xref: /freebsd/sys/i386/i386/pmap.c (revision e173855c9f6b3b87c975418d0acf1c22ac4f1626)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * the Systems Programming Group of the University of Utah Computer
15  * Science Department and William Jolitz of UUNET Technologies Inc.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. All advertising materials mentioning features or use of this software
26  *    must display the following acknowledgement:
27  *	This product includes software developed by the University of
28  *	California, Berkeley and its contributors.
29  * 4. Neither the name of the University nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43  * SUCH DAMAGE.
44  */
45 /*-
46  * Copyright (c) 2003 Networks Associates Technology, Inc.
47  * All rights reserved.
48  * Copyright (c) 2018 The FreeBSD Foundation
49  * All rights reserved.
50  *
51  * This software was developed for the FreeBSD Project by Jake Burkholder,
52  * Safeport Network Services, and Network Associates Laboratories, the
53  * Security Research Division of Network Associates, Inc. under
54  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
55  * CHATS research program.
56  *
57  * Portions of this software were developed by
58  * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
59  * the FreeBSD Foundation.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  * 2. Redistributions in binary form must reproduce the above copyright
67  *    notice, this list of conditions and the following disclaimer in the
68  *    documentation and/or other materials provided with the distribution.
69  *
70  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
71  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
72  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
73  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
74  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
75  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
76  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
77  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
78  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
79  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
80  * SUCH DAMAGE.
81  */
82 
83 #include <sys/cdefs.h>
84 /*
85  *	Manages physical address maps.
86  *
87  *	Since the information managed by this module is
88  *	also stored by the logical address mapping module,
89  *	this module may throw away valid virtual-to-physical
90  *	mappings at almost any time.  However, invalidations
91  *	of virtual-to-physical mappings must be done as
92  *	requested.
93  *
94  *	In order to cope with hardware architectures which
95  *	make virtual-to-physical map invalidates expensive,
96  *	this module may delay invalidate or reduced protection
97  *	operations until such time as they are actually
98  *	necessary.  This module is given full information as
99  *	to which processors are currently using which maps,
100  *	and to when physical maps must be made correct.
101  */
102 
103 #include "opt_apic.h"
104 #include "opt_cpu.h"
105 #include "opt_pmap.h"
106 #include "opt_smp.h"
107 #include "opt_vm.h"
108 
109 #include <sys/param.h>
110 #include <sys/systm.h>
111 #include <sys/kernel.h>
112 #include <sys/ktr.h>
113 #include <sys/lock.h>
114 #include <sys/malloc.h>
115 #include <sys/mman.h>
116 #include <sys/msgbuf.h>
117 #include <sys/mutex.h>
118 #include <sys/proc.h>
119 #include <sys/rwlock.h>
120 #include <sys/sbuf.h>
121 #include <sys/sf_buf.h>
122 #include <sys/sx.h>
123 #include <sys/vmmeter.h>
124 #include <sys/sched.h>
125 #include <sys/sysctl.h>
126 #include <sys/smp.h>
127 #include <sys/vmem.h>
128 
129 #include <vm/vm.h>
130 #include <vm/vm_param.h>
131 #include <vm/vm_kern.h>
132 #include <vm/vm_page.h>
133 #include <vm/vm_map.h>
134 #include <vm/vm_object.h>
135 #include <vm/vm_extern.h>
136 #include <vm/vm_pageout.h>
137 #include <vm/vm_pager.h>
138 #include <vm/vm_phys.h>
139 #include <vm/vm_radix.h>
140 #include <vm/vm_reserv.h>
141 #include <vm/uma.h>
142 
143 #ifdef DEV_APIC
144 #include <sys/bus.h>
145 #include <machine/intr_machdep.h>
146 #include <x86/apicvar.h>
147 #endif
148 #include <x86/ifunc.h>
149 #include <machine/bootinfo.h>
150 #include <machine/cpu.h>
151 #include <machine/cputypes.h>
152 #include <machine/md_var.h>
153 #include <machine/pcb.h>
154 #include <machine/specialreg.h>
155 #ifdef SMP
156 #include <machine/smp.h>
157 #endif
158 #include <machine/pmap_base.h>
159 
160 #ifdef PV_STATS
161 #define PV_STAT(x)	do { x ; } while (0)
162 #else
163 #define PV_STAT(x)	do { } while (0)
164 #endif
165 
166 #define	pa_index(pa)	((pa) >> PDRSHIFT)
167 #define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
168 
169 /*
170  * PTmap is recursive pagemap at top of virtual address space.
171  * Within PTmap, the page directory can be found (third indirection).
172  */
173 #define	PTmap	((pt_entry_t *)(PTDPTDI << PDRSHIFT))
174 #define	PTD	((pd_entry_t *)((PTDPTDI << PDRSHIFT) + (PTDPTDI * PAGE_SIZE)))
175 #define	PTDpde	((pd_entry_t *)((PTDPTDI << PDRSHIFT) + (PTDPTDI * PAGE_SIZE) + \
176     (PTDPTDI * PDESIZE)))
177 
178 /*
179  * Translate a virtual address to the kernel virtual address of its page table
180  * entry (PTE).  This can be used recursively.  If the address of a PTE as
181  * previously returned by this macro is itself given as the argument, then the
182  * address of the page directory entry (PDE) that maps the PTE will be
183  * returned.
184  *
185  * This macro may be used before pmap_bootstrap() is called.
186  */
187 #define	vtopte(va)	(PTmap + i386_btop(va))
188 
189 /*
190  * Get PDEs and PTEs for user/kernel address space
191  */
192 #define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
193 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
194 
195 #define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
196 #define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
197 #define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
198 #define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
199 #define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
200 
201 #define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
202     atomic_clear_int((u_int *)(pte), PG_W))
203 #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
204 
205 static int pgeflag = 0;		/* PG_G or-in */
206 static int pseflag = 0;		/* PG_PS or-in */
207 
208 static int nkpt = NKPT;
209 
210 #ifdef PMAP_PAE_COMP
211 pt_entry_t pg_nx;
212 static uma_zone_t pdptzone;
213 #else
214 #define	pg_nx	0
215 #endif
216 
217 _Static_assert(VM_MAXUSER_ADDRESS == VADDR(TRPTDI, 0), "VM_MAXUSER_ADDRESS");
218 _Static_assert(VM_MAX_KERNEL_ADDRESS <= VADDR(PTDPTDI, 0),
219     "VM_MAX_KERNEL_ADDRESS");
220 _Static_assert(PMAP_MAP_LOW == VADDR(LOWPTDI, 0), "PMAP_MAP_LOW");
221 _Static_assert(KERNLOAD == (KERNPTDI << PDRSHIFT), "KERNLOAD");
222 
223 extern int pat_works;
224 extern int pg_ps_enabled;
225 
226 extern int elf32_nxstack;
227 
228 #define	PAT_INDEX_SIZE	8
229 static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
230 
231 /*
232  * pmap_mapdev support pre initialization (i.e. console)
233  */
234 #define	PMAP_PREINIT_MAPPING_COUNT	8
235 static struct pmap_preinit_mapping {
236 	vm_paddr_t	pa;
237 	vm_offset_t	va;
238 	vm_size_t	sz;
239 	int		mode;
240 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
241 static int pmap_initialized;
242 
243 static struct rwlock_padalign pvh_global_lock;
244 
245 /*
246  * Data for the pv entry allocation mechanism
247  */
248 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
249 extern int pv_entry_max, pv_entry_count;
250 static int pv_entry_high_water = 0;
251 static struct md_page *pv_table;
252 extern int shpgperproc;
253 
254 static struct pv_chunk *pv_chunkbase;	/* KVA block for pv_chunks */
255 static int pv_maxchunks;		/* How many chunks we have KVA for */
256 static vm_offset_t pv_vafree;		/* freelist stored in the PTE */
257 
258 /*
259  * All those kernel PT submaps that BSD is so fond of
260  */
261 static pt_entry_t *CMAP3;
262 static pd_entry_t *KPTD;
263 static caddr_t CADDR3;
264 
265 /*
266  * Crashdump maps.
267  */
268 static caddr_t crashdumpmap;
269 
270 static pt_entry_t *PMAP1 = NULL, *PMAP2, *PMAP3;
271 static pt_entry_t *PADDR1 = NULL, *PADDR2, *PADDR3;
272 #ifdef SMP
273 static int PMAP1cpu, PMAP3cpu;
274 extern int PMAP1changedcpu;
275 #endif
276 extern int PMAP1changed;
277 extern int PMAP1unchanged;
278 static struct mtx PMAP2mutex;
279 
280 /*
281  * Internal flags for pmap_enter()'s helper functions.
282  */
283 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
284 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
285 
286 static void	free_pv_chunk(struct pv_chunk *pc);
287 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
288 static pv_entry_t get_pv_entry(pmap_t pmap, bool try);
289 static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
290 static bool	pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
291 		    u_int flags);
292 #if VM_NRESERVLEVEL > 0
293 static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
294 #endif
295 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
296 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
297 		    vm_offset_t va);
298 static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
299 
300 static void	pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
301 static bool	pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
302 static int	pmap_enter_4mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
303 		    vm_prot_t prot);
304 static int	pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
305 		    u_int flags, vm_page_t m);
306 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
307     vm_page_t m, vm_prot_t prot, vm_page_t mpte);
308 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
309     bool allpte_PG_A_set);
310 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
311 		    pd_entry_t pde);
312 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
313 static bool pmap_is_modified_pvh(struct md_page *pvh);
314 static bool pmap_is_referenced_pvh(struct md_page *pvh);
315 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
316 static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
317 static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
318 #if VM_NRESERVLEVEL > 0
319 static bool pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
320     vm_page_t mpte);
321 #endif
322 static bool pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
323     vm_prot_t prot);
324 static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
325 static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
326     struct spglist *free);
327 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
328     struct spglist *free);
329 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
330 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free);
331 static bool	pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
332 		    struct spglist *free);
333 static void pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va);
334 static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
335 static bool pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
336     vm_page_t m);
337 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
338     pd_entry_t newpde);
339 static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
340 
341 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
342 
343 static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags);
344 static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free);
345 static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
346 static void pmap_pte_release(pt_entry_t *pte);
347 static int pmap_unuse_pt(pmap_t, vm_offset_t, struct spglist *);
348 #ifdef PMAP_PAE_COMP
349 static void *pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, int domain,
350     uint8_t *flags, int wait);
351 #endif
352 static void pmap_init_trm(void);
353 static void pmap_invalidate_all_int(pmap_t pmap);
354 
355 static __inline void pagezero(void *page);
356 
357 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
358 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
359 
360 extern char _end[];
361 extern u_long physfree;	/* phys addr of next free page */
362 extern u_long vm86phystk;/* PA of vm86/bios stack */
363 extern u_long vm86paddr;/* address of vm86 region */
364 extern int vm86pa;	/* phys addr of vm86 region */
365 extern u_long KERNend;	/* phys addr end of kernel (just after bss) */
366 #ifdef PMAP_PAE_COMP
367 pd_entry_t *IdlePTD_pae;	/* phys addr of kernel PTD */
368 pdpt_entry_t *IdlePDPT;	/* phys addr of kernel PDPT */
369 pt_entry_t *KPTmap_pae;	/* address of kernel page tables */
370 #define	IdlePTD	IdlePTD_pae
371 #define	KPTmap	KPTmap_pae
372 #else
373 pd_entry_t *IdlePTD_nopae;
374 pt_entry_t *KPTmap_nopae;
375 #define	IdlePTD	IdlePTD_nopae
376 #define	KPTmap	KPTmap_nopae
377 #endif
378 extern u_long KPTphys;	/* phys addr of kernel page tables */
379 extern u_long tramp_idleptd;
380 
381 static u_long
allocpages(u_int cnt,u_long * physfree)382 allocpages(u_int cnt, u_long *physfree)
383 {
384 	u_long res;
385 
386 	res = *physfree;
387 	*physfree += PAGE_SIZE * cnt;
388 	bzero((void *)res, PAGE_SIZE * cnt);
389 	return (res);
390 }
391 
392 static void
pmap_cold_map(u_long pa,u_long va,u_long cnt)393 pmap_cold_map(u_long pa, u_long va, u_long cnt)
394 {
395 	pt_entry_t *pt;
396 
397 	for (pt = (pt_entry_t *)KPTphys + atop(va); cnt > 0;
398 	    cnt--, pt++, va += PAGE_SIZE, pa += PAGE_SIZE)
399 		*pt = pa | PG_V | PG_RW | PG_A | PG_M;
400 }
401 
402 static void
pmap_cold_mapident(u_long pa,u_long cnt)403 pmap_cold_mapident(u_long pa, u_long cnt)
404 {
405 
406 	pmap_cold_map(pa, pa, cnt);
407 }
408 
409 _Static_assert(LOWPTDI * 2 * NBPDR == KERNBASE,
410     "Broken double-map of zero PTD");
411 
412 static void
__CONCAT(PMTYPE,remap_lower)413 __CONCAT(PMTYPE, remap_lower)(bool enable)
414 {
415 	int i;
416 
417 	for (i = 0; i < LOWPTDI; i++)
418 		IdlePTD[i] = enable ? IdlePTD[LOWPTDI + i] : 0;
419 	load_cr3(rcr3());		/* invalidate TLB */
420 }
421 
422 /*
423  * Called from locore.s before paging is enabled.  Sets up the first
424  * kernel page table.  Since kernel is mapped with PA == VA, this code
425  * does not require relocations.
426  */
427 void
__CONCAT(PMTYPE,cold)428 __CONCAT(PMTYPE, cold)(void)
429 {
430 	pt_entry_t *pt;
431 	u_long a;
432 	u_int cr3, ncr4;
433 
434 	physfree = (u_long)&_end;
435 	if (bootinfo.bi_esymtab != 0)
436 		physfree = bootinfo.bi_esymtab;
437 	if (bootinfo.bi_kernend != 0)
438 		physfree = bootinfo.bi_kernend;
439 	physfree = roundup2(physfree, NBPDR);
440 	KERNend = physfree;
441 
442 	/* Allocate Kernel Page Tables */
443 	KPTphys = allocpages(NKPT, &physfree);
444 	KPTmap = (pt_entry_t *)KPTphys;
445 
446 	/* Allocate Page Table Directory */
447 #ifdef PMAP_PAE_COMP
448 	/* XXX only need 32 bytes (easier for now) */
449 	IdlePDPT = (pdpt_entry_t *)allocpages(1, &physfree);
450 #endif
451 	IdlePTD = (pd_entry_t *)allocpages(NPGPTD, &physfree);
452 
453 	/*
454 	 * Allocate KSTACK.  Leave a guard page between IdlePTD and
455 	 * proc0kstack, to control stack overflow for thread0 and
456 	 * prevent corruption of the page table.  We leak the guard
457 	 * physical memory due to 1:1 mappings.
458 	 */
459 	allocpages(1, &physfree);
460 	proc0kstack = allocpages(TD0_KSTACK_PAGES, &physfree);
461 
462 	/* vm86/bios stack */
463 	vm86phystk = allocpages(1, &physfree);
464 
465 	/* pgtable + ext + IOPAGES */
466 	vm86paddr = vm86pa = allocpages(3, &physfree);
467 
468 	/* Install page tables into PTD.  Page table page 1 is wasted. */
469 	for (a = 0; a < NKPT; a++)
470 		IdlePTD[a] = (KPTphys + ptoa(a)) | PG_V | PG_RW | PG_A | PG_M;
471 
472 #ifdef PMAP_PAE_COMP
473 	/* PAE install PTD pointers into PDPT */
474 	for (a = 0; a < NPGPTD; a++)
475 		IdlePDPT[a] = ((u_int)IdlePTD + ptoa(a)) | PG_V;
476 #endif
477 
478 	/*
479 	 * Install recursive mapping for kernel page tables into
480 	 * itself.
481 	 */
482 	for (a = 0; a < NPGPTD; a++)
483 		IdlePTD[PTDPTDI + a] = ((u_int)IdlePTD + ptoa(a)) | PG_V |
484 		    PG_RW;
485 
486 	/*
487 	 * Initialize page table pages mapping physical address zero
488 	 * through the (physical) end of the kernel.  Many of these
489 	 * pages must be reserved, and we reserve them all and map
490 	 * them linearly for convenience.  We do this even if we've
491 	 * enabled PSE above; we'll just switch the corresponding
492 	 * kernel PDEs before we turn on paging.
493 	 *
494 	 * This and all other page table entries allow read and write
495 	 * access for various reasons.  Kernel mappings never have any
496 	 * access restrictions.
497 	 */
498 	pmap_cold_mapident(0, atop(NBPDR) * LOWPTDI);
499 	pmap_cold_map(0, NBPDR * LOWPTDI, atop(NBPDR) * LOWPTDI);
500 	pmap_cold_mapident(KERNBASE, atop(KERNend - KERNBASE));
501 
502 	/* Map page table directory */
503 #ifdef PMAP_PAE_COMP
504 	pmap_cold_mapident((u_long)IdlePDPT, 1);
505 #endif
506 	pmap_cold_mapident((u_long)IdlePTD, NPGPTD);
507 
508 	/* Map early KPTmap.  It is really pmap_cold_mapident. */
509 	pmap_cold_map(KPTphys, (u_long)KPTmap, NKPT);
510 
511 	/* Map proc0kstack */
512 	pmap_cold_mapident(proc0kstack, TD0_KSTACK_PAGES);
513 	/* ISA hole already mapped */
514 
515 	pmap_cold_mapident(vm86phystk, 1);
516 	pmap_cold_mapident(vm86pa, 3);
517 
518 	/* Map page 0 into the vm86 page table */
519 	*(pt_entry_t *)vm86pa = 0 | PG_RW | PG_U | PG_A | PG_M | PG_V;
520 
521 	/* ...likewise for the ISA hole for vm86 */
522 	for (pt = (pt_entry_t *)vm86pa + atop(ISA_HOLE_START), a = 0;
523 	    a < atop(ISA_HOLE_LENGTH); a++, pt++)
524 		*pt = (ISA_HOLE_START + ptoa(a)) | PG_RW | PG_U | PG_A |
525 		    PG_M | PG_V;
526 
527 	/* Enable PSE, PGE, VME, and PAE if configured. */
528 	ncr4 = 0;
529 	if ((cpu_feature & CPUID_PSE) != 0) {
530 		ncr4 |= CR4_PSE;
531 		pseflag = PG_PS;
532 		/*
533 		 * Superpage mapping of the kernel text.  Existing 4k
534 		 * page table pages are wasted.
535 		 */
536 		for (a = KERNBASE; a < KERNend; a += NBPDR)
537 			IdlePTD[a >> PDRSHIFT] = a | PG_PS | PG_A | PG_M |
538 			    PG_RW | PG_V;
539 	}
540 	if ((cpu_feature & CPUID_PGE) != 0) {
541 		ncr4 |= CR4_PGE;
542 		pgeflag = PG_G;
543 	}
544 	ncr4 |= (cpu_feature & CPUID_VME) != 0 ? CR4_VME : 0;
545 #ifdef PMAP_PAE_COMP
546 	ncr4 |= CR4_PAE;
547 #endif
548 	if (ncr4 != 0)
549 		load_cr4(rcr4() | ncr4);
550 
551 	/* Now enable paging */
552 #ifdef PMAP_PAE_COMP
553 	cr3 = (u_int)IdlePDPT;
554 	if ((cpu_feature & CPUID_PAT) == 0)
555 		wbinvd();
556 #else
557 	cr3 = (u_int)IdlePTD;
558 #endif
559 	tramp_idleptd = cr3;
560 	load_cr3(cr3);
561 	load_cr0(rcr0() | CR0_PG);
562 
563 	/*
564 	 * Now running relocated at KERNBASE where the system is
565 	 * linked to run.
566 	 */
567 
568 	/*
569 	 * Remove the lowest part of the double mapping of low memory
570 	 * to get some null pointer checks.
571 	 */
572 	__CONCAT(PMTYPE, remap_lower)(false);
573 
574 	kernel_vm_end = /* 0 + */ NKPT * NBPDR;
575 #ifdef PMAP_PAE_COMP
576 	i386_pmap_VM_NFREEORDER = VM_NFREEORDER_PAE;
577 	i386_pmap_VM_LEVEL_0_ORDER = VM_LEVEL_0_ORDER_PAE;
578 	i386_pmap_PDRSHIFT = PDRSHIFT_PAE;
579 #else
580 	i386_pmap_VM_NFREEORDER = VM_NFREEORDER_NOPAE;
581 	i386_pmap_VM_LEVEL_0_ORDER = VM_LEVEL_0_ORDER_NOPAE;
582 	i386_pmap_PDRSHIFT = PDRSHIFT_NOPAE;
583 #endif
584 }
585 
586 static void
__CONCAT(PMTYPE,set_nx)587 __CONCAT(PMTYPE, set_nx)(void)
588 {
589 
590 #ifdef PMAP_PAE_COMP
591 	if ((amd_feature & AMDID_NX) == 0)
592 		return;
593 	pg_nx = PG_NX;
594 	elf32_nxstack = 1;
595 	/* EFER.EFER_NXE is set in initializecpu(). */
596 #endif
597 }
598 
599 /*
600  *	Bootstrap the system enough to run with virtual memory.
601  *
602  *	On the i386 this is called after pmap_cold() created initial
603  *	kernel page table and enabled paging, and just syncs the pmap
604  *	module with what has already been done.
605  */
606 static void
__CONCAT(PMTYPE,bootstrap)607 __CONCAT(PMTYPE, bootstrap)(vm_paddr_t firstaddr)
608 {
609 	vm_offset_t va;
610 	pt_entry_t *pte, *unused __unused;
611 	struct pcpu *pc;
612 	u_long res;
613 	int i;
614 
615 	res = atop(firstaddr - (vm_paddr_t)KERNLOAD);
616 
617 	/*
618 	 * Initialize the first available kernel virtual address.
619 	 * However, using "firstaddr" may waste a few pages of the
620 	 * kernel virtual address space, because pmap_cold() may not
621 	 * have mapped every physical page that it allocated.
622 	 * Preferably, pmap_cold() would provide a first unused
623 	 * virtual address in addition to "firstaddr".
624 	 */
625 	virtual_avail = (vm_offset_t)firstaddr;
626 	virtual_end = VM_MAX_KERNEL_ADDRESS;
627 
628 	/*
629 	 * Initialize the kernel pmap (which is statically allocated).
630 	 * Count bootstrap data as being resident in case any of this data is
631 	 * later unmapped (using pmap_remove()) and freed.
632 	 */
633 	PMAP_LOCK_INIT(kernel_pmap);
634 	kernel_pmap->pm_pdir = IdlePTD;
635 #ifdef PMAP_PAE_COMP
636 	kernel_pmap->pm_pdpt = IdlePDPT;
637 #endif
638 	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
639 	kernel_pmap->pm_stats.resident_count = res;
640 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
641 	vm_radix_init(&kernel_pmap->pm_root);
642 
643  	/*
644 	 * Initialize the global pv list lock.
645 	 */
646 	rw_init(&pvh_global_lock, "pmap pv global");
647 
648 	/*
649 	 * Reserve some special page table entries/VA space for temporary
650 	 * mapping of pages.
651 	 */
652 #define	SYSMAP(c, p, v, n)	\
653 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
654 
655 	va = virtual_avail;
656 	pte = vtopte(va);
657 
658 	/*
659 	 * Initialize temporary map objects on the current CPU for use
660 	 * during early boot.
661 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
662 	 * CMAP3 is used for the boot-time memory test.
663 	 */
664 	pc = get_pcpu();
665 	mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
666 	SYSMAP(caddr_t, pc->pc_cmap_pte1, pc->pc_cmap_addr1, 1)
667 	SYSMAP(caddr_t, pc->pc_cmap_pte2, pc->pc_cmap_addr2, 1)
668 	SYSMAP(vm_offset_t, pte, pc->pc_qmap_addr, 1)
669 
670 	SYSMAP(caddr_t, CMAP3, CADDR3, 1);
671 
672 	/*
673 	 * Crashdump maps.
674 	 */
675 	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
676 
677 	/*
678 	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
679 	 */
680 	SYSMAP(caddr_t, unused, ptvmmap, 1)
681 
682 	/*
683 	 * msgbufp is used to map the system message buffer.
684 	 */
685 	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
686 
687 	/*
688 	 * KPTmap is used by pmap_kextract().
689 	 *
690 	 * KPTmap is first initialized by pmap_cold().  However, that initial
691 	 * KPTmap can only support NKPT page table pages.  Here, a larger
692 	 * KPTmap is created that can support KVA_PAGES page table pages.
693 	 */
694 	SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
695 
696 	for (i = 0; i < NKPT; i++)
697 		KPTD[i] = (KPTphys + ptoa(i)) | PG_RW | PG_V;
698 
699 	/*
700 	 * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
701 	 * respectively.
702 	 */
703 	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
704 	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
705 	SYSMAP(pt_entry_t *, PMAP3, PADDR3, 1)
706 
707 	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
708 
709 	virtual_avail = va;
710 
711 	/*
712 	 * Initialize the PAT MSR if present.
713 	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
714 	 * side-effect, invalidates stale PG_G TLB entries that might
715 	 * have been created in our pre-boot environment.  We assume
716 	 * that PAT support implies PGE and in reverse, PGE presence
717 	 * comes with PAT.  Both features were added for Pentium Pro.
718 	 */
719 	pmap_init_pat();
720 }
721 
722 static void
pmap_init_reserved_pages(void)723 pmap_init_reserved_pages(void)
724 {
725 	struct pcpu *pc;
726 	vm_offset_t pages;
727 	int i;
728 
729 #ifdef PMAP_PAE_COMP
730 	if (!pae_mode)
731 		return;
732 #else
733 	if (pae_mode)
734 		return;
735 #endif
736 	CPU_FOREACH(i) {
737 		pc = pcpu_find(i);
738 		mtx_init(&pc->pc_copyout_mlock, "cpmlk", NULL, MTX_DEF |
739 		    MTX_NEW);
740 		pc->pc_copyout_maddr = kva_alloc(ptoa(2));
741 		if (pc->pc_copyout_maddr == 0)
742 			panic("unable to allocate non-sleepable copyout KVA");
743 		sx_init(&pc->pc_copyout_slock, "cpslk");
744 		pc->pc_copyout_saddr = kva_alloc(ptoa(2));
745 		if (pc->pc_copyout_saddr == 0)
746 			panic("unable to allocate sleepable copyout KVA");
747 		pc->pc_pmap_eh_va = kva_alloc(ptoa(1));
748 		if (pc->pc_pmap_eh_va == 0)
749 			panic("unable to allocate pmap_extract_and_hold KVA");
750 		pc->pc_pmap_eh_ptep = (char *)vtopte(pc->pc_pmap_eh_va);
751 
752 		/*
753 		 * Skip if the mappings have already been initialized,
754 		 * i.e. this is the BSP.
755 		 */
756 		if (pc->pc_cmap_addr1 != 0)
757 			continue;
758 
759 		mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
760 		pages = kva_alloc(PAGE_SIZE * 3);
761 		if (pages == 0)
762 			panic("unable to allocate CMAP KVA");
763 		pc->pc_cmap_pte1 = vtopte(pages);
764 		pc->pc_cmap_pte2 = vtopte(pages + PAGE_SIZE);
765 		pc->pc_cmap_addr1 = (caddr_t)pages;
766 		pc->pc_cmap_addr2 = (caddr_t)(pages + PAGE_SIZE);
767 		pc->pc_qmap_addr = pages + ptoa(2);
768 	}
769 }
770 
771 SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
772 
773 /*
774  * Setup the PAT MSR.
775  */
776 static void
__CONCAT(PMTYPE,init_pat)777 __CONCAT(PMTYPE, init_pat)(void)
778 {
779 	int pat_table[PAT_INDEX_SIZE];
780 	uint64_t pat_msr;
781 	u_long cr0, cr4;
782 	int i;
783 
784 	/* Set default PAT index table. */
785 	for (i = 0; i < PAT_INDEX_SIZE; i++)
786 		pat_table[i] = -1;
787 	pat_table[PAT_WRITE_BACK] = 0;
788 	pat_table[PAT_WRITE_THROUGH] = 1;
789 	pat_table[PAT_UNCACHEABLE] = 3;
790 	pat_table[PAT_WRITE_COMBINING] = 3;
791 	pat_table[PAT_WRITE_PROTECTED] = 3;
792 	pat_table[PAT_UNCACHED] = 3;
793 
794 	/*
795 	 * Bail if this CPU doesn't implement PAT.
796 	 * We assume that PAT support implies PGE.
797 	 */
798 	if ((cpu_feature & CPUID_PAT) == 0) {
799 		for (i = 0; i < PAT_INDEX_SIZE; i++)
800 			pat_index[i] = pat_table[i];
801 		pat_works = 0;
802 		return;
803 	}
804 
805 	/*
806 	 * Due to some Intel errata, we can only safely use the lower 4
807 	 * PAT entries.
808 	 *
809 	 *   Intel Pentium III Processor Specification Update
810 	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
811 	 * or Mode C Paging)
812 	 *
813 	 *   Intel Pentium IV  Processor Specification Update
814 	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
815 	 */
816 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
817 	    !(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
818 		pat_works = 0;
819 
820 	/* Initialize default PAT entries. */
821 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
822 	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
823 	    PAT_VALUE(2, PAT_UNCACHED) |
824 	    PAT_VALUE(3, PAT_UNCACHEABLE) |
825 	    PAT_VALUE(4, PAT_WRITE_BACK) |
826 	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
827 	    PAT_VALUE(6, PAT_UNCACHED) |
828 	    PAT_VALUE(7, PAT_UNCACHEABLE);
829 
830 	if (pat_works) {
831 		/*
832 		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
833 		 * Program 5 and 6 as WP and WC.
834 		 * Leave 4 and 7 as WB and UC.
835 		 */
836 		pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
837 		pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
838 		    PAT_VALUE(6, PAT_WRITE_COMBINING);
839 		pat_table[PAT_UNCACHED] = 2;
840 		pat_table[PAT_WRITE_PROTECTED] = 5;
841 		pat_table[PAT_WRITE_COMBINING] = 6;
842 	} else {
843 		/*
844 		 * Just replace PAT Index 2 with WC instead of UC-.
845 		 */
846 		pat_msr &= ~PAT_MASK(2);
847 		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
848 		pat_table[PAT_WRITE_COMBINING] = 2;
849 	}
850 
851 	/* Disable PGE. */
852 	cr4 = rcr4();
853 	load_cr4(cr4 & ~CR4_PGE);
854 
855 	/* Disable caches (CD = 1, NW = 0). */
856 	cr0 = rcr0();
857 	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
858 
859 	/* Flushes caches and TLBs. */
860 	wbinvd();
861 	invltlb();
862 
863 	/* Update PAT and index table. */
864 	wrmsr(MSR_PAT, pat_msr);
865 	for (i = 0; i < PAT_INDEX_SIZE; i++)
866 		pat_index[i] = pat_table[i];
867 
868 	/* Flush caches and TLBs again. */
869 	wbinvd();
870 	invltlb();
871 
872 	/* Restore caches and PGE. */
873 	load_cr0(cr0);
874 	load_cr4(cr4);
875 }
876 
877 #ifdef PMAP_PAE_COMP
878 static void *
pmap_pdpt_allocf(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * flags,int wait)879 pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
880     int wait)
881 {
882 
883 	/* Inform UMA that this allocator uses kernel_map/object. */
884 	*flags = UMA_SLAB_KERNEL;
885 	return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain),
886 	    bytes, wait, 0x0ULL, 0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
887 }
888 #endif
889 
890 /*
891  * Abuse the pte nodes for unmapped kva to thread a kva freelist through.
892  * Requirements:
893  *  - Must deal with pages in order to ensure that none of the PG_* bits
894  *    are ever set, PG_V in particular.
895  *  - Assumes we can write to ptes without pte_store() atomic ops, even
896  *    on PAE systems.  This should be ok.
897  *  - Assumes nothing will ever test these addresses for 0 to indicate
898  *    no mapping instead of correctly checking PG_V.
899  *  - Assumes a vm_offset_t will fit in a pte (true for i386).
900  * Because PG_V is never set, there can be no mappings to invalidate.
901  */
902 static vm_offset_t
pmap_ptelist_alloc(vm_offset_t * head)903 pmap_ptelist_alloc(vm_offset_t *head)
904 {
905 	pt_entry_t *pte;
906 	vm_offset_t va;
907 
908 	va = *head;
909 	if (va == 0)
910 		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
911 	pte = vtopte(va);
912 	*head = *pte;
913 	if (*head & PG_V)
914 		panic("pmap_ptelist_alloc: va with PG_V set!");
915 	*pte = 0;
916 	return (va);
917 }
918 
919 static void
pmap_ptelist_free(vm_offset_t * head,vm_offset_t va)920 pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
921 {
922 	pt_entry_t *pte;
923 
924 	if (va & PG_V)
925 		panic("pmap_ptelist_free: freeing va with PG_V set!");
926 	pte = vtopte(va);
927 	*pte = *head;		/* virtual! PG_V is 0 though */
928 	*head = va;
929 }
930 
931 static void
pmap_ptelist_init(vm_offset_t * head,void * base,int npages)932 pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
933 {
934 	int i;
935 	vm_offset_t va;
936 
937 	*head = 0;
938 	for (i = npages - 1; i >= 0; i--) {
939 		va = (vm_offset_t)base + i * PAGE_SIZE;
940 		pmap_ptelist_free(head, va);
941 	}
942 }
943 
944 /*
945  *	Initialize the pmap module.
946  *
947  *	Called by vm_mem_init(), to initialize any structures that the pmap
948  *	system needs to map virtual memory.
949  */
950 static void
__CONCAT(PMTYPE,init)951 __CONCAT(PMTYPE, init)(void)
952 {
953 	struct pmap_preinit_mapping *ppim;
954 	vm_page_t mpte;
955 	vm_size_t s;
956 	int i, pv_npg;
957 
958 	/*
959 	 * Initialize the vm page array entries for the kernel pmap's
960 	 * page table pages.
961 	 */
962 	PMAP_LOCK(kernel_pmap);
963 	for (i = 0; i < NKPT; i++) {
964 		mpte = PHYS_TO_VM_PAGE(KPTphys + ptoa(i));
965 		KASSERT(mpte >= vm_page_array &&
966 		    mpte < &vm_page_array[vm_page_array_size],
967 		    ("pmap_init: page table page is out of range"));
968 		mpte->pindex = i + KPTDI;
969 		mpte->phys_addr = KPTphys + ptoa(i);
970 		mpte->ref_count = 1;
971 
972 		/*
973 		 * Collect the page table pages that were replaced by a 2/4MB
974 		 * page.  They are filled with equivalent 4KB page mappings.
975 		 */
976 		if (pseflag != 0 &&
977 		    KERNBASE <= i << PDRSHIFT && i << PDRSHIFT < KERNend &&
978 		    pmap_insert_pt_page(kernel_pmap, mpte, true, true))
979 			panic("pmap_init: pmap_insert_pt_page failed");
980 	}
981 	PMAP_UNLOCK(kernel_pmap);
982 	vm_wire_add(NKPT);
983 
984 	/*
985 	 * Initialize the address space (zone) for the pv entries.  Set a
986 	 * high water mark so that the system can recover from excessive
987 	 * numbers of pv entries.
988 	 */
989 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
990 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
991 	TUNABLE_INT_FETCH("vm.pmap.pv_entry_max", &pv_entry_max);
992 	pv_entry_max = roundup(pv_entry_max, _NPCPV);
993 	pv_entry_high_water = 9 * (pv_entry_max / 10);
994 
995 	/*
996 	 * If the kernel is running on a virtual machine, then it must assume
997 	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
998 	 * be prepared for the hypervisor changing the vendor and family that
999 	 * are reported by CPUID.  Consequently, the workaround for AMD Family
1000 	 * 10h Erratum 383 is enabled if the processor's feature set does not
1001 	 * include at least one feature that is only supported by older Intel
1002 	 * or newer AMD processors.
1003 	 */
1004 	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
1005 	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
1006 	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
1007 	    AMDID2_FMA4)) == 0)
1008 		workaround_erratum383 = 1;
1009 
1010 	/*
1011 	 * Are large page mappings supported and enabled?
1012 	 */
1013 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
1014 	if (pseflag == 0)
1015 		pg_ps_enabled = 0;
1016 	else if (pg_ps_enabled) {
1017 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1018 		    ("pmap_init: can't assign to pagesizes[1]"));
1019 		pagesizes[1] = NBPDR;
1020 	}
1021 
1022 	/*
1023 	 * Calculate the size of the pv head table for superpages.
1024 	 * Handle the possibility that "vm_phys_segs[...].end" is zero.
1025 	 */
1026 	pv_npg = trunc_4mpage(vm_phys_segs[vm_phys_nsegs - 1].end -
1027 	    PAGE_SIZE) / NBPDR + 1;
1028 
1029 	/*
1030 	 * Allocate memory for the pv head table for superpages.
1031 	 */
1032 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1033 	s = round_page(s);
1034 	pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
1035 	for (i = 0; i < pv_npg; i++)
1036 		TAILQ_INIT(&pv_table[i].pv_list);
1037 
1038 	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
1039 	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
1040 	if (pv_chunkbase == NULL)
1041 		panic("pmap_init: not enough kvm for pv chunks");
1042 	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
1043 #ifdef PMAP_PAE_COMP
1044 	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
1045 	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
1046 	    UMA_ZONE_CONTIG | UMA_ZONE_VM | UMA_ZONE_NOFREE);
1047 	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
1048 #endif
1049 
1050 	pmap_initialized = 1;
1051 	pmap_init_trm();
1052 
1053 	if (!bootverbose)
1054 		return;
1055 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
1056 		ppim = pmap_preinit_mapping + i;
1057 		if (ppim->va == 0)
1058 			continue;
1059 		printf("PPIM %u: PA=%#jx, VA=%#x, size=%#x, mode=%#x\n", i,
1060 		    (uintmax_t)ppim->pa, ppim->va, ppim->sz, ppim->mode);
1061 	}
1062 
1063 }
1064 
1065 extern u_long pmap_pde_demotions;
1066 extern u_long pmap_pde_mappings;
1067 extern u_long pmap_pde_p_failures;
1068 extern u_long pmap_pde_promotions;
1069 
1070 /***************************************************
1071  * Low level helper routines.....
1072  ***************************************************/
1073 
1074 static bool
__CONCAT(PMTYPE,is_valid_memattr)1075 __CONCAT(PMTYPE, is_valid_memattr)(pmap_t pmap __unused, vm_memattr_t mode)
1076 {
1077 
1078 	return (mode >= 0 && mode < PAT_INDEX_SIZE &&
1079 	    pat_index[(int)mode] >= 0);
1080 }
1081 
1082 /*
1083  * Determine the appropriate bits to set in a PTE or PDE for a specified
1084  * caching mode.
1085  */
1086 static int
__CONCAT(PMTYPE,cache_bits)1087 __CONCAT(PMTYPE, cache_bits)(pmap_t pmap, int mode, bool is_pde)
1088 {
1089 	int cache_bits, pat_flag, pat_idx;
1090 
1091 	if (!pmap_is_valid_memattr(pmap, mode))
1092 		panic("Unknown caching mode %d\n", mode);
1093 
1094 	/* The PAT bit is different for PTE's and PDE's. */
1095 	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
1096 
1097 	/* Map the caching mode to a PAT index. */
1098 	pat_idx = pat_index[mode];
1099 
1100 	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
1101 	cache_bits = 0;
1102 	if (pat_idx & 0x4)
1103 		cache_bits |= pat_flag;
1104 	if (pat_idx & 0x2)
1105 		cache_bits |= PG_NC_PCD;
1106 	if (pat_idx & 0x1)
1107 		cache_bits |= PG_NC_PWT;
1108 	return (cache_bits);
1109 }
1110 
1111 static int
pmap_pat_index(pmap_t pmap,pt_entry_t pte,bool is_pde)1112 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
1113 {
1114 	int pat_flag, pat_idx;
1115 
1116 	if ((cpu_feature & CPUID_PAT) == 0)
1117 		return (0);
1118 
1119 	pat_idx = 0;
1120 	/* The PAT bit is different for PTE's and PDE's. */
1121 	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
1122 
1123 	if ((pte & pat_flag) != 0)
1124 		pat_idx |= 0x4;
1125 	if ((pte & PG_NC_PCD) != 0)
1126 		pat_idx |= 0x2;
1127 	if ((pte & PG_NC_PWT) != 0)
1128 		pat_idx |= 0x1;
1129 
1130 	/* See pmap_init_pat(). */
1131 	if (pat_works) {
1132 		if (pat_idx == 4)
1133 			pat_idx = 0;
1134 		if (pat_idx == 7)
1135 			pat_idx = 3;
1136 	} else {
1137 		/* XXXKIB */
1138 	}
1139 
1140 	return (pat_idx);
1141 }
1142 
1143 static bool
__CONCAT(PMTYPE,ps_enabled)1144 __CONCAT(PMTYPE, ps_enabled)(pmap_t pmap __unused)
1145 {
1146 
1147 	return (pg_ps_enabled);
1148 }
1149 
1150 /*
1151  * The caller is responsible for maintaining TLB consistency.
1152  */
1153 static void
pmap_kenter_pde(vm_offset_t va,pd_entry_t newpde)1154 pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
1155 {
1156 	pd_entry_t *pde;
1157 
1158 	pde = pmap_pde(kernel_pmap, va);
1159 	pde_store(pde, newpde);
1160 }
1161 
1162 /*
1163  * After changing the page size for the specified virtual address in the page
1164  * table, flush the corresponding entries from the processor's TLB.  Only the
1165  * calling processor's TLB is affected.
1166  *
1167  * The calling thread must be pinned to a processor.
1168  */
1169 static void
pmap_update_pde_invalidate(vm_offset_t va,pd_entry_t newpde)1170 pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
1171 {
1172 
1173 	if ((newpde & PG_PS) == 0)
1174 		/* Demotion: flush a specific 2MB page mapping. */
1175 		invlpg(va);
1176 	else /* if ((newpde & PG_G) == 0) */
1177 		/*
1178 		 * Promotion: flush every 4KB page mapping from the TLB
1179 		 * because there are too many to flush individually.
1180 		 */
1181 		invltlb();
1182 }
1183 
1184 #ifdef SMP
1185 
1186 static void
pmap_curcpu_cb_dummy(pmap_t pmap __unused,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)1187 pmap_curcpu_cb_dummy(pmap_t pmap __unused, vm_offset_t addr1 __unused,
1188     vm_offset_t addr2 __unused)
1189 {
1190 }
1191 
1192 /*
1193  * For SMP, these functions have to use the IPI mechanism for coherence.
1194  *
1195  * N.B.: Before calling any of the following TLB invalidation functions,
1196  * the calling processor must ensure that all stores updating a non-
1197  * kernel page table are globally performed.  Otherwise, another
1198  * processor could cache an old, pre-update entry without being
1199  * invalidated.  This can happen one of two ways: (1) The pmap becomes
1200  * active on another processor after its pm_active field is checked by
1201  * one of the following functions but before a store updating the page
1202  * table is globally performed. (2) The pmap becomes active on another
1203  * processor before its pm_active field is checked but due to
1204  * speculative loads one of the following functions stills reads the
1205  * pmap as inactive on the other processor.
1206  *
1207  * The kernel page table is exempt because its pm_active field is
1208  * immutable.  The kernel page table is always active on every
1209  * processor.
1210  */
1211 static void
pmap_invalidate_page_int(pmap_t pmap,vm_offset_t va)1212 pmap_invalidate_page_int(pmap_t pmap, vm_offset_t va)
1213 {
1214 	cpuset_t *mask, other_cpus;
1215 	u_int cpuid;
1216 
1217 	sched_pin();
1218 	if (pmap == kernel_pmap) {
1219 		invlpg(va);
1220 		mask = &all_cpus;
1221 	} else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1222 		mask = &all_cpus;
1223 	} else {
1224 		cpuid = PCPU_GET(cpuid);
1225 		other_cpus = all_cpus;
1226 		CPU_CLR(cpuid, &other_cpus);
1227 		CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
1228 		mask = &other_cpus;
1229 	}
1230 	smp_masked_invlpg(*mask, va, pmap, pmap_curcpu_cb_dummy);
1231 	sched_unpin();
1232 }
1233 
1234 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
1235 #define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
1236 
1237 static void
pmap_invalidate_range_int(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)1238 pmap_invalidate_range_int(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1239 {
1240 	cpuset_t *mask, other_cpus;
1241 	vm_offset_t addr;
1242 	u_int cpuid;
1243 
1244 	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
1245 		pmap_invalidate_all_int(pmap);
1246 		return;
1247 	}
1248 
1249 	sched_pin();
1250 	if (pmap == kernel_pmap) {
1251 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1252 			invlpg(addr);
1253 		mask = &all_cpus;
1254 	} else  if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1255 		mask = &all_cpus;
1256 	} else {
1257 		cpuid = PCPU_GET(cpuid);
1258 		other_cpus = all_cpus;
1259 		CPU_CLR(cpuid, &other_cpus);
1260 		CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
1261 		mask = &other_cpus;
1262 	}
1263 	smp_masked_invlpg_range(*mask, sva, eva, pmap, pmap_curcpu_cb_dummy);
1264 	sched_unpin();
1265 }
1266 
1267 static void
pmap_invalidate_all_int(pmap_t pmap)1268 pmap_invalidate_all_int(pmap_t pmap)
1269 {
1270 	cpuset_t *mask, other_cpus;
1271 	u_int cpuid;
1272 
1273 	sched_pin();
1274 	if (pmap == kernel_pmap) {
1275 		invltlb();
1276 		mask = &all_cpus;
1277 	} else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1278 		mask = &all_cpus;
1279 	} else {
1280 		cpuid = PCPU_GET(cpuid);
1281 		other_cpus = all_cpus;
1282 		CPU_CLR(cpuid, &other_cpus);
1283 		CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
1284 		mask = &other_cpus;
1285 	}
1286 	smp_masked_invltlb(*mask, pmap, pmap_curcpu_cb_dummy);
1287 	sched_unpin();
1288 }
1289 
1290 static void
pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)1291 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,
1292     vm_offset_t addr1 __unused, vm_offset_t addr2 __unused)
1293 {
1294 	wbinvd();
1295 }
1296 
1297 static void
__CONCAT(PMTYPE,invalidate_cache)1298 __CONCAT(PMTYPE, invalidate_cache)(void)
1299 {
1300 	smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
1301 }
1302 
1303 struct pde_action {
1304 	cpuset_t invalidate;	/* processors that invalidate their TLB */
1305 	vm_offset_t va;
1306 	pd_entry_t *pde;
1307 	pd_entry_t newpde;
1308 	u_int store;		/* processor that updates the PDE */
1309 };
1310 
1311 static void
pmap_update_pde_kernel(void * arg)1312 pmap_update_pde_kernel(void *arg)
1313 {
1314 	struct pde_action *act = arg;
1315 	pd_entry_t *pde;
1316 
1317 	if (act->store == PCPU_GET(cpuid)) {
1318 		pde = pmap_pde(kernel_pmap, act->va);
1319 		pde_store(pde, act->newpde);
1320 	}
1321 }
1322 
1323 static void
pmap_update_pde_user(void * arg)1324 pmap_update_pde_user(void *arg)
1325 {
1326 	struct pde_action *act = arg;
1327 
1328 	if (act->store == PCPU_GET(cpuid))
1329 		pde_store(act->pde, act->newpde);
1330 }
1331 
1332 static void
pmap_update_pde_teardown(void * arg)1333 pmap_update_pde_teardown(void *arg)
1334 {
1335 	struct pde_action *act = arg;
1336 
1337 	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
1338 		pmap_update_pde_invalidate(act->va, act->newpde);
1339 }
1340 
1341 /*
1342  * Change the page size for the specified virtual address in a way that
1343  * prevents any possibility of the TLB ever having two entries that map the
1344  * same virtual address using different page sizes.  This is the recommended
1345  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
1346  * machine check exception for a TLB state that is improperly diagnosed as a
1347  * hardware error.
1348  */
1349 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)1350 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1351 {
1352 	struct pde_action act;
1353 	cpuset_t active, other_cpus;
1354 	u_int cpuid;
1355 
1356 	sched_pin();
1357 	cpuid = PCPU_GET(cpuid);
1358 	other_cpus = all_cpus;
1359 	CPU_CLR(cpuid, &other_cpus);
1360 	if (pmap == kernel_pmap)
1361 		active = all_cpus;
1362 	else
1363 		active = pmap->pm_active;
1364 	if (CPU_OVERLAP(&active, &other_cpus)) {
1365 		act.store = cpuid;
1366 		act.invalidate = active;
1367 		act.va = va;
1368 		act.pde = pde;
1369 		act.newpde = newpde;
1370 		CPU_SET(cpuid, &active);
1371 		smp_rendezvous_cpus(active,
1372 		    smp_no_rendezvous_barrier, pmap == kernel_pmap ?
1373 		    pmap_update_pde_kernel : pmap_update_pde_user,
1374 		    pmap_update_pde_teardown, &act);
1375 	} else {
1376 		if (pmap == kernel_pmap)
1377 			pmap_kenter_pde(va, newpde);
1378 		else
1379 			pde_store(pde, newpde);
1380 		if (CPU_ISSET(cpuid, &active))
1381 			pmap_update_pde_invalidate(va, newpde);
1382 	}
1383 	sched_unpin();
1384 }
1385 #else /* !SMP */
1386 /*
1387  * Normal, non-SMP, 486+ invalidation functions.
1388  * We inline these within pmap.c for speed.
1389  */
1390 static void
pmap_invalidate_page_int(pmap_t pmap,vm_offset_t va)1391 pmap_invalidate_page_int(pmap_t pmap, vm_offset_t va)
1392 {
1393 
1394 	if (pmap == kernel_pmap)
1395 		invlpg(va);
1396 }
1397 
1398 static void
pmap_invalidate_range_int(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)1399 pmap_invalidate_range_int(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1400 {
1401 	vm_offset_t addr;
1402 
1403 	if (pmap == kernel_pmap)
1404 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1405 			invlpg(addr);
1406 }
1407 
1408 static void
pmap_invalidate_all_int(pmap_t pmap)1409 pmap_invalidate_all_int(pmap_t pmap)
1410 {
1411 
1412 	if (pmap == kernel_pmap)
1413 		invltlb();
1414 }
1415 
1416 static void
__CONCAT(PMTYPE,invalidate_cache)1417 __CONCAT(PMTYPE, invalidate_cache)(void)
1418 {
1419 
1420 	wbinvd();
1421 }
1422 
1423 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)1424 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1425 {
1426 
1427 	if (pmap == kernel_pmap)
1428 		pmap_kenter_pde(va, newpde);
1429 	else
1430 		pde_store(pde, newpde);
1431 	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1432 		pmap_update_pde_invalidate(va, newpde);
1433 }
1434 #endif /* !SMP */
1435 
1436 static void
__CONCAT(PMTYPE,invalidate_page)1437 __CONCAT(PMTYPE, invalidate_page)(pmap_t pmap, vm_offset_t va)
1438 {
1439 
1440 	pmap_invalidate_page_int(pmap, va);
1441 }
1442 
1443 static void
__CONCAT(PMTYPE,invalidate_range)1444 __CONCAT(PMTYPE, invalidate_range)(pmap_t pmap, vm_offset_t sva,
1445     vm_offset_t eva)
1446 {
1447 
1448 	pmap_invalidate_range_int(pmap, sva, eva);
1449 }
1450 
1451 static void
__CONCAT(PMTYPE,invalidate_all)1452 __CONCAT(PMTYPE, invalidate_all)(pmap_t pmap)
1453 {
1454 
1455 	pmap_invalidate_all_int(pmap);
1456 }
1457 
1458 static void
pmap_invalidate_pde_page(pmap_t pmap,vm_offset_t va,pd_entry_t pde)1459 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1460 {
1461 
1462 	/*
1463 	 * When the PDE has PG_PROMOTED set, the 2- or 4MB page mapping was
1464 	 * created by a promotion that did not invalidate the 512 or 1024 4KB
1465 	 * page mappings that might exist in the TLB.  Consequently, at this
1466 	 * point, the TLB may hold both 4KB and 2- or 4MB page mappings for
1467 	 * the address range [va, va + NBPDR).  Therefore, the entire range
1468 	 * must be invalidated here.  In contrast, when PG_PROMOTED is clear,
1469 	 * the TLB will not hold any 4KB page mappings for the address range
1470 	 * [va, va + NBPDR), and so a single INVLPG suffices to invalidate the
1471 	 * 2- or 4MB page mapping from the TLB.
1472 	 */
1473 	if ((pde & PG_PROMOTED) != 0)
1474 		pmap_invalidate_range_int(pmap, va, va + NBPDR - 1);
1475 	else
1476 		pmap_invalidate_page_int(pmap, va);
1477 }
1478 
1479 /*
1480  * Are we current address space or kernel?
1481  */
1482 static __inline int
pmap_is_current(pmap_t pmap)1483 pmap_is_current(pmap_t pmap)
1484 {
1485 
1486 	return (pmap == kernel_pmap);
1487 }
1488 
1489 /*
1490  * If the given pmap is not the current or kernel pmap, the returned pte must
1491  * be released by passing it to pmap_pte_release().
1492  */
1493 static pt_entry_t *
__CONCAT(PMTYPE,pte)1494 __CONCAT(PMTYPE, pte)(pmap_t pmap, vm_offset_t va)
1495 {
1496 	pd_entry_t newpf;
1497 	pd_entry_t *pde;
1498 
1499 	pde = pmap_pde(pmap, va);
1500 	if (*pde & PG_PS)
1501 		return (pde);
1502 	if (*pde != 0) {
1503 		/* are we current address space or kernel? */
1504 		if (pmap_is_current(pmap))
1505 			return (vtopte(va));
1506 		mtx_lock(&PMAP2mutex);
1507 		newpf = *pde & PG_FRAME;
1508 		if ((*PMAP2 & PG_FRAME) != newpf) {
1509 			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1510 			pmap_invalidate_page_int(kernel_pmap,
1511 			    (vm_offset_t)PADDR2);
1512 		}
1513 		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1514 	}
1515 	return (NULL);
1516 }
1517 
1518 /*
1519  * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1520  * being NULL.
1521  */
1522 static __inline void
pmap_pte_release(pt_entry_t * pte)1523 pmap_pte_release(pt_entry_t *pte)
1524 {
1525 
1526 	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1527 		mtx_unlock(&PMAP2mutex);
1528 }
1529 
1530 /*
1531  * NB:  The sequence of updating a page table followed by accesses to the
1532  * corresponding pages is subject to the situation described in the "AMD64
1533  * Architecture Programmer's Manual Volume 2: System Programming" rev. 3.23,
1534  * "7.3.1 Special Coherency Considerations".  Therefore, issuing the INVLPG
1535  * right after modifying the PTE bits is crucial.
1536  */
1537 static __inline void
invlcaddr(void * caddr)1538 invlcaddr(void *caddr)
1539 {
1540 
1541 	invlpg((u_int)caddr);
1542 }
1543 
1544 /*
1545  * Super fast pmap_pte routine best used when scanning
1546  * the pv lists.  This eliminates many coarse-grained
1547  * invltlb calls.  Note that many of the pv list
1548  * scans are across different pmaps.  It is very wasteful
1549  * to do an entire invltlb for checking a single mapping.
1550  *
1551  * If the given pmap is not the current pmap, pvh_global_lock
1552  * must be held and curthread pinned to a CPU.
1553  */
1554 static pt_entry_t *
pmap_pte_quick(pmap_t pmap,vm_offset_t va)1555 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1556 {
1557 	pd_entry_t newpf;
1558 	pd_entry_t *pde;
1559 
1560 	pde = pmap_pde(pmap, va);
1561 	if (*pde & PG_PS)
1562 		return (pde);
1563 	if (*pde != 0) {
1564 		/* are we current address space or kernel? */
1565 		if (pmap_is_current(pmap))
1566 			return (vtopte(va));
1567 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1568 		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1569 		newpf = *pde & PG_FRAME;
1570 		if ((*PMAP1 & PG_FRAME) != newpf) {
1571 			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1572 #ifdef SMP
1573 			PMAP1cpu = PCPU_GET(cpuid);
1574 #endif
1575 			invlcaddr(PADDR1);
1576 			PMAP1changed++;
1577 		} else
1578 #ifdef SMP
1579 		if (PMAP1cpu != PCPU_GET(cpuid)) {
1580 			PMAP1cpu = PCPU_GET(cpuid);
1581 			invlcaddr(PADDR1);
1582 			PMAP1changedcpu++;
1583 		} else
1584 #endif
1585 			PMAP1unchanged++;
1586 		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1587 	}
1588 	return (0);
1589 }
1590 
1591 static pt_entry_t *
pmap_pte_quick3(pmap_t pmap,vm_offset_t va)1592 pmap_pte_quick3(pmap_t pmap, vm_offset_t va)
1593 {
1594 	pd_entry_t newpf;
1595 	pd_entry_t *pde;
1596 
1597 	pde = pmap_pde(pmap, va);
1598 	if (*pde & PG_PS)
1599 		return (pde);
1600 	if (*pde != 0) {
1601 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1602 		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1603 		newpf = *pde & PG_FRAME;
1604 		if ((*PMAP3 & PG_FRAME) != newpf) {
1605 			*PMAP3 = newpf | PG_RW | PG_V | PG_A | PG_M;
1606 #ifdef SMP
1607 			PMAP3cpu = PCPU_GET(cpuid);
1608 #endif
1609 			invlcaddr(PADDR3);
1610 			PMAP1changed++;
1611 		} else
1612 #ifdef SMP
1613 		if (PMAP3cpu != PCPU_GET(cpuid)) {
1614 			PMAP3cpu = PCPU_GET(cpuid);
1615 			invlcaddr(PADDR3);
1616 			PMAP1changedcpu++;
1617 		} else
1618 #endif
1619 			PMAP1unchanged++;
1620 		return (PADDR3 + (i386_btop(va) & (NPTEPG - 1)));
1621 	}
1622 	return (0);
1623 }
1624 
1625 static pt_entry_t
pmap_pte_ufast(pmap_t pmap,vm_offset_t va,pd_entry_t pde)1626 pmap_pte_ufast(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1627 {
1628 	pt_entry_t *eh_ptep, pte, *ptep;
1629 
1630 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1631 	pde &= PG_FRAME;
1632 	critical_enter();
1633 	eh_ptep = (pt_entry_t *)PCPU_GET(pmap_eh_ptep);
1634 	if ((*eh_ptep & PG_FRAME) != pde) {
1635 		*eh_ptep = pde | PG_RW | PG_V | PG_A | PG_M;
1636 		invlcaddr((void *)PCPU_GET(pmap_eh_va));
1637 	}
1638 	ptep = (pt_entry_t *)PCPU_GET(pmap_eh_va) + (i386_btop(va) &
1639 	    (NPTEPG - 1));
1640 	pte = *ptep;
1641 	critical_exit();
1642 	return (pte);
1643 }
1644 
1645 /*
1646  * Extract from the kernel page table the physical address that is mapped by
1647  * the given virtual address "va".
1648  *
1649  * This function may be used before pmap_bootstrap() is called.
1650  */
1651 static vm_paddr_t
__CONCAT(PMTYPE,kextract)1652 __CONCAT(PMTYPE, kextract)(vm_offset_t va)
1653 {
1654 	vm_paddr_t pa;
1655 
1656 	if ((pa = pte_load(&PTD[va >> PDRSHIFT])) & PG_PS) {
1657 		pa = (pa & PG_PS_FRAME) | (va & PDRMASK);
1658 	} else {
1659 		/*
1660 		 * Beware of a concurrent promotion that changes the PDE at
1661 		 * this point!  For example, vtopte() must not be used to
1662 		 * access the PTE because it would use the new PDE.  It is,
1663 		 * however, safe to use the old PDE because the page table
1664 		 * page is preserved by the promotion.
1665 		 */
1666 		pa = KPTmap[i386_btop(va)];
1667 		pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1668 	}
1669 	return (pa);
1670 }
1671 
1672 /*
1673  *	Routine:	pmap_extract
1674  *	Function:
1675  *		Extract the physical page address associated
1676  *		with the given map/virtual_address pair.
1677  */
1678 static vm_paddr_t
__CONCAT(PMTYPE,extract)1679 __CONCAT(PMTYPE, extract)(pmap_t pmap, vm_offset_t va)
1680 {
1681 	vm_paddr_t rtval;
1682 	pt_entry_t pte;
1683 	pd_entry_t pde;
1684 
1685 	rtval = 0;
1686 	PMAP_LOCK(pmap);
1687 	pde = pmap->pm_pdir[va >> PDRSHIFT];
1688 	if (pde != 0) {
1689 		if ((pde & PG_PS) != 0)
1690 			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1691 		else {
1692 			pte = pmap_pte_ufast(pmap, va, pde);
1693 			rtval = (pte & PG_FRAME) | (va & PAGE_MASK);
1694 		}
1695 	}
1696 	PMAP_UNLOCK(pmap);
1697 	return (rtval);
1698 }
1699 
1700 /*
1701  *	Routine:	pmap_extract_and_hold
1702  *	Function:
1703  *		Atomically extract and hold the physical page
1704  *		with the given pmap and virtual address pair
1705  *		if that mapping permits the given protection.
1706  */
1707 static vm_page_t
__CONCAT(PMTYPE,extract_and_hold)1708 __CONCAT(PMTYPE, extract_and_hold)(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1709 {
1710 	pd_entry_t pde;
1711 	pt_entry_t pte;
1712 	vm_page_t m;
1713 
1714 	m = NULL;
1715 	PMAP_LOCK(pmap);
1716 	pde = *pmap_pde(pmap, va);
1717 	if (pde != 0) {
1718 		if (pde & PG_PS) {
1719 			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0)
1720 				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1721 				    (va & PDRMASK));
1722 		} else {
1723 			pte = pmap_pte_ufast(pmap, va, pde);
1724 			if (pte != 0 &&
1725 			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0))
1726 				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1727 		}
1728 		if (m != NULL && !vm_page_wire_mapped(m))
1729 			m = NULL;
1730 	}
1731 	PMAP_UNLOCK(pmap);
1732 	return (m);
1733 }
1734 
1735 /***************************************************
1736  * Low level mapping routines.....
1737  ***************************************************/
1738 
1739 /*
1740  * Add a wired page to the kva.
1741  * Note: not SMP coherent.
1742  *
1743  * This function may be used before pmap_bootstrap() is called.
1744  */
1745 static void
__CONCAT(PMTYPE,kenter)1746 __CONCAT(PMTYPE, kenter)(vm_offset_t va, vm_paddr_t pa)
1747 {
1748 	pt_entry_t *pte;
1749 
1750 	pte = vtopte(va);
1751 	pte_store(pte, pa | PG_RW | PG_V);
1752 }
1753 
1754 static __inline void
pmap_kenter_attr(vm_offset_t va,vm_paddr_t pa,int mode)1755 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1756 {
1757 	pt_entry_t *pte;
1758 
1759 	pte = vtopte(va);
1760 	pte_store(pte, pa | PG_RW | PG_V | pmap_cache_bits(kernel_pmap,
1761 	    mode, false));
1762 }
1763 
1764 /*
1765  * Remove a page from the kernel pagetables.
1766  * Note: not SMP coherent.
1767  *
1768  * This function may be used before pmap_bootstrap() is called.
1769  */
1770 static void
__CONCAT(PMTYPE,kremove)1771 __CONCAT(PMTYPE, kremove)(vm_offset_t va)
1772 {
1773 	pt_entry_t *pte;
1774 
1775 	pte = vtopte(va);
1776 	pte_clear(pte);
1777 }
1778 
1779 /*
1780  *	Used to map a range of physical addresses into kernel
1781  *	virtual address space.
1782  *
1783  *	The value passed in '*virt' is a suggested virtual address for
1784  *	the mapping. Architectures which can support a direct-mapped
1785  *	physical to virtual region can return the appropriate address
1786  *	within that region, leaving '*virt' unchanged. Other
1787  *	architectures should map the pages starting at '*virt' and
1788  *	update '*virt' with the first usable address after the mapped
1789  *	region.
1790  */
1791 static vm_offset_t
__CONCAT(PMTYPE,map)1792 __CONCAT(PMTYPE, map)(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end,
1793     int prot)
1794 {
1795 	vm_offset_t va, sva;
1796 	vm_paddr_t superpage_offset;
1797 	pd_entry_t newpde;
1798 
1799 	va = *virt;
1800 	/*
1801 	 * Does the physical address range's size and alignment permit at
1802 	 * least one superpage mapping to be created?
1803 	 */
1804 	superpage_offset = start & PDRMASK;
1805 	if ((end - start) - ((NBPDR - superpage_offset) & PDRMASK) >= NBPDR) {
1806 		/*
1807 		 * Increase the starting virtual address so that its alignment
1808 		 * does not preclude the use of superpage mappings.
1809 		 */
1810 		if ((va & PDRMASK) < superpage_offset)
1811 			va = (va & ~PDRMASK) + superpage_offset;
1812 		else if ((va & PDRMASK) > superpage_offset)
1813 			va = ((va + PDRMASK) & ~PDRMASK) + superpage_offset;
1814 	}
1815 	sva = va;
1816 	while (start < end) {
1817 		if ((start & PDRMASK) == 0 && end - start >= NBPDR &&
1818 		    pseflag != 0) {
1819 			KASSERT((va & PDRMASK) == 0,
1820 			    ("pmap_map: misaligned va %#x", va));
1821 			newpde = start | PG_PS | PG_RW | PG_V;
1822 			pmap_kenter_pde(va, newpde);
1823 			va += NBPDR;
1824 			start += NBPDR;
1825 		} else {
1826 			pmap_kenter(va, start);
1827 			va += PAGE_SIZE;
1828 			start += PAGE_SIZE;
1829 		}
1830 	}
1831 	pmap_invalidate_range_int(kernel_pmap, sva, va);
1832 	*virt = va;
1833 	return (sva);
1834 }
1835 
1836 /*
1837  * Add a list of wired pages to the kva
1838  * this routine is only used for temporary
1839  * kernel mappings that do not need to have
1840  * page modification or references recorded.
1841  * Note that old mappings are simply written
1842  * over.  The page *must* be wired.
1843  * Note: SMP coherent.  Uses a ranged shootdown IPI.
1844  */
1845 static void
__CONCAT(PMTYPE,qenter)1846 __CONCAT(PMTYPE, qenter)(vm_offset_t sva, vm_page_t *ma, int count)
1847 {
1848 	pt_entry_t *endpte, oldpte, pa, *pte;
1849 	vm_page_t m;
1850 
1851 	oldpte = 0;
1852 	pte = vtopte(sva);
1853 	endpte = pte + count;
1854 	while (pte < endpte) {
1855 		m = *ma++;
1856 		pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(kernel_pmap,
1857 		    m->md.pat_mode, false);
1858 		if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
1859 			oldpte |= *pte;
1860 			pte_store(pte, pa | pg_nx | PG_RW | PG_V);
1861 		}
1862 		pte++;
1863 	}
1864 	if (__predict_false((oldpte & PG_V) != 0))
1865 		pmap_invalidate_range_int(kernel_pmap, sva, sva + count *
1866 		    PAGE_SIZE);
1867 }
1868 
1869 /*
1870  * This routine tears out page mappings from the
1871  * kernel -- it is meant only for temporary mappings.
1872  * Note: SMP coherent.  Uses a ranged shootdown IPI.
1873  */
1874 static void
__CONCAT(PMTYPE,qremove)1875 __CONCAT(PMTYPE, qremove)(vm_offset_t sva, int count)
1876 {
1877 	vm_offset_t va;
1878 
1879 	va = sva;
1880 	while (count-- > 0) {
1881 		pmap_kremove(va);
1882 		va += PAGE_SIZE;
1883 	}
1884 	pmap_invalidate_range_int(kernel_pmap, sva, va);
1885 }
1886 
1887 /***************************************************
1888  * Page table page management routines.....
1889  ***************************************************/
1890 /*
1891  * Schedule the specified unused page table page to be freed.  Specifically,
1892  * add the page to the specified list of pages that will be released to the
1893  * physical memory manager after the TLB has been updated.
1894  */
1895 static __inline void
pmap_add_delayed_free_list(vm_page_t m,struct spglist * free,bool set_PG_ZERO)1896 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, bool set_PG_ZERO)
1897 {
1898 
1899 	if (set_PG_ZERO)
1900 		m->flags |= PG_ZERO;
1901 	else
1902 		m->flags &= ~PG_ZERO;
1903 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1904 }
1905 
1906 /*
1907  * Inserts the specified page table page into the specified pmap's collection
1908  * of idle page table pages.  Each of a pmap's page table pages is responsible
1909  * for mapping a distinct range of virtual addresses.  The pmap's collection is
1910  * ordered by this virtual address range.
1911  *
1912  * If "promoted" is false, then the page table page "mpte" must be zero filled;
1913  * "mpte"'s valid field will be set to 0.
1914  *
1915  * If "promoted" is true and "allpte_PG_A_set" is false, then "mpte" must
1916  * contain valid mappings with identical attributes except for PG_A; "mpte"'s
1917  * valid field will be set to 1.
1918  *
1919  * If "promoted" and "allpte_PG_A_set" are both true, then "mpte" must contain
1920  * valid mappings with identical attributes including PG_A; "mpte"'s valid
1921  * field will be set to VM_PAGE_BITS_ALL.
1922  */
1923 static __inline int
pmap_insert_pt_page(pmap_t pmap,vm_page_t mpte,bool promoted,bool allpte_PG_A_set)1924 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
1925     bool allpte_PG_A_set)
1926 {
1927 
1928 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1929 	KASSERT(promoted || !allpte_PG_A_set,
1930 	    ("a zero-filled PTP can't have PG_A set in every PTE"));
1931 	mpte->valid = promoted ? (allpte_PG_A_set ? VM_PAGE_BITS_ALL : 1) : 0;
1932 	return (vm_radix_insert(&pmap->pm_root, mpte));
1933 }
1934 
1935 /*
1936  * Removes the page table page mapping the specified virtual address from the
1937  * specified pmap's collection of idle page table pages, and returns it.
1938  * Otherwise, returns NULL if there is no page table page corresponding to the
1939  * specified virtual address.
1940  */
1941 static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap,vm_offset_t va)1942 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
1943 {
1944 
1945 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1946 	return (vm_radix_remove(&pmap->pm_root, va >> PDRSHIFT));
1947 }
1948 
1949 /*
1950  * Decrements a page table page's reference count, which is used to record the
1951  * number of valid page table entries within the page.  If the reference count
1952  * drops to zero, then the page table page is unmapped.  Returns true if the
1953  * page table page was unmapped and false otherwise.
1954  */
1955 static inline bool
pmap_unwire_ptp(pmap_t pmap,vm_page_t m,struct spglist * free)1956 pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1957 {
1958 
1959 	--m->ref_count;
1960 	if (m->ref_count == 0) {
1961 		_pmap_unwire_ptp(pmap, m, free);
1962 		return (true);
1963 	} else
1964 		return (false);
1965 }
1966 
1967 static void
_pmap_unwire_ptp(pmap_t pmap,vm_page_t m,struct spglist * free)1968 _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1969 {
1970 
1971 	/*
1972 	 * unmap the page table page
1973 	 */
1974 	pmap->pm_pdir[m->pindex] = 0;
1975 	--pmap->pm_stats.resident_count;
1976 
1977 	/*
1978 	 * There is not need to invalidate the recursive mapping since
1979 	 * we never instantiate such mapping for the usermode pmaps,
1980 	 * and never remove page table pages from the kernel pmap.
1981 	 * Put page on a list so that it is released since all TLB
1982 	 * shootdown is done.
1983 	 */
1984 	MPASS(pmap != kernel_pmap);
1985 	pmap_add_delayed_free_list(m, free, true);
1986 }
1987 
1988 /*
1989  * After removing a page table entry, this routine is used to
1990  * conditionally free the page, and manage the reference count.
1991  */
1992 static int
pmap_unuse_pt(pmap_t pmap,vm_offset_t va,struct spglist * free)1993 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, struct spglist *free)
1994 {
1995 	pd_entry_t ptepde;
1996 	vm_page_t mpte;
1997 
1998 	if (pmap == kernel_pmap)
1999 		return (0);
2000 	ptepde = *pmap_pde(pmap, va);
2001 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
2002 	return (pmap_unwire_ptp(pmap, mpte, free));
2003 }
2004 
2005 /*
2006  * Release a page table page reference after a failed attempt to create a
2007  * mapping.
2008  */
2009 static void
pmap_abort_ptp(pmap_t pmap,vm_offset_t va,vm_page_t mpte)2010 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
2011 {
2012 	struct spglist free;
2013 
2014 	SLIST_INIT(&free);
2015 	if (pmap_unwire_ptp(pmap, mpte, &free)) {
2016 		/*
2017 		 * Although "va" was never mapped, paging-structure caches
2018 		 * could nonetheless have entries that refer to the freed
2019 		 * page table pages.  Invalidate those entries.
2020 		 */
2021 		pmap_invalidate_page_int(pmap, va);
2022 		vm_page_free_pages_toq(&free, true);
2023 	}
2024 }
2025 
2026 /*
2027  * Initialize the pmap for the swapper process.
2028  */
2029 static void
__CONCAT(PMTYPE,pinit0)2030 __CONCAT(PMTYPE, pinit0)(pmap_t pmap)
2031 {
2032 
2033 	PMAP_LOCK_INIT(pmap);
2034 	pmap->pm_pdir = IdlePTD;
2035 #ifdef PMAP_PAE_COMP
2036 	pmap->pm_pdpt = IdlePDPT;
2037 #endif
2038 	vm_radix_init(&pmap->pm_root);
2039 	CPU_ZERO(&pmap->pm_active);
2040 	TAILQ_INIT(&pmap->pm_pvchunk);
2041 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2042 	pmap_activate_boot(pmap);
2043 }
2044 
2045 /*
2046  * Initialize a preallocated and zeroed pmap structure,
2047  * such as one in a vmspace structure.
2048  */
2049 static int
__CONCAT(PMTYPE,pinit)2050 __CONCAT(PMTYPE, pinit)(pmap_t pmap)
2051 {
2052 	int i;
2053 
2054 	/*
2055 	 * No need to allocate page table space yet but we do need a valid
2056 	 * page directory table.
2057 	 */
2058 	if (pmap->pm_pdir == NULL) {
2059 		pmap->pm_pdir = (pd_entry_t *)kva_alloc(NBPTD);
2060 		if (pmap->pm_pdir == NULL)
2061 			return (0);
2062 #ifdef PMAP_PAE_COMP
2063 		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
2064 		KASSERT(((vm_offset_t)pmap->pm_pdpt &
2065 		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
2066 		    ("pmap_pinit: pdpt misaligned"));
2067 		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
2068 		    ("pmap_pinit: pdpt above 4g"));
2069 #endif
2070 		vm_radix_init(&pmap->pm_root);
2071 	}
2072 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2073 	    ("pmap_pinit: pmap has reserved page table page(s)"));
2074 
2075 	/*
2076 	 * allocate the page directory page(s)
2077 	 */
2078 	for (i = 0; i < NPGPTD; i++) {
2079 		pmap->pm_ptdpg[i] = vm_page_alloc_noobj(VM_ALLOC_WIRED |
2080 		    VM_ALLOC_ZERO | VM_ALLOC_WAITOK);
2081 #ifdef PMAP_PAE_COMP
2082 		pmap->pm_pdpt[i] = VM_PAGE_TO_PHYS(pmap->pm_ptdpg[i]) | PG_V;
2083 #endif
2084 	}
2085 
2086 	pmap_qenter((vm_offset_t)pmap->pm_pdir, pmap->pm_ptdpg, NPGPTD);
2087 #ifdef PMAP_PAE_COMP
2088 	if ((cpu_feature & CPUID_PAT) == 0) {
2089 		pmap_invalidate_cache_range(
2090 		    trunc_page((vm_offset_t)pmap->pm_pdpt),
2091 		    round_page((vm_offset_t)pmap->pm_pdpt +
2092 		    NPGPTD * sizeof(pdpt_entry_t)));
2093 	}
2094 #endif
2095 
2096 	/* Install the trampoline mapping. */
2097 	pmap->pm_pdir[TRPTDI] = PTD[TRPTDI];
2098 
2099 	CPU_ZERO(&pmap->pm_active);
2100 	TAILQ_INIT(&pmap->pm_pvchunk);
2101 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2102 
2103 	return (1);
2104 }
2105 
2106 /*
2107  * this routine is called if the page table page is not
2108  * mapped correctly.
2109  */
2110 static vm_page_t
_pmap_allocpte(pmap_t pmap,u_int ptepindex,u_int flags)2111 _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags)
2112 {
2113 	vm_paddr_t ptepa;
2114 	vm_page_t m;
2115 
2116 	/*
2117 	 * Allocate a page table page.
2118 	 */
2119 	if ((m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
2120 		if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
2121 			PMAP_UNLOCK(pmap);
2122 			rw_wunlock(&pvh_global_lock);
2123 			vm_wait(NULL);
2124 			rw_wlock(&pvh_global_lock);
2125 			PMAP_LOCK(pmap);
2126 		}
2127 
2128 		/*
2129 		 * Indicate the need to retry.  While waiting, the page table
2130 		 * page may have been allocated.
2131 		 */
2132 		return (NULL);
2133 	}
2134 	m->pindex = ptepindex;
2135 
2136 	/*
2137 	 * Map the pagetable page into the process address space, if
2138 	 * it isn't already there.
2139 	 */
2140 
2141 	pmap->pm_stats.resident_count++;
2142 
2143 	ptepa = VM_PAGE_TO_PHYS(m);
2144 	KASSERT((pmap->pm_pdir[ptepindex] & PG_V) == 0,
2145 	    ("%s: page directory entry %#jx is valid",
2146 	    __func__, (uintmax_t)pmap->pm_pdir[ptepindex]));
2147 	pmap->pm_pdir[ptepindex] =
2148 	    (pd_entry_t)(ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
2149 
2150 	return (m);
2151 }
2152 
2153 static vm_page_t
pmap_allocpte(pmap_t pmap,vm_offset_t va,u_int flags)2154 pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
2155 {
2156 	u_int ptepindex;
2157 	pd_entry_t ptepa;
2158 	vm_page_t m;
2159 
2160 	/*
2161 	 * Calculate pagetable page index
2162 	 */
2163 	ptepindex = va >> PDRSHIFT;
2164 retry:
2165 	/*
2166 	 * Get the page directory entry
2167 	 */
2168 	ptepa = pmap->pm_pdir[ptepindex];
2169 
2170 	/*
2171 	 * This supports switching from a 4MB page to a
2172 	 * normal 4K page.
2173 	 */
2174 	if (ptepa & PG_PS) {
2175 		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
2176 		ptepa = pmap->pm_pdir[ptepindex];
2177 	}
2178 
2179 	/*
2180 	 * If the page table page is mapped, we just increment the
2181 	 * hold count, and activate it.
2182 	 */
2183 	if (ptepa) {
2184 		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
2185 		m->ref_count++;
2186 	} else {
2187 		/*
2188 		 * Here if the pte page isn't mapped, or if it has
2189 		 * been deallocated.
2190 		 */
2191 		m = _pmap_allocpte(pmap, ptepindex, flags);
2192 		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
2193 			goto retry;
2194 	}
2195 	return (m);
2196 }
2197 
2198 /***************************************************
2199 * Pmap allocation/deallocation routines.
2200  ***************************************************/
2201 
2202 /*
2203  * Release any resources held by the given physical map.
2204  * Called when a pmap initialized by pmap_pinit is being released.
2205  * Should only be called if the map contains no valid mappings.
2206  */
2207 static void
__CONCAT(PMTYPE,release)2208 __CONCAT(PMTYPE, release)(pmap_t pmap)
2209 {
2210 	vm_page_t m;
2211 	int i;
2212 
2213 	KASSERT(pmap->pm_stats.resident_count == 0,
2214 	    ("pmap_release: pmap resident count %ld != 0",
2215 	    pmap->pm_stats.resident_count));
2216 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2217 	    ("pmap_release: pmap has reserved page table page(s)"));
2218 	KASSERT(CPU_EMPTY(&pmap->pm_active),
2219 	    ("releasing active pmap %p", pmap));
2220 
2221 	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
2222 
2223 	for (i = 0; i < NPGPTD; i++) {
2224 		m = pmap->pm_ptdpg[i];
2225 #ifdef PMAP_PAE_COMP
2226 		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
2227 		    ("pmap_release: got wrong ptd page"));
2228 #endif
2229 		vm_page_unwire_noq(m);
2230 		vm_page_free(m);
2231 	}
2232 }
2233 
2234 /*
2235  * grow the number of kernel page table entries, if needed
2236  */
2237 static void
__CONCAT(PMTYPE,growkernel)2238 __CONCAT(PMTYPE, growkernel)(vm_offset_t addr)
2239 {
2240 	vm_paddr_t ptppaddr;
2241 	vm_page_t nkpg;
2242 	pd_entry_t newpdir;
2243 
2244 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2245 	addr = roundup2(addr, NBPDR);
2246 	if (addr - 1 >= vm_map_max(kernel_map))
2247 		addr = vm_map_max(kernel_map);
2248 	while (kernel_vm_end < addr) {
2249 		if (pdir_pde(PTD, kernel_vm_end)) {
2250 			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2251 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2252 				kernel_vm_end = vm_map_max(kernel_map);
2253 				break;
2254 			}
2255 			continue;
2256 		}
2257 
2258 		nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
2259 		    VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2260 		if (nkpg == NULL)
2261 			panic("pmap_growkernel: no memory to grow kernel");
2262 		nkpg->pindex = kernel_vm_end >> PDRSHIFT;
2263 		nkpt++;
2264 
2265 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2266 		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2267 		pdir_pde(KPTD, kernel_vm_end) = newpdir;
2268 
2269 		pmap_kenter_pde(kernel_vm_end, newpdir);
2270 		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2271 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2272 			kernel_vm_end = vm_map_max(kernel_map);
2273 			break;
2274 		}
2275 	}
2276 }
2277 
2278 /***************************************************
2279  * page management routines.
2280  ***************************************************/
2281 
2282 static const uint32_t pc_freemask[_NPCM] = {
2283 	[0 ... _NPCM - 2] = PC_FREEN,
2284 	[_NPCM - 1] = PC_FREEL
2285 };
2286 
2287 #ifdef PV_STATS
2288 extern int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2289 extern long pv_entry_frees, pv_entry_allocs;
2290 extern int pv_entry_spare;
2291 #endif
2292 
2293 /*
2294  * We are in a serious low memory condition.  Resort to
2295  * drastic measures to free some pages so we can allocate
2296  * another pv entry chunk.
2297  */
2298 static vm_page_t
pmap_pv_reclaim(pmap_t locked_pmap)2299 pmap_pv_reclaim(pmap_t locked_pmap)
2300 {
2301 	struct pch newtail;
2302 	struct pv_chunk *pc;
2303 	struct md_page *pvh;
2304 	pd_entry_t *pde;
2305 	pmap_t pmap;
2306 	pt_entry_t *pte, tpte;
2307 	pv_entry_t pv;
2308 	vm_offset_t va;
2309 	vm_page_t m, m_pc;
2310 	struct spglist free;
2311 	uint32_t inuse;
2312 	int bit, field, freed;
2313 
2314 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2315 	pmap = NULL;
2316 	m_pc = NULL;
2317 	SLIST_INIT(&free);
2318 	TAILQ_INIT(&newtail);
2319 	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2320 	    SLIST_EMPTY(&free))) {
2321 		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2322 		if (pmap != pc->pc_pmap) {
2323 			if (pmap != NULL) {
2324 				pmap_invalidate_all_int(pmap);
2325 				if (pmap != locked_pmap)
2326 					PMAP_UNLOCK(pmap);
2327 			}
2328 			pmap = pc->pc_pmap;
2329 			/* Avoid deadlock and lock recursion. */
2330 			if (pmap > locked_pmap)
2331 				PMAP_LOCK(pmap);
2332 			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2333 				pmap = NULL;
2334 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2335 				continue;
2336 			}
2337 		}
2338 
2339 		/*
2340 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2341 		 */
2342 		freed = 0;
2343 		for (field = 0; field < _NPCM; field++) {
2344 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2345 			    inuse != 0; inuse &= ~(1UL << bit)) {
2346 				bit = bsfl(inuse);
2347 				pv = &pc->pc_pventry[field * 32 + bit];
2348 				va = pv->pv_va;
2349 				pde = pmap_pde(pmap, va);
2350 				if ((*pde & PG_PS) != 0)
2351 					continue;
2352 				pte = __CONCAT(PMTYPE, pte)(pmap, va);
2353 				tpte = *pte;
2354 				if ((tpte & PG_W) == 0)
2355 					tpte = pte_load_clear(pte);
2356 				pmap_pte_release(pte);
2357 				if ((tpte & PG_W) != 0)
2358 					continue;
2359 				KASSERT(tpte != 0,
2360 				    ("pmap_pv_reclaim: pmap %p va %x zero pte",
2361 				    pmap, va));
2362 				if ((tpte & PG_G) != 0)
2363 					pmap_invalidate_page_int(pmap, va);
2364 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2365 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2366 					vm_page_dirty(m);
2367 				if ((tpte & PG_A) != 0)
2368 					vm_page_aflag_set(m, PGA_REFERENCED);
2369 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2370 				if (TAILQ_EMPTY(&m->md.pv_list) &&
2371 				    (m->flags & PG_FICTITIOUS) == 0) {
2372 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2373 					if (TAILQ_EMPTY(&pvh->pv_list)) {
2374 						vm_page_aflag_clear(m,
2375 						    PGA_WRITEABLE);
2376 					}
2377 				}
2378 				pc->pc_map[field] |= 1UL << bit;
2379 				pmap_unuse_pt(pmap, va, &free);
2380 				freed++;
2381 			}
2382 		}
2383 		if (freed == 0) {
2384 			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2385 			continue;
2386 		}
2387 		/* Every freed mapping is for a 4 KB page. */
2388 		pmap->pm_stats.resident_count -= freed;
2389 		PV_STAT(pv_entry_frees += freed);
2390 		PV_STAT(pv_entry_spare += freed);
2391 		pv_entry_count -= freed;
2392 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2393 		for (field = 0; field < _NPCM; field++)
2394 			if (pc->pc_map[field] != pc_freemask[field]) {
2395 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2396 				    pc_list);
2397 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2398 
2399 				/*
2400 				 * One freed pv entry in locked_pmap is
2401 				 * sufficient.
2402 				 */
2403 				if (pmap == locked_pmap)
2404 					goto out;
2405 				break;
2406 			}
2407 		if (field == _NPCM) {
2408 			PV_STAT(pv_entry_spare -= _NPCPV);
2409 			PV_STAT(pc_chunk_count--);
2410 			PV_STAT(pc_chunk_frees++);
2411 			/* Entire chunk is free; return it. */
2412 			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2413 			pmap_qremove((vm_offset_t)pc, 1);
2414 			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2415 			break;
2416 		}
2417 	}
2418 out:
2419 	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2420 	if (pmap != NULL) {
2421 		pmap_invalidate_all_int(pmap);
2422 		if (pmap != locked_pmap)
2423 			PMAP_UNLOCK(pmap);
2424 	}
2425 	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2426 		m_pc = SLIST_FIRST(&free);
2427 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2428 		/* Recycle a freed page table page. */
2429 		m_pc->ref_count = 1;
2430 	}
2431 	vm_page_free_pages_toq(&free, true);
2432 	return (m_pc);
2433 }
2434 
2435 /*
2436  * free the pv_entry back to the free list
2437  */
2438 static void
free_pv_entry(pmap_t pmap,pv_entry_t pv)2439 free_pv_entry(pmap_t pmap, pv_entry_t pv)
2440 {
2441 	struct pv_chunk *pc;
2442 	int idx, field, bit;
2443 
2444 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2445 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2446 	PV_STAT(pv_entry_frees++);
2447 	PV_STAT(pv_entry_spare++);
2448 	pv_entry_count--;
2449 	pc = pv_to_chunk(pv);
2450 	idx = pv - &pc->pc_pventry[0];
2451 	field = idx / 32;
2452 	bit = idx % 32;
2453 	pc->pc_map[field] |= 1ul << bit;
2454 	for (idx = 0; idx < _NPCM; idx++)
2455 		if (pc->pc_map[idx] != pc_freemask[idx]) {
2456 			/*
2457 			 * 98% of the time, pc is already at the head of the
2458 			 * list.  If it isn't already, move it to the head.
2459 			 */
2460 			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2461 			    pc)) {
2462 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2463 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2464 				    pc_list);
2465 			}
2466 			return;
2467 		}
2468 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2469 	free_pv_chunk(pc);
2470 }
2471 
2472 static void
free_pv_chunk(struct pv_chunk * pc)2473 free_pv_chunk(struct pv_chunk *pc)
2474 {
2475 	vm_page_t m;
2476 
2477  	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2478 	PV_STAT(pv_entry_spare -= _NPCPV);
2479 	PV_STAT(pc_chunk_count--);
2480 	PV_STAT(pc_chunk_frees++);
2481 	/* entire chunk is free, return it */
2482 	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2483 	pmap_qremove((vm_offset_t)pc, 1);
2484 	vm_page_unwire_noq(m);
2485 	vm_page_free(m);
2486 	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2487 }
2488 
2489 /*
2490  * get a new pv_entry, allocating a block from the system
2491  * when needed.
2492  */
2493 static pv_entry_t
get_pv_entry(pmap_t pmap,bool try)2494 get_pv_entry(pmap_t pmap, bool try)
2495 {
2496 	static const struct timeval printinterval = { 60, 0 };
2497 	static struct timeval lastprint;
2498 	int bit, field;
2499 	pv_entry_t pv;
2500 	struct pv_chunk *pc;
2501 	vm_page_t m;
2502 
2503 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2504 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2505 	PV_STAT(pv_entry_allocs++);
2506 	pv_entry_count++;
2507 	if (pv_entry_count > pv_entry_high_water)
2508 		if (ratecheck(&lastprint, &printinterval))
2509 			printf("Approaching the limit on PV entries, consider "
2510 			    "increasing either the vm.pmap.shpgperproc or the "
2511 			    "vm.pmap.pv_entry_max tunable.\n");
2512 retry:
2513 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2514 	if (pc != NULL) {
2515 		for (field = 0; field < _NPCM; field++) {
2516 			if (pc->pc_map[field]) {
2517 				bit = bsfl(pc->pc_map[field]);
2518 				break;
2519 			}
2520 		}
2521 		if (field < _NPCM) {
2522 			pv = &pc->pc_pventry[field * 32 + bit];
2523 			pc->pc_map[field] &= ~(1ul << bit);
2524 			/* If this was the last item, move it to tail */
2525 			for (field = 0; field < _NPCM; field++)
2526 				if (pc->pc_map[field] != 0) {
2527 					PV_STAT(pv_entry_spare--);
2528 					return (pv);	/* not full, return */
2529 				}
2530 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2531 			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2532 			PV_STAT(pv_entry_spare--);
2533 			return (pv);
2534 		}
2535 	}
2536 	/*
2537 	 * Access to the ptelist "pv_vafree" is synchronized by the pvh
2538 	 * global lock.  If "pv_vafree" is currently non-empty, it will
2539 	 * remain non-empty until pmap_ptelist_alloc() completes.
2540 	 */
2541 	if (pv_vafree == 0 ||
2542 	    (m = vm_page_alloc_noobj(VM_ALLOC_WIRED)) == NULL) {
2543 		if (try) {
2544 			pv_entry_count--;
2545 			PV_STAT(pc_chunk_tryfail++);
2546 			return (NULL);
2547 		}
2548 		m = pmap_pv_reclaim(pmap);
2549 		if (m == NULL)
2550 			goto retry;
2551 	}
2552 	PV_STAT(pc_chunk_count++);
2553 	PV_STAT(pc_chunk_allocs++);
2554 	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2555 	pmap_qenter((vm_offset_t)pc, &m, 1);
2556 	pc->pc_pmap = pmap;
2557 	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2558 	for (field = 1; field < _NPCM; field++)
2559 		pc->pc_map[field] = pc_freemask[field];
2560 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2561 	pv = &pc->pc_pventry[0];
2562 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2563 	PV_STAT(pv_entry_spare += _NPCPV - 1);
2564 	return (pv);
2565 }
2566 
2567 static __inline pv_entry_t
pmap_pvh_remove(struct md_page * pvh,pmap_t pmap,vm_offset_t va)2568 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2569 {
2570 	pv_entry_t pv;
2571 
2572 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2573 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2574 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2575 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2576 			break;
2577 		}
2578 	}
2579 	return (pv);
2580 }
2581 
2582 static void
pmap_pv_demote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa)2583 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2584 {
2585 	struct md_page *pvh;
2586 	pv_entry_t pv;
2587 	vm_offset_t va_last;
2588 	vm_page_t m;
2589 
2590 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2591 	KASSERT((pa & PDRMASK) == 0,
2592 	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2593 
2594 	/*
2595 	 * Transfer the 4mpage's pv entry for this mapping to the first
2596 	 * page's pv list.
2597 	 */
2598 	pvh = pa_to_pvh(pa);
2599 	va = trunc_4mpage(va);
2600 	pv = pmap_pvh_remove(pvh, pmap, va);
2601 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2602 	m = PHYS_TO_VM_PAGE(pa);
2603 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2604 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2605 	va_last = va + NBPDR - PAGE_SIZE;
2606 	do {
2607 		m++;
2608 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2609 		    ("pmap_pv_demote_pde: page %p is not managed", m));
2610 		va += PAGE_SIZE;
2611 		pmap_insert_entry(pmap, va, m);
2612 	} while (va < va_last);
2613 }
2614 
2615 #if VM_NRESERVLEVEL > 0
2616 static void
pmap_pv_promote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa)2617 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2618 {
2619 	struct md_page *pvh;
2620 	pv_entry_t pv;
2621 	vm_offset_t va_last;
2622 	vm_page_t m;
2623 
2624 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2625 	KASSERT((pa & PDRMASK) == 0,
2626 	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2627 
2628 	/*
2629 	 * Transfer the first page's pv entry for this mapping to the
2630 	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2631 	 * to get_pv_entry(), a transfer avoids the possibility that
2632 	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2633 	 * removes one of the mappings that is being promoted.
2634 	 */
2635 	m = PHYS_TO_VM_PAGE(pa);
2636 	va = trunc_4mpage(va);
2637 	pv = pmap_pvh_remove(&m->md, pmap, va);
2638 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2639 	pvh = pa_to_pvh(pa);
2640 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2641 	/* Free the remaining NPTEPG - 1 pv entries. */
2642 	va_last = va + NBPDR - PAGE_SIZE;
2643 	do {
2644 		m++;
2645 		va += PAGE_SIZE;
2646 		pmap_pvh_free(&m->md, pmap, va);
2647 	} while (va < va_last);
2648 }
2649 #endif /* VM_NRESERVLEVEL > 0 */
2650 
2651 static void
pmap_pvh_free(struct md_page * pvh,pmap_t pmap,vm_offset_t va)2652 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2653 {
2654 	pv_entry_t pv;
2655 
2656 	pv = pmap_pvh_remove(pvh, pmap, va);
2657 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2658 	free_pv_entry(pmap, pv);
2659 }
2660 
2661 static void
pmap_remove_entry(pmap_t pmap,vm_page_t m,vm_offset_t va)2662 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2663 {
2664 	struct md_page *pvh;
2665 
2666 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2667 	pmap_pvh_free(&m->md, pmap, va);
2668 	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
2669 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2670 		if (TAILQ_EMPTY(&pvh->pv_list))
2671 			vm_page_aflag_clear(m, PGA_WRITEABLE);
2672 	}
2673 }
2674 
2675 /*
2676  * Create a pv entry for page at pa for
2677  * (pmap, va).
2678  */
2679 static void
pmap_insert_entry(pmap_t pmap,vm_offset_t va,vm_page_t m)2680 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2681 {
2682 	pv_entry_t pv;
2683 
2684 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2685 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2686 	pv = get_pv_entry(pmap, false);
2687 	pv->pv_va = va;
2688 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2689 }
2690 
2691 /*
2692  * Conditionally create a pv entry.
2693  */
2694 static bool
pmap_try_insert_pv_entry(pmap_t pmap,vm_offset_t va,vm_page_t m)2695 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2696 {
2697 	pv_entry_t pv;
2698 
2699 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2700 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2701 	if (pv_entry_count < pv_entry_high_water &&
2702 	    (pv = get_pv_entry(pmap, true)) != NULL) {
2703 		pv->pv_va = va;
2704 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2705 		return (true);
2706 	} else
2707 		return (false);
2708 }
2709 
2710 /*
2711  * Create the pv entries for each of the pages within a superpage.
2712  */
2713 static bool
pmap_pv_insert_pde(pmap_t pmap,vm_offset_t va,pd_entry_t pde,u_int flags)2714 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags)
2715 {
2716 	struct md_page *pvh;
2717 	pv_entry_t pv;
2718 	bool noreclaim;
2719 
2720 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2721 	noreclaim = (flags & PMAP_ENTER_NORECLAIM) != 0;
2722 	if ((noreclaim && pv_entry_count >= pv_entry_high_water) ||
2723 	    (pv = get_pv_entry(pmap, noreclaim)) == NULL)
2724 		return (false);
2725 	pv->pv_va = va;
2726 	pvh = pa_to_pvh(pde & PG_PS_FRAME);
2727 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2728 	return (true);
2729 }
2730 
2731 /*
2732  * Fills a page table page with mappings to consecutive physical pages.
2733  */
2734 static void
pmap_fill_ptp(pt_entry_t * firstpte,pt_entry_t newpte)2735 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2736 {
2737 	pt_entry_t *pte;
2738 
2739 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2740 		*pte = newpte;
2741 		newpte += PAGE_SIZE;
2742 	}
2743 }
2744 
2745 /*
2746  * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2747  * 2- or 4MB page mapping is invalidated.
2748  */
2749 static bool
pmap_demote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)2750 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2751 {
2752 	pd_entry_t newpde, oldpde;
2753 	pt_entry_t *firstpte, newpte;
2754 	vm_paddr_t mptepa;
2755 	vm_page_t mpte;
2756 	struct spglist free;
2757 	vm_offset_t sva;
2758 
2759 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2760 	oldpde = *pde;
2761 	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2762 	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2763 	if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
2764 	    NULL) {
2765 		KASSERT((oldpde & PG_W) == 0,
2766 		    ("pmap_demote_pde: page table page for a wired mapping"
2767 		    " is missing"));
2768 
2769 		/*
2770 		 * Invalidate the 2- or 4MB page mapping and return
2771 		 * "failure" if the mapping was never accessed or the
2772 		 * allocation of the new page table page fails.
2773 		 */
2774 		if ((oldpde & PG_A) == 0 ||
2775 		    (mpte = vm_page_alloc_noobj(VM_ALLOC_WIRED)) == NULL) {
2776 			SLIST_INIT(&free);
2777 			sva = trunc_4mpage(va);
2778 			pmap_remove_pde(pmap, pde, sva, &free);
2779 			if ((oldpde & PG_G) == 0)
2780 				pmap_invalidate_pde_page(pmap, sva, oldpde);
2781 			vm_page_free_pages_toq(&free, true);
2782 			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2783 			    " in pmap %p", va, pmap);
2784 			return (false);
2785 		}
2786 		mpte->pindex = va >> PDRSHIFT;
2787 		if (pmap != kernel_pmap) {
2788 			mpte->ref_count = NPTEPG;
2789 			pmap->pm_stats.resident_count++;
2790 		}
2791 	}
2792 	mptepa = VM_PAGE_TO_PHYS(mpte);
2793 
2794 	/*
2795 	 * If the page mapping is in the kernel's address space, then the
2796 	 * KPTmap can provide access to the page table page.  Otherwise,
2797 	 * temporarily map the page table page (mpte) into the kernel's
2798 	 * address space at either PADDR1 or PADDR2.
2799 	 */
2800 	if (pmap == kernel_pmap)
2801 		firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2802 	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
2803 		if ((*PMAP1 & PG_FRAME) != mptepa) {
2804 			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2805 #ifdef SMP
2806 			PMAP1cpu = PCPU_GET(cpuid);
2807 #endif
2808 			invlcaddr(PADDR1);
2809 			PMAP1changed++;
2810 		} else
2811 #ifdef SMP
2812 		if (PMAP1cpu != PCPU_GET(cpuid)) {
2813 			PMAP1cpu = PCPU_GET(cpuid);
2814 			invlcaddr(PADDR1);
2815 			PMAP1changedcpu++;
2816 		} else
2817 #endif
2818 			PMAP1unchanged++;
2819 		firstpte = PADDR1;
2820 	} else {
2821 		mtx_lock(&PMAP2mutex);
2822 		if ((*PMAP2 & PG_FRAME) != mptepa) {
2823 			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2824 			pmap_invalidate_page_int(kernel_pmap,
2825 			    (vm_offset_t)PADDR2);
2826 		}
2827 		firstpte = PADDR2;
2828 	}
2829 	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2830 	KASSERT((oldpde & PG_A) != 0,
2831 	    ("pmap_demote_pde: oldpde is missing PG_A"));
2832 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2833 	    ("pmap_demote_pde: oldpde is missing PG_M"));
2834 	newpte = oldpde & ~PG_PS;
2835 	if ((newpte & PG_PDE_PAT) != 0)
2836 		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2837 
2838 	/*
2839 	 * If the PTP is not leftover from an earlier promotion or it does not
2840 	 * have PG_A set in every PTE, then fill it.  The new PTEs will all
2841 	 * have PG_A set.
2842 	 */
2843 	if (!vm_page_all_valid(mpte))
2844 		pmap_fill_ptp(firstpte, newpte);
2845 
2846 	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2847 	    ("pmap_demote_pde: firstpte and newpte map different physical"
2848 	    " addresses"));
2849 
2850 	/*
2851 	 * If the mapping has changed attributes, update the PTEs.
2852 	 */
2853 	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2854 		pmap_fill_ptp(firstpte, newpte);
2855 
2856 	/*
2857 	 * Demote the mapping.  This pmap is locked.  The old PDE has
2858 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2859 	 * set.  Thus, there is no danger of a race with another
2860 	 * processor changing the setting of PG_A and/or PG_M between
2861 	 * the read above and the store below.
2862 	 */
2863 	if (workaround_erratum383)
2864 		pmap_update_pde(pmap, va, pde, newpde);
2865 	else if (pmap == kernel_pmap)
2866 		pmap_kenter_pde(va, newpde);
2867 	else
2868 		pde_store(pde, newpde);
2869 	if (firstpte == PADDR2)
2870 		mtx_unlock(&PMAP2mutex);
2871 
2872 	/*
2873 	 * Invalidate the recursive mapping of the page table page.
2874 	 */
2875 	pmap_invalidate_page_int(pmap, (vm_offset_t)vtopte(va));
2876 
2877 	/*
2878 	 * Demote the pv entry.  This depends on the earlier demotion
2879 	 * of the mapping.  Specifically, the (re)creation of a per-
2880 	 * page pv entry might trigger the execution of pmap_collect(),
2881 	 * which might reclaim a newly (re)created per-page pv entry
2882 	 * and destroy the associated mapping.  In order to destroy
2883 	 * the mapping, the PDE must have already changed from mapping
2884 	 * the 2mpage to referencing the page table page.
2885 	 */
2886 	if ((oldpde & PG_MANAGED) != 0)
2887 		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2888 
2889 	pmap_pde_demotions++;
2890 	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2891 	    " in pmap %p", va, pmap);
2892 	return (true);
2893 }
2894 
2895 /*
2896  * Removes a 2- or 4MB page mapping from the kernel pmap.
2897  */
2898 static void
pmap_remove_kernel_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)2899 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2900 {
2901 	pd_entry_t newpde;
2902 	vm_paddr_t mptepa;
2903 	vm_page_t mpte;
2904 
2905 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2906 	mpte = pmap_remove_pt_page(pmap, va);
2907 	if (mpte == NULL)
2908 		panic("pmap_remove_kernel_pde: Missing pt page.");
2909 
2910 	mptepa = VM_PAGE_TO_PHYS(mpte);
2911 	newpde = mptepa | PG_M | PG_A | PG_RW | PG_V;
2912 
2913 	/*
2914 	 * If this page table page was unmapped by a promotion, then it
2915 	 * contains valid mappings.  Zero it to invalidate those mappings.
2916 	 */
2917 	if (vm_page_any_valid(mpte))
2918 		pagezero((void *)&KPTmap[i386_btop(trunc_4mpage(va))]);
2919 
2920 	/*
2921 	 * Remove the mapping.
2922 	 */
2923 	if (workaround_erratum383)
2924 		pmap_update_pde(pmap, va, pde, newpde);
2925 	else
2926 		pmap_kenter_pde(va, newpde);
2927 
2928 	/*
2929 	 * Invalidate the recursive mapping of the page table page.
2930 	 */
2931 	pmap_invalidate_page_int(pmap, (vm_offset_t)vtopte(va));
2932 }
2933 
2934 /*
2935  * pmap_remove_pde: do the things to unmap a superpage in a process
2936  */
2937 static void
pmap_remove_pde(pmap_t pmap,pd_entry_t * pdq,vm_offset_t sva,struct spglist * free)2938 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2939     struct spglist *free)
2940 {
2941 	struct md_page *pvh;
2942 	pd_entry_t oldpde;
2943 	vm_offset_t eva, va;
2944 	vm_page_t m, mpte;
2945 
2946 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2947 	KASSERT((sva & PDRMASK) == 0,
2948 	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2949 	oldpde = pte_load_clear(pdq);
2950 	if (oldpde & PG_W)
2951 		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2952 
2953 	/*
2954 	 * Machines that don't support invlpg, also don't support
2955 	 * PG_G.
2956 	 */
2957 	if ((oldpde & PG_G) != 0)
2958 		pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
2959 
2960 	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2961 	if (oldpde & PG_MANAGED) {
2962 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2963 		pmap_pvh_free(pvh, pmap, sva);
2964 		eva = sva + NBPDR;
2965 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2966 		    va < eva; va += PAGE_SIZE, m++) {
2967 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2968 				vm_page_dirty(m);
2969 			if (oldpde & PG_A)
2970 				vm_page_aflag_set(m, PGA_REFERENCED);
2971 			if (TAILQ_EMPTY(&m->md.pv_list) &&
2972 			    TAILQ_EMPTY(&pvh->pv_list))
2973 				vm_page_aflag_clear(m, PGA_WRITEABLE);
2974 		}
2975 	}
2976 	if (pmap == kernel_pmap) {
2977 		pmap_remove_kernel_pde(pmap, pdq, sva);
2978 	} else {
2979 		mpte = pmap_remove_pt_page(pmap, sva);
2980 		if (mpte != NULL) {
2981 			KASSERT(vm_page_any_valid(mpte),
2982 			    ("pmap_remove_pde: pte page not promoted"));
2983 			pmap->pm_stats.resident_count--;
2984 			KASSERT(mpte->ref_count == NPTEPG,
2985 			    ("pmap_remove_pde: pte page ref count error"));
2986 			mpte->ref_count = 0;
2987 			pmap_add_delayed_free_list(mpte, free, false);
2988 		}
2989 	}
2990 }
2991 
2992 /*
2993  * pmap_remove_pte: do the things to unmap a page in a process
2994  */
2995 static int
pmap_remove_pte(pmap_t pmap,pt_entry_t * ptq,vm_offset_t va,struct spglist * free)2996 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
2997     struct spglist *free)
2998 {
2999 	pt_entry_t oldpte;
3000 	vm_page_t m;
3001 
3002 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3003 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3004 	oldpte = pte_load_clear(ptq);
3005 	KASSERT(oldpte != 0,
3006 	    ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
3007 	if (oldpte & PG_W)
3008 		pmap->pm_stats.wired_count -= 1;
3009 	/*
3010 	 * Machines that don't support invlpg, also don't support
3011 	 * PG_G.
3012 	 */
3013 	if (oldpte & PG_G)
3014 		pmap_invalidate_page_int(kernel_pmap, va);
3015 	pmap->pm_stats.resident_count -= 1;
3016 	if (oldpte & PG_MANAGED) {
3017 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
3018 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3019 			vm_page_dirty(m);
3020 		if (oldpte & PG_A)
3021 			vm_page_aflag_set(m, PGA_REFERENCED);
3022 		pmap_remove_entry(pmap, m, va);
3023 	}
3024 	return (pmap_unuse_pt(pmap, va, free));
3025 }
3026 
3027 /*
3028  * Remove a single page from a process address space
3029  */
3030 static void
pmap_remove_page(pmap_t pmap,vm_offset_t va,struct spglist * free)3031 pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
3032 {
3033 	pt_entry_t *pte;
3034 
3035 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3036 	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
3037 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3038 	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
3039 		return;
3040 	pmap_remove_pte(pmap, pte, va, free);
3041 	pmap_invalidate_page_int(pmap, va);
3042 }
3043 
3044 /*
3045  * Removes the specified range of addresses from the page table page.
3046  */
3047 static bool
pmap_remove_ptes(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,struct spglist * free)3048 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3049     struct spglist *free)
3050 {
3051 	pt_entry_t *pte;
3052 	bool anyvalid;
3053 
3054 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3055 	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
3056 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3057 	anyvalid = false;
3058 	for (pte = pmap_pte_quick(pmap, sva); sva != eva; pte++,
3059 	    sva += PAGE_SIZE) {
3060 		if (*pte == 0)
3061 			continue;
3062 
3063 		/*
3064 		 * The TLB entry for a PG_G mapping is invalidated by
3065 		 * pmap_remove_pte().
3066 		 */
3067 		if ((*pte & PG_G) == 0)
3068 			anyvalid = true;
3069 
3070 		if (pmap_remove_pte(pmap, pte, sva, free))
3071 			break;
3072 	}
3073 	return (anyvalid);
3074 }
3075 
3076 /*
3077  *	Remove the given range of addresses from the specified map.
3078  *
3079  *	It is assumed that the start and end are properly
3080  *	rounded to the page size.
3081  */
3082 static void
__CONCAT(PMTYPE,remove)3083 __CONCAT(PMTYPE, remove)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3084 {
3085 	vm_offset_t pdnxt;
3086 	pd_entry_t ptpaddr;
3087 	struct spglist free;
3088 	int anyvalid;
3089 
3090 	/*
3091 	 * Perform an unsynchronized read.  This is, however, safe.
3092 	 */
3093 	if (pmap->pm_stats.resident_count == 0)
3094 		return;
3095 
3096 	anyvalid = 0;
3097 	SLIST_INIT(&free);
3098 
3099 	rw_wlock(&pvh_global_lock);
3100 	sched_pin();
3101 	PMAP_LOCK(pmap);
3102 
3103 	/*
3104 	 * special handling of removing one page.  a very
3105 	 * common operation and easy to short circuit some
3106 	 * code.
3107 	 */
3108 	if ((sva + PAGE_SIZE == eva) &&
3109 	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
3110 		pmap_remove_page(pmap, sva, &free);
3111 		goto out;
3112 	}
3113 
3114 	for (; sva < eva; sva = pdnxt) {
3115 		u_int pdirindex;
3116 
3117 		/*
3118 		 * Calculate index for next page table.
3119 		 */
3120 		pdnxt = (sva + NBPDR) & ~PDRMASK;
3121 		if (pdnxt < sva)
3122 			pdnxt = eva;
3123 		if (pmap->pm_stats.resident_count == 0)
3124 			break;
3125 
3126 		pdirindex = sva >> PDRSHIFT;
3127 		ptpaddr = pmap->pm_pdir[pdirindex];
3128 
3129 		/*
3130 		 * Weed out invalid mappings. Note: we assume that the page
3131 		 * directory table is always allocated, and in kernel virtual.
3132 		 */
3133 		if (ptpaddr == 0)
3134 			continue;
3135 
3136 		/*
3137 		 * Check for large page.
3138 		 */
3139 		if ((ptpaddr & PG_PS) != 0) {
3140 			/*
3141 			 * Are we removing the entire large page?  If not,
3142 			 * demote the mapping and fall through.
3143 			 */
3144 			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3145 				/*
3146 				 * The TLB entry for a PG_G mapping is
3147 				 * invalidated by pmap_remove_pde().
3148 				 */
3149 				if ((ptpaddr & PG_G) == 0)
3150 					anyvalid = 1;
3151 				pmap_remove_pde(pmap,
3152 				    &pmap->pm_pdir[pdirindex], sva, &free);
3153 				continue;
3154 			} else if (!pmap_demote_pde(pmap,
3155 			    &pmap->pm_pdir[pdirindex], sva)) {
3156 				/* The large page mapping was destroyed. */
3157 				continue;
3158 			}
3159 		}
3160 
3161 		/*
3162 		 * Limit our scan to either the end of the va represented
3163 		 * by the current page table page, or to the end of the
3164 		 * range being removed.
3165 		 */
3166 		if (pdnxt > eva)
3167 			pdnxt = eva;
3168 
3169 		if (pmap_remove_ptes(pmap, sva, pdnxt, &free))
3170 			anyvalid = 1;
3171 	}
3172 out:
3173 	sched_unpin();
3174 	if (anyvalid)
3175 		pmap_invalidate_all_int(pmap);
3176 	rw_wunlock(&pvh_global_lock);
3177 	PMAP_UNLOCK(pmap);
3178 	vm_page_free_pages_toq(&free, true);
3179 }
3180 
3181 /*
3182  *	Routine:	pmap_remove_all
3183  *	Function:
3184  *		Removes this physical page from
3185  *		all physical maps in which it resides.
3186  *		Reflects back modify bits to the pager.
3187  *
3188  *	Notes:
3189  *		Original versions of this routine were very
3190  *		inefficient because they iteratively called
3191  *		pmap_remove (slow...)
3192  */
3193 
3194 static void
__CONCAT(PMTYPE,remove_all)3195 __CONCAT(PMTYPE, remove_all)(vm_page_t m)
3196 {
3197 	struct md_page *pvh;
3198 	pv_entry_t pv;
3199 	pmap_t pmap;
3200 	pt_entry_t *pte, tpte;
3201 	pd_entry_t *pde;
3202 	vm_offset_t va;
3203 	struct spglist free;
3204 
3205 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3206 	    ("pmap_remove_all: page %p is not managed", m));
3207 	SLIST_INIT(&free);
3208 	rw_wlock(&pvh_global_lock);
3209 	sched_pin();
3210 	if ((m->flags & PG_FICTITIOUS) != 0)
3211 		goto small_mappings;
3212 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3213 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
3214 		va = pv->pv_va;
3215 		pmap = PV_PMAP(pv);
3216 		PMAP_LOCK(pmap);
3217 		pde = pmap_pde(pmap, va);
3218 		(void)pmap_demote_pde(pmap, pde, va);
3219 		PMAP_UNLOCK(pmap);
3220 	}
3221 small_mappings:
3222 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3223 		pmap = PV_PMAP(pv);
3224 		PMAP_LOCK(pmap);
3225 		pmap->pm_stats.resident_count--;
3226 		pde = pmap_pde(pmap, pv->pv_va);
3227 		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
3228 		    " a 4mpage in page %p's pv list", m));
3229 		pte = pmap_pte_quick(pmap, pv->pv_va);
3230 		tpte = pte_load_clear(pte);
3231 		KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
3232 		    pmap, pv->pv_va));
3233 		if (tpte & PG_W)
3234 			pmap->pm_stats.wired_count--;
3235 		if (tpte & PG_A)
3236 			vm_page_aflag_set(m, PGA_REFERENCED);
3237 
3238 		/*
3239 		 * Update the vm_page_t clean and reference bits.
3240 		 */
3241 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3242 			vm_page_dirty(m);
3243 		pmap_unuse_pt(pmap, pv->pv_va, &free);
3244 		pmap_invalidate_page_int(pmap, pv->pv_va);
3245 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3246 		free_pv_entry(pmap, pv);
3247 		PMAP_UNLOCK(pmap);
3248 	}
3249 	vm_page_aflag_clear(m, PGA_WRITEABLE);
3250 	sched_unpin();
3251 	rw_wunlock(&pvh_global_lock);
3252 	vm_page_free_pages_toq(&free, true);
3253 }
3254 
3255 /*
3256  * pmap_protect_pde: do the things to protect a 4mpage in a process
3257  */
3258 static bool
pmap_protect_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t sva,vm_prot_t prot)3259 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
3260 {
3261 	pd_entry_t newpde, oldpde;
3262 	vm_page_t m, mt;
3263 	bool anychanged;
3264 
3265 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3266 	KASSERT((sva & PDRMASK) == 0,
3267 	    ("pmap_protect_pde: sva is not 4mpage aligned"));
3268 	anychanged = false;
3269 retry:
3270 	oldpde = newpde = *pde;
3271 	if ((prot & VM_PROT_WRITE) == 0) {
3272 		if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
3273 		    (PG_MANAGED | PG_M | PG_RW)) {
3274 			m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
3275 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
3276 				vm_page_dirty(mt);
3277 		}
3278 		newpde &= ~(PG_RW | PG_M);
3279 	}
3280 #ifdef PMAP_PAE_COMP
3281 	if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3282 		newpde |= pg_nx;
3283 #endif
3284 	if (newpde != oldpde) {
3285 		/*
3286 		 * As an optimization to future operations on this PDE, clear
3287 		 * PG_PROMOTED.  The impending invalidation will remove any
3288 		 * lingering 4KB page mappings from the TLB.
3289 		 */
3290 		if (!pde_cmpset(pde, oldpde, newpde & ~PG_PROMOTED))
3291 			goto retry;
3292 		if ((oldpde & PG_G) != 0)
3293 			pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
3294 		else
3295 			anychanged = true;
3296 	}
3297 	return (anychanged);
3298 }
3299 
3300 /*
3301  *	Set the physical protection on the
3302  *	specified range of this map as requested.
3303  */
3304 static void
__CONCAT(PMTYPE,protect)3305 __CONCAT(PMTYPE, protect)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3306     vm_prot_t prot)
3307 {
3308 	vm_offset_t pdnxt;
3309 	pd_entry_t ptpaddr;
3310 	pt_entry_t *pte;
3311 	bool anychanged, pv_lists_locked;
3312 
3313 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
3314 	if (prot == VM_PROT_NONE) {
3315 		pmap_remove(pmap, sva, eva);
3316 		return;
3317 	}
3318 
3319 #ifdef PMAP_PAE_COMP
3320 	if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
3321 	    (VM_PROT_WRITE | VM_PROT_EXECUTE))
3322 		return;
3323 #else
3324 	if (prot & VM_PROT_WRITE)
3325 		return;
3326 #endif
3327 
3328 	if (pmap_is_current(pmap))
3329 		pv_lists_locked = false;
3330 	else {
3331 		pv_lists_locked = true;
3332 resume:
3333 		rw_wlock(&pvh_global_lock);
3334 		sched_pin();
3335 	}
3336 	anychanged = false;
3337 
3338 	PMAP_LOCK(pmap);
3339 	for (; sva < eva; sva = pdnxt) {
3340 		pt_entry_t obits, pbits;
3341 		u_int pdirindex;
3342 
3343 		pdnxt = (sva + NBPDR) & ~PDRMASK;
3344 		if (pdnxt < sva)
3345 			pdnxt = eva;
3346 
3347 		pdirindex = sva >> PDRSHIFT;
3348 		ptpaddr = pmap->pm_pdir[pdirindex];
3349 
3350 		/*
3351 		 * Weed out invalid mappings. Note: we assume that the page
3352 		 * directory table is always allocated, and in kernel virtual.
3353 		 */
3354 		if (ptpaddr == 0)
3355 			continue;
3356 
3357 		/*
3358 		 * Check for large page.
3359 		 */
3360 		if ((ptpaddr & PG_PS) != 0) {
3361 			/*
3362 			 * Are we protecting the entire large page?  If not,
3363 			 * demote the mapping and fall through.
3364 			 */
3365 			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3366 				/*
3367 				 * The TLB entry for a PG_G mapping is
3368 				 * invalidated by pmap_protect_pde().
3369 				 */
3370 				if (pmap_protect_pde(pmap,
3371 				    &pmap->pm_pdir[pdirindex], sva, prot))
3372 					anychanged = true;
3373 				continue;
3374 			} else {
3375 				if (!pv_lists_locked) {
3376 					pv_lists_locked = true;
3377 					if (!rw_try_wlock(&pvh_global_lock)) {
3378 						if (anychanged)
3379 							pmap_invalidate_all_int(
3380 							    pmap);
3381 						PMAP_UNLOCK(pmap);
3382 						goto resume;
3383 					}
3384 					sched_pin();
3385 				}
3386 				if (!pmap_demote_pde(pmap,
3387 				    &pmap->pm_pdir[pdirindex], sva)) {
3388 					/*
3389 					 * The large page mapping was
3390 					 * destroyed.
3391 					 */
3392 					continue;
3393 				}
3394 			}
3395 		}
3396 
3397 		if (pdnxt > eva)
3398 			pdnxt = eva;
3399 
3400 		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3401 		    sva += PAGE_SIZE) {
3402 			vm_page_t m;
3403 
3404 retry:
3405 			/*
3406 			 * Regardless of whether a pte is 32 or 64 bits in
3407 			 * size, PG_RW, PG_A, and PG_M are among the least
3408 			 * significant 32 bits.
3409 			 */
3410 			obits = pbits = *pte;
3411 			if ((pbits & PG_V) == 0)
3412 				continue;
3413 
3414 			if ((prot & VM_PROT_WRITE) == 0) {
3415 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
3416 				    (PG_MANAGED | PG_M | PG_RW)) {
3417 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3418 					vm_page_dirty(m);
3419 				}
3420 				pbits &= ~(PG_RW | PG_M);
3421 			}
3422 #ifdef PMAP_PAE_COMP
3423 			if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3424 				pbits |= pg_nx;
3425 #endif
3426 
3427 			if (pbits != obits) {
3428 #ifdef PMAP_PAE_COMP
3429 				if (!atomic_cmpset_64(pte, obits, pbits))
3430 					goto retry;
3431 #else
3432 				if (!atomic_cmpset_int((u_int *)pte, obits,
3433 				    pbits))
3434 					goto retry;
3435 #endif
3436 				if (obits & PG_G)
3437 					pmap_invalidate_page_int(pmap, sva);
3438 				else
3439 					anychanged = true;
3440 			}
3441 		}
3442 	}
3443 	if (anychanged)
3444 		pmap_invalidate_all_int(pmap);
3445 	if (pv_lists_locked) {
3446 		sched_unpin();
3447 		rw_wunlock(&pvh_global_lock);
3448 	}
3449 	PMAP_UNLOCK(pmap);
3450 }
3451 
3452 #if VM_NRESERVLEVEL > 0
3453 /*
3454  * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
3455  * within a single page table page (PTP) to a single 2- or 4MB page mapping.
3456  * For promotion to occur, two conditions must be met: (1) the 4KB page
3457  * mappings must map aligned, contiguous physical memory and (2) the 4KB page
3458  * mappings must have identical characteristics.
3459  *
3460  * Managed (PG_MANAGED) mappings within the kernel address space are not
3461  * promoted.  The reason is that kernel PDEs are replicated in each pmap but
3462  * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
3463  * pmap.
3464  */
3465 static bool
pmap_promote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,vm_page_t mpte)3466 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va, vm_page_t mpte)
3467 {
3468 	pd_entry_t newpde;
3469 	pt_entry_t allpte_PG_A, *firstpte, oldpte, pa, *pte;
3470 #ifdef KTR
3471 	vm_offset_t oldpteva;
3472 #endif
3473 
3474 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3475 	if (!pg_ps_enabled)
3476 		return (false);
3477 
3478 	/*
3479 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
3480 	 * either invalid or does not map the first 4KB physical page
3481 	 * within a 2- or 4MB page.
3482 	 */
3483 	firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
3484 setpde:
3485 	newpde = *firstpte;
3486 	if ((newpde & ((PG_FRAME & PDRMASK) | PG_V)) != PG_V) {
3487 		pmap_pde_p_failures++;
3488 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3489 		    " in pmap %p", va, pmap);
3490 		return (false);
3491 	}
3492 	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3493 		pmap_pde_p_failures++;
3494 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3495 		    " in pmap %p", va, pmap);
3496 		return (false);
3497 	}
3498 
3499 	/*
3500 	 * Both here and in the below "for" loop, to allow for repromotion
3501 	 * after MADV_FREE, conditionally write protect a clean PTE before
3502 	 * possibly aborting the promotion due to other PTE attributes.  Why?
3503 	 * Suppose that MADV_FREE is applied to a part of a superpage, the
3504 	 * address range [S, E).  pmap_advise() will demote the superpage
3505 	 * mapping, destroy the 4KB page mapping at the end of [S, E), and
3506 	 * clear PG_M and PG_A in the PTEs for the rest of [S, E).  Later,
3507 	 * imagine that the memory in [S, E) is recycled, but the last 4KB
3508 	 * page in [S, E) is not the last to be rewritten, or simply accessed.
3509 	 * In other words, there is still a 4KB page in [S, E), call it P,
3510 	 * that is writeable but PG_M and PG_A are clear in P's PTE.  Unless
3511 	 * we write protect P before aborting the promotion, if and when P is
3512 	 * finally rewritten, there won't be a page fault to trigger
3513 	 * repromotion.
3514 	 */
3515 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3516 		/*
3517 		 * When PG_M is already clear, PG_RW can be cleared without
3518 		 * a TLB invalidation.
3519 		 */
3520 		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3521 		    ~PG_RW))
3522 			goto setpde;
3523 		newpde &= ~PG_RW;
3524 		CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
3525 		    " in pmap %p", va & ~PDRMASK, pmap);
3526 	}
3527 
3528 	/*
3529 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3530 	 * PTE maps an unexpected 4KB physical page or does not have identical
3531 	 * characteristics to the first PTE.
3532 	 */
3533 	allpte_PG_A = newpde & PG_A;
3534 	pa = (newpde & (PG_PS_FRAME | PG_V)) + NBPDR - PAGE_SIZE;
3535 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3536 setpte:
3537 		oldpte = *pte;
3538 		if ((oldpte & (PG_FRAME | PG_V)) != pa) {
3539 			pmap_pde_p_failures++;
3540 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3541 			    " in pmap %p", va, pmap);
3542 			return (false);
3543 		}
3544 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3545 			/*
3546 			 * When PG_M is already clear, PG_RW can be cleared
3547 			 * without a TLB invalidation.
3548 			 */
3549 			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3550 			    oldpte & ~PG_RW))
3551 				goto setpte;
3552 			oldpte &= ~PG_RW;
3553 #ifdef KTR
3554 			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3555 			    (va & ~PDRMASK);
3556 #endif
3557 			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3558 			    " in pmap %p", oldpteva, pmap);
3559 		}
3560 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3561 			pmap_pde_p_failures++;
3562 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3563 			    " in pmap %p", va, pmap);
3564 			return (false);
3565 		}
3566 		allpte_PG_A &= oldpte;
3567 		pa -= PAGE_SIZE;
3568 	}
3569 
3570 	/*
3571 	 * Unless all PTEs have PG_A set, clear it from the superpage mapping,
3572 	 * so that promotions triggered by speculative mappings, such as
3573 	 * pmap_enter_quick(), don't automatically mark the underlying pages
3574 	 * as referenced.
3575 	 */
3576 	newpde &= ~PG_A | allpte_PG_A;
3577 
3578 	/*
3579 	 * Save the PTP in its current state until the PDE mapping the
3580 	 * superpage is demoted by pmap_demote_pde() or destroyed by
3581 	 * pmap_remove_pde().  If PG_A is not set in every PTE, then request
3582 	 * that the PTP be refilled on demotion.
3583 	 */
3584 	if (mpte == NULL)
3585 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3586 	KASSERT(mpte >= vm_page_array &&
3587 	    mpte < &vm_page_array[vm_page_array_size],
3588 	    ("pmap_promote_pde: page table page is out of range"));
3589 	KASSERT(mpte->pindex == va >> PDRSHIFT,
3590 	    ("pmap_promote_pde: page table page's pindex is wrong"));
3591 	if (pmap_insert_pt_page(pmap, mpte, true, allpte_PG_A != 0)) {
3592 		pmap_pde_p_failures++;
3593 		CTR2(KTR_PMAP,
3594 		    "pmap_promote_pde: failure for va %#x in pmap %p", va,
3595 		    pmap);
3596 		return (false);
3597 	}
3598 
3599 	/*
3600 	 * Promote the pv entries.
3601 	 */
3602 	if ((newpde & PG_MANAGED) != 0)
3603 		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3604 
3605 	/*
3606 	 * Propagate the PAT index to its proper position.
3607 	 */
3608 	if ((newpde & PG_PTE_PAT) != 0)
3609 		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3610 
3611 	/*
3612 	 * Map the superpage.
3613 	 */
3614 	if (workaround_erratum383)
3615 		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
3616 	else if (pmap == kernel_pmap)
3617 		pmap_kenter_pde(va, PG_PROMOTED | PG_PS | newpde);
3618 	else
3619 		pde_store(pde, PG_PROMOTED | PG_PS | newpde);
3620 
3621 	pmap_pde_promotions++;
3622 	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3623 	    " in pmap %p", va, pmap);
3624 	return (true);
3625 }
3626 #endif /* VM_NRESERVLEVEL > 0 */
3627 
3628 /*
3629  *	Insert the given physical page (p) at
3630  *	the specified virtual address (v) in the
3631  *	target physical map with the protection requested.
3632  *
3633  *	If specified, the page will be wired down, meaning
3634  *	that the related pte can not be reclaimed.
3635  *
3636  *	NB:  This is the only routine which MAY NOT lazy-evaluate
3637  *	or lose information.  That is, this routine must actually
3638  *	insert this page into the given map NOW.
3639  */
3640 static int
__CONCAT(PMTYPE,enter)3641 __CONCAT(PMTYPE, enter)(pmap_t pmap, vm_offset_t va, vm_page_t m,
3642     vm_prot_t prot, u_int flags, int8_t psind)
3643 {
3644 	pd_entry_t *pde;
3645 	pt_entry_t *pte;
3646 	pt_entry_t newpte, origpte;
3647 	pv_entry_t pv;
3648 	vm_paddr_t opa, pa;
3649 	vm_page_t mpte, om;
3650 	int rv;
3651 
3652 	va = trunc_page(va);
3653 	KASSERT((pmap == kernel_pmap && va < VM_MAX_KERNEL_ADDRESS) ||
3654 	    (pmap != kernel_pmap && va < VM_MAXUSER_ADDRESS),
3655 	    ("pmap_enter: toobig k%d %#x", pmap == kernel_pmap, va));
3656 	KASSERT(va < PMAP_TRM_MIN_ADDRESS,
3657 	    ("pmap_enter: invalid to pmap_enter into trampoline (va: 0x%x)",
3658 	    va));
3659 	KASSERT(pmap != kernel_pmap || (m->oflags & VPO_UNMANAGED) != 0 ||
3660 	    !VA_IS_CLEANMAP(va),
3661 	    ("pmap_enter: managed mapping within the clean submap"));
3662 	if ((m->oflags & VPO_UNMANAGED) == 0)
3663 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
3664 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
3665 	    ("pmap_enter: flags %u has reserved bits set", flags));
3666 	pa = VM_PAGE_TO_PHYS(m);
3667 	newpte = (pt_entry_t)(pa | PG_A | PG_V);
3668 	if ((flags & VM_PROT_WRITE) != 0)
3669 		newpte |= PG_M;
3670 	if ((prot & VM_PROT_WRITE) != 0)
3671 		newpte |= PG_RW;
3672 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
3673 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
3674 #ifdef PMAP_PAE_COMP
3675 	if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3676 		newpte |= pg_nx;
3677 #endif
3678 	if ((flags & PMAP_ENTER_WIRED) != 0)
3679 		newpte |= PG_W;
3680 	if (pmap != kernel_pmap)
3681 		newpte |= PG_U;
3682 	newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
3683 	if ((m->oflags & VPO_UNMANAGED) == 0)
3684 		newpte |= PG_MANAGED;
3685 
3686 	rw_wlock(&pvh_global_lock);
3687 	PMAP_LOCK(pmap);
3688 	sched_pin();
3689 	if (psind == 1) {
3690 		/* Assert the required virtual and physical alignment. */
3691 		KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
3692 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
3693 		rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m);
3694 		goto out;
3695 	}
3696 
3697 	pde = pmap_pde(pmap, va);
3698 	if (pmap != kernel_pmap) {
3699 		/*
3700 		 * va is for UVA.
3701 		 * In the case that a page table page is not resident,
3702 		 * we are creating it here.  pmap_allocpte() handles
3703 		 * demotion.
3704 		 */
3705 		mpte = pmap_allocpte(pmap, va, flags);
3706 		if (mpte == NULL) {
3707 			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3708 			    ("pmap_allocpte failed with sleep allowed"));
3709 			rv = KERN_RESOURCE_SHORTAGE;
3710 			goto out;
3711 		}
3712 	} else {
3713 		/*
3714 		 * va is for KVA, so pmap_demote_pde() will never fail
3715 		 * to install a page table page.  PG_V is also
3716 		 * asserted by pmap_demote_pde().
3717 		 */
3718 		mpte = NULL;
3719 		KASSERT(pde != NULL && (*pde & PG_V) != 0,
3720 		    ("KVA %#x invalid pde pdir %#jx", va,
3721 		    (uintmax_t)pmap->pm_pdir[PTDPTDI]));
3722 		if ((*pde & PG_PS) != 0)
3723 			pmap_demote_pde(pmap, pde, va);
3724 	}
3725 	pte = pmap_pte_quick(pmap, va);
3726 
3727 	/*
3728 	 * Page Directory table entry is not valid, which should not
3729 	 * happen.  We should have either allocated the page table
3730 	 * page or demoted the existing mapping above.
3731 	 */
3732 	if (pte == NULL) {
3733 		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3734 		    (uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3735 	}
3736 
3737 	origpte = *pte;
3738 	pv = NULL;
3739 
3740 	/*
3741 	 * Is the specified virtual address already mapped?
3742 	 */
3743 	if ((origpte & PG_V) != 0) {
3744 		/*
3745 		 * Wiring change, just update stats. We don't worry about
3746 		 * wiring PT pages as they remain resident as long as there
3747 		 * are valid mappings in them. Hence, if a user page is wired,
3748 		 * the PT page will be also.
3749 		 */
3750 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
3751 			pmap->pm_stats.wired_count++;
3752 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
3753 			pmap->pm_stats.wired_count--;
3754 
3755 		/*
3756 		 * Remove the extra PT page reference.
3757 		 */
3758 		if (mpte != NULL) {
3759 			mpte->ref_count--;
3760 			KASSERT(mpte->ref_count > 0,
3761 			    ("pmap_enter: missing reference to page table page,"
3762 			     " va: 0x%x", va));
3763 		}
3764 
3765 		/*
3766 		 * Has the physical page changed?
3767 		 */
3768 		opa = origpte & PG_FRAME;
3769 		if (opa == pa) {
3770 			/*
3771 			 * No, might be a protection or wiring change.
3772 			 */
3773 			if ((origpte & PG_MANAGED) != 0 &&
3774 			    (newpte & PG_RW) != 0)
3775 				vm_page_aflag_set(m, PGA_WRITEABLE);
3776 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
3777 				goto unchanged;
3778 			goto validate;
3779 		}
3780 
3781 		/*
3782 		 * The physical page has changed.  Temporarily invalidate
3783 		 * the mapping.  This ensures that all threads sharing the
3784 		 * pmap keep a consistent view of the mapping, which is
3785 		 * necessary for the correct handling of COW faults.  It
3786 		 * also permits reuse of the old mapping's PV entry,
3787 		 * avoiding an allocation.
3788 		 *
3789 		 * For consistency, handle unmanaged mappings the same way.
3790 		 */
3791 		origpte = pte_load_clear(pte);
3792 		KASSERT((origpte & PG_FRAME) == opa,
3793 		    ("pmap_enter: unexpected pa update for %#x", va));
3794 		if ((origpte & PG_MANAGED) != 0) {
3795 			om = PHYS_TO_VM_PAGE(opa);
3796 
3797 			/*
3798 			 * The pmap lock is sufficient to synchronize with
3799 			 * concurrent calls to pmap_page_test_mappings() and
3800 			 * pmap_ts_referenced().
3801 			 */
3802 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3803 				vm_page_dirty(om);
3804 			if ((origpte & PG_A) != 0) {
3805 				pmap_invalidate_page_int(pmap, va);
3806 				vm_page_aflag_set(om, PGA_REFERENCED);
3807 			}
3808 			pv = pmap_pvh_remove(&om->md, pmap, va);
3809 			KASSERT(pv != NULL,
3810 			    ("pmap_enter: no PV entry for %#x", va));
3811 			if ((newpte & PG_MANAGED) == 0)
3812 				free_pv_entry(pmap, pv);
3813 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
3814 			    TAILQ_EMPTY(&om->md.pv_list) &&
3815 			    ((om->flags & PG_FICTITIOUS) != 0 ||
3816 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3817 				vm_page_aflag_clear(om, PGA_WRITEABLE);
3818 		} else {
3819 			/*
3820 			 * Since this mapping is unmanaged, assume that PG_A
3821 			 * is set.
3822 			 */
3823 			pmap_invalidate_page_int(pmap, va);
3824 		}
3825 		origpte = 0;
3826 	} else {
3827 		/*
3828 		 * Increment the counters.
3829 		 */
3830 		if ((newpte & PG_W) != 0)
3831 			pmap->pm_stats.wired_count++;
3832 		pmap->pm_stats.resident_count++;
3833 	}
3834 
3835 	/*
3836 	 * Enter on the PV list if part of our managed memory.
3837 	 */
3838 	if ((newpte & PG_MANAGED) != 0) {
3839 		if (pv == NULL) {
3840 			pv = get_pv_entry(pmap, false);
3841 			pv->pv_va = va;
3842 		}
3843 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3844 		if ((newpte & PG_RW) != 0)
3845 			vm_page_aflag_set(m, PGA_WRITEABLE);
3846 	}
3847 
3848 	/*
3849 	 * Update the PTE.
3850 	 */
3851 	if ((origpte & PG_V) != 0) {
3852 validate:
3853 		origpte = pte_load_store(pte, newpte);
3854 		KASSERT((origpte & PG_FRAME) == pa,
3855 		    ("pmap_enter: unexpected pa update for %#x", va));
3856 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
3857 		    (PG_M | PG_RW)) {
3858 			if ((origpte & PG_MANAGED) != 0)
3859 				vm_page_dirty(m);
3860 
3861 			/*
3862 			 * Although the PTE may still have PG_RW set, TLB
3863 			 * invalidation may nonetheless be required because
3864 			 * the PTE no longer has PG_M set.
3865 			 */
3866 		}
3867 #ifdef PMAP_PAE_COMP
3868 		else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
3869 			/*
3870 			 * This PTE change does not require TLB invalidation.
3871 			 */
3872 			goto unchanged;
3873 		}
3874 #endif
3875 		if ((origpte & PG_A) != 0)
3876 			pmap_invalidate_page_int(pmap, va);
3877 	} else
3878 		pte_store_zero(pte, newpte);
3879 
3880 unchanged:
3881 
3882 #if VM_NRESERVLEVEL > 0
3883 	/*
3884 	 * If both the page table page and the reservation are fully
3885 	 * populated, then attempt promotion.
3886 	 */
3887 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
3888 	    (m->flags & PG_FICTITIOUS) == 0 &&
3889 	    vm_reserv_level_iffullpop(m) == 0)
3890 		(void)pmap_promote_pde(pmap, pde, va, mpte);
3891 #endif
3892 
3893 	rv = KERN_SUCCESS;
3894 out:
3895 	sched_unpin();
3896 	rw_wunlock(&pvh_global_lock);
3897 	PMAP_UNLOCK(pmap);
3898 	return (rv);
3899 }
3900 
3901 /*
3902  * Tries to create a read- and/or execute-only 2 or 4 MB page mapping.  Returns
3903  * KERN_SUCCESS if the mapping was created.  Otherwise, returns an error
3904  * value.  See pmap_enter_pde() for the possible error values when "no sleep",
3905  * "no replace", and "no reclaim" are specified.
3906  */
3907 static int
pmap_enter_4mpage(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)3908 pmap_enter_4mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3909 {
3910 	pd_entry_t newpde;
3911 
3912 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3913 	newpde = VM_PAGE_TO_PHYS(m) |
3914 	    pmap_cache_bits(pmap, m->md.pat_mode, true) | PG_PS | PG_V;
3915 	if ((m->oflags & VPO_UNMANAGED) == 0)
3916 		newpde |= PG_MANAGED;
3917 #ifdef PMAP_PAE_COMP
3918 	if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3919 		newpde |= pg_nx;
3920 #endif
3921 	if (pmap != kernel_pmap)
3922 		newpde |= PG_U;
3923 	return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
3924 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL));
3925 }
3926 
3927 /*
3928  * Returns true if every page table entry in the page table page that maps
3929  * the specified kernel virtual address is zero.
3930  */
3931 static bool
pmap_every_pte_zero(vm_offset_t va)3932 pmap_every_pte_zero(vm_offset_t va)
3933 {
3934 	pt_entry_t *pt_end, *pte;
3935 
3936 	KASSERT((va & PDRMASK) == 0, ("va is misaligned"));
3937 	pte = vtopte(va);
3938 	for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
3939 		if (*pte != 0)
3940 			return (false);
3941 	}
3942 	return (true);
3943 }
3944 
3945 /*
3946  * Tries to create the specified 2 or 4 MB page mapping.  Returns KERN_SUCCESS
3947  * if the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE,
3948  * or KERN_RESOURCE_SHORTAGE otherwise.  Returns KERN_FAILURE if
3949  * PMAP_ENTER_NOREPLACE was specified and a 4 KB page mapping already exists
3950  * within the 2 or 4 MB virtual address range starting at the specified virtual
3951  * address.  Returns KERN_NO_SPACE if PMAP_ENTER_NOREPLACE was specified and a
3952  * 2 or 4 MB page mapping already exists at the specified virtual address.
3953  * Returns KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NORECLAIM was specified and a
3954  * PV entry allocation failed.
3955  *
3956  * The parameter "m" is only used when creating a managed, writeable mapping.
3957  */
3958 static int
pmap_enter_pde(pmap_t pmap,vm_offset_t va,pd_entry_t newpde,u_int flags,vm_page_t m)3959 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
3960     vm_page_t m)
3961 {
3962 	struct spglist free;
3963 	pd_entry_t oldpde, *pde;
3964 	vm_page_t mt;
3965 	vm_page_t uwptpg;
3966 
3967 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3968 	KASSERT((newpde & (PG_M | PG_RW)) != PG_RW,
3969 	    ("pmap_enter_pde: newpde is missing PG_M"));
3970 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3971 	pde = pmap_pde(pmap, va);
3972 	oldpde = *pde;
3973 	if ((oldpde & PG_V) != 0) {
3974 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
3975 			if ((oldpde & PG_PS) != 0) {
3976 				CTR2(KTR_PMAP,
3977 				    "pmap_enter_pde: no space for va %#lx"
3978 				    " in pmap %p", va, pmap);
3979 				return (KERN_NO_SPACE);
3980 			} else if (pmap != kernel_pmap ||
3981 			    !pmap_every_pte_zero(va)) {
3982 				CTR2(KTR_PMAP,
3983 				    "pmap_enter_pde: failure for va %#lx"
3984 				    " in pmap %p", va, pmap);
3985 				return (KERN_FAILURE);
3986 			}
3987 		}
3988 		/* Break the existing mapping(s). */
3989 		SLIST_INIT(&free);
3990 		if ((oldpde & PG_PS) != 0) {
3991 			/*
3992 			 * If the PDE resulted from a promotion, then a
3993 			 * reserved PT page could be freed.
3994 			 */
3995 			(void)pmap_remove_pde(pmap, pde, va, &free);
3996 			if ((oldpde & PG_G) == 0)
3997 				pmap_invalidate_pde_page(pmap, va, oldpde);
3998 		} else {
3999 			if (pmap_remove_ptes(pmap, va, va + NBPDR, &free))
4000 		               pmap_invalidate_all_int(pmap);
4001 		}
4002 		if (pmap != kernel_pmap) {
4003 			vm_page_free_pages_toq(&free, true);
4004 			KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
4005 			    pde));
4006 		} else {
4007 			KASSERT(SLIST_EMPTY(&free),
4008 			    ("pmap_enter_pde: freed kernel page table page"));
4009 
4010 			/*
4011 			 * Both pmap_remove_pde() and pmap_remove_ptes() will
4012 			 * leave the kernel page table page zero filled.
4013 			 */
4014 			mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
4015 			if (pmap_insert_pt_page(pmap, mt, false, false))
4016 				panic("pmap_enter_pde: trie insert failed");
4017 		}
4018 	}
4019 
4020 	/*
4021 	 * Allocate a leaf ptpage for wired userspace pages.
4022 	 */
4023 	uwptpg = NULL;
4024 	if ((newpde & PG_W) != 0 && pmap != kernel_pmap) {
4025 		uwptpg = vm_page_alloc_noobj(VM_ALLOC_WIRED);
4026 		if (uwptpg == NULL) {
4027 			return (KERN_RESOURCE_SHORTAGE);
4028 		}
4029 		uwptpg->pindex = va >> PDRSHIFT;
4030 		if (pmap_insert_pt_page(pmap, uwptpg, true, false)) {
4031 			vm_page_unwire_noq(uwptpg);
4032 			vm_page_free(uwptpg);
4033 			return (KERN_RESOURCE_SHORTAGE);
4034 		}
4035 		pmap->pm_stats.resident_count++;
4036 		uwptpg->ref_count = NPTEPG;
4037 	}
4038 	if ((newpde & PG_MANAGED) != 0) {
4039 		/*
4040 		 * Abort this mapping if its PV entry could not be created.
4041 		 */
4042 		if (!pmap_pv_insert_pde(pmap, va, newpde, flags)) {
4043 			if (uwptpg != NULL) {
4044 				mt = pmap_remove_pt_page(pmap, va);
4045 				KASSERT(mt == uwptpg,
4046 				    ("removed pt page %p, expected %p", mt,
4047 				    uwptpg));
4048 				pmap->pm_stats.resident_count--;
4049 				uwptpg->ref_count = 1;
4050 				vm_page_unwire_noq(uwptpg);
4051 				vm_page_free(uwptpg);
4052 			}
4053 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
4054 			    " in pmap %p", va, pmap);
4055 			return (KERN_RESOURCE_SHORTAGE);
4056 		}
4057 		if ((newpde & PG_RW) != 0) {
4058 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4059 				vm_page_aflag_set(mt, PGA_WRITEABLE);
4060 		}
4061 	}
4062 
4063 	/*
4064 	 * Increment counters.
4065 	 */
4066 	if ((newpde & PG_W) != 0)
4067 		pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
4068 	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
4069 
4070 	/*
4071 	 * Map the superpage.  (This is not a promoted mapping; there will not
4072 	 * be any lingering 4KB page mappings in the TLB.)
4073 	 */
4074 	pde_store(pde, newpde);
4075 
4076 	pmap_pde_mappings++;
4077 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
4078 	    va, pmap);
4079 	return (KERN_SUCCESS);
4080 }
4081 
4082 /*
4083  * Maps a sequence of resident pages belonging to the same object.
4084  * The sequence begins with the given page m_start.  This page is
4085  * mapped at the given virtual address start.  Each subsequent page is
4086  * mapped at a virtual address that is offset from start by the same
4087  * amount as the page is offset from m_start within the object.  The
4088  * last page in the sequence is the page with the largest offset from
4089  * m_start that can be mapped at a virtual address less than the given
4090  * virtual address end.  Not every virtual page between start and end
4091  * is mapped; only those for which a resident page exists with the
4092  * corresponding offset from m_start are mapped.
4093  */
4094 static void
__CONCAT(PMTYPE,enter_object)4095 __CONCAT(PMTYPE, enter_object)(pmap_t pmap, vm_offset_t start, vm_offset_t end,
4096     vm_page_t m_start, vm_prot_t prot)
4097 {
4098 	vm_offset_t va;
4099 	vm_page_t m, mpte;
4100 	vm_pindex_t diff, psize;
4101 	int rv;
4102 
4103 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
4104 
4105 	psize = atop(end - start);
4106 	mpte = NULL;
4107 	m = m_start;
4108 	rw_wlock(&pvh_global_lock);
4109 	PMAP_LOCK(pmap);
4110 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
4111 		va = start + ptoa(diff);
4112 		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
4113 		    m->psind == 1 && pg_ps_enabled &&
4114 		    ((rv = pmap_enter_4mpage(pmap, va, m, prot)) ==
4115 		    KERN_SUCCESS || rv == KERN_NO_SPACE))
4116 			m = &m[NBPDR / PAGE_SIZE - 1];
4117 		else
4118 			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
4119 			    mpte);
4120 		m = TAILQ_NEXT(m, listq);
4121 	}
4122 	rw_wunlock(&pvh_global_lock);
4123 	PMAP_UNLOCK(pmap);
4124 }
4125 
4126 /*
4127  * this code makes some *MAJOR* assumptions:
4128  * 1. Current pmap & pmap exists.
4129  * 2. Not wired.
4130  * 3. Read access.
4131  * 4. No page table pages.
4132  * but is *MUCH* faster than pmap_enter...
4133  */
4134 
4135 static void
__CONCAT(PMTYPE,enter_quick)4136 __CONCAT(PMTYPE, enter_quick)(pmap_t pmap, vm_offset_t va, vm_page_t m,
4137     vm_prot_t prot)
4138 {
4139 
4140 	rw_wlock(&pvh_global_lock);
4141 	PMAP_LOCK(pmap);
4142 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
4143 	rw_wunlock(&pvh_global_lock);
4144 	PMAP_UNLOCK(pmap);
4145 }
4146 
4147 static vm_page_t
pmap_enter_quick_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,vm_page_t mpte)4148 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
4149     vm_prot_t prot, vm_page_t mpte)
4150 {
4151 	pt_entry_t newpte, *pte;
4152 	pd_entry_t *pde;
4153 
4154 	KASSERT(pmap != kernel_pmap || !VA_IS_CLEANMAP(va) ||
4155 	    (m->oflags & VPO_UNMANAGED) != 0,
4156 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
4157 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4158 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4159 	pde = NULL;
4160 
4161 	/*
4162 	 * In the case that a page table page is not
4163 	 * resident, we are creating it here.
4164 	 */
4165 	if (pmap != kernel_pmap) {
4166 		u_int ptepindex;
4167 		pd_entry_t ptepa;
4168 
4169 		/*
4170 		 * Calculate pagetable page index
4171 		 */
4172 		ptepindex = va >> PDRSHIFT;
4173 		if (mpte && (mpte->pindex == ptepindex)) {
4174 			mpte->ref_count++;
4175 		} else {
4176 			/*
4177 			 * Get the page directory entry
4178 			 */
4179 			pde = &pmap->pm_pdir[ptepindex];
4180 			ptepa = *pde;
4181 
4182 			/*
4183 			 * If the page table page is mapped, we just increment
4184 			 * the hold count, and activate it.
4185 			 */
4186 			if (ptepa) {
4187 				if (ptepa & PG_PS)
4188 					return (NULL);
4189 				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
4190 				mpte->ref_count++;
4191 			} else {
4192 				mpte = _pmap_allocpte(pmap, ptepindex,
4193 				    PMAP_ENTER_NOSLEEP);
4194 				if (mpte == NULL)
4195 					return (mpte);
4196 			}
4197 		}
4198 	} else {
4199 		mpte = NULL;
4200 	}
4201 
4202 	sched_pin();
4203 	pte = pmap_pte_quick(pmap, va);
4204 	if (*pte) {
4205 		if (mpte != NULL)
4206 			mpte->ref_count--;
4207 		sched_unpin();
4208 		return (NULL);
4209 	}
4210 
4211 	/*
4212 	 * Enter on the PV list if part of our managed memory.
4213 	 */
4214 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
4215 	    !pmap_try_insert_pv_entry(pmap, va, m)) {
4216 		if (mpte != NULL)
4217 			pmap_abort_ptp(pmap, va, mpte);
4218 		sched_unpin();
4219 		return (NULL);
4220 	}
4221 
4222 	/*
4223 	 * Increment counters
4224 	 */
4225 	pmap->pm_stats.resident_count++;
4226 
4227 	newpte = VM_PAGE_TO_PHYS(m) | PG_V |
4228 	    pmap_cache_bits(pmap, m->md.pat_mode, false);
4229 	if ((m->oflags & VPO_UNMANAGED) == 0)
4230 		newpte |= PG_MANAGED;
4231 #ifdef PMAP_PAE_COMP
4232 	if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
4233 		newpte |= pg_nx;
4234 #endif
4235 	if (pmap != kernel_pmap)
4236 		newpte |= PG_U;
4237 	pte_store_zero(pte, newpte);
4238 
4239 #if VM_NRESERVLEVEL > 0
4240 	/*
4241 	 * If both the PTP and the reservation are fully populated, then
4242 	 * attempt promotion.
4243 	 */
4244 	if ((prot & VM_PROT_NO_PROMOTE) == 0 &&
4245 	    (mpte == NULL || mpte->ref_count == NPTEPG) &&
4246 	    (m->flags & PG_FICTITIOUS) == 0 &&
4247 	    vm_reserv_level_iffullpop(m) == 0) {
4248 		if (pde == NULL)
4249 			pde = pmap_pde(pmap, va);
4250 
4251 		/*
4252 		 * If promotion succeeds, then the next call to this function
4253 		 * should not be given the unmapped PTP as a hint.
4254 		 */
4255 		if (pmap_promote_pde(pmap, pde, va, mpte))
4256 			mpte = NULL;
4257 	}
4258 #endif
4259 
4260 	sched_unpin();
4261 	return (mpte);
4262 }
4263 
4264 /*
4265  * Make a temporary mapping for a physical address.  This is only intended
4266  * to be used for panic dumps.
4267  */
4268 static void *
__CONCAT(PMTYPE,kenter_temporary)4269 __CONCAT(PMTYPE, kenter_temporary)(vm_paddr_t pa, int i)
4270 {
4271 	vm_offset_t va;
4272 
4273 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
4274 	pmap_kenter(va, pa);
4275 	invlpg(va);
4276 	return ((void *)crashdumpmap);
4277 }
4278 
4279 /*
4280  * This code maps large physical mmap regions into the
4281  * processor address space.  Note that some shortcuts
4282  * are taken, but the code works.
4283  */
4284 static void
__CONCAT(PMTYPE,object_init_pt)4285 __CONCAT(PMTYPE, object_init_pt)(pmap_t pmap, vm_offset_t addr,
4286     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
4287 {
4288 	pd_entry_t *pde;
4289 	vm_paddr_t pa, ptepa;
4290 	vm_page_t p;
4291 	int pat_mode;
4292 
4293 	VM_OBJECT_ASSERT_WLOCKED(object);
4294 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4295 	    ("pmap_object_init_pt: non-device object"));
4296 	if (pg_ps_enabled &&
4297 	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
4298 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4299 			return;
4300 		p = vm_page_lookup(object, pindex);
4301 		KASSERT(vm_page_all_valid(p),
4302 		    ("pmap_object_init_pt: invalid page %p", p));
4303 		pat_mode = p->md.pat_mode;
4304 
4305 		/*
4306 		 * Abort the mapping if the first page is not physically
4307 		 * aligned to a 2/4MB page boundary.
4308 		 */
4309 		ptepa = VM_PAGE_TO_PHYS(p);
4310 		if (ptepa & (NBPDR - 1))
4311 			return;
4312 
4313 		/*
4314 		 * Skip the first page.  Abort the mapping if the rest of
4315 		 * the pages are not physically contiguous or have differing
4316 		 * memory attributes.
4317 		 */
4318 		p = TAILQ_NEXT(p, listq);
4319 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
4320 		    pa += PAGE_SIZE) {
4321 			KASSERT(vm_page_all_valid(p),
4322 			    ("pmap_object_init_pt: invalid page %p", p));
4323 			if (pa != VM_PAGE_TO_PHYS(p) ||
4324 			    pat_mode != p->md.pat_mode)
4325 				return;
4326 			p = TAILQ_NEXT(p, listq);
4327 		}
4328 
4329 		/*
4330 		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
4331 		 * "size" is a multiple of 2/4M, adding the PAT setting to
4332 		 * "pa" will not affect the termination of this loop.
4333 		 */
4334 		PMAP_LOCK(pmap);
4335 		for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, true);
4336 		    pa < ptepa + size; pa += NBPDR) {
4337 			pde = pmap_pde(pmap, addr);
4338 			if (*pde == 0) {
4339 				pde_store(pde, pa | PG_PS | PG_M | PG_A |
4340 				    PG_U | PG_RW | PG_V);
4341 				pmap->pm_stats.resident_count += NBPDR /
4342 				    PAGE_SIZE;
4343 				pmap_pde_mappings++;
4344 			}
4345 			/* Else continue on if the PDE is already valid. */
4346 			addr += NBPDR;
4347 		}
4348 		PMAP_UNLOCK(pmap);
4349 	}
4350 }
4351 
4352 /*
4353  *	Clear the wired attribute from the mappings for the specified range of
4354  *	addresses in the given pmap.  Every valid mapping within that range
4355  *	must have the wired attribute set.  In contrast, invalid mappings
4356  *	cannot have the wired attribute set, so they are ignored.
4357  *
4358  *	The wired attribute of the page table entry is not a hardware feature,
4359  *	so there is no need to invalidate any TLB entries.
4360  */
4361 static void
__CONCAT(PMTYPE,unwire)4362 __CONCAT(PMTYPE, unwire)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4363 {
4364 	vm_offset_t pdnxt;
4365 	pd_entry_t *pde;
4366 	pt_entry_t *pte;
4367 	bool pv_lists_locked;
4368 
4369 	if (pmap_is_current(pmap))
4370 		pv_lists_locked = false;
4371 	else {
4372 		pv_lists_locked = true;
4373 resume:
4374 		rw_wlock(&pvh_global_lock);
4375 		sched_pin();
4376 	}
4377 	PMAP_LOCK(pmap);
4378 	for (; sva < eva; sva = pdnxt) {
4379 		pdnxt = (sva + NBPDR) & ~PDRMASK;
4380 		if (pdnxt < sva)
4381 			pdnxt = eva;
4382 		pde = pmap_pde(pmap, sva);
4383 		if ((*pde & PG_V) == 0)
4384 			continue;
4385 		if ((*pde & PG_PS) != 0) {
4386 			if ((*pde & PG_W) == 0)
4387 				panic("pmap_unwire: pde %#jx is missing PG_W",
4388 				    (uintmax_t)*pde);
4389 
4390 			/*
4391 			 * Are we unwiring the entire large page?  If not,
4392 			 * demote the mapping and fall through.
4393 			 */
4394 			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
4395 				/*
4396 				 * Regardless of whether a pde (or pte) is 32
4397 				 * or 64 bits in size, PG_W is among the least
4398 				 * significant 32 bits.
4399 				 */
4400 				atomic_clear_int((u_int *)pde, PG_W);
4401 				pmap->pm_stats.wired_count -= NBPDR /
4402 				    PAGE_SIZE;
4403 				continue;
4404 			} else {
4405 				if (!pv_lists_locked) {
4406 					pv_lists_locked = true;
4407 					if (!rw_try_wlock(&pvh_global_lock)) {
4408 						PMAP_UNLOCK(pmap);
4409 						/* Repeat sva. */
4410 						goto resume;
4411 					}
4412 					sched_pin();
4413 				}
4414 				if (!pmap_demote_pde(pmap, pde, sva))
4415 					panic("pmap_unwire: demotion failed");
4416 			}
4417 		}
4418 		if (pdnxt > eva)
4419 			pdnxt = eva;
4420 		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
4421 		    sva += PAGE_SIZE) {
4422 			if ((*pte & PG_V) == 0)
4423 				continue;
4424 			if ((*pte & PG_W) == 0)
4425 				panic("pmap_unwire: pte %#jx is missing PG_W",
4426 				    (uintmax_t)*pte);
4427 
4428 			/*
4429 			 * PG_W must be cleared atomically.  Although the pmap
4430 			 * lock synchronizes access to PG_W, another processor
4431 			 * could be setting PG_M and/or PG_A concurrently.
4432 			 *
4433 			 * PG_W is among the least significant 32 bits.
4434 			 */
4435 			atomic_clear_int((u_int *)pte, PG_W);
4436 			pmap->pm_stats.wired_count--;
4437 		}
4438 	}
4439 	if (pv_lists_locked) {
4440 		sched_unpin();
4441 		rw_wunlock(&pvh_global_lock);
4442 	}
4443 	PMAP_UNLOCK(pmap);
4444 }
4445 
4446 /*
4447  *	Copy the range specified by src_addr/len
4448  *	from the source map to the range dst_addr/len
4449  *	in the destination map.
4450  *
4451  *	This routine is only advisory and need not do anything.  Since
4452  *	current pmap is always the kernel pmap when executing in
4453  *	kernel, and we do not copy from the kernel pmap to a user
4454  *	pmap, this optimization is not usable in 4/4G full split i386
4455  *	world.
4456  */
4457 
4458 static void
__CONCAT(PMTYPE,copy)4459 __CONCAT(PMTYPE, copy)(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
4460     vm_size_t len, vm_offset_t src_addr)
4461 {
4462 	pt_entry_t *src_pte, *dst_pte, ptetemp;
4463 	pd_entry_t srcptepaddr;
4464 	vm_page_t dstmpte, srcmpte;
4465 	vm_offset_t addr, end_addr, pdnxt;
4466 	u_int ptepindex;
4467 
4468 	if (dst_addr != src_addr)
4469 		return;
4470 
4471 	end_addr = src_addr + len;
4472 
4473 	rw_wlock(&pvh_global_lock);
4474 	if (dst_pmap < src_pmap) {
4475 		PMAP_LOCK(dst_pmap);
4476 		PMAP_LOCK(src_pmap);
4477 	} else {
4478 		PMAP_LOCK(src_pmap);
4479 		PMAP_LOCK(dst_pmap);
4480 	}
4481 	sched_pin();
4482 	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
4483 		KASSERT(addr < PMAP_TRM_MIN_ADDRESS,
4484 		    ("pmap_copy: invalid to pmap_copy the trampoline"));
4485 
4486 		pdnxt = (addr + NBPDR) & ~PDRMASK;
4487 		if (pdnxt < addr)
4488 			pdnxt = end_addr;
4489 		ptepindex = addr >> PDRSHIFT;
4490 
4491 		srcptepaddr = src_pmap->pm_pdir[ptepindex];
4492 		if (srcptepaddr == 0)
4493 			continue;
4494 
4495 		if (srcptepaddr & PG_PS) {
4496 			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
4497 				continue;
4498 			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
4499 			    ((srcptepaddr & PG_MANAGED) == 0 ||
4500 			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
4501 			    PMAP_ENTER_NORECLAIM))) {
4502 				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
4503 				    ~PG_W;
4504 				dst_pmap->pm_stats.resident_count +=
4505 				    NBPDR / PAGE_SIZE;
4506 				pmap_pde_mappings++;
4507 			}
4508 			continue;
4509 		}
4510 
4511 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
4512 		KASSERT(srcmpte->ref_count > 0,
4513 		    ("pmap_copy: source page table page is unused"));
4514 
4515 		if (pdnxt > end_addr)
4516 			pdnxt = end_addr;
4517 
4518 		src_pte = pmap_pte_quick3(src_pmap, addr);
4519 		while (addr < pdnxt) {
4520 			ptetemp = *src_pte;
4521 			/*
4522 			 * we only virtual copy managed pages
4523 			 */
4524 			if ((ptetemp & PG_MANAGED) != 0) {
4525 				dstmpte = pmap_allocpte(dst_pmap, addr,
4526 				    PMAP_ENTER_NOSLEEP);
4527 				if (dstmpte == NULL)
4528 					goto out;
4529 				dst_pte = pmap_pte_quick(dst_pmap, addr);
4530 				if (*dst_pte == 0 &&
4531 				    pmap_try_insert_pv_entry(dst_pmap, addr,
4532 				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
4533 					/*
4534 					 * Clear the wired, modified, and
4535 					 * accessed (referenced) bits
4536 					 * during the copy.
4537 					 */
4538 					*dst_pte = ptetemp & ~(PG_W | PG_M |
4539 					    PG_A);
4540 					dst_pmap->pm_stats.resident_count++;
4541 				} else {
4542 					pmap_abort_ptp(dst_pmap, addr, dstmpte);
4543 					goto out;
4544 				}
4545 				if (dstmpte->ref_count >= srcmpte->ref_count)
4546 					break;
4547 			}
4548 			addr += PAGE_SIZE;
4549 			src_pte++;
4550 		}
4551 	}
4552 out:
4553 	sched_unpin();
4554 	rw_wunlock(&pvh_global_lock);
4555 	PMAP_UNLOCK(src_pmap);
4556 	PMAP_UNLOCK(dst_pmap);
4557 }
4558 
4559 /*
4560  * Zero 1 page of virtual memory mapped from a hardware page by the caller.
4561  */
4562 static __inline void
pagezero(void * page)4563 pagezero(void *page)
4564 {
4565 #if defined(I686_CPU)
4566 	if (cpu_class == CPUCLASS_686) {
4567 		if (cpu_feature & CPUID_SSE2)
4568 			sse2_pagezero(page);
4569 		else
4570 			i686_pagezero(page);
4571 	} else
4572 #endif
4573 		bzero(page, PAGE_SIZE);
4574 }
4575 
4576 /*
4577  * Zero the specified hardware page.
4578  */
4579 static void
__CONCAT(PMTYPE,zero_page)4580 __CONCAT(PMTYPE, zero_page)(vm_page_t m)
4581 {
4582 	pt_entry_t *cmap_pte2;
4583 	struct pcpu *pc;
4584 
4585 	sched_pin();
4586 	pc = get_pcpu();
4587 	cmap_pte2 = pc->pc_cmap_pte2;
4588 	mtx_lock(&pc->pc_cmap_lock);
4589 	if (*cmap_pte2)
4590 		panic("pmap_zero_page: CMAP2 busy");
4591 	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4592 	    pmap_cache_bits(kernel_pmap, m->md.pat_mode, false);
4593 	invlcaddr(pc->pc_cmap_addr2);
4594 	pagezero(pc->pc_cmap_addr2);
4595 	*cmap_pte2 = 0;
4596 
4597 	/*
4598 	 * Unpin the thread before releasing the lock.  Otherwise the thread
4599 	 * could be rescheduled while still bound to the current CPU, only
4600 	 * to unpin itself immediately upon resuming execution.
4601 	 */
4602 	sched_unpin();
4603 	mtx_unlock(&pc->pc_cmap_lock);
4604 }
4605 
4606 /*
4607  * Zero an area within a single hardware page.  off and size must not
4608  * cover an area beyond a single hardware page.
4609  */
4610 static void
__CONCAT(PMTYPE,zero_page_area)4611 __CONCAT(PMTYPE, zero_page_area)(vm_page_t m, int off, int size)
4612 {
4613 	pt_entry_t *cmap_pte2;
4614 	struct pcpu *pc;
4615 
4616 	sched_pin();
4617 	pc = get_pcpu();
4618 	cmap_pte2 = pc->pc_cmap_pte2;
4619 	mtx_lock(&pc->pc_cmap_lock);
4620 	if (*cmap_pte2)
4621 		panic("pmap_zero_page_area: CMAP2 busy");
4622 	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4623 	    pmap_cache_bits(kernel_pmap, m->md.pat_mode, false);
4624 	invlcaddr(pc->pc_cmap_addr2);
4625 	if (off == 0 && size == PAGE_SIZE)
4626 		pagezero(pc->pc_cmap_addr2);
4627 	else
4628 		bzero(pc->pc_cmap_addr2 + off, size);
4629 	*cmap_pte2 = 0;
4630 	sched_unpin();
4631 	mtx_unlock(&pc->pc_cmap_lock);
4632 }
4633 
4634 /*
4635  * Copy 1 specified hardware page to another.
4636  */
4637 static void
__CONCAT(PMTYPE,copy_page)4638 __CONCAT(PMTYPE, copy_page)(vm_page_t src, vm_page_t dst)
4639 {
4640 	pt_entry_t *cmap_pte1, *cmap_pte2;
4641 	struct pcpu *pc;
4642 
4643 	sched_pin();
4644 	pc = get_pcpu();
4645 	cmap_pte1 = pc->pc_cmap_pte1;
4646 	cmap_pte2 = pc->pc_cmap_pte2;
4647 	mtx_lock(&pc->pc_cmap_lock);
4648 	if (*cmap_pte1)
4649 		panic("pmap_copy_page: CMAP1 busy");
4650 	if (*cmap_pte2)
4651 		panic("pmap_copy_page: CMAP2 busy");
4652 	*cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
4653 	    pmap_cache_bits(kernel_pmap, src->md.pat_mode, false);
4654 	invlcaddr(pc->pc_cmap_addr1);
4655 	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
4656 	    pmap_cache_bits(kernel_pmap, dst->md.pat_mode, false);
4657 	invlcaddr(pc->pc_cmap_addr2);
4658 	bcopy(pc->pc_cmap_addr1, pc->pc_cmap_addr2, PAGE_SIZE);
4659 	*cmap_pte1 = 0;
4660 	*cmap_pte2 = 0;
4661 	sched_unpin();
4662 	mtx_unlock(&pc->pc_cmap_lock);
4663 }
4664 
4665 static void
__CONCAT(PMTYPE,copy_pages)4666 __CONCAT(PMTYPE, copy_pages)(vm_page_t ma[], vm_offset_t a_offset,
4667     vm_page_t mb[], vm_offset_t b_offset, int xfersize)
4668 {
4669 	vm_page_t a_pg, b_pg;
4670 	char *a_cp, *b_cp;
4671 	vm_offset_t a_pg_offset, b_pg_offset;
4672 	pt_entry_t *cmap_pte1, *cmap_pte2;
4673 	struct pcpu *pc;
4674 	int cnt;
4675 
4676 	sched_pin();
4677 	pc = get_pcpu();
4678 	cmap_pte1 = pc->pc_cmap_pte1;
4679 	cmap_pte2 = pc->pc_cmap_pte2;
4680 	mtx_lock(&pc->pc_cmap_lock);
4681 	if (*cmap_pte1 != 0)
4682 		panic("pmap_copy_pages: CMAP1 busy");
4683 	if (*cmap_pte2 != 0)
4684 		panic("pmap_copy_pages: CMAP2 busy");
4685 	while (xfersize > 0) {
4686 		a_pg = ma[a_offset >> PAGE_SHIFT];
4687 		a_pg_offset = a_offset & PAGE_MASK;
4688 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4689 		b_pg = mb[b_offset >> PAGE_SHIFT];
4690 		b_pg_offset = b_offset & PAGE_MASK;
4691 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4692 		*cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(a_pg) | PG_A |
4693 		    pmap_cache_bits(kernel_pmap, a_pg->md.pat_mode, false);
4694 		invlcaddr(pc->pc_cmap_addr1);
4695 		*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(b_pg) | PG_A |
4696 		    PG_M | pmap_cache_bits(kernel_pmap, b_pg->md.pat_mode,
4697 		    false);
4698 		invlcaddr(pc->pc_cmap_addr2);
4699 		a_cp = pc->pc_cmap_addr1 + a_pg_offset;
4700 		b_cp = pc->pc_cmap_addr2 + b_pg_offset;
4701 		bcopy(a_cp, b_cp, cnt);
4702 		a_offset += cnt;
4703 		b_offset += cnt;
4704 		xfersize -= cnt;
4705 	}
4706 	*cmap_pte1 = 0;
4707 	*cmap_pte2 = 0;
4708 	sched_unpin();
4709 	mtx_unlock(&pc->pc_cmap_lock);
4710 }
4711 
4712 /*
4713  * Returns true if the pmap's pv is one of the first
4714  * 16 pvs linked to from this page.  This count may
4715  * be changed upwards or downwards in the future; it
4716  * is only necessary that true be returned for a small
4717  * subset of pmaps for proper page aging.
4718  */
4719 static bool
__CONCAT(PMTYPE,page_exists_quick)4720 __CONCAT(PMTYPE, page_exists_quick)(pmap_t pmap, vm_page_t m)
4721 {
4722 	struct md_page *pvh;
4723 	pv_entry_t pv;
4724 	int loops = 0;
4725 	bool rv;
4726 
4727 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4728 	    ("pmap_page_exists_quick: page %p is not managed", m));
4729 	rv = false;
4730 	rw_wlock(&pvh_global_lock);
4731 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4732 		if (PV_PMAP(pv) == pmap) {
4733 			rv = true;
4734 			break;
4735 		}
4736 		loops++;
4737 		if (loops >= 16)
4738 			break;
4739 	}
4740 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4741 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4742 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4743 			if (PV_PMAP(pv) == pmap) {
4744 				rv = true;
4745 				break;
4746 			}
4747 			loops++;
4748 			if (loops >= 16)
4749 				break;
4750 		}
4751 	}
4752 	rw_wunlock(&pvh_global_lock);
4753 	return (rv);
4754 }
4755 
4756 /*
4757  *	pmap_page_wired_mappings:
4758  *
4759  *	Return the number of managed mappings to the given physical page
4760  *	that are wired.
4761  */
4762 static int
__CONCAT(PMTYPE,page_wired_mappings)4763 __CONCAT(PMTYPE, page_wired_mappings)(vm_page_t m)
4764 {
4765 	int count;
4766 
4767 	count = 0;
4768 	if ((m->oflags & VPO_UNMANAGED) != 0)
4769 		return (count);
4770 	rw_wlock(&pvh_global_lock);
4771 	count = pmap_pvh_wired_mappings(&m->md, count);
4772 	if ((m->flags & PG_FICTITIOUS) == 0) {
4773 	    count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
4774 	        count);
4775 	}
4776 	rw_wunlock(&pvh_global_lock);
4777 	return (count);
4778 }
4779 
4780 /*
4781  *	pmap_pvh_wired_mappings:
4782  *
4783  *	Return the updated number "count" of managed mappings that are wired.
4784  */
4785 static int
pmap_pvh_wired_mappings(struct md_page * pvh,int count)4786 pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4787 {
4788 	pmap_t pmap;
4789 	pt_entry_t *pte;
4790 	pv_entry_t pv;
4791 
4792 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4793 	sched_pin();
4794 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4795 		pmap = PV_PMAP(pv);
4796 		PMAP_LOCK(pmap);
4797 		pte = pmap_pte_quick(pmap, pv->pv_va);
4798 		if ((*pte & PG_W) != 0)
4799 			count++;
4800 		PMAP_UNLOCK(pmap);
4801 	}
4802 	sched_unpin();
4803 	return (count);
4804 }
4805 
4806 /*
4807  * Returns true if the given page is mapped individually or as part of
4808  * a 4mpage.  Otherwise, returns false.
4809  */
4810 static bool
__CONCAT(PMTYPE,page_is_mapped)4811 __CONCAT(PMTYPE, page_is_mapped)(vm_page_t m)
4812 {
4813 	bool rv;
4814 
4815 	if ((m->oflags & VPO_UNMANAGED) != 0)
4816 		return (false);
4817 	rw_wlock(&pvh_global_lock);
4818 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
4819 	    ((m->flags & PG_FICTITIOUS) == 0 &&
4820 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
4821 	rw_wunlock(&pvh_global_lock);
4822 	return (rv);
4823 }
4824 
4825 /*
4826  * Remove all pages from specified address space
4827  * this aids process exit speeds.  Also, this code
4828  * is special cased for current process only, but
4829  * can have the more generic (and slightly slower)
4830  * mode enabled.  This is much faster than pmap_remove
4831  * in the case of running down an entire address space.
4832  */
4833 static void
__CONCAT(PMTYPE,remove_pages)4834 __CONCAT(PMTYPE, remove_pages)(pmap_t pmap)
4835 {
4836 	pt_entry_t *pte, tpte;
4837 	vm_page_t m, mpte, mt;
4838 	pv_entry_t pv;
4839 	struct md_page *pvh;
4840 	struct pv_chunk *pc, *npc;
4841 	struct spglist free;
4842 	int field, idx;
4843 	int32_t bit;
4844 	uint32_t inuse, bitmask;
4845 	int allfree;
4846 
4847 	if (pmap != PCPU_GET(curpmap)) {
4848 		printf("warning: pmap_remove_pages called with non-current pmap\n");
4849 		return;
4850 	}
4851 	SLIST_INIT(&free);
4852 	rw_wlock(&pvh_global_lock);
4853 	PMAP_LOCK(pmap);
4854 	sched_pin();
4855 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4856 		KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
4857 		    pc->pc_pmap));
4858 		allfree = 1;
4859 		for (field = 0; field < _NPCM; field++) {
4860 			inuse = ~pc->pc_map[field] & pc_freemask[field];
4861 			while (inuse != 0) {
4862 				bit = bsfl(inuse);
4863 				bitmask = 1UL << bit;
4864 				idx = field * 32 + bit;
4865 				pv = &pc->pc_pventry[idx];
4866 				inuse &= ~bitmask;
4867 
4868 				pte = pmap_pde(pmap, pv->pv_va);
4869 				tpte = *pte;
4870 				if ((tpte & PG_PS) == 0) {
4871 					pte = pmap_pte_quick(pmap, pv->pv_va);
4872 					tpte = *pte & ~PG_PTE_PAT;
4873 				}
4874 
4875 				if (tpte == 0) {
4876 					printf(
4877 					    "TPTE at %p  IS ZERO @ VA %08x\n",
4878 					    pte, pv->pv_va);
4879 					panic("bad pte");
4880 				}
4881 
4882 /*
4883  * We cannot remove wired pages from a process' mapping at this time
4884  */
4885 				if (tpte & PG_W) {
4886 					allfree = 0;
4887 					continue;
4888 				}
4889 
4890 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4891 				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4892 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4893 				    m, (uintmax_t)m->phys_addr,
4894 				    (uintmax_t)tpte));
4895 
4896 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4897 				    m < &vm_page_array[vm_page_array_size],
4898 				    ("pmap_remove_pages: bad tpte %#jx",
4899 				    (uintmax_t)tpte));
4900 
4901 				pte_clear(pte);
4902 
4903 				/*
4904 				 * Update the vm_page_t clean/reference bits.
4905 				 */
4906 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4907 					if ((tpte & PG_PS) != 0) {
4908 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4909 							vm_page_dirty(mt);
4910 					} else
4911 						vm_page_dirty(m);
4912 				}
4913 
4914 				/* Mark free */
4915 				PV_STAT(pv_entry_frees++);
4916 				PV_STAT(pv_entry_spare++);
4917 				pv_entry_count--;
4918 				pc->pc_map[field] |= bitmask;
4919 				if ((tpte & PG_PS) != 0) {
4920 					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4921 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4922 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4923 					if (TAILQ_EMPTY(&pvh->pv_list)) {
4924 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4925 							if (TAILQ_EMPTY(&mt->md.pv_list))
4926 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
4927 					}
4928 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
4929 					if (mpte != NULL) {
4930 						KASSERT(vm_page_any_valid(mpte),
4931 						    ("pmap_remove_pages: pte page not promoted"));
4932 						pmap->pm_stats.resident_count--;
4933 						KASSERT(mpte->ref_count == NPTEPG,
4934 						    ("pmap_remove_pages: pte page ref count error"));
4935 						mpte->ref_count = 0;
4936 						pmap_add_delayed_free_list(mpte, &free, false);
4937 					}
4938 				} else {
4939 					pmap->pm_stats.resident_count--;
4940 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4941 					if (TAILQ_EMPTY(&m->md.pv_list) &&
4942 					    (m->flags & PG_FICTITIOUS) == 0) {
4943 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4944 						if (TAILQ_EMPTY(&pvh->pv_list))
4945 							vm_page_aflag_clear(m, PGA_WRITEABLE);
4946 					}
4947 					pmap_unuse_pt(pmap, pv->pv_va, &free);
4948 				}
4949 			}
4950 		}
4951 		if (allfree) {
4952 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4953 			free_pv_chunk(pc);
4954 		}
4955 	}
4956 	sched_unpin();
4957 	pmap_invalidate_all_int(pmap);
4958 	rw_wunlock(&pvh_global_lock);
4959 	PMAP_UNLOCK(pmap);
4960 	vm_page_free_pages_toq(&free, true);
4961 }
4962 
4963 /*
4964  *	pmap_is_modified:
4965  *
4966  *	Return whether or not the specified physical page was modified
4967  *	in any physical maps.
4968  */
4969 static bool
__CONCAT(PMTYPE,is_modified)4970 __CONCAT(PMTYPE, is_modified)(vm_page_t m)
4971 {
4972 	bool rv;
4973 
4974 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4975 	    ("pmap_is_modified: page %p is not managed", m));
4976 
4977 	/*
4978 	 * If the page is not busied then this check is racy.
4979 	 */
4980 	if (!pmap_page_is_write_mapped(m))
4981 		return (false);
4982 	rw_wlock(&pvh_global_lock);
4983 	rv = pmap_is_modified_pvh(&m->md) ||
4984 	    ((m->flags & PG_FICTITIOUS) == 0 &&
4985 	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4986 	rw_wunlock(&pvh_global_lock);
4987 	return (rv);
4988 }
4989 
4990 /*
4991  * Returns true if any of the given mappings were used to modify
4992  * physical memory.  Otherwise, returns false.  Both page and 2mpage
4993  * mappings are supported.
4994  */
4995 static bool
pmap_is_modified_pvh(struct md_page * pvh)4996 pmap_is_modified_pvh(struct md_page *pvh)
4997 {
4998 	pv_entry_t pv;
4999 	pt_entry_t *pte;
5000 	pmap_t pmap;
5001 	bool rv;
5002 
5003 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5004 	rv = false;
5005 	sched_pin();
5006 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5007 		pmap = PV_PMAP(pv);
5008 		PMAP_LOCK(pmap);
5009 		pte = pmap_pte_quick(pmap, pv->pv_va);
5010 		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
5011 		PMAP_UNLOCK(pmap);
5012 		if (rv)
5013 			break;
5014 	}
5015 	sched_unpin();
5016 	return (rv);
5017 }
5018 
5019 /*
5020  *	pmap_is_prefaultable:
5021  *
5022  *	Return whether or not the specified virtual address is elgible
5023  *	for prefault.
5024  */
5025 static bool
__CONCAT(PMTYPE,is_prefaultable)5026 __CONCAT(PMTYPE, is_prefaultable)(pmap_t pmap, vm_offset_t addr)
5027 {
5028 	pd_entry_t pde;
5029 	bool rv;
5030 
5031 	rv = false;
5032 	PMAP_LOCK(pmap);
5033 	pde = *pmap_pde(pmap, addr);
5034 	if (pde != 0 && (pde & PG_PS) == 0)
5035 		rv = pmap_pte_ufast(pmap, addr, pde) == 0;
5036 	PMAP_UNLOCK(pmap);
5037 	return (rv);
5038 }
5039 
5040 /*
5041  *	pmap_is_referenced:
5042  *
5043  *	Return whether or not the specified physical page was referenced
5044  *	in any physical maps.
5045  */
5046 static bool
__CONCAT(PMTYPE,is_referenced)5047 __CONCAT(PMTYPE, is_referenced)(vm_page_t m)
5048 {
5049 	bool rv;
5050 
5051 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5052 	    ("pmap_is_referenced: page %p is not managed", m));
5053 	rw_wlock(&pvh_global_lock);
5054 	rv = pmap_is_referenced_pvh(&m->md) ||
5055 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5056 	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5057 	rw_wunlock(&pvh_global_lock);
5058 	return (rv);
5059 }
5060 
5061 /*
5062  * Returns true if any of the given mappings were referenced and false
5063  * otherwise.  Both page and 4mpage mappings are supported.
5064  */
5065 static bool
pmap_is_referenced_pvh(struct md_page * pvh)5066 pmap_is_referenced_pvh(struct md_page *pvh)
5067 {
5068 	pv_entry_t pv;
5069 	pt_entry_t *pte;
5070 	pmap_t pmap;
5071 	bool rv;
5072 
5073 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5074 	rv = false;
5075 	sched_pin();
5076 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5077 		pmap = PV_PMAP(pv);
5078 		PMAP_LOCK(pmap);
5079 		pte = pmap_pte_quick(pmap, pv->pv_va);
5080 		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
5081 		PMAP_UNLOCK(pmap);
5082 		if (rv)
5083 			break;
5084 	}
5085 	sched_unpin();
5086 	return (rv);
5087 }
5088 
5089 /*
5090  * Clear the write and modified bits in each of the given page's mappings.
5091  */
5092 static void
__CONCAT(PMTYPE,remove_write)5093 __CONCAT(PMTYPE, remove_write)(vm_page_t m)
5094 {
5095 	struct md_page *pvh;
5096 	pv_entry_t next_pv, pv;
5097 	pmap_t pmap;
5098 	pd_entry_t *pde;
5099 	pt_entry_t oldpte, *pte;
5100 	vm_offset_t va;
5101 
5102 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5103 	    ("pmap_remove_write: page %p is not managed", m));
5104 	vm_page_assert_busied(m);
5105 
5106 	if (!pmap_page_is_write_mapped(m))
5107 		return;
5108 	rw_wlock(&pvh_global_lock);
5109 	sched_pin();
5110 	if ((m->flags & PG_FICTITIOUS) != 0)
5111 		goto small_mappings;
5112 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5113 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5114 		va = pv->pv_va;
5115 		pmap = PV_PMAP(pv);
5116 		PMAP_LOCK(pmap);
5117 		pde = pmap_pde(pmap, va);
5118 		if ((*pde & PG_RW) != 0)
5119 			(void)pmap_demote_pde(pmap, pde, va);
5120 		PMAP_UNLOCK(pmap);
5121 	}
5122 small_mappings:
5123 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5124 		pmap = PV_PMAP(pv);
5125 		PMAP_LOCK(pmap);
5126 		pde = pmap_pde(pmap, pv->pv_va);
5127 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
5128 		    " a 4mpage in page %p's pv list", m));
5129 		pte = pmap_pte_quick(pmap, pv->pv_va);
5130 retry:
5131 		oldpte = *pte;
5132 		if ((oldpte & PG_RW) != 0) {
5133 			/*
5134 			 * Regardless of whether a pte is 32 or 64 bits
5135 			 * in size, PG_RW and PG_M are among the least
5136 			 * significant 32 bits.
5137 			 */
5138 			if (!atomic_cmpset_int((u_int *)pte, oldpte,
5139 			    oldpte & ~(PG_RW | PG_M)))
5140 				goto retry;
5141 			if ((oldpte & PG_M) != 0)
5142 				vm_page_dirty(m);
5143 			pmap_invalidate_page_int(pmap, pv->pv_va);
5144 		}
5145 		PMAP_UNLOCK(pmap);
5146 	}
5147 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5148 	sched_unpin();
5149 	rw_wunlock(&pvh_global_lock);
5150 }
5151 
5152 /*
5153  *	pmap_ts_referenced:
5154  *
5155  *	Return a count of reference bits for a page, clearing those bits.
5156  *	It is not necessary for every reference bit to be cleared, but it
5157  *	is necessary that 0 only be returned when there are truly no
5158  *	reference bits set.
5159  *
5160  *	As an optimization, update the page's dirty field if a modified bit is
5161  *	found while counting reference bits.  This opportunistic update can be
5162  *	performed at low cost and can eliminate the need for some future calls
5163  *	to pmap_is_modified().  However, since this function stops after
5164  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
5165  *	dirty pages.  Those dirty pages will only be detected by a future call
5166  *	to pmap_is_modified().
5167  */
5168 static int
__CONCAT(PMTYPE,ts_referenced)5169 __CONCAT(PMTYPE, ts_referenced)(vm_page_t m)
5170 {
5171 	struct md_page *pvh;
5172 	pv_entry_t pv, pvf;
5173 	pmap_t pmap;
5174 	pd_entry_t *pde;
5175 	pt_entry_t *pte;
5176 	vm_paddr_t pa;
5177 	int rtval = 0;
5178 
5179 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5180 	    ("pmap_ts_referenced: page %p is not managed", m));
5181 	pa = VM_PAGE_TO_PHYS(m);
5182 	pvh = pa_to_pvh(pa);
5183 	rw_wlock(&pvh_global_lock);
5184 	sched_pin();
5185 	if ((m->flags & PG_FICTITIOUS) != 0 ||
5186 	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
5187 		goto small_mappings;
5188 	pv = pvf;
5189 	do {
5190 		pmap = PV_PMAP(pv);
5191 		PMAP_LOCK(pmap);
5192 		pde = pmap_pde(pmap, pv->pv_va);
5193 		if ((*pde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5194 			/*
5195 			 * Although "*pde" is mapping a 2/4MB page, because
5196 			 * this function is called at a 4KB page granularity,
5197 			 * we only update the 4KB page under test.
5198 			 */
5199 			vm_page_dirty(m);
5200 		}
5201 		if ((*pde & PG_A) != 0) {
5202 			/*
5203 			 * Since this reference bit is shared by either 1024
5204 			 * or 512 4KB pages, it should not be cleared every
5205 			 * time it is tested.  Apply a simple "hash" function
5206 			 * on the physical page number, the virtual superpage
5207 			 * number, and the pmap address to select one 4KB page
5208 			 * out of the 1024 or 512 on which testing the
5209 			 * reference bit will result in clearing that bit.
5210 			 * This function is designed to avoid the selection of
5211 			 * the same 4KB page for every 2- or 4MB page mapping.
5212 			 *
5213 			 * On demotion, a mapping that hasn't been referenced
5214 			 * is simply destroyed.  To avoid the possibility of a
5215 			 * subsequent page fault on a demoted wired mapping,
5216 			 * always leave its reference bit set.  Moreover,
5217 			 * since the superpage is wired, the current state of
5218 			 * its reference bit won't affect page replacement.
5219 			 */
5220 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
5221 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
5222 			    (*pde & PG_W) == 0) {
5223 				atomic_clear_int((u_int *)pde, PG_A);
5224 				pmap_invalidate_page_int(pmap, pv->pv_va);
5225 			}
5226 			rtval++;
5227 		}
5228 		PMAP_UNLOCK(pmap);
5229 		/* Rotate the PV list if it has more than one entry. */
5230 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5231 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5232 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5233 		}
5234 		if (rtval >= PMAP_TS_REFERENCED_MAX)
5235 			goto out;
5236 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5237 small_mappings:
5238 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5239 		goto out;
5240 	pv = pvf;
5241 	do {
5242 		pmap = PV_PMAP(pv);
5243 		PMAP_LOCK(pmap);
5244 		pde = pmap_pde(pmap, pv->pv_va);
5245 		KASSERT((*pde & PG_PS) == 0,
5246 		    ("pmap_ts_referenced: found a 4mpage in page %p's pv list",
5247 		    m));
5248 		pte = pmap_pte_quick(pmap, pv->pv_va);
5249 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5250 			vm_page_dirty(m);
5251 		if ((*pte & PG_A) != 0) {
5252 			atomic_clear_int((u_int *)pte, PG_A);
5253 			pmap_invalidate_page_int(pmap, pv->pv_va);
5254 			rtval++;
5255 		}
5256 		PMAP_UNLOCK(pmap);
5257 		/* Rotate the PV list if it has more than one entry. */
5258 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5259 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5260 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5261 		}
5262 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
5263 	    PMAP_TS_REFERENCED_MAX);
5264 out:
5265 	sched_unpin();
5266 	rw_wunlock(&pvh_global_lock);
5267 	return (rtval);
5268 }
5269 
5270 /*
5271  *	Apply the given advice to the specified range of addresses within the
5272  *	given pmap.  Depending on the advice, clear the referenced and/or
5273  *	modified flags in each mapping and set the mapped page's dirty field.
5274  */
5275 static void
__CONCAT(PMTYPE,advise)5276 __CONCAT(PMTYPE, advise)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
5277     int advice)
5278 {
5279 	pd_entry_t oldpde, *pde;
5280 	pt_entry_t *pte;
5281 	vm_offset_t va, pdnxt;
5282 	vm_page_t m;
5283 	bool anychanged, pv_lists_locked;
5284 
5285 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
5286 		return;
5287 	if (pmap_is_current(pmap))
5288 		pv_lists_locked = false;
5289 	else {
5290 		pv_lists_locked = true;
5291 resume:
5292 		rw_wlock(&pvh_global_lock);
5293 		sched_pin();
5294 	}
5295 	anychanged = false;
5296 	PMAP_LOCK(pmap);
5297 	for (; sva < eva; sva = pdnxt) {
5298 		pdnxt = (sva + NBPDR) & ~PDRMASK;
5299 		if (pdnxt < sva)
5300 			pdnxt = eva;
5301 		pde = pmap_pde(pmap, sva);
5302 		oldpde = *pde;
5303 		if ((oldpde & PG_V) == 0)
5304 			continue;
5305 		else if ((oldpde & PG_PS) != 0) {
5306 			if ((oldpde & PG_MANAGED) == 0)
5307 				continue;
5308 			if (!pv_lists_locked) {
5309 				pv_lists_locked = true;
5310 				if (!rw_try_wlock(&pvh_global_lock)) {
5311 					if (anychanged)
5312 						pmap_invalidate_all_int(pmap);
5313 					PMAP_UNLOCK(pmap);
5314 					goto resume;
5315 				}
5316 				sched_pin();
5317 			}
5318 			if (!pmap_demote_pde(pmap, pde, sva)) {
5319 				/*
5320 				 * The large page mapping was destroyed.
5321 				 */
5322 				continue;
5323 			}
5324 
5325 			/*
5326 			 * Unless the page mappings are wired, remove the
5327 			 * mapping to a single page so that a subsequent
5328 			 * access may repromote.  Choosing the last page
5329 			 * within the address range [sva, min(pdnxt, eva))
5330 			 * generally results in more repromotions.  Since the
5331 			 * underlying page table page is fully populated, this
5332 			 * removal never frees a page table page.
5333 			 */
5334 			if ((oldpde & PG_W) == 0) {
5335 				va = eva;
5336 				if (va > pdnxt)
5337 					va = pdnxt;
5338 				va -= PAGE_SIZE;
5339 				KASSERT(va >= sva,
5340 				    ("pmap_advise: no address gap"));
5341 				pte = pmap_pte_quick(pmap, va);
5342 				KASSERT((*pte & PG_V) != 0,
5343 				    ("pmap_advise: invalid PTE"));
5344 				pmap_remove_pte(pmap, pte, va, NULL);
5345 				anychanged = true;
5346 			}
5347 		}
5348 		if (pdnxt > eva)
5349 			pdnxt = eva;
5350 		va = pdnxt;
5351 		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
5352 		    sva += PAGE_SIZE) {
5353 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
5354 				goto maybe_invlrng;
5355 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5356 				if (advice == MADV_DONTNEED) {
5357 					/*
5358 					 * Future calls to pmap_is_modified()
5359 					 * can be avoided by making the page
5360 					 * dirty now.
5361 					 */
5362 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
5363 					vm_page_dirty(m);
5364 				}
5365 				atomic_clear_int((u_int *)pte, PG_M | PG_A);
5366 			} else if ((*pte & PG_A) != 0)
5367 				atomic_clear_int((u_int *)pte, PG_A);
5368 			else
5369 				goto maybe_invlrng;
5370 			if ((*pte & PG_G) != 0) {
5371 				if (va == pdnxt)
5372 					va = sva;
5373 			} else
5374 				anychanged = true;
5375 			continue;
5376 maybe_invlrng:
5377 			if (va != pdnxt) {
5378 				pmap_invalidate_range_int(pmap, va, sva);
5379 				va = pdnxt;
5380 			}
5381 		}
5382 		if (va != pdnxt)
5383 			pmap_invalidate_range_int(pmap, va, sva);
5384 	}
5385 	if (anychanged)
5386 		pmap_invalidate_all_int(pmap);
5387 	if (pv_lists_locked) {
5388 		sched_unpin();
5389 		rw_wunlock(&pvh_global_lock);
5390 	}
5391 	PMAP_UNLOCK(pmap);
5392 }
5393 
5394 /*
5395  *	Clear the modify bits on the specified physical page.
5396  */
5397 static void
__CONCAT(PMTYPE,clear_modify)5398 __CONCAT(PMTYPE, clear_modify)(vm_page_t m)
5399 {
5400 	struct md_page *pvh;
5401 	pv_entry_t next_pv, pv;
5402 	pmap_t pmap;
5403 	pd_entry_t oldpde, *pde;
5404 	pt_entry_t *pte;
5405 	vm_offset_t va;
5406 
5407 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5408 	    ("pmap_clear_modify: page %p is not managed", m));
5409 	vm_page_assert_busied(m);
5410 
5411 	if (!pmap_page_is_write_mapped(m))
5412 		return;
5413 	rw_wlock(&pvh_global_lock);
5414 	sched_pin();
5415 	if ((m->flags & PG_FICTITIOUS) != 0)
5416 		goto small_mappings;
5417 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5418 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5419 		va = pv->pv_va;
5420 		pmap = PV_PMAP(pv);
5421 		PMAP_LOCK(pmap);
5422 		pde = pmap_pde(pmap, va);
5423 		oldpde = *pde;
5424 		/* If oldpde has PG_RW set, then it also has PG_M set. */
5425 		if ((oldpde & PG_RW) != 0 &&
5426 		    pmap_demote_pde(pmap, pde, va) &&
5427 		    (oldpde & PG_W) == 0) {
5428 			/*
5429 			 * Write protect the mapping to a single page so that
5430 			 * a subsequent write access may repromote.
5431 			 */
5432 			va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
5433 			pte = pmap_pte_quick(pmap, va);
5434 			/*
5435 			 * Regardless of whether a pte is 32 or 64 bits
5436 			 * in size, PG_RW and PG_M are among the least
5437 			 * significant 32 bits.
5438 			 */
5439 			atomic_clear_int((u_int *)pte, PG_M | PG_RW);
5440 			vm_page_dirty(m);
5441 			pmap_invalidate_page_int(pmap, va);
5442 		}
5443 		PMAP_UNLOCK(pmap);
5444 	}
5445 small_mappings:
5446 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5447 		pmap = PV_PMAP(pv);
5448 		PMAP_LOCK(pmap);
5449 		pde = pmap_pde(pmap, pv->pv_va);
5450 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
5451 		    " a 4mpage in page %p's pv list", m));
5452 		pte = pmap_pte_quick(pmap, pv->pv_va);
5453 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5454 			/*
5455 			 * Regardless of whether a pte is 32 or 64 bits
5456 			 * in size, PG_M is among the least significant
5457 			 * 32 bits.
5458 			 */
5459 			atomic_clear_int((u_int *)pte, PG_M);
5460 			pmap_invalidate_page_int(pmap, pv->pv_va);
5461 		}
5462 		PMAP_UNLOCK(pmap);
5463 	}
5464 	sched_unpin();
5465 	rw_wunlock(&pvh_global_lock);
5466 }
5467 
5468 /*
5469  * Miscellaneous support routines follow
5470  */
5471 
5472 /* Adjust the cache mode for a 4KB page mapped via a PTE. */
5473 static __inline void
pmap_pte_attr(pt_entry_t * pte,int cache_bits)5474 pmap_pte_attr(pt_entry_t *pte, int cache_bits)
5475 {
5476 	u_int opte, npte;
5477 
5478 	/*
5479 	 * The cache mode bits are all in the low 32-bits of the
5480 	 * PTE, so we can just spin on updating the low 32-bits.
5481 	 */
5482 	do {
5483 		opte = *(u_int *)pte;
5484 		npte = opte & ~PG_PTE_CACHE;
5485 		npte |= cache_bits;
5486 	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
5487 }
5488 
5489 /* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
5490 static __inline void
pmap_pde_attr(pd_entry_t * pde,int cache_bits)5491 pmap_pde_attr(pd_entry_t *pde, int cache_bits)
5492 {
5493 	u_int opde, npde;
5494 
5495 	/*
5496 	 * The cache mode bits are all in the low 32-bits of the
5497 	 * PDE, so we can just spin on updating the low 32-bits.
5498 	 */
5499 	do {
5500 		opde = *(u_int *)pde;
5501 		npde = opde & ~PG_PDE_CACHE;
5502 		npde |= cache_bits;
5503 	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
5504 }
5505 
5506 /*
5507  * Map a set of physical memory pages into the kernel virtual
5508  * address space. Return a pointer to where it is mapped. This
5509  * routine is intended to be used for mapping device memory,
5510  * NOT real memory.
5511  */
5512 static void *
__CONCAT(PMTYPE,mapdev_attr)5513 __CONCAT(PMTYPE, mapdev_attr)(vm_paddr_t pa, vm_size_t size, int mode,
5514     int flags)
5515 {
5516 	struct pmap_preinit_mapping *ppim;
5517 	vm_offset_t va, offset;
5518 	vm_page_t m;
5519 	vm_size_t tmpsize;
5520 	int i;
5521 
5522 	offset = pa & PAGE_MASK;
5523 	size = round_page(offset + size);
5524 	pa = pa & PG_FRAME;
5525 
5526 	if (pa < PMAP_MAP_LOW && pa + size <= PMAP_MAP_LOW) {
5527 		va = pa + PMAP_MAP_LOW;
5528 		if ((flags & MAPDEV_SETATTR) == 0)
5529 			return ((void *)(va + offset));
5530 	} else if (!pmap_initialized) {
5531 		va = 0;
5532 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5533 			ppim = pmap_preinit_mapping + i;
5534 			if (ppim->va == 0) {
5535 				ppim->pa = pa;
5536 				ppim->sz = size;
5537 				ppim->mode = mode;
5538 				ppim->va = virtual_avail;
5539 				virtual_avail += size;
5540 				va = ppim->va;
5541 				break;
5542 			}
5543 		}
5544 		if (va == 0)
5545 			panic("%s: too many preinit mappings", __func__);
5546 	} else {
5547 		/*
5548 		 * If we have a preinit mapping, re-use it.
5549 		 */
5550 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5551 			ppim = pmap_preinit_mapping + i;
5552 			if (ppim->pa == pa && ppim->sz == size &&
5553 			    (ppim->mode == mode ||
5554 			    (flags & MAPDEV_SETATTR) == 0))
5555 				return ((void *)(ppim->va + offset));
5556 		}
5557 		va = kva_alloc(size);
5558 		if (va == 0)
5559 			panic("%s: Couldn't allocate KVA", __func__);
5560 	}
5561 	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE) {
5562 		if ((flags & MAPDEV_SETATTR) == 0 && pmap_initialized) {
5563 			m = PHYS_TO_VM_PAGE(pa);
5564 			if (m != NULL && VM_PAGE_TO_PHYS(m) == pa) {
5565 				pmap_kenter_attr(va + tmpsize, pa + tmpsize,
5566 				    m->md.pat_mode);
5567 				continue;
5568 			}
5569 		}
5570 		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
5571 	}
5572 	pmap_invalidate_range_int(kernel_pmap, va, va + tmpsize);
5573 	pmap_invalidate_cache_range(va, va + size);
5574 	return ((void *)(va + offset));
5575 }
5576 
5577 static void
__CONCAT(PMTYPE,unmapdev)5578 __CONCAT(PMTYPE, unmapdev)(void *p, vm_size_t size)
5579 {
5580 	struct pmap_preinit_mapping *ppim;
5581 	vm_offset_t offset, va;
5582 	int i;
5583 
5584 	va = (vm_offset_t)p;
5585 	if (va >= PMAP_MAP_LOW && va <= KERNBASE && va + size <= KERNBASE)
5586 		return;
5587 	offset = va & PAGE_MASK;
5588 	size = round_page(offset + size);
5589 	va = trunc_page(va);
5590 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5591 		ppim = pmap_preinit_mapping + i;
5592 		if (ppim->va == va && ppim->sz == size) {
5593 			if (pmap_initialized)
5594 				return;
5595 			ppim->pa = 0;
5596 			ppim->va = 0;
5597 			ppim->sz = 0;
5598 			ppim->mode = 0;
5599 			if (va + size == virtual_avail)
5600 				virtual_avail = va;
5601 			return;
5602 		}
5603 	}
5604 	if (pmap_initialized) {
5605 		pmap_qremove(va, atop(size));
5606 		kva_free(va, size);
5607 	}
5608 }
5609 
5610 /*
5611  * Sets the memory attribute for the specified page.
5612  */
5613 static void
__CONCAT(PMTYPE,page_set_memattr)5614 __CONCAT(PMTYPE, page_set_memattr)(vm_page_t m, vm_memattr_t ma)
5615 {
5616 
5617 	m->md.pat_mode = ma;
5618 	if ((m->flags & PG_FICTITIOUS) != 0)
5619 		return;
5620 
5621 	/*
5622 	 * If "m" is a normal page, flush it from the cache.
5623 	 * See pmap_invalidate_cache_range().
5624 	 *
5625 	 * First, try to find an existing mapping of the page by sf
5626 	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5627 	 * flushes the cache.
5628 	 */
5629 	if (sf_buf_invalidate_cache(m))
5630 		return;
5631 
5632 	/*
5633 	 * If page is not mapped by sf buffer, but CPU does not
5634 	 * support self snoop, map the page transient and do
5635 	 * invalidation. In the worst case, whole cache is flushed by
5636 	 * pmap_invalidate_cache_range().
5637 	 */
5638 	if ((cpu_feature & CPUID_SS) == 0)
5639 		pmap_flush_page(m);
5640 }
5641 
5642 static void
__CONCAT(PMTYPE,flush_page)5643 __CONCAT(PMTYPE, flush_page)(vm_page_t m)
5644 {
5645 	pt_entry_t *cmap_pte2;
5646 	struct pcpu *pc;
5647 	vm_offset_t sva, eva;
5648 	bool useclflushopt;
5649 
5650 	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
5651 	if (useclflushopt || (cpu_feature & CPUID_CLFSH) != 0) {
5652 		sched_pin();
5653 		pc = get_pcpu();
5654 		cmap_pte2 = pc->pc_cmap_pte2;
5655 		mtx_lock(&pc->pc_cmap_lock);
5656 		if (*cmap_pte2)
5657 			panic("pmap_flush_page: CMAP2 busy");
5658 		*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
5659 		    PG_A | PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode,
5660 		    false);
5661 		invlcaddr(pc->pc_cmap_addr2);
5662 		sva = (vm_offset_t)pc->pc_cmap_addr2;
5663 		eva = sva + PAGE_SIZE;
5664 
5665 		/*
5666 		 * Use mfence or sfence despite the ordering implied by
5667 		 * mtx_{un,}lock() because clflush on non-Intel CPUs
5668 		 * and clflushopt are not guaranteed to be ordered by
5669 		 * any other instruction.
5670 		 */
5671 		if (useclflushopt)
5672 			sfence();
5673 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
5674 			mfence();
5675 		for (; sva < eva; sva += cpu_clflush_line_size) {
5676 			if (useclflushopt)
5677 				clflushopt(sva);
5678 			else
5679 				clflush(sva);
5680 		}
5681 		if (useclflushopt)
5682 			sfence();
5683 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
5684 			mfence();
5685 		*cmap_pte2 = 0;
5686 		sched_unpin();
5687 		mtx_unlock(&pc->pc_cmap_lock);
5688 	} else
5689 		pmap_invalidate_cache();
5690 }
5691 
5692 /*
5693  * Changes the specified virtual address range's memory type to that given by
5694  * the parameter "mode".  The specified virtual address range must be
5695  * completely contained within either the kernel map.
5696  *
5697  * Returns zero if the change completed successfully, and either EINVAL or
5698  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
5699  * of the virtual address range was not mapped, and ENOMEM is returned if
5700  * there was insufficient memory available to complete the change.
5701  */
5702 static int
__CONCAT(PMTYPE,change_attr)5703 __CONCAT(PMTYPE, change_attr)(vm_offset_t va, vm_size_t size, int mode)
5704 {
5705 	vm_offset_t base, offset, tmpva;
5706 	pd_entry_t *pde;
5707 	pt_entry_t *pte;
5708 	int cache_bits_pte, cache_bits_pde;
5709 	bool changed;
5710 
5711 	base = trunc_page(va);
5712 	offset = va & PAGE_MASK;
5713 	size = round_page(offset + size);
5714 
5715 	/*
5716 	 * Only supported on kernel virtual addresses above the recursive map.
5717 	 */
5718 	if (base < VM_MIN_KERNEL_ADDRESS)
5719 		return (EINVAL);
5720 
5721 	cache_bits_pde = pmap_cache_bits(kernel_pmap, mode, true);
5722 	cache_bits_pte = pmap_cache_bits(kernel_pmap, mode, false);
5723 	changed = false;
5724 
5725 	/*
5726 	 * Pages that aren't mapped aren't supported.  Also break down
5727 	 * 2/4MB pages into 4KB pages if required.
5728 	 */
5729 	PMAP_LOCK(kernel_pmap);
5730 	for (tmpva = base; tmpva < base + size; ) {
5731 		pde = pmap_pde(kernel_pmap, tmpva);
5732 		if (*pde == 0) {
5733 			PMAP_UNLOCK(kernel_pmap);
5734 			return (EINVAL);
5735 		}
5736 		if (*pde & PG_PS) {
5737 			/*
5738 			 * If the current 2/4MB page already has
5739 			 * the required memory type, then we need not
5740 			 * demote this page.  Just increment tmpva to
5741 			 * the next 2/4MB page frame.
5742 			 */
5743 			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
5744 				tmpva = trunc_4mpage(tmpva) + NBPDR;
5745 				continue;
5746 			}
5747 
5748 			/*
5749 			 * If the current offset aligns with a 2/4MB
5750 			 * page frame and there is at least 2/4MB left
5751 			 * within the range, then we need not break
5752 			 * down this page into 4KB pages.
5753 			 */
5754 			if ((tmpva & PDRMASK) == 0 &&
5755 			    tmpva + PDRMASK < base + size) {
5756 				tmpva += NBPDR;
5757 				continue;
5758 			}
5759 			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
5760 				PMAP_UNLOCK(kernel_pmap);
5761 				return (ENOMEM);
5762 			}
5763 		}
5764 		pte = vtopte(tmpva);
5765 		if (*pte == 0) {
5766 			PMAP_UNLOCK(kernel_pmap);
5767 			return (EINVAL);
5768 		}
5769 		tmpva += PAGE_SIZE;
5770 	}
5771 	PMAP_UNLOCK(kernel_pmap);
5772 
5773 	/*
5774 	 * Ok, all the pages exist, so run through them updating their
5775 	 * cache mode if required.
5776 	 */
5777 	for (tmpva = base; tmpva < base + size; ) {
5778 		pde = pmap_pde(kernel_pmap, tmpva);
5779 		if (*pde & PG_PS) {
5780 			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
5781 				pmap_pde_attr(pde, cache_bits_pde);
5782 				changed = true;
5783 			}
5784 			tmpva = trunc_4mpage(tmpva) + NBPDR;
5785 		} else {
5786 			pte = vtopte(tmpva);
5787 			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
5788 				pmap_pte_attr(pte, cache_bits_pte);
5789 				changed = true;
5790 			}
5791 			tmpva += PAGE_SIZE;
5792 		}
5793 	}
5794 
5795 	/*
5796 	 * Flush CPU caches to make sure any data isn't cached that
5797 	 * shouldn't be, etc.
5798 	 */
5799 	if (changed) {
5800 		pmap_invalidate_range_int(kernel_pmap, base, tmpva);
5801 		pmap_invalidate_cache_range(base, tmpva);
5802 	}
5803 	return (0);
5804 }
5805 
5806 /*
5807  * Perform the pmap work for mincore(2).  If the page is not both referenced and
5808  * modified by this pmap, returns its physical address so that the caller can
5809  * find other mappings.
5810  */
5811 static int
__CONCAT(PMTYPE,mincore)5812 __CONCAT(PMTYPE, mincore)(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
5813 {
5814 	pd_entry_t pde;
5815 	pt_entry_t pte;
5816 	vm_paddr_t pa;
5817 	int val;
5818 
5819 	PMAP_LOCK(pmap);
5820 	pde = *pmap_pde(pmap, addr);
5821 	if (pde != 0) {
5822 		if ((pde & PG_PS) != 0) {
5823 			pte = pde;
5824 			/* Compute the physical address of the 4KB page. */
5825 			pa = ((pde & PG_PS_FRAME) | (addr & PDRMASK)) &
5826 			    PG_FRAME;
5827 			val = MINCORE_PSIND(1);
5828 		} else {
5829 			pte = pmap_pte_ufast(pmap, addr, pde);
5830 			pa = pte & PG_FRAME;
5831 			val = 0;
5832 		}
5833 	} else {
5834 		pte = 0;
5835 		pa = 0;
5836 		val = 0;
5837 	}
5838 	if ((pte & PG_V) != 0) {
5839 		val |= MINCORE_INCORE;
5840 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5841 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5842 		if ((pte & PG_A) != 0)
5843 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5844 	}
5845 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5846 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5847 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5848 		*pap = pa;
5849 	}
5850 	PMAP_UNLOCK(pmap);
5851 	return (val);
5852 }
5853 
5854 static void
__CONCAT(PMTYPE,activate)5855 __CONCAT(PMTYPE, activate)(struct thread *td)
5856 {
5857 	pmap_t	pmap, oldpmap;
5858 	u_int	cpuid;
5859 	u_int32_t  cr3;
5860 
5861 	critical_enter();
5862 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5863 	oldpmap = PCPU_GET(curpmap);
5864 	cpuid = PCPU_GET(cpuid);
5865 #if defined(SMP)
5866 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
5867 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
5868 #else
5869 	CPU_CLR(cpuid, &oldpmap->pm_active);
5870 	CPU_SET(cpuid, &pmap->pm_active);
5871 #endif
5872 #ifdef PMAP_PAE_COMP
5873 	cr3 = vtophys(pmap->pm_pdpt);
5874 #else
5875 	cr3 = vtophys(pmap->pm_pdir);
5876 #endif
5877 	/*
5878 	 * pmap_activate is for the current thread on the current cpu
5879 	 */
5880 	td->td_pcb->pcb_cr3 = cr3;
5881 	PCPU_SET(curpmap, pmap);
5882 	critical_exit();
5883 }
5884 
5885 static void
__CONCAT(PMTYPE,activate_boot)5886 __CONCAT(PMTYPE, activate_boot)(pmap_t pmap)
5887 {
5888 	u_int cpuid;
5889 
5890 	cpuid = PCPU_GET(cpuid);
5891 #if defined(SMP)
5892 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
5893 #else
5894 	CPU_SET(cpuid, &pmap->pm_active);
5895 #endif
5896 	PCPU_SET(curpmap, pmap);
5897 }
5898 
5899 /*
5900  *	Increase the starting virtual address of the given mapping if a
5901  *	different alignment might result in more superpage mappings.
5902  */
5903 static void
__CONCAT(PMTYPE,align_superpage)5904 __CONCAT(PMTYPE, align_superpage)(vm_object_t object, vm_ooffset_t offset,
5905     vm_offset_t *addr, vm_size_t size)
5906 {
5907 	vm_offset_t superpage_offset;
5908 
5909 	if (size < NBPDR)
5910 		return;
5911 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5912 		offset += ptoa(object->pg_color);
5913 	superpage_offset = offset & PDRMASK;
5914 	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
5915 	    (*addr & PDRMASK) == superpage_offset)
5916 		return;
5917 	if ((*addr & PDRMASK) < superpage_offset)
5918 		*addr = (*addr & ~PDRMASK) + superpage_offset;
5919 	else
5920 		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
5921 }
5922 
5923 static vm_offset_t
__CONCAT(PMTYPE,quick_enter_page)5924 __CONCAT(PMTYPE, quick_enter_page)(vm_page_t m)
5925 {
5926 	vm_offset_t qaddr;
5927 	pt_entry_t *pte;
5928 
5929 	critical_enter();
5930 	qaddr = PCPU_GET(qmap_addr);
5931 	pte = vtopte(qaddr);
5932 
5933 	KASSERT(*pte == 0,
5934 	    ("pmap_quick_enter_page: PTE busy %#jx", (uintmax_t)*pte));
5935 	*pte = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
5936 	    pmap_cache_bits(kernel_pmap, pmap_page_get_memattr(m), false);
5937 	invlpg(qaddr);
5938 
5939 	return (qaddr);
5940 }
5941 
5942 static void
__CONCAT(PMTYPE,quick_remove_page)5943 __CONCAT(PMTYPE, quick_remove_page)(vm_offset_t addr)
5944 {
5945 	vm_offset_t qaddr;
5946 	pt_entry_t *pte;
5947 
5948 	qaddr = PCPU_GET(qmap_addr);
5949 	pte = vtopte(qaddr);
5950 
5951 	KASSERT(*pte != 0, ("pmap_quick_remove_page: PTE not in use"));
5952 	KASSERT(addr == qaddr, ("pmap_quick_remove_page: invalid address"));
5953 
5954 	*pte = 0;
5955 	critical_exit();
5956 }
5957 
5958 static vmem_t *pmap_trm_arena;
5959 static vmem_addr_t pmap_trm_arena_last = PMAP_TRM_MIN_ADDRESS;
5960 static int trm_guard = PAGE_SIZE;
5961 
5962 static int
pmap_trm_import(void * unused __unused,vmem_size_t size,int flags,vmem_addr_t * addrp)5963 pmap_trm_import(void *unused __unused, vmem_size_t size, int flags,
5964     vmem_addr_t *addrp)
5965 {
5966 	vm_page_t m;
5967 	vmem_addr_t af, addr, prev_addr;
5968 	pt_entry_t *trm_pte;
5969 
5970 	prev_addr = atomic_load_int(&pmap_trm_arena_last);
5971 	size = round_page(size) + trm_guard;
5972 	for (;;) {
5973 		if (prev_addr + size < prev_addr || prev_addr + size < size ||
5974 		    prev_addr + size > PMAP_TRM_MAX_ADDRESS)
5975 			return (ENOMEM);
5976 		addr = prev_addr + size;
5977 		if (atomic_fcmpset_int(&pmap_trm_arena_last, &prev_addr, addr))
5978 			break;
5979 	}
5980 	prev_addr += trm_guard;
5981 	trm_pte = PTmap + atop(prev_addr);
5982 	for (af = prev_addr; af < addr; af += PAGE_SIZE) {
5983 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
5984 		pte_store(&trm_pte[atop(af - prev_addr)], VM_PAGE_TO_PHYS(m) |
5985 		    PG_M | PG_A | PG_RW | PG_V | pgeflag |
5986 		    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, false));
5987 	}
5988 	*addrp = prev_addr;
5989 	return (0);
5990 }
5991 
5992 void
pmap_init_trm(void)5993 pmap_init_trm(void)
5994 {
5995 	vm_page_t pd_m;
5996 
5997 	TUNABLE_INT_FETCH("machdep.trm_guard", &trm_guard);
5998 	if ((trm_guard & PAGE_MASK) != 0)
5999 		trm_guard = 0;
6000 	pmap_trm_arena = vmem_create("i386trampoline", 0, 0, 1, 0, M_WAITOK);
6001 	vmem_set_import(pmap_trm_arena, pmap_trm_import, NULL, NULL, PAGE_SIZE);
6002 	pd_m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_WAITOK |
6003 	    VM_ALLOC_ZERO);
6004 	PTD[TRPTDI] = VM_PAGE_TO_PHYS(pd_m) | PG_M | PG_A | PG_RW | PG_V |
6005 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, true);
6006 }
6007 
6008 static void *
__CONCAT(PMTYPE,trm_alloc)6009 __CONCAT(PMTYPE, trm_alloc)(size_t size, int flags)
6010 {
6011 	vmem_addr_t res;
6012 	int error;
6013 
6014 	MPASS((flags & ~(M_WAITOK | M_NOWAIT | M_ZERO)) == 0);
6015 	error = vmem_xalloc(pmap_trm_arena, roundup2(size, 4), sizeof(int),
6016 	    0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, flags | M_FIRSTFIT, &res);
6017 	if (error != 0)
6018 		return (NULL);
6019 	if ((flags & M_ZERO) != 0)
6020 		bzero((void *)res, size);
6021 	return ((void *)res);
6022 }
6023 
6024 static void
__CONCAT(PMTYPE,trm_free)6025 __CONCAT(PMTYPE, trm_free)(void *addr, size_t size)
6026 {
6027 
6028 	vmem_free(pmap_trm_arena, (uintptr_t)addr, roundup2(size, 4));
6029 }
6030 
6031 static void
__CONCAT(PMTYPE,ksetrw)6032 __CONCAT(PMTYPE, ksetrw)(vm_offset_t va)
6033 {
6034 
6035 	*vtopte(va) |= PG_RW;
6036 }
6037 
6038 static void
__CONCAT(PMTYPE,remap_lowptdi)6039 __CONCAT(PMTYPE, remap_lowptdi)(bool enable)
6040 {
6041 
6042 	PTD[KPTDI] = enable ? PTD[LOWPTDI] : 0;
6043 	invltlb_glob();
6044 }
6045 
6046 static vm_offset_t
__CONCAT(PMTYPE,get_map_low)6047 __CONCAT(PMTYPE, get_map_low)(void)
6048 {
6049 
6050 	return (PMAP_MAP_LOW);
6051 }
6052 
6053 static vm_offset_t
__CONCAT(PMTYPE,get_vm_maxuser_address)6054 __CONCAT(PMTYPE, get_vm_maxuser_address)(void)
6055 {
6056 
6057 	return (VM_MAXUSER_ADDRESS);
6058 }
6059 
6060 static vm_paddr_t
__CONCAT(PMTYPE,pg_frame)6061 __CONCAT(PMTYPE, pg_frame)(vm_paddr_t pa)
6062 {
6063 
6064 	return (pa & PG_FRAME);
6065 }
6066 
6067 static void
__CONCAT(PMTYPE,sf_buf_map)6068 __CONCAT(PMTYPE, sf_buf_map)(struct sf_buf *sf)
6069 {
6070 	pt_entry_t opte, *ptep;
6071 
6072 	/*
6073 	 * Update the sf_buf's virtual-to-physical mapping, flushing the
6074 	 * virtual address from the TLB.  Since the reference count for
6075 	 * the sf_buf's old mapping was zero, that mapping is not
6076 	 * currently in use.  Consequently, there is no need to exchange
6077 	 * the old and new PTEs atomically, even under PAE.
6078 	 */
6079 	ptep = vtopte(sf->kva);
6080 	opte = *ptep;
6081 	*ptep = VM_PAGE_TO_PHYS(sf->m) | PG_RW | PG_V |
6082 	    pmap_cache_bits(kernel_pmap, sf->m->md.pat_mode, false);
6083 
6084 	/*
6085 	 * Avoid unnecessary TLB invalidations: If the sf_buf's old
6086 	 * virtual-to-physical mapping was not used, then any processor
6087 	 * that has invalidated the sf_buf's virtual address from its TLB
6088 	 * since the last used mapping need not invalidate again.
6089 	 */
6090 #ifdef SMP
6091 	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
6092 		CPU_ZERO(&sf->cpumask);
6093 #else
6094 	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
6095 		pmap_invalidate_page_int(kernel_pmap, sf->kva);
6096 #endif
6097 }
6098 
6099 static void
__CONCAT(PMTYPE,cp_slow0_map)6100 __CONCAT(PMTYPE, cp_slow0_map)(vm_offset_t kaddr, int plen, vm_page_t *ma)
6101 {
6102 	pt_entry_t *pte;
6103 	int i;
6104 
6105 	for (i = 0, pte = vtopte(kaddr); i < plen; i++, pte++) {
6106 		*pte = PG_V | PG_RW | PG_A | PG_M | VM_PAGE_TO_PHYS(ma[i]) |
6107 		    pmap_cache_bits(kernel_pmap, pmap_page_get_memattr(ma[i]),
6108 		    false);
6109 		invlpg(kaddr + ptoa(i));
6110 	}
6111 }
6112 
6113 static u_int
__CONCAT(PMTYPE,get_kcr3)6114 __CONCAT(PMTYPE, get_kcr3)(void)
6115 {
6116 
6117 #ifdef PMAP_PAE_COMP
6118 	return ((u_int)IdlePDPT);
6119 #else
6120 	return ((u_int)IdlePTD);
6121 #endif
6122 }
6123 
6124 static u_int
__CONCAT(PMTYPE,get_cr3)6125 __CONCAT(PMTYPE, get_cr3)(pmap_t pmap)
6126 {
6127 
6128 #ifdef PMAP_PAE_COMP
6129 	return ((u_int)vtophys(pmap->pm_pdpt));
6130 #else
6131 	return ((u_int)vtophys(pmap->pm_pdir));
6132 #endif
6133 }
6134 
6135 static caddr_t
__CONCAT(PMTYPE,cmap3)6136 __CONCAT(PMTYPE, cmap3)(vm_paddr_t pa, u_int pte_bits)
6137 {
6138 	pt_entry_t *pte;
6139 
6140 	pte = CMAP3;
6141 	*pte = pa | pte_bits;
6142 	invltlb();
6143 	return (CADDR3);
6144 }
6145 
6146 static void
__CONCAT(PMTYPE,basemem_setup)6147 __CONCAT(PMTYPE, basemem_setup)(u_int basemem)
6148 {
6149 	pt_entry_t *pte;
6150 	int i;
6151 
6152 	/*
6153 	 * Map pages between basemem and ISA_HOLE_START, if any, r/w into
6154 	 * the vm86 page table so that vm86 can scribble on them using
6155 	 * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
6156 	 * page 0, at least as initialized here?
6157 	 */
6158 	pte = (pt_entry_t *)vm86paddr;
6159 	for (i = basemem / 4; i < 160; i++)
6160 		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
6161 }
6162 
6163 struct bios16_pmap_handle {
6164 	pt_entry_t	*pte;
6165 	pd_entry_t	*ptd;
6166 	pt_entry_t	orig_ptd;
6167 };
6168 
6169 static void *
__CONCAT(PMTYPE,bios16_enter)6170 __CONCAT(PMTYPE, bios16_enter)(void)
6171 {
6172 	struct bios16_pmap_handle *h;
6173 
6174 	/*
6175 	 * no page table, so create one and install it.
6176 	 */
6177 	h = malloc(sizeof(struct bios16_pmap_handle), M_TEMP, M_WAITOK);
6178 	h->pte = (pt_entry_t *)malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
6179 	h->ptd = IdlePTD;
6180 	*h->pte = vm86phystk | PG_RW | PG_V;
6181 	h->orig_ptd = *h->ptd;
6182 	*h->ptd = vtophys(h->pte) | PG_RW | PG_V;
6183 	pmap_invalidate_all_int(kernel_pmap);	/* XXX insurance for now */
6184 	return (h);
6185 }
6186 
6187 static void
__CONCAT(PMTYPE,bios16_leave)6188 __CONCAT(PMTYPE, bios16_leave)(void *arg)
6189 {
6190 	struct bios16_pmap_handle *h;
6191 
6192 	h = arg;
6193 	*h->ptd = h->orig_ptd;		/* remove page table */
6194 	/*
6195 	 * XXX only needs to be invlpg(0) but that doesn't work on the 386
6196 	 */
6197 	pmap_invalidate_all_int(kernel_pmap);
6198 	free(h->pte, M_TEMP);		/* ... and free it */
6199 }
6200 
6201 struct pmap_kernel_map_range {
6202 	vm_offset_t sva;
6203 	pt_entry_t attrs;
6204 	int ptes;
6205 	int pdes;
6206 	int pdpes;
6207 };
6208 
6209 static void
sysctl_kmaps_dump(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t eva)6210 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
6211     vm_offset_t eva)
6212 {
6213 	const char *mode;
6214 	int i, pat_idx;
6215 
6216 	if (eva <= range->sva)
6217 		return;
6218 
6219 	pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
6220 	for (i = 0; i < PAT_INDEX_SIZE; i++)
6221 		if (pat_index[i] == pat_idx)
6222 			break;
6223 
6224 	switch (i) {
6225 	case PAT_WRITE_BACK:
6226 		mode = "WB";
6227 		break;
6228 	case PAT_WRITE_THROUGH:
6229 		mode = "WT";
6230 		break;
6231 	case PAT_UNCACHEABLE:
6232 		mode = "UC";
6233 		break;
6234 	case PAT_UNCACHED:
6235 		mode = "U-";
6236 		break;
6237 	case PAT_WRITE_PROTECTED:
6238 		mode = "WP";
6239 		break;
6240 	case PAT_WRITE_COMBINING:
6241 		mode = "WC";
6242 		break;
6243 	default:
6244 		printf("%s: unknown PAT mode %#x for range 0x%08x-0x%08x\n",
6245 		    __func__, pat_idx, range->sva, eva);
6246 		mode = "??";
6247 		break;
6248 	}
6249 
6250 	sbuf_printf(sb, "0x%08x-0x%08x r%c%c%c%c %s %d %d %d\n",
6251 	    range->sva, eva,
6252 	    (range->attrs & PG_RW) != 0 ? 'w' : '-',
6253 	    (range->attrs & pg_nx) != 0 ? '-' : 'x',
6254 	    (range->attrs & PG_U) != 0 ? 'u' : 's',
6255 	    (range->attrs & PG_G) != 0 ? 'g' : '-',
6256 	    mode, range->pdpes, range->pdes, range->ptes);
6257 
6258 	/* Reset to sentinel value. */
6259 	range->sva = 0xffffffff;
6260 }
6261 
6262 /*
6263  * Determine whether the attributes specified by a page table entry match those
6264  * being tracked by the current range.  This is not quite as simple as a direct
6265  * flag comparison since some PAT modes have multiple representations.
6266  */
6267 static bool
sysctl_kmaps_match(struct pmap_kernel_map_range * range,pt_entry_t attrs)6268 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
6269 {
6270 	pt_entry_t diff, mask;
6271 
6272 	mask = pg_nx | PG_G | PG_RW | PG_U | PG_PDE_CACHE;
6273 	diff = (range->attrs ^ attrs) & mask;
6274 	if (diff == 0)
6275 		return (true);
6276 	if ((diff & ~PG_PDE_PAT) == 0 &&
6277 	    pmap_pat_index(kernel_pmap, range->attrs, true) ==
6278 	    pmap_pat_index(kernel_pmap, attrs, true))
6279 		return (true);
6280 	return (false);
6281 }
6282 
6283 static void
sysctl_kmaps_reinit(struct pmap_kernel_map_range * range,vm_offset_t va,pt_entry_t attrs)6284 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
6285     pt_entry_t attrs)
6286 {
6287 
6288 	memset(range, 0, sizeof(*range));
6289 	range->sva = va;
6290 	range->attrs = attrs;
6291 }
6292 
6293 /*
6294  * Given a leaf PTE, derive the mapping's attributes.  If they do not match
6295  * those of the current run, dump the address range and its attributes, and
6296  * begin a new run.
6297  */
6298 static void
sysctl_kmaps_check(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t va,pd_entry_t pde,pt_entry_t pte)6299 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
6300     vm_offset_t va, pd_entry_t pde, pt_entry_t pte)
6301 {
6302 	pt_entry_t attrs;
6303 
6304 	attrs = pde & (PG_RW | PG_U | pg_nx);
6305 
6306 	if ((pde & PG_PS) != 0) {
6307 		attrs |= pde & (PG_G | PG_PDE_CACHE);
6308 	} else if (pte != 0) {
6309 		attrs |= pte & pg_nx;
6310 		attrs &= pg_nx | (pte & (PG_RW | PG_U));
6311 		attrs |= pte & (PG_G | PG_PTE_CACHE);
6312 
6313 		/* Canonicalize by always using the PDE PAT bit. */
6314 		if ((attrs & PG_PTE_PAT) != 0)
6315 			attrs ^= PG_PDE_PAT | PG_PTE_PAT;
6316 	}
6317 
6318 	if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
6319 		sysctl_kmaps_dump(sb, range, va);
6320 		sysctl_kmaps_reinit(range, va, attrs);
6321 	}
6322 }
6323 
6324 static int
__CONCAT(PMTYPE,sysctl_kmaps)6325 __CONCAT(PMTYPE, sysctl_kmaps)(SYSCTL_HANDLER_ARGS)
6326 {
6327 	struct pmap_kernel_map_range range;
6328 	struct sbuf sbuf, *sb;
6329 	pd_entry_t pde;
6330 	pt_entry_t *pt, pte;
6331 	vm_offset_t sva;
6332 	int error;
6333 	u_int i, k;
6334 
6335 	error = sysctl_wire_old_buffer(req, 0);
6336 	if (error != 0)
6337 		return (error);
6338 	sb = &sbuf;
6339 	sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
6340 
6341 	/* Sentinel value. */
6342 	range.sva = 0xffffffff;
6343 
6344 	/*
6345 	 * Iterate over the kernel page tables without holding the
6346 	 * kernel pmap lock.  Kernel page table pages are never freed,
6347 	 * so at worst we will observe inconsistencies in the output.
6348 	 */
6349 	for (sva = 0, i = 0; i < NPTEPG * NPGPTD * NPDEPG ;) {
6350 		if (i == 0)
6351 			sbuf_printf(sb, "\nLow PDE:\n");
6352 		else if (i == LOWPTDI * NPTEPG)
6353 			sbuf_printf(sb, "Low PDE dup:\n");
6354 		else if (i == PTDPTDI * NPTEPG)
6355 			sbuf_printf(sb, "Recursive map:\n");
6356 		else if (i == KERNPTDI * NPTEPG)
6357 			sbuf_printf(sb, "Kernel base:\n");
6358 		else if (i == TRPTDI * NPTEPG)
6359 			sbuf_printf(sb, "Trampoline:\n");
6360 		pde = IdlePTD[sva >> PDRSHIFT];
6361 		if ((pde & PG_V) == 0) {
6362 			sva = rounddown2(sva, NBPDR);
6363 			sysctl_kmaps_dump(sb, &range, sva);
6364 			sva += NBPDR;
6365 			i += NPTEPG;
6366 			continue;
6367 		}
6368 		if ((pde & PG_PS) != 0) {
6369 			sysctl_kmaps_check(sb, &range, sva, pde, 0);
6370 			range.pdes++;
6371 			sva += NBPDR;
6372 			i += NPTEPG;
6373 			continue;
6374 		}
6375 		for (pt = vtopte(sva), k = 0; k < NPTEPG; i++, k++, pt++,
6376 		    sva += PAGE_SIZE) {
6377 			pte = *pt;
6378 			if ((pte & PG_V) == 0) {
6379 				sysctl_kmaps_dump(sb, &range, sva);
6380 				continue;
6381 			}
6382 			sysctl_kmaps_check(sb, &range, sva, pde, pte);
6383 			range.ptes++;
6384 		}
6385 	}
6386 
6387 	error = sbuf_finish(sb);
6388 	sbuf_delete(sb);
6389 	return (error);
6390 }
6391 
6392 #define	PMM(a)					\
6393 	.pm_##a = __CONCAT(PMTYPE, a),
6394 
6395 struct pmap_methods __CONCAT(PMTYPE, methods) = {
6396 	PMM(ksetrw)
6397 	PMM(remap_lower)
6398 	PMM(remap_lowptdi)
6399 	PMM(align_superpage)
6400 	PMM(quick_enter_page)
6401 	PMM(quick_remove_page)
6402 	PMM(trm_alloc)
6403 	PMM(trm_free)
6404 	PMM(get_map_low)
6405 	PMM(get_vm_maxuser_address)
6406 	PMM(kextract)
6407 	PMM(pg_frame)
6408 	PMM(sf_buf_map)
6409 	PMM(cp_slow0_map)
6410 	PMM(get_kcr3)
6411 	PMM(get_cr3)
6412 	PMM(cmap3)
6413 	PMM(basemem_setup)
6414 	PMM(set_nx)
6415 	PMM(bios16_enter)
6416 	PMM(bios16_leave)
6417 	PMM(bootstrap)
6418 	PMM(is_valid_memattr)
6419 	PMM(cache_bits)
6420 	PMM(ps_enabled)
6421 	PMM(pinit0)
6422 	PMM(pinit)
6423 	PMM(activate)
6424 	PMM(activate_boot)
6425 	PMM(advise)
6426 	PMM(clear_modify)
6427 	PMM(change_attr)
6428 	PMM(mincore)
6429 	PMM(copy)
6430 	PMM(copy_page)
6431 	PMM(copy_pages)
6432 	PMM(zero_page)
6433 	PMM(zero_page_area)
6434 	PMM(enter)
6435 	PMM(enter_object)
6436 	PMM(enter_quick)
6437 	PMM(kenter_temporary)
6438 	PMM(object_init_pt)
6439 	PMM(unwire)
6440 	PMM(page_exists_quick)
6441 	PMM(page_wired_mappings)
6442 	PMM(page_is_mapped)
6443 	PMM(remove_pages)
6444 	PMM(is_modified)
6445 	PMM(is_prefaultable)
6446 	PMM(is_referenced)
6447 	PMM(remove_write)
6448 	PMM(ts_referenced)
6449 	PMM(mapdev_attr)
6450 	PMM(unmapdev)
6451 	PMM(page_set_memattr)
6452 	PMM(extract)
6453 	PMM(extract_and_hold)
6454 	PMM(map)
6455 	PMM(qenter)
6456 	PMM(qremove)
6457 	PMM(release)
6458 	PMM(remove)
6459 	PMM(protect)
6460 	PMM(remove_all)
6461 	PMM(init)
6462 	PMM(init_pat)
6463 	PMM(growkernel)
6464 	PMM(invalidate_page)
6465 	PMM(invalidate_range)
6466 	PMM(invalidate_all)
6467 	PMM(invalidate_cache)
6468 	PMM(flush_page)
6469 	PMM(kenter)
6470 	PMM(kremove)
6471 	PMM(sysctl_kmaps)
6472 };
6473