If the old PDE has PG_RW set, it also has PG_M
2859 * set. Thus, there is no danger of a race with another
2860 * processor changing the setting of PG_A and/or PG_M between
2861 * the read above and the store below.
2862 */
2863 if (workaround_erratum383)
2864 pmap_update_pde(pmap, va, pde, newpde);
2865 else if (pmap == kernel_pmap)
2866 pmap_kenter_pde(va, newpde);
2867 else
2868 pde_store(pde, newpde);
2869 if (firstpte == PADDR2)
2870 mtx_unlock(&PMAP2mutex);
2871
2872 /*
2873 * Invalidate the recursive mapping of the page table page.
2874 */
2875 pmap_invalidate_page_int(pmap, (vm_offset_t)vtopte(va));
2876
2877 /*
2878 * Demote the pv entry. This depends on the earlier demotion
2879 * of the mapping. Specifically, the (re)creation of a per-
2880 * page pv entry might trigger the execution of pmap_collect(),
2881 * which might reclaim a newly (re)created per-page pv entry
2882 * and destroy the associated mapping. In order to destroy
2883 * the mapping, the PDE must have already changed from mapping
2884 * the 2mpage to referencing the page table page.
2885 */
2886 if ((oldpde & PG_MANAGED) != 0)
2887 pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2888
2889 pmap_pde_demotions++;
2890 CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2891 " in pmap %p", va, pmap);
2892 return (true);
2893 }
2894
2895 /*
2896 * Removes a 2- or 4MB page mapping from the kernel pmap.
2897 */
2898 static void
pmap_remove_kernel_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)2899 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2900 {
2901 pd_entry_t newpde;
2902 vm_paddr_t mptepa;
2903 vm_page_t mpte;
2904
2905 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2906 mpte = pmap_remove_pt_page(pmap, va);
2907 if (mpte == NULL)
2908 panic("pmap_remove_kernel_pde: Missing pt page.");
2909
2910 mptepa = VM_PAGE_TO_PHYS(mpte);
2911 newpde = mptepa | PG_M | PG_A | PG_RW | PG_V;
2912
2913 /*
2914 * If this page table page was unmapped by a promotion, then it
2915 * contains valid mappings. Zero it to invalidate those mappings.
2916 */
2917 if (vm_page_any_valid(mpte))
2918 pagezero((void *)&KPTmap[i386_btop(trunc_4mpage(va))]);
2919
2920 /*
2921 * Remove the mapping.
2922 */
2923 if (workaround_erratum383)
2924 pmap_update_pde(pmap, va, pde, newpde);
2925 else
2926 pmap_kenter_pde(va, newpde);
2927
2928 /*
2929 * Invalidate the recursive mapping of the page table page.
2930 */
2931 pmap_invalidate_page_int(pmap, (vm_offset_t)vtopte(va));
2932 }
2933
2934 /*
2935 * pmap_remove_pde: do the things to unmap a superpage in a process
2936 */
2937 static void
pmap_remove_pde(pmap_t pmap,pd_entry_t * pdq,vm_offset_t sva,struct spglist * free)2938 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2939 struct spglist *free)
2940 {
2941 struct md_page *pvh;
2942 pd_entry_t oldpde;
2943 vm_offset_t eva, va;
2944 vm_page_t m, mpte;
2945
2946 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2947 KASSERT((sva & PDRMASK) == 0,
2948 ("pmap_remove_pde: sva is not 4mpage aligned"));
2949 oldpde = pte_load_clear(pdq);
2950 if (oldpde & PG_W)
2951 pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2952
2953 /*
2954 * Machines that don't support invlpg, also don't support
2955 * PG_G.
2956 */
2957 if ((oldpde & PG_G) != 0)
2958 pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
2959
2960 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2961 if (oldpde & PG_MANAGED) {
2962 pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2963 pmap_pvh_free(pvh, pmap, sva);
2964 eva = sva + NBPDR;
2965 for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2966 va < eva; va += PAGE_SIZE, m++) {
2967 if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2968 vm_page_dirty(m);
2969 if (oldpde & PG_A)
2970 vm_page_aflag_set(m, PGA_REFERENCED);
2971 if (TAILQ_EMPTY(&m->md.pv_list) &&
2972 TAILQ_EMPTY(&pvh->pv_list))
2973 vm_page_aflag_clear(m, PGA_WRITEABLE);
2974 }
2975 }
2976 if (pmap == kernel_pmap) {
2977 pmap_remove_kernel_pde(pmap, pdq, sva);
2978 } else {
2979 mpte = pmap_remove_pt_page(pmap, sva);
2980 if (mpte != NULL) {
2981 KASSERT(vm_page_any_valid(mpte),
2982 ("pmap_remove_pde: pte page not promoted"));
2983 pmap->pm_stats.resident_count--;
2984 KASSERT(mpte->ref_count == NPTEPG,
2985 ("pmap_remove_pde: pte page ref count error"));
2986 mpte->ref_count = 0;
2987 pmap_add_delayed_free_list(mpte, free, false);
2988 }
2989 }
2990 }
2991
2992 /*
2993 * pmap_remove_pte: do the things to unmap a page in a process
2994 */
2995 static int
pmap_remove_pte(pmap_t pmap,pt_entry_t * ptq,vm_offset_t va,struct spglist * free)2996 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
2997 struct spglist *free)
2998 {
2999 pt_entry_t oldpte;
3000 vm_page_t m;
3001
3002 rw_assert(&pvh_global_lock, RA_WLOCKED);
3003 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3004 oldpte = pte_load_clear(ptq);
3005 KASSERT(oldpte != 0,
3006 ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
3007 if (oldpte & PG_W)
3008 pmap->pm_stats.wired_count -= 1;
3009 /*
3010 * Machines that don't support invlpg, also don't support
3011 * PG_G.
3012 */
3013 if (oldpte & PG_G)
3014 pmap_invalidate_page_int(kernel_pmap, va);
3015 pmap->pm_stats.resident_count -= 1;
3016 if (oldpte & PG_MANAGED) {
3017 m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
3018 if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3019 vm_page_dirty(m);
3020 if (oldpte & PG_A)
3021 vm_page_aflag_set(m, PGA_REFERENCED);
3022 pmap_remove_entry(pmap, m, va);
3023 }
3024 return (pmap_unuse_pt(pmap, va, free));
3025 }
3026
3027 /*
3028 * Remove a single page from a process address space
3029 */
3030 static void
pmap_remove_page(pmap_t pmap,vm_offset_t va,struct spglist * free)3031 pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
3032 {
3033 pt_entry_t *pte;
3034
3035 rw_assert(&pvh_global_lock, RA_WLOCKED);
3036 KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
3037 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3038 if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
3039 return;
3040 pmap_remove_pte(pmap, pte, va, free);
3041 pmap_invalidate_page_int(pmap, va);
3042 }
3043
3044 /*
3045 * Removes the specified range of addresses from the page table page.
3046 */
3047 static bool
pmap_remove_ptes(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,struct spglist * free)3048 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3049 struct spglist *free)
3050 {
3051 pt_entry_t *pte;
3052 bool anyvalid;
3053
3054 rw_assert(&pvh_global_lock, RA_WLOCKED);
3055 KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
3056 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3057 anyvalid = false;
3058 for (pte = pmap_pte_quick(pmap, sva); sva != eva; pte++,
3059 sva += PAGE_SIZE) {
3060 if (*pte == 0)
3061 continue;
3062
3063 /*
3064 * The TLB entry for a PG_G mapping is invalidated by
3065 * pmap_remove_pte().
3066 */
3067 if ((*pte & PG_G) == 0)
3068 anyvalid = true;
3069
3070 if (pmap_remove_pte(pmap, pte, sva, free))
3071 break;
3072 }
3073 return (anyvalid);
3074 }
3075
3076 /*
3077 * Remove the given range of addresses from the specified map.
3078 *
3079 * It is assumed that the start and end are properly
3080 * rounded to the page size.
3081 */
3082 static void
__CONCAT(PMTYPE,remove)3083 __CONCAT(PMTYPE, remove)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3084 {
3085 vm_offset_t pdnxt;
3086 pd_entry_t ptpaddr;
3087 struct spglist free;
3088 int anyvalid;
3089
3090 /*
3091 * Perform an unsynchronized read. This is, however, safe.
3092 */
3093 if (pmap->pm_stats.resident_count == 0)
3094 return;
3095
3096 anyvalid = 0;
3097 SLIST_INIT(&free);
3098
3099 rw_wlock(&pvh_global_lock);
3100 sched_pin();
3101 PMAP_LOCK(pmap);
3102
3103 /*
3104 * special handling of removing one page. a very
3105 * common operation and easy to short circuit some
3106 * code.
3107 */
3108 if ((sva + PAGE_SIZE == eva) &&
3109 ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
3110 pmap_remove_page(pmap, sva, &free);
3111 goto out;
3112 }
3113
3114 for (; sva < eva; sva = pdnxt) {
3115 u_int pdirindex;
3116
3117 /*
3118 * Calculate index for next page table.
3119 */
3120 pdnxt = (sva + NBPDR) & ~PDRMASK;
3121 if (pdnxt < sva)
3122 pdnxt = eva;
3123 if (pmap->pm_stats.resident_count == 0)
3124 break;
3125
3126 pdirindex = sva >> PDRSHIFT;
3127 ptpaddr = pmap->pm_pdir[pdirindex];
3128
3129 /*
3130 * Weed out invalid mappings. Note: we assume that the page
3131 * directory table is always allocated, and in kernel virtual.
3132 */
3133 if (ptpaddr == 0)
3134 continue;
3135
3136 /*
3137 * Check for large page.
3138 */
3139 if ((ptpaddr & PG_PS) != 0) {
3140 /*
3141 * Are we removing the entire large page? If not,
3142 * demote the mapping and fall through.
3143 */
3144 if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3145 /*
3146 * The TLB entry for a PG_G mapping is
3147 * invalidated by pmap_remove_pde().
3148 */
3149 if ((ptpaddr & PG_G) == 0)
3150 anyvalid = 1;
3151 pmap_remove_pde(pmap,
3152 &pmap->pm_pdir[pdirindex], sva, &free);
3153 continue;
3154 } else if (!pmap_demote_pde(pmap,
3155 &pmap->pm_pdir[pdirindex], sva)) {
3156 /* The large page mapping was destroyed. */
3157 continue;
3158 }
3159 }
3160
3161 /*
3162 * Limit our scan to either the end of the va represented
3163 * by the current page table page, or to the end of the
3164 * range being removed.
3165 */
3166 if (pdnxt > eva)
3167 pdnxt = eva;
3168
3169 if (pmap_remove_ptes(pmap, sva, pdnxt, &free))
3170 anyvalid = 1;
3171 }
3172 out:
3173 sched_unpin();
3174 if (anyvalid)
3175 pmap_invalidate_all_int(pmap);
3176 rw_wunlock(&pvh_global_lock);
3177 PMAP_UNLOCK(pmap);
3178 vm_page_free_pages_toq(&free, true);
3179 }
3180
3181 /*
3182 * Routine: pmap_remove_all
3183 * Function:
3184 * Removes this physical page from
3185 * all physical maps in which it resides.
3186 * Reflects back modify bits to the pager.
3187 *
3188 * Notes:
3189 * Original versions of this routine were very
3190 * inefficient because they iteratively called
3191 * pmap_remove (slow...)
3192 */
3193
3194 static void
__CONCAT(PMTYPE,remove_all)3195 __CONCAT(PMTYPE, remove_all)(vm_page_t m)
3196 {
3197 struct md_page *pvh;
3198 pv_entry_t pv;
3199 pmap_t pmap;
3200 pt_entry_t *pte, tpte;
3201 pd_entry_t *pde;
3202 vm_offset_t va;
3203 struct spglist free;
3204
3205 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3206 ("pmap_remove_all: page %p is not managed", m));
3207 SLIST_INIT(&free);
3208 rw_wlock(&pvh_global_lock);
3209 sched_pin();
3210 if ((m->flags & PG_FICTITIOUS) != 0)
3211 goto small_mappings;
3212 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3213 while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
3214 va = pv->pv_va;
3215 pmap = PV_PMAP(pv);
3216 PMAP_LOCK(pmap);
3217 pde = pmap_pde(pmap, va);
3218 (void)pmap_demote_pde(pmap, pde, va);
3219 PMAP_UNLOCK(pmap);
3220 }
3221 small_mappings:
3222 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3223 pmap = PV_PMAP(pv);
3224 PMAP_LOCK(pmap);
3225 pmap->pm_stats.resident_count--;
3226 pde = pmap_pde(pmap, pv->pv_va);
3227 KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
3228 " a 4mpage in page %p's pv list", m));
3229 pte = pmap_pte_quick(pmap, pv->pv_va);
3230 tpte = pte_load_clear(pte);
3231 KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
3232 pmap, pv->pv_va));
3233 if (tpte & PG_W)
3234 pmap->pm_stats.wired_count--;
3235 if (tpte & PG_A)
3236 vm_page_aflag_set(m, PGA_REFERENCED);
3237
3238 /*
3239 * Update the vm_page_t clean and reference bits.
3240 */
3241 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3242 vm_page_dirty(m);
3243 pmap_unuse_pt(pmap, pv->pv_va, &free);
3244 pmap_invalidate_page_int(pmap, pv->pv_va);
3245 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3246 free_pv_entry(pmap, pv);
3247 PMAP_UNLOCK(pmap);
3248 }
3249 vm_page_aflag_clear(m, PGA_WRITEABLE);
3250 sched_unpin();
3251 rw_wunlock(&pvh_global_lock);
3252 vm_page_free_pages_toq(&free, true);
3253 }
3254
3255 /*
3256 * pmap_protect_pde: do the things to protect a 4mpage in a process
3257 */
3258 static bool
pmap_protect_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t sva,vm_prot_t prot)3259 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
3260 {
3261 pd_entry_t newpde, oldpde;
3262 vm_page_t m, mt;
3263 bool anychanged;
3264
3265 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3266 KASSERT((sva & PDRMASK) == 0,
3267 ("pmap_protect_pde: sva is not 4mpage aligned"));
3268 anychanged = false;
3269 retry:
3270 oldpde = newpde = *pde;
3271 if ((prot & VM_PROT_WRITE) == 0) {
3272 if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
3273 (PG_MANAGED | PG_M | PG_RW)) {
3274 m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
3275 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
3276 vm_page_dirty(mt);
3277 }
3278 newpde &= ~(PG_RW | PG_M);
3279 }
3280 #ifdef PMAP_PAE_COMP
3281 if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3282 newpde |= pg_nx;
3283 #endif
3284 if (newpde != oldpde) {
3285 /*
3286 * As an optimization to future operations on this PDE, clear
3287 * PG_PROMOTED. The impending invalidation will remove any
3288 * lingering 4KB page mappings from the TLB.
3289 */
3290 if (!pde_cmpset(pde, oldpde, newpde & ~PG_PROMOTED))
3291 goto retry;
3292 if ((oldpde & PG_G) != 0)
3293 pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
3294 else
3295 anychanged = true;
3296 }
3297 return (anychanged);
3298 }
3299
3300 /*
3301 * Set the physical protection on the
3302 * specified range of this map as requested.
3303 */
3304 static void
__CONCAT(PMTYPE,protect)3305 __CONCAT(PMTYPE, protect)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3306 vm_prot_t prot)
3307 {
3308 vm_offset_t pdnxt;
3309 pd_entry_t ptpaddr;
3310 pt_entry_t *pte;
3311 bool anychanged, pv_lists_locked;
3312
3313 KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
3314 if (prot == VM_PROT_NONE) {
3315 pmap_remove(pmap, sva, eva);
3316 return;
3317 }
3318
3319 #ifdef PMAP_PAE_COMP
3320 if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
3321 (VM_PROT_WRITE | VM_PROT_EXECUTE))
3322 return;
3323 #else
3324 if (prot & VM_PROT_WRITE)
3325 return;
3326 #endif
3327
3328 if (pmap_is_current(pmap))
3329 pv_lists_locked = false;
3330 else {
3331 pv_lists_locked = true;
3332 resume:
3333 rw_wlock(&pvh_global_lock);
3334 sched_pin();
3335 }
3336 anychanged = false;
3337
3338 PMAP_LOCK(pmap);
3339 for (; sva < eva; sva = pdnxt) {
3340 pt_entry_t obits, pbits;
3341 u_int pdirindex;
3342
3343 pdnxt = (sva + NBPDR) & ~PDRMASK;
3344 if (pdnxt < sva)
3345 pdnxt = eva;
3346
3347 pdirindex = sva >> PDRSHIFT;
3348 ptpaddr = pmap->pm_pdir[pdirindex];
3349
3350 /*
3351 * Weed out invalid mappings. Note: we assume that the page
3352 * directory table is always allocated, and in kernel virtual.
3353 */
3354 if (ptpaddr == 0)
3355 continue;
3356
3357 /*
3358 * Check for large page.
3359 */
3360 if ((ptpaddr & PG_PS) != 0) {
3361 /*
3362 * Are we protecting the entire large page? If not,
3363 * demote the mapping and fall through.
3364 */
3365 if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3366 /*
3367 * The TLB entry for a PG_G mapping is
3368 * invalidated by pmap_protect_pde().
3369 */
3370 if (pmap_protect_pde(pmap,
3371 &pmap->pm_pdir[pdirindex], sva, prot))
3372 anychanged = true;
3373 continue;
3374 } else {
3375 if (!pv_lists_locked) {
3376 pv_lists_locked = true;
3377 if (!rw_try_wlock(&pvh_global_lock)) {
3378 if (anychanged)
3379 pmap_invalidate_all_int(
3380 pmap);
3381 PMAP_UNLOCK(pmap);
3382 goto resume;
3383 }
3384 sched_pin();
3385 }
3386 if (!pmap_demote_pde(pmap,
3387 &pmap->pm_pdir[pdirindex], sva)) {
3388 /*
3389 * The large page mapping was
3390 * destroyed.
3391 */
3392 continue;
3393 }
3394 }
3395 }
3396
3397 if (pdnxt > eva)
3398 pdnxt = eva;
3399
3400 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3401 sva += PAGE_SIZE) {
3402 vm_page_t m;
3403
3404 retry:
3405 /*
3406 * Regardless of whether a pte is 32 or 64 bits in
3407 * size, PG_RW, PG_A, and PG_M are among the least
3408 * significant 32 bits.
3409 */
3410 obits = pbits = *pte;
3411 if ((pbits & PG_V) == 0)
3412 continue;
3413
3414 if ((prot & VM_PROT_WRITE) == 0) {
3415 if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
3416 (PG_MANAGED | PG_M | PG_RW)) {
3417 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3418 vm_page_dirty(m);
3419 }
3420 pbits &= ~(PG_RW | PG_M);
3421 }
3422 #ifdef PMAP_PAE_COMP
3423 if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3424 pbits |= pg_nx;
3425 #endif
3426
3427 if (pbits != obits) {
3428 #ifdef PMAP_PAE_COMP
3429 if (!atomic_cmpset_64(pte, obits, pbits))
3430 goto retry;
3431 #else
3432 if (!atomic_cmpset_int((u_int *)pte, obits,
3433 pbits))
3434 goto retry;
3435 #endif
3436 if (obits & PG_G)
3437 pmap_invalidate_page_int(pmap, sva);
3438 else
3439 anychanged = true;
3440 }
3441 }
3442 }
3443 if (anychanged)
3444 pmap_invalidate_all_int(pmap);
3445 if (pv_lists_locked) {
3446 sched_unpin();
3447 rw_wunlock(&pvh_global_lock);
3448 }
3449 PMAP_UNLOCK(pmap);
3450 }
3451
3452 #if VM_NRESERVLEVEL > 0
3453 /*
3454 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
3455 * within a single page table page (PTP) to a single 2- or 4MB page mapping.
3456 * For promotion to occur, two conditions must be met: (1) the 4KB page
3457 * mappings must map aligned, contiguous physical memory and (2) the 4KB page
3458 * mappings must have identical characteristics.
3459 *
3460 * Managed (PG_MANAGED) mappings within the kernel address space are not
3461 * promoted. The reason is that kernel PDEs are replicated in each pmap but
3462 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
3463 * pmap.
3464 */
3465 static bool
pmap_promote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,vm_page_t mpte)3466 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va, vm_page_t mpte)
3467 {
3468 pd_entry_t newpde;
3469 pt_entry_t allpte_PG_A, *firstpte, oldpte, pa, *pte;
3470 #ifdef KTR
3471 vm_offset_t oldpteva;
3472 #endif
3473
3474 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3475 if (!pg_ps_enabled)
3476 return (false);
3477
3478 /*
3479 * Examine the first PTE in the specified PTP. Abort if this PTE is
3480 * either invalid or does not map the first 4KB physical page
3481 * within a 2- or 4MB page.
3482 */
3483 firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
3484 setpde:
3485 newpde = *firstpte;
3486 if ((newpde & ((PG_FRAME & PDRMASK) | PG_V)) != PG_V) {
3487 pmap_pde_p_failures++;
3488 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3489 " in pmap %p", va, pmap);
3490 return (false);
3491 }
3492 if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3493 pmap_pde_p_failures++;
3494 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3495 " in pmap %p", va, pmap);
3496 return (false);
3497 }
3498
3499 /*
3500 * Both here and in the below "for" loop, to allow for repromotion
3501 * after MADV_FREE, conditionally write protect a clean PTE before
3502 * possibly aborting the promotion due to other PTE attributes. Why?
3503 * Suppose that MADV_FREE is applied to a part of a superpage, the
3504 * address range [S, E). pmap_advise() will demote the superpage
3505 * mapping, destroy the 4KB page mapping at the end of [S, E), and
3506 * clear PG_M and PG_A in the PTEs for the rest of [S, E). Later,
3507 * imagine that the memory in [S, E) is recycled, but the last 4KB
3508 * page in [S, E) is not the last to be rewritten, or simply accessed.
3509 * In other words, there is still a 4KB page in [S, E), call it P,
3510 * that is writeable but PG_M and PG_A are clear in P's PTE. Unless
3511 * we write protect P before aborting the promotion, if and when P is
3512 * finally rewritten, there won't be a page fault to trigger
3513 * repromotion.
3514 */
3515 if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3516 /*
3517 * When PG_M is already clear, PG_RW can be cleared without
3518 * a TLB invalidation.
3519 */
3520 if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3521 ~PG_RW))
3522 goto setpde;
3523 newpde &= ~PG_RW;
3524 CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
3525 " in pmap %p", va & ~PDRMASK, pmap);
3526 }
3527
3528 /*
3529 * Examine each of the other PTEs in the specified PTP. Abort if this
3530 * PTE maps an unexpected 4KB physical page or does not have identical
3531 * characteristics to the first PTE.
3532 */
3533 allpte_PG_A = newpde & PG_A;
3534 pa = (newpde & (PG_PS_FRAME | PG_V)) + NBPDR - PAGE_SIZE;
3535 for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3536 setpte:
3537 oldpte = *pte;
3538 if ((oldpte & (PG_FRAME | PG_V)) != pa) {
3539 pmap_pde_p_failures++;
3540 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3541 " in pmap %p", va, pmap);
3542 return (false);
3543 }
3544 if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3545 /*
3546 * When PG_M is already clear, PG_RW can be cleared
3547 * without a TLB invalidation.
3548 */
3549 if (!atomic_cmpset_int((u_int *)pte, oldpte,
3550 oldpte & ~PG_RW))
3551 goto setpte;
3552 oldpte &= ~PG_RW;
3553 #ifdef KTR
3554 oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3555 (va & ~PDRMASK);
3556 #endif
3557 CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3558 " in pmap %p", oldpteva, pmap);
3559 }
3560 if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3561 pmap_pde_p_failures++;
3562 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3563 " in pmap %p", va, pmap);
3564 return (false);
3565 }
3566 allpte_PG_A &= oldpte;
3567 pa -= PAGE_SIZE;
3568 }
3569
3570 /*
3571 * Unless all PTEs have PG_A set, clear it from the superpage mapping,
3572 * so that promotions triggered by speculative mappings, such as
3573 * pmap_enter_quick(), don't automatically mark the underlying pages
3574 * as referenced.
3575 */
3576 newpde &= ~PG_A | allpte_PG_A;
3577
3578 /*
3579 * Save the PTP in its current state until the PDE mapping the
3580 * superpage is demoted by pmap_demote_pde() or destroyed by
3581 * pmap_remove_pde(). If PG_A is not set in every PTE, then request
3582 * that the PTP be refilled on demotion.
3583 */
3584 if (mpte == NULL)
3585 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3586 KASSERT(mpte >= vm_page_array &&
3587 mpte < &vm_page_array[vm_page_array_size],
3588 ("pmap_promote_pde: page table page is out of range"));
3589 KASSERT(mpte->pindex == va >> PDRSHIFT,
3590 ("pmap_promote_pde: page table page's pindex is wrong"));
3591 if (pmap_insert_pt_page(pmap, mpte, true, allpte_PG_A != 0)) {
3592 pmap_pde_p_failures++;
3593 CTR2(KTR_PMAP,
3594 "pmap_promote_pde: failure for va %#x in pmap %p", va,
3595 pmap);
3596 return (false);
3597 }
3598
3599 /*
3600 * Promote the pv entries.
3601 */
3602 if ((newpde & PG_MANAGED) != 0)
3603 pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3604
3605 /*
3606 * Propagate the PAT index to its proper position.
3607 */
3608 if ((newpde & PG_PTE_PAT) != 0)
3609 newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3610
3611 /*
3612 * Map the superpage.
3613 */
3614 if (workaround_erratum383)
3615 pmap_update_pde(pmap, va, pde, PG_PS | newpde);
3616 else if (pmap == kernel_pmap)
3617 pmap_kenter_pde(va, PG_PROMOTED | PG_PS | newpde);
3618 else
3619 pde_store(pde, PG_PROMOTED | PG_PS | newpde);
3620
3621 pmap_pde_promotions++;
3622 CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3623 " in pmap %p", va, pmap);
3624 return (true);
3625 }
3626 #endif /* VM_NRESERVLEVEL > 0 */
3627
3628 /*
3629 * Insert the given physical page (p) at
3630 * the specified virtual address (v) in the
3631 * target physical map with the protection requested.
3632 *
3633 * If specified, the page will be wired down, meaning
3634 * that the related pte can not be reclaimed.
3635 *
3636 * NB: This is the only routine which MAY NOT lazy-evaluate
3637 * or lose information. That is, this routine must actually
3638 * insert this page into the given map NOW.
3639 */
3640 static int
__CONCAT(PMTYPE,enter)3641 __CONCAT(PMTYPE, enter)(pmap_t pmap, vm_offset_t va, vm_page_t m,
3642 vm_prot_t prot, u_int flags, int8_t psind)
3643 {
3644 pd_entry_t *pde;
3645 pt_entry_t *pte;
3646 pt_entry_t newpte, origpte;
3647 pv_entry_t pv;
3648 vm_paddr_t opa, pa;
3649 vm_page_t mpte, om;
3650 int rv;
3651
3652 va = trunc_page(va);
3653 KASSERT((pmap == kernel_pmap && va < VM_MAX_KERNEL_ADDRESS) ||
3654 (pmap != kernel_pmap && va < VM_MAXUSER_ADDRESS),
3655 ("pmap_enter: toobig k%d %#x", pmap == kernel_pmap, va));
3656 KASSERT(va < PMAP_TRM_MIN_ADDRESS,
3657 ("pmap_enter: invalid to pmap_enter into trampoline (va: 0x%x)",
3658 va));
3659 KASSERT(pmap != kernel_pmap || (m->oflags & VPO_UNMANAGED) != 0 ||
3660 !VA_IS_CLEANMAP(va),
3661 ("pmap_enter: managed mapping within the clean submap"));
3662 if ((m->oflags & VPO_UNMANAGED) == 0)
3663 VM_PAGE_OBJECT_BUSY_ASSERT(m);
3664 KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
3665 ("pmap_enter: flags %u has reserved bits set", flags));
3666 pa = VM_PAGE_TO_PHYS(m);
3667 newpte = (pt_entry_t)(pa | PG_A | PG_V);
3668 if ((flags & VM_PROT_WRITE) != 0)
3669 newpte |= PG_M;
3670 if ((prot & VM_PROT_WRITE) != 0)
3671 newpte |= PG_RW;
3672 KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
3673 ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
3674 #ifdef PMAP_PAE_COMP
3675 if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3676 newpte |= pg_nx;
3677 #endif
3678 if ((flags & PMAP_ENTER_WIRED) != 0)
3679 newpte |= PG_W;
3680 if (pmap != kernel_pmap)
3681 newpte |= PG_U;
3682 newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
3683 if ((m->oflags & VPO_UNMANAGED) == 0)
3684 newpte |= PG_MANAGED;
3685
3686 rw_wlock(&pvh_global_lock);
3687 PMAP_LOCK(pmap);
3688 sched_pin();
3689 if (psind == 1) {
3690 /* Assert the required virtual and physical alignment. */
3691 KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
3692 KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
3693 rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m);
3694 goto out;
3695 }
3696
3697 pde = pmap_pde(pmap, va);
3698 if (pmap != kernel_pmap) {
3699 /*
3700 * va is for UVA.
3701 * In the case that a page table page is not resident,
3702 * we are creating it here. pmap_allocpte() handles
3703 * demotion.
3704 */
3705 mpte = pmap_allocpte(pmap, va, flags);
3706 if (mpte == NULL) {
3707 KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3708 ("pmap_allocpte failed with sleep allowed"));
3709 rv = KERN_RESOURCE_SHORTAGE;
3710 goto out;
3711 }
3712 } else {
3713 /*
3714 * va is for KVA, so pmap_demote_pde() will never fail
3715 * to install a page table page. PG_V is also
3716 * asserted by pmap_demote_pde().
3717 */
3718 mpte = NULL;
3719 KASSERT(pde != NULL && (*pde & PG_V) != 0,
3720 ("KVA %#x invalid pde pdir %#jx", va,
3721 (uintmax_t)pmap->pm_pdir[PTDPTDI]));
3722 if ((*pde & PG_PS) != 0)
3723 pmap_demote_pde(pmap, pde, va);
3724 }
3725 pte = pmap_pte_quick(pmap, va);
3726
3727 /*
3728 * Page Directory table entry is not valid, which should not
3729 * happen. We should have either allocated the page table
3730 * page or demoted the existing mapping above.
3731 */
3732 if (pte == NULL) {
3733 panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3734 (uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3735 }
3736
3737 origpte = *pte;
3738 pv = NULL;
3739
3740 /*
3741 * Is the specified virtual address already mapped?
3742 */
3743 if ((origpte & PG_V) != 0) {
3744 /*
3745 * Wiring change, just update stats. We don't worry about
3746 * wiring PT pages as they remain resident as long as there
3747 * are valid mappings in them. Hence, if a user page is wired,
3748 * the PT page will be also.
3749 */
3750 if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
3751 pmap->pm_stats.wired_count++;
3752 else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
3753 pmap->pm_stats.wired_count--;
3754
3755 /*
3756 * Remove the extra PT page reference.
3757 */
3758 if (mpte != NULL) {
3759 mpte->ref_count--;
3760 KASSERT(mpte->ref_count > 0,
3761 ("pmap_enter: missing reference to page table page,"
3762 " va: 0x%x", va));
3763 }
3764
3765 /*
3766 * Has the physical page changed?
3767 */
3768 opa = origpte & PG_FRAME;
3769 if (opa == pa) {
3770 /*
3771 * No, might be a protection or wiring change.
3772 */
3773 if ((origpte & PG_MANAGED) != 0 &&
3774 (newpte & PG_RW) != 0)
3775 vm_page_aflag_set(m, PGA_WRITEABLE);
3776 if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
3777 goto unchanged;
3778 goto validate;
3779 }
3780
3781 /*
3782 * The physical page has changed. Temporarily invalidate
3783 * the mapping. This ensures that all threads sharing the
3784 * pmap keep a consistent view of the mapping, which is
3785 * necessary for the correct handling of COW faults. It
3786 * also permits reuse of the old mapping's PV entry,
3787 * avoiding an allocation.
3788 *
3789 * For consistency, handle unmanaged mappings the same way.
3790 */
3791 origpte = pte_load_clear(pte);
3792 KASSERT((origpte & PG_FRAME) == opa,
3793 ("pmap_enter: unexpected pa update for %#x", va));
3794 if ((origpte & PG_MANAGED) != 0) {
3795 om = PHYS_TO_VM_PAGE(opa);
3796
3797 /*
3798 * The pmap lock is sufficient to synchronize with
3799 * concurrent calls to pmap_page_test_mappings() and
3800 * pmap_ts_referenced().
3801 */
3802 if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3803 vm_page_dirty(om);
3804 if ((origpte & PG_A) != 0) {
3805 pmap_invalidate_page_int(pmap, va);
3806 vm_page_aflag_set(om, PGA_REFERENCED);
3807 }
3808 pv = pmap_pvh_remove(&om->md, pmap, va);
3809 KASSERT(pv != NULL,
3810 ("pmap_enter: no PV entry for %#x", va));
3811 if ((newpte & PG_MANAGED) == 0)
3812 free_pv_entry(pmap, pv);
3813 if ((om->a.flags & PGA_WRITEABLE) != 0 &&
3814 TAILQ_EMPTY(&om->md.pv_list) &&
3815 ((om->flags & PG_FICTITIOUS) != 0 ||
3816 TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3817 vm_page_aflag_clear(om, PGA_WRITEABLE);
3818 } else {
3819 /*
3820 * Since this mapping is unmanaged, assume that PG_A
3821 * is set.
3822 */
3823 pmap_invalidate_page_int(pmap, va);
3824 }
3825 origpte = 0;
3826 } else {
3827 /*
3828 * Increment the counters.
3829 */
3830 if ((newpte & PG_W) != 0)
3831 pmap->pm_stats.wired_count++;
3832 pmap->pm_stats.resident_count++;
3833 }
3834
3835 /*
3836 * Enter on the PV list if part of our managed memory.
3837 */
3838 if ((newpte & PG_MANAGED) != 0) {
3839 if (pv == NULL) {
3840 pv = get_pv_entry(pmap, false);
3841 pv->pv_va = va;
3842 }
3843 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3844 if ((newpte & PG_RW) != 0)
3845 vm_page_aflag_set(m, PGA_WRITEABLE);
3846 }
3847
3848 /*
3849 * Update the PTE.
3850 */
3851 if ((origpte & PG_V) != 0) {
3852 validate:
3853 origpte = pte_load_store(pte, newpte);
3854 KASSERT((origpte & PG_FRAME) == pa,
3855 ("pmap_enter: unexpected pa update for %#x", va));
3856 if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
3857 (PG_M | PG_RW)) {
3858 if ((origpte & PG_MANAGED) != 0)
3859 vm_page_dirty(m);
3860
3861 /*
3862 * Although the PTE may still have PG_RW set, TLB
3863 * invalidation may nonetheless be required because
3864 * the PTE no longer has PG_M set.
3865 */
3866 }
3867 #ifdef PMAP_PAE_COMP
3868 else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
3869 /*
3870 * This PTE change does not require TLB invalidation.
3871 */
3872 goto unchanged;
3873 }
3874 #endif
3875 if ((origpte & PG_A) != 0)
3876 pmap_invalidate_page_int(pmap, va);
3877 } else
3878 pte_store_zero(pte, newpte);
3879
3880 unchanged:
3881
3882 #if VM_NRESERVLEVEL > 0
3883 /*
3884 * If both the page table page and the reservation are fully
3885 * populated, then attempt promotion.
3886 */
3887 if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
3888 (m->flags & PG_FICTITIOUS) == 0 &&
3889 vm_reserv_level_iffullpop(m) == 0)
3890 (void)pmap_promote_pde(pmap, pde, va, mpte);
3891 #endif
3892
3893 rv = KERN_SUCCESS;
3894 out:
3895 sched_unpin();
3896 rw_wunlock(&pvh_global_lock);
3897 PMAP_UNLOCK(pmap);
3898 return (rv);
3899 }
3900
3901 /*
3902 * Tries to create a read- and/or execute-only 2 or 4 MB page mapping. Returns
3903 * KERN_SUCCESS if the mapping was created. Otherwise, returns an error
3904 * value. See pmap_enter_pde() for the possible error values when "no sleep",
3905 * "no replace", and "no reclaim" are specified.
3906 */
3907 static int
pmap_enter_4mpage(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)3908 pmap_enter_4mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3909 {
3910 pd_entry_t newpde;
3911
3912 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3913 newpde = VM_PAGE_TO_PHYS(m) |
3914 pmap_cache_bits(pmap, m->md.pat_mode, true) | PG_PS | PG_V;
3915 if ((m->oflags & VPO_UNMANAGED) == 0)
3916 newpde |= PG_MANAGED;
3917 #ifdef PMAP_PAE_COMP
3918 if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3919 newpde |= pg_nx;
3920 #endif
3921 if (pmap != kernel_pmap)
3922 newpde |= PG_U;
3923 return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
3924 PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL));
3925 }
3926
3927 /*
3928 * Returns true if every page table entry in the page table page that maps
3929 * the specified kernel virtual address is zero.
3930 */
3931 static bool
pmap_every_pte_zero(vm_offset_t va)3932 pmap_every_pte_zero(vm_offset_t va)
3933 {
3934 pt_entry_t *pt_end, *pte;
3935
3936 KASSERT((va & PDRMASK) == 0, ("va is misaligned"));
3937 pte = vtopte(va);
3938 for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
3939 if (*pte != 0)
3940 return (false);
3941 }
3942 return (true);
3943 }
3944
3945 /*
3946 * Tries to create the specified 2 or 4 MB page mapping. Returns KERN_SUCCESS
3947 * if the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE,
3948 * or KERN_RESOURCE_SHORTAGE otherwise. Returns KERN_FAILURE if
3949 * PMAP_ENTER_NOREPLACE was specified and a 4 KB page mapping already exists
3950 * within the 2 or 4 MB virtual address range starting at the specified virtual
3951 * address. Returns KERN_NO_SPACE if PMAP_ENTER_NOREPLACE was specified and a
3952 * 2 or 4 MB page mapping already exists at the specified virtual address.
3953 * Returns KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NORECLAIM was specified and a
3954 * PV entry allocation failed.
3955 *
3956 * The parameter "m" is only used when creating a managed, writeable mapping.
3957 */
3958 static int
pmap_enter_pde(pmap_t pmap,vm_offset_t va,pd_entry_t newpde,u_int flags,vm_page_t m)3959 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
3960 vm_page_t m)
3961 {
3962 struct spglist free;
3963 pd_entry_t oldpde, *pde;
3964 vm_page_t mt;
3965 vm_page_t uwptpg;
3966
3967 rw_assert(&pvh_global_lock, RA_WLOCKED);
3968 KASSERT((newpde & (PG_M | PG_RW)) != PG_RW,
3969 ("pmap_enter_pde: newpde is missing PG_M"));
3970 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3971 pde = pmap_pde(pmap, va);
3972 oldpde = *pde;
3973 if ((oldpde & PG_V) != 0) {
3974 if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
3975 if ((oldpde & PG_PS) != 0) {
3976 CTR2(KTR_PMAP,
3977 "pmap_enter_pde: no space for va %#lx"
3978 " in pmap %p", va, pmap);
3979 return (KERN_NO_SPACE);
3980 } else if (pmap != kernel_pmap ||
3981 !pmap_every_pte_zero(va)) {
3982 CTR2(KTR_PMAP,
3983 "pmap_enter_pde: failure for va %#lx"
3984 " in pmap %p", va, pmap);
3985 return (KERN_FAILURE);
3986 }
3987 }
3988 /* Break the existing mapping(s). */
3989 SLIST_INIT(&free);
3990 if ((oldpde & PG_PS) != 0) {
3991 /*
3992 * If the PDE resulted from a promotion, then a
3993 * reserved PT page could be freed.
3994 */
3995 (void)pmap_remove_pde(pmap, pde, va, &free);
3996 if ((oldpde & PG_G) == 0)
3997 pmap_invalidate_pde_page(pmap, va, oldpde);
3998 } else {
3999 if (pmap_remove_ptes(pmap, va, va + NBPDR, &free))
4000 pmap_invalidate_all_int(pmap);
4001 }
4002 if (pmap != kernel_pmap) {
4003 vm_page_free_pages_toq(&free, true);
4004 KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
4005 pde));
4006 } else {
4007 KASSERT(SLIST_EMPTY(&free),
4008 ("pmap_enter_pde: freed kernel page table page"));
4009
4010 /*
4011 * Both pmap_remove_pde() and pmap_remove_ptes() will
4012 * leave the kernel page table page zero filled.
4013 */
4014 mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
4015 if (pmap_insert_pt_page(pmap, mt, false, false))
4016 panic("pmap_enter_pde: trie insert failed");
4017 }
4018 }
4019
4020 /*
4021 * Allocate a leaf ptpage for wired userspace pages.
4022 */
4023 uwptpg = NULL;
4024 if ((newpde & PG_W) != 0 && pmap != kernel_pmap) {
4025 uwptpg = vm_page_alloc_noobj(VM_ALLOC_WIRED);
4026 if (uwptpg == NULL) {
4027 return (KERN_RESOURCE_SHORTAGE);
4028 }
4029 uwptpg->pindex = va >> PDRSHIFT;
4030 if (pmap_insert_pt_page(pmap, uwptpg, true, false)) {
4031 vm_page_unwire_noq(uwptpg);
4032 vm_page_free(uwptpg);
4033 return (KERN_RESOURCE_SHORTAGE);
4034 }
4035 pmap->pm_stats.resident_count++;
4036 uwptpg->ref_count = NPTEPG;
4037 }
4038 if ((newpde & PG_MANAGED) != 0) {
4039 /*
4040 * Abort this mapping if its PV entry could not be created.
4041 */
4042 if (!pmap_pv_insert_pde(pmap, va, newpde, flags)) {
4043 if (uwptpg != NULL) {
4044 mt = pmap_remove_pt_page(pmap, va);
4045 KASSERT(mt == uwptpg,
4046 ("removed pt page %p, expected %p", mt,
4047 uwptpg));
4048 pmap->pm_stats.resident_count--;
4049 uwptpg->ref_count = 1;
4050 vm_page_unwire_noq(uwptpg);
4051 vm_page_free(uwptpg);
4052 }
4053 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
4054 " in pmap %p", va, pmap);
4055 return (KERN_RESOURCE_SHORTAGE);
4056 }
4057 if ((newpde & PG_RW) != 0) {
4058 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4059 vm_page_aflag_set(mt, PGA_WRITEABLE);
4060 }
4061 }
4062
4063 /*
4064 * Increment counters.
4065 */
4066 if ((newpde & PG_W) != 0)
4067 pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
4068 pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
4069
4070 /*
4071 * Map the superpage. (This is not a promoted mapping; there will not
4072 * be any lingering 4KB page mappings in the TLB.)
4073 */
4074 pde_store(pde, newpde);
4075
4076 pmap_pde_mappings++;
4077 CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
4078 va, pmap);
4079 return (KERN_SUCCESS);
4080 }
4081
4082 /*
4083 * Maps a sequence of resident pages belonging to the same object.
4084 * The sequence begins with the given page m_start. This page is
4085 * mapped at the given virtual address start. Each subsequent page is
4086 * mapped at a virtual address that is offset from start by the same
4087 * amount as the page is offset from m_start within the object. The
4088 * last page in the sequence is the page with the largest offset from
4089 * m_start that can be mapped at a virtual address less than the given
4090 * virtual address end. Not every virtual page between start and end
4091 * is mapped; only those for which a resident page exists with the
4092 * corresponding offset from m_start are mapped.
4093 */
4094 static void
__CONCAT(PMTYPE,enter_object)4095 __CONCAT(PMTYPE, enter_object)(pmap_t pmap, vm_offset_t start, vm_offset_t end,
4096 vm_page_t m_start, vm_prot_t prot)
4097 {
4098 vm_offset_t va;
4099 vm_page_t m, mpte;
4100 vm_pindex_t diff, psize;
4101 int rv;
4102
4103 VM_OBJECT_ASSERT_LOCKED(m_start->object);
4104
4105 psize = atop(end - start);
4106 mpte = NULL;
4107 m = m_start;
4108 rw_wlock(&pvh_global_lock);
4109 PMAP_LOCK(pmap);
4110 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
4111 va = start + ptoa(diff);
4112 if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
4113 m->psind == 1 && pg_ps_enabled &&
4114 ((rv = pmap_enter_4mpage(pmap, va, m, prot)) ==
4115 KERN_SUCCESS || rv == KERN_NO_SPACE))
4116 m = &m[NBPDR / PAGE_SIZE - 1];
4117 else
4118 mpte = pmap_enter_quick_locked(pmap, va, m, prot,
4119 mpte);
4120 m = TAILQ_NEXT(m, listq);
4121 }
4122 rw_wunlock(&pvh_global_lock);
4123 PMAP_UNLOCK(pmap);
4124 }
4125
4126 /*
4127 * this code makes some *MAJOR* assumptions:
4128 * 1. Current pmap & pmap exists.
4129 * 2. Not wired.
4130 * 3. Read access.
4131 * 4. No page table pages.
4132 * but is *MUCH* faster than pmap_enter...
4133 */
4134
4135 static void
__CONCAT(PMTYPE,enter_quick)4136 __CONCAT(PMTYPE, enter_quick)(pmap_t pmap, vm_offset_t va, vm_page_t m,
4137 vm_prot_t prot)
4138 {
4139
4140 rw_wlock(&pvh_global_lock);
4141 PMAP_LOCK(pmap);
4142 (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
4143 rw_wunlock(&pvh_global_lock);
4144 PMAP_UNLOCK(pmap);
4145 }
4146
4147 static vm_page_t
pmap_enter_quick_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,vm_page_t mpte)4148 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
4149 vm_prot_t prot, vm_page_t mpte)
4150 {
4151 pt_entry_t newpte, *pte;
4152 pd_entry_t *pde;
4153
4154 KASSERT(pmap != kernel_pmap || !VA_IS_CLEANMAP(va) ||
4155 (m->oflags & VPO_UNMANAGED) != 0,
4156 ("pmap_enter_quick_locked: managed mapping within the clean submap"));
4157 rw_assert(&pvh_global_lock, RA_WLOCKED);
4158 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4159 pde = NULL;
4160
4161 /*
4162 * In the case that a page table page is not
4163 * resident, we are creating it here.
4164 */
4165 if (pmap != kernel_pmap) {
4166 u_int ptepindex;
4167 pd_entry_t ptepa;
4168
4169 /*
4170 * Calculate pagetable page index
4171 */
4172 ptepindex = va >> PDRSHIFT;
4173 if (mpte && (mpte->pindex == ptepindex)) {
4174 mpte->ref_count++;
4175 } else {
4176 /*
4177 * Get the page directory entry
4178 */
4179 pde = &pmap->pm_pdir[ptepindex];
4180 ptepa = *pde;
4181
4182 /*
4183 * If the page table page is mapped, we just increment
4184 * the hold count, and activate it.
4185 */
4186 if (ptepa) {
4187 if (ptepa & PG_PS)
4188 return (NULL);
4189 mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
4190 mpte->ref_count++;
4191 } else {
4192 mpte = _pmap_allocpte(pmap, ptepindex,
4193 PMAP_ENTER_NOSLEEP);
4194 if (mpte == NULL)
4195 return (mpte);
4196 }
4197 }
4198 } else {
4199 mpte = NULL;
4200 }
4201
4202 sched_pin();
4203 pte = pmap_pte_quick(pmap, va);
4204 if (*pte) {
4205 if (mpte != NULL)
4206 mpte->ref_count--;
4207 sched_unpin();
4208 return (NULL);
4209 }
4210
4211 /*
4212 * Enter on the PV list if part of our managed memory.
4213 */
4214 if ((m->oflags & VPO_UNMANAGED) == 0 &&
4215 !pmap_try_insert_pv_entry(pmap, va, m)) {
4216 if (mpte != NULL)
4217 pmap_abort_ptp(pmap, va, mpte);
4218 sched_unpin();
4219 return (NULL);
4220 }
4221
4222 /*
4223 * Increment counters
4224 */
4225 pmap->pm_stats.resident_count++;
4226
4227 newpte = VM_PAGE_TO_PHYS(m) | PG_V |
4228 pmap_cache_bits(pmap, m->md.pat_mode, false);
4229 if ((m->oflags & VPO_UNMANAGED) == 0)
4230 newpte |= PG_MANAGED;
4231 #ifdef PMAP_PAE_COMP
4232 if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
4233 newpte |= pg_nx;
4234 #endif
4235 if (pmap != kernel_pmap)
4236 newpte |= PG_U;
4237 pte_store_zero(pte, newpte);
4238
4239 #if VM_NRESERVLEVEL > 0
4240 /*
4241 * If both the PTP and the reservation are fully populated, then
4242 * attempt promotion.
4243 */
4244 if ((prot & VM_PROT_NO_PROMOTE) == 0 &&
4245 (mpte == NULL || mpte->ref_count == NPTEPG) &&
4246 (m->flags & PG_FICTITIOUS) == 0 &&
4247 vm_reserv_level_iffullpop(m) == 0) {
4248 if (pde == NULL)
4249 pde = pmap_pde(pmap, va);
4250
4251 /*
4252 * If promotion succeeds, then the next call to this function
4253 * should not be given the unmapped PTP as a hint.
4254 */
4255 if (pmap_promote_pde(pmap, pde, va, mpte))
4256 mpte = NULL;
4257 }
4258 #endif
4259
4260 sched_unpin();
4261 return (mpte);
4262 }
4263
4264 /*
4265 * Make a temporary mapping for a physical address. This is only intended
4266 * to be used for panic dumps.
4267 */
4268 static void *
__CONCAT(PMTYPE,kenter_temporary)4269 __CONCAT(PMTYPE, kenter_temporary)(vm_paddr_t pa, int i)
4270 {
4271 vm_offset_t va;
4272
4273 va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
4274 pmap_kenter(va, pa);
4275 invlpg(va);
4276 return ((void *)crashdumpmap);
4277 }
4278
4279 /*
4280 * This code maps large physical mmap regions into the
4281 * processor address space. Note that some shortcuts
4282 * are taken, but the code works.
4283 */
4284 static void
__CONCAT(PMTYPE,object_init_pt)4285 __CONCAT(PMTYPE, object_init_pt)(pmap_t pmap, vm_offset_t addr,
4286 vm_object_t object, vm_pindex_t pindex, vm_size_t size)
4287 {
4288 pd_entry_t *pde;
4289 vm_paddr_t pa, ptepa;
4290 vm_page_t p;
4291 int pat_mode;
4292
4293 VM_OBJECT_ASSERT_WLOCKED(object);
4294 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4295 ("pmap_object_init_pt: non-device object"));
4296 if (pg_ps_enabled &&
4297 (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
4298 if (!vm_object_populate(object, pindex, pindex + atop(size)))
4299 return;
4300 p = vm_page_lookup(object, pindex);
4301 KASSERT(vm_page_all_valid(p),
4302 ("pmap_object_init_pt: invalid page %p", p));
4303 pat_mode = p->md.pat_mode;
4304
4305 /*
4306 * Abort the mapping if the first page is not physically
4307 * aligned to a 2/4MB page boundary.
4308 */
4309 ptepa = VM_PAGE_TO_PHYS(p);
4310 if (ptepa & (NBPDR - 1))
4311 return;
4312
4313 /*
4314 * Skip the first page. Abort the mapping if the rest of
4315 * the pages are not physically contiguous or have differing
4316 * memory attributes.
4317 */
4318 p = TAILQ_NEXT(p, listq);
4319 for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
4320 pa += PAGE_SIZE) {
4321 KASSERT(vm_page_all_valid(p),
4322 ("pmap_object_init_pt: invalid page %p", p));
4323 if (pa != VM_PAGE_TO_PHYS(p) ||
4324 pat_mode != p->md.pat_mode)
4325 return;
4326 p = TAILQ_NEXT(p, listq);
4327 }
4328
4329 /*
4330 * Map using 2/4MB pages. Since "ptepa" is 2/4M aligned and
4331 * "size" is a multiple of 2/4M, adding the PAT setting to
4332 * "pa" will not affect the termination of this loop.
4333 */
4334 PMAP_LOCK(pmap);
4335 for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, true);
4336 pa < ptepa + size; pa += NBPDR) {
4337 pde = pmap_pde(pmap, addr);
4338 if (*pde == 0) {
4339 pde_store(pde, pa | PG_PS | PG_M | PG_A |
4340 PG_U | PG_RW | PG_V);
4341 pmap->pm_stats.resident_count += NBPDR /
4342 PAGE_SIZE;
4343 pmap_pde_mappings++;
4344 }
4345 /* Else continue on if the PDE is already valid. */
4346 addr += NBPDR;
4347 }
4348 PMAP_UNLOCK(pmap);
4349 }
4350 }
4351
4352 /*
4353 * Clear the wired attribute from the mappings for the specified range of
4354 * addresses in the given pmap. Every valid mapping within that range
4355 * must have the wired attribute set. In contrast, invalid mappings
4356 * cannot have the wired attribute set, so they are ignored.
4357 *
4358 * The wired attribute of the page table entry is not a hardware feature,
4359 * so there is no need to invalidate any TLB entries.
4360 */
4361 static void
__CONCAT(PMTYPE,unwire)4362 __CONCAT(PMTYPE, unwire)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4363 {
4364 vm_offset_t pdnxt;
4365 pd_entry_t *pde;
4366 pt_entry_t *pte;
4367 bool pv_lists_locked;
4368
4369 if (pmap_is_current(pmap))
4370 pv_lists_locked = false;
4371 else {
4372 pv_lists_locked = true;
4373 resume:
4374 rw_wlock(&pvh_global_lock);
4375 sched_pin();
4376 }
4377 PMAP_LOCK(pmap);
4378 for (; sva < eva; sva = pdnxt) {
4379 pdnxt = (sva + NBPDR) & ~PDRMASK;
4380 if (pdnxt < sva)
4381 pdnxt = eva;
4382 pde = pmap_pde(pmap, sva);
4383 if ((*pde & PG_V) == 0)
4384 continue;
4385 if ((*pde & PG_PS) != 0) {
4386 if ((*pde & PG_W) == 0)
4387 panic("pmap_unwire: pde %#jx is missing PG_W",
4388 (uintmax_t)*pde);
4389
4390 /*
4391 * Are we unwiring the entire large page? If not,
4392 * demote the mapping and fall through.
4393 */
4394 if (sva + NBPDR == pdnxt && eva >= pdnxt) {
4395 /*
4396 * Regardless of whether a pde (or pte) is 32
4397 * or 64 bits in size, PG_W is among the least
4398 * significant 32 bits.
4399 */
4400 atomic_clear_int((u_int *)pde, PG_W);
4401 pmap->pm_stats.wired_count -= NBPDR /
4402 PAGE_SIZE;
4403 continue;
4404 } else {
4405 if (!pv_lists_locked) {
4406 pv_lists_locked = true;
4407 if (!rw_try_wlock(&pvh_global_lock)) {
4408 PMAP_UNLOCK(pmap);
4409 /* Repeat sva. */
4410 goto resume;
4411 }
4412 sched_pin();
4413 }
4414 if (!pmap_demote_pde(pmap, pde, sva))
4415 panic("pmap_unwire: demotion failed");
4416 }
4417 }
4418 if (pdnxt > eva)
4419 pdnxt = eva;
4420 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
4421 sva += PAGE_SIZE) {
4422 if ((*pte & PG_V) == 0)
4423 continue;
4424 if ((*pte & PG_W) == 0)
4425 panic("pmap_unwire: pte %#jx is missing PG_W",
4426 (uintmax_t)*pte);
4427
4428 /*
4429 * PG_W must be cleared atomically. Although the pmap
4430 * lock synchronizes access to PG_W, another processor
4431 * could be setting PG_M and/or PG_A concurrently.
4432 *
4433 * PG_W is among the least significant 32 bits.
4434 */
4435 atomic_clear_int((u_int *)pte, PG_W);
4436 pmap->pm_stats.wired_count--;
4437 }
4438 }
4439 if (pv_lists_locked) {
4440 sched_unpin();
4441 rw_wunlock(&pvh_global_lock);
4442 }
4443 PMAP_UNLOCK(pmap);
4444 }
4445
4446 /*
4447 * Copy the range specified by src_addr/len
4448 * from the source map to the range dst_addr/len
4449 * in the destination map.
4450 *
4451 * This routine is only advisory and need not do anything. Since
4452 * current pmap is always the kernel pmap when executing in
4453 * kernel, and we do not copy from the kernel pmap to a user
4454 * pmap, this optimization is not usable in 4/4G full split i386
4455 * world.
4456 */
4457
4458 static void
__CONCAT(PMTYPE,copy)4459 __CONCAT(PMTYPE, copy)(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
4460 vm_size_t len, vm_offset_t src_addr)
4461 {
4462 pt_entry_t *src_pte, *dst_pte, ptetemp;
4463 pd_entry_t srcptepaddr;
4464 vm_page_t dstmpte, srcmpte;
4465 vm_offset_t addr, end_addr, pdnxt;
4466 u_int ptepindex;
4467
4468 if (dst_addr != src_addr)
4469 return;
4470
4471 end_addr = src_addr + len;
4472
4473 rw_wlock(&pvh_global_lock);
4474 if (dst_pmap < src_pmap) {
4475 PMAP_LOCK(dst_pmap);
4476 PMAP_LOCK(src_pmap);
4477 } else {
4478 PMAP_LOCK(src_pmap);
4479 PMAP_LOCK(dst_pmap);
4480 }
4481 sched_pin();
4482 for (addr = src_addr; addr < end_addr; addr = pdnxt) {
4483 KASSERT(addr < PMAP_TRM_MIN_ADDRESS,
4484 ("pmap_copy: invalid to pmap_copy the trampoline"));
4485
4486 pdnxt = (addr + NBPDR) & ~PDRMASK;
4487 if (pdnxt < addr)
4488 pdnxt = end_addr;
4489 ptepindex = addr >> PDRSHIFT;
4490
4491 srcptepaddr = src_pmap->pm_pdir[ptepindex];
4492 if (srcptepaddr == 0)
4493 continue;
4494
4495 if (srcptepaddr & PG_PS) {
4496 if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
4497 continue;
4498 if (dst_pmap->pm_pdir[ptepindex] == 0 &&
4499 ((srcptepaddr & PG_MANAGED) == 0 ||
4500 pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
4501 PMAP_ENTER_NORECLAIM))) {
4502 dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
4503 ~PG_W;
4504 dst_pmap->pm_stats.resident_count +=
4505 NBPDR / PAGE_SIZE;
4506 pmap_pde_mappings++;
4507 }
4508 continue;
4509 }
4510
4511 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
4512 KASSERT(srcmpte->ref_count > 0,
4513 ("pmap_copy: source page table page is unused"));
4514
4515 if (pdnxt > end_addr)
4516 pdnxt = end_addr;
4517
4518 src_pte = pmap_pte_quick3(src_pmap, addr);
4519 while (addr < pdnxt) {
4520 ptetemp = *src_pte;
4521 /*
4522 * we only virtual copy managed pages
4523 */
4524 if ((ptetemp & PG_MANAGED) != 0) {
4525 dstmpte = pmap_allocpte(dst_pmap, addr,
4526 PMAP_ENTER_NOSLEEP);
4527 if (dstmpte == NULL)
4528 goto out;
4529 dst_pte = pmap_pte_quick(dst_pmap, addr);
4530 if (*dst_pte == 0 &&
4531 pmap_try_insert_pv_entry(dst_pmap, addr,
4532 PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
4533 /*
4534 * Clear the wired, modified, and
4535 * accessed (referenced) bits
4536 * during the copy.
4537 */
4538 *dst_pte = ptetemp & ~(PG_W | PG_M |
4539 PG_A);
4540 dst_pmap->pm_stats.resident_count++;
4541 } else {
4542 pmap_abort_ptp(dst_pmap, addr, dstmpte);
4543 goto out;
4544 }
4545 if (dstmpte->ref_count >= srcmpte->ref_count)
4546 break;
4547 }
4548 addr += PAGE_SIZE;
4549 src_pte++;
4550 }
4551 }
4552 out:
4553 sched_unpin();
4554 rw_wunlock(&pvh_global_lock);
4555 PMAP_UNLOCK(src_pmap);
4556 PMAP_UNLOCK(dst_pmap);
4557 }
4558
4559 /*
4560 * Zero 1 page of virtual memory mapped from a hardware page by the caller.
4561 */
4562 static __inline void
pagezero(void * page)4563 pagezero(void *page)
4564 {
4565 #if defined(I686_CPU)
4566 if (cpu_class == CPUCLASS_686) {
4567 if (cpu_feature & CPUID_SSE2)
4568 sse2_pagezero(page);
4569 else
4570 i686_pagezero(page);
4571 } else
4572 #endif
4573 bzero(page, PAGE_SIZE);
4574 }
4575
4576 /*
4577 * Zero the specified hardware page.
4578 */
4579 static void
__CONCAT(PMTYPE,zero_page)4580 __CONCAT(PMTYPE, zero_page)(vm_page_t m)
4581 {
4582 pt_entry_t *cmap_pte2;
4583 struct pcpu *pc;
4584
4585 sched_pin();
4586 pc = get_pcpu();
4587 cmap_pte2 = pc->pc_cmap_pte2;
4588 mtx_lock(&pc->pc_cmap_lock);
4589 if (*cmap_pte2)
4590 panic("pmap_zero_page: CMAP2 busy");
4591 *cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4592 pmap_cache_bits(kernel_pmap, m->md.pat_mode, false);
4593 invlcaddr(pc->pc_cmap_addr2);
4594 pagezero(pc->pc_cmap_addr2);
4595 *cmap_pte2 = 0;
4596
4597 /*
4598 * Unpin the thread before releasing the lock. Otherwise the thread
4599 * could be rescheduled while still bound to the current CPU, only
4600 * to unpin itself immediately upon resuming execution.
4601 */
4602 sched_unpin();
4603 mtx_unlock(&pc->pc_cmap_lock);
4604 }
4605
4606 /*
4607 * Zero an area within a single hardware page. off and size must not
4608 * cover an area beyond a single hardware page.
4609 */
4610 static void
__CONCAT(PMTYPE,zero_page_area)4611 __CONCAT(PMTYPE, zero_page_area)(vm_page_t m, int off, int size)
4612 {
4613 pt_entry_t *cmap_pte2;
4614 struct pcpu *pc;
4615
4616 sched_pin();
4617 pc = get_pcpu();
4618 cmap_pte2 = pc->pc_cmap_pte2;
4619 mtx_lock(&pc->pc_cmap_lock);
4620 if (*cmap_pte2)
4621 panic("pmap_zero_page_area: CMAP2 busy");
4622 *cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4623 pmap_cache_bits(kernel_pmap, m->md.pat_mode, false);
4624 invlcaddr(pc->pc_cmap_addr2);
4625 if (off == 0 && size == PAGE_SIZE)
4626 pagezero(pc->pc_cmap_addr2);
4627 else
4628 bzero(pc->pc_cmap_addr2 + off, size);
4629 *cmap_pte2 = 0;
4630 sched_unpin();
4631 mtx_unlock(&pc->pc_cmap_lock);
4632 }
4633
4634 /*
4635 * Copy 1 specified hardware page to another.
4636 */
4637 static void
__CONCAT(PMTYPE,copy_page)4638 __CONCAT(PMTYPE, copy_page)(vm_page_t src, vm_page_t dst)
4639 {
4640 pt_entry_t *cmap_pte1, *cmap_pte2;
4641 struct pcpu *pc;
4642
4643 sched_pin();
4644 pc = get_pcpu();
4645 cmap_pte1 = pc->pc_cmap_pte1;
4646 cmap_pte2 = pc->pc_cmap_pte2;
4647 mtx_lock(&pc->pc_cmap_lock);
4648 if (*cmap_pte1)
4649 panic("pmap_copy_page: CMAP1 busy");
4650 if (*cmap_pte2)
4651 panic("pmap_copy_page: CMAP2 busy");
4652 *cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
4653 pmap_cache_bits(kernel_pmap, src->md.pat_mode, false);
4654 invlcaddr(pc->pc_cmap_addr1);
4655 *cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
4656 pmap_cache_bits(kernel_pmap, dst->md.pat_mode, false);
4657 invlcaddr(pc->pc_cmap_addr2);
4658 bcopy(pc->pc_cmap_addr1, pc->pc_cmap_addr2, PAGE_SIZE);
4659 *cmap_pte1 = 0;
4660 *cmap_pte2 = 0;
4661 sched_unpin();
4662 mtx_unlock(&pc->pc_cmap_lock);
4663 }
4664
4665 static void
__CONCAT(PMTYPE,copy_pages)4666 __CONCAT(PMTYPE, copy_pages)(vm_page_t ma[], vm_offset_t a_offset,
4667 vm_page_t mb[], vm_offset_t b_offset, int xfersize)
4668 {
4669 vm_page_t a_pg, b_pg;
4670 char *a_cp, *b_cp;
4671 vm_offset_t a_pg_offset, b_pg_offset;
4672 pt_entry_t *cmap_pte1, *cmap_pte2;
4673 struct pcpu *pc;
4674 int cnt;
4675
4676 sched_pin();
4677 pc = get_pcpu();
4678 cmap_pte1 = pc->pc_cmap_pte1;
4679 cmap_pte2 = pc->pc_cmap_pte2;
4680 mtx_lock(&pc->pc_cmap_lock);
4681 if (*cmap_pte1 != 0)
4682 panic("pmap_copy_pages: CMAP1 busy");
4683 if (*cmap_pte2 != 0)
4684 panic("pmap_copy_pages: CMAP2 busy");
4685 while (xfersize > 0) {
4686 a_pg = ma[a_offset >> PAGE_SHIFT];
4687 a_pg_offset = a_offset & PAGE_MASK;
4688 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4689 b_pg = mb[b_offset >> PAGE_SHIFT];
4690 b_pg_offset = b_offset & PAGE_MASK;
4691 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4692 *cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(a_pg) | PG_A |
4693 pmap_cache_bits(kernel_pmap, a_pg->md.pat_mode, false);
4694 invlcaddr(pc->pc_cmap_addr1);
4695 *cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(b_pg) | PG_A |
4696 PG_M | pmap_cache_bits(kernel_pmap, b_pg->md.pat_mode,
4697 false);
4698 invlcaddr(pc->pc_cmap_addr2);
4699 a_cp = pc->pc_cmap_addr1 + a_pg_offset;
4700 b_cp = pc->pc_cmap_addr2 + b_pg_offset;
4701 bcopy(a_cp, b_cp, cnt);
4702 a_offset += cnt;
4703 b_offset += cnt;
4704 xfersize -= cnt;
4705 }
4706 *cmap_pte1 = 0;
4707 *cmap_pte2 = 0;
4708 sched_unpin();
4709 mtx_unlock(&pc->pc_cmap_lock);
4710 }
4711
4712 /*
4713 * Returns true if the pmap's pv is one of the first
4714 * 16 pvs linked to from this page. This count may
4715 * be changed upwards or downwards in the future; it
4716 * is only necessary that true be returned for a small
4717 * subset of pmaps for proper page aging.
4718 */
4719 static bool
__CONCAT(PMTYPE,page_exists_quick)4720 __CONCAT(PMTYPE, page_exists_quick)(pmap_t pmap, vm_page_t m)
4721 {
4722 struct md_page *pvh;
4723 pv_entry_t pv;
4724 int loops = 0;
4725 bool rv;
4726
4727 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4728 ("pmap_page_exists_quick: page %p is not managed", m));
4729 rv = false;
4730 rw_wlock(&pvh_global_lock);
4731 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4732 if (PV_PMAP(pv) == pmap) {
4733 rv = true;
4734 break;
4735 }
4736 loops++;
4737 if (loops >= 16)
4738 break;
4739 }
4740 if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4741 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4742 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4743 if (PV_PMAP(pv) == pmap) {
4744 rv = true;
4745 break;
4746 }
4747 loops++;
4748 if (loops >= 16)
4749 break;
4750 }
4751 }
4752 rw_wunlock(&pvh_global_lock);
4753 return (rv);
4754 }
4755
4756 /*
4757 * pmap_page_wired_mappings:
4758 *
4759 * Return the number of managed mappings to the given physical page
4760 * that are wired.
4761 */
4762 static int
__CONCAT(PMTYPE,page_wired_mappings)4763 __CONCAT(PMTYPE, page_wired_mappings)(vm_page_t m)
4764 {
4765 int count;
4766
4767 count = 0;
4768 if ((m->oflags & VPO_UNMANAGED) != 0)
4769 return (count);
4770 rw_wlock(&pvh_global_lock);
4771 count = pmap_pvh_wired_mappings(&m->md, count);
4772 if ((m->flags & PG_FICTITIOUS) == 0) {
4773 count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
4774 count);
4775 }
4776 rw_wunlock(&pvh_global_lock);
4777 return (count);
4778 }
4779
4780 /*
4781 * pmap_pvh_wired_mappings:
4782 *
4783 * Return the updated number "count" of managed mappings that are wired.
4784 */
4785 static int
pmap_pvh_wired_mappings(struct md_page * pvh,int count)4786 pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4787 {
4788 pmap_t pmap;
4789 pt_entry_t *pte;
4790 pv_entry_t pv;
4791
4792 rw_assert(&pvh_global_lock, RA_WLOCKED);
4793 sched_pin();
4794 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4795 pmap = PV_PMAP(pv);
4796 PMAP_LOCK(pmap);
4797 pte = pmap_pte_quick(pmap, pv->pv_va);
4798 if ((*pte & PG_W) != 0)
4799 count++;
4800 PMAP_UNLOCK(pmap);
4801 }
4802 sched_unpin();
4803 return (count);
4804 }
4805
4806 /*
4807 * Returns true if the given page is mapped individually or as part of
4808 * a 4mpage. Otherwise, returns false.
4809 */
4810 static bool
__CONCAT(PMTYPE,page_is_mapped)4811 __CONCAT(PMTYPE, page_is_mapped)(vm_page_t m)
4812 {
4813 bool rv;
4814
4815 if ((m->oflags & VPO_UNMANAGED) != 0)
4816 return (false);
4817 rw_wlock(&pvh_global_lock);
4818 rv = !TAILQ_EMPTY(&m->md.pv_list) ||
4819 ((m->flags & PG_FICTITIOUS) == 0 &&
4820 !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
4821 rw_wunlock(&pvh_global_lock);
4822 return (rv);
4823 }
4824
4825 /*
4826 * Remove all pages from specified address space
4827 * this aids process exit speeds. Also, this code
4828 * is special cased for current process only, but
4829 * can have the more generic (and slightly slower)
4830 * mode enabled. This is much faster than pmap_remove
4831 * in the case of running down an entire address space.
4832 */
4833 static void
__CONCAT(PMTYPE,remove_pages)4834 __CONCAT(PMTYPE, remove_pages)(pmap_t pmap)
4835 {
4836 pt_entry_t *pte, tpte;
4837 vm_page_t m, mpte, mt;
4838 pv_entry_t pv;
4839 struct md_page *pvh;
4840 struct pv_chunk *pc, *npc;
4841 struct spglist free;
4842 int field, idx;
4843 int32_t bit;
4844 uint32_t inuse, bitmask;
4845 int allfree;
4846
4847 if (pmap != PCPU_GET(curpmap)) {
4848 printf("warning: pmap_remove_pages called with non-current pmap\n");
4849 return;
4850 }
4851 SLIST_INIT(&free);
4852 rw_wlock(&pvh_global_lock);
4853 PMAP_LOCK(pmap);
4854 sched_pin();
4855 TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4856 KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
4857 pc->pc_pmap));
4858 allfree = 1;
4859 for (field = 0; field < _NPCM; field++) {
4860 inuse = ~pc->pc_map[field] & pc_freemask[field];
4861 while (inuse != 0) {
4862 bit = bsfl(inuse);
4863 bitmask = 1UL << bit;
4864 idx = field * 32 + bit;
4865 pv = &pc->pc_pventry[idx];
4866 inuse &= ~bitmask;
4867
4868 pte = pmap_pde(pmap, pv->pv_va);
4869 tpte = *pte;
4870 if ((tpte & PG_PS) == 0) {
4871 pte = pmap_pte_quick(pmap, pv->pv_va);
4872 tpte = *pte & ~PG_PTE_PAT;
4873 }
4874
4875 if (tpte == 0) {
4876 printf(
4877 "TPTE at %p IS ZERO @ VA %08x\n",
4878 pte, pv->pv_va);
4879 panic("bad pte");
4880 }
4881
4882 /*
4883 * We cannot remove wired pages from a process' mapping at this time
4884 */
4885 if (tpte & PG_W) {
4886 allfree = 0;
4887 continue;
4888 }
4889
4890 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4891 KASSERT(m->phys_addr == (tpte & PG_FRAME),
4892 ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4893 m, (uintmax_t)m->phys_addr,
4894 (uintmax_t)tpte));
4895
4896 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4897 m < &vm_page_array[vm_page_array_size],
4898 ("pmap_remove_pages: bad tpte %#jx",
4899 (uintmax_t)tpte));
4900
4901 pte_clear(pte);
4902
4903 /*
4904 * Update the vm_page_t clean/reference bits.
4905 */
4906 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4907 if ((tpte & PG_PS) != 0) {
4908 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4909 vm_page_dirty(mt);
4910 } else
4911 vm_page_dirty(m);
4912 }
4913
4914 /* Mark free */
4915 PV_STAT(pv_entry_frees++);
4916 PV_STAT(pv_entry_spare++);
4917 pv_entry_count--;
4918 pc->pc_map[field] |= bitmask;
4919 if ((tpte & PG_PS) != 0) {
4920 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4921 pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4922 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4923 if (TAILQ_EMPTY(&pvh->pv_list)) {
4924 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4925 if (TAILQ_EMPTY(&mt->md.pv_list))
4926 vm_page_aflag_clear(mt, PGA_WRITEABLE);
4927 }
4928 mpte = pmap_remove_pt_page(pmap, pv->pv_va);
4929 if (mpte != NULL) {
4930 KASSERT(vm_page_any_valid(mpte),
4931 ("pmap_remove_pages: pte page not promoted"));
4932 pmap->pm_stats.resident_count--;
4933 KASSERT(mpte->ref_count == NPTEPG,
4934 ("pmap_remove_pages: pte page ref count error"));
4935 mpte->ref_count = 0;
4936 pmap_add_delayed_free_list(mpte, &free, false);
4937 }
4938 } else {
4939 pmap->pm_stats.resident_count--;
4940 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4941 if (TAILQ_EMPTY(&m->md.pv_list) &&
4942 (m->flags & PG_FICTITIOUS) == 0) {
4943 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4944 if (TAILQ_EMPTY(&pvh->pv_list))
4945 vm_page_aflag_clear(m, PGA_WRITEABLE);
4946 }
4947 pmap_unuse_pt(pmap, pv->pv_va, &free);
4948 }
4949 }
4950 }
4951 if (allfree) {
4952 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4953 free_pv_chunk(pc);
4954 }
4955 }
4956 sched_unpin();
4957 pmap_invalidate_all_int(pmap);
4958 rw_wunlock(&pvh_global_lock);
4959 PMAP_UNLOCK(pmap);
4960 vm_page_free_pages_toq(&free, true);
4961 }
4962
4963 /*
4964 * pmap_is_modified:
4965 *
4966 * Return whether or not the specified physical page was modified
4967 * in any physical maps.
4968 */
4969 static bool
__CONCAT(PMTYPE,is_modified)4970 __CONCAT(PMTYPE, is_modified)(vm_page_t m)
4971 {
4972 bool rv;
4973
4974 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4975 ("pmap_is_modified: page %p is not managed", m));
4976
4977 /*
4978 * If the page is not busied then this check is racy.
4979 */
4980 if (!pmap_page_is_write_mapped(m))
4981 return (false);
4982 rw_wlock(&pvh_global_lock);
4983 rv = pmap_is_modified_pvh(&m->md) ||
4984 ((m->flags & PG_FICTITIOUS) == 0 &&
4985 pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4986 rw_wunlock(&pvh_global_lock);
4987 return (rv);
4988 }
4989
4990 /*
4991 * Returns true if any of the given mappings were used to modify
4992 * physical memory. Otherwise, returns false. Both page and 2mpage
4993 * mappings are supported.
4994 */
4995 static bool
pmap_is_modified_pvh(struct md_page * pvh)4996 pmap_is_modified_pvh(struct md_page *pvh)
4997 {
4998 pv_entry_t pv;
4999 pt_entry_t *pte;
5000 pmap_t pmap;
5001 bool rv;
5002
5003 rw_assert(&pvh_global_lock, RA_WLOCKED);
5004 rv = false;
5005 sched_pin();
5006 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5007 pmap = PV_PMAP(pv);
5008 PMAP_LOCK(pmap);
5009 pte = pmap_pte_quick(pmap, pv->pv_va);
5010 rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
5011 PMAP_UNLOCK(pmap);
5012 if (rv)
5013 break;
5014 }
5015 sched_unpin();
5016 return (rv);
5017 }
5018
5019 /*
5020 * pmap_is_prefaultable:
5021 *
5022 * Return whether or not the specified virtual address is elgible
5023 * for prefault.
5024 */
5025 static bool
__CONCAT(PMTYPE,is_prefaultable)5026 __CONCAT(PMTYPE, is_prefaultable)(pmap_t pmap, vm_offset_t addr)
5027 {
5028 pd_entry_t pde;
5029 bool rv;
5030
5031 rv = false;
5032 PMAP_LOCK(pmap);
5033 pde = *pmap_pde(pmap, addr);
5034 if (pde != 0 && (pde & PG_PS) == 0)
5035 rv = pmap_pte_ufast(pmap, addr, pde) == 0;
5036 PMAP_UNLOCK(pmap);
5037 return (rv);
5038 }
5039
5040 /*
5041 * pmap_is_referenced:
5042 *
5043 * Return whether or not the specified physical page was referenced
5044 * in any physical maps.
5045 */
5046 static bool
__CONCAT(PMTYPE,is_referenced)5047 __CONCAT(PMTYPE, is_referenced)(vm_page_t m)
5048 {
5049 bool rv;
5050
5051 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5052 ("pmap_is_referenced: page %p is not managed", m));
5053 rw_wlock(&pvh_global_lock);
5054 rv = pmap_is_referenced_pvh(&m->md) ||
5055 ((m->flags & PG_FICTITIOUS) == 0 &&
5056 pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5057 rw_wunlock(&pvh_global_lock);
5058 return (rv);
5059 }
5060
5061 /*
5062 * Returns true if any of the given mappings were referenced and false
5063 * otherwise. Both page and 4mpage mappings are supported.
5064 */
5065 static bool
pmap_is_referenced_pvh(struct md_page * pvh)5066 pmap_is_referenced_pvh(struct md_page *pvh)
5067 {
5068 pv_entry_t pv;
5069 pt_entry_t *pte;
5070 pmap_t pmap;
5071 bool rv;
5072
5073 rw_assert(&pvh_global_lock, RA_WLOCKED);
5074 rv = false;
5075 sched_pin();
5076 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5077 pmap = PV_PMAP(pv);
5078 PMAP_LOCK(pmap);
5079 pte = pmap_pte_quick(pmap, pv->pv_va);
5080 rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
5081 PMAP_UNLOCK(pmap);
5082 if (rv)
5083 break;
5084 }
5085 sched_unpin();
5086 return (rv);
5087 }
5088
5089 /*
5090 * Clear the write and modified bits in each of the given page's mappings.
5091 */
5092 static void
__CONCAT(PMTYPE,remove_write)5093 __CONCAT(PMTYPE, remove_write)(vm_page_t m)
5094 {
5095 struct md_page *pvh;
5096 pv_entry_t next_pv, pv;
5097 pmap_t pmap;
5098 pd_entry_t *pde;
5099 pt_entry_t oldpte, *pte;
5100 vm_offset_t va;
5101
5102 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5103 ("pmap_remove_write: page %p is not managed", m));
5104 vm_page_assert_busied(m);
5105
5106 if (!pmap_page_is_write_mapped(m))
5107 return;
5108 rw_wlock(&pvh_global_lock);
5109 sched_pin();
5110 if ((m->flags & PG_FICTITIOUS) != 0)
5111 goto small_mappings;
5112 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5113 TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5114 va = pv->pv_va;
5115 pmap = PV_PMAP(pv);
5116 PMAP_LOCK(pmap);
5117 pde = pmap_pde(pmap, va);
5118 if ((*pde & PG_RW) != 0)
5119 (void)pmap_demote_pde(pmap, pde, va);
5120 PMAP_UNLOCK(pmap);
5121 }
5122 small_mappings:
5123 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5124 pmap = PV_PMAP(pv);
5125 PMAP_LOCK(pmap);
5126 pde = pmap_pde(pmap, pv->pv_va);
5127 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
5128 " a 4mpage in page %p's pv list", m));
5129 pte = pmap_pte_quick(pmap, pv->pv_va);
5130 retry:
5131 oldpte = *pte;
5132 if ((oldpte & PG_RW) != 0) {
5133 /*
5134 * Regardless of whether a pte is 32 or 64 bits
5135 * in size, PG_RW and PG_M are among the least
5136 * significant 32 bits.
5137 */
5138 if (!atomic_cmpset_int((u_int *)pte, oldpte,
5139 oldpte & ~(PG_RW | PG_M)))
5140 goto retry;
5141 if ((oldpte & PG_M) != 0)
5142 vm_page_dirty(m);
5143 pmap_invalidate_page_int(pmap, pv->pv_va);
5144 }
5145 PMAP_UNLOCK(pmap);
5146 }
5147 vm_page_aflag_clear(m, PGA_WRITEABLE);
5148 sched_unpin();
5149 rw_wunlock(&pvh_global_lock);
5150 }
5151
5152 /*
5153 * pmap_ts_referenced:
5154 *
5155 * Return a count of reference bits for a page, clearing those bits.
5156 * It is not necessary for every reference bit to be cleared, but it
5157 * is necessary that 0 only be returned when there are truly no
5158 * reference bits set.
5159 *
5160 * As an optimization, update the page's dirty field if a modified bit is
5161 * found while counting reference bits. This opportunistic update can be
5162 * performed at low cost and can eliminate the need for some future calls
5163 * to pmap_is_modified(). However, since this function stops after
5164 * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
5165 * dirty pages. Those dirty pages will only be detected by a future call
5166 * to pmap_is_modified().
5167 */
5168 static int
__CONCAT(PMTYPE,ts_referenced)5169 __CONCAT(PMTYPE, ts_referenced)(vm_page_t m)
5170 {
5171 struct md_page *pvh;
5172 pv_entry_t pv, pvf;
5173 pmap_t pmap;
5174 pd_entry_t *pde;
5175 pt_entry_t *pte;
5176 vm_paddr_t pa;
5177 int rtval = 0;
5178
5179 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5180 ("pmap_ts_referenced: page %p is not managed", m));
5181 pa = VM_PAGE_TO_PHYS(m);
5182 pvh = pa_to_pvh(pa);
5183 rw_wlock(&pvh_global_lock);
5184 sched_pin();
5185 if ((m->flags & PG_FICTITIOUS) != 0 ||
5186 (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
5187 goto small_mappings;
5188 pv = pvf;
5189 do {
5190 pmap = PV_PMAP(pv);
5191 PMAP_LOCK(pmap);
5192 pde = pmap_pde(pmap, pv->pv_va);
5193 if ((*pde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5194 /*
5195 * Although "*pde" is mapping a 2/4MB page, because
5196 * this function is called at a 4KB page granularity,
5197 * we only update the 4KB page under test.
5198 */
5199 vm_page_dirty(m);
5200 }
5201 if ((*pde & PG_A) != 0) {
5202 /*
5203 * Since this reference bit is shared by either 1024
5204 * or 512 4KB pages, it should not be cleared every
5205 * time it is tested. Apply a simple "hash" function
5206 * on the physical page number, the virtual superpage
5207 * number, and the pmap address to select one 4KB page
5208 * out of the 1024 or 512 on which testing the
5209 * reference bit will result in clearing that bit.
5210 * This function is designed to avoid the selection of
5211 * the same 4KB page for every 2- or 4MB page mapping.
5212 *
5213 * On demotion, a mapping that hasn't been referenced
5214 * is simply destroyed. To avoid the possibility of a
5215 * subsequent page fault on a demoted wired mapping,
5216 * always leave its reference bit set. Moreover,
5217 * since the superpage is wired, the current state of
5218 * its reference bit won't affect page replacement.
5219 */
5220 if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
5221 (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
5222 (*pde & PG_W) == 0) {
5223 atomic_clear_int((u_int *)pde, PG_A);
5224 pmap_invalidate_page_int(pmap, pv->pv_va);
5225 }
5226 rtval++;
5227 }
5228 PMAP_UNLOCK(pmap);
5229 /* Rotate the PV list if it has more than one entry. */
5230 if (TAILQ_NEXT(pv, pv_next) != NULL) {
5231 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5232 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5233 }
5234 if (rtval >= PMAP_TS_REFERENCED_MAX)
5235 goto out;
5236 } while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5237 small_mappings:
5238 if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5239 goto out;
5240 pv = pvf;
5241 do {
5242 pmap = PV_PMAP(pv);
5243 PMAP_LOCK(pmap);
5244 pde = pmap_pde(pmap, pv->pv_va);
5245 KASSERT((*pde & PG_PS) == 0,
5246 ("pmap_ts_referenced: found a 4mpage in page %p's pv list",
5247 m));
5248 pte = pmap_pte_quick(pmap, pv->pv_va);
5249 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5250 vm_page_dirty(m);
5251 if ((*pte & PG_A) != 0) {
5252 atomic_clear_int((u_int *)pte, PG_A);
5253 pmap_invalidate_page_int(pmap, pv->pv_va);
5254 rtval++;
5255 }
5256 PMAP_UNLOCK(pmap);
5257 /* Rotate the PV list if it has more than one entry. */
5258 if (TAILQ_NEXT(pv, pv_next) != NULL) {
5259 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5260 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5261 }
5262 } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
5263 PMAP_TS_REFERENCED_MAX);
5264 out:
5265 sched_unpin();
5266 rw_wunlock(&pvh_global_lock);
5267 return (rtval);
5268 }
5269
5270 /*
5271 * Apply the given advice to the specified range of addresses within the
5272 * given pmap. Depending on the advice, clear the referenced and/or
5273 * modified flags in each mapping and set the mapped page's dirty field.
5274 */
5275 static void
__CONCAT(PMTYPE,advise)5276 __CONCAT(PMTYPE, advise)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
5277 int advice)
5278 {
5279 pd_entry_t oldpde, *pde;
5280 pt_entry_t *pte;
5281 vm_offset_t va, pdnxt;
5282 vm_page_t m;
5283 bool anychanged, pv_lists_locked;
5284
5285 if (advice != MADV_DONTNEED && advice != MADV_FREE)
5286 return;
5287 if (pmap_is_current(pmap))
5288 pv_lists_locked = false;
5289 else {
5290 pv_lists_locked = true;
5291 resume:
5292 rw_wlock(&pvh_global_lock);
5293 sched_pin();
5294 }
5295 anychanged = false;
5296 PMAP_LOCK(pmap);
5297 for (; sva < eva; sva = pdnxt) {
5298 pdnxt = (sva + NBPDR) & ~PDRMASK;
5299 if (pdnxt < sva)
5300 pdnxt = eva;
5301 pde = pmap_pde(pmap, sva);
5302 oldpde = *pde;
5303 if ((oldpde & PG_V) == 0)
5304 continue;
5305 else if ((oldpde & PG_PS) != 0) {
5306 if ((oldpde & PG_MANAGED) == 0)
5307 continue;
5308 if (!pv_lists_locked) {
5309 pv_lists_locked = true;
5310 if (!rw_try_wlock(&pvh_global_lock)) {
5311 if (anychanged)
5312 pmap_invalidate_all_int(pmap);
5313 PMAP_UNLOCK(pmap);
5314 goto resume;
5315 }
5316 sched_pin();
5317 }
5318 if (!pmap_demote_pde(pmap, pde, sva)) {
5319 /*
5320 * The large page mapping was destroyed.
5321 */
5322 continue;
5323 }
5324
5325 /*
5326 * Unless the page mappings are wired, remove the
5327 * mapping to a single page so that a subsequent
5328 * access may repromote. Choosing the last page
5329 * within the address range [sva, min(pdnxt, eva))
5330 * generally results in more repromotions. Since the
5331 * underlying page table page is fully populated, this
5332 * removal never frees a page table page.
5333 */
5334 if ((oldpde & PG_W) == 0) {
5335 va = eva;
5336 if (va > pdnxt)
5337 va = pdnxt;
5338 va -= PAGE_SIZE;
5339 KASSERT(va >= sva,
5340 ("pmap_advise: no address gap"));
5341 pte = pmap_pte_quick(pmap, va);
5342 KASSERT((*pte & PG_V) != 0,
5343 ("pmap_advise: invalid PTE"));
5344 pmap_remove_pte(pmap, pte, va, NULL);
5345 anychanged = true;
5346 }
5347 }
5348 if (pdnxt > eva)
5349 pdnxt = eva;
5350 va = pdnxt;
5351 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
5352 sva += PAGE_SIZE) {
5353 if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
5354 goto maybe_invlrng;
5355 else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5356 if (advice == MADV_DONTNEED) {
5357 /*
5358 * Future calls to pmap_is_modified()
5359 * can be avoided by making the page
5360 * dirty now.
5361 */
5362 m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
5363 vm_page_dirty(m);
5364 }
5365 atomic_clear_int((u_int *)pte, PG_M | PG_A);
5366 } else if ((*pte & PG_A) != 0)
5367 atomic_clear_int((u_int *)pte, PG_A);
5368 else
5369 goto maybe_invlrng;
5370 if ((*pte & PG_G) != 0) {
5371 if (va == pdnxt)
5372 va = sva;
5373 } else
5374 anychanged = true;
5375 continue;
5376 maybe_invlrng:
5377 if (va != pdnxt) {
5378 pmap_invalidate_range_int(pmap, va, sva);
5379 va = pdnxt;
5380 }
5381 }
5382 if (va != pdnxt)
5383 pmap_invalidate_range_int(pmap, va, sva);
5384 }
5385 if (anychanged)
5386 pmap_invalidate_all_int(pmap);
5387 if (pv_lists_locked) {
5388 sched_unpin();
5389 rw_wunlock(&pvh_global_lock);
5390 }
5391 PMAP_UNLOCK(pmap);
5392 }
5393
5394 /*
5395 * Clear the modify bits on the specified physical page.
5396 */
5397 static void
__CONCAT(PMTYPE,clear_modify)5398 __CONCAT(PMTYPE, clear_modify)(vm_page_t m)
5399 {
5400 struct md_page *pvh;
5401 pv_entry_t next_pv, pv;
5402 pmap_t pmap;
5403 pd_entry_t oldpde, *pde;
5404 pt_entry_t *pte;
5405 vm_offset_t va;
5406
5407 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5408 ("pmap_clear_modify: page %p is not managed", m));
5409 vm_page_assert_busied(m);
5410
5411 if (!pmap_page_is_write_mapped(m))
5412 return;
5413 rw_wlock(&pvh_global_lock);
5414 sched_pin();
5415 if ((m->flags & PG_FICTITIOUS) != 0)
5416 goto small_mappings;
5417 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5418 TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5419 va = pv->pv_va;
5420 pmap = PV_PMAP(pv);
5421 PMAP_LOCK(pmap);
5422 pde = pmap_pde(pmap, va);
5423 oldpde = *pde;
5424 /* If oldpde has PG_RW set, then it also has PG_M set. */
5425 if ((oldpde & PG_RW) != 0 &&
5426 pmap_demote_pde(pmap, pde, va) &&
5427 (oldpde & PG_W) == 0) {
5428 /*
5429 * Write protect the mapping to a single page so that
5430 * a subsequent write access may repromote.
5431 */
5432 va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
5433 pte = pmap_pte_quick(pmap, va);
5434 /*
5435 * Regardless of whether a pte is 32 or 64 bits
5436 * in size, PG_RW and PG_M are among the least
5437 * significant 32 bits.
5438 */
5439 atomic_clear_int((u_int *)pte, PG_M | PG_RW);
5440 vm_page_dirty(m);
5441 pmap_invalidate_page_int(pmap, va);
5442 }
5443 PMAP_UNLOCK(pmap);
5444 }
5445 small_mappings:
5446 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5447 pmap = PV_PMAP(pv);
5448 PMAP_LOCK(pmap);
5449 pde = pmap_pde(pmap, pv->pv_va);
5450 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
5451 " a 4mpage in page %p's pv list", m));
5452 pte = pmap_pte_quick(pmap, pv->pv_va);
5453 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5454 /*
5455 * Regardless of whether a pte is 32 or 64 bits
5456 * in size, PG_M is among the least significant
5457 * 32 bits.
5458 */
5459 atomic_clear_int((u_int *)pte, PG_M);
5460 pmap_invalidate_page_int(pmap, pv->pv_va);
5461 }
5462 PMAP_UNLOCK(pmap);
5463 }
5464 sched_unpin();
5465 rw_wunlock(&pvh_global_lock);
5466 }
5467
5468 /*
5469 * Miscellaneous support routines follow
5470 */
5471
5472 /* Adjust the cache mode for a 4KB page mapped via a PTE. */
5473 static __inline void
pmap_pte_attr(pt_entry_t * pte,int cache_bits)5474 pmap_pte_attr(pt_entry_t *pte, int cache_bits)
5475 {
5476 u_int opte, npte;
5477
5478 /*
5479 * The cache mode bits are all in the low 32-bits of the
5480 * PTE, so we can just spin on updating the low 32-bits.
5481 */
5482 do {
5483 opte = *(u_int *)pte;
5484 npte = opte & ~PG_PTE_CACHE;
5485 npte |= cache_bits;
5486 } while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
5487 }
5488
5489 /* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
5490 static __inline void
pmap_pde_attr(pd_entry_t * pde,int cache_bits)5491 pmap_pde_attr(pd_entry_t *pde, int cache_bits)
5492 {
5493 u_int opde, npde;
5494
5495 /*
5496 * The cache mode bits are all in the low 32-bits of the
5497 * PDE, so we can just spin on updating the low 32-bits.
5498 */
5499 do {
5500 opde = *(u_int *)pde;
5501 npde = opde & ~PG_PDE_CACHE;
5502 npde |= cache_bits;
5503 } while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
5504 }
5505
5506 /*
5507 * Map a set of physical memory pages into the kernel virtual
5508 * address space. Return a pointer to where it is mapped. This
5509 * routine is intended to be used for mapping device memory,
5510 * NOT real memory.
5511 */
5512 static void *
__CONCAT(PMTYPE,mapdev_attr)5513 __CONCAT(PMTYPE, mapdev_attr)(vm_paddr_t pa, vm_size_t size, int mode,
5514 int flags)
5515 {
5516 struct pmap_preinit_mapping *ppim;
5517 vm_offset_t va, offset;
5518 vm_page_t m;
5519 vm_size_t tmpsize;
5520 int i;
5521
5522 offset = pa & PAGE_MASK;
5523 size = round_page(offset + size);
5524 pa = pa & PG_FRAME;
5525
5526 if (pa < PMAP_MAP_LOW && pa + size <= PMAP_MAP_LOW) {
5527 va = pa + PMAP_MAP_LOW;
5528 if ((flags & MAPDEV_SETATTR) == 0)
5529 return ((void *)(va + offset));
5530 } else if (!pmap_initialized) {
5531 va = 0;
5532 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5533 ppim = pmap_preinit_mapping + i;
5534 if (ppim->va == 0) {
5535 ppim->pa = pa;
5536 ppim->sz = size;
5537 ppim->mode = mode;
5538 ppim->va = virtual_avail;
5539 virtual_avail += size;
5540 va = ppim->va;
5541 break;
5542 }
5543 }
5544 if (va == 0)
5545 panic("%s: too many preinit mappings", __func__);
5546 } else {
5547 /*
5548 * If we have a preinit mapping, re-use it.
5549 */
5550 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5551 ppim = pmap_preinit_mapping + i;
5552 if (ppim->pa == pa && ppim->sz == size &&
5553 (ppim->mode == mode ||
5554 (flags & MAPDEV_SETATTR) == 0))
5555 return ((void *)(ppim->va + offset));
5556 }
5557 va = kva_alloc(size);
5558 if (va == 0)
5559 panic("%s: Couldn't allocate KVA", __func__);
5560 }
5561 for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE) {
5562 if ((flags & MAPDEV_SETATTR) == 0 && pmap_initialized) {
5563 m = PHYS_TO_VM_PAGE(pa);
5564 if (m != NULL && VM_PAGE_TO_PHYS(m) == pa) {
5565 pmap_kenter_attr(va + tmpsize, pa + tmpsize,
5566 m->md.pat_mode);
5567 continue;
5568 }
5569 }
5570 pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
5571 }
5572 pmap_invalidate_range_int(kernel_pmap, va, va + tmpsize);
5573 pmap_invalidate_cache_range(va, va + size);
5574 return ((void *)(va + offset));
5575 }
5576
5577 static void
__CONCAT(PMTYPE,unmapdev)5578 __CONCAT(PMTYPE, unmapdev)(void *p, vm_size_t size)
5579 {
5580 struct pmap_preinit_mapping *ppim;
5581 vm_offset_t offset, va;
5582 int i;
5583
5584 va = (vm_offset_t)p;
5585 if (va >= PMAP_MAP_LOW && va <= KERNBASE && va + size <= KERNBASE)
5586 return;
5587 offset = va & PAGE_MASK;
5588 size = round_page(offset + size);
5589 va = trunc_page(va);
5590 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5591 ppim = pmap_preinit_mapping + i;
5592 if (ppim->va == va && ppim->sz == size) {
5593 if (pmap_initialized)
5594 return;
5595 ppim->pa = 0;
5596 ppim->va = 0;
5597 ppim->sz = 0;
5598 ppim->mode = 0;
5599 if (va + size == virtual_avail)
5600 virtual_avail = va;
5601 return;
5602 }
5603 }
5604 if (pmap_initialized) {
5605 pmap_qremove(va, atop(size));
5606 kva_free(va, size);
5607 }
5608 }
5609
5610 /*
5611 * Sets the memory attribute for the specified page.
5612 */
5613 static void
__CONCAT(PMTYPE,page_set_memattr)5614 __CONCAT(PMTYPE, page_set_memattr)(vm_page_t m, vm_memattr_t ma)
5615 {
5616
5617 m->md.pat_mode = ma;
5618 if ((m->flags & PG_FICTITIOUS) != 0)
5619 return;
5620
5621 /*
5622 * If "m" is a normal page, flush it from the cache.
5623 * See pmap_invalidate_cache_range().
5624 *
5625 * First, try to find an existing mapping of the page by sf
5626 * buffer. sf_buf_invalidate_cache() modifies mapping and
5627 * flushes the cache.
5628 */
5629 if (sf_buf_invalidate_cache(m))
5630 return;
5631
5632 /*
5633 * If page is not mapped by sf buffer, but CPU does not
5634 * support self snoop, map the page transient and do
5635 * invalidation. In the worst case, whole cache is flushed by
5636 * pmap_invalidate_cache_range().
5637 */
5638 if ((cpu_feature & CPUID_SS) == 0)
5639 pmap_flush_page(m);
5640 }
5641
5642 static void
__CONCAT(PMTYPE,flush_page)5643 __CONCAT(PMTYPE, flush_page)(vm_page_t m)
5644 {
5645 pt_entry_t *cmap_pte2;
5646 struct pcpu *pc;
5647 vm_offset_t sva, eva;
5648 bool useclflushopt;
5649
5650 useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
5651 if (useclflushopt || (cpu_feature & CPUID_CLFSH) != 0) {
5652 sched_pin();
5653 pc = get_pcpu();
5654 cmap_pte2 = pc->pc_cmap_pte2;
5655 mtx_lock(&pc->pc_cmap_lock);
5656 if (*cmap_pte2)
5657 panic("pmap_flush_page: CMAP2 busy");
5658 *cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
5659 PG_A | PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode,
5660 false);
5661 invlcaddr(pc->pc_cmap_addr2);
5662 sva = (vm_offset_t)pc->pc_cmap_addr2;
5663 eva = sva + PAGE_SIZE;
5664
5665 /*
5666 * Use mfence or sfence despite the ordering implied by
5667 * mtx_{un,}lock() because clflush on non-Intel CPUs
5668 * and clflushopt are not guaranteed to be ordered by
5669 * any other instruction.
5670 */
5671 if (useclflushopt)
5672 sfence();
5673 else if (cpu_vendor_id != CPU_VENDOR_INTEL)
5674 mfence();
5675 for (; sva < eva; sva += cpu_clflush_line_size) {
5676 if (useclflushopt)
5677 clflushopt(sva);
5678 else
5679 clflush(sva);
5680 }
5681 if (useclflushopt)
5682 sfence();
5683 else if (cpu_vendor_id != CPU_VENDOR_INTEL)
5684 mfence();
5685 *cmap_pte2 = 0;
5686 sched_unpin();
5687 mtx_unlock(&pc->pc_cmap_lock);
5688 } else
5689 pmap_invalidate_cache();
5690 }
5691
5692 /*
5693 * Changes the specified virtual address range's memory type to that given by
5694 * the parameter "mode". The specified virtual address range must be
5695 * completely contained within either the kernel map.
5696 *
5697 * Returns zero if the change completed successfully, and either EINVAL or
5698 * ENOMEM if the change failed. Specifically, EINVAL is returned if some part
5699 * of the virtual address range was not mapped, and ENOMEM is returned if
5700 * there was insufficient memory available to complete the change.
5701 */
5702 static int
__CONCAT(PMTYPE,change_attr)5703 __CONCAT(PMTYPE, change_attr)(vm_offset_t va, vm_size_t size, int mode)
5704 {
5705 vm_offset_t base, offset, tmpva;
5706 pd_entry_t *pde;
5707 pt_entry_t *pte;
5708 int cache_bits_pte, cache_bits_pde;
5709 bool changed;
5710
5711 base = trunc_page(va);
5712 offset = va & PAGE_MASK;
5713 size = round_page(offset + size);
5714
5715 /*
5716 * Only supported on kernel virtual addresses above the recursive map.
5717 */
5718 if (base < VM_MIN_KERNEL_ADDRESS)
5719 return (EINVAL);
5720
5721 cache_bits_pde = pmap_cache_bits(kernel_pmap, mode, true);
5722 cache_bits_pte = pmap_cache_bits(kernel_pmap, mode, false);
5723 changed = false;
5724
5725 /*
5726 * Pages that aren't mapped aren't supported. Also break down
5727 * 2/4MB pages into 4KB pages if required.
5728 */
5729 PMAP_LOCK(kernel_pmap);
5730 for (tmpva = base; tmpva < base + size; ) {
5731 pde = pmap_pde(kernel_pmap, tmpva);
5732 if (*pde == 0) {
5733 PMAP_UNLOCK(kernel_pmap);
5734 return (EINVAL);
5735 }
5736 if (*pde & PG_PS) {
5737 /*
5738 * If the current 2/4MB page already has
5739 * the required memory type, then we need not
5740 * demote this page. Just increment tmpva to
5741 * the next 2/4MB page frame.
5742 */
5743 if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
5744 tmpva = trunc_4mpage(tmpva) + NBPDR;
5745 continue;
5746 }
5747
5748 /*
5749 * If the current offset aligns with a 2/4MB
5750 * page frame and there is at least 2/4MB left
5751 * within the range, then we need not break
5752 * down this page into 4KB pages.
5753 */
5754 if ((tmpva & PDRMASK) == 0 &&
5755 tmpva + PDRMASK < base + size) {
5756 tmpva += NBPDR;
5757 continue;
5758 }
5759 if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
5760 PMAP_UNLOCK(kernel_pmap);
5761 return (ENOMEM);
5762 }
5763 }
5764 pte = vtopte(tmpva);
5765 if (*pte == 0) {
5766 PMAP_UNLOCK(kernel_pmap);
5767 return (EINVAL);
5768 }
5769 tmpva += PAGE_SIZE;
5770 }
5771 PMAP_UNLOCK(kernel_pmap);
5772
5773 /*
5774 * Ok, all the pages exist, so run through them updating their
5775 * cache mode if required.
5776 */
5777 for (tmpva = base; tmpva < base + size; ) {
5778 pde = pmap_pde(kernel_pmap, tmpva);
5779 if (*pde & PG_PS) {
5780 if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
5781 pmap_pde_attr(pde, cache_bits_pde);
5782 changed = true;
5783 }
5784 tmpva = trunc_4mpage(tmpva) + NBPDR;
5785 } else {
5786 pte = vtopte(tmpva);
5787 if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
5788 pmap_pte_attr(pte, cache_bits_pte);
5789 changed = true;
5790 }
5791 tmpva += PAGE_SIZE;
5792 }
5793 }
5794
5795 /*
5796 * Flush CPU caches to make sure any data isn't cached that
5797 * shouldn't be, etc.
5798 */
5799 if (changed) {
5800 pmap_invalidate_range_int(kernel_pmap, base, tmpva);
5801 pmap_invalidate_cache_range(base, tmpva);
5802 }
5803 return (0);
5804 }
5805
5806 /*
5807 * Perform the pmap work for mincore(2). If the page is not both referenced and
5808 * modified by this pmap, returns its physical address so that the caller can
5809 * find other mappings.
5810 */
5811 static int
__CONCAT(PMTYPE,mincore)5812 __CONCAT(PMTYPE, mincore)(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
5813 {
5814 pd_entry_t pde;
5815 pt_entry_t pte;
5816 vm_paddr_t pa;
5817 int val;
5818
5819 PMAP_LOCK(pmap);
5820 pde = *pmap_pde(pmap, addr);
5821 if (pde != 0) {
5822 if ((pde & PG_PS) != 0) {
5823 pte = pde;
5824 /* Compute the physical address of the 4KB page. */
5825 pa = ((pde & PG_PS_FRAME) | (addr & PDRMASK)) &
5826 PG_FRAME;
5827 val = MINCORE_PSIND(1);
5828 } else {
5829 pte = pmap_pte_ufast(pmap, addr, pde);
5830 pa = pte & PG_FRAME;
5831 val = 0;
5832 }
5833 } else {
5834 pte = 0;
5835 pa = 0;
5836 val = 0;
5837 }
5838 if ((pte & PG_V) != 0) {
5839 val |= MINCORE_INCORE;
5840 if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5841 val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5842 if ((pte & PG_A) != 0)
5843 val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5844 }
5845 if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5846 (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5847 (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5848 *pap = pa;
5849 }
5850 PMAP_UNLOCK(pmap);
5851 return (val);
5852 }
5853
5854 static void
__CONCAT(PMTYPE,activate)5855 __CONCAT(PMTYPE, activate)(struct thread *td)
5856 {
5857 pmap_t pmap, oldpmap;
5858 u_int cpuid;
5859 u_int32_t cr3;
5860
5861 critical_enter();
5862 pmap = vmspace_pmap(td->td_proc->p_vmspace);
5863 oldpmap = PCPU_GET(curpmap);
5864 cpuid = PCPU_GET(cpuid);
5865 #if defined(SMP)
5866 CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
5867 CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
5868 #else
5869 CPU_CLR(cpuid, &oldpmap->pm_active);
5870 CPU_SET(cpuid, &pmap->pm_active);
5871 #endif
5872 #ifdef PMAP_PAE_COMP
5873 cr3 = vtophys(pmap->pm_pdpt);
5874 #else
5875 cr3 = vtophys(pmap->pm_pdir);
5876 #endif
5877 /*
5878 * pmap_activate is for the current thread on the current cpu
5879 */
5880 td->td_pcb->pcb_cr3 = cr3;
5881 PCPU_SET(curpmap, pmap);
5882 critical_exit();
5883 }
5884
5885 static void
__CONCAT(PMTYPE,activate_boot)5886 __CONCAT(PMTYPE, activate_boot)(pmap_t pmap)
5887 {
5888 u_int cpuid;
5889
5890 cpuid = PCPU_GET(cpuid);
5891 #if defined(SMP)
5892 CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
5893 #else
5894 CPU_SET(cpuid, &pmap->pm_active);
5895 #endif
5896 PCPU_SET(curpmap, pmap);
5897 }
5898
5899 /*
5900 * Increase the starting virtual address of the given mapping if a
5901 * different alignment might result in more superpage mappings.
5902 */
5903 static void
__CONCAT(PMTYPE,align_superpage)5904 __CONCAT(PMTYPE, align_superpage)(vm_object_t object, vm_ooffset_t offset,
5905 vm_offset_t *addr, vm_size_t size)
5906 {
5907 vm_offset_t superpage_offset;
5908
5909 if (size < NBPDR)
5910 return;
5911 if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5912 offset += ptoa(object->pg_color);
5913 superpage_offset = offset & PDRMASK;
5914 if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
5915 (*addr & PDRMASK) == superpage_offset)
5916 return;
5917 if ((*addr & PDRMASK) < superpage_offset)
5918 *addr = (*addr & ~PDRMASK) + superpage_offset;
5919 else
5920 *addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
5921 }
5922
5923 static vm_offset_t
__CONCAT(PMTYPE,quick_enter_page)5924 __CONCAT(PMTYPE, quick_enter_page)(vm_page_t m)
5925 {
5926 vm_offset_t qaddr;
5927 pt_entry_t *pte;
5928
5929 critical_enter();
5930 qaddr = PCPU_GET(qmap_addr);
5931 pte = vtopte(qaddr);
5932
5933 KASSERT(*pte == 0,
5934 ("pmap_quick_enter_page: PTE busy %#jx", (uintmax_t)*pte));
5935 *pte = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
5936 pmap_cache_bits(kernel_pmap, pmap_page_get_memattr(m), false);
5937 invlpg(qaddr);
5938
5939 return (qaddr);
5940 }
5941
5942 static void
__CONCAT(PMTYPE,quick_remove_page)5943 __CONCAT(PMTYPE, quick_remove_page)(vm_offset_t addr)
5944 {
5945 vm_offset_t qaddr;
5946 pt_entry_t *pte;
5947
5948 qaddr = PCPU_GET(qmap_addr);
5949 pte = vtopte(qaddr);
5950
5951 KASSERT(*pte != 0, ("pmap_quick_remove_page: PTE not in use"));
5952 KASSERT(addr == qaddr, ("pmap_quick_remove_page: invalid address"));
5953
5954 *pte = 0;
5955 critical_exit();
5956 }
5957
5958 static vmem_t *pmap_trm_arena;
5959 static vmem_addr_t pmap_trm_arena_last = PMAP_TRM_MIN_ADDRESS;
5960 static int trm_guard = PAGE_SIZE;
5961
5962 static int
pmap_trm_import(void * unused __unused,vmem_size_t size,int flags,vmem_addr_t * addrp)5963 pmap_trm_import(void *unused __unused, vmem_size_t size, int flags,
5964 vmem_addr_t *addrp)
5965 {
5966 vm_page_t m;
5967 vmem_addr_t af, addr, prev_addr;
5968 pt_entry_t *trm_pte;
5969
5970 prev_addr = atomic_load_int(&pmap_trm_arena_last);
5971 size = round_page(size) + trm_guard;
5972 for (;;) {
5973 if (prev_addr + size < prev_addr || prev_addr + size < size ||
5974 prev_addr + size > PMAP_TRM_MAX_ADDRESS)
5975 return (ENOMEM);
5976 addr = prev_addr + size;
5977 if (atomic_fcmpset_int(&pmap_trm_arena_last, &prev_addr, addr))
5978 break;
5979 }
5980 prev_addr += trm_guard;
5981 trm_pte = PTmap + atop(prev_addr);
5982 for (af = prev_addr; af < addr; af += PAGE_SIZE) {
5983 m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
5984 pte_store(&trm_pte[atop(af - prev_addr)], VM_PAGE_TO_PHYS(m) |
5985 PG_M | PG_A | PG_RW | PG_V | pgeflag |
5986 pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, false));
5987 }
5988 *addrp = prev_addr;
5989 return (0);
5990 }
5991
5992 void
pmap_init_trm(void)5993 pmap_init_trm(void)
5994 {
5995 vm_page_t pd_m;
5996
5997 TUNABLE_INT_FETCH("machdep.trm_guard", &trm_guard);
5998 if ((trm_guard & PAGE_MASK) != 0)
5999 trm_guard = 0;
6000 pmap_trm_arena = vmem_create("i386trampoline", 0, 0, 1, 0, M_WAITOK);
6001 vmem_set_import(pmap_trm_arena, pmap_trm_import, NULL, NULL, PAGE_SIZE);
6002 pd_m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_WAITOK |
6003 VM_ALLOC_ZERO);
6004 PTD[TRPTDI] = VM_PAGE_TO_PHYS(pd_m) | PG_M | PG_A | PG_RW | PG_V |
6005 pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, true);
6006 }
6007
6008 static void *
__CONCAT(PMTYPE,trm_alloc)6009 __CONCAT(PMTYPE, trm_alloc)(size_t size, int flags)
6010 {
6011 vmem_addr_t res;
6012 int error;
6013
6014 MPASS((flags & ~(M_WAITOK | M_NOWAIT | M_ZERO)) == 0);
6015 error = vmem_xalloc(pmap_trm_arena, roundup2(size, 4), sizeof(int),
6016 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, flags | M_FIRSTFIT, &res);
6017 if (error != 0)
6018 return (NULL);
6019 if ((flags & M_ZERO) != 0)
6020 bzero((void *)res, size);
6021 return ((void *)res);
6022 }
6023
6024 static void
__CONCAT(PMTYPE,trm_free)6025 __CONCAT(PMTYPE, trm_free)(void *addr, size_t size)
6026 {
6027
6028 vmem_free(pmap_trm_arena, (uintptr_t)addr, roundup2(size, 4));
6029 }
6030
6031 static void
__CONCAT(PMTYPE,ksetrw)6032 __CONCAT(PMTYPE, ksetrw)(vm_offset_t va)
6033 {
6034
6035 *vtopte(va) |= PG_RW;
6036 }
6037
6038 static void
__CONCAT(PMTYPE,remap_lowptdi)6039 __CONCAT(PMTYPE, remap_lowptdi)(bool enable)
6040 {
6041
6042 PTD[KPTDI] = enable ? PTD[LOWPTDI] : 0;
6043 invltlb_glob();
6044 }
6045
6046 static vm_offset_t
__CONCAT(PMTYPE,get_map_low)6047 __CONCAT(PMTYPE, get_map_low)(void)
6048 {
6049
6050 return (PMAP_MAP_LOW);
6051 }
6052
6053 static vm_offset_t
__CONCAT(PMTYPE,get_vm_maxuser_address)6054 __CONCAT(PMTYPE, get_vm_maxuser_address)(void)
6055 {
6056
6057 return (VM_MAXUSER_ADDRESS);
6058 }
6059
6060 static vm_paddr_t
__CONCAT(PMTYPE,pg_frame)6061 __CONCAT(PMTYPE, pg_frame)(vm_paddr_t pa)
6062 {
6063
6064 return (pa & PG_FRAME);
6065 }
6066
6067 static void
__CONCAT(PMTYPE,sf_buf_map)6068 __CONCAT(PMTYPE, sf_buf_map)(struct sf_buf *sf)
6069 {
6070 pt_entry_t opte, *ptep;
6071
6072 /*
6073 * Update the sf_buf's virtual-to-physical mapping, flushing the
6074 * virtual address from the TLB. Since the reference count for
6075 * the sf_buf's old mapping was zero, that mapping is not
6076 * currently in use. Consequently, there is no need to exchange
6077 * the old and new PTEs atomically, even under PAE.
6078 */
6079 ptep = vtopte(sf->kva);
6080 opte = *ptep;
6081 *ptep = VM_PAGE_TO_PHYS(sf->m) | PG_RW | PG_V |
6082 pmap_cache_bits(kernel_pmap, sf->m->md.pat_mode, false);
6083
6084 /*
6085 * Avoid unnecessary TLB invalidations: If the sf_buf's old
6086 * virtual-to-physical mapping was not used, then any processor
6087 * that has invalidated the sf_buf's virtual address from its TLB
6088 * since the last used mapping need not invalidate again.
6089 */
6090 #ifdef SMP
6091 if ((opte & (PG_V | PG_A)) == (PG_V | PG_A))
6092 CPU_ZERO(&sf->cpumask);
6093 #else
6094 if ((opte & (PG_V | PG_A)) == (PG_V | PG_A))
6095 pmap_invalidate_page_int(kernel_pmap, sf->kva);
6096 #endif
6097 }
6098
6099 static void
__CONCAT(PMTYPE,cp_slow0_map)6100 __CONCAT(PMTYPE, cp_slow0_map)(vm_offset_t kaddr, int plen, vm_page_t *ma)
6101 {
6102 pt_entry_t *pte;
6103 int i;
6104
6105 for (i = 0, pte = vtopte(kaddr); i < plen; i++, pte++) {
6106 *pte = PG_V | PG_RW | PG_A | PG_M | VM_PAGE_TO_PHYS(ma[i]) |
6107 pmap_cache_bits(kernel_pmap, pmap_page_get_memattr(ma[i]),
6108 false);
6109 invlpg(kaddr + ptoa(i));
6110 }
6111 }
6112
6113 static u_int
__CONCAT(PMTYPE,get_kcr3)6114 __CONCAT(PMTYPE, get_kcr3)(void)
6115 {
6116
6117 #ifdef PMAP_PAE_COMP
6118 return ((u_int)IdlePDPT);
6119 #else
6120 return ((u_int)IdlePTD);
6121 #endif
6122 }
6123
6124 static u_int
__CONCAT(PMTYPE,get_cr3)6125 __CONCAT(PMTYPE, get_cr3)(pmap_t pmap)
6126 {
6127
6128 #ifdef PMAP_PAE_COMP
6129 return ((u_int)vtophys(pmap->pm_pdpt));
6130 #else
6131 return ((u_int)vtophys(pmap->pm_pdir));
6132 #endif
6133 }
6134
6135 static caddr_t
__CONCAT(PMTYPE,cmap3)6136 __CONCAT(PMTYPE, cmap3)(vm_paddr_t pa, u_int pte_bits)
6137 {
6138 pt_entry_t *pte;
6139
6140 pte = CMAP3;
6141 *pte = pa | pte_bits;
6142 invltlb();
6143 return (CADDR3);
6144 }
6145
6146 static void
__CONCAT(PMTYPE,basemem_setup)6147 __CONCAT(PMTYPE, basemem_setup)(u_int basemem)
6148 {
6149 pt_entry_t *pte;
6150 int i;
6151
6152 /*
6153 * Map pages between basemem and ISA_HOLE_START, if any, r/w into
6154 * the vm86 page table so that vm86 can scribble on them using
6155 * the vm86 map too. XXX: why 2 ways for this and only 1 way for
6156 * page 0, at least as initialized here?
6157 */
6158 pte = (pt_entry_t *)vm86paddr;
6159 for (i = basemem / 4; i < 160; i++)
6160 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
6161 }
6162
6163 struct bios16_pmap_handle {
6164 pt_entry_t *pte;
6165 pd_entry_t *ptd;
6166 pt_entry_t orig_ptd;
6167 };
6168
6169 static void *
__CONCAT(PMTYPE,bios16_enter)6170 __CONCAT(PMTYPE, bios16_enter)(void)
6171 {
6172 struct bios16_pmap_handle *h;
6173
6174 /*
6175 * no page table, so create one and install it.
6176 */
6177 h = malloc(sizeof(struct bios16_pmap_handle), M_TEMP, M_WAITOK);
6178 h->pte = (pt_entry_t *)malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
6179 h->ptd = IdlePTD;
6180 *h->pte = vm86phystk | PG_RW | PG_V;
6181 h->orig_ptd = *h->ptd;
6182 *h->ptd = vtophys(h->pte) | PG_RW | PG_V;
6183 pmap_invalidate_all_int(kernel_pmap); /* XXX insurance for now */
6184 return (h);
6185 }
6186
6187 static void
__CONCAT(PMTYPE,bios16_leave)6188 __CONCAT(PMTYPE, bios16_leave)(void *arg)
6189 {
6190 struct bios16_pmap_handle *h;
6191
6192 h = arg;
6193 *h->ptd = h->orig_ptd; /* remove page table */
6194 /*
6195 * XXX only needs to be invlpg(0) but that doesn't work on the 386
6196 */
6197 pmap_invalidate_all_int(kernel_pmap);
6198 free(h->pte, M_TEMP); /* ... and free it */
6199 }
6200
6201 struct pmap_kernel_map_range {
6202 vm_offset_t sva;
6203 pt_entry_t attrs;
6204 int ptes;
6205 int pdes;
6206 int pdpes;
6207 };
6208
6209 static void
sysctl_kmaps_dump(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t eva)6210 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
6211 vm_offset_t eva)
6212 {
6213 const char *mode;
6214 int i, pat_idx;
6215
6216 if (eva <= range->sva)
6217 return;
6218
6219 pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
6220 for (i = 0; i < PAT_INDEX_SIZE; i++)
6221 if (pat_index[i] == pat_idx)
6222 break;
6223
6224 switch (i) {
6225 case PAT_WRITE_BACK:
6226 mode = "WB";
6227 break;
6228 case PAT_WRITE_THROUGH:
6229 mode = "WT";
6230 break;
6231 case PAT_UNCACHEABLE:
6232 mode = "UC";
6233 break;
6234 case PAT_UNCACHED:
6235 mode = "U-";
6236 break;
6237 case PAT_WRITE_PROTECTED:
6238 mode = "WP";
6239 break;
6240 case PAT_WRITE_COMBINING:
6241 mode = "WC";
6242 break;
6243 default:
6244 printf("%s: unknown PAT mode %#x for range 0x%08x-0x%08x\n",
6245 __func__, pat_idx, range->sva, eva);
6246 mode = "??";
6247 break;
6248 }
6249
6250 sbuf_printf(sb, "0x%08x-0x%08x r%c%c%c%c %s %d %d %d\n",
6251 range->sva, eva,
6252 (range->attrs & PG_RW) != 0 ? 'w' : '-',
6253 (range->attrs & pg_nx) != 0 ? '-' : 'x',
6254 (range->attrs & PG_U) != 0 ? 'u' : 's',
6255 (range->attrs & PG_G) != 0 ? 'g' : '-',
6256 mode, range->pdpes, range->pdes, range->ptes);
6257
6258 /* Reset to sentinel value. */
6259 range->sva = 0xffffffff;
6260 }
6261
6262 /*
6263 * Determine whether the attributes specified by a page table entry match those
6264 * being tracked by the current range. This is not quite as simple as a direct
6265 * flag comparison since some PAT modes have multiple representations.
6266 */
6267 static bool
sysctl_kmaps_match(struct pmap_kernel_map_range * range,pt_entry_t attrs)6268 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
6269 {
6270 pt_entry_t diff, mask;
6271
6272 mask = pg_nx | PG_G | PG_RW | PG_U | PG_PDE_CACHE;
6273 diff = (range->attrs ^ attrs) & mask;
6274 if (diff == 0)
6275 return (true);
6276 if ((diff & ~PG_PDE_PAT) == 0 &&
6277 pmap_pat_index(kernel_pmap, range->attrs, true) ==
6278 pmap_pat_index(kernel_pmap, attrs, true))
6279 return (true);
6280 return (false);
6281 }
6282
6283 static void
sysctl_kmaps_reinit(struct pmap_kernel_map_range * range,vm_offset_t va,pt_entry_t attrs)6284 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
6285 pt_entry_t attrs)
6286 {
6287
6288 memset(range, 0, sizeof(*range));
6289 range->sva = va;
6290 range->attrs = attrs;
6291 }
6292
6293 /*
6294 * Given a leaf PTE, derive the mapping's attributes. If they do not match
6295 * those of the current run, dump the address range and its attributes, and
6296 * begin a new run.
6297 */
6298 static void
sysctl_kmaps_check(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t va,pd_entry_t pde,pt_entry_t pte)6299 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
6300 vm_offset_t va, pd_entry_t pde, pt_entry_t pte)
6301 {
6302 pt_entry_t attrs;
6303
6304 attrs = pde & (PG_RW | PG_U | pg_nx);
6305
6306 if ((pde & PG_PS) != 0) {
6307 attrs |= pde & (PG_G | PG_PDE_CACHE);
6308 } else if (pte != 0) {
6309 attrs |= pte & pg_nx;
6310 attrs &= pg_nx | (pte & (PG_RW | PG_U));
6311 attrs |= pte & (PG_G | PG_PTE_CACHE);
6312
6313 /* Canonicalize by always using the PDE PAT bit. */
6314 if ((attrs & PG_PTE_PAT) != 0)
6315 attrs ^= PG_PDE_PAT | PG_PTE_PAT;
6316 }
6317
6318 if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
6319 sysctl_kmaps_dump(sb, range, va);
6320 sysctl_kmaps_reinit(range, va, attrs);
6321 }
6322 }
6323
6324 static int
__CONCAT(PMTYPE,sysctl_kmaps)6325 __CONCAT(PMTYPE, sysctl_kmaps)(SYSCTL_HANDLER_ARGS)
6326 {
6327 struct pmap_kernel_map_range range;
6328 struct sbuf sbuf, *sb;
6329 pd_entry_t pde;
6330 pt_entry_t *pt, pte;
6331 vm_offset_t sva;
6332 int error;
6333 u_int i, k;
6334
6335 error = sysctl_wire_old_buffer(req, 0);
6336 if (error != 0)
6337 return (error);
6338 sb = &sbuf;
6339 sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
6340
6341 /* Sentinel value. */
6342 range.sva = 0xffffffff;
6343
6344 /*
6345 * Iterate over the kernel page tables without holding the
6346 * kernel pmap lock. Kernel page table pages are never freed,
6347 * so at worst we will observe inconsistencies in the output.
6348 */
6349 for (sva = 0, i = 0; i < NPTEPG * NPGPTD * NPDEPG ;) {
6350 if (i == 0)
6351 sbuf_printf(sb, "\nLow PDE:\n");
6352 else if (i == LOWPTDI * NPTEPG)
6353 sbuf_printf(sb, "Low PDE dup:\n");
6354 else if (i == PTDPTDI * NPTEPG)
6355 sbuf_printf(sb, "Recursive map:\n");
6356 else if (i == KERNPTDI * NPTEPG)
6357 sbuf_printf(sb, "Kernel base:\n");
6358 else if (i == TRPTDI * NPTEPG)
6359 sbuf_printf(sb, "Trampoline:\n");
6360 pde = IdlePTD[sva >> PDRSHIFT];
6361 if ((pde & PG_V) == 0) {
6362 sva = rounddown2(sva, NBPDR);
6363 sysctl_kmaps_dump(sb, &range, sva);
6364 sva += NBPDR;
6365 i += NPTEPG;
6366 continue;
6367 }
6368 if ((pde & PG_PS) != 0) {
6369 sysctl_kmaps_check(sb, &range, sva, pde, 0);
6370 range.pdes++;
6371 sva += NBPDR;
6372 i += NPTEPG;
6373 continue;
6374 }
6375 for (pt = vtopte(sva), k = 0; k < NPTEPG; i++, k++, pt++,
6376 sva += PAGE_SIZE) {
6377 pte = *pt;
6378 if ((pte & PG_V) == 0) {
6379 sysctl_kmaps_dump(sb, &range, sva);
6380 continue;
6381 }
6382 sysctl_kmaps_check(sb, &range, sva, pde, pte);
6383 range.ptes++;
6384 }
6385 }
6386
6387 error = sbuf_finish(sb);
6388 sbuf_delete(sb);
6389 return (error);
6390 }
6391
6392 #define PMM(a) \
6393 .pm_##a = __CONCAT(PMTYPE, a),
6394
6395 struct pmap_methods __CONCAT(PMTYPE, methods) = {
6396 PMM(ksetrw)
6397 PMM(remap_lower)
6398 PMM(remap_lowptdi)
6399 PMM(align_superpage)
6400 PMM(quick_enter_page)
6401 PMM(quick_remove_page)
6402 PMM(trm_alloc)
6403 PMM(trm_free)
6404 PMM(get_map_low)
6405 PMM(get_vm_maxuser_address)
6406 PMM(kextract)
6407 PMM(pg_frame)
6408 PMM(sf_buf_map)
6409 PMM(cp_slow0_map)
6410 PMM(get_kcr3)
6411 PMM(get_cr3)
6412 PMM(cmap3)
6413 PMM(basemem_setup)
6414 PMM(set_nx)
6415 PMM(bios16_enter)
6416 PMM(bios16_leave)
6417 PMM(bootstrap)
6418 PMM(is_valid_memattr)
6419 PMM(cache_bits)
6420 PMM(ps_enabled)
6421 PMM(pinit0)
6422 PMM(pinit)
6423 PMM(activate)
6424 PMM(activate_boot)
6425 PMM(advise)
6426 PMM(clear_modify)
6427 PMM(change_attr)
6428 PMM(mincore)
6429 PMM(copy)
6430 PMM(copy_page)
6431 PMM(copy_pages)
6432 PMM(zero_page)
6433 PMM(zero_page_area)
6434 PMM(enter)
6435 PMM(enter_object)
6436 PMM(enter_quick)
6437 PMM(kenter_temporary)
6438 PMM(object_init_pt)
6439 PMM(unwire)
6440 PMM(page_exists_quick)
6441 PMM(page_wired_mappings)
6442 PMM(page_is_mapped)
6443 PMM(remove_pages)
6444 PMM(is_modified)
6445 PMM(is_prefaultable)
6446 PMM(is_referenced)
6447 PMM(remove_write)
6448 PMM(ts_referenced)
6449 PMM(mapdev_attr)
6450 PMM(unmapdev)
6451 PMM(page_set_memattr)
6452 PMM(extract)
6453 PMM(extract_and_hold)
6454 PMM(map)
6455 PMM(qenter)
6456 PMM(qremove)
6457 PMM(release)
6458 PMM(remove)
6459 PMM(protect)
6460 PMM(remove_all)
6461 PMM(init)
6462 PMM(init_pat)
6463 PMM(growkernel)
6464 PMM(invalidate_page)
6465 PMM(invalidate_range)
6466 PMM(invalidate_all)
6467 PMM(invalidate_cache)
6468 PMM(flush_page)
6469 PMM(kenter)
6470 PMM(kremove)
6471 PMM(sysctl_kmaps)
6472 };
6473