xref: /freebsd/contrib/googletest/googletest/test/gtest_unittest.cc (revision 5ca8c28cd8c725b81781201cfdb5f9969396f934)
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 //
31 // Tests for Google Test itself.  This verifies that the basic constructs of
32 // Google Test work.
33 
34 #include "gtest/gtest.h"
35 
36 // Verifies that the command line flag variables can be accessed in
37 // code once "gtest.h" has been #included.
38 // Do not move it after other gtest #includes.
TEST(CommandLineFlagsTest,CanBeAccessedInCodeOnceGTestHIsIncluded)39 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
40   bool dummy =
41       GTEST_FLAG_GET(also_run_disabled_tests) ||
42       GTEST_FLAG_GET(break_on_failure) || GTEST_FLAG_GET(catch_exceptions) ||
43       GTEST_FLAG_GET(color) != "unknown" || GTEST_FLAG_GET(fail_fast) ||
44       GTEST_FLAG_GET(filter) != "unknown" || GTEST_FLAG_GET(list_tests) ||
45       GTEST_FLAG_GET(output) != "unknown" || GTEST_FLAG_GET(brief) ||
46       GTEST_FLAG_GET(print_time) || GTEST_FLAG_GET(random_seed) ||
47       GTEST_FLAG_GET(repeat) > 0 ||
48       GTEST_FLAG_GET(recreate_environments_when_repeating) ||
49       GTEST_FLAG_GET(show_internal_stack_frames) || GTEST_FLAG_GET(shuffle) ||
50       GTEST_FLAG_GET(stack_trace_depth) > 0 ||
51       GTEST_FLAG_GET(stream_result_to) != "unknown" ||
52       GTEST_FLAG_GET(throw_on_failure);
53   EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
54 }
55 
56 #include <limits.h>  // For INT_MAX.
57 #include <stdlib.h>
58 #include <string.h>
59 #include <time.h>
60 
61 #include <cstdint>
62 #include <map>
63 #include <memory>
64 #include <ostream>
65 #include <set>
66 #include <stdexcept>
67 #include <string>
68 #include <type_traits>
69 #include <unordered_set>
70 #include <utility>
71 #include <vector>
72 
73 #include "gtest/gtest-spi.h"
74 #include "src/gtest-internal-inl.h"
75 
76 struct ConvertibleGlobalType {
77   // The inner enable_if is to ensure invoking is_constructible doesn't fail.
78   // The outer enable_if is to ensure the overload resolution doesn't encounter
79   // an ambiguity.
80   template <
81       class T,
82       std::enable_if_t<
83           false, std::enable_if_t<std::is_constructible<T>::value, int>> = 0>
84   operator T() const;  // NOLINT(google-explicit-constructor)
85 };
86 void operator<<(ConvertibleGlobalType&, int);
87 static_assert(sizeof(decltype(std::declval<ConvertibleGlobalType&>()
88                               << 1)(*)()) > 0,
89               "error in operator<< overload resolution");
90 
91 namespace testing {
92 namespace internal {
93 
94 #if GTEST_CAN_STREAM_RESULTS_
95 
96 class StreamingListenerTest : public Test {
97  public:
98   class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
99    public:
100     // Sends a string to the socket.
Send(const std::string & message)101     void Send(const std::string& message) override { output_ += message; }
102 
103     std::string output_;
104   };
105 
StreamingListenerTest()106   StreamingListenerTest()
107       : fake_sock_writer_(new FakeSocketWriter),
108         streamer_(fake_sock_writer_),
109         test_info_obj_("FooTest", "Bar", nullptr, nullptr,
110                        CodeLocation(__FILE__, __LINE__), nullptr, nullptr) {}
111 
112  protected:
output()113   std::string* output() { return &(fake_sock_writer_->output_); }
114 
115   FakeSocketWriter* const fake_sock_writer_;
116   StreamingListener streamer_;
117   UnitTest unit_test_;
118   TestInfo test_info_obj_;  // The name test_info_ was taken by testing::Test.
119 };
120 
TEST_F(StreamingListenerTest,OnTestProgramEnd)121 TEST_F(StreamingListenerTest, OnTestProgramEnd) {
122   *output() = "";
123   streamer_.OnTestProgramEnd(unit_test_);
124   EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
125 }
126 
TEST_F(StreamingListenerTest,OnTestIterationEnd)127 TEST_F(StreamingListenerTest, OnTestIterationEnd) {
128   *output() = "";
129   streamer_.OnTestIterationEnd(unit_test_, 42);
130   EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
131 }
132 
TEST_F(StreamingListenerTest,OnTestSuiteStart)133 TEST_F(StreamingListenerTest, OnTestSuiteStart) {
134   *output() = "";
135   streamer_.OnTestSuiteStart(TestSuite("FooTest", "Bar", nullptr, nullptr));
136   EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
137 }
138 
TEST_F(StreamingListenerTest,OnTestSuiteEnd)139 TEST_F(StreamingListenerTest, OnTestSuiteEnd) {
140   *output() = "";
141   streamer_.OnTestSuiteEnd(TestSuite("FooTest", "Bar", nullptr, nullptr));
142   EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
143 }
144 
TEST_F(StreamingListenerTest,OnTestStart)145 TEST_F(StreamingListenerTest, OnTestStart) {
146   *output() = "";
147   streamer_.OnTestStart(test_info_obj_);
148   EXPECT_EQ("event=TestStart&name=Bar\n", *output());
149 }
150 
TEST_F(StreamingListenerTest,OnTestEnd)151 TEST_F(StreamingListenerTest, OnTestEnd) {
152   *output() = "";
153   streamer_.OnTestEnd(test_info_obj_);
154   EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
155 }
156 
TEST_F(StreamingListenerTest,OnTestPartResult)157 TEST_F(StreamingListenerTest, OnTestPartResult) {
158   *output() = "";
159   streamer_.OnTestPartResult(TestPartResult(TestPartResult::kFatalFailure,
160                                             "foo.cc", 42, "failed=\n&%"));
161 
162   // Meta characters in the failure message should be properly escaped.
163   EXPECT_EQ(
164       "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
165       *output());
166 }
167 
168 #endif  // GTEST_CAN_STREAM_RESULTS_
169 
170 // Provides access to otherwise private parts of the TestEventListeners class
171 // that are needed to test it.
172 class TestEventListenersAccessor {
173  public:
GetRepeater(TestEventListeners * listeners)174   static TestEventListener* GetRepeater(TestEventListeners* listeners) {
175     return listeners->repeater();
176   }
177 
SetDefaultResultPrinter(TestEventListeners * listeners,TestEventListener * listener)178   static void SetDefaultResultPrinter(TestEventListeners* listeners,
179                                       TestEventListener* listener) {
180     listeners->SetDefaultResultPrinter(listener);
181   }
SetDefaultXmlGenerator(TestEventListeners * listeners,TestEventListener * listener)182   static void SetDefaultXmlGenerator(TestEventListeners* listeners,
183                                      TestEventListener* listener) {
184     listeners->SetDefaultXmlGenerator(listener);
185   }
186 
EventForwardingEnabled(const TestEventListeners & listeners)187   static bool EventForwardingEnabled(const TestEventListeners& listeners) {
188     return listeners.EventForwardingEnabled();
189   }
190 
SuppressEventForwarding(TestEventListeners * listeners)191   static void SuppressEventForwarding(TestEventListeners* listeners) {
192     listeners->SuppressEventForwarding(true);
193   }
194 };
195 
196 class UnitTestRecordPropertyTestHelper : public Test {
197  protected:
UnitTestRecordPropertyTestHelper()198   UnitTestRecordPropertyTestHelper() {}
199 
200   // Forwards to UnitTest::RecordProperty() to bypass access controls.
UnitTestRecordProperty(const char * key,const std::string & value)201   void UnitTestRecordProperty(const char* key, const std::string& value) {
202     unit_test_.RecordProperty(key, value);
203   }
204 
205   UnitTest unit_test_;
206 };
207 
208 }  // namespace internal
209 }  // namespace testing
210 
211 using testing::AssertionFailure;
212 using testing::AssertionResult;
213 using testing::AssertionSuccess;
214 using testing::DoubleLE;
215 using testing::EmptyTestEventListener;
216 using testing::Environment;
217 using testing::FloatLE;
218 using testing::IsNotSubstring;
219 using testing::IsSubstring;
220 using testing::kMaxStackTraceDepth;
221 using testing::Message;
222 using testing::ScopedFakeTestPartResultReporter;
223 using testing::StaticAssertTypeEq;
224 using testing::Test;
225 using testing::TestEventListeners;
226 using testing::TestInfo;
227 using testing::TestPartResult;
228 using testing::TestPartResultArray;
229 using testing::TestProperty;
230 using testing::TestResult;
231 using testing::TimeInMillis;
232 using testing::UnitTest;
233 using testing::internal::AlwaysFalse;
234 using testing::internal::AlwaysTrue;
235 using testing::internal::AppendUserMessage;
236 using testing::internal::ArrayAwareFind;
237 using testing::internal::ArrayEq;
238 using testing::internal::CodePointToUtf8;
239 using testing::internal::CopyArray;
240 using testing::internal::CountIf;
241 using testing::internal::EqFailure;
242 using testing::internal::FloatingPoint;
243 using testing::internal::ForEach;
244 using testing::internal::FormatEpochTimeInMillisAsIso8601;
245 using testing::internal::FormatTimeInMillisAsSeconds;
246 using testing::internal::GetElementOr;
247 using testing::internal::GetNextRandomSeed;
248 using testing::internal::GetRandomSeedFromFlag;
249 using testing::internal::GetTestTypeId;
250 using testing::internal::GetTimeInMillis;
251 using testing::internal::GetTypeId;
252 using testing::internal::GetUnitTestImpl;
253 using testing::internal::GTestFlagSaver;
254 using testing::internal::HasDebugStringAndShortDebugString;
255 using testing::internal::Int32FromEnvOrDie;
256 using testing::internal::IsContainer;
257 using testing::internal::IsContainerTest;
258 using testing::internal::IsNotContainer;
259 using testing::internal::kMaxRandomSeed;
260 using testing::internal::kTestTypeIdInGoogleTest;
261 using testing::internal::NativeArray;
262 using testing::internal::ParseFlag;
263 using testing::internal::RelationToSourceCopy;
264 using testing::internal::RelationToSourceReference;
265 using testing::internal::ShouldRunTestOnShard;
266 using testing::internal::ShouldShard;
267 using testing::internal::ShouldUseColor;
268 using testing::internal::Shuffle;
269 using testing::internal::ShuffleRange;
270 using testing::internal::SkipPrefix;
271 using testing::internal::StreamableToString;
272 using testing::internal::String;
273 using testing::internal::TestEventListenersAccessor;
274 using testing::internal::TestResultAccessor;
275 using testing::internal::WideStringToUtf8;
276 using testing::internal::edit_distance::CalculateOptimalEdits;
277 using testing::internal::edit_distance::CreateUnifiedDiff;
278 using testing::internal::edit_distance::EditType;
279 
280 #if GTEST_HAS_STREAM_REDIRECTION
281 using testing::internal::CaptureStdout;
282 using testing::internal::GetCapturedStdout;
283 #endif
284 
285 #ifdef GTEST_IS_THREADSAFE
286 using testing::internal::ThreadWithParam;
287 #endif
288 
289 class TestingVector : public std::vector<int> {};
290 
operator <<(::std::ostream & os,const TestingVector & vector)291 ::std::ostream& operator<<(::std::ostream& os, const TestingVector& vector) {
292   os << "{ ";
293   for (size_t i = 0; i < vector.size(); i++) {
294     os << vector[i] << " ";
295   }
296   os << "}";
297   return os;
298 }
299 
300 // This line tests that we can define tests in an unnamed namespace.
301 namespace {
302 
TEST(GetRandomSeedFromFlagTest,HandlesZero)303 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
304   const int seed = GetRandomSeedFromFlag(0);
305   EXPECT_LE(1, seed);
306   EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
307 }
308 
TEST(GetRandomSeedFromFlagTest,PreservesValidSeed)309 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
310   EXPECT_EQ(1, GetRandomSeedFromFlag(1));
311   EXPECT_EQ(2, GetRandomSeedFromFlag(2));
312   EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
313   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
314             GetRandomSeedFromFlag(kMaxRandomSeed));
315 }
316 
TEST(GetRandomSeedFromFlagTest,NormalizesInvalidSeed)317 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
318   const int seed1 = GetRandomSeedFromFlag(-1);
319   EXPECT_LE(1, seed1);
320   EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
321 
322   const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
323   EXPECT_LE(1, seed2);
324   EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
325 }
326 
TEST(GetNextRandomSeedTest,WorksForValidInput)327 TEST(GetNextRandomSeedTest, WorksForValidInput) {
328   EXPECT_EQ(2, GetNextRandomSeed(1));
329   EXPECT_EQ(3, GetNextRandomSeed(2));
330   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
331             GetNextRandomSeed(kMaxRandomSeed - 1));
332   EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
333 
334   // We deliberately don't test GetNextRandomSeed() with invalid
335   // inputs, as that requires death tests, which are expensive.  This
336   // is fine as GetNextRandomSeed() is internal and has a
337   // straightforward definition.
338 }
339 
ClearCurrentTestPartResults()340 static void ClearCurrentTestPartResults() {
341   TestResultAccessor::ClearTestPartResults(
342       GetUnitTestImpl()->current_test_result());
343 }
344 
345 // Tests GetTypeId.
346 
TEST(GetTypeIdTest,ReturnsSameValueForSameType)347 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
348   EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
349   EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
350 }
351 
352 class SubClassOfTest : public Test {};
353 class AnotherSubClassOfTest : public Test {};
354 
TEST(GetTypeIdTest,ReturnsDifferentValuesForDifferentTypes)355 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
356   EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
357   EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
358   EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
359   EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
360   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
361   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
362 }
363 
364 // Verifies that GetTestTypeId() returns the same value, no matter it
365 // is called from inside Google Test or outside of it.
TEST(GetTestTypeIdTest,ReturnsTheSameValueInsideOrOutsideOfGoogleTest)366 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
367   EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
368 }
369 
370 // Tests CanonicalizeForStdLibVersioning.
371 
372 using ::testing::internal::CanonicalizeForStdLibVersioning;
373 
TEST(CanonicalizeForStdLibVersioning,LeavesUnversionedNamesUnchanged)374 TEST(CanonicalizeForStdLibVersioning, LeavesUnversionedNamesUnchanged) {
375   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::bind"));
376   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::_"));
377   EXPECT_EQ("std::__foo", CanonicalizeForStdLibVersioning("std::__foo"));
378   EXPECT_EQ("gtl::__1::x", CanonicalizeForStdLibVersioning("gtl::__1::x"));
379   EXPECT_EQ("__1::x", CanonicalizeForStdLibVersioning("__1::x"));
380   EXPECT_EQ("::__1::x", CanonicalizeForStdLibVersioning("::__1::x"));
381 }
382 
TEST(CanonicalizeForStdLibVersioning,ElidesDoubleUnderNames)383 TEST(CanonicalizeForStdLibVersioning, ElidesDoubleUnderNames) {
384   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__1::bind"));
385   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__1::_"));
386 
387   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__g::bind"));
388   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__g::_"));
389 
390   EXPECT_EQ("std::bind",
391             CanonicalizeForStdLibVersioning("std::__google::bind"));
392   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__google::_"));
393 }
394 
395 // Tests FormatTimeInMillisAsSeconds().
396 
TEST(FormatTimeInMillisAsSecondsTest,FormatsZero)397 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
398   EXPECT_EQ("0.", FormatTimeInMillisAsSeconds(0));
399 }
400 
TEST(FormatTimeInMillisAsSecondsTest,FormatsPositiveNumber)401 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
402   EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
403   EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
404   EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
405   EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
406   EXPECT_EQ("3.", FormatTimeInMillisAsSeconds(3000));
407   EXPECT_EQ("10.", FormatTimeInMillisAsSeconds(10000));
408   EXPECT_EQ("100.", FormatTimeInMillisAsSeconds(100000));
409   EXPECT_EQ("123.456", FormatTimeInMillisAsSeconds(123456));
410   EXPECT_EQ("1234567.89", FormatTimeInMillisAsSeconds(1234567890));
411 }
412 
TEST(FormatTimeInMillisAsSecondsTest,FormatsNegativeNumber)413 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
414   EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
415   EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
416   EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
417   EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
418   EXPECT_EQ("-3.", FormatTimeInMillisAsSeconds(-3000));
419   EXPECT_EQ("-10.", FormatTimeInMillisAsSeconds(-10000));
420   EXPECT_EQ("-100.", FormatTimeInMillisAsSeconds(-100000));
421   EXPECT_EQ("-123.456", FormatTimeInMillisAsSeconds(-123456));
422   EXPECT_EQ("-1234567.89", FormatTimeInMillisAsSeconds(-1234567890));
423 }
424 
425 // TODO: b/287046337 - In emscripten, local time zone modification is not
426 // supported.
427 #if !defined(__EMSCRIPTEN__)
428 // Tests FormatEpochTimeInMillisAsIso8601().  The correctness of conversion
429 // for particular dates below was verified in Python using
430 // datetime.datetime.fromutctimestamp(<timestamp>/1000).
431 
432 // FormatEpochTimeInMillisAsIso8601 depends on the local timezone, so we
433 // have to set up a particular timezone to obtain predictable results.
434 class FormatEpochTimeInMillisAsIso8601Test : public Test {
435  public:
436   // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
437   // 32 bits, even when 64-bit integer types are available.  We have to
438   // force the constants to have a 64-bit type here.
439   static const TimeInMillis kMillisPerSec = 1000;
440 
441  private:
SetUp()442   void SetUp() override {
443     saved_tz_.reset();
444 
445     GTEST_DISABLE_MSC_DEPRECATED_PUSH_(/* getenv: deprecated */)
446     if (const char* tz = getenv("TZ")) {
447       saved_tz_ = std::make_unique<std::string>(tz);
448     }
449     GTEST_DISABLE_MSC_DEPRECATED_POP_()
450 
451     // Set the local time zone for FormatEpochTimeInMillisAsIso8601 to be
452     // a fixed time zone for reproducibility purposes.
453     SetTimeZone("UTC+00");
454   }
455 
TearDown()456   void TearDown() override {
457     SetTimeZone(saved_tz_ != nullptr ? saved_tz_->c_str() : nullptr);
458     saved_tz_.reset();
459   }
460 
SetTimeZone(const char * time_zone)461   static void SetTimeZone(const char* time_zone) {
462     // tzset() distinguishes between the TZ variable being present and empty
463     // and not being present, so we have to consider the case of time_zone
464     // being NULL.
465 #if defined(_MSC_VER) || defined(GTEST_OS_WINDOWS_MINGW)
466     // ...Unless it's MSVC, whose standard library's _putenv doesn't
467     // distinguish between an empty and a missing variable.
468     const std::string env_var =
469         std::string("TZ=") + (time_zone ? time_zone : "");
470     _putenv(env_var.c_str());
471     GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* deprecated function */)
472     tzset();
473     GTEST_DISABLE_MSC_WARNINGS_POP_()
474 #else
475 #if defined(GTEST_OS_LINUX_ANDROID) && __ANDROID_API__ < 21
476     // Work around KitKat bug in tzset by setting "UTC" before setting "UTC+00".
477     // See https://github.com/android/ndk/issues/1604.
478     setenv("TZ", "UTC", 1);
479     tzset();
480 #endif
481     if (time_zone) {
482       setenv(("TZ"), time_zone, 1);
483     } else {
484       unsetenv("TZ");
485     }
486     tzset();
487 #endif
488   }
489 
490   std::unique_ptr<std::string> saved_tz_;  // Empty and null are different here
491 };
492 
493 const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
494 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsTwoDigitSegments)495 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
496   EXPECT_EQ("2011-10-31T18:52:42.000",
497             FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
498 }
499 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,IncludesMillisecondsAfterDot)500 TEST_F(FormatEpochTimeInMillisAsIso8601Test, IncludesMillisecondsAfterDot) {
501   EXPECT_EQ("2011-10-31T18:52:42.234",
502             FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
503 }
504 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsLeadingZeroes)505 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
506   EXPECT_EQ("2011-09-03T05:07:02.000",
507             FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
508 }
509 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,Prints24HourTime)510 TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
511   EXPECT_EQ("2011-09-28T17:08:22.000",
512             FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
513 }
514 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsEpochStart)515 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
516   EXPECT_EQ("1970-01-01T00:00:00.000", FormatEpochTimeInMillisAsIso8601(0));
517 }
518 
519 #endif  // __EMSCRIPTEN__
520 
521 #ifdef __BORLANDC__
522 // Silences warnings: "Condition is always true", "Unreachable code"
523 #pragma option push -w-ccc -w-rch
524 #endif
525 
526 // Tests that the LHS of EXPECT_EQ or ASSERT_EQ can be used as a null literal
527 // when the RHS is a pointer type.
TEST(NullLiteralTest,LHSAllowsNullLiterals)528 TEST(NullLiteralTest, LHSAllowsNullLiterals) {
529   EXPECT_EQ(0, static_cast<void*>(nullptr));     // NOLINT
530   ASSERT_EQ(0, static_cast<void*>(nullptr));     // NOLINT
531   EXPECT_EQ(NULL, static_cast<void*>(nullptr));  // NOLINT
532   ASSERT_EQ(NULL, static_cast<void*>(nullptr));  // NOLINT
533   EXPECT_EQ(nullptr, static_cast<void*>(nullptr));
534   ASSERT_EQ(nullptr, static_cast<void*>(nullptr));
535 
536   const int* const p = nullptr;
537   EXPECT_EQ(0, p);     // NOLINT
538   ASSERT_EQ(0, p);     // NOLINT
539   EXPECT_EQ(NULL, p);  // NOLINT
540   ASSERT_EQ(NULL, p);  // NOLINT
541   EXPECT_EQ(nullptr, p);
542   ASSERT_EQ(nullptr, p);
543 }
544 
545 struct ConvertToAll {
546   template <typename T>
operator T__anon19f4cde20111::ConvertToAll547   operator T() const {  // NOLINT
548     return T();
549   }
550 };
551 
552 struct ConvertToPointer {
553   template <class T>
operator T*__anon19f4cde20111::ConvertToPointer554   operator T*() const {  // NOLINT
555     return nullptr;
556   }
557 };
558 
559 struct ConvertToAllButNoPointers {
560   template <typename T,
561             typename std::enable_if<!std::is_pointer<T>::value, int>::type = 0>
operator T__anon19f4cde20111::ConvertToAllButNoPointers562   operator T() const {  // NOLINT
563     return T();
564   }
565 };
566 
567 struct MyType {};
operator ==(MyType const &,MyType const &)568 inline bool operator==(MyType const&, MyType const&) { return true; }
569 
TEST(NullLiteralTest,ImplicitConversion)570 TEST(NullLiteralTest, ImplicitConversion) {
571   EXPECT_EQ(ConvertToPointer{}, static_cast<void*>(nullptr));
572 #if !defined(__GNUC__) || defined(__clang__)
573   // Disabled due to GCC bug gcc.gnu.org/PR89580
574   EXPECT_EQ(ConvertToAll{}, static_cast<void*>(nullptr));
575 #endif
576   EXPECT_EQ(ConvertToAll{}, MyType{});
577   EXPECT_EQ(ConvertToAllButNoPointers{}, MyType{});
578 }
579 
580 #ifdef __clang__
581 #pragma clang diagnostic push
582 #if __has_warning("-Wzero-as-null-pointer-constant")
583 #pragma clang diagnostic error "-Wzero-as-null-pointer-constant"
584 #endif
585 #endif
586 
TEST(NullLiteralTest,NoConversionNoWarning)587 TEST(NullLiteralTest, NoConversionNoWarning) {
588   // Test that gtests detection and handling of null pointer constants
589   // doesn't trigger a warning when '0' isn't actually used as null.
590   EXPECT_EQ(0, 0);
591   ASSERT_EQ(0, 0);
592 }
593 
594 #ifdef __clang__
595 #pragma clang diagnostic pop
596 #endif
597 
598 #ifdef __BORLANDC__
599 // Restores warnings after previous "#pragma option push" suppressed them.
600 #pragma option pop
601 #endif
602 
603 //
604 // Tests CodePointToUtf8().
605 
606 // Tests that the NUL character L'\0' is encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeNul)607 TEST(CodePointToUtf8Test, CanEncodeNul) {
608   EXPECT_EQ("", CodePointToUtf8(L'\0'));
609 }
610 
611 // Tests that ASCII characters are encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeAscii)612 TEST(CodePointToUtf8Test, CanEncodeAscii) {
613   EXPECT_EQ("a", CodePointToUtf8(L'a'));
614   EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
615   EXPECT_EQ("&", CodePointToUtf8(L'&'));
616   EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
617 }
618 
619 // Tests that Unicode code-points that have 8 to 11 bits are encoded
620 // as 110xxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode8To11Bits)621 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
622   // 000 1101 0011 => 110-00011 10-010011
623   EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
624 
625   // 101 0111 0110 => 110-10101 10-110110
626   // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
627   // in wide strings and wide chars. In order to accommodate them, we have to
628   // introduce such character constants as integers.
629   EXPECT_EQ("\xD5\xB6", CodePointToUtf8(static_cast<wchar_t>(0x576)));
630 }
631 
632 // Tests that Unicode code-points that have 12 to 16 bits are encoded
633 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode12To16Bits)634 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
635   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
636   EXPECT_EQ("\xE0\xA3\x93", CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
637 
638   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
639   EXPECT_EQ("\xEC\x9D\x8D", CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
640 }
641 
642 #if !GTEST_WIDE_STRING_USES_UTF16_
643 // Tests in this group require a wchar_t to hold > 16 bits, and thus
644 // are skipped on Windows, and Cygwin, where a wchar_t is
645 // 16-bit wide. This code may not compile on those systems.
646 
647 // Tests that Unicode code-points that have 17 to 21 bits are encoded
648 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode17To21Bits)649 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
650   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
651   EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
652 
653   // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
654   EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
655 
656   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
657   EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
658 }
659 
660 // Tests that encoding an invalid code-point generates the expected result.
TEST(CodePointToUtf8Test,CanEncodeInvalidCodePoint)661 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
662   EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
663 }
664 
665 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
666 
667 // Tests WideStringToUtf8().
668 
669 // Tests that the NUL character L'\0' is encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeNul)670 TEST(WideStringToUtf8Test, CanEncodeNul) {
671   EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
672   EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
673 }
674 
675 // Tests that ASCII strings are encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeAscii)676 TEST(WideStringToUtf8Test, CanEncodeAscii) {
677   EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
678   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
679   EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
680   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
681 }
682 
683 // Tests that Unicode code-points that have 8 to 11 bits are encoded
684 // as 110xxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode8To11Bits)685 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
686   // 000 1101 0011 => 110-00011 10-010011
687   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
688   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
689 
690   // 101 0111 0110 => 110-10101 10-110110
691   const wchar_t s[] = {0x576, '\0'};
692   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
693   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
694 }
695 
696 // Tests that Unicode code-points that have 12 to 16 bits are encoded
697 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode12To16Bits)698 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
699   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
700   const wchar_t s1[] = {0x8D3, '\0'};
701   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
702   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
703 
704   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
705   const wchar_t s2[] = {0xC74D, '\0'};
706   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
707   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
708 }
709 
710 // Tests that the conversion stops when the function encounters \0 character.
TEST(WideStringToUtf8Test,StopsOnNulCharacter)711 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
712   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
713 }
714 
715 // Tests that the conversion stops when the function reaches the limit
716 // specified by the 'length' parameter.
TEST(WideStringToUtf8Test,StopsWhenLengthLimitReached)717 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
718   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
719 }
720 
721 #if !GTEST_WIDE_STRING_USES_UTF16_
722 // Tests that Unicode code-points that have 17 to 21 bits are encoded
723 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
724 // on the systems using UTF-16 encoding.
TEST(WideStringToUtf8Test,CanEncode17To21Bits)725 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
726   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
727   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
728   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
729 
730   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
731   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
732   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
733 }
734 
735 // Tests that encoding an invalid code-point generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidCodePoint)736 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
737   EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
738                WideStringToUtf8(L"\xABCDFF", -1).c_str());
739 }
740 #else   // !GTEST_WIDE_STRING_USES_UTF16_
741 // Tests that surrogate pairs are encoded correctly on the systems using
742 // UTF-16 encoding in the wide strings.
TEST(WideStringToUtf8Test,CanEncodeValidUtf16SUrrogatePairs)743 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
744   const wchar_t s[] = {0xD801, 0xDC00, '\0'};
745   EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
746 }
747 
748 // Tests that encoding an invalid UTF-16 surrogate pair
749 // generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidUtf16SurrogatePair)750 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
751   // Leading surrogate is at the end of the string.
752   const wchar_t s1[] = {0xD800, '\0'};
753   EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
754   // Leading surrogate is not followed by the trailing surrogate.
755   const wchar_t s2[] = {0xD800, 'M', '\0'};
756   EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
757   // Trailing surrogate appearas without a leading surrogate.
758   const wchar_t s3[] = {0xDC00, 'P', 'Q', 'R', '\0'};
759   EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
760 }
761 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
762 
763 // Tests that codepoint concatenation works correctly.
764 #if !GTEST_WIDE_STRING_USES_UTF16_
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)765 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
766   const wchar_t s[] = {0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
767   EXPECT_STREQ(
768       "\xF4\x88\x98\xB4"
769       "\xEC\x9D\x8D"
770       "\n"
771       "\xD5\xB6"
772       "\xE0\xA3\x93"
773       "\xF4\x88\x98\xB4",
774       WideStringToUtf8(s, -1).c_str());
775 }
776 #else
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)777 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
778   const wchar_t s[] = {0xC74D, '\n', 0x576, 0x8D3, '\0'};
779   EXPECT_STREQ(
780       "\xEC\x9D\x8D"
781       "\n"
782       "\xD5\xB6"
783       "\xE0\xA3\x93",
784       WideStringToUtf8(s, -1).c_str());
785 }
786 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
787 
788 // Tests the Random class.
789 
TEST(RandomDeathTest,GeneratesCrashesOnInvalidRange)790 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
791   testing::internal::Random random(42);
792   EXPECT_DEATH_IF_SUPPORTED(random.Generate(0),
793                             "Cannot generate a number in the range \\[0, 0\\)");
794   EXPECT_DEATH_IF_SUPPORTED(
795       random.Generate(testing::internal::Random::kMaxRange + 1),
796       "Generation of a number in \\[0, 2147483649\\) was requested, "
797       "but this can only generate numbers in \\[0, 2147483648\\)");
798 }
799 
TEST(RandomTest,GeneratesNumbersWithinRange)800 TEST(RandomTest, GeneratesNumbersWithinRange) {
801   constexpr uint32_t kRange = 10000;
802   testing::internal::Random random(12345);
803   for (int i = 0; i < 10; i++) {
804     EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
805   }
806 
807   testing::internal::Random random2(testing::internal::Random::kMaxRange);
808   for (int i = 0; i < 10; i++) {
809     EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
810   }
811 }
812 
TEST(RandomTest,RepeatsWhenReseeded)813 TEST(RandomTest, RepeatsWhenReseeded) {
814   constexpr int kSeed = 123;
815   constexpr int kArraySize = 10;
816   constexpr uint32_t kRange = 10000;
817   uint32_t values[kArraySize];
818 
819   testing::internal::Random random(kSeed);
820   for (int i = 0; i < kArraySize; i++) {
821     values[i] = random.Generate(kRange);
822   }
823 
824   random.Reseed(kSeed);
825   for (int i = 0; i < kArraySize; i++) {
826     EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
827   }
828 }
829 
830 // Tests STL container utilities.
831 
832 // Tests CountIf().
833 
IsPositive(int n)834 static bool IsPositive(int n) { return n > 0; }
835 
TEST(ContainerUtilityTest,CountIf)836 TEST(ContainerUtilityTest, CountIf) {
837   std::vector<int> v;
838   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container.
839 
840   v.push_back(-1);
841   v.push_back(0);
842   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies.
843 
844   v.push_back(2);
845   v.push_back(-10);
846   v.push_back(10);
847   EXPECT_EQ(2, CountIf(v, IsPositive));
848 }
849 
850 // Tests ForEach().
851 
852 static int g_sum = 0;
Accumulate(int n)853 static void Accumulate(int n) { g_sum += n; }
854 
TEST(ContainerUtilityTest,ForEach)855 TEST(ContainerUtilityTest, ForEach) {
856   std::vector<int> v;
857   g_sum = 0;
858   ForEach(v, Accumulate);
859   EXPECT_EQ(0, g_sum);  // Works for an empty container;
860 
861   g_sum = 0;
862   v.push_back(1);
863   ForEach(v, Accumulate);
864   EXPECT_EQ(1, g_sum);  // Works for a container with one element.
865 
866   g_sum = 0;
867   v.push_back(20);
868   v.push_back(300);
869   ForEach(v, Accumulate);
870   EXPECT_EQ(321, g_sum);
871 }
872 
873 // Tests GetElementOr().
TEST(ContainerUtilityTest,GetElementOr)874 TEST(ContainerUtilityTest, GetElementOr) {
875   std::vector<char> a;
876   EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
877 
878   a.push_back('a');
879   a.push_back('b');
880   EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
881   EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
882   EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
883   EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
884 }
885 
TEST(ContainerUtilityDeathTest,ShuffleRange)886 TEST(ContainerUtilityDeathTest, ShuffleRange) {
887   std::vector<int> a;
888   a.push_back(0);
889   a.push_back(1);
890   a.push_back(2);
891   testing::internal::Random random(1);
892 
893   EXPECT_DEATH_IF_SUPPORTED(
894       ShuffleRange(&random, -1, 1, &a),
895       "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
896   EXPECT_DEATH_IF_SUPPORTED(
897       ShuffleRange(&random, 4, 4, &a),
898       "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
899   EXPECT_DEATH_IF_SUPPORTED(
900       ShuffleRange(&random, 3, 2, &a),
901       "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
902   EXPECT_DEATH_IF_SUPPORTED(
903       ShuffleRange(&random, 3, 4, &a),
904       "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
905 }
906 
907 class VectorShuffleTest : public Test {
908  protected:
909   static const size_t kVectorSize = 20;
910 
VectorShuffleTest()911   VectorShuffleTest() : random_(1) {
912     for (int i = 0; i < static_cast<int>(kVectorSize); i++) {
913       vector_.push_back(i);
914     }
915   }
916 
VectorIsCorrupt(const TestingVector & vector)917   static bool VectorIsCorrupt(const TestingVector& vector) {
918     if (kVectorSize != vector.size()) {
919       return true;
920     }
921 
922     bool found_in_vector[kVectorSize] = {false};
923     for (size_t i = 0; i < vector.size(); i++) {
924       const int e = vector[i];
925       if (e < 0 || e >= static_cast<int>(kVectorSize) || found_in_vector[e]) {
926         return true;
927       }
928       found_in_vector[e] = true;
929     }
930 
931     // Vector size is correct, elements' range is correct, no
932     // duplicate elements.  Therefore no corruption has occurred.
933     return false;
934   }
935 
VectorIsNotCorrupt(const TestingVector & vector)936   static bool VectorIsNotCorrupt(const TestingVector& vector) {
937     return !VectorIsCorrupt(vector);
938   }
939 
RangeIsShuffled(const TestingVector & vector,int begin,int end)940   static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
941     for (int i = begin; i < end; i++) {
942       if (i != vector[static_cast<size_t>(i)]) {
943         return true;
944       }
945     }
946     return false;
947   }
948 
RangeIsUnshuffled(const TestingVector & vector,int begin,int end)949   static bool RangeIsUnshuffled(const TestingVector& vector, int begin,
950                                 int end) {
951     return !RangeIsShuffled(vector, begin, end);
952   }
953 
VectorIsShuffled(const TestingVector & vector)954   static bool VectorIsShuffled(const TestingVector& vector) {
955     return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
956   }
957 
VectorIsUnshuffled(const TestingVector & vector)958   static bool VectorIsUnshuffled(const TestingVector& vector) {
959     return !VectorIsShuffled(vector);
960   }
961 
962   testing::internal::Random random_;
963   TestingVector vector_;
964 };  // class VectorShuffleTest
965 
966 const size_t VectorShuffleTest::kVectorSize;
967 
TEST_F(VectorShuffleTest,HandlesEmptyRange)968 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
969   // Tests an empty range at the beginning...
970   ShuffleRange(&random_, 0, 0, &vector_);
971   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
972   ASSERT_PRED1(VectorIsUnshuffled, vector_);
973 
974   // ...in the middle...
975   ShuffleRange(&random_, kVectorSize / 2, kVectorSize / 2, &vector_);
976   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
977   ASSERT_PRED1(VectorIsUnshuffled, vector_);
978 
979   // ...at the end...
980   ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
981   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
982   ASSERT_PRED1(VectorIsUnshuffled, vector_);
983 
984   // ...and past the end.
985   ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
986   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
987   ASSERT_PRED1(VectorIsUnshuffled, vector_);
988 }
989 
TEST_F(VectorShuffleTest,HandlesRangeOfSizeOne)990 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
991   // Tests a size one range at the beginning...
992   ShuffleRange(&random_, 0, 1, &vector_);
993   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
994   ASSERT_PRED1(VectorIsUnshuffled, vector_);
995 
996   // ...in the middle...
997   ShuffleRange(&random_, kVectorSize / 2, kVectorSize / 2 + 1, &vector_);
998   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
999   ASSERT_PRED1(VectorIsUnshuffled, vector_);
1000 
1001   // ...and at the end.
1002   ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
1003   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1004   ASSERT_PRED1(VectorIsUnshuffled, vector_);
1005 }
1006 
1007 // Because we use our own random number generator and a fixed seed,
1008 // we can guarantee that the following "random" tests will succeed.
1009 
TEST_F(VectorShuffleTest,ShufflesEntireVector)1010 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
1011   Shuffle(&random_, &vector_);
1012   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1013   EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
1014 
1015   // Tests the first and last elements in particular to ensure that
1016   // there are no off-by-one problems in our shuffle algorithm.
1017   EXPECT_NE(0, vector_[0]);
1018   EXPECT_NE(static_cast<int>(kVectorSize - 1), vector_[kVectorSize - 1]);
1019 }
1020 
TEST_F(VectorShuffleTest,ShufflesStartOfVector)1021 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
1022   const int kRangeSize = kVectorSize / 2;
1023 
1024   ShuffleRange(&random_, 0, kRangeSize, &vector_);
1025 
1026   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1027   EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
1028   EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize,
1029                static_cast<int>(kVectorSize));
1030 }
1031 
TEST_F(VectorShuffleTest,ShufflesEndOfVector)1032 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
1033   const int kRangeSize = kVectorSize / 2;
1034   ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
1035 
1036   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1037   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
1038   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize,
1039                static_cast<int>(kVectorSize));
1040 }
1041 
TEST_F(VectorShuffleTest,ShufflesMiddleOfVector)1042 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
1043   const int kRangeSize = static_cast<int>(kVectorSize) / 3;
1044   ShuffleRange(&random_, kRangeSize, 2 * kRangeSize, &vector_);
1045 
1046   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1047   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
1048   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2 * kRangeSize);
1049   EXPECT_PRED3(RangeIsUnshuffled, vector_, 2 * kRangeSize,
1050                static_cast<int>(kVectorSize));
1051 }
1052 
TEST_F(VectorShuffleTest,ShufflesRepeatably)1053 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
1054   TestingVector vector2;
1055   for (size_t i = 0; i < kVectorSize; i++) {
1056     vector2.push_back(static_cast<int>(i));
1057   }
1058 
1059   random_.Reseed(1234);
1060   Shuffle(&random_, &vector_);
1061   random_.Reseed(1234);
1062   Shuffle(&random_, &vector2);
1063 
1064   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1065   ASSERT_PRED1(VectorIsNotCorrupt, vector2);
1066 
1067   for (size_t i = 0; i < kVectorSize; i++) {
1068     EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
1069   }
1070 }
1071 
1072 // Tests the size of the AssertHelper class.
1073 
TEST(AssertHelperTest,AssertHelperIsSmall)1074 TEST(AssertHelperTest, AssertHelperIsSmall) {
1075   // To avoid breaking clients that use lots of assertions in one
1076   // function, we cannot grow the size of AssertHelper.
1077   EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
1078 }
1079 
1080 // Tests String::EndsWithCaseInsensitive().
TEST(StringTest,EndsWithCaseInsensitive)1081 TEST(StringTest, EndsWithCaseInsensitive) {
1082   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
1083   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
1084   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
1085   EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
1086 
1087   EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
1088   EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
1089   EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
1090 }
1091 
1092 // C++Builder's preprocessor is buggy; it fails to expand macros that
1093 // appear in macro parameters after wide char literals.  Provide an alias
1094 // for NULL as a workaround.
1095 static const wchar_t* const kNull = nullptr;
1096 
1097 // Tests String::CaseInsensitiveWideCStringEquals
TEST(StringTest,CaseInsensitiveWideCStringEquals)1098 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
1099   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(nullptr, nullptr));
1100   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
1101   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
1102   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
1103   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
1104   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
1105   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
1106   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
1107 }
1108 
1109 #ifdef GTEST_OS_WINDOWS
1110 
1111 // Tests String::ShowWideCString().
TEST(StringTest,ShowWideCString)1112 TEST(StringTest, ShowWideCString) {
1113   EXPECT_STREQ("(null)", String::ShowWideCString(NULL).c_str());
1114   EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
1115   EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
1116 }
1117 
1118 #ifdef GTEST_OS_WINDOWS_MOBILE
TEST(StringTest,AnsiAndUtf16Null)1119 TEST(StringTest, AnsiAndUtf16Null) {
1120   EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
1121   EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
1122 }
1123 
TEST(StringTest,AnsiAndUtf16ConvertBasic)1124 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
1125   const char* ansi = String::Utf16ToAnsi(L"str");
1126   EXPECT_STREQ("str", ansi);
1127   delete[] ansi;
1128   const WCHAR* utf16 = String::AnsiToUtf16("str");
1129   EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
1130   delete[] utf16;
1131 }
1132 
TEST(StringTest,AnsiAndUtf16ConvertPathChars)1133 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
1134   const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
1135   EXPECT_STREQ(".:\\ \"*?", ansi);
1136   delete[] ansi;
1137   const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
1138   EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
1139   delete[] utf16;
1140 }
1141 #endif  // GTEST_OS_WINDOWS_MOBILE
1142 
1143 #endif  // GTEST_OS_WINDOWS
1144 
1145 // Tests TestProperty construction.
TEST(TestPropertyTest,StringValue)1146 TEST(TestPropertyTest, StringValue) {
1147   TestProperty property("key", "1");
1148   EXPECT_STREQ("key", property.key());
1149   EXPECT_STREQ("1", property.value());
1150 }
1151 
1152 // Tests TestProperty replacing a value.
TEST(TestPropertyTest,ReplaceStringValue)1153 TEST(TestPropertyTest, ReplaceStringValue) {
1154   TestProperty property("key", "1");
1155   EXPECT_STREQ("1", property.value());
1156   property.SetValue("2");
1157   EXPECT_STREQ("2", property.value());
1158 }
1159 
1160 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
1161 // functions (i.e. their definitions cannot be inlined at the call
1162 // sites), or C++Builder won't compile the code.
AddFatalFailure()1163 static void AddFatalFailure() { FAIL() << "Expected fatal failure."; }
1164 
AddNonfatalFailure()1165 static void AddNonfatalFailure() {
1166   ADD_FAILURE() << "Expected non-fatal failure.";
1167 }
1168 
1169 class ScopedFakeTestPartResultReporterTest : public Test {
1170  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
1171   enum FailureMode { FATAL_FAILURE, NONFATAL_FAILURE };
AddFailure(FailureMode failure)1172   static void AddFailure(FailureMode failure) {
1173     if (failure == FATAL_FAILURE) {
1174       AddFatalFailure();
1175     } else {
1176       AddNonfatalFailure();
1177     }
1178   }
1179 };
1180 
1181 // Tests that ScopedFakeTestPartResultReporter intercepts test
1182 // failures.
TEST_F(ScopedFakeTestPartResultReporterTest,InterceptsTestFailures)1183 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
1184   TestPartResultArray results;
1185   {
1186     ScopedFakeTestPartResultReporter reporter(
1187         ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
1188         &results);
1189     AddFailure(NONFATAL_FAILURE);
1190     AddFailure(FATAL_FAILURE);
1191   }
1192 
1193   EXPECT_EQ(2, results.size());
1194   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1195   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1196 }
1197 
TEST_F(ScopedFakeTestPartResultReporterTest,DeprecatedConstructor)1198 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
1199   TestPartResultArray results;
1200   {
1201     // Tests, that the deprecated constructor still works.
1202     ScopedFakeTestPartResultReporter reporter(&results);
1203     AddFailure(NONFATAL_FAILURE);
1204   }
1205   EXPECT_EQ(1, results.size());
1206 }
1207 
1208 #ifdef GTEST_IS_THREADSAFE
1209 
1210 class ScopedFakeTestPartResultReporterWithThreadsTest
1211     : public ScopedFakeTestPartResultReporterTest {
1212  protected:
AddFailureInOtherThread(FailureMode failure)1213   static void AddFailureInOtherThread(FailureMode failure) {
1214     ThreadWithParam<FailureMode> thread(&AddFailure, failure, nullptr);
1215     thread.Join();
1216   }
1217 };
1218 
TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,InterceptsTestFailuresInAllThreads)1219 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
1220        InterceptsTestFailuresInAllThreads) {
1221   TestPartResultArray results;
1222   {
1223     ScopedFakeTestPartResultReporter reporter(
1224         ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
1225     AddFailure(NONFATAL_FAILURE);
1226     AddFailure(FATAL_FAILURE);
1227     AddFailureInOtherThread(NONFATAL_FAILURE);
1228     AddFailureInOtherThread(FATAL_FAILURE);
1229   }
1230 
1231   EXPECT_EQ(4, results.size());
1232   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1233   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1234   EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
1235   EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
1236 }
1237 
1238 #endif  // GTEST_IS_THREADSAFE
1239 
1240 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
1241 // work even if the failure is generated in a called function rather than
1242 // the current context.
1243 
1244 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
1245 
TEST_F(ExpectFatalFailureTest,CatchesFatalFaliure)1246 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
1247   EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
1248 }
1249 
TEST_F(ExpectFatalFailureTest,AcceptsStdStringObject)1250 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
1251   EXPECT_FATAL_FAILURE(AddFatalFailure(),
1252                        ::std::string("Expected fatal failure."));
1253 }
1254 
TEST_F(ExpectFatalFailureTest,CatchesFatalFailureOnAllThreads)1255 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
1256   // We have another test below to verify that the macro catches fatal
1257   // failures generated on another thread.
1258   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
1259                                       "Expected fatal failure.");
1260 }
1261 
1262 #ifdef __BORLANDC__
1263 // Silences warnings: "Condition is always true"
1264 #pragma option push -w-ccc
1265 #endif
1266 
1267 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
1268 // function even when the statement in it contains ASSERT_*.
1269 
NonVoidFunction()1270 int NonVoidFunction() {
1271   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1272   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1273   return 0;
1274 }
1275 
TEST_F(ExpectFatalFailureTest,CanBeUsedInNonVoidFunction)1276 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
1277   NonVoidFunction();
1278 }
1279 
1280 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
1281 // current function even though 'statement' generates a fatal failure.
1282 
DoesNotAbortHelper(bool * aborted)1283 void DoesNotAbortHelper(bool* aborted) {
1284   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1285   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1286 
1287   *aborted = false;
1288 }
1289 
1290 #ifdef __BORLANDC__
1291 // Restores warnings after previous "#pragma option push" suppressed them.
1292 #pragma option pop
1293 #endif
1294 
TEST_F(ExpectFatalFailureTest,DoesNotAbort)1295 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
1296   bool aborted = true;
1297   DoesNotAbortHelper(&aborted);
1298   EXPECT_FALSE(aborted);
1299 }
1300 
1301 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1302 // statement that contains a macro which expands to code containing an
1303 // unprotected comma.
1304 
1305 static int global_var = 0;
1306 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
1307 
TEST_F(ExpectFatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1308 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1309 #ifndef __BORLANDC__
1310   // ICE's in C++Builder.
1311   EXPECT_FATAL_FAILURE(
1312       {
1313         GTEST_USE_UNPROTECTED_COMMA_;
1314         AddFatalFailure();
1315       },
1316       "");
1317 #endif
1318 
1319   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(
1320       {
1321         GTEST_USE_UNPROTECTED_COMMA_;
1322         AddFatalFailure();
1323       },
1324       "");
1325 }
1326 
1327 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
1328 
1329 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
1330 
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailure)1331 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
1332   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(), "Expected non-fatal failure.");
1333 }
1334 
TEST_F(ExpectNonfatalFailureTest,AcceptsStdStringObject)1335 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
1336   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1337                           ::std::string("Expected non-fatal failure."));
1338 }
1339 
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailureOnAllThreads)1340 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
1341   // We have another test below to verify that the macro catches
1342   // non-fatal failures generated on another thread.
1343   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
1344                                          "Expected non-fatal failure.");
1345 }
1346 
1347 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1348 // statement that contains a macro which expands to code containing an
1349 // unprotected comma.
TEST_F(ExpectNonfatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1350 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1351   EXPECT_NONFATAL_FAILURE(
1352       {
1353         GTEST_USE_UNPROTECTED_COMMA_;
1354         AddNonfatalFailure();
1355       },
1356       "");
1357 
1358   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1359       {
1360         GTEST_USE_UNPROTECTED_COMMA_;
1361         AddNonfatalFailure();
1362       },
1363       "");
1364 }
1365 
1366 #ifdef GTEST_IS_THREADSAFE
1367 
1368 typedef ScopedFakeTestPartResultReporterWithThreadsTest
1369     ExpectFailureWithThreadsTest;
1370 
TEST_F(ExpectFailureWithThreadsTest,ExpectFatalFailureOnAllThreads)1371 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
1372   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
1373                                       "Expected fatal failure.");
1374 }
1375 
TEST_F(ExpectFailureWithThreadsTest,ExpectNonFatalFailureOnAllThreads)1376 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
1377   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1378       AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
1379 }
1380 
1381 #endif  // GTEST_IS_THREADSAFE
1382 
1383 // Tests the TestProperty class.
1384 
TEST(TestPropertyTest,ConstructorWorks)1385 TEST(TestPropertyTest, ConstructorWorks) {
1386   const TestProperty property("key", "value");
1387   EXPECT_STREQ("key", property.key());
1388   EXPECT_STREQ("value", property.value());
1389 }
1390 
TEST(TestPropertyTest,SetValue)1391 TEST(TestPropertyTest, SetValue) {
1392   TestProperty property("key", "value_1");
1393   EXPECT_STREQ("key", property.key());
1394   property.SetValue("value_2");
1395   EXPECT_STREQ("key", property.key());
1396   EXPECT_STREQ("value_2", property.value());
1397 }
1398 
1399 // Tests the TestResult class
1400 
1401 // The test fixture for testing TestResult.
1402 class TestResultTest : public Test {
1403  protected:
1404   typedef std::vector<TestPartResult> TPRVector;
1405 
1406   // We make use of 2 TestPartResult objects,
1407   TestPartResult *pr1, *pr2;
1408 
1409   // ... and 3 TestResult objects.
1410   TestResult *r0, *r1, *r2;
1411 
SetUp()1412   void SetUp() override {
1413     // pr1 is for success.
1414     pr1 = new TestPartResult(TestPartResult::kSuccess, "foo/bar.cc", 10,
1415                              "Success!");
1416 
1417     // pr2 is for fatal failure.
1418     pr2 = new TestPartResult(TestPartResult::kFatalFailure, "foo/bar.cc",
1419                              -1,  // This line number means "unknown"
1420                              "Failure!");
1421 
1422     // Creates the TestResult objects.
1423     r0 = new TestResult();
1424     r1 = new TestResult();
1425     r2 = new TestResult();
1426 
1427     // In order to test TestResult, we need to modify its internal
1428     // state, in particular the TestPartResult vector it holds.
1429     // test_part_results() returns a const reference to this vector.
1430     // We cast it to a non-const object s.t. it can be modified
1431     TPRVector* results1 =
1432         const_cast<TPRVector*>(&TestResultAccessor::test_part_results(*r1));
1433     TPRVector* results2 =
1434         const_cast<TPRVector*>(&TestResultAccessor::test_part_results(*r2));
1435 
1436     // r0 is an empty TestResult.
1437 
1438     // r1 contains a single SUCCESS TestPartResult.
1439     results1->push_back(*pr1);
1440 
1441     // r2 contains a SUCCESS, and a FAILURE.
1442     results2->push_back(*pr1);
1443     results2->push_back(*pr2);
1444   }
1445 
TearDown()1446   void TearDown() override {
1447     delete pr1;
1448     delete pr2;
1449 
1450     delete r0;
1451     delete r1;
1452     delete r2;
1453   }
1454 
1455   // Helper that compares two TestPartResults.
CompareTestPartResult(const TestPartResult & expected,const TestPartResult & actual)1456   static void CompareTestPartResult(const TestPartResult& expected,
1457                                     const TestPartResult& actual) {
1458     EXPECT_EQ(expected.type(), actual.type());
1459     EXPECT_STREQ(expected.file_name(), actual.file_name());
1460     EXPECT_EQ(expected.line_number(), actual.line_number());
1461     EXPECT_STREQ(expected.summary(), actual.summary());
1462     EXPECT_STREQ(expected.message(), actual.message());
1463     EXPECT_EQ(expected.passed(), actual.passed());
1464     EXPECT_EQ(expected.failed(), actual.failed());
1465     EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
1466     EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
1467   }
1468 };
1469 
1470 // Tests TestResult::total_part_count().
TEST_F(TestResultTest,total_part_count)1471 TEST_F(TestResultTest, total_part_count) {
1472   ASSERT_EQ(0, r0->total_part_count());
1473   ASSERT_EQ(1, r1->total_part_count());
1474   ASSERT_EQ(2, r2->total_part_count());
1475 }
1476 
1477 // Tests TestResult::Passed().
TEST_F(TestResultTest,Passed)1478 TEST_F(TestResultTest, Passed) {
1479   ASSERT_TRUE(r0->Passed());
1480   ASSERT_TRUE(r1->Passed());
1481   ASSERT_FALSE(r2->Passed());
1482 }
1483 
1484 // Tests TestResult::Failed().
TEST_F(TestResultTest,Failed)1485 TEST_F(TestResultTest, Failed) {
1486   ASSERT_FALSE(r0->Failed());
1487   ASSERT_FALSE(r1->Failed());
1488   ASSERT_TRUE(r2->Failed());
1489 }
1490 
1491 // Tests TestResult::GetTestPartResult().
1492 
1493 typedef TestResultTest TestResultDeathTest;
1494 
TEST_F(TestResultDeathTest,GetTestPartResult)1495 TEST_F(TestResultDeathTest, GetTestPartResult) {
1496   CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
1497   CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
1498   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
1499   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
1500 }
1501 
1502 // Tests TestResult has no properties when none are added.
TEST(TestResultPropertyTest,NoPropertiesFoundWhenNoneAreAdded)1503 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
1504   TestResult test_result;
1505   ASSERT_EQ(0, test_result.test_property_count());
1506 }
1507 
1508 // Tests TestResult has the expected property when added.
TEST(TestResultPropertyTest,OnePropertyFoundWhenAdded)1509 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
1510   TestResult test_result;
1511   TestProperty property("key_1", "1");
1512   TestResultAccessor::RecordProperty(&test_result, "testcase", property);
1513   ASSERT_EQ(1, test_result.test_property_count());
1514   const TestProperty& actual_property = test_result.GetTestProperty(0);
1515   EXPECT_STREQ("key_1", actual_property.key());
1516   EXPECT_STREQ("1", actual_property.value());
1517 }
1518 
1519 // Tests TestResult has multiple properties when added.
TEST(TestResultPropertyTest,MultiplePropertiesFoundWhenAdded)1520 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
1521   TestResult test_result;
1522   TestProperty property_1("key_1", "1");
1523   TestProperty property_2("key_2", "2");
1524   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1525   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1526   ASSERT_EQ(2, test_result.test_property_count());
1527   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1528   EXPECT_STREQ("key_1", actual_property_1.key());
1529   EXPECT_STREQ("1", actual_property_1.value());
1530 
1531   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1532   EXPECT_STREQ("key_2", actual_property_2.key());
1533   EXPECT_STREQ("2", actual_property_2.value());
1534 }
1535 
1536 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST(TestResultPropertyTest,OverridesValuesForDuplicateKeys)1537 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
1538   TestResult test_result;
1539   TestProperty property_1_1("key_1", "1");
1540   TestProperty property_2_1("key_2", "2");
1541   TestProperty property_1_2("key_1", "12");
1542   TestProperty property_2_2("key_2", "22");
1543   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
1544   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
1545   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
1546   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
1547 
1548   ASSERT_EQ(2, test_result.test_property_count());
1549   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1550   EXPECT_STREQ("key_1", actual_property_1.key());
1551   EXPECT_STREQ("12", actual_property_1.value());
1552 
1553   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1554   EXPECT_STREQ("key_2", actual_property_2.key());
1555   EXPECT_STREQ("22", actual_property_2.value());
1556 }
1557 
1558 // Tests TestResult::GetTestProperty().
TEST(TestResultPropertyTest,GetTestProperty)1559 TEST(TestResultPropertyTest, GetTestProperty) {
1560   TestResult test_result;
1561   TestProperty property_1("key_1", "1");
1562   TestProperty property_2("key_2", "2");
1563   TestProperty property_3("key_3", "3");
1564   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1565   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1566   TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
1567 
1568   const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
1569   const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
1570   const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
1571 
1572   EXPECT_STREQ("key_1", fetched_property_1.key());
1573   EXPECT_STREQ("1", fetched_property_1.value());
1574 
1575   EXPECT_STREQ("key_2", fetched_property_2.key());
1576   EXPECT_STREQ("2", fetched_property_2.value());
1577 
1578   EXPECT_STREQ("key_3", fetched_property_3.key());
1579   EXPECT_STREQ("3", fetched_property_3.value());
1580 
1581   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
1582   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
1583 }
1584 
1585 // Tests the Test class.
1586 //
1587 // It's difficult to test every public method of this class (we are
1588 // already stretching the limit of Google Test by using it to test itself!).
1589 // Fortunately, we don't have to do that, as we are already testing
1590 // the functionalities of the Test class extensively by using Google Test
1591 // alone.
1592 //
1593 // Therefore, this section only contains one test.
1594 
1595 // Tests that GTestFlagSaver works on Windows and Mac.
1596 
1597 class GTestFlagSaverTest : public Test {
1598  protected:
1599   // Saves the Google Test flags such that we can restore them later, and
1600   // then sets them to their default values.  This will be called
1601   // before the first test in this test case is run.
SetUpTestSuite()1602   static void SetUpTestSuite() {
1603     saver_ = new GTestFlagSaver;
1604 
1605     GTEST_FLAG_SET(also_run_disabled_tests, false);
1606     GTEST_FLAG_SET(break_on_failure, false);
1607     GTEST_FLAG_SET(catch_exceptions, false);
1608     GTEST_FLAG_SET(death_test_use_fork, false);
1609     GTEST_FLAG_SET(color, "auto");
1610     GTEST_FLAG_SET(fail_fast, false);
1611     GTEST_FLAG_SET(filter, "");
1612     GTEST_FLAG_SET(list_tests, false);
1613     GTEST_FLAG_SET(output, "");
1614     GTEST_FLAG_SET(brief, false);
1615     GTEST_FLAG_SET(print_time, true);
1616     GTEST_FLAG_SET(random_seed, 0);
1617     GTEST_FLAG_SET(repeat, 1);
1618     GTEST_FLAG_SET(recreate_environments_when_repeating, true);
1619     GTEST_FLAG_SET(shuffle, false);
1620     GTEST_FLAG_SET(stack_trace_depth, kMaxStackTraceDepth);
1621     GTEST_FLAG_SET(stream_result_to, "");
1622     GTEST_FLAG_SET(throw_on_failure, false);
1623   }
1624 
1625   // Restores the Google Test flags that the tests have modified.  This will
1626   // be called after the last test in this test case is run.
TearDownTestSuite()1627   static void TearDownTestSuite() {
1628     delete saver_;
1629     saver_ = nullptr;
1630   }
1631 
1632   // Verifies that the Google Test flags have their default values, and then
1633   // modifies each of them.
VerifyAndModifyFlags()1634   void VerifyAndModifyFlags() {
1635     EXPECT_FALSE(GTEST_FLAG_GET(also_run_disabled_tests));
1636     EXPECT_FALSE(GTEST_FLAG_GET(break_on_failure));
1637     EXPECT_FALSE(GTEST_FLAG_GET(catch_exceptions));
1638     EXPECT_STREQ("auto", GTEST_FLAG_GET(color).c_str());
1639     EXPECT_FALSE(GTEST_FLAG_GET(death_test_use_fork));
1640     EXPECT_FALSE(GTEST_FLAG_GET(fail_fast));
1641     EXPECT_STREQ("", GTEST_FLAG_GET(filter).c_str());
1642     EXPECT_FALSE(GTEST_FLAG_GET(list_tests));
1643     EXPECT_STREQ("", GTEST_FLAG_GET(output).c_str());
1644     EXPECT_FALSE(GTEST_FLAG_GET(brief));
1645     EXPECT_TRUE(GTEST_FLAG_GET(print_time));
1646     EXPECT_EQ(0, GTEST_FLAG_GET(random_seed));
1647     EXPECT_EQ(1, GTEST_FLAG_GET(repeat));
1648     EXPECT_TRUE(GTEST_FLAG_GET(recreate_environments_when_repeating));
1649     EXPECT_FALSE(GTEST_FLAG_GET(shuffle));
1650     EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG_GET(stack_trace_depth));
1651     EXPECT_STREQ("", GTEST_FLAG_GET(stream_result_to).c_str());
1652     EXPECT_FALSE(GTEST_FLAG_GET(throw_on_failure));
1653 
1654     GTEST_FLAG_SET(also_run_disabled_tests, true);
1655     GTEST_FLAG_SET(break_on_failure, true);
1656     GTEST_FLAG_SET(catch_exceptions, true);
1657     GTEST_FLAG_SET(color, "no");
1658     GTEST_FLAG_SET(death_test_use_fork, true);
1659     GTEST_FLAG_SET(fail_fast, true);
1660     GTEST_FLAG_SET(filter, "abc");
1661     GTEST_FLAG_SET(list_tests, true);
1662     GTEST_FLAG_SET(output, "xml:foo.xml");
1663     GTEST_FLAG_SET(brief, true);
1664     GTEST_FLAG_SET(print_time, false);
1665     GTEST_FLAG_SET(random_seed, 1);
1666     GTEST_FLAG_SET(repeat, 100);
1667     GTEST_FLAG_SET(recreate_environments_when_repeating, false);
1668     GTEST_FLAG_SET(shuffle, true);
1669     GTEST_FLAG_SET(stack_trace_depth, 1);
1670     GTEST_FLAG_SET(stream_result_to, "localhost:1234");
1671     GTEST_FLAG_SET(throw_on_failure, true);
1672   }
1673 
1674  private:
1675   // For saving Google Test flags during this test case.
1676   static GTestFlagSaver* saver_;
1677 };
1678 
1679 GTestFlagSaver* GTestFlagSaverTest::saver_ = nullptr;
1680 
1681 // Google Test doesn't guarantee the order of tests.  The following two
1682 // tests are designed to work regardless of their order.
1683 
1684 // Modifies the Google Test flags in the test body.
TEST_F(GTestFlagSaverTest,ModifyGTestFlags)1685 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) { VerifyAndModifyFlags(); }
1686 
1687 // Verifies that the Google Test flags in the body of the previous test were
1688 // restored to their original values.
TEST_F(GTestFlagSaverTest,VerifyGTestFlags)1689 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) { VerifyAndModifyFlags(); }
1690 
1691 // Sets an environment variable with the given name to the given
1692 // value.  If the value argument is "", unsets the environment
1693 // variable.  The caller must ensure that both arguments are not NULL.
SetEnv(const char * name,const char * value)1694 static void SetEnv(const char* name, const char* value) {
1695 #ifdef GTEST_OS_WINDOWS_MOBILE
1696   // Environment variables are not supported on Windows CE.
1697   return;
1698 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
1699   // C++Builder's putenv only stores a pointer to its parameter; we have to
1700   // ensure that the string remains valid as long as it might be needed.
1701   // We use an std::map to do so.
1702   static std::map<std::string, std::string*> added_env;
1703 
1704   // Because putenv stores a pointer to the string buffer, we can't delete the
1705   // previous string (if present) until after it's replaced.
1706   std::string* prev_env = NULL;
1707   if (added_env.find(name) != added_env.end()) {
1708     prev_env = added_env[name];
1709   }
1710   added_env[name] =
1711       new std::string((Message() << name << "=" << value).GetString());
1712 
1713   // The standard signature of putenv accepts a 'char*' argument. Other
1714   // implementations, like C++Builder's, accept a 'const char*'.
1715   // We cast away the 'const' since that would work for both variants.
1716   putenv(const_cast<char*>(added_env[name]->c_str()));
1717   delete prev_env;
1718 #elif defined(GTEST_OS_WINDOWS)  // If we are on Windows proper.
1719   _putenv((Message() << name << "=" << value).GetString().c_str());
1720 #else
1721   if (*value == '\0') {
1722     unsetenv(name);
1723   } else {
1724     setenv(name, value, 1);
1725   }
1726 #endif  // GTEST_OS_WINDOWS_MOBILE
1727 }
1728 
1729 #ifndef GTEST_OS_WINDOWS_MOBILE
1730 // Environment variables are not supported on Windows CE.
1731 
1732 using testing::internal::Int32FromGTestEnv;
1733 
1734 // Tests Int32FromGTestEnv().
1735 
1736 // Tests that Int32FromGTestEnv() returns the default value when the
1737 // environment variable is not set.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenVariableIsNotSet)1738 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
1739   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
1740   EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
1741 }
1742 
1743 #if !defined(GTEST_GET_INT32_FROM_ENV_)
1744 
1745 // Tests that Int32FromGTestEnv() returns the default value when the
1746 // environment variable overflows as an Int32.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueOverflows)1747 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
1748   printf("(expecting 2 warnings)\n");
1749 
1750   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
1751   EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
1752 
1753   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
1754   EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
1755 }
1756 
1757 // Tests that Int32FromGTestEnv() returns the default value when the
1758 // environment variable does not represent a valid decimal integer.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueIsInvalid)1759 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
1760   printf("(expecting 2 warnings)\n");
1761 
1762   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
1763   EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
1764 
1765   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
1766   EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
1767 }
1768 
1769 #endif  // !defined(GTEST_GET_INT32_FROM_ENV_)
1770 
1771 // Tests that Int32FromGTestEnv() parses and returns the value of the
1772 // environment variable when it represents a valid decimal integer in
1773 // the range of an Int32.
TEST(Int32FromGTestEnvTest,ParsesAndReturnsValidValue)1774 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
1775   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
1776   EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
1777 
1778   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
1779   EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
1780 }
1781 #endif  // !GTEST_OS_WINDOWS_MOBILE
1782 
1783 // Tests ParseFlag().
1784 
1785 // Tests that ParseInt32Flag() returns false and doesn't change the
1786 // output value when the flag has wrong format
TEST(ParseInt32FlagTest,ReturnsFalseForInvalidFlag)1787 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
1788   int32_t value = 123;
1789   EXPECT_FALSE(ParseFlag("--a=100", "b", &value));
1790   EXPECT_EQ(123, value);
1791 
1792   EXPECT_FALSE(ParseFlag("a=100", "a", &value));
1793   EXPECT_EQ(123, value);
1794 }
1795 
1796 // Tests that ParseFlag() returns false and doesn't change the
1797 // output value when the flag overflows as an Int32.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueOverflows)1798 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
1799   printf("(expecting 2 warnings)\n");
1800 
1801   int32_t value = 123;
1802   EXPECT_FALSE(ParseFlag("--abc=12345678987654321", "abc", &value));
1803   EXPECT_EQ(123, value);
1804 
1805   EXPECT_FALSE(ParseFlag("--abc=-12345678987654321", "abc", &value));
1806   EXPECT_EQ(123, value);
1807 }
1808 
1809 // Tests that ParseInt32Flag() returns false and doesn't change the
1810 // output value when the flag does not represent a valid decimal
1811 // integer.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueIsInvalid)1812 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
1813   printf("(expecting 2 warnings)\n");
1814 
1815   int32_t value = 123;
1816   EXPECT_FALSE(ParseFlag("--abc=A1", "abc", &value));
1817   EXPECT_EQ(123, value);
1818 
1819   EXPECT_FALSE(ParseFlag("--abc=12X", "abc", &value));
1820   EXPECT_EQ(123, value);
1821 }
1822 
1823 // Tests that ParseInt32Flag() parses the value of the flag and
1824 // returns true when the flag represents a valid decimal integer in
1825 // the range of an Int32.
TEST(ParseInt32FlagTest,ParsesAndReturnsValidValue)1826 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
1827   int32_t value = 123;
1828   EXPECT_TRUE(ParseFlag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
1829   EXPECT_EQ(456, value);
1830 
1831   EXPECT_TRUE(ParseFlag("--" GTEST_FLAG_PREFIX_ "abc=-789", "abc", &value));
1832   EXPECT_EQ(-789, value);
1833 }
1834 
1835 // Tests that Int32FromEnvOrDie() parses the value of the var or
1836 // returns the correct default.
1837 // Environment variables are not supported on Windows CE.
1838 #ifndef GTEST_OS_WINDOWS_MOBILE
TEST(Int32FromEnvOrDieTest,ParsesAndReturnsValidValue)1839 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
1840   EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1841   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
1842   EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1843   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
1844   EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1845 }
1846 #endif  // !GTEST_OS_WINDOWS_MOBILE
1847 
1848 // Tests that Int32FromEnvOrDie() aborts with an error message
1849 // if the variable is not an int32_t.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnFailure)1850 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
1851   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
1852   EXPECT_DEATH_IF_SUPPORTED(
1853       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), ".*");
1854 }
1855 
1856 // Tests that Int32FromEnvOrDie() aborts with an error message
1857 // if the variable cannot be represented by an int32_t.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnInt32Overflow)1858 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
1859   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
1860   EXPECT_DEATH_IF_SUPPORTED(
1861       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), ".*");
1862 }
1863 
1864 // Tests that ShouldRunTestOnShard() selects all tests
1865 // where there is 1 shard.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereIsOneShard)1866 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
1867   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
1868   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
1869   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
1870   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
1871   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
1872 }
1873 
1874 class ShouldShardTest : public testing::Test {
1875  protected:
SetUp()1876   void SetUp() override {
1877     index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
1878     total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
1879   }
1880 
TearDown()1881   void TearDown() override {
1882     SetEnv(index_var_, "");
1883     SetEnv(total_var_, "");
1884   }
1885 
1886   const char* index_var_;
1887   const char* total_var_;
1888 };
1889 
1890 // Tests that sharding is disabled if neither of the environment variables
1891 // are set.
TEST_F(ShouldShardTest,ReturnsFalseWhenNeitherEnvVarIsSet)1892 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
1893   SetEnv(index_var_, "");
1894   SetEnv(total_var_, "");
1895 
1896   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1897   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1898 }
1899 
1900 // Tests that sharding is not enabled if total_shards  == 1.
TEST_F(ShouldShardTest,ReturnsFalseWhenTotalShardIsOne)1901 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
1902   SetEnv(index_var_, "0");
1903   SetEnv(total_var_, "1");
1904   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1905   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1906 }
1907 
1908 // Tests that sharding is enabled if total_shards > 1 and
1909 // we are not in a death test subprocess.
1910 // Environment variables are not supported on Windows CE.
1911 #ifndef GTEST_OS_WINDOWS_MOBILE
TEST_F(ShouldShardTest,WorksWhenShardEnvVarsAreValid)1912 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
1913   SetEnv(index_var_, "4");
1914   SetEnv(total_var_, "22");
1915   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1916   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1917 
1918   SetEnv(index_var_, "8");
1919   SetEnv(total_var_, "9");
1920   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1921   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1922 
1923   SetEnv(index_var_, "0");
1924   SetEnv(total_var_, "9");
1925   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1926   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1927 }
1928 #endif  // !GTEST_OS_WINDOWS_MOBILE
1929 
1930 // Tests that we exit in error if the sharding values are not valid.
1931 
1932 typedef ShouldShardTest ShouldShardDeathTest;
1933 
TEST_F(ShouldShardDeathTest,AbortsWhenShardingEnvVarsAreInvalid)1934 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
1935   SetEnv(index_var_, "4");
1936   SetEnv(total_var_, "4");
1937   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1938 
1939   SetEnv(index_var_, "4");
1940   SetEnv(total_var_, "-2");
1941   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1942 
1943   SetEnv(index_var_, "5");
1944   SetEnv(total_var_, "");
1945   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1946 
1947   SetEnv(index_var_, "");
1948   SetEnv(total_var_, "5");
1949   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1950 }
1951 
1952 // Tests that ShouldRunTestOnShard is a partition when 5
1953 // shards are used.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereAreFiveShards)1954 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
1955   // Choose an arbitrary number of tests and shards.
1956   const int num_tests = 17;
1957   const int num_shards = 5;
1958 
1959   // Check partitioning: each test should be on exactly 1 shard.
1960   for (int test_id = 0; test_id < num_tests; test_id++) {
1961     int prev_selected_shard_index = -1;
1962     for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1963       if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
1964         if (prev_selected_shard_index < 0) {
1965           prev_selected_shard_index = shard_index;
1966         } else {
1967           ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
1968                         << shard_index << " are both selected to run test "
1969                         << test_id;
1970         }
1971       }
1972     }
1973   }
1974 
1975   // Check balance: This is not required by the sharding protocol, but is a
1976   // desirable property for performance.
1977   for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1978     int num_tests_on_shard = 0;
1979     for (int test_id = 0; test_id < num_tests; test_id++) {
1980       num_tests_on_shard +=
1981           ShouldRunTestOnShard(num_shards, shard_index, test_id);
1982     }
1983     EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
1984   }
1985 }
1986 
1987 // For the same reason we are not explicitly testing everything in the
1988 // Test class, there are no separate tests for the following classes
1989 // (except for some trivial cases):
1990 //
1991 //   TestSuite, UnitTest, UnitTestResultPrinter.
1992 //
1993 // Similarly, there are no separate tests for the following macros:
1994 //
1995 //   TEST, TEST_F, RUN_ALL_TESTS
1996 
TEST(UnitTestTest,CanGetOriginalWorkingDir)1997 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
1998   ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != nullptr);
1999   EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
2000 }
2001 
TEST(UnitTestTest,ReturnsPlausibleTimestamp)2002 TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
2003   EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
2004   EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
2005 }
2006 
2007 // When a property using a reserved key is supplied to this function, it
2008 // tests that a non-fatal failure is added, a fatal failure is not added,
2009 // and that the property is not recorded.
ExpectNonFatalFailureRecordingPropertyWithReservedKey(const TestResult & test_result,const char * key)2010 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2011     const TestResult& test_result, const char* key) {
2012   EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
2013   ASSERT_EQ(0, test_result.test_property_count())
2014       << "Property for key '" << key << "' recorded unexpectedly.";
2015 }
2016 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(const char * key)2017 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2018     const char* key) {
2019   const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
2020   ASSERT_TRUE(test_info != nullptr);
2021   ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
2022                                                         key);
2023 }
2024 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(const char * key)2025 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2026     const char* key) {
2027   const testing::TestSuite* test_suite =
2028       UnitTest::GetInstance()->current_test_suite();
2029   ASSERT_TRUE(test_suite != nullptr);
2030   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2031       test_suite->ad_hoc_test_result(), key);
2032 }
2033 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(const char * key)2034 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2035     const char* key) {
2036   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2037       UnitTest::GetInstance()->ad_hoc_test_result(), key);
2038 }
2039 
2040 // Tests that property recording functions in UnitTest outside of tests
2041 // functions correctly.  Creating a separate instance of UnitTest ensures it
2042 // is in a state similar to the UnitTest's singleton's between tests.
2043 class UnitTestRecordPropertyTest
2044     : public testing::internal::UnitTestRecordPropertyTestHelper {
2045  public:
SetUpTestSuite()2046   static void SetUpTestSuite() {
2047     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2048         "disabled");
2049     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2050         "errors");
2051     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2052         "failures");
2053     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2054         "name");
2055     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2056         "tests");
2057     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2058         "time");
2059 
2060     Test::RecordProperty("test_case_key_1", "1");
2061 
2062     const testing::TestSuite* test_suite =
2063         UnitTest::GetInstance()->current_test_suite();
2064 
2065     ASSERT_TRUE(test_suite != nullptr);
2066 
2067     ASSERT_EQ(1, test_suite->ad_hoc_test_result().test_property_count());
2068     EXPECT_STREQ("test_case_key_1",
2069                  test_suite->ad_hoc_test_result().GetTestProperty(0).key());
2070     EXPECT_STREQ("1",
2071                  test_suite->ad_hoc_test_result().GetTestProperty(0).value());
2072   }
2073 };
2074 
2075 // Tests TestResult has the expected property when added.
TEST_F(UnitTestRecordPropertyTest,OnePropertyFoundWhenAdded)2076 TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
2077   UnitTestRecordProperty("key_1", "1");
2078 
2079   ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
2080 
2081   EXPECT_STREQ("key_1",
2082                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2083   EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2084 }
2085 
2086 // Tests TestResult has multiple properties when added.
TEST_F(UnitTestRecordPropertyTest,MultiplePropertiesFoundWhenAdded)2087 TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
2088   UnitTestRecordProperty("key_1", "1");
2089   UnitTestRecordProperty("key_2", "2");
2090 
2091   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2092 
2093   EXPECT_STREQ("key_1",
2094                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2095   EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2096 
2097   EXPECT_STREQ("key_2",
2098                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2099   EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2100 }
2101 
2102 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST_F(UnitTestRecordPropertyTest,OverridesValuesForDuplicateKeys)2103 TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
2104   UnitTestRecordProperty("key_1", "1");
2105   UnitTestRecordProperty("key_2", "2");
2106   UnitTestRecordProperty("key_1", "12");
2107   UnitTestRecordProperty("key_2", "22");
2108 
2109   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2110 
2111   EXPECT_STREQ("key_1",
2112                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2113   EXPECT_STREQ("12",
2114                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2115 
2116   EXPECT_STREQ("key_2",
2117                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2118   EXPECT_STREQ("22",
2119                unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2120 }
2121 
TEST_F(UnitTestRecordPropertyTest,AddFailureInsideTestsWhenUsingTestSuiteReservedKeys)2122 TEST_F(UnitTestRecordPropertyTest,
2123        AddFailureInsideTestsWhenUsingTestSuiteReservedKeys) {
2124   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("name");
2125   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2126       "value_param");
2127   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2128       "type_param");
2129   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("status");
2130   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("time");
2131   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2132       "classname");
2133 }
2134 
TEST_F(UnitTestRecordPropertyTest,AddRecordWithReservedKeysGeneratesCorrectPropertyList)2135 TEST_F(UnitTestRecordPropertyTest,
2136        AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
2137   EXPECT_NONFATAL_FAILURE(
2138       Test::RecordProperty("name", "1"),
2139       "'classname', 'name', 'status', 'time', 'type_param', 'value_param',"
2140       " 'file', and 'line' are reserved");
2141 }
2142 
2143 class UnitTestRecordPropertyTestEnvironment : public Environment {
2144  public:
TearDown()2145   void TearDown() override {
2146     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2147         "tests");
2148     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2149         "failures");
2150     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2151         "disabled");
2152     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2153         "errors");
2154     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2155         "name");
2156     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2157         "timestamp");
2158     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2159         "time");
2160     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2161         "random_seed");
2162   }
2163 };
2164 
2165 // This will test property recording outside of any test or test case.
2166 GTEST_INTERNAL_ATTRIBUTE_MAYBE_UNUSED static Environment* record_property_env =
2167     AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
2168 
2169 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
2170 // of various arities.  They do not attempt to be exhaustive.  Rather,
2171 // view them as smoke tests that can be easily reviewed and verified.
2172 // A more complete set of tests for predicate assertions can be found
2173 // in gtest_pred_impl_unittest.cc.
2174 
2175 // First, some predicates and predicate-formatters needed by the tests.
2176 
2177 // Returns true if and only if the argument is an even number.
IsEven(int n)2178 bool IsEven(int n) { return (n % 2) == 0; }
2179 
2180 // A functor that returns true if and only if the argument is an even number.
2181 struct IsEvenFunctor {
operator ()__anon19f4cde20111::IsEvenFunctor2182   bool operator()(int n) { return IsEven(n); }
2183 };
2184 
2185 // A predicate-formatter function that asserts the argument is an even
2186 // number.
AssertIsEven(const char * expr,int n)2187 AssertionResult AssertIsEven(const char* expr, int n) {
2188   if (IsEven(n)) {
2189     return AssertionSuccess();
2190   }
2191 
2192   Message msg;
2193   msg << expr << " evaluates to " << n << ", which is not even.";
2194   return AssertionFailure(msg);
2195 }
2196 
2197 // A predicate function that returns AssertionResult for use in
2198 // EXPECT/ASSERT_TRUE/FALSE.
ResultIsEven(int n)2199 AssertionResult ResultIsEven(int n) {
2200   if (IsEven(n))
2201     return AssertionSuccess() << n << " is even";
2202   else
2203     return AssertionFailure() << n << " is odd";
2204 }
2205 
2206 // A predicate function that returns AssertionResult but gives no
2207 // explanation why it succeeds. Needed for testing that
2208 // EXPECT/ASSERT_FALSE handles such functions correctly.
ResultIsEvenNoExplanation(int n)2209 AssertionResult ResultIsEvenNoExplanation(int n) {
2210   if (IsEven(n))
2211     return AssertionSuccess();
2212   else
2213     return AssertionFailure() << n << " is odd";
2214 }
2215 
2216 // A predicate-formatter functor that asserts the argument is an even
2217 // number.
2218 struct AssertIsEvenFunctor {
operator ()__anon19f4cde20111::AssertIsEvenFunctor2219   AssertionResult operator()(const char* expr, int n) {
2220     return AssertIsEven(expr, n);
2221   }
2222 };
2223 
2224 // Returns true if and only if the sum of the arguments is an even number.
SumIsEven2(int n1,int n2)2225 bool SumIsEven2(int n1, int n2) { return IsEven(n1 + n2); }
2226 
2227 // A functor that returns true if and only if the sum of the arguments is an
2228 // even number.
2229 struct SumIsEven3Functor {
operator ()__anon19f4cde20111::SumIsEven3Functor2230   bool operator()(int n1, int n2, int n3) { return IsEven(n1 + n2 + n3); }
2231 };
2232 
2233 // A predicate-formatter function that asserts the sum of the
2234 // arguments is an even number.
AssertSumIsEven4(const char * e1,const char * e2,const char * e3,const char * e4,int n1,int n2,int n3,int n4)2235 AssertionResult AssertSumIsEven4(const char* e1, const char* e2, const char* e3,
2236                                  const char* e4, int n1, int n2, int n3,
2237                                  int n4) {
2238   const int sum = n1 + n2 + n3 + n4;
2239   if (IsEven(sum)) {
2240     return AssertionSuccess();
2241   }
2242 
2243   Message msg;
2244   msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " (" << n1 << " + "
2245       << n2 << " + " << n3 << " + " << n4 << ") evaluates to " << sum
2246       << ", which is not even.";
2247   return AssertionFailure(msg);
2248 }
2249 
2250 // A predicate-formatter functor that asserts the sum of the arguments
2251 // is an even number.
2252 struct AssertSumIsEven5Functor {
operator ()__anon19f4cde20111::AssertSumIsEven5Functor2253   AssertionResult operator()(const char* e1, const char* e2, const char* e3,
2254                              const char* e4, const char* e5, int n1, int n2,
2255                              int n3, int n4, int n5) {
2256     const int sum = n1 + n2 + n3 + n4 + n5;
2257     if (IsEven(sum)) {
2258       return AssertionSuccess();
2259     }
2260 
2261     Message msg;
2262     msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
2263         << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + "
2264         << n5 << ") evaluates to " << sum << ", which is not even.";
2265     return AssertionFailure(msg);
2266   }
2267 };
2268 
2269 // Tests unary predicate assertions.
2270 
2271 // Tests unary predicate assertions that don't use a custom formatter.
TEST(Pred1Test,WithoutFormat)2272 TEST(Pred1Test, WithoutFormat) {
2273   // Success cases.
2274   EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
2275   ASSERT_PRED1(IsEven, 4);
2276 
2277   // Failure cases.
2278   EXPECT_NONFATAL_FAILURE(
2279       {  // NOLINT
2280         EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
2281       },
2282       "This failure is expected.");
2283   EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5), "evaluates to false");
2284 }
2285 
2286 // Tests unary predicate assertions that use a custom formatter.
TEST(Pred1Test,WithFormat)2287 TEST(Pred1Test, WithFormat) {
2288   // Success cases.
2289   EXPECT_PRED_FORMAT1(AssertIsEven, 2);
2290   ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
2291       << "This failure is UNEXPECTED!";
2292 
2293   // Failure cases.
2294   const int n = 5;
2295   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
2296                           "n evaluates to 5, which is not even.");
2297   EXPECT_FATAL_FAILURE(
2298       {  // NOLINT
2299         ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
2300       },
2301       "This failure is expected.");
2302 }
2303 
2304 // Tests that unary predicate assertions evaluates their arguments
2305 // exactly once.
TEST(Pred1Test,SingleEvaluationOnFailure)2306 TEST(Pred1Test, SingleEvaluationOnFailure) {
2307   // A success case.
2308   static int n = 0;
2309   EXPECT_PRED1(IsEven, n++);
2310   EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
2311 
2312   // A failure case.
2313   EXPECT_FATAL_FAILURE(
2314       {  // NOLINT
2315         ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
2316             << "This failure is expected.";
2317       },
2318       "This failure is expected.");
2319   EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
2320 }
2321 
2322 // Tests predicate assertions whose arity is >= 2.
2323 
2324 // Tests predicate assertions that don't use a custom formatter.
TEST(PredTest,WithoutFormat)2325 TEST(PredTest, WithoutFormat) {
2326   // Success cases.
2327   ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
2328   EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
2329 
2330   // Failure cases.
2331   const int n1 = 1;
2332   const int n2 = 2;
2333   EXPECT_NONFATAL_FAILURE(
2334       {  // NOLINT
2335         EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
2336       },
2337       "This failure is expected.");
2338   EXPECT_FATAL_FAILURE(
2339       {  // NOLINT
2340         ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
2341       },
2342       "evaluates to false");
2343 }
2344 
2345 // Tests predicate assertions that use a custom formatter.
TEST(PredTest,WithFormat)2346 TEST(PredTest, WithFormat) {
2347   // Success cases.
2348   ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10)
2349       << "This failure is UNEXPECTED!";
2350   EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
2351 
2352   // Failure cases.
2353   const int n1 = 1;
2354   const int n2 = 2;
2355   const int n3 = 4;
2356   const int n4 = 6;
2357   EXPECT_NONFATAL_FAILURE(
2358       {  // NOLINT
2359         EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
2360       },
2361       "evaluates to 13, which is not even.");
2362   EXPECT_FATAL_FAILURE(
2363       {  // NOLINT
2364         ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
2365             << "This failure is expected.";
2366       },
2367       "This failure is expected.");
2368 }
2369 
2370 // Tests that predicate assertions evaluates their arguments
2371 // exactly once.
TEST(PredTest,SingleEvaluationOnFailure)2372 TEST(PredTest, SingleEvaluationOnFailure) {
2373   // A success case.
2374   int n1 = 0;
2375   int n2 = 0;
2376   EXPECT_PRED2(SumIsEven2, n1++, n2++);
2377   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2378   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2379 
2380   // Another success case.
2381   n1 = n2 = 0;
2382   int n3 = 0;
2383   int n4 = 0;
2384   int n5 = 0;
2385   ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), n1++, n2++, n3++, n4++, n5++)
2386       << "This failure is UNEXPECTED!";
2387   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2388   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2389   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2390   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2391   EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
2392 
2393   // A failure case.
2394   n1 = n2 = n3 = 0;
2395   EXPECT_NONFATAL_FAILURE(
2396       {  // NOLINT
2397         EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
2398             << "This failure is expected.";
2399       },
2400       "This failure is expected.");
2401   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2402   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2403   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2404 
2405   // Another failure case.
2406   n1 = n2 = n3 = n4 = 0;
2407   EXPECT_NONFATAL_FAILURE(
2408       {  // NOLINT
2409         EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
2410       },
2411       "evaluates to 1, which is not even.");
2412   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2413   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2414   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2415   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2416 }
2417 
2418 // Test predicate assertions for sets
TEST(PredTest,ExpectPredEvalFailure)2419 TEST(PredTest, ExpectPredEvalFailure) {
2420   std::set<int> set_a = {2, 1, 3, 4, 5};
2421   std::set<int> set_b = {0, 4, 8};
2422   const auto compare_sets = [](std::set<int>, std::set<int>) { return false; };
2423   EXPECT_NONFATAL_FAILURE(
2424       EXPECT_PRED2(compare_sets, set_a, set_b),
2425       "compare_sets(set_a, set_b) evaluates to false, where\nset_a evaluates "
2426       "to { 1, 2, 3, 4, 5 }\nset_b evaluates to { 0, 4, 8 }");
2427 }
2428 
2429 // Some helper functions for testing using overloaded/template
2430 // functions with ASSERT_PREDn and EXPECT_PREDn.
2431 
IsPositive(double x)2432 bool IsPositive(double x) { return x > 0; }
2433 
2434 template <typename T>
IsNegative(T x)2435 bool IsNegative(T x) {
2436   return x < 0;
2437 }
2438 
2439 template <typename T1, typename T2>
GreaterThan(T1 x1,T2 x2)2440 bool GreaterThan(T1 x1, T2 x2) {
2441   return x1 > x2;
2442 }
2443 
2444 // Tests that overloaded functions can be used in *_PRED* as long as
2445 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsOverloadedFunction)2446 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
2447   // C++Builder requires C-style casts rather than static_cast.
2448   EXPECT_PRED1((bool (*)(int))(IsPositive), 5);       // NOLINT
2449   ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
2450 }
2451 
2452 // Tests that template functions can be used in *_PRED* as long as
2453 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsTemplateFunction)2454 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
2455   EXPECT_PRED1(IsNegative<int>, -5);
2456   // Makes sure that we can handle templates with more than one
2457   // parameter.
2458   ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
2459 }
2460 
2461 // Some helper functions for testing using overloaded/template
2462 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
2463 
IsPositiveFormat(const char *,int n)2464 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
2465   return n > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
2466 }
2467 
IsPositiveFormat(const char *,double x)2468 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
2469   return x > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
2470 }
2471 
2472 template <typename T>
IsNegativeFormat(const char *,T x)2473 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
2474   return x < 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
2475 }
2476 
2477 template <typename T1, typename T2>
EqualsFormat(const char *,const char *,const T1 & x1,const T2 & x2)2478 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
2479                              const T1& x1, const T2& x2) {
2480   return x1 == x2 ? AssertionSuccess()
2481                   : AssertionFailure(Message() << "Failure");
2482 }
2483 
2484 // Tests that overloaded functions can be used in *_PRED_FORMAT*
2485 // without explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsOverloadedFunction)2486 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
2487   EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
2488   ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
2489 }
2490 
2491 // Tests that template functions can be used in *_PRED_FORMAT* without
2492 // explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsTemplateFunction)2493 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
2494   EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
2495   ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
2496 }
2497 
2498 // Tests string assertions.
2499 
2500 // Tests ASSERT_STREQ with non-NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ)2501 TEST(StringAssertionTest, ASSERT_STREQ) {
2502   const char* const p1 = "good";
2503   ASSERT_STREQ(p1, p1);
2504 
2505   // Let p2 have the same content as p1, but be at a different address.
2506   const char p2[] = "good";
2507   ASSERT_STREQ(p1, p2);
2508 
2509   EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"), "  \"bad\"\n  \"good\"");
2510 }
2511 
2512 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null)2513 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
2514   ASSERT_STREQ(static_cast<const char*>(nullptr), nullptr);
2515   EXPECT_FATAL_FAILURE(ASSERT_STREQ(nullptr, "non-null"), "non-null");
2516 }
2517 
2518 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null2)2519 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
2520   EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", nullptr), "non-null");
2521 }
2522 
2523 // Tests ASSERT_STRNE.
TEST(StringAssertionTest,ASSERT_STRNE)2524 TEST(StringAssertionTest, ASSERT_STRNE) {
2525   ASSERT_STRNE("hi", "Hi");
2526   ASSERT_STRNE("Hi", nullptr);
2527   ASSERT_STRNE(nullptr, "Hi");
2528   ASSERT_STRNE("", nullptr);
2529   ASSERT_STRNE(nullptr, "");
2530   ASSERT_STRNE("", "Hi");
2531   ASSERT_STRNE("Hi", "");
2532   EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"), "\"Hi\" vs \"Hi\"");
2533 }
2534 
2535 // Tests ASSERT_STRCASEEQ.
TEST(StringAssertionTest,ASSERT_STRCASEEQ)2536 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
2537   ASSERT_STRCASEEQ("hi", "Hi");
2538   ASSERT_STRCASEEQ(static_cast<const char*>(nullptr), nullptr);
2539 
2540   ASSERT_STRCASEEQ("", "");
2541   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"), "Ignoring case");
2542 }
2543 
2544 // Tests ASSERT_STRCASENE.
TEST(StringAssertionTest,ASSERT_STRCASENE)2545 TEST(StringAssertionTest, ASSERT_STRCASENE) {
2546   ASSERT_STRCASENE("hi1", "Hi2");
2547   ASSERT_STRCASENE("Hi", nullptr);
2548   ASSERT_STRCASENE(nullptr, "Hi");
2549   ASSERT_STRCASENE("", nullptr);
2550   ASSERT_STRCASENE(nullptr, "");
2551   ASSERT_STRCASENE("", "Hi");
2552   ASSERT_STRCASENE("Hi", "");
2553   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"), "(ignoring case)");
2554 }
2555 
2556 // Tests *_STREQ on wide strings.
TEST(StringAssertionTest,STREQ_Wide)2557 TEST(StringAssertionTest, STREQ_Wide) {
2558   // NULL strings.
2559   ASSERT_STREQ(static_cast<const wchar_t*>(nullptr), nullptr);
2560 
2561   // Empty strings.
2562   ASSERT_STREQ(L"", L"");
2563 
2564   // Non-null vs NULL.
2565   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", nullptr), "non-null");
2566 
2567   // Equal strings.
2568   EXPECT_STREQ(L"Hi", L"Hi");
2569 
2570   // Unequal strings.
2571   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"), "Abc");
2572 
2573   // Strings containing wide characters.
2574   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"), "abc");
2575 
2576   // The streaming variation.
2577   EXPECT_NONFATAL_FAILURE(
2578       {  // NOLINT
2579         EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
2580       },
2581       "Expected failure");
2582 }
2583 
2584 // Tests *_STRNE on wide strings.
TEST(StringAssertionTest,STRNE_Wide)2585 TEST(StringAssertionTest, STRNE_Wide) {
2586   // NULL strings.
2587   EXPECT_NONFATAL_FAILURE(
2588       {  // NOLINT
2589         EXPECT_STRNE(static_cast<const wchar_t*>(nullptr), nullptr);
2590       },
2591       "");
2592 
2593   // Empty strings.
2594   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""), "L\"\"");
2595 
2596   // Non-null vs NULL.
2597   ASSERT_STRNE(L"non-null", nullptr);
2598 
2599   // Equal strings.
2600   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"), "L\"Hi\"");
2601 
2602   // Unequal strings.
2603   EXPECT_STRNE(L"abc", L"Abc");
2604 
2605   // Strings containing wide characters.
2606   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"), "abc");
2607 
2608   // The streaming variation.
2609   ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
2610 }
2611 
2612 // Tests for ::testing::IsSubstring().
2613 
2614 // Tests that IsSubstring() returns the correct result when the input
2615 // argument type is const char*.
TEST(IsSubstringTest,ReturnsCorrectResultForCString)2616 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
2617   EXPECT_FALSE(IsSubstring("", "", nullptr, "a"));
2618   EXPECT_FALSE(IsSubstring("", "", "b", nullptr));
2619   EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
2620 
2621   EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(nullptr), nullptr));
2622   EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
2623 }
2624 
2625 // Tests that IsSubstring() returns the correct result when the input
2626 // argument type is const wchar_t*.
TEST(IsSubstringTest,ReturnsCorrectResultForWideCString)2627 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
2628   EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
2629   EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
2630   EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
2631 
2632   EXPECT_TRUE(
2633       IsSubstring("", "", static_cast<const wchar_t*>(nullptr), nullptr));
2634   EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
2635 }
2636 
2637 // Tests that IsSubstring() generates the correct message when the input
2638 // argument type is const char*.
TEST(IsSubstringTest,GeneratesCorrectMessageForCString)2639 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
2640   EXPECT_STREQ(
2641       "Value of: needle_expr\n"
2642       "  Actual: \"needle\"\n"
2643       "Expected: a substring of haystack_expr\n"
2644       "Which is: \"haystack\"",
2645       IsSubstring("needle_expr", "haystack_expr", "needle", "haystack")
2646           .failure_message());
2647 }
2648 
2649 // Tests that IsSubstring returns the correct result when the input
2650 // argument type is ::std::string.
TEST(IsSubstringTest,ReturnsCorrectResultsForStdString)2651 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
2652   EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
2653   EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
2654 }
2655 
2656 #if GTEST_HAS_STD_WSTRING
2657 // Tests that IsSubstring returns the correct result when the input
2658 // argument type is ::std::wstring.
TEST(IsSubstringTest,ReturnsCorrectResultForStdWstring)2659 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
2660   EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2661   EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2662 }
2663 
2664 // Tests that IsSubstring() generates the correct message when the input
2665 // argument type is ::std::wstring.
TEST(IsSubstringTest,GeneratesCorrectMessageForWstring)2666 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
2667   EXPECT_STREQ(
2668       "Value of: needle_expr\n"
2669       "  Actual: L\"needle\"\n"
2670       "Expected: a substring of haystack_expr\n"
2671       "Which is: L\"haystack\"",
2672       IsSubstring("needle_expr", "haystack_expr", ::std::wstring(L"needle"),
2673                   L"haystack")
2674           .failure_message());
2675 }
2676 
2677 #endif  // GTEST_HAS_STD_WSTRING
2678 
2679 // Tests for ::testing::IsNotSubstring().
2680 
2681 // Tests that IsNotSubstring() returns the correct result when the input
2682 // argument type is const char*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForCString)2683 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
2684   EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
2685   EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
2686 }
2687 
2688 // Tests that IsNotSubstring() returns the correct result when the input
2689 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForWideCString)2690 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
2691   EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
2692   EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
2693 }
2694 
2695 // Tests that IsNotSubstring() generates the correct message when the input
2696 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForWideCString)2697 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
2698   EXPECT_STREQ(
2699       "Value of: needle_expr\n"
2700       "  Actual: L\"needle\"\n"
2701       "Expected: not a substring of haystack_expr\n"
2702       "Which is: L\"two needles\"",
2703       IsNotSubstring("needle_expr", "haystack_expr", L"needle", L"two needles")
2704           .failure_message());
2705 }
2706 
2707 // Tests that IsNotSubstring returns the correct result when the input
2708 // argument type is ::std::string.
TEST(IsNotSubstringTest,ReturnsCorrectResultsForStdString)2709 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
2710   EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
2711   EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
2712 }
2713 
2714 // Tests that IsNotSubstring() generates the correct message when the input
2715 // argument type is ::std::string.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForStdString)2716 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
2717   EXPECT_STREQ(
2718       "Value of: needle_expr\n"
2719       "  Actual: \"needle\"\n"
2720       "Expected: not a substring of haystack_expr\n"
2721       "Which is: \"two needles\"",
2722       IsNotSubstring("needle_expr", "haystack_expr", ::std::string("needle"),
2723                      "two needles")
2724           .failure_message());
2725 }
2726 
2727 #if GTEST_HAS_STD_WSTRING
2728 
2729 // Tests that IsNotSubstring returns the correct result when the input
2730 // argument type is ::std::wstring.
TEST(IsNotSubstringTest,ReturnsCorrectResultForStdWstring)2731 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
2732   EXPECT_FALSE(
2733       IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2734   EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2735 }
2736 
2737 #endif  // GTEST_HAS_STD_WSTRING
2738 
2739 // Tests floating-point assertions.
2740 
2741 template <typename RawType>
2742 class FloatingPointTest : public Test {
2743  protected:
2744   // Pre-calculated numbers to be used by the tests.
2745   struct TestValues {
2746     RawType close_to_positive_zero;
2747     RawType close_to_negative_zero;
2748     RawType further_from_negative_zero;
2749 
2750     RawType close_to_one;
2751     RawType further_from_one;
2752 
2753     RawType infinity;
2754     RawType close_to_infinity;
2755     RawType further_from_infinity;
2756 
2757     RawType nan1;
2758     RawType nan2;
2759   };
2760 
2761   typedef typename testing::internal::FloatingPoint<RawType> Floating;
2762   typedef typename Floating::Bits Bits;
2763 
SetUp()2764   void SetUp() override {
2765     const uint32_t max_ulps = Floating::kMaxUlps;
2766 
2767     // The bits that represent 0.0.
2768     const Bits zero_bits = Floating(0).bits();
2769 
2770     // Makes some numbers close to 0.0.
2771     values_.close_to_positive_zero =
2772         Floating::ReinterpretBits(zero_bits + max_ulps / 2);
2773     values_.close_to_negative_zero =
2774         -Floating::ReinterpretBits(zero_bits + max_ulps - max_ulps / 2);
2775     values_.further_from_negative_zero =
2776         -Floating::ReinterpretBits(zero_bits + max_ulps + 1 - max_ulps / 2);
2777 
2778     // The bits that represent 1.0.
2779     const Bits one_bits = Floating(1).bits();
2780 
2781     // Makes some numbers close to 1.0.
2782     values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
2783     values_.further_from_one =
2784         Floating::ReinterpretBits(one_bits + max_ulps + 1);
2785 
2786     // +infinity.
2787     values_.infinity = Floating::Infinity();
2788 
2789     // The bits that represent +infinity.
2790     const Bits infinity_bits = Floating(values_.infinity).bits();
2791 
2792     // Makes some numbers close to infinity.
2793     values_.close_to_infinity =
2794         Floating::ReinterpretBits(infinity_bits - max_ulps);
2795     values_.further_from_infinity =
2796         Floating::ReinterpretBits(infinity_bits - max_ulps - 1);
2797 
2798     // Makes some NAN's.  Sets the most significant bit of the fraction so that
2799     // our NaN's are quiet; trying to process a signaling NaN would raise an
2800     // exception if our environment enables floating point exceptions.
2801     values_.nan1 = Floating::ReinterpretBits(
2802         Floating::kExponentBitMask |
2803         (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
2804     values_.nan2 = Floating::ReinterpretBits(
2805         Floating::kExponentBitMask |
2806         (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
2807   }
2808 
TestSize()2809   void TestSize() { EXPECT_EQ(sizeof(RawType), sizeof(Bits)); }
2810 
2811   static TestValues values_;
2812 };
2813 
2814 template <typename RawType>
2815 typename FloatingPointTest<RawType>::TestValues
2816     FloatingPointTest<RawType>::values_;
2817 
2818 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
2819 typedef FloatingPointTest<float> FloatTest;
2820 
2821 // Tests that the size of Float::Bits matches the size of float.
TEST_F(FloatTest,Size)2822 TEST_F(FloatTest, Size) { TestSize(); }
2823 
2824 // Tests comparing with +0 and -0.
TEST_F(FloatTest,Zeros)2825 TEST_F(FloatTest, Zeros) {
2826   EXPECT_FLOAT_EQ(0.0, -0.0);
2827   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0), "1.0");
2828   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5), "1.5");
2829 }
2830 
2831 // Tests comparing numbers close to 0.
2832 //
2833 // This ensures that *_FLOAT_EQ handles the sign correctly and no
2834 // overflow occurs when comparing numbers whose absolute value is very
2835 // small.
TEST_F(FloatTest,AlmostZeros)2836 TEST_F(FloatTest, AlmostZeros) {
2837   // In C++Builder, names within local classes (such as used by
2838   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2839   // scoping class.  Use a static local alias as a workaround.
2840   // We use the assignment syntax since some compilers, like Sun Studio,
2841   // don't allow initializing references using construction syntax
2842   // (parentheses).
2843   static const FloatTest::TestValues& v = this->values_;
2844 
2845   EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
2846   EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
2847   EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2848 
2849   EXPECT_FATAL_FAILURE(
2850       {  // NOLINT
2851         ASSERT_FLOAT_EQ(v.close_to_positive_zero, v.further_from_negative_zero);
2852       },
2853       "v.further_from_negative_zero");
2854 }
2855 
2856 // Tests comparing numbers close to each other.
TEST_F(FloatTest,SmallDiff)2857 TEST_F(FloatTest, SmallDiff) {
2858   EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
2859   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
2860                           "values_.further_from_one");
2861 }
2862 
2863 // Tests comparing numbers far apart.
TEST_F(FloatTest,LargeDiff)2864 TEST_F(FloatTest, LargeDiff) {
2865   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0), "3.0");
2866 }
2867 
2868 // Tests comparing with infinity.
2869 //
2870 // This ensures that no overflow occurs when comparing numbers whose
2871 // absolute value is very large.
TEST_F(FloatTest,Infinity)2872 TEST_F(FloatTest, Infinity) {
2873   EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
2874   EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
2875   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
2876                           "-values_.infinity");
2877 
2878   // This is interesting as the representations of infinity and nan1
2879   // are only 1 DLP apart.
2880   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
2881                           "values_.nan1");
2882 }
2883 
2884 // Tests that comparing with NAN always returns false.
TEST_F(FloatTest,NaN)2885 TEST_F(FloatTest, NaN) {
2886   // In C++Builder, names within local classes (such as used by
2887   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2888   // scoping class.  Use a static local alias as a workaround.
2889   // We use the assignment syntax since some compilers, like Sun Studio,
2890   // don't allow initializing references using construction syntax
2891   // (parentheses).
2892   static const FloatTest::TestValues& v = this->values_;
2893 
2894   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1), "v.nan1");
2895   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2), "v.nan2");
2896   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1), "v.nan1");
2897 
2898   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity), "v.infinity");
2899 }
2900 
2901 // Tests that *_FLOAT_EQ are reflexive.
TEST_F(FloatTest,Reflexive)2902 TEST_F(FloatTest, Reflexive) {
2903   EXPECT_FLOAT_EQ(0.0, 0.0);
2904   EXPECT_FLOAT_EQ(1.0, 1.0);
2905   ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
2906 }
2907 
2908 // Tests that *_FLOAT_EQ are commutative.
TEST_F(FloatTest,Commutative)2909 TEST_F(FloatTest, Commutative) {
2910   // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
2911   EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
2912 
2913   // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
2914   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
2915                           "1.0");
2916 }
2917 
2918 // Tests EXPECT_NEAR.
TEST_F(FloatTest,EXPECT_NEAR)2919 TEST_F(FloatTest, EXPECT_NEAR) {
2920   EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
2921   EXPECT_NEAR(2.0f, 3.0f, 1.0f);
2922   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f, 1.5f, 0.25f),  // NOLINT
2923                           "The difference between 1.0f and 1.5f is 0.5, "
2924                           "which exceeds 0.25f");
2925 }
2926 
2927 // Tests ASSERT_NEAR.
TEST_F(FloatTest,ASSERT_NEAR)2928 TEST_F(FloatTest, ASSERT_NEAR) {
2929   ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
2930   ASSERT_NEAR(2.0f, 3.0f, 1.0f);
2931   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f, 1.5f, 0.25f),  // NOLINT
2932                        "The difference between 1.0f and 1.5f is 0.5, "
2933                        "which exceeds 0.25f");
2934 }
2935 
2936 // Tests the cases where FloatLE() should succeed.
TEST_F(FloatTest,FloatLESucceeds)2937 TEST_F(FloatTest, FloatLESucceeds) {
2938   EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
2939   ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
2940 
2941   // or when val1 is greater than, but almost equals to, val2.
2942   EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
2943 }
2944 
2945 // Tests the cases where FloatLE() should fail.
TEST_F(FloatTest,FloatLEFails)2946 TEST_F(FloatTest, FloatLEFails) {
2947   // When val1 is greater than val2 by a large margin,
2948   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
2949                           "(2.0f) <= (1.0f)");
2950 
2951   // or by a small yet non-negligible margin,
2952   EXPECT_NONFATAL_FAILURE(
2953       {  // NOLINT
2954         EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
2955       },
2956       "(values_.further_from_one) <= (1.0f)");
2957 
2958   EXPECT_NONFATAL_FAILURE(
2959       {  // NOLINT
2960         EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
2961       },
2962       "(values_.nan1) <= (values_.infinity)");
2963   EXPECT_NONFATAL_FAILURE(
2964       {  // NOLINT
2965         EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
2966       },
2967       "(-values_.infinity) <= (values_.nan1)");
2968   EXPECT_FATAL_FAILURE(
2969       {  // NOLINT
2970         ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
2971       },
2972       "(values_.nan1) <= (values_.nan1)");
2973 }
2974 
2975 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
2976 typedef FloatingPointTest<double> DoubleTest;
2977 
2978 // Tests that the size of Double::Bits matches the size of double.
TEST_F(DoubleTest,Size)2979 TEST_F(DoubleTest, Size) { TestSize(); }
2980 
2981 // Tests comparing with +0 and -0.
TEST_F(DoubleTest,Zeros)2982 TEST_F(DoubleTest, Zeros) {
2983   EXPECT_DOUBLE_EQ(0.0, -0.0);
2984   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0), "1.0");
2985   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0), "1.0");
2986 }
2987 
2988 // Tests comparing numbers close to 0.
2989 //
2990 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
2991 // overflow occurs when comparing numbers whose absolute value is very
2992 // small.
TEST_F(DoubleTest,AlmostZeros)2993 TEST_F(DoubleTest, AlmostZeros) {
2994   // In C++Builder, names within local classes (such as used by
2995   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2996   // scoping class.  Use a static local alias as a workaround.
2997   // We use the assignment syntax since some compilers, like Sun Studio,
2998   // don't allow initializing references using construction syntax
2999   // (parentheses).
3000   static const DoubleTest::TestValues& v = this->values_;
3001 
3002   EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
3003   EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
3004   EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
3005 
3006   EXPECT_FATAL_FAILURE(
3007       {  // NOLINT
3008         ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
3009                          v.further_from_negative_zero);
3010       },
3011       "v.further_from_negative_zero");
3012 }
3013 
3014 // Tests comparing numbers close to each other.
TEST_F(DoubleTest,SmallDiff)3015 TEST_F(DoubleTest, SmallDiff) {
3016   EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
3017   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
3018                           "values_.further_from_one");
3019 }
3020 
3021 // Tests comparing numbers far apart.
TEST_F(DoubleTest,LargeDiff)3022 TEST_F(DoubleTest, LargeDiff) {
3023   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0), "3.0");
3024 }
3025 
3026 // Tests comparing with infinity.
3027 //
3028 // This ensures that no overflow occurs when comparing numbers whose
3029 // absolute value is very large.
TEST_F(DoubleTest,Infinity)3030 TEST_F(DoubleTest, Infinity) {
3031   EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
3032   EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
3033   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
3034                           "-values_.infinity");
3035 
3036   // This is interesting as the representations of infinity_ and nan1_
3037   // are only 1 DLP apart.
3038   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
3039                           "values_.nan1");
3040 }
3041 
3042 // Tests that comparing with NAN always returns false.
TEST_F(DoubleTest,NaN)3043 TEST_F(DoubleTest, NaN) {
3044   static const DoubleTest::TestValues& v = this->values_;
3045 
3046   // Nokia's STLport crashes if we try to output infinity or NaN.
3047   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1), "v.nan1");
3048   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
3049   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
3050   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity), "v.infinity");
3051 }
3052 
3053 // Tests that *_DOUBLE_EQ are reflexive.
TEST_F(DoubleTest,Reflexive)3054 TEST_F(DoubleTest, Reflexive) {
3055   EXPECT_DOUBLE_EQ(0.0, 0.0);
3056   EXPECT_DOUBLE_EQ(1.0, 1.0);
3057   ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
3058 }
3059 
3060 // Tests that *_DOUBLE_EQ are commutative.
TEST_F(DoubleTest,Commutative)3061 TEST_F(DoubleTest, Commutative) {
3062   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
3063   EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
3064 
3065   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
3066   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
3067                           "1.0");
3068 }
3069 
3070 // Tests EXPECT_NEAR.
TEST_F(DoubleTest,EXPECT_NEAR)3071 TEST_F(DoubleTest, EXPECT_NEAR) {
3072   EXPECT_NEAR(-1.0, -1.1, 0.2);
3073   EXPECT_NEAR(2.0, 3.0, 1.0);
3074   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3075                           "The difference between 1.0 and 1.5 is 0.5, "
3076                           "which exceeds 0.25");
3077   // At this magnitude adjacent doubles are 512.0 apart, so this triggers a
3078   // slightly different failure reporting path.
3079   EXPECT_NONFATAL_FAILURE(
3080       EXPECT_NEAR(4.2934311416234112e+18, 4.2934311416234107e+18, 1.0),
3081       "The abs_error parameter 1.0 evaluates to 1 which is smaller than the "
3082       "minimum distance between doubles for numbers of this magnitude which is "
3083       "512");
3084 }
3085 
3086 // Tests ASSERT_NEAR.
TEST_F(DoubleTest,ASSERT_NEAR)3087 TEST_F(DoubleTest, ASSERT_NEAR) {
3088   ASSERT_NEAR(-1.0, -1.1, 0.2);
3089   ASSERT_NEAR(2.0, 3.0, 1.0);
3090   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3091                        "The difference between 1.0 and 1.5 is 0.5, "
3092                        "which exceeds 0.25");
3093 }
3094 
3095 // Tests the cases where DoubleLE() should succeed.
TEST_F(DoubleTest,DoubleLESucceeds)3096 TEST_F(DoubleTest, DoubleLESucceeds) {
3097   EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
3098   ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
3099 
3100   // or when val1 is greater than, but almost equals to, val2.
3101   EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
3102 }
3103 
3104 // Tests the cases where DoubleLE() should fail.
TEST_F(DoubleTest,DoubleLEFails)3105 TEST_F(DoubleTest, DoubleLEFails) {
3106   // When val1 is greater than val2 by a large margin,
3107   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
3108                           "(2.0) <= (1.0)");
3109 
3110   // or by a small yet non-negligible margin,
3111   EXPECT_NONFATAL_FAILURE(
3112       {  // NOLINT
3113         EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
3114       },
3115       "(values_.further_from_one) <= (1.0)");
3116 
3117   EXPECT_NONFATAL_FAILURE(
3118       {  // NOLINT
3119         EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
3120       },
3121       "(values_.nan1) <= (values_.infinity)");
3122   EXPECT_NONFATAL_FAILURE(
3123       {  // NOLINT
3124         EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
3125       },
3126       " (-values_.infinity) <= (values_.nan1)");
3127   EXPECT_FATAL_FAILURE(
3128       {  // NOLINT
3129         ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
3130       },
3131       "(values_.nan1) <= (values_.nan1)");
3132 }
3133 
3134 // Verifies that a test or test case whose name starts with DISABLED_ is
3135 // not run.
3136 
3137 // A test whose name starts with DISABLED_.
3138 // Should not run.
TEST(DisabledTest,DISABLED_TestShouldNotRun)3139 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
3140   FAIL() << "Unexpected failure: Disabled test should not be run.";
3141 }
3142 
3143 // A test whose name does not start with DISABLED_.
3144 // Should run.
TEST(DisabledTest,NotDISABLED_TestShouldRun)3145 TEST(DisabledTest, NotDISABLED_TestShouldRun) { EXPECT_EQ(1, 1); }
3146 
3147 // A test case whose name starts with DISABLED_.
3148 // Should not run.
TEST(DISABLED_TestSuite,TestShouldNotRun)3149 TEST(DISABLED_TestSuite, TestShouldNotRun) {
3150   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3151 }
3152 
3153 // A test case and test whose names start with DISABLED_.
3154 // Should not run.
TEST(DISABLED_TestSuite,DISABLED_TestShouldNotRun)3155 TEST(DISABLED_TestSuite, DISABLED_TestShouldNotRun) {
3156   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3157 }
3158 
3159 // Check that when all tests in a test case are disabled, SetUpTestSuite() and
3160 // TearDownTestSuite() are not called.
3161 class DisabledTestsTest : public Test {
3162  protected:
SetUpTestSuite()3163   static void SetUpTestSuite() {
3164     FAIL() << "Unexpected failure: All tests disabled in test case. "
3165               "SetUpTestSuite() should not be called.";
3166   }
3167 
TearDownTestSuite()3168   static void TearDownTestSuite() {
3169     FAIL() << "Unexpected failure: All tests disabled in test case. "
3170               "TearDownTestSuite() should not be called.";
3171   }
3172 };
3173 
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_1)3174 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
3175   FAIL() << "Unexpected failure: Disabled test should not be run.";
3176 }
3177 
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_2)3178 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
3179   FAIL() << "Unexpected failure: Disabled test should not be run.";
3180 }
3181 
3182 // Tests that disabled typed tests aren't run.
3183 
3184 template <typename T>
3185 class TypedTest : public Test {};
3186 
3187 typedef testing::Types<int, double> NumericTypes;
3188 TYPED_TEST_SUITE(TypedTest, NumericTypes);
3189 
TYPED_TEST(TypedTest,DISABLED_ShouldNotRun)3190 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
3191   FAIL() << "Unexpected failure: Disabled typed test should not run.";
3192 }
3193 
3194 template <typename T>
3195 class DISABLED_TypedTest : public Test {};
3196 
3197 TYPED_TEST_SUITE(DISABLED_TypedTest, NumericTypes);
3198 
TYPED_TEST(DISABLED_TypedTest,ShouldNotRun)3199 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
3200   FAIL() << "Unexpected failure: Disabled typed test should not run.";
3201 }
3202 
3203 // Tests that disabled type-parameterized tests aren't run.
3204 
3205 template <typename T>
3206 class TypedTestP : public Test {};
3207 
3208 TYPED_TEST_SUITE_P(TypedTestP);
3209 
TYPED_TEST_P(TypedTestP,DISABLED_ShouldNotRun)3210 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
3211   FAIL() << "Unexpected failure: "
3212          << "Disabled type-parameterized test should not run.";
3213 }
3214 
3215 REGISTER_TYPED_TEST_SUITE_P(TypedTestP, DISABLED_ShouldNotRun);
3216 
3217 INSTANTIATE_TYPED_TEST_SUITE_P(My, TypedTestP, NumericTypes);
3218 
3219 template <typename T>
3220 class DISABLED_TypedTestP : public Test {};
3221 
3222 TYPED_TEST_SUITE_P(DISABLED_TypedTestP);
3223 
TYPED_TEST_P(DISABLED_TypedTestP,ShouldNotRun)3224 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
3225   FAIL() << "Unexpected failure: "
3226          << "Disabled type-parameterized test should not run.";
3227 }
3228 
3229 REGISTER_TYPED_TEST_SUITE_P(DISABLED_TypedTestP, ShouldNotRun);
3230 
3231 INSTANTIATE_TYPED_TEST_SUITE_P(My, DISABLED_TypedTestP, NumericTypes);
3232 
3233 // Tests that assertion macros evaluate their arguments exactly once.
3234 
3235 class SingleEvaluationTest : public Test {
3236  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
3237   // This helper function is needed by the FailedASSERT_STREQ test
3238   // below.  It's public to work around C++Builder's bug with scoping local
3239   // classes.
CompareAndIncrementCharPtrs()3240   static void CompareAndIncrementCharPtrs() { ASSERT_STREQ(p1_++, p2_++); }
3241 
3242   // This helper function is needed by the FailedASSERT_NE test below.  It's
3243   // public to work around C++Builder's bug with scoping local classes.
CompareAndIncrementInts()3244   static void CompareAndIncrementInts() { ASSERT_NE(a_++, b_++); }
3245 
3246  protected:
SingleEvaluationTest()3247   SingleEvaluationTest() {
3248     p1_ = s1_;
3249     p2_ = s2_;
3250     a_ = 0;
3251     b_ = 0;
3252   }
3253 
3254   static const char* const s1_;
3255   static const char* const s2_;
3256   static const char* p1_;
3257   static const char* p2_;
3258 
3259   static int a_;
3260   static int b_;
3261 };
3262 
3263 const char* const SingleEvaluationTest::s1_ = "01234";
3264 const char* const SingleEvaluationTest::s2_ = "abcde";
3265 const char* SingleEvaluationTest::p1_;
3266 const char* SingleEvaluationTest::p2_;
3267 int SingleEvaluationTest::a_;
3268 int SingleEvaluationTest::b_;
3269 
3270 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
3271 // exactly once.
TEST_F(SingleEvaluationTest,FailedASSERT_STREQ)3272 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
3273   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
3274                        "p2_++");
3275   EXPECT_EQ(s1_ + 1, p1_);
3276   EXPECT_EQ(s2_ + 1, p2_);
3277 }
3278 
3279 // Tests that string assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ASSERT_STR)3280 TEST_F(SingleEvaluationTest, ASSERT_STR) {
3281   // successful EXPECT_STRNE
3282   EXPECT_STRNE(p1_++, p2_++);
3283   EXPECT_EQ(s1_ + 1, p1_);
3284   EXPECT_EQ(s2_ + 1, p2_);
3285 
3286   // failed EXPECT_STRCASEEQ
3287   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++), "Ignoring case");
3288   EXPECT_EQ(s1_ + 2, p1_);
3289   EXPECT_EQ(s2_ + 2, p2_);
3290 }
3291 
3292 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
3293 // once.
TEST_F(SingleEvaluationTest,FailedASSERT_NE)3294 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
3295   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
3296                        "(a_++) != (b_++)");
3297   EXPECT_EQ(1, a_);
3298   EXPECT_EQ(1, b_);
3299 }
3300 
3301 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,OtherCases)3302 TEST_F(SingleEvaluationTest, OtherCases) {
3303   // successful EXPECT_TRUE
3304   EXPECT_TRUE(0 == a_++);  // NOLINT
3305   EXPECT_EQ(1, a_);
3306 
3307   // failed EXPECT_TRUE
3308   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
3309   EXPECT_EQ(2, a_);
3310 
3311   // successful EXPECT_GT
3312   EXPECT_GT(a_++, b_++);
3313   EXPECT_EQ(3, a_);
3314   EXPECT_EQ(1, b_);
3315 
3316   // failed EXPECT_LT
3317   EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
3318   EXPECT_EQ(4, a_);
3319   EXPECT_EQ(2, b_);
3320 
3321   // successful ASSERT_TRUE
3322   ASSERT_TRUE(0 < a_++);  // NOLINT
3323   EXPECT_EQ(5, a_);
3324 
3325   // successful ASSERT_GT
3326   ASSERT_GT(a_++, b_++);
3327   EXPECT_EQ(6, a_);
3328   EXPECT_EQ(3, b_);
3329 }
3330 
3331 #if GTEST_HAS_EXCEPTIONS
3332 
3333 #if GTEST_HAS_RTTI
3334 
3335 #define ERROR_DESC "std::runtime_error"
3336 
3337 #else  // GTEST_HAS_RTTI
3338 
3339 #define ERROR_DESC "an std::exception-derived error"
3340 
3341 #endif  // GTEST_HAS_RTTI
3342 
ThrowAnInteger()3343 void ThrowAnInteger() { throw 1; }
ThrowRuntimeError(const char * what)3344 void ThrowRuntimeError(const char* what) { throw std::runtime_error(what); }
3345 
3346 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ExceptionTests)3347 TEST_F(SingleEvaluationTest, ExceptionTests) {
3348   // successful EXPECT_THROW
3349   EXPECT_THROW(
3350       {  // NOLINT
3351         a_++;
3352         ThrowAnInteger();
3353       },
3354       int);
3355   EXPECT_EQ(1, a_);
3356 
3357   // failed EXPECT_THROW, throws different
3358   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(
3359                               {  // NOLINT
3360                                 a_++;
3361                                 ThrowAnInteger();
3362                               },
3363                               bool),
3364                           "throws a different type");
3365   EXPECT_EQ(2, a_);
3366 
3367   // failed EXPECT_THROW, throws runtime error
3368   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(
3369                               {  // NOLINT
3370                                 a_++;
3371                                 ThrowRuntimeError("A description");
3372                               },
3373                               bool),
3374                           "throws " ERROR_DESC
3375                           " with description \"A description\"");
3376   EXPECT_EQ(3, a_);
3377 
3378   // failed EXPECT_THROW, throws nothing
3379   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
3380   EXPECT_EQ(4, a_);
3381 
3382   // successful EXPECT_NO_THROW
3383   EXPECT_NO_THROW(a_++);
3384   EXPECT_EQ(5, a_);
3385 
3386   // failed EXPECT_NO_THROW
3387   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
3388                             a_++;
3389                             ThrowAnInteger();
3390                           }),
3391                           "it throws");
3392   EXPECT_EQ(6, a_);
3393 
3394   // successful EXPECT_ANY_THROW
3395   EXPECT_ANY_THROW({  // NOLINT
3396     a_++;
3397     ThrowAnInteger();
3398   });
3399   EXPECT_EQ(7, a_);
3400 
3401   // failed EXPECT_ANY_THROW
3402   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
3403   EXPECT_EQ(8, a_);
3404 }
3405 
3406 #endif  // GTEST_HAS_EXCEPTIONS
3407 
3408 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
3409 class NoFatalFailureTest : public Test {
3410  protected:
Succeeds()3411   void Succeeds() {}
FailsNonFatal()3412   void FailsNonFatal() { ADD_FAILURE() << "some non-fatal failure"; }
Fails()3413   void Fails() { FAIL() << "some fatal failure"; }
3414 
DoAssertNoFatalFailureOnFails()3415   void DoAssertNoFatalFailureOnFails() {
3416     ASSERT_NO_FATAL_FAILURE(Fails());
3417     ADD_FAILURE() << "should not reach here.";
3418   }
3419 
DoExpectNoFatalFailureOnFails()3420   void DoExpectNoFatalFailureOnFails() {
3421     EXPECT_NO_FATAL_FAILURE(Fails());
3422     ADD_FAILURE() << "other failure";
3423   }
3424 };
3425 
TEST_F(NoFatalFailureTest,NoFailure)3426 TEST_F(NoFatalFailureTest, NoFailure) {
3427   EXPECT_NO_FATAL_FAILURE(Succeeds());
3428   ASSERT_NO_FATAL_FAILURE(Succeeds());
3429 }
3430 
TEST_F(NoFatalFailureTest,NonFatalIsNoFailure)3431 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
3432   EXPECT_NONFATAL_FAILURE(EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
3433                           "some non-fatal failure");
3434   EXPECT_NONFATAL_FAILURE(ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
3435                           "some non-fatal failure");
3436 }
3437 
TEST_F(NoFatalFailureTest,AssertNoFatalFailureOnFatalFailure)3438 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
3439   TestPartResultArray gtest_failures;
3440   {
3441     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3442     DoAssertNoFatalFailureOnFails();
3443   }
3444   ASSERT_EQ(2, gtest_failures.size());
3445   EXPECT_EQ(TestPartResult::kFatalFailure,
3446             gtest_failures.GetTestPartResult(0).type());
3447   EXPECT_EQ(TestPartResult::kFatalFailure,
3448             gtest_failures.GetTestPartResult(1).type());
3449   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3450                       gtest_failures.GetTestPartResult(0).message());
3451   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3452                       gtest_failures.GetTestPartResult(1).message());
3453 }
3454 
TEST_F(NoFatalFailureTest,ExpectNoFatalFailureOnFatalFailure)3455 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
3456   TestPartResultArray gtest_failures;
3457   {
3458     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3459     DoExpectNoFatalFailureOnFails();
3460   }
3461   ASSERT_EQ(3, gtest_failures.size());
3462   EXPECT_EQ(TestPartResult::kFatalFailure,
3463             gtest_failures.GetTestPartResult(0).type());
3464   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3465             gtest_failures.GetTestPartResult(1).type());
3466   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3467             gtest_failures.GetTestPartResult(2).type());
3468   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3469                       gtest_failures.GetTestPartResult(0).message());
3470   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3471                       gtest_failures.GetTestPartResult(1).message());
3472   EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
3473                       gtest_failures.GetTestPartResult(2).message());
3474 }
3475 
TEST_F(NoFatalFailureTest,MessageIsStreamable)3476 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
3477   TestPartResultArray gtest_failures;
3478   {
3479     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3480     EXPECT_NO_FATAL_FAILURE([] { FAIL() << "foo"; }()) << "my message";
3481   }
3482   ASSERT_EQ(2, gtest_failures.size());
3483   EXPECT_EQ(TestPartResult::kFatalFailure,
3484             gtest_failures.GetTestPartResult(0).type());
3485   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3486             gtest_failures.GetTestPartResult(1).type());
3487   EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
3488                       gtest_failures.GetTestPartResult(0).message());
3489   EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
3490                       gtest_failures.GetTestPartResult(1).message());
3491 }
3492 
3493 // Tests non-string assertions.
3494 
EditsToString(const std::vector<EditType> & edits)3495 std::string EditsToString(const std::vector<EditType>& edits) {
3496   std::string out;
3497   for (size_t i = 0; i < edits.size(); ++i) {
3498     static const char kEdits[] = " +-/";
3499     out.append(1, kEdits[edits[i]]);
3500   }
3501   return out;
3502 }
3503 
CharsToIndices(const std::string & str)3504 std::vector<size_t> CharsToIndices(const std::string& str) {
3505   std::vector<size_t> out;
3506   for (size_t i = 0; i < str.size(); ++i) {
3507     out.push_back(static_cast<size_t>(str[i]));
3508   }
3509   return out;
3510 }
3511 
CharsToLines(const std::string & str)3512 std::vector<std::string> CharsToLines(const std::string& str) {
3513   std::vector<std::string> out;
3514   for (size_t i = 0; i < str.size(); ++i) {
3515     out.push_back(str.substr(i, 1));
3516   }
3517   return out;
3518 }
3519 
TEST(EditDistance,TestSuites)3520 TEST(EditDistance, TestSuites) {
3521   struct Case {
3522     int line;
3523     const char* left;
3524     const char* right;
3525     const char* expected_edits;
3526     const char* expected_diff;
3527   };
3528   static const Case kCases[] = {
3529       // No change.
3530       {__LINE__, "A", "A", " ", ""},
3531       {__LINE__, "ABCDE", "ABCDE", "     ", ""},
3532       // Simple adds.
3533       {__LINE__, "X", "XA", " +", "@@ +1,2 @@\n X\n+A\n"},
3534       {__LINE__, "X", "XABCD", " ++++", "@@ +1,5 @@\n X\n+A\n+B\n+C\n+D\n"},
3535       // Simple removes.
3536       {__LINE__, "XA", "X", " -", "@@ -1,2 @@\n X\n-A\n"},
3537       {__LINE__, "XABCD", "X", " ----", "@@ -1,5 @@\n X\n-A\n-B\n-C\n-D\n"},
3538       // Simple replaces.
3539       {__LINE__, "A", "a", "/", "@@ -1,1 +1,1 @@\n-A\n+a\n"},
3540       {__LINE__, "ABCD", "abcd", "////",
3541        "@@ -1,4 +1,4 @@\n-A\n-B\n-C\n-D\n+a\n+b\n+c\n+d\n"},
3542       // Path finding.
3543       {__LINE__, "ABCDEFGH", "ABXEGH1", "  -/ -  +",
3544        "@@ -1,8 +1,7 @@\n A\n B\n-C\n-D\n+X\n E\n-F\n G\n H\n+1\n"},
3545       {__LINE__, "AAAABCCCC", "ABABCDCDC", "- /   + / ",
3546        "@@ -1,9 +1,9 @@\n-A\n A\n-A\n+B\n A\n B\n C\n+D\n C\n-C\n+D\n C\n"},
3547       {__LINE__, "ABCDE", "BCDCD", "-   +/",
3548        "@@ -1,5 +1,5 @@\n-A\n B\n C\n D\n-E\n+C\n+D\n"},
3549       {__LINE__, "ABCDEFGHIJKL", "BCDCDEFGJKLJK", "- ++     --   ++",
3550        "@@ -1,4 +1,5 @@\n-A\n B\n+C\n+D\n C\n D\n"
3551        "@@ -6,7 +7,7 @@\n F\n G\n-H\n-I\n J\n K\n L\n+J\n+K\n"},
3552       {}};
3553   for (const Case* c = kCases; c->left; ++c) {
3554     EXPECT_TRUE(c->expected_edits ==
3555                 EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
3556                                                     CharsToIndices(c->right))))
3557         << "Left <" << c->left << "> Right <" << c->right << "> Edits <"
3558         << EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
3559                                                CharsToIndices(c->right)))
3560         << ">";
3561     EXPECT_TRUE(c->expected_diff == CreateUnifiedDiff(CharsToLines(c->left),
3562                                                       CharsToLines(c->right)))
3563         << "Left <" << c->left << "> Right <" << c->right << "> Diff <"
3564         << CreateUnifiedDiff(CharsToLines(c->left), CharsToLines(c->right))
3565         << ">";
3566   }
3567 }
3568 
3569 // Tests EqFailure(), used for implementing *EQ* assertions.
TEST(AssertionTest,EqFailure)3570 TEST(AssertionTest, EqFailure) {
3571   const std::string foo_val("5"), bar_val("6");
3572   const std::string msg1(
3573       EqFailure("foo", "bar", foo_val, bar_val, false).failure_message());
3574   EXPECT_STREQ(
3575       "Expected equality of these values:\n"
3576       "  foo\n"
3577       "    Which is: 5\n"
3578       "  bar\n"
3579       "    Which is: 6",
3580       msg1.c_str());
3581 
3582   const std::string msg2(
3583       EqFailure("foo", "6", foo_val, bar_val, false).failure_message());
3584   EXPECT_STREQ(
3585       "Expected equality of these values:\n"
3586       "  foo\n"
3587       "    Which is: 5\n"
3588       "  6",
3589       msg2.c_str());
3590 
3591   const std::string msg3(
3592       EqFailure("5", "bar", foo_val, bar_val, false).failure_message());
3593   EXPECT_STREQ(
3594       "Expected equality of these values:\n"
3595       "  5\n"
3596       "  bar\n"
3597       "    Which is: 6",
3598       msg3.c_str());
3599 
3600   const std::string msg4(
3601       EqFailure("5", "6", foo_val, bar_val, false).failure_message());
3602   EXPECT_STREQ(
3603       "Expected equality of these values:\n"
3604       "  5\n"
3605       "  6",
3606       msg4.c_str());
3607 
3608   const std::string msg5(
3609       EqFailure("foo", "bar", std::string("\"x\""), std::string("\"y\""), true)
3610           .failure_message());
3611   EXPECT_STREQ(
3612       "Expected equality of these values:\n"
3613       "  foo\n"
3614       "    Which is: \"x\"\n"
3615       "  bar\n"
3616       "    Which is: \"y\"\n"
3617       "Ignoring case",
3618       msg5.c_str());
3619 }
3620 
TEST(AssertionTest,EqFailureWithDiff)3621 TEST(AssertionTest, EqFailureWithDiff) {
3622   const std::string left(
3623       "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15");
3624   const std::string right(
3625       "1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14");
3626   const std::string msg1(
3627       EqFailure("left", "right", left, right, false).failure_message());
3628   EXPECT_STREQ(
3629       "Expected equality of these values:\n"
3630       "  left\n"
3631       "    Which is: "
3632       "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15\n"
3633       "  right\n"
3634       "    Which is: 1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14\n"
3635       "With diff:\n@@ -1,5 +1,6 @@\n 1\n-2XXX\n+2\n 3\n+4\n 5\n 6\n"
3636       "@@ -7,8 +8,6 @@\n 8\n 9\n-10\n 11\n-12XXX\n+12\n 13\n 14\n-15\n",
3637       msg1.c_str());
3638 }
3639 
3640 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
TEST(AssertionTest,AppendUserMessage)3641 TEST(AssertionTest, AppendUserMessage) {
3642   const std::string foo("foo");
3643 
3644   Message msg;
3645   EXPECT_STREQ("foo", AppendUserMessage(foo, msg).c_str());
3646 
3647   msg << "bar";
3648   EXPECT_STREQ("foo\nbar", AppendUserMessage(foo, msg).c_str());
3649 }
3650 
3651 #ifdef __BORLANDC__
3652 // Silences warnings: "Condition is always true", "Unreachable code"
3653 #pragma option push -w-ccc -w-rch
3654 #endif
3655 
3656 // Tests ASSERT_TRUE.
TEST(AssertionTest,ASSERT_TRUE)3657 TEST(AssertionTest, ASSERT_TRUE) {
3658   ASSERT_TRUE(2 > 1);  // NOLINT
3659   EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1), "2 < 1");
3660 }
3661 
3662 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertTrueWithAssertionResult)3663 TEST(AssertionTest, AssertTrueWithAssertionResult) {
3664   ASSERT_TRUE(ResultIsEven(2));
3665 #ifndef __BORLANDC__
3666   // ICE's in C++Builder.
3667   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
3668                        "Value of: ResultIsEven(3)\n"
3669                        "  Actual: false (3 is odd)\n"
3670                        "Expected: true");
3671 #endif
3672   ASSERT_TRUE(ResultIsEvenNoExplanation(2));
3673   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
3674                        "Value of: ResultIsEvenNoExplanation(3)\n"
3675                        "  Actual: false (3 is odd)\n"
3676                        "Expected: true");
3677 }
3678 
3679 // Tests ASSERT_FALSE.
TEST(AssertionTest,ASSERT_FALSE)3680 TEST(AssertionTest, ASSERT_FALSE) {
3681   ASSERT_FALSE(2 < 1);  // NOLINT
3682   EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
3683                        "Value of: 2 > 1\n"
3684                        "  Actual: true\n"
3685                        "Expected: false");
3686 }
3687 
3688 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertFalseWithAssertionResult)3689 TEST(AssertionTest, AssertFalseWithAssertionResult) {
3690   ASSERT_FALSE(ResultIsEven(3));
3691 #ifndef __BORLANDC__
3692   // ICE's in C++Builder.
3693   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
3694                        "Value of: ResultIsEven(2)\n"
3695                        "  Actual: true (2 is even)\n"
3696                        "Expected: false");
3697 #endif
3698   ASSERT_FALSE(ResultIsEvenNoExplanation(3));
3699   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
3700                        "Value of: ResultIsEvenNoExplanation(2)\n"
3701                        "  Actual: true\n"
3702                        "Expected: false");
3703 }
3704 
3705 #ifdef __BORLANDC__
3706 // Restores warnings after previous "#pragma option push" suppressed them
3707 #pragma option pop
3708 #endif
3709 
3710 // Tests using ASSERT_EQ on double values.  The purpose is to make
3711 // sure that the specialization we did for integer and anonymous enums
3712 // isn't used for double arguments.
TEST(ExpectTest,ASSERT_EQ_Double)3713 TEST(ExpectTest, ASSERT_EQ_Double) {
3714   // A success.
3715   ASSERT_EQ(5.6, 5.6);
3716 
3717   // A failure.
3718   EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2), "5.1");
3719 }
3720 
3721 // Tests ASSERT_EQ.
TEST(AssertionTest,ASSERT_EQ)3722 TEST(AssertionTest, ASSERT_EQ) {
3723   ASSERT_EQ(5, 2 + 3);
3724   // clang-format off
3725   EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
3726                        "Expected equality of these values:\n"
3727                        "  5\n"
3728                        "  2*3\n"
3729                        "    Which is: 6");
3730   // clang-format on
3731 }
3732 
3733 // Tests ASSERT_EQ(NULL, pointer).
TEST(AssertionTest,ASSERT_EQ_NULL)3734 TEST(AssertionTest, ASSERT_EQ_NULL) {
3735   // A success.
3736   const char* p = nullptr;
3737   ASSERT_EQ(nullptr, p);
3738 
3739   // A failure.
3740   static int n = 0;
3741   EXPECT_FATAL_FAILURE(ASSERT_EQ(nullptr, &n), "  &n\n    Which is:");
3742 }
3743 
3744 // Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
3745 // treated as a null pointer by the compiler, we need to make sure
3746 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
3747 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,ASSERT_EQ_0)3748 TEST(ExpectTest, ASSERT_EQ_0) {
3749   int n = 0;
3750 
3751   // A success.
3752   ASSERT_EQ(0, n);
3753 
3754   // A failure.
3755   EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6), "  0\n  5.6");
3756 }
3757 
3758 // Tests ASSERT_NE.
TEST(AssertionTest,ASSERT_NE)3759 TEST(AssertionTest, ASSERT_NE) {
3760   ASSERT_NE(6, 7);
3761   EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
3762                        "Expected: ('a') != ('a'), "
3763                        "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
3764 }
3765 
3766 // Tests ASSERT_LE.
TEST(AssertionTest,ASSERT_LE)3767 TEST(AssertionTest, ASSERT_LE) {
3768   ASSERT_LE(2, 3);
3769   ASSERT_LE(2, 2);
3770   EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0), "Expected: (2) <= (0), actual: 2 vs 0");
3771 }
3772 
3773 // Tests ASSERT_LT.
TEST(AssertionTest,ASSERT_LT)3774 TEST(AssertionTest, ASSERT_LT) {
3775   ASSERT_LT(2, 3);
3776   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2), "Expected: (2) < (2), actual: 2 vs 2");
3777 }
3778 
3779 // Tests ASSERT_GE.
TEST(AssertionTest,ASSERT_GE)3780 TEST(AssertionTest, ASSERT_GE) {
3781   ASSERT_GE(2, 1);
3782   ASSERT_GE(2, 2);
3783   EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3), "Expected: (2) >= (3), actual: 2 vs 3");
3784 }
3785 
3786 // Tests ASSERT_GT.
TEST(AssertionTest,ASSERT_GT)3787 TEST(AssertionTest, ASSERT_GT) {
3788   ASSERT_GT(2, 1);
3789   EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2), "Expected: (2) > (2), actual: 2 vs 2");
3790 }
3791 
3792 #if GTEST_HAS_EXCEPTIONS
3793 
ThrowNothing()3794 void ThrowNothing() {}
3795 
3796 // Tests ASSERT_THROW.
TEST(AssertionTest,ASSERT_THROW)3797 TEST(AssertionTest, ASSERT_THROW) {
3798   ASSERT_THROW(ThrowAnInteger(), int);
3799 
3800 #ifndef __BORLANDC__
3801 
3802   // ICE's in C++Builder 2007 and 2009.
3803   EXPECT_FATAL_FAILURE(
3804       ASSERT_THROW(ThrowAnInteger(), bool),
3805       "Expected: ThrowAnInteger() throws an exception of type bool.\n"
3806       "  Actual: it throws a different type.");
3807   EXPECT_FATAL_FAILURE(
3808       ASSERT_THROW(ThrowRuntimeError("A description"), std::logic_error),
3809       "Expected: ThrowRuntimeError(\"A description\") "
3810       "throws an exception of type std::logic_error.\n  "
3811       "Actual: it throws " ERROR_DESC
3812       " "
3813       "with description \"A description\".");
3814 #endif
3815 
3816   EXPECT_FATAL_FAILURE(
3817       ASSERT_THROW(ThrowNothing(), bool),
3818       "Expected: ThrowNothing() throws an exception of type bool.\n"
3819       "  Actual: it throws nothing.");
3820 }
3821 
3822 // Tests ASSERT_NO_THROW.
TEST(AssertionTest,ASSERT_NO_THROW)3823 TEST(AssertionTest, ASSERT_NO_THROW) {
3824   ASSERT_NO_THROW(ThrowNothing());
3825   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
3826                        "Expected: ThrowAnInteger() doesn't throw an exception."
3827                        "\n  Actual: it throws.");
3828   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowRuntimeError("A description")),
3829                        "Expected: ThrowRuntimeError(\"A description\") "
3830                        "doesn't throw an exception.\n  "
3831                        "Actual: it throws " ERROR_DESC
3832                        " "
3833                        "with description \"A description\".");
3834 }
3835 
3836 // Tests ASSERT_ANY_THROW.
TEST(AssertionTest,ASSERT_ANY_THROW)3837 TEST(AssertionTest, ASSERT_ANY_THROW) {
3838   ASSERT_ANY_THROW(ThrowAnInteger());
3839   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()),
3840                        "Expected: ThrowNothing() throws an exception.\n"
3841                        "  Actual: it doesn't.");
3842 }
3843 
3844 #endif  // GTEST_HAS_EXCEPTIONS
3845 
3846 // Makes sure we deal with the precedence of <<.  This test should
3847 // compile.
TEST(AssertionTest,AssertPrecedence)3848 TEST(AssertionTest, AssertPrecedence) {
3849   ASSERT_EQ(1 < 2, true);
3850   bool false_value = false;
3851   ASSERT_EQ(true && false_value, false);
3852 }
3853 
3854 // A subroutine used by the following test.
TestEq1(int x)3855 void TestEq1(int x) { ASSERT_EQ(1, x); }
3856 
3857 // Tests calling a test subroutine that's not part of a fixture.
TEST(AssertionTest,NonFixtureSubroutine)3858 TEST(AssertionTest, NonFixtureSubroutine) {
3859   EXPECT_FATAL_FAILURE(TestEq1(2), "  x\n    Which is: 2");
3860 }
3861 
3862 // An uncopyable class.
3863 class Uncopyable {
3864  public:
Uncopyable(int a_value)3865   explicit Uncopyable(int a_value) : value_(a_value) {}
3866 
value() const3867   int value() const { return value_; }
operator ==(const Uncopyable & rhs) const3868   bool operator==(const Uncopyable& rhs) const {
3869     return value() == rhs.value();
3870   }
3871 
3872  private:
3873   // This constructor deliberately has no implementation, as we don't
3874   // want this class to be copyable.
3875   Uncopyable(const Uncopyable&);  // NOLINT
3876 
3877   int value_;
3878 };
3879 
operator <<(::std::ostream & os,const Uncopyable & value)3880 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
3881   return os << value.value();
3882 }
3883 
IsPositiveUncopyable(const Uncopyable & x)3884 bool IsPositiveUncopyable(const Uncopyable& x) { return x.value() > 0; }
3885 
3886 // A subroutine used by the following test.
TestAssertNonPositive()3887 void TestAssertNonPositive() {
3888   Uncopyable y(-1);
3889   ASSERT_PRED1(IsPositiveUncopyable, y);
3890 }
3891 // A subroutine used by the following test.
TestAssertEqualsUncopyable()3892 void TestAssertEqualsUncopyable() {
3893   Uncopyable x(5);
3894   Uncopyable y(-1);
3895   ASSERT_EQ(x, y);
3896 }
3897 
3898 // Tests that uncopyable objects can be used in assertions.
TEST(AssertionTest,AssertWorksWithUncopyableObject)3899 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
3900   Uncopyable x(5);
3901   ASSERT_PRED1(IsPositiveUncopyable, x);
3902   ASSERT_EQ(x, x);
3903   EXPECT_FATAL_FAILURE(
3904       TestAssertNonPositive(),
3905       "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3906   EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
3907                        "Expected equality of these values:\n"
3908                        "  x\n    Which is: 5\n  y\n    Which is: -1");
3909 }
3910 
3911 // Tests that uncopyable objects can be used in expects.
TEST(AssertionTest,ExpectWorksWithUncopyableObject)3912 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
3913   Uncopyable x(5);
3914   EXPECT_PRED1(IsPositiveUncopyable, x);
3915   Uncopyable y(-1);
3916   EXPECT_NONFATAL_FAILURE(
3917       EXPECT_PRED1(IsPositiveUncopyable, y),
3918       "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3919   EXPECT_EQ(x, x);
3920   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
3921                           "Expected equality of these values:\n"
3922                           "  x\n    Which is: 5\n  y\n    Which is: -1");
3923 }
3924 
3925 enum NamedEnum { kE1 = 0, kE2 = 1 };
3926 
TEST(AssertionTest,NamedEnum)3927 TEST(AssertionTest, NamedEnum) {
3928   EXPECT_EQ(kE1, kE1);
3929   EXPECT_LT(kE1, kE2);
3930   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
3931   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 1");
3932 }
3933 
3934 // Sun Studio and HP aCC2reject this code.
3935 #if !defined(__SUNPRO_CC) && !defined(__HP_aCC)
3936 
3937 // Tests using assertions with anonymous enums.
3938 enum {
3939   kCaseA = -1,
3940 
3941 #ifdef GTEST_OS_LINUX
3942 
3943   // We want to test the case where the size of the anonymous enum is
3944   // larger than sizeof(int), to make sure our implementation of the
3945   // assertions doesn't truncate the enums.  However, MSVC
3946   // (incorrectly) doesn't allow an enum value to exceed the range of
3947   // an int, so this has to be conditionally compiled.
3948   //
3949   // On Linux, kCaseB and kCaseA have the same value when truncated to
3950   // int size.  We want to test whether this will confuse the
3951   // assertions.
3952   kCaseB = testing::internal::kMaxBiggestInt,
3953 
3954 #else
3955 
3956   kCaseB = INT_MAX,
3957 
3958 #endif  // GTEST_OS_LINUX
3959 
3960   kCaseC = 42
3961 };
3962 
TEST(AssertionTest,AnonymousEnum)3963 TEST(AssertionTest, AnonymousEnum) {
3964 #ifdef GTEST_OS_LINUX
3965 
3966   EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
3967 
3968 #endif  // GTEST_OS_LINUX
3969 
3970   EXPECT_EQ(kCaseA, kCaseA);
3971   EXPECT_NE(kCaseA, kCaseB);
3972   EXPECT_LT(kCaseA, kCaseB);
3973   EXPECT_LE(kCaseA, kCaseB);
3974   EXPECT_GT(kCaseB, kCaseA);
3975   EXPECT_GE(kCaseA, kCaseA);
3976   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB), "(kCaseA) >= (kCaseB)");
3977   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC), "-1 vs 42");
3978 
3979   ASSERT_EQ(kCaseA, kCaseA);
3980   ASSERT_NE(kCaseA, kCaseB);
3981   ASSERT_LT(kCaseA, kCaseB);
3982   ASSERT_LE(kCaseA, kCaseB);
3983   ASSERT_GT(kCaseB, kCaseA);
3984   ASSERT_GE(kCaseA, kCaseA);
3985 
3986 #ifndef __BORLANDC__
3987 
3988   // ICE's in C++Builder.
3989   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB), "  kCaseB\n    Which is: ");
3990   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), "\n    Which is: 42");
3991 #endif
3992 
3993   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), "\n    Which is: -1");
3994 }
3995 
3996 #endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
3997 
3998 #ifdef GTEST_OS_WINDOWS
3999 
UnexpectedHRESULTFailure()4000 static HRESULT UnexpectedHRESULTFailure() { return E_UNEXPECTED; }
4001 
OkHRESULTSuccess()4002 static HRESULT OkHRESULTSuccess() { return S_OK; }
4003 
FalseHRESULTSuccess()4004 static HRESULT FalseHRESULTSuccess() { return S_FALSE; }
4005 
4006 // HRESULT assertion tests test both zero and non-zero
4007 // success codes as well as failure message for each.
4008 //
4009 // Windows CE doesn't support message texts.
TEST(HRESULTAssertionTest,EXPECT_HRESULT_SUCCEEDED)4010 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
4011   EXPECT_HRESULT_SUCCEEDED(S_OK);
4012   EXPECT_HRESULT_SUCCEEDED(S_FALSE);
4013 
4014   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
4015                           "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
4016                           "  Actual: 0x8000FFFF");
4017 }
4018 
TEST(HRESULTAssertionTest,ASSERT_HRESULT_SUCCEEDED)4019 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
4020   ASSERT_HRESULT_SUCCEEDED(S_OK);
4021   ASSERT_HRESULT_SUCCEEDED(S_FALSE);
4022 
4023   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
4024                        "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
4025                        "  Actual: 0x8000FFFF");
4026 }
4027 
TEST(HRESULTAssertionTest,EXPECT_HRESULT_FAILED)4028 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
4029   EXPECT_HRESULT_FAILED(E_UNEXPECTED);
4030 
4031   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
4032                           "Expected: (OkHRESULTSuccess()) fails.\n"
4033                           "  Actual: 0x0");
4034   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
4035                           "Expected: (FalseHRESULTSuccess()) fails.\n"
4036                           "  Actual: 0x1");
4037 }
4038 
TEST(HRESULTAssertionTest,ASSERT_HRESULT_FAILED)4039 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
4040   ASSERT_HRESULT_FAILED(E_UNEXPECTED);
4041 
4042 #ifndef __BORLANDC__
4043 
4044   // ICE's in C++Builder 2007 and 2009.
4045   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
4046                        "Expected: (OkHRESULTSuccess()) fails.\n"
4047                        "  Actual: 0x0");
4048 #endif
4049 
4050   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
4051                        "Expected: (FalseHRESULTSuccess()) fails.\n"
4052                        "  Actual: 0x1");
4053 }
4054 
4055 // Tests that streaming to the HRESULT macros works.
TEST(HRESULTAssertionTest,Streaming)4056 TEST(HRESULTAssertionTest, Streaming) {
4057   EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4058   ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4059   EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4060   ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4061 
4062   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED)
4063                               << "expected failure",
4064                           "expected failure");
4065 
4066 #ifndef __BORLANDC__
4067 
4068   // ICE's in C++Builder 2007 and 2009.
4069   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED)
4070                            << "expected failure",
4071                        "expected failure");
4072 #endif
4073 
4074   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
4075                           "expected failure");
4076 
4077   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
4078                        "expected failure");
4079 }
4080 
4081 #endif  // GTEST_OS_WINDOWS
4082 
4083 // The following code intentionally tests a suboptimal syntax.
4084 #ifdef __GNUC__
4085 #pragma GCC diagnostic push
4086 #pragma GCC diagnostic ignored "-Wdangling-else"
4087 #pragma GCC diagnostic ignored "-Wempty-body"
4088 #pragma GCC diagnostic ignored "-Wpragmas"
4089 #endif
4090 // Tests that the assertion macros behave like single statements.
TEST(AssertionSyntaxTest,BasicAssertionsBehavesLikeSingleStatement)4091 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
4092   if (AlwaysFalse())
4093     ASSERT_TRUE(false) << "This should never be executed; "
4094                           "It's a compilation test only.";
4095 
4096   if (AlwaysTrue())
4097     EXPECT_FALSE(false);
4098   else
4099     ;  // NOLINT
4100 
4101   if (AlwaysFalse()) ASSERT_LT(1, 3);
4102 
4103   if (AlwaysFalse())
4104     ;  // NOLINT
4105   else
4106     EXPECT_GT(3, 2) << "";
4107 }
4108 #ifdef __GNUC__
4109 #pragma GCC diagnostic pop
4110 #endif
4111 
4112 #if GTEST_HAS_EXCEPTIONS
4113 // Tests that the compiler will not complain about unreachable code in the
4114 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
TEST(ExpectThrowTest,DoesNotGenerateUnreachableCodeWarning)4115 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
4116   int n = 0;
4117 
4118   EXPECT_THROW(throw 1, int);
4119   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
4120   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw n, const char*), "");
4121   EXPECT_NO_THROW(n++);
4122   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
4123   EXPECT_ANY_THROW(throw 1);
4124   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
4125 }
4126 
TEST(ExpectThrowTest,DoesNotGenerateDuplicateCatchClauseWarning)4127 TEST(ExpectThrowTest, DoesNotGenerateDuplicateCatchClauseWarning) {
4128   EXPECT_THROW(throw std::exception(), std::exception);
4129 }
4130 
4131 // The following code intentionally tests a suboptimal syntax.
4132 #ifdef __GNUC__
4133 #pragma GCC diagnostic push
4134 #pragma GCC diagnostic ignored "-Wdangling-else"
4135 #pragma GCC diagnostic ignored "-Wempty-body"
4136 #pragma GCC diagnostic ignored "-Wpragmas"
4137 #endif
TEST(AssertionSyntaxTest,ExceptionAssertionsBehavesLikeSingleStatement)4138 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
4139   if (AlwaysFalse()) EXPECT_THROW(ThrowNothing(), bool);
4140 
4141   if (AlwaysTrue())
4142     EXPECT_THROW(ThrowAnInteger(), int);
4143   else
4144     ;  // NOLINT
4145 
4146   if (AlwaysFalse()) EXPECT_NO_THROW(ThrowAnInteger());
4147 
4148   if (AlwaysTrue())
4149     EXPECT_NO_THROW(ThrowNothing());
4150   else
4151     ;  // NOLINT
4152 
4153   if (AlwaysFalse()) EXPECT_ANY_THROW(ThrowNothing());
4154 
4155   if (AlwaysTrue())
4156     EXPECT_ANY_THROW(ThrowAnInteger());
4157   else
4158     ;  // NOLINT
4159 }
4160 #ifdef __GNUC__
4161 #pragma GCC diagnostic pop
4162 #endif
4163 
4164 #endif  // GTEST_HAS_EXCEPTIONS
4165 
4166 // The following code intentionally tests a suboptimal syntax.
4167 #ifdef __GNUC__
4168 #pragma GCC diagnostic push
4169 #pragma GCC diagnostic ignored "-Wdangling-else"
4170 #pragma GCC diagnostic ignored "-Wempty-body"
4171 #pragma GCC diagnostic ignored "-Wpragmas"
4172 #endif
TEST(AssertionSyntaxTest,NoFatalFailureAssertionsBehavesLikeSingleStatement)4173 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
4174   if (AlwaysFalse())
4175     EXPECT_NO_FATAL_FAILURE(FAIL())
4176         << "This should never be executed. " << "It's a compilation test only.";
4177   else
4178     ;  // NOLINT
4179 
4180   if (AlwaysFalse())
4181     ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
4182   else
4183     ;  // NOLINT
4184 
4185   if (AlwaysTrue())
4186     EXPECT_NO_FATAL_FAILURE(SUCCEED());
4187   else
4188     ;  // NOLINT
4189 
4190   if (AlwaysFalse())
4191     ;  // NOLINT
4192   else
4193     ASSERT_NO_FATAL_FAILURE(SUCCEED());
4194 }
4195 #ifdef __GNUC__
4196 #pragma GCC diagnostic pop
4197 #endif
4198 
4199 // Tests that the assertion macros work well with switch statements.
TEST(AssertionSyntaxTest,WorksWithSwitch)4200 TEST(AssertionSyntaxTest, WorksWithSwitch) {
4201   switch (0) {
4202     case 1:
4203       break;
4204     default:
4205       ASSERT_TRUE(true);
4206   }
4207 
4208   switch (0)
4209   case 0:
4210     EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
4211 
4212   // Binary assertions are implemented using a different code path
4213   // than the Boolean assertions.  Hence we test them separately.
4214   switch (0) {
4215     case 1:
4216     default:
4217       ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
4218   }
4219 
4220   switch (0)
4221   case 0:
4222     EXPECT_NE(1, 2);
4223 }
4224 
4225 #if GTEST_HAS_EXCEPTIONS
4226 
ThrowAString()4227 void ThrowAString() { throw "std::string"; }
4228 
4229 // Test that the exception assertion macros compile and work with const
4230 // type qualifier.
TEST(AssertionSyntaxTest,WorksWithConst)4231 TEST(AssertionSyntaxTest, WorksWithConst) {
4232   ASSERT_THROW(ThrowAString(), const char*);
4233 
4234   EXPECT_THROW(ThrowAString(), const char*);
4235 }
4236 
4237 #endif  // GTEST_HAS_EXCEPTIONS
4238 
4239 }  // namespace
4240 
4241 namespace testing {
4242 
4243 // Tests that Google Test tracks SUCCEED*.
TEST(SuccessfulAssertionTest,SUCCEED)4244 TEST(SuccessfulAssertionTest, SUCCEED) {
4245   SUCCEED();
4246   SUCCEED() << "OK";
4247   EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
4248 }
4249 
4250 // Tests that Google Test doesn't track successful EXPECT_*.
TEST(SuccessfulAssertionTest,EXPECT)4251 TEST(SuccessfulAssertionTest, EXPECT) {
4252   EXPECT_TRUE(true);
4253   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4254 }
4255 
4256 // Tests that Google Test doesn't track successful EXPECT_STR*.
TEST(SuccessfulAssertionTest,EXPECT_STR)4257 TEST(SuccessfulAssertionTest, EXPECT_STR) {
4258   EXPECT_STREQ("", "");
4259   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4260 }
4261 
4262 // Tests that Google Test doesn't track successful ASSERT_*.
TEST(SuccessfulAssertionTest,ASSERT)4263 TEST(SuccessfulAssertionTest, ASSERT) {
4264   ASSERT_TRUE(true);
4265   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4266 }
4267 
4268 // Tests that Google Test doesn't track successful ASSERT_STR*.
TEST(SuccessfulAssertionTest,ASSERT_STR)4269 TEST(SuccessfulAssertionTest, ASSERT_STR) {
4270   ASSERT_STREQ("", "");
4271   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4272 }
4273 
4274 }  // namespace testing
4275 
4276 namespace {
4277 
4278 // Tests the message streaming variation of assertions.
4279 
TEST(AssertionWithMessageTest,EXPECT)4280 TEST(AssertionWithMessageTest, EXPECT) {
4281   EXPECT_EQ(1, 1) << "This should succeed.";
4282   EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
4283                           "Expected failure #1");
4284   EXPECT_LE(1, 2) << "This should succeed.";
4285   EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
4286                           "Expected failure #2.");
4287   EXPECT_GE(1, 0) << "This should succeed.";
4288   EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
4289                           "Expected failure #3.");
4290 
4291   EXPECT_STREQ("1", "1") << "This should succeed.";
4292   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
4293                           "Expected failure #4.");
4294   EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
4295   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
4296                           "Expected failure #5.");
4297 
4298   EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
4299   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
4300                           "Expected failure #6.");
4301   EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
4302 }
4303 
TEST(AssertionWithMessageTest,ASSERT)4304 TEST(AssertionWithMessageTest, ASSERT) {
4305   ASSERT_EQ(1, 1) << "This should succeed.";
4306   ASSERT_NE(1, 2) << "This should succeed.";
4307   ASSERT_LE(1, 2) << "This should succeed.";
4308   ASSERT_LT(1, 2) << "This should succeed.";
4309   ASSERT_GE(1, 0) << "This should succeed.";
4310   EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
4311                        "Expected failure.");
4312 }
4313 
TEST(AssertionWithMessageTest,ASSERT_STR)4314 TEST(AssertionWithMessageTest, ASSERT_STR) {
4315   ASSERT_STREQ("1", "1") << "This should succeed.";
4316   ASSERT_STRNE("1", "2") << "This should succeed.";
4317   ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
4318   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
4319                        "Expected failure.");
4320 }
4321 
TEST(AssertionWithMessageTest,ASSERT_FLOATING)4322 TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
4323   ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
4324   ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
4325   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1, 1.2, 0.1) << "Expect failure.",  // NOLINT
4326                        "Expect failure.");
4327 }
4328 
4329 // Tests using ASSERT_FALSE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_FALSE)4330 TEST(AssertionWithMessageTest, ASSERT_FALSE) {
4331   ASSERT_FALSE(false) << "This shouldn't fail.";
4332   EXPECT_FATAL_FAILURE(
4333       {  // NOLINT
4334         ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
4335                            << " evaluates to " << true;
4336       },
4337       "Expected failure");
4338 }
4339 
4340 // Tests using FAIL with a streamed message.
TEST(AssertionWithMessageTest,FAIL)4341 TEST(AssertionWithMessageTest, FAIL) { EXPECT_FATAL_FAILURE(FAIL() << 0, "0"); }
4342 
4343 // Tests using SUCCEED with a streamed message.
TEST(AssertionWithMessageTest,SUCCEED)4344 TEST(AssertionWithMessageTest, SUCCEED) { SUCCEED() << "Success == " << 1; }
4345 
4346 // Tests using ASSERT_TRUE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_TRUE)4347 TEST(AssertionWithMessageTest, ASSERT_TRUE) {
4348   ASSERT_TRUE(true) << "This should succeed.";
4349   ASSERT_TRUE(true) << true;
4350   EXPECT_FATAL_FAILURE(
4351       {  // NOLINT
4352         ASSERT_TRUE(false) << static_cast<const char*>(nullptr)
4353                            << static_cast<char*>(nullptr);
4354       },
4355       "(null)(null)");
4356 }
4357 
4358 #ifdef GTEST_OS_WINDOWS
4359 // Tests using wide strings in assertion messages.
TEST(AssertionWithMessageTest,WideStringMessage)4360 TEST(AssertionWithMessageTest, WideStringMessage) {
4361   EXPECT_NONFATAL_FAILURE(
4362       {  // NOLINT
4363         EXPECT_TRUE(false) << L"This failure is expected.\x8119";
4364       },
4365       "This failure is expected.");
4366   EXPECT_FATAL_FAILURE(
4367       {  // NOLINT
4368         ASSERT_EQ(1, 2) << "This failure is " << L"expected too.\x8120";
4369       },
4370       "This failure is expected too.");
4371 }
4372 #endif  // GTEST_OS_WINDOWS
4373 
4374 // Tests EXPECT_TRUE.
TEST(ExpectTest,EXPECT_TRUE)4375 TEST(ExpectTest, EXPECT_TRUE) {
4376   EXPECT_TRUE(true) << "Intentional success";
4377   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
4378                           "Intentional failure #1.");
4379   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
4380                           "Intentional failure #2.");
4381   EXPECT_TRUE(2 > 1);  // NOLINT
4382   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
4383                           "Value of: 2 < 1\n"
4384                           "  Actual: false\n"
4385                           "Expected: true");
4386   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3), "2 > 3");
4387 }
4388 
4389 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectTrueWithAssertionResult)4390 TEST(ExpectTest, ExpectTrueWithAssertionResult) {
4391   EXPECT_TRUE(ResultIsEven(2));
4392   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
4393                           "Value of: ResultIsEven(3)\n"
4394                           "  Actual: false (3 is odd)\n"
4395                           "Expected: true");
4396   EXPECT_TRUE(ResultIsEvenNoExplanation(2));
4397   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
4398                           "Value of: ResultIsEvenNoExplanation(3)\n"
4399                           "  Actual: false (3 is odd)\n"
4400                           "Expected: true");
4401 }
4402 
4403 // Tests EXPECT_FALSE with a streamed message.
TEST(ExpectTest,EXPECT_FALSE)4404 TEST(ExpectTest, EXPECT_FALSE) {
4405   EXPECT_FALSE(2 < 1);  // NOLINT
4406   EXPECT_FALSE(false) << "Intentional success";
4407   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
4408                           "Intentional failure #1.");
4409   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
4410                           "Intentional failure #2.");
4411   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
4412                           "Value of: 2 > 1\n"
4413                           "  Actual: true\n"
4414                           "Expected: false");
4415   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3), "2 < 3");
4416 }
4417 
4418 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectFalseWithAssertionResult)4419 TEST(ExpectTest, ExpectFalseWithAssertionResult) {
4420   EXPECT_FALSE(ResultIsEven(3));
4421   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
4422                           "Value of: ResultIsEven(2)\n"
4423                           "  Actual: true (2 is even)\n"
4424                           "Expected: false");
4425   EXPECT_FALSE(ResultIsEvenNoExplanation(3));
4426   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
4427                           "Value of: ResultIsEvenNoExplanation(2)\n"
4428                           "  Actual: true\n"
4429                           "Expected: false");
4430 }
4431 
4432 #ifdef __BORLANDC__
4433 // Restores warnings after previous "#pragma option push" suppressed them
4434 #pragma option pop
4435 #endif
4436 
4437 // Tests EXPECT_EQ.
TEST(ExpectTest,EXPECT_EQ)4438 TEST(ExpectTest, EXPECT_EQ) {
4439   EXPECT_EQ(5, 2 + 3);
4440   // clang-format off
4441   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
4442                           "Expected equality of these values:\n"
4443                           "  5\n"
4444                           "  2*3\n"
4445                           "    Which is: 6");
4446   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3), "2 - 3");
4447   // clang-format on
4448 }
4449 
4450 // Tests using EXPECT_EQ on double values.  The purpose is to make
4451 // sure that the specialization we did for integer and anonymous enums
4452 // isn't used for double arguments.
TEST(ExpectTest,EXPECT_EQ_Double)4453 TEST(ExpectTest, EXPECT_EQ_Double) {
4454   // A success.
4455   EXPECT_EQ(5.6, 5.6);
4456 
4457   // A failure.
4458   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2), "5.1");
4459 }
4460 
4461 // Tests EXPECT_EQ(NULL, pointer).
TEST(ExpectTest,EXPECT_EQ_NULL)4462 TEST(ExpectTest, EXPECT_EQ_NULL) {
4463   // A success.
4464   const char* p = nullptr;
4465   EXPECT_EQ(nullptr, p);
4466 
4467   // A failure.
4468   int n = 0;
4469   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(nullptr, &n), "  &n\n    Which is:");
4470 }
4471 
4472 // Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
4473 // treated as a null pointer by the compiler, we need to make sure
4474 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
4475 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,EXPECT_EQ_0)4476 TEST(ExpectTest, EXPECT_EQ_0) {
4477   int n = 0;
4478 
4479   // A success.
4480   EXPECT_EQ(0, n);
4481 
4482   // A failure.
4483   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6), "  0\n  5.6");
4484 }
4485 
4486 // Tests EXPECT_NE.
TEST(ExpectTest,EXPECT_NE)4487 TEST(ExpectTest, EXPECT_NE) {
4488   EXPECT_NE(6, 7);
4489 
4490   EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
4491                           "Expected: ('a') != ('a'), "
4492                           "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
4493   EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2), "2");
4494   char* const p0 = nullptr;
4495   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0), "p0");
4496   // Only way to get the Nokia compiler to compile the cast
4497   // is to have a separate void* variable first. Putting
4498   // the two casts on the same line doesn't work, neither does
4499   // a direct C-style to char*.
4500   void* pv1 = (void*)0x1234;  // NOLINT
4501   char* const p1 = reinterpret_cast<char*>(pv1);
4502   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1), "p1");
4503 }
4504 
4505 // Tests EXPECT_LE.
TEST(ExpectTest,EXPECT_LE)4506 TEST(ExpectTest, EXPECT_LE) {
4507   EXPECT_LE(2, 3);
4508   EXPECT_LE(2, 2);
4509   EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
4510                           "Expected: (2) <= (0), actual: 2 vs 0");
4511   EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9), "(1.1) <= (0.9)");
4512 }
4513 
4514 // Tests EXPECT_LT.
TEST(ExpectTest,EXPECT_LT)4515 TEST(ExpectTest, EXPECT_LT) {
4516   EXPECT_LT(2, 3);
4517   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
4518                           "Expected: (2) < (2), actual: 2 vs 2");
4519   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1), "(2) < (1)");
4520 }
4521 
4522 // Tests EXPECT_GE.
TEST(ExpectTest,EXPECT_GE)4523 TEST(ExpectTest, EXPECT_GE) {
4524   EXPECT_GE(2, 1);
4525   EXPECT_GE(2, 2);
4526   EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
4527                           "Expected: (2) >= (3), actual: 2 vs 3");
4528   EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1), "(0.9) >= (1.1)");
4529 }
4530 
4531 // Tests EXPECT_GT.
TEST(ExpectTest,EXPECT_GT)4532 TEST(ExpectTest, EXPECT_GT) {
4533   EXPECT_GT(2, 1);
4534   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
4535                           "Expected: (2) > (2), actual: 2 vs 2");
4536   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3), "(2) > (3)");
4537 }
4538 
4539 #if GTEST_HAS_EXCEPTIONS
4540 
4541 // Tests EXPECT_THROW.
TEST(ExpectTest,EXPECT_THROW)4542 TEST(ExpectTest, EXPECT_THROW) {
4543   EXPECT_THROW(ThrowAnInteger(), int);
4544   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
4545                           "Expected: ThrowAnInteger() throws an exception of "
4546                           "type bool.\n  Actual: it throws a different type.");
4547   EXPECT_NONFATAL_FAILURE(
4548       EXPECT_THROW(ThrowRuntimeError("A description"), std::logic_error),
4549       "Expected: ThrowRuntimeError(\"A description\") "
4550       "throws an exception of type std::logic_error.\n  "
4551       "Actual: it throws " ERROR_DESC
4552       " "
4553       "with description \"A description\".");
4554   EXPECT_NONFATAL_FAILURE(
4555       EXPECT_THROW(ThrowNothing(), bool),
4556       "Expected: ThrowNothing() throws an exception of type bool.\n"
4557       "  Actual: it throws nothing.");
4558 }
4559 
4560 // Tests EXPECT_NO_THROW.
TEST(ExpectTest,EXPECT_NO_THROW)4561 TEST(ExpectTest, EXPECT_NO_THROW) {
4562   EXPECT_NO_THROW(ThrowNothing());
4563   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
4564                           "Expected: ThrowAnInteger() doesn't throw an "
4565                           "exception.\n  Actual: it throws.");
4566   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowRuntimeError("A description")),
4567                           "Expected: ThrowRuntimeError(\"A description\") "
4568                           "doesn't throw an exception.\n  "
4569                           "Actual: it throws " ERROR_DESC
4570                           " "
4571                           "with description \"A description\".");
4572 }
4573 
4574 // Tests EXPECT_ANY_THROW.
TEST(ExpectTest,EXPECT_ANY_THROW)4575 TEST(ExpectTest, EXPECT_ANY_THROW) {
4576   EXPECT_ANY_THROW(ThrowAnInteger());
4577   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()),
4578                           "Expected: ThrowNothing() throws an exception.\n"
4579                           "  Actual: it doesn't.");
4580 }
4581 
4582 #endif  // GTEST_HAS_EXCEPTIONS
4583 
4584 // Make sure we deal with the precedence of <<.
TEST(ExpectTest,ExpectPrecedence)4585 TEST(ExpectTest, ExpectPrecedence) {
4586   EXPECT_EQ(1 < 2, true);
4587   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
4588                           "  true && false\n    Which is: false");
4589 }
4590 
4591 // Tests the StreamableToString() function.
4592 
4593 // Tests using StreamableToString() on a scalar.
TEST(StreamableToStringTest,Scalar)4594 TEST(StreamableToStringTest, Scalar) {
4595   EXPECT_STREQ("5", StreamableToString(5).c_str());
4596 }
4597 
4598 // Tests using StreamableToString() on a non-char pointer.
TEST(StreamableToStringTest,Pointer)4599 TEST(StreamableToStringTest, Pointer) {
4600   int n = 0;
4601   int* p = &n;
4602   EXPECT_STRNE("(null)", StreamableToString(p).c_str());
4603 }
4604 
4605 // Tests using StreamableToString() on a NULL non-char pointer.
TEST(StreamableToStringTest,NullPointer)4606 TEST(StreamableToStringTest, NullPointer) {
4607   int* p = nullptr;
4608   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4609 }
4610 
4611 // Tests using StreamableToString() on a C string.
TEST(StreamableToStringTest,CString)4612 TEST(StreamableToStringTest, CString) {
4613   EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
4614 }
4615 
4616 // Tests using StreamableToString() on a NULL C string.
TEST(StreamableToStringTest,NullCString)4617 TEST(StreamableToStringTest, NullCString) {
4618   char* p = nullptr;
4619   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4620 }
4621 
4622 // Tests using streamable values as assertion messages.
4623 
4624 // Tests using std::string as an assertion message.
TEST(StreamableTest,string)4625 TEST(StreamableTest, string) {
4626   static const std::string str(
4627       "This failure message is a std::string, and is expected.");
4628   EXPECT_FATAL_FAILURE(FAIL() << str, str.c_str());
4629 }
4630 
4631 // Tests that we can output strings containing embedded NULs.
4632 // Limited to Linux because we can only do this with std::string's.
TEST(StreamableTest,stringWithEmbeddedNUL)4633 TEST(StreamableTest, stringWithEmbeddedNUL) {
4634   static const char char_array_with_nul[] =
4635       "Here's a NUL\0 and some more string";
4636   static const std::string string_with_nul(
4637       char_array_with_nul,
4638       sizeof(char_array_with_nul) - 1);  // drops the trailing NUL
4639   EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
4640                        "Here's a NUL\\0 and some more string");
4641 }
4642 
4643 // Tests that we can output a NUL char.
TEST(StreamableTest,NULChar)4644 TEST(StreamableTest, NULChar) {
4645   EXPECT_FATAL_FAILURE(
4646       {  // NOLINT
4647         FAIL() << "A NUL" << '\0' << " and some more string";
4648       },
4649       "A NUL\\0 and some more string");
4650 }
4651 
4652 // Tests using int as an assertion message.
TEST(StreamableTest,int)4653 TEST(StreamableTest, int) { EXPECT_FATAL_FAILURE(FAIL() << 900913, "900913"); }
4654 
4655 // Tests using NULL char pointer as an assertion message.
4656 //
4657 // In MSVC, streaming a NULL char * causes access violation.  Google Test
4658 // implemented a workaround (substituting "(null)" for NULL).  This
4659 // tests whether the workaround works.
TEST(StreamableTest,NullCharPtr)4660 TEST(StreamableTest, NullCharPtr) {
4661   EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(nullptr), "(null)");
4662 }
4663 
4664 // Tests that basic IO manipulators (endl, ends, and flush) can be
4665 // streamed to testing::Message.
TEST(StreamableTest,BasicIoManip)4666 TEST(StreamableTest, BasicIoManip) {
4667   EXPECT_FATAL_FAILURE(
4668       {  // NOLINT
4669         FAIL() << "Line 1." << std::endl
4670                << "A NUL char " << std::ends << std::flush << " in line 2.";
4671       },
4672       "Line 1.\nA NUL char \\0 in line 2.");
4673 }
4674 
4675 // Tests the macros that haven't been covered so far.
4676 
AddFailureHelper(bool * aborted)4677 void AddFailureHelper(bool* aborted) {
4678   *aborted = true;
4679   ADD_FAILURE() << "Intentional failure.";
4680   *aborted = false;
4681 }
4682 
4683 // Tests ADD_FAILURE.
TEST(MacroTest,ADD_FAILURE)4684 TEST(MacroTest, ADD_FAILURE) {
4685   bool aborted = true;
4686   EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted), "Intentional failure.");
4687   EXPECT_FALSE(aborted);
4688 }
4689 
4690 // Tests ADD_FAILURE_AT.
TEST(MacroTest,ADD_FAILURE_AT)4691 TEST(MacroTest, ADD_FAILURE_AT) {
4692   // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
4693   // the failure message contains the user-streamed part.
4694   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4695 
4696   // Verifies that the user-streamed part is optional.
4697   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
4698 
4699   // Unfortunately, we cannot verify that the failure message contains
4700   // the right file path and line number the same way, as
4701   // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
4702   // line number.  Instead, we do that in googletest-output-test_.cc.
4703 }
4704 
4705 // Tests FAIL.
TEST(MacroTest,FAIL)4706 TEST(MacroTest, FAIL) {
4707   EXPECT_FATAL_FAILURE(FAIL(), "Failed");
4708   EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
4709                        "Intentional failure.");
4710 }
4711 
4712 // Tests GTEST_FAIL_AT.
TEST(MacroTest,GTEST_FAIL_AT)4713 TEST(MacroTest, GTEST_FAIL_AT) {
4714   // Verifies that GTEST_FAIL_AT does generate a fatal failure and
4715   // the failure message contains the user-streamed part.
4716   EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4717 
4718   // Verifies that the user-streamed part is optional.
4719   EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42), "Failed");
4720 
4721   // See the ADD_FAIL_AT test above to see how we test that the failure message
4722   // contains the right filename and line number -- the same applies here.
4723 }
4724 
4725 // Tests SUCCEED
TEST(MacroTest,SUCCEED)4726 TEST(MacroTest, SUCCEED) {
4727   SUCCEED();
4728   SUCCEED() << "Explicit success.";
4729 }
4730 
4731 // Tests for EXPECT_EQ() and ASSERT_EQ().
4732 //
4733 // These tests fail *intentionally*, s.t. the failure messages can be
4734 // generated and tested.
4735 //
4736 // We have different tests for different argument types.
4737 
4738 // Tests using bool values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Bool)4739 TEST(EqAssertionTest, Bool) {
4740   EXPECT_EQ(true, true);
4741   EXPECT_FATAL_FAILURE(
4742       {
4743         bool false_value = false;
4744         ASSERT_EQ(false_value, true);
4745       },
4746       "  false_value\n    Which is: false\n  true");
4747 }
4748 
4749 // Tests using int values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Int)4750 TEST(EqAssertionTest, Int) {
4751   ASSERT_EQ(32, 32);
4752   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33), "  32\n  33");
4753 }
4754 
4755 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Time_T)4756 TEST(EqAssertionTest, Time_T) {
4757   EXPECT_EQ(static_cast<time_t>(0), static_cast<time_t>(0));
4758   EXPECT_FATAL_FAILURE(
4759       ASSERT_EQ(static_cast<time_t>(0), static_cast<time_t>(1234)), "1234");
4760 }
4761 
4762 // Tests using char values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Char)4763 TEST(EqAssertionTest, Char) {
4764   ASSERT_EQ('z', 'z');
4765   const char ch = 'b';
4766   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch), "  ch\n    Which is: 'b'");
4767   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch), "  ch\n    Which is: 'b'");
4768 }
4769 
4770 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideChar)4771 TEST(EqAssertionTest, WideChar) {
4772   EXPECT_EQ(L'b', L'b');
4773 
4774   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
4775                           "Expected equality of these values:\n"
4776                           "  L'\0'\n"
4777                           "    Which is: L'\0' (0, 0x0)\n"
4778                           "  L'x'\n"
4779                           "    Which is: L'x' (120, 0x78)");
4780 
4781   static wchar_t wchar;
4782   wchar = L'b';
4783   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar), "wchar");
4784   wchar = 0x8119;
4785   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
4786                        "  wchar\n    Which is: L'");
4787 }
4788 
4789 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdString)4790 TEST(EqAssertionTest, StdString) {
4791   // Compares a const char* to an std::string that has identical
4792   // content.
4793   ASSERT_EQ("Test", ::std::string("Test"));
4794 
4795   // Compares two identical std::strings.
4796   static const ::std::string str1("A * in the middle");
4797   static const ::std::string str2(str1);
4798   EXPECT_EQ(str1, str2);
4799 
4800   // Compares a const char* to an std::string that has different
4801   // content
4802   EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")), "\"test\"");
4803 
4804   // Compares an std::string to a char* that has different content.
4805   char* const p1 = const_cast<char*>("foo");
4806   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1), "p1");
4807 
4808   // Compares two std::strings that have different contents, one of
4809   // which having a NUL character in the middle.  This should fail.
4810   static ::std::string str3(str1);
4811   str3.at(2) = '\0';
4812   EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
4813                        "  str3\n    Which is: \"A \\0 in the middle\"");
4814 }
4815 
4816 #if GTEST_HAS_STD_WSTRING
4817 
4818 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdWideString)4819 TEST(EqAssertionTest, StdWideString) {
4820   // Compares two identical std::wstrings.
4821   const ::std::wstring wstr1(L"A * in the middle");
4822   const ::std::wstring wstr2(wstr1);
4823   ASSERT_EQ(wstr1, wstr2);
4824 
4825   // Compares an std::wstring to a const wchar_t* that has identical
4826   // content.
4827   const wchar_t kTestX8119[] = {'T', 'e', 's', 't', 0x8119, '\0'};
4828   EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
4829 
4830   // Compares an std::wstring to a const wchar_t* that has different
4831   // content.
4832   const wchar_t kTestX8120[] = {'T', 'e', 's', 't', 0x8120, '\0'};
4833   EXPECT_NONFATAL_FAILURE(
4834       {  // NOLINT
4835         EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
4836       },
4837       "kTestX8120");
4838 
4839   // Compares two std::wstrings that have different contents, one of
4840   // which having a NUL character in the middle.
4841   ::std::wstring wstr3(wstr1);
4842   wstr3.at(2) = L'\0';
4843   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3), "wstr3");
4844 
4845   // Compares a wchar_t* to an std::wstring that has different
4846   // content.
4847   EXPECT_FATAL_FAILURE(
4848       {  // NOLINT
4849         ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
4850       },
4851       "");
4852 }
4853 
4854 #endif  // GTEST_HAS_STD_WSTRING
4855 
4856 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,CharPointer)4857 TEST(EqAssertionTest, CharPointer) {
4858   char* const p0 = nullptr;
4859   // Only way to get the Nokia compiler to compile the cast
4860   // is to have a separate void* variable first. Putting
4861   // the two casts on the same line doesn't work, neither does
4862   // a direct C-style to char*.
4863   void* pv1 = (void*)0x1234;  // NOLINT
4864   void* pv2 = (void*)0xABC0;  // NOLINT
4865   char* const p1 = reinterpret_cast<char*>(pv1);
4866   char* const p2 = reinterpret_cast<char*>(pv2);
4867   ASSERT_EQ(p1, p1);
4868 
4869   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), "  p2\n    Which is:");
4870   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), "  p2\n    Which is:");
4871   EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
4872                                  reinterpret_cast<char*>(0xABC0)),
4873                        "ABC0");
4874 }
4875 
4876 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideCharPointer)4877 TEST(EqAssertionTest, WideCharPointer) {
4878   wchar_t* const p0 = nullptr;
4879   // Only way to get the Nokia compiler to compile the cast
4880   // is to have a separate void* variable first. Putting
4881   // the two casts on the same line doesn't work, neither does
4882   // a direct C-style to char*.
4883   void* pv1 = (void*)0x1234;  // NOLINT
4884   void* pv2 = (void*)0xABC0;  // NOLINT
4885   wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
4886   wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
4887   EXPECT_EQ(p0, p0);
4888 
4889   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), "  p2\n    Which is:");
4890   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), "  p2\n    Which is:");
4891   void* pv3 = (void*)0x1234;  // NOLINT
4892   void* pv4 = (void*)0xABC0;  // NOLINT
4893   const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
4894   const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
4895   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4), "p4");
4896 }
4897 
4898 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,OtherPointer)4899 TEST(EqAssertionTest, OtherPointer) {
4900   ASSERT_EQ(static_cast<const int*>(nullptr), static_cast<const int*>(nullptr));
4901   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(nullptr),
4902                                  reinterpret_cast<const int*>(0x1234)),
4903                        "0x1234");
4904 }
4905 
4906 // A class that supports binary comparison operators but not streaming.
4907 class UnprintableChar {
4908  public:
UnprintableChar(char ch)4909   explicit UnprintableChar(char ch) : char_(ch) {}
4910 
operator ==(const UnprintableChar & rhs) const4911   bool operator==(const UnprintableChar& rhs) const {
4912     return char_ == rhs.char_;
4913   }
operator !=(const UnprintableChar & rhs) const4914   bool operator!=(const UnprintableChar& rhs) const {
4915     return char_ != rhs.char_;
4916   }
operator <(const UnprintableChar & rhs) const4917   bool operator<(const UnprintableChar& rhs) const { return char_ < rhs.char_; }
operator <=(const UnprintableChar & rhs) const4918   bool operator<=(const UnprintableChar& rhs) const {
4919     return char_ <= rhs.char_;
4920   }
operator >(const UnprintableChar & rhs) const4921   bool operator>(const UnprintableChar& rhs) const { return char_ > rhs.char_; }
operator >=(const UnprintableChar & rhs) const4922   bool operator>=(const UnprintableChar& rhs) const {
4923     return char_ >= rhs.char_;
4924   }
4925 
4926  private:
4927   char char_;
4928 };
4929 
4930 // Tests that ASSERT_EQ() and friends don't require the arguments to
4931 // be printable.
TEST(ComparisonAssertionTest,AcceptsUnprintableArgs)4932 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
4933   const UnprintableChar x('x'), y('y');
4934   ASSERT_EQ(x, x);
4935   EXPECT_NE(x, y);
4936   ASSERT_LT(x, y);
4937   EXPECT_LE(x, y);
4938   ASSERT_GT(y, x);
4939   EXPECT_GE(x, x);
4940 
4941   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
4942   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
4943   EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
4944   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
4945   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
4946 
4947   // Code tested by EXPECT_FATAL_FAILURE cannot reference local
4948   // variables, so we have to write UnprintableChar('x') instead of x.
4949 #ifndef __BORLANDC__
4950   // ICE's in C++Builder.
4951   EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
4952                        "1-byte object <78>");
4953   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4954                        "1-byte object <78>");
4955 #endif
4956   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4957                        "1-byte object <79>");
4958   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4959                        "1-byte object <78>");
4960   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4961                        "1-byte object <79>");
4962 }
4963 
4964 // Tests the FRIEND_TEST macro.
4965 
4966 // This class has a private member we want to test.  We will test it
4967 // both in a TEST and in a TEST_F.
4968 class Foo {
4969  public:
4970   Foo() = default;
4971 
4972  private:
Bar() const4973   int Bar() const { return 1; }
4974 
4975   // Declares the friend tests that can access the private member
4976   // Bar().
4977   FRIEND_TEST(FRIEND_TEST_Test, TEST);
4978   FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
4979 };
4980 
4981 // Tests that the FRIEND_TEST declaration allows a TEST to access a
4982 // class's private members.  This should compile.
TEST(FRIEND_TEST_Test,TEST)4983 TEST(FRIEND_TEST_Test, TEST) { ASSERT_EQ(1, Foo().Bar()); }
4984 
4985 // The fixture needed to test using FRIEND_TEST with TEST_F.
4986 class FRIEND_TEST_Test2 : public Test {
4987  protected:
4988   Foo foo;
4989 };
4990 
4991 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
4992 // class's private members.  This should compile.
TEST_F(FRIEND_TEST_Test2,TEST_F)4993 TEST_F(FRIEND_TEST_Test2, TEST_F) { ASSERT_EQ(1, foo.Bar()); }
4994 
4995 // Tests the life cycle of Test objects.
4996 
4997 // The test fixture for testing the life cycle of Test objects.
4998 //
4999 // This class counts the number of live test objects that uses this
5000 // fixture.
5001 class TestLifeCycleTest : public Test {
5002  protected:
5003   // Constructor.  Increments the number of test objects that uses
5004   // this fixture.
TestLifeCycleTest()5005   TestLifeCycleTest() { count_++; }
5006 
5007   // Destructor.  Decrements the number of test objects that uses this
5008   // fixture.
~TestLifeCycleTest()5009   ~TestLifeCycleTest() override { count_--; }
5010 
5011   // Returns the number of live test objects that uses this fixture.
count() const5012   int count() const { return count_; }
5013 
5014  private:
5015   static int count_;
5016 };
5017 
5018 int TestLifeCycleTest::count_ = 0;
5019 
5020 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test1)5021 TEST_F(TestLifeCycleTest, Test1) {
5022   // There should be only one test object in this test case that's
5023   // currently alive.
5024   ASSERT_EQ(1, count());
5025 }
5026 
5027 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test2)5028 TEST_F(TestLifeCycleTest, Test2) {
5029   // After Test1 is done and Test2 is started, there should still be
5030   // only one live test object, as the object for Test1 should've been
5031   // deleted.
5032   ASSERT_EQ(1, count());
5033 }
5034 
5035 }  // namespace
5036 
5037 // Tests that the copy constructor works when it is NOT optimized away by
5038 // the compiler.
TEST(AssertionResultTest,CopyConstructorWorksWhenNotOptimied)5039 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
5040   // Checks that the copy constructor doesn't try to dereference NULL pointers
5041   // in the source object.
5042   AssertionResult r1 = AssertionSuccess();
5043   AssertionResult r2 = r1;
5044   // The following line is added to prevent the compiler from optimizing
5045   // away the constructor call.
5046   r1 << "abc";
5047 
5048   AssertionResult r3 = r1;
5049   EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
5050   EXPECT_STREQ("abc", r1.message());
5051 }
5052 
5053 // Tests that AssertionSuccess and AssertionFailure construct
5054 // AssertionResult objects as expected.
TEST(AssertionResultTest,ConstructionWorks)5055 TEST(AssertionResultTest, ConstructionWorks) {
5056   AssertionResult r1 = AssertionSuccess();
5057   EXPECT_TRUE(r1);
5058   EXPECT_STREQ("", r1.message());
5059 
5060   AssertionResult r2 = AssertionSuccess() << "abc";
5061   EXPECT_TRUE(r2);
5062   EXPECT_STREQ("abc", r2.message());
5063 
5064   AssertionResult r3 = AssertionFailure();
5065   EXPECT_FALSE(r3);
5066   EXPECT_STREQ("", r3.message());
5067 
5068   AssertionResult r4 = AssertionFailure() << "def";
5069   EXPECT_FALSE(r4);
5070   EXPECT_STREQ("def", r4.message());
5071 
5072   AssertionResult r5 = AssertionFailure(Message() << "ghi");
5073   EXPECT_FALSE(r5);
5074   EXPECT_STREQ("ghi", r5.message());
5075 }
5076 
5077 // Tests that the negation flips the predicate result but keeps the message.
TEST(AssertionResultTest,NegationWorks)5078 TEST(AssertionResultTest, NegationWorks) {
5079   AssertionResult r1 = AssertionSuccess() << "abc";
5080   EXPECT_FALSE(!r1);
5081   EXPECT_STREQ("abc", (!r1).message());
5082 
5083   AssertionResult r2 = AssertionFailure() << "def";
5084   EXPECT_TRUE(!r2);
5085   EXPECT_STREQ("def", (!r2).message());
5086 }
5087 
TEST(AssertionResultTest,StreamingWorks)5088 TEST(AssertionResultTest, StreamingWorks) {
5089   AssertionResult r = AssertionSuccess();
5090   r << "abc" << 'd' << 0 << true;
5091   EXPECT_STREQ("abcd0true", r.message());
5092 }
5093 
TEST(AssertionResultTest,CanStreamOstreamManipulators)5094 TEST(AssertionResultTest, CanStreamOstreamManipulators) {
5095   AssertionResult r = AssertionSuccess();
5096   r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
5097   EXPECT_STREQ("Data\n\\0Will be visible", r.message());
5098 }
5099 
5100 // The next test uses explicit conversion operators
5101 
TEST(AssertionResultTest,ConstructibleFromContextuallyConvertibleToBool)5102 TEST(AssertionResultTest, ConstructibleFromContextuallyConvertibleToBool) {
5103   struct ExplicitlyConvertibleToBool {
5104     explicit operator bool() const { return value; }
5105     bool value;
5106   };
5107   ExplicitlyConvertibleToBool v1 = {false};
5108   ExplicitlyConvertibleToBool v2 = {true};
5109   EXPECT_FALSE(v1);
5110   EXPECT_TRUE(v2);
5111 }
5112 
5113 struct ConvertibleToAssertionResult {
operator AssertionResultConvertibleToAssertionResult5114   operator AssertionResult() const { return AssertionResult(true); }
5115 };
5116 
TEST(AssertionResultTest,ConstructibleFromImplicitlyConvertible)5117 TEST(AssertionResultTest, ConstructibleFromImplicitlyConvertible) {
5118   ConvertibleToAssertionResult obj;
5119   EXPECT_TRUE(obj);
5120 }
5121 
5122 // Tests streaming a user type whose definition and operator << are
5123 // both in the global namespace.
5124 class Base {
5125  public:
Base(int an_x)5126   explicit Base(int an_x) : x_(an_x) {}
x() const5127   int x() const { return x_; }
5128 
5129  private:
5130   int x_;
5131 };
operator <<(std::ostream & os,const Base & val)5132 std::ostream& operator<<(std::ostream& os, const Base& val) {
5133   return os << val.x();
5134 }
operator <<(std::ostream & os,const Base * pointer)5135 std::ostream& operator<<(std::ostream& os, const Base* pointer) {
5136   return os << "(" << pointer->x() << ")";
5137 }
5138 
TEST(MessageTest,CanStreamUserTypeInGlobalNameSpace)5139 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
5140   Message msg;
5141   Base a(1);
5142 
5143   msg << a << &a;  // Uses ::operator<<.
5144   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5145 }
5146 
5147 // Tests streaming a user type whose definition and operator<< are
5148 // both in an unnamed namespace.
5149 namespace {
5150 class MyTypeInUnnamedNameSpace : public Base {
5151  public:
MyTypeInUnnamedNameSpace(int an_x)5152   explicit MyTypeInUnnamedNameSpace(int an_x) : Base(an_x) {}
5153 };
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace & val)5154 std::ostream& operator<<(std::ostream& os,
5155                          const MyTypeInUnnamedNameSpace& val) {
5156   return os << val.x();
5157 }
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace * pointer)5158 std::ostream& operator<<(std::ostream& os,
5159                          const MyTypeInUnnamedNameSpace* pointer) {
5160   return os << "(" << pointer->x() << ")";
5161 }
5162 }  // namespace
5163 
TEST(MessageTest,CanStreamUserTypeInUnnamedNameSpace)5164 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
5165   Message msg;
5166   MyTypeInUnnamedNameSpace a(1);
5167 
5168   msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
5169   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5170 }
5171 
5172 // Tests streaming a user type whose definition and operator<< are
5173 // both in a user namespace.
5174 namespace namespace1 {
5175 class MyTypeInNameSpace1 : public Base {
5176  public:
MyTypeInNameSpace1(int an_x)5177   explicit MyTypeInNameSpace1(int an_x) : Base(an_x) {}
5178 };
operator <<(std::ostream & os,const MyTypeInNameSpace1 & val)5179 std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1& val) {
5180   return os << val.x();
5181 }
operator <<(std::ostream & os,const MyTypeInNameSpace1 * pointer)5182 std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1* pointer) {
5183   return os << "(" << pointer->x() << ")";
5184 }
5185 }  // namespace namespace1
5186 
TEST(MessageTest,CanStreamUserTypeInUserNameSpace)5187 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
5188   Message msg;
5189   namespace1::MyTypeInNameSpace1 a(1);
5190 
5191   msg << a << &a;  // Uses namespace1::operator<<.
5192   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5193 }
5194 
5195 // Tests streaming a user type whose definition is in a user namespace
5196 // but whose operator<< is in the global namespace.
5197 namespace namespace2 {
5198 class MyTypeInNameSpace2 : public ::Base {
5199  public:
MyTypeInNameSpace2(int an_x)5200   explicit MyTypeInNameSpace2(int an_x) : Base(an_x) {}
5201 };
5202 }  // namespace namespace2
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 & val)5203 std::ostream& operator<<(std::ostream& os,
5204                          const namespace2::MyTypeInNameSpace2& val) {
5205   return os << val.x();
5206 }
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 * pointer)5207 std::ostream& operator<<(std::ostream& os,
5208                          const namespace2::MyTypeInNameSpace2* pointer) {
5209   return os << "(" << pointer->x() << ")";
5210 }
5211 
TEST(MessageTest,CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal)5212 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
5213   Message msg;
5214   namespace2::MyTypeInNameSpace2 a(1);
5215 
5216   msg << a << &a;  // Uses ::operator<<.
5217   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5218 }
5219 
5220 // Tests streaming NULL pointers to testing::Message.
TEST(MessageTest,NullPointers)5221 TEST(MessageTest, NullPointers) {
5222   Message msg;
5223   char* const p1 = nullptr;
5224   unsigned char* const p2 = nullptr;
5225   int* p3 = nullptr;
5226   double* p4 = nullptr;
5227   bool* p5 = nullptr;
5228   Message* p6 = nullptr;
5229 
5230   msg << p1 << p2 << p3 << p4 << p5 << p6;
5231   ASSERT_STREQ("(null)(null)(null)(null)(null)(null)", msg.GetString().c_str());
5232 }
5233 
5234 // Tests streaming wide strings to testing::Message.
TEST(MessageTest,WideStrings)5235 TEST(MessageTest, WideStrings) {
5236   // Streams a NULL of type const wchar_t*.
5237   const wchar_t* const_wstr = nullptr;
5238   EXPECT_STREQ("(null)", (Message() << const_wstr).GetString().c_str());
5239 
5240   // Streams a NULL of type wchar_t*.
5241   wchar_t* wstr = nullptr;
5242   EXPECT_STREQ("(null)", (Message() << wstr).GetString().c_str());
5243 
5244   // Streams a non-NULL of type const wchar_t*.
5245   const_wstr = L"abc\x8119";
5246   EXPECT_STREQ("abc\xe8\x84\x99",
5247                (Message() << const_wstr).GetString().c_str());
5248 
5249   // Streams a non-NULL of type wchar_t*.
5250   wstr = const_cast<wchar_t*>(const_wstr);
5251   EXPECT_STREQ("abc\xe8\x84\x99", (Message() << wstr).GetString().c_str());
5252 }
5253 
5254 // This line tests that we can define tests in the testing namespace.
5255 namespace testing {
5256 
5257 // Tests the TestInfo class.
5258 
5259 class TestInfoTest : public Test {
5260  protected:
GetTestInfo(const char * test_name)5261   static const TestInfo* GetTestInfo(const char* test_name) {
5262     const TestSuite* const test_suite =
5263         GetUnitTestImpl()->GetTestSuite("TestInfoTest", "", nullptr, nullptr);
5264 
5265     for (int i = 0; i < test_suite->total_test_count(); ++i) {
5266       const TestInfo* const test_info = test_suite->GetTestInfo(i);
5267       if (strcmp(test_name, test_info->name()) == 0) return test_info;
5268     }
5269     return nullptr;
5270   }
5271 
GetTestResult(const TestInfo * test_info)5272   static const TestResult* GetTestResult(const TestInfo* test_info) {
5273     return test_info->result();
5274   }
5275 };
5276 
5277 // Tests TestInfo::test_case_name() and TestInfo::name().
TEST_F(TestInfoTest,Names)5278 TEST_F(TestInfoTest, Names) {
5279   const TestInfo* const test_info = GetTestInfo("Names");
5280 
5281   ASSERT_STREQ("TestInfoTest", test_info->test_suite_name());
5282   ASSERT_STREQ("Names", test_info->name());
5283 }
5284 
5285 // Tests TestInfo::result().
TEST_F(TestInfoTest,result)5286 TEST_F(TestInfoTest, result) {
5287   const TestInfo* const test_info = GetTestInfo("result");
5288 
5289   // Initially, there is no TestPartResult for this test.
5290   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5291 
5292   // After the previous assertion, there is still none.
5293   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5294 }
5295 
5296 #define VERIFY_CODE_LOCATION                                                \
5297   const int expected_line = __LINE__ - 1;                                   \
5298   const TestInfo* const test_info = GetUnitTestImpl()->current_test_info(); \
5299   ASSERT_TRUE(test_info);                                                   \
5300   EXPECT_STREQ(__FILE__, test_info->file());                                \
5301   EXPECT_EQ(expected_line, test_info->line())
5302 
5303 // clang-format off
TEST(CodeLocationForTEST,Verify)5304 TEST(CodeLocationForTEST, Verify) {
5305   VERIFY_CODE_LOCATION;
5306 }
5307 
5308 class CodeLocationForTESTF : public Test {};
5309 
TEST_F(CodeLocationForTESTF,Verify)5310 TEST_F(CodeLocationForTESTF, Verify) {
5311   VERIFY_CODE_LOCATION;
5312 }
5313 
5314 class CodeLocationForTESTP : public TestWithParam<int> {};
5315 
TEST_P(CodeLocationForTESTP,Verify)5316 TEST_P(CodeLocationForTESTP, Verify) {
5317   VERIFY_CODE_LOCATION;
5318 }
5319 
5320 INSTANTIATE_TEST_SUITE_P(, CodeLocationForTESTP, Values(0));
5321 
5322 template <typename T>
5323 class CodeLocationForTYPEDTEST : public Test {};
5324 
5325 TYPED_TEST_SUITE(CodeLocationForTYPEDTEST, int);
5326 
TYPED_TEST(CodeLocationForTYPEDTEST,Verify)5327 TYPED_TEST(CodeLocationForTYPEDTEST, Verify) {
5328   VERIFY_CODE_LOCATION;
5329 }
5330 
5331 template <typename T>
5332 class CodeLocationForTYPEDTESTP : public Test {};
5333 
5334 TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP);
5335 
TYPED_TEST_P(CodeLocationForTYPEDTESTP,Verify)5336 TYPED_TEST_P(CodeLocationForTYPEDTESTP, Verify) {
5337   VERIFY_CODE_LOCATION;
5338 }
5339 
5340 REGISTER_TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP, Verify);
5341 
5342 INSTANTIATE_TYPED_TEST_SUITE_P(My, CodeLocationForTYPEDTESTP, int);
5343 
5344 #undef VERIFY_CODE_LOCATION
5345 // clang-format on
5346 
5347 // Tests setting up and tearing down a test case.
5348 // Legacy API is deprecated but still available
5349 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5350 class SetUpTestCaseTest : public Test {
5351  protected:
5352   // This will be called once before the first test in this test case
5353   // is run.
SetUpTestCase()5354   static void SetUpTestCase() {
5355     printf("Setting up the test case . . .\n");
5356 
5357     // Initializes some shared resource.  In this simple example, we
5358     // just create a C string.  More complex stuff can be done if
5359     // desired.
5360     shared_resource_ = "123";
5361 
5362     // Increments the number of test cases that have been set up.
5363     counter_++;
5364 
5365     // SetUpTestCase() should be called only once.
5366     EXPECT_EQ(1, counter_);
5367   }
5368 
5369   // This will be called once after the last test in this test case is
5370   // run.
TearDownTestCase()5371   static void TearDownTestCase() {
5372     printf("Tearing down the test case . . .\n");
5373 
5374     // Decrements the number of test cases that have been set up.
5375     counter_--;
5376 
5377     // TearDownTestCase() should be called only once.
5378     EXPECT_EQ(0, counter_);
5379 
5380     // Cleans up the shared resource.
5381     shared_resource_ = nullptr;
5382   }
5383 
5384   // This will be called before each test in this test case.
SetUp()5385   void SetUp() override {
5386     // SetUpTestCase() should be called only once, so counter_ should
5387     // always be 1.
5388     EXPECT_EQ(1, counter_);
5389   }
5390 
5391   // Number of test cases that have been set up.
5392   static int counter_;
5393 
5394   // Some resource to be shared by all tests in this test case.
5395   static const char* shared_resource_;
5396 };
5397 
5398 int SetUpTestCaseTest::counter_ = 0;
5399 const char* SetUpTestCaseTest::shared_resource_ = nullptr;
5400 
5401 // A test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test1)5402 TEST_F(SetUpTestCaseTest, Test1) { EXPECT_STRNE(nullptr, shared_resource_); }
5403 
5404 // Another test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test2)5405 TEST_F(SetUpTestCaseTest, Test2) { EXPECT_STREQ("123", shared_resource_); }
5406 #endif  //  GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5407 
5408 // Tests SetupTestSuite/TearDown TestSuite
5409 class SetUpTestSuiteTest : public Test {
5410  protected:
5411   // This will be called once before the first test in this test case
5412   // is run.
SetUpTestSuite()5413   static void SetUpTestSuite() {
5414     printf("Setting up the test suite . . .\n");
5415 
5416     // Initializes some shared resource.  In this simple example, we
5417     // just create a C string.  More complex stuff can be done if
5418     // desired.
5419     shared_resource_ = "123";
5420 
5421     // Increments the number of test cases that have been set up.
5422     counter_++;
5423 
5424     // SetUpTestSuite() should be called only once.
5425     EXPECT_EQ(1, counter_);
5426   }
5427 
5428   // This will be called once after the last test in this test case is
5429   // run.
TearDownTestSuite()5430   static void TearDownTestSuite() {
5431     printf("Tearing down the test suite . . .\n");
5432 
5433     // Decrements the number of test suites that have been set up.
5434     counter_--;
5435 
5436     // TearDownTestSuite() should be called only once.
5437     EXPECT_EQ(0, counter_);
5438 
5439     // Cleans up the shared resource.
5440     shared_resource_ = nullptr;
5441   }
5442 
5443   // This will be called before each test in this test case.
SetUp()5444   void SetUp() override {
5445     // SetUpTestSuite() should be called only once, so counter_ should
5446     // always be 1.
5447     EXPECT_EQ(1, counter_);
5448   }
5449 
5450   // Number of test suites that have been set up.
5451   static int counter_;
5452 
5453   // Some resource to be shared by all tests in this test case.
5454   static const char* shared_resource_;
5455 };
5456 
5457 int SetUpTestSuiteTest::counter_ = 0;
5458 const char* SetUpTestSuiteTest::shared_resource_ = nullptr;
5459 
5460 // A test that uses the shared resource.
TEST_F(SetUpTestSuiteTest,TestSetupTestSuite1)5461 TEST_F(SetUpTestSuiteTest, TestSetupTestSuite1) {
5462   EXPECT_STRNE(nullptr, shared_resource_);
5463 }
5464 
5465 // Another test that uses the shared resource.
TEST_F(SetUpTestSuiteTest,TestSetupTestSuite2)5466 TEST_F(SetUpTestSuiteTest, TestSetupTestSuite2) {
5467   EXPECT_STREQ("123", shared_resource_);
5468 }
5469 
5470 // The ParseFlagsTest test case tests ParseGoogleTestFlagsOnly.
5471 
5472 // The Flags struct stores a copy of all Google Test flags.
5473 struct Flags {
5474   // Constructs a Flags struct where each flag has its default value.
Flagstesting::Flags5475   Flags()
5476       : also_run_disabled_tests(false),
5477         break_on_failure(false),
5478         catch_exceptions(false),
5479         death_test_use_fork(false),
5480         fail_fast(false),
5481         filter(""),
5482         list_tests(false),
5483         output(""),
5484         brief(false),
5485         print_time(true),
5486         random_seed(0),
5487         repeat(1),
5488         recreate_environments_when_repeating(true),
5489         shuffle(false),
5490         stack_trace_depth(kMaxStackTraceDepth),
5491         stream_result_to(""),
5492         throw_on_failure(false) {}
5493 
5494   // Factory methods.
5495 
5496   // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
5497   // the given value.
AlsoRunDisabledTeststesting::Flags5498   static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
5499     Flags flags;
5500     flags.also_run_disabled_tests = also_run_disabled_tests;
5501     return flags;
5502   }
5503 
5504   // Creates a Flags struct where the gtest_break_on_failure flag has
5505   // the given value.
BreakOnFailuretesting::Flags5506   static Flags BreakOnFailure(bool break_on_failure) {
5507     Flags flags;
5508     flags.break_on_failure = break_on_failure;
5509     return flags;
5510   }
5511 
5512   // Creates a Flags struct where the gtest_catch_exceptions flag has
5513   // the given value.
CatchExceptionstesting::Flags5514   static Flags CatchExceptions(bool catch_exceptions) {
5515     Flags flags;
5516     flags.catch_exceptions = catch_exceptions;
5517     return flags;
5518   }
5519 
5520   // Creates a Flags struct where the gtest_death_test_use_fork flag has
5521   // the given value.
DeathTestUseForktesting::Flags5522   static Flags DeathTestUseFork(bool death_test_use_fork) {
5523     Flags flags;
5524     flags.death_test_use_fork = death_test_use_fork;
5525     return flags;
5526   }
5527 
5528   // Creates a Flags struct where the gtest_fail_fast flag has
5529   // the given value.
FailFasttesting::Flags5530   static Flags FailFast(bool fail_fast) {
5531     Flags flags;
5532     flags.fail_fast = fail_fast;
5533     return flags;
5534   }
5535 
5536   // Creates a Flags struct where the gtest_filter flag has the given
5537   // value.
Filtertesting::Flags5538   static Flags Filter(const char* filter) {
5539     Flags flags;
5540     flags.filter = filter;
5541     return flags;
5542   }
5543 
5544   // Creates a Flags struct where the gtest_list_tests flag has the
5545   // given value.
ListTeststesting::Flags5546   static Flags ListTests(bool list_tests) {
5547     Flags flags;
5548     flags.list_tests = list_tests;
5549     return flags;
5550   }
5551 
5552   // Creates a Flags struct where the gtest_output flag has the given
5553   // value.
Outputtesting::Flags5554   static Flags Output(const char* output) {
5555     Flags flags;
5556     flags.output = output;
5557     return flags;
5558   }
5559 
5560   // Creates a Flags struct where the gtest_brief flag has the given
5561   // value.
Brieftesting::Flags5562   static Flags Brief(bool brief) {
5563     Flags flags;
5564     flags.brief = brief;
5565     return flags;
5566   }
5567 
5568   // Creates a Flags struct where the gtest_print_time flag has the given
5569   // value.
PrintTimetesting::Flags5570   static Flags PrintTime(bool print_time) {
5571     Flags flags;
5572     flags.print_time = print_time;
5573     return flags;
5574   }
5575 
5576   // Creates a Flags struct where the gtest_random_seed flag has the given
5577   // value.
RandomSeedtesting::Flags5578   static Flags RandomSeed(int32_t random_seed) {
5579     Flags flags;
5580     flags.random_seed = random_seed;
5581     return flags;
5582   }
5583 
5584   // Creates a Flags struct where the gtest_repeat flag has the given
5585   // value.
Repeattesting::Flags5586   static Flags Repeat(int32_t repeat) {
5587     Flags flags;
5588     flags.repeat = repeat;
5589     return flags;
5590   }
5591 
5592   // Creates a Flags struct where the gtest_recreate_environments_when_repeating
5593   // flag has the given value.
RecreateEnvironmentsWhenRepeatingtesting::Flags5594   static Flags RecreateEnvironmentsWhenRepeating(
5595       bool recreate_environments_when_repeating) {
5596     Flags flags;
5597     flags.recreate_environments_when_repeating =
5598         recreate_environments_when_repeating;
5599     return flags;
5600   }
5601 
5602   // Creates a Flags struct where the gtest_shuffle flag has the given
5603   // value.
Shuffletesting::Flags5604   static Flags Shuffle(bool shuffle) {
5605     Flags flags;
5606     flags.shuffle = shuffle;
5607     return flags;
5608   }
5609 
5610   // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
5611   // the given value.
StackTraceDepthtesting::Flags5612   static Flags StackTraceDepth(int32_t stack_trace_depth) {
5613     Flags flags;
5614     flags.stack_trace_depth = stack_trace_depth;
5615     return flags;
5616   }
5617 
5618   // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
5619   // the given value.
StreamResultTotesting::Flags5620   static Flags StreamResultTo(const char* stream_result_to) {
5621     Flags flags;
5622     flags.stream_result_to = stream_result_to;
5623     return flags;
5624   }
5625 
5626   // Creates a Flags struct where the gtest_throw_on_failure flag has
5627   // the given value.
ThrowOnFailuretesting::Flags5628   static Flags ThrowOnFailure(bool throw_on_failure) {
5629     Flags flags;
5630     flags.throw_on_failure = throw_on_failure;
5631     return flags;
5632   }
5633 
5634   // These fields store the flag values.
5635   bool also_run_disabled_tests;
5636   bool break_on_failure;
5637   bool catch_exceptions;
5638   bool death_test_use_fork;
5639   bool fail_fast;
5640   const char* filter;
5641   bool list_tests;
5642   const char* output;
5643   bool brief;
5644   bool print_time;
5645   int32_t random_seed;
5646   int32_t repeat;
5647   bool recreate_environments_when_repeating;
5648   bool shuffle;
5649   int32_t stack_trace_depth;
5650   const char* stream_result_to;
5651   bool throw_on_failure;
5652 };
5653 
5654 // Fixture for testing ParseGoogleTestFlagsOnly().
5655 class ParseFlagsTest : public Test {
5656  protected:
5657   // Clears the flags before each test.
SetUp()5658   void SetUp() override {
5659     GTEST_FLAG_SET(also_run_disabled_tests, false);
5660     GTEST_FLAG_SET(break_on_failure, false);
5661     GTEST_FLAG_SET(catch_exceptions, false);
5662     GTEST_FLAG_SET(death_test_use_fork, false);
5663     GTEST_FLAG_SET(fail_fast, false);
5664     GTEST_FLAG_SET(filter, "");
5665     GTEST_FLAG_SET(list_tests, false);
5666     GTEST_FLAG_SET(output, "");
5667     GTEST_FLAG_SET(brief, false);
5668     GTEST_FLAG_SET(print_time, true);
5669     GTEST_FLAG_SET(random_seed, 0);
5670     GTEST_FLAG_SET(repeat, 1);
5671     GTEST_FLAG_SET(recreate_environments_when_repeating, true);
5672     GTEST_FLAG_SET(shuffle, false);
5673     GTEST_FLAG_SET(stack_trace_depth, kMaxStackTraceDepth);
5674     GTEST_FLAG_SET(stream_result_to, "");
5675     GTEST_FLAG_SET(throw_on_failure, false);
5676   }
5677 
5678   // Asserts that two narrow or wide string arrays are equal.
5679   template <typename CharType>
AssertStringArrayEq(int size1,CharType ** array1,int size2,CharType ** array2)5680   static void AssertStringArrayEq(int size1, CharType** array1, int size2,
5681                                   CharType** array2) {
5682     ASSERT_EQ(size1, size2) << " Array sizes different.";
5683 
5684     for (int i = 0; i != size1; i++) {
5685       ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
5686     }
5687   }
5688 
5689   // Verifies that the flag values match the expected values.
CheckFlags(const Flags & expected)5690   static void CheckFlags(const Flags& expected) {
5691     EXPECT_EQ(expected.also_run_disabled_tests,
5692               GTEST_FLAG_GET(also_run_disabled_tests));
5693     EXPECT_EQ(expected.break_on_failure, GTEST_FLAG_GET(break_on_failure));
5694     EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG_GET(catch_exceptions));
5695     EXPECT_EQ(expected.death_test_use_fork,
5696               GTEST_FLAG_GET(death_test_use_fork));
5697     EXPECT_EQ(expected.fail_fast, GTEST_FLAG_GET(fail_fast));
5698     EXPECT_STREQ(expected.filter, GTEST_FLAG_GET(filter).c_str());
5699     EXPECT_EQ(expected.list_tests, GTEST_FLAG_GET(list_tests));
5700     EXPECT_STREQ(expected.output, GTEST_FLAG_GET(output).c_str());
5701     EXPECT_EQ(expected.brief, GTEST_FLAG_GET(brief));
5702     EXPECT_EQ(expected.print_time, GTEST_FLAG_GET(print_time));
5703     EXPECT_EQ(expected.random_seed, GTEST_FLAG_GET(random_seed));
5704     EXPECT_EQ(expected.repeat, GTEST_FLAG_GET(repeat));
5705     EXPECT_EQ(expected.recreate_environments_when_repeating,
5706               GTEST_FLAG_GET(recreate_environments_when_repeating));
5707     EXPECT_EQ(expected.shuffle, GTEST_FLAG_GET(shuffle));
5708     EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG_GET(stack_trace_depth));
5709     EXPECT_STREQ(expected.stream_result_to,
5710                  GTEST_FLAG_GET(stream_result_to).c_str());
5711     EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG_GET(throw_on_failure));
5712   }
5713 
5714   // Parses a command line (specified by argc1 and argv1), then
5715   // verifies that the flag values are expected and that the
5716   // recognized flags are removed from the command line.
5717   template <typename CharType>
TestParsingFlags(int argc1,const CharType ** argv1,int argc2,const CharType ** argv2,const Flags & expected,bool should_print_help)5718   static void TestParsingFlags(int argc1, const CharType** argv1, int argc2,
5719                                const CharType** argv2, const Flags& expected,
5720                                bool should_print_help) {
5721     const bool saved_help_flag = ::testing::internal::g_help_flag;
5722     ::testing::internal::g_help_flag = false;
5723 
5724 #if GTEST_HAS_STREAM_REDIRECTION
5725     CaptureStdout();
5726 #endif
5727 
5728     // Parses the command line.
5729     internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
5730 
5731 #if GTEST_HAS_STREAM_REDIRECTION
5732     const std::string captured_stdout = GetCapturedStdout();
5733 #endif
5734 
5735     // Verifies the flag values.
5736     CheckFlags(expected);
5737 
5738     // Verifies that the recognized flags are removed from the command
5739     // line.
5740     AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
5741 
5742     // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
5743     // help message for the flags it recognizes.
5744     EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
5745 
5746 #if GTEST_HAS_STREAM_REDIRECTION
5747     const char* const expected_help_fragment =
5748         "This program contains tests written using";
5749     if (should_print_help) {
5750       EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
5751     } else {
5752       EXPECT_PRED_FORMAT2(IsNotSubstring, expected_help_fragment,
5753                           captured_stdout);
5754     }
5755 #endif  // GTEST_HAS_STREAM_REDIRECTION
5756 
5757     ::testing::internal::g_help_flag = saved_help_flag;
5758   }
5759 
5760   // This macro wraps TestParsingFlags s.t. the user doesn't need
5761   // to specify the array sizes.
5762 
5763 #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
5764   TestParsingFlags(sizeof(argv1) / sizeof(*argv1) - 1, argv1,                \
5765                    sizeof(argv2) / sizeof(*argv2) - 1, argv2, expected,      \
5766                    should_print_help)
5767 };
5768 
5769 // Tests parsing an empty command line.
TEST_F(ParseFlagsTest,Empty)5770 TEST_F(ParseFlagsTest, Empty) {
5771   const char* argv[] = {nullptr};
5772 
5773   const char* argv2[] = {nullptr};
5774 
5775   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5776 }
5777 
5778 // Tests parsing a command line that has no flag.
TEST_F(ParseFlagsTest,NoFlag)5779 TEST_F(ParseFlagsTest, NoFlag) {
5780   const char* argv[] = {"foo.exe", nullptr};
5781 
5782   const char* argv2[] = {"foo.exe", nullptr};
5783 
5784   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5785 }
5786 
5787 // Tests parsing --gtest_fail_fast.
TEST_F(ParseFlagsTest,FailFast)5788 TEST_F(ParseFlagsTest, FailFast) {
5789   const char* argv[] = {"foo.exe", "--gtest_fail_fast", nullptr};
5790 
5791   const char* argv2[] = {"foo.exe", nullptr};
5792 
5793   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::FailFast(true), false);
5794 }
5795 
5796 // Tests parsing an empty --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterEmpty)5797 TEST_F(ParseFlagsTest, FilterEmpty) {
5798   const char* argv[] = {"foo.exe", "--gtest_filter=", nullptr};
5799 
5800   const char* argv2[] = {"foo.exe", nullptr};
5801 
5802   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
5803 }
5804 
5805 // Tests parsing a non-empty --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterNonEmpty)5806 TEST_F(ParseFlagsTest, FilterNonEmpty) {
5807   const char* argv[] = {"foo.exe", "--gtest_filter=abc", nullptr};
5808 
5809   const char* argv2[] = {"foo.exe", nullptr};
5810 
5811   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
5812 }
5813 
5814 // Tests parsing --gtest_break_on_failure.
TEST_F(ParseFlagsTest,BreakOnFailureWithoutValue)5815 TEST_F(ParseFlagsTest, BreakOnFailureWithoutValue) {
5816   const char* argv[] = {"foo.exe", "--gtest_break_on_failure", nullptr};
5817 
5818   const char* argv2[] = {"foo.exe", nullptr};
5819 
5820   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5821 }
5822 
5823 // Tests parsing --gtest_break_on_failure=0.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_0)5824 TEST_F(ParseFlagsTest, BreakOnFailureFalse_0) {
5825   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=0", nullptr};
5826 
5827   const char* argv2[] = {"foo.exe", nullptr};
5828 
5829   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5830 }
5831 
5832 // Tests parsing --gtest_break_on_failure=f.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_f)5833 TEST_F(ParseFlagsTest, BreakOnFailureFalse_f) {
5834   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=f", nullptr};
5835 
5836   const char* argv2[] = {"foo.exe", nullptr};
5837 
5838   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5839 }
5840 
5841 // Tests parsing --gtest_break_on_failure=F.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_F)5842 TEST_F(ParseFlagsTest, BreakOnFailureFalse_F) {
5843   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=F", nullptr};
5844 
5845   const char* argv2[] = {"foo.exe", nullptr};
5846 
5847   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5848 }
5849 
5850 // Tests parsing a --gtest_break_on_failure flag that has a "true"
5851 // definition.
TEST_F(ParseFlagsTest,BreakOnFailureTrue)5852 TEST_F(ParseFlagsTest, BreakOnFailureTrue) {
5853   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=1", nullptr};
5854 
5855   const char* argv2[] = {"foo.exe", nullptr};
5856 
5857   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5858 }
5859 
5860 // Tests parsing --gtest_catch_exceptions.
TEST_F(ParseFlagsTest,CatchExceptions)5861 TEST_F(ParseFlagsTest, CatchExceptions) {
5862   const char* argv[] = {"foo.exe", "--gtest_catch_exceptions", nullptr};
5863 
5864   const char* argv2[] = {"foo.exe", nullptr};
5865 
5866   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
5867 }
5868 
5869 // Tests parsing --gtest_death_test_use_fork.
TEST_F(ParseFlagsTest,DeathTestUseFork)5870 TEST_F(ParseFlagsTest, DeathTestUseFork) {
5871   const char* argv[] = {"foo.exe", "--gtest_death_test_use_fork", nullptr};
5872 
5873   const char* argv2[] = {"foo.exe", nullptr};
5874 
5875   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
5876 }
5877 
5878 // Tests having the same flag twice with different values.  The
5879 // expected behavior is that the one coming last takes precedence.
TEST_F(ParseFlagsTest,DuplicatedFlags)5880 TEST_F(ParseFlagsTest, DuplicatedFlags) {
5881   const char* argv[] = {"foo.exe", "--gtest_filter=a", "--gtest_filter=b",
5882                         nullptr};
5883 
5884   const char* argv2[] = {"foo.exe", nullptr};
5885 
5886   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
5887 }
5888 
5889 // Tests having an unrecognized flag on the command line.
TEST_F(ParseFlagsTest,UnrecognizedFlag)5890 TEST_F(ParseFlagsTest, UnrecognizedFlag) {
5891   const char* argv[] = {"foo.exe", "--gtest_break_on_failure",
5892                         "bar",  // Unrecognized by Google Test.
5893                         "--gtest_filter=b", nullptr};
5894 
5895   const char* argv2[] = {"foo.exe", "bar", nullptr};
5896 
5897   Flags flags;
5898   flags.break_on_failure = true;
5899   flags.filter = "b";
5900   GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
5901 }
5902 
5903 // Tests having a --gtest_list_tests flag
TEST_F(ParseFlagsTest,ListTestsFlag)5904 TEST_F(ParseFlagsTest, ListTestsFlag) {
5905   const char* argv[] = {"foo.exe", "--gtest_list_tests", nullptr};
5906 
5907   const char* argv2[] = {"foo.exe", nullptr};
5908 
5909   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5910 }
5911 
5912 // Tests having a --gtest_list_tests flag with a "true" value
TEST_F(ParseFlagsTest,ListTestsTrue)5913 TEST_F(ParseFlagsTest, ListTestsTrue) {
5914   const char* argv[] = {"foo.exe", "--gtest_list_tests=1", nullptr};
5915 
5916   const char* argv2[] = {"foo.exe", nullptr};
5917 
5918   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5919 }
5920 
5921 // Tests having a --gtest_list_tests flag with a "false" value
TEST_F(ParseFlagsTest,ListTestsFalse)5922 TEST_F(ParseFlagsTest, ListTestsFalse) {
5923   const char* argv[] = {"foo.exe", "--gtest_list_tests=0", nullptr};
5924 
5925   const char* argv2[] = {"foo.exe", nullptr};
5926 
5927   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5928 }
5929 
5930 // Tests parsing --gtest_list_tests=f.
TEST_F(ParseFlagsTest,ListTestsFalse_f)5931 TEST_F(ParseFlagsTest, ListTestsFalse_f) {
5932   const char* argv[] = {"foo.exe", "--gtest_list_tests=f", nullptr};
5933 
5934   const char* argv2[] = {"foo.exe", nullptr};
5935 
5936   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5937 }
5938 
5939 // Tests parsing --gtest_list_tests=F.
TEST_F(ParseFlagsTest,ListTestsFalse_F)5940 TEST_F(ParseFlagsTest, ListTestsFalse_F) {
5941   const char* argv[] = {"foo.exe", "--gtest_list_tests=F", nullptr};
5942 
5943   const char* argv2[] = {"foo.exe", nullptr};
5944 
5945   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5946 }
5947 
5948 // Tests parsing --gtest_output=xml
TEST_F(ParseFlagsTest,OutputXml)5949 TEST_F(ParseFlagsTest, OutputXml) {
5950   const char* argv[] = {"foo.exe", "--gtest_output=xml", nullptr};
5951 
5952   const char* argv2[] = {"foo.exe", nullptr};
5953 
5954   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
5955 }
5956 
5957 // Tests parsing --gtest_output=xml:file
TEST_F(ParseFlagsTest,OutputXmlFile)5958 TEST_F(ParseFlagsTest, OutputXmlFile) {
5959   const char* argv[] = {"foo.exe", "--gtest_output=xml:file", nullptr};
5960 
5961   const char* argv2[] = {"foo.exe", nullptr};
5962 
5963   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
5964 }
5965 
5966 // Tests parsing --gtest_output=xml:directory/path/
TEST_F(ParseFlagsTest,OutputXmlDirectory)5967 TEST_F(ParseFlagsTest, OutputXmlDirectory) {
5968   const char* argv[] = {"foo.exe", "--gtest_output=xml:directory/path/",
5969                         nullptr};
5970 
5971   const char* argv2[] = {"foo.exe", nullptr};
5972 
5973   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:directory/path/"),
5974                             false);
5975 }
5976 
5977 // Tests having a --gtest_brief flag
TEST_F(ParseFlagsTest,BriefFlag)5978 TEST_F(ParseFlagsTest, BriefFlag) {
5979   const char* argv[] = {"foo.exe", "--gtest_brief", nullptr};
5980 
5981   const char* argv2[] = {"foo.exe", nullptr};
5982 
5983   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(true), false);
5984 }
5985 
5986 // Tests having a --gtest_brief flag with a "true" value
TEST_F(ParseFlagsTest,BriefFlagTrue)5987 TEST_F(ParseFlagsTest, BriefFlagTrue) {
5988   const char* argv[] = {"foo.exe", "--gtest_brief=1", nullptr};
5989 
5990   const char* argv2[] = {"foo.exe", nullptr};
5991 
5992   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(true), false);
5993 }
5994 
5995 // Tests having a --gtest_brief flag with a "false" value
TEST_F(ParseFlagsTest,BriefFlagFalse)5996 TEST_F(ParseFlagsTest, BriefFlagFalse) {
5997   const char* argv[] = {"foo.exe", "--gtest_brief=0", nullptr};
5998 
5999   const char* argv2[] = {"foo.exe", nullptr};
6000 
6001   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(false), false);
6002 }
6003 
6004 // Tests having a --gtest_print_time flag
TEST_F(ParseFlagsTest,PrintTimeFlag)6005 TEST_F(ParseFlagsTest, PrintTimeFlag) {
6006   const char* argv[] = {"foo.exe", "--gtest_print_time", nullptr};
6007 
6008   const char* argv2[] = {"foo.exe", nullptr};
6009 
6010   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6011 }
6012 
6013 // Tests having a --gtest_print_time flag with a "true" value
TEST_F(ParseFlagsTest,PrintTimeTrue)6014 TEST_F(ParseFlagsTest, PrintTimeTrue) {
6015   const char* argv[] = {"foo.exe", "--gtest_print_time=1", nullptr};
6016 
6017   const char* argv2[] = {"foo.exe", nullptr};
6018 
6019   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6020 }
6021 
6022 // Tests having a --gtest_print_time flag with a "false" value
TEST_F(ParseFlagsTest,PrintTimeFalse)6023 TEST_F(ParseFlagsTest, PrintTimeFalse) {
6024   const char* argv[] = {"foo.exe", "--gtest_print_time=0", nullptr};
6025 
6026   const char* argv2[] = {"foo.exe", nullptr};
6027 
6028   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6029 }
6030 
6031 // Tests parsing --gtest_print_time=f.
TEST_F(ParseFlagsTest,PrintTimeFalse_f)6032 TEST_F(ParseFlagsTest, PrintTimeFalse_f) {
6033   const char* argv[] = {"foo.exe", "--gtest_print_time=f", nullptr};
6034 
6035   const char* argv2[] = {"foo.exe", nullptr};
6036 
6037   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6038 }
6039 
6040 // Tests parsing --gtest_print_time=F.
TEST_F(ParseFlagsTest,PrintTimeFalse_F)6041 TEST_F(ParseFlagsTest, PrintTimeFalse_F) {
6042   const char* argv[] = {"foo.exe", "--gtest_print_time=F", nullptr};
6043 
6044   const char* argv2[] = {"foo.exe", nullptr};
6045 
6046   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6047 }
6048 
6049 // Tests parsing --gtest_random_seed=number
TEST_F(ParseFlagsTest,RandomSeed)6050 TEST_F(ParseFlagsTest, RandomSeed) {
6051   const char* argv[] = {"foo.exe", "--gtest_random_seed=1000", nullptr};
6052 
6053   const char* argv2[] = {"foo.exe", nullptr};
6054 
6055   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
6056 }
6057 
6058 // Tests parsing --gtest_repeat=number
TEST_F(ParseFlagsTest,Repeat)6059 TEST_F(ParseFlagsTest, Repeat) {
6060   const char* argv[] = {"foo.exe", "--gtest_repeat=1000", nullptr};
6061 
6062   const char* argv2[] = {"foo.exe", nullptr};
6063 
6064   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
6065 }
6066 
6067 // Tests parsing --gtest_recreate_environments_when_repeating
TEST_F(ParseFlagsTest,RecreateEnvironmentsWhenRepeating)6068 TEST_F(ParseFlagsTest, RecreateEnvironmentsWhenRepeating) {
6069   const char* argv[] = {
6070       "foo.exe",
6071       "--gtest_recreate_environments_when_repeating=0",
6072       nullptr,
6073   };
6074 
6075   const char* argv2[] = {"foo.exe", nullptr};
6076 
6077   GTEST_TEST_PARSING_FLAGS_(
6078       argv, argv2, Flags::RecreateEnvironmentsWhenRepeating(false), false);
6079 }
6080 
6081 // Tests having a --gtest_also_run_disabled_tests flag
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsFlag)6082 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFlag) {
6083   const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests", nullptr};
6084 
6085   const char* argv2[] = {"foo.exe", nullptr};
6086 
6087   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true),
6088                             false);
6089 }
6090 
6091 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsTrue)6092 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsTrue) {
6093   const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=1",
6094                         nullptr};
6095 
6096   const char* argv2[] = {"foo.exe", nullptr};
6097 
6098   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true),
6099                             false);
6100 }
6101 
6102 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsFalse)6103 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFalse) {
6104   const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=0",
6105                         nullptr};
6106 
6107   const char* argv2[] = {"foo.exe", nullptr};
6108 
6109   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(false),
6110                             false);
6111 }
6112 
6113 // Tests parsing --gtest_shuffle.
TEST_F(ParseFlagsTest,ShuffleWithoutValue)6114 TEST_F(ParseFlagsTest, ShuffleWithoutValue) {
6115   const char* argv[] = {"foo.exe", "--gtest_shuffle", nullptr};
6116 
6117   const char* argv2[] = {"foo.exe", nullptr};
6118 
6119   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6120 }
6121 
6122 // Tests parsing --gtest_shuffle=0.
TEST_F(ParseFlagsTest,ShuffleFalse_0)6123 TEST_F(ParseFlagsTest, ShuffleFalse_0) {
6124   const char* argv[] = {"foo.exe", "--gtest_shuffle=0", nullptr};
6125 
6126   const char* argv2[] = {"foo.exe", nullptr};
6127 
6128   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
6129 }
6130 
6131 // Tests parsing a --gtest_shuffle flag that has a "true" definition.
TEST_F(ParseFlagsTest,ShuffleTrue)6132 TEST_F(ParseFlagsTest, ShuffleTrue) {
6133   const char* argv[] = {"foo.exe", "--gtest_shuffle=1", nullptr};
6134 
6135   const char* argv2[] = {"foo.exe", nullptr};
6136 
6137   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6138 }
6139 
6140 // Tests parsing --gtest_stack_trace_depth=number.
TEST_F(ParseFlagsTest,StackTraceDepth)6141 TEST_F(ParseFlagsTest, StackTraceDepth) {
6142   const char* argv[] = {"foo.exe", "--gtest_stack_trace_depth=5", nullptr};
6143 
6144   const char* argv2[] = {"foo.exe", nullptr};
6145 
6146   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
6147 }
6148 
TEST_F(ParseFlagsTest,StreamResultTo)6149 TEST_F(ParseFlagsTest, StreamResultTo) {
6150   const char* argv[] = {"foo.exe", "--gtest_stream_result_to=localhost:1234",
6151                         nullptr};
6152 
6153   const char* argv2[] = {"foo.exe", nullptr};
6154 
6155   GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6156                             Flags::StreamResultTo("localhost:1234"), false);
6157 }
6158 
6159 // Tests parsing --gtest_throw_on_failure.
TEST_F(ParseFlagsTest,ThrowOnFailureWithoutValue)6160 TEST_F(ParseFlagsTest, ThrowOnFailureWithoutValue) {
6161   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure", nullptr};
6162 
6163   const char* argv2[] = {"foo.exe", nullptr};
6164 
6165   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6166 }
6167 
6168 // Tests parsing --gtest_throw_on_failure=0.
TEST_F(ParseFlagsTest,ThrowOnFailureFalse_0)6169 TEST_F(ParseFlagsTest, ThrowOnFailureFalse_0) {
6170   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=0", nullptr};
6171 
6172   const char* argv2[] = {"foo.exe", nullptr};
6173 
6174   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
6175 }
6176 
6177 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
6178 // definition.
TEST_F(ParseFlagsTest,ThrowOnFailureTrue)6179 TEST_F(ParseFlagsTest, ThrowOnFailureTrue) {
6180   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=1", nullptr};
6181 
6182   const char* argv2[] = {"foo.exe", nullptr};
6183 
6184   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6185 }
6186 
6187 // Tests parsing a bad --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterBad)6188 TEST_F(ParseFlagsTest, FilterBad) {
6189   const char* argv[] = {"foo.exe", "--gtest_filter", nullptr};
6190 
6191   const char* argv2[] = {"foo.exe", "--gtest_filter", nullptr};
6192 
6193 #if defined(GTEST_HAS_ABSL) && defined(GTEST_HAS_DEATH_TEST)
6194   // Invalid flag arguments are a fatal error when using the Abseil Flags.
6195   EXPECT_EXIT(GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true),
6196               testing::ExitedWithCode(1),
6197               "ERROR: Missing the value for the flag 'gtest_filter'");
6198 #elif !defined(GTEST_HAS_ABSL)
6199   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
6200 #else
6201   static_cast<void>(argv);
6202   static_cast<void>(argv2);
6203 #endif
6204 }
6205 
6206 // Tests parsing --gtest_output (invalid).
TEST_F(ParseFlagsTest,OutputEmpty)6207 TEST_F(ParseFlagsTest, OutputEmpty) {
6208   const char* argv[] = {"foo.exe", "--gtest_output", nullptr};
6209 
6210   const char* argv2[] = {"foo.exe", "--gtest_output", nullptr};
6211 
6212 #if defined(GTEST_HAS_ABSL) && defined(GTEST_HAS_DEATH_TEST)
6213   // Invalid flag arguments are a fatal error when using the Abseil Flags.
6214   EXPECT_EXIT(GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true),
6215               testing::ExitedWithCode(1),
6216               "ERROR: Missing the value for the flag 'gtest_output'");
6217 #elif !defined(GTEST_HAS_ABSL)
6218   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
6219 #else
6220   static_cast<void>(argv);
6221   static_cast<void>(argv2);
6222 #endif
6223 }
6224 
6225 #ifdef GTEST_HAS_ABSL
TEST_F(ParseFlagsTest,AbseilPositionalFlags)6226 TEST_F(ParseFlagsTest, AbseilPositionalFlags) {
6227   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=1", "--",
6228                         "--other_flag", nullptr};
6229 
6230   // When using Abseil flags, it should be possible to pass flags not recognized
6231   // using "--" to delimit positional arguments. These flags should be returned
6232   // though argv.
6233   const char* argv2[] = {"foo.exe", "--other_flag", nullptr};
6234 
6235   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6236 }
6237 #endif
6238 
TEST_F(ParseFlagsTest,UnrecognizedFlags)6239 TEST_F(ParseFlagsTest, UnrecognizedFlags) {
6240   const char* argv[] = {"foo.exe", "--gtest_filter=abcd", "--other_flag",
6241                         nullptr};
6242 
6243   const char* argv2[] = {"foo.exe", "--other_flag", nullptr};
6244 
6245   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abcd"), false);
6246 }
6247 
6248 #ifdef GTEST_OS_WINDOWS
6249 // Tests parsing wide strings.
TEST_F(ParseFlagsTest,WideStrings)6250 TEST_F(ParseFlagsTest, WideStrings) {
6251   const wchar_t* argv[] = {L"foo.exe",
6252                            L"--gtest_filter=Foo*",
6253                            L"--gtest_list_tests=1",
6254                            L"--gtest_break_on_failure",
6255                            L"--non_gtest_flag",
6256                            NULL};
6257 
6258   const wchar_t* argv2[] = {L"foo.exe", L"--non_gtest_flag", NULL};
6259 
6260   Flags expected_flags;
6261   expected_flags.break_on_failure = true;
6262   expected_flags.filter = "Foo*";
6263   expected_flags.list_tests = true;
6264 
6265   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6266 }
6267 #endif  // GTEST_OS_WINDOWS
6268 
6269 #if GTEST_USE_OWN_FLAGFILE_FLAG_
6270 class FlagfileTest : public ParseFlagsTest {
6271  public:
SetUp()6272   void SetUp() override {
6273     ParseFlagsTest::SetUp();
6274 
6275     testdata_path_.Set(internal::FilePath(
6276         testing::TempDir() + internal::GetCurrentExecutableName().string() +
6277         "_flagfile_test"));
6278     testing::internal::posix::RmDir(testdata_path_.c_str());
6279     EXPECT_TRUE(testdata_path_.CreateFolder());
6280   }
6281 
TearDown()6282   void TearDown() override {
6283     testing::internal::posix::RmDir(testdata_path_.c_str());
6284     ParseFlagsTest::TearDown();
6285   }
6286 
CreateFlagfile(const char * contents)6287   internal::FilePath CreateFlagfile(const char* contents) {
6288     internal::FilePath file_path(internal::FilePath::GenerateUniqueFileName(
6289         testdata_path_, internal::FilePath("unique"), "txt"));
6290     FILE* f = testing::internal::posix::FOpen(file_path.c_str(), "w");
6291     fprintf(f, "%s", contents);
6292     fclose(f);
6293     return file_path;
6294   }
6295 
6296  private:
6297   internal::FilePath testdata_path_;
6298 };
6299 
6300 // Tests an empty flagfile.
TEST_F(FlagfileTest,Empty)6301 TEST_F(FlagfileTest, Empty) {
6302   internal::FilePath flagfile_path(CreateFlagfile(""));
6303   std::string flagfile_flag =
6304       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6305 
6306   const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6307 
6308   const char* argv2[] = {"foo.exe", nullptr};
6309 
6310   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
6311 }
6312 
6313 // Tests passing a non-empty --gtest_filter flag via --gtest_flagfile.
TEST_F(FlagfileTest,FilterNonEmpty)6314 TEST_F(FlagfileTest, FilterNonEmpty) {
6315   internal::FilePath flagfile_path(
6316       CreateFlagfile("--" GTEST_FLAG_PREFIX_ "filter=abc"));
6317   std::string flagfile_flag =
6318       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6319 
6320   const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6321 
6322   const char* argv2[] = {"foo.exe", nullptr};
6323 
6324   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
6325 }
6326 
6327 // Tests passing several flags via --gtest_flagfile.
TEST_F(FlagfileTest,SeveralFlags)6328 TEST_F(FlagfileTest, SeveralFlags) {
6329   internal::FilePath flagfile_path(
6330       CreateFlagfile("--" GTEST_FLAG_PREFIX_ "filter=abc\n"
6331                      "--" GTEST_FLAG_PREFIX_ "break_on_failure\n"
6332                      "--" GTEST_FLAG_PREFIX_ "list_tests"));
6333   std::string flagfile_flag =
6334       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6335 
6336   const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6337 
6338   const char* argv2[] = {"foo.exe", nullptr};
6339 
6340   Flags expected_flags;
6341   expected_flags.break_on_failure = true;
6342   expected_flags.filter = "abc";
6343   expected_flags.list_tests = true;
6344 
6345   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6346 }
6347 #endif  // GTEST_USE_OWN_FLAGFILE_FLAG_
6348 
6349 // Tests current_test_info() in UnitTest.
6350 class CurrentTestInfoTest : public Test {
6351  protected:
6352   // Tests that current_test_info() returns NULL before the first test in
6353   // the test case is run.
SetUpTestSuite()6354   static void SetUpTestSuite() {
6355     // There should be no tests running at this point.
6356     const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6357     EXPECT_TRUE(test_info == nullptr)
6358         << "There should be no tests running at this point.";
6359   }
6360 
6361   // Tests that current_test_info() returns NULL after the last test in
6362   // the test case has run.
TearDownTestSuite()6363   static void TearDownTestSuite() {
6364     const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6365     EXPECT_TRUE(test_info == nullptr)
6366         << "There should be no tests running at this point.";
6367   }
6368 };
6369 
6370 // Tests that current_test_info() returns TestInfo for currently running
6371 // test by checking the expected test name against the actual one.
TEST_F(CurrentTestInfoTest,WorksForFirstTestInATestSuite)6372 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestSuite) {
6373   const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6374   ASSERT_TRUE(nullptr != test_info)
6375       << "There is a test running so we should have a valid TestInfo.";
6376   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_suite_name())
6377       << "Expected the name of the currently running test suite.";
6378   EXPECT_STREQ("WorksForFirstTestInATestSuite", test_info->name())
6379       << "Expected the name of the currently running test.";
6380 }
6381 
6382 // Tests that current_test_info() returns TestInfo for currently running
6383 // test by checking the expected test name against the actual one.  We
6384 // use this test to see that the TestInfo object actually changed from
6385 // the previous invocation.
TEST_F(CurrentTestInfoTest,WorksForSecondTestInATestSuite)6386 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestSuite) {
6387   const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6388   ASSERT_TRUE(nullptr != test_info)
6389       << "There is a test running so we should have a valid TestInfo.";
6390   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_suite_name())
6391       << "Expected the name of the currently running test suite.";
6392   EXPECT_STREQ("WorksForSecondTestInATestSuite", test_info->name())
6393       << "Expected the name of the currently running test.";
6394 }
6395 
6396 }  // namespace testing
6397 
6398 // These two lines test that we can define tests in a namespace that
6399 // has the name "testing" and is nested in another namespace.
6400 namespace my_namespace {
6401 namespace testing {
6402 
6403 // Makes sure that TEST knows to use ::testing::Test instead of
6404 // ::my_namespace::testing::Test.
6405 class Test {};
6406 
6407 // Makes sure that an assertion knows to use ::testing::Message instead of
6408 // ::my_namespace::testing::Message.
6409 class Message {};
6410 
6411 // Makes sure that an assertion knows to use
6412 // ::testing::AssertionResult instead of
6413 // ::my_namespace::testing::AssertionResult.
6414 class AssertionResult {};
6415 
6416 // Tests that an assertion that should succeed works as expected.
TEST(NestedTestingNamespaceTest,Success)6417 TEST(NestedTestingNamespaceTest, Success) {
6418   EXPECT_EQ(1, 1) << "This shouldn't fail.";
6419 }
6420 
6421 // Tests that an assertion that should fail works as expected.
TEST(NestedTestingNamespaceTest,Failure)6422 TEST(NestedTestingNamespaceTest, Failure) {
6423   EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
6424                        "This failure is expected.");
6425 }
6426 
6427 }  // namespace testing
6428 }  // namespace my_namespace
6429 
6430 // Tests that one can call superclass SetUp and TearDown methods--
6431 // that is, that they are not private.
6432 // No tests are based on this fixture; the test "passes" if it compiles
6433 // successfully.
6434 class ProtectedFixtureMethodsTest : public Test {
6435  protected:
SetUp()6436   void SetUp() override { Test::SetUp(); }
TearDown()6437   void TearDown() override { Test::TearDown(); }
6438 };
6439 
6440 // StreamingAssertionsTest tests the streaming versions of a representative
6441 // sample of assertions.
TEST(StreamingAssertionsTest,Unconditional)6442 TEST(StreamingAssertionsTest, Unconditional) {
6443   SUCCEED() << "expected success";
6444   EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
6445                           "expected failure");
6446   EXPECT_FATAL_FAILURE(FAIL() << "expected failure", "expected failure");
6447 }
6448 
6449 #ifdef __BORLANDC__
6450 // Silences warnings: "Condition is always true", "Unreachable code"
6451 #pragma option push -w-ccc -w-rch
6452 #endif
6453 
TEST(StreamingAssertionsTest,Truth)6454 TEST(StreamingAssertionsTest, Truth) {
6455   EXPECT_TRUE(true) << "unexpected failure";
6456   ASSERT_TRUE(true) << "unexpected failure";
6457   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
6458                           "expected failure");
6459   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
6460                        "expected failure");
6461 }
6462 
TEST(StreamingAssertionsTest,Truth2)6463 TEST(StreamingAssertionsTest, Truth2) {
6464   EXPECT_FALSE(false) << "unexpected failure";
6465   ASSERT_FALSE(false) << "unexpected failure";
6466   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
6467                           "expected failure");
6468   EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
6469                        "expected failure");
6470 }
6471 
6472 #ifdef __BORLANDC__
6473 // Restores warnings after previous "#pragma option push" suppressed them
6474 #pragma option pop
6475 #endif
6476 
TEST(StreamingAssertionsTest,IntegerEquals)6477 TEST(StreamingAssertionsTest, IntegerEquals) {
6478   EXPECT_EQ(1, 1) << "unexpected failure";
6479   ASSERT_EQ(1, 1) << "unexpected failure";
6480   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
6481                           "expected failure");
6482   EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
6483                        "expected failure");
6484 }
6485 
TEST(StreamingAssertionsTest,IntegerLessThan)6486 TEST(StreamingAssertionsTest, IntegerLessThan) {
6487   EXPECT_LT(1, 2) << "unexpected failure";
6488   ASSERT_LT(1, 2) << "unexpected failure";
6489   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
6490                           "expected failure");
6491   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
6492                        "expected failure");
6493 }
6494 
TEST(StreamingAssertionsTest,StringsEqual)6495 TEST(StreamingAssertionsTest, StringsEqual) {
6496   EXPECT_STREQ("foo", "foo") << "unexpected failure";
6497   ASSERT_STREQ("foo", "foo") << "unexpected failure";
6498   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
6499                           "expected failure");
6500   EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
6501                        "expected failure");
6502 }
6503 
TEST(StreamingAssertionsTest,StringsNotEqual)6504 TEST(StreamingAssertionsTest, StringsNotEqual) {
6505   EXPECT_STRNE("foo", "bar") << "unexpected failure";
6506   ASSERT_STRNE("foo", "bar") << "unexpected failure";
6507   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
6508                           "expected failure");
6509   EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
6510                        "expected failure");
6511 }
6512 
TEST(StreamingAssertionsTest,StringsEqualIgnoringCase)6513 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
6514   EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6515   ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6516   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
6517                           "expected failure");
6518   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
6519                        "expected failure");
6520 }
6521 
TEST(StreamingAssertionsTest,StringNotEqualIgnoringCase)6522 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
6523   EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
6524   ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
6525   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
6526                           "expected failure");
6527   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
6528                        "expected failure");
6529 }
6530 
TEST(StreamingAssertionsTest,FloatingPointEquals)6531 TEST(StreamingAssertionsTest, FloatingPointEquals) {
6532   EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6533   ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6534   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6535                           "expected failure");
6536   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6537                        "expected failure");
6538 }
6539 
6540 #if GTEST_HAS_EXCEPTIONS
6541 
TEST(StreamingAssertionsTest,Throw)6542 TEST(StreamingAssertionsTest, Throw) {
6543   EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6544   ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6545   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool)
6546                               << "expected failure",
6547                           "expected failure");
6548   EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool)
6549                            << "expected failure",
6550                        "expected failure");
6551 }
6552 
TEST(StreamingAssertionsTest,NoThrow)6553 TEST(StreamingAssertionsTest, NoThrow) {
6554   EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
6555   ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
6556   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger())
6557                               << "expected failure",
6558                           "expected failure");
6559   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) << "expected failure",
6560                        "expected failure");
6561 }
6562 
TEST(StreamingAssertionsTest,AnyThrow)6563 TEST(StreamingAssertionsTest, AnyThrow) {
6564   EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6565   ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6566   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing())
6567                               << "expected failure",
6568                           "expected failure");
6569   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) << "expected failure",
6570                        "expected failure");
6571 }
6572 
6573 #endif  // GTEST_HAS_EXCEPTIONS
6574 
6575 // Tests that Google Test correctly decides whether to use colors in the output.
6576 
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsYes)6577 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
6578   GTEST_FLAG_SET(color, "yes");
6579 
6580   SetEnv("TERM", "xterm");             // TERM supports colors.
6581   EXPECT_TRUE(ShouldUseColor(true));   // Stdout is a TTY.
6582   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6583 
6584   SetEnv("TERM", "dumb");              // TERM doesn't support colors.
6585   EXPECT_TRUE(ShouldUseColor(true));   // Stdout is a TTY.
6586   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6587 }
6588 
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsAliasOfYes)6589 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
6590   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6591 
6592   GTEST_FLAG_SET(color, "True");
6593   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6594 
6595   GTEST_FLAG_SET(color, "t");
6596   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6597 
6598   GTEST_FLAG_SET(color, "1");
6599   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6600 }
6601 
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsNo)6602 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
6603   GTEST_FLAG_SET(color, "no");
6604 
6605   SetEnv("TERM", "xterm");              // TERM supports colors.
6606   EXPECT_FALSE(ShouldUseColor(true));   // Stdout is a TTY.
6607   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6608 
6609   SetEnv("TERM", "dumb");               // TERM doesn't support colors.
6610   EXPECT_FALSE(ShouldUseColor(true));   // Stdout is a TTY.
6611   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6612 }
6613 
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsInvalid)6614 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
6615   SetEnv("TERM", "xterm");  // TERM supports colors.
6616 
6617   GTEST_FLAG_SET(color, "F");
6618   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6619 
6620   GTEST_FLAG_SET(color, "0");
6621   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6622 
6623   GTEST_FLAG_SET(color, "unknown");
6624   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6625 }
6626 
TEST(ColoredOutputTest,UsesColorsWhenStdoutIsTty)6627 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
6628   GTEST_FLAG_SET(color, "auto");
6629 
6630   SetEnv("TERM", "xterm");              // TERM supports colors.
6631   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6632   EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY.
6633 }
6634 
TEST(ColoredOutputTest,UsesColorsWhenTermSupportsColors)6635 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
6636   GTEST_FLAG_SET(color, "auto");
6637 
6638 #if defined(GTEST_OS_WINDOWS) && !defined(GTEST_OS_WINDOWS_MINGW)
6639   // On Windows, we ignore the TERM variable as it's usually not set.
6640 
6641   SetEnv("TERM", "dumb");
6642   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6643 
6644   SetEnv("TERM", "");
6645   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6646 
6647   SetEnv("TERM", "xterm");
6648   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6649 #else
6650   // On non-Windows platforms, we rely on TERM to determine if the
6651   // terminal supports colors.
6652 
6653   SetEnv("TERM", "dumb");              // TERM doesn't support colors.
6654   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6655 
6656   SetEnv("TERM", "emacs");             // TERM doesn't support colors.
6657   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6658 
6659   SetEnv("TERM", "vt100");             // TERM doesn't support colors.
6660   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6661 
6662   SetEnv("TERM", "xterm-mono");        // TERM doesn't support colors.
6663   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6664 
6665   SetEnv("TERM", "xterm");            // TERM supports colors.
6666   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6667 
6668   SetEnv("TERM", "xterm-color");      // TERM supports colors.
6669   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6670 
6671   SetEnv("TERM", "xterm-kitty");      // TERM supports colors.
6672   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6673 
6674   SetEnv("TERM", "alacritty");        // TERM supports colors.
6675   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6676 
6677   SetEnv("TERM", "xterm-256color");   // TERM supports colors.
6678   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6679 
6680   SetEnv("TERM", "screen");           // TERM supports colors.
6681   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6682 
6683   SetEnv("TERM", "screen-256color");  // TERM supports colors.
6684   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6685 
6686   SetEnv("TERM", "tmux");             // TERM supports colors.
6687   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6688 
6689   SetEnv("TERM", "tmux-256color");    // TERM supports colors.
6690   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6691 
6692   SetEnv("TERM", "rxvt-unicode");     // TERM supports colors.
6693   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6694 
6695   SetEnv("TERM", "rxvt-unicode-256color");  // TERM supports colors.
6696   EXPECT_TRUE(ShouldUseColor(true));        // Stdout is a TTY.
6697 
6698   SetEnv("TERM", "linux");            // TERM supports colors.
6699   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6700 
6701   SetEnv("TERM", "cygwin");           // TERM supports colors.
6702   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6703 #endif  // GTEST_OS_WINDOWS
6704 }
6705 
6706 // Verifies that StaticAssertTypeEq works in a namespace scope.
6707 
6708 GTEST_INTERNAL_ATTRIBUTE_MAYBE_UNUSED static bool dummy1 =
6709     StaticAssertTypeEq<bool, bool>();
6710 GTEST_INTERNAL_ATTRIBUTE_MAYBE_UNUSED static bool dummy2 =
6711     StaticAssertTypeEq<const int, const int>();
6712 
6713 // Verifies that StaticAssertTypeEq works in a class.
6714 
6715 template <typename T>
6716 class StaticAssertTypeEqTestHelper {
6717  public:
StaticAssertTypeEqTestHelper()6718   StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
6719 };
6720 
TEST(StaticAssertTypeEqTest,WorksInClass)6721 TEST(StaticAssertTypeEqTest, WorksInClass) {
6722   StaticAssertTypeEqTestHelper<bool>();
6723 }
6724 
6725 // Verifies that StaticAssertTypeEq works inside a function.
6726 
6727 typedef int IntAlias;
6728 
TEST(StaticAssertTypeEqTest,CompilesForEqualTypes)6729 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
6730   StaticAssertTypeEq<int, IntAlias>();
6731   StaticAssertTypeEq<int*, IntAlias*>();
6732 }
6733 
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsNoFailure)6734 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6735   EXPECT_FALSE(HasNonfatalFailure());
6736 }
6737 
FailFatally()6738 static void FailFatally() { FAIL(); }
6739 
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsOnlyFatalFailure)6740 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
6741   FailFatally();
6742   const bool has_nonfatal_failure = HasNonfatalFailure();
6743   ClearCurrentTestPartResults();
6744   EXPECT_FALSE(has_nonfatal_failure);
6745 }
6746 
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6747 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6748   ADD_FAILURE();
6749   const bool has_nonfatal_failure = HasNonfatalFailure();
6750   ClearCurrentTestPartResults();
6751   EXPECT_TRUE(has_nonfatal_failure);
6752 }
6753 
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6754 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6755   FailFatally();
6756   ADD_FAILURE();
6757   const bool has_nonfatal_failure = HasNonfatalFailure();
6758   ClearCurrentTestPartResults();
6759   EXPECT_TRUE(has_nonfatal_failure);
6760 }
6761 
6762 // A wrapper for calling HasNonfatalFailure outside of a test body.
HasNonfatalFailureHelper()6763 static bool HasNonfatalFailureHelper() {
6764   return testing::Test::HasNonfatalFailure();
6765 }
6766 
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody)6767 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
6768   EXPECT_FALSE(HasNonfatalFailureHelper());
6769 }
6770 
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody2)6771 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
6772   ADD_FAILURE();
6773   const bool has_nonfatal_failure = HasNonfatalFailureHelper();
6774   ClearCurrentTestPartResults();
6775   EXPECT_TRUE(has_nonfatal_failure);
6776 }
6777 
TEST(HasFailureTest,ReturnsFalseWhenThereIsNoFailure)6778 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6779   EXPECT_FALSE(HasFailure());
6780 }
6781 
TEST(HasFailureTest,ReturnsTrueWhenThereIsFatalFailure)6782 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
6783   FailFatally();
6784   const bool has_failure = HasFailure();
6785   ClearCurrentTestPartResults();
6786   EXPECT_TRUE(has_failure);
6787 }
6788 
TEST(HasFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6789 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6790   ADD_FAILURE();
6791   const bool has_failure = HasFailure();
6792   ClearCurrentTestPartResults();
6793   EXPECT_TRUE(has_failure);
6794 }
6795 
TEST(HasFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6796 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6797   FailFatally();
6798   ADD_FAILURE();
6799   const bool has_failure = HasFailure();
6800   ClearCurrentTestPartResults();
6801   EXPECT_TRUE(has_failure);
6802 }
6803 
6804 // A wrapper for calling HasFailure outside of a test body.
HasFailureHelper()6805 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
6806 
TEST(HasFailureTest,WorksOutsideOfTestBody)6807 TEST(HasFailureTest, WorksOutsideOfTestBody) {
6808   EXPECT_FALSE(HasFailureHelper());
6809 }
6810 
TEST(HasFailureTest,WorksOutsideOfTestBody2)6811 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
6812   ADD_FAILURE();
6813   const bool has_failure = HasFailureHelper();
6814   ClearCurrentTestPartResults();
6815   EXPECT_TRUE(has_failure);
6816 }
6817 
6818 class TestListener : public EmptyTestEventListener {
6819  public:
TestListener()6820   TestListener() : on_start_counter_(nullptr), is_destroyed_(nullptr) {}
TestListener(int * on_start_counter,bool * is_destroyed)6821   TestListener(int* on_start_counter, bool* is_destroyed)
6822       : on_start_counter_(on_start_counter), is_destroyed_(is_destroyed) {}
6823 
~TestListener()6824   ~TestListener() override {
6825     if (is_destroyed_) *is_destroyed_ = true;
6826   }
6827 
6828  protected:
OnTestProgramStart(const UnitTest &)6829   void OnTestProgramStart(const UnitTest& /*unit_test*/) override {
6830     if (on_start_counter_ != nullptr) (*on_start_counter_)++;
6831   }
6832 
6833  private:
6834   int* on_start_counter_;
6835   bool* is_destroyed_;
6836 };
6837 
6838 // Tests the constructor.
TEST(TestEventListenersTest,ConstructionWorks)6839 TEST(TestEventListenersTest, ConstructionWorks) {
6840   TestEventListeners listeners;
6841 
6842   EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != nullptr);
6843   EXPECT_TRUE(listeners.default_result_printer() == nullptr);
6844   EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
6845 }
6846 
6847 // Tests that the TestEventListeners destructor deletes all the listeners it
6848 // owns.
TEST(TestEventListenersTest,DestructionWorks)6849 TEST(TestEventListenersTest, DestructionWorks) {
6850   bool default_result_printer_is_destroyed = false;
6851   bool default_xml_printer_is_destroyed = false;
6852   bool extra_listener_is_destroyed = false;
6853   TestListener* default_result_printer =
6854       new TestListener(nullptr, &default_result_printer_is_destroyed);
6855   TestListener* default_xml_printer =
6856       new TestListener(nullptr, &default_xml_printer_is_destroyed);
6857   TestListener* extra_listener =
6858       new TestListener(nullptr, &extra_listener_is_destroyed);
6859 
6860   {
6861     TestEventListeners listeners;
6862     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
6863                                                         default_result_printer);
6864     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
6865                                                        default_xml_printer);
6866     listeners.Append(extra_listener);
6867   }
6868   EXPECT_TRUE(default_result_printer_is_destroyed);
6869   EXPECT_TRUE(default_xml_printer_is_destroyed);
6870   EXPECT_TRUE(extra_listener_is_destroyed);
6871 }
6872 
6873 // Tests that a listener Append'ed to a TestEventListeners list starts
6874 // receiving events.
TEST(TestEventListenersTest,Append)6875 TEST(TestEventListenersTest, Append) {
6876   int on_start_counter = 0;
6877   bool is_destroyed = false;
6878   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6879   {
6880     TestEventListeners listeners;
6881     listeners.Append(listener);
6882     TestEventListenersAccessor::GetRepeater(&listeners)
6883         ->OnTestProgramStart(*UnitTest::GetInstance());
6884     EXPECT_EQ(1, on_start_counter);
6885   }
6886   EXPECT_TRUE(is_destroyed);
6887 }
6888 
6889 // Tests that listeners receive events in the order they were appended to
6890 // the list, except for *End requests, which must be received in the reverse
6891 // order.
6892 class SequenceTestingListener : public EmptyTestEventListener {
6893  public:
SequenceTestingListener(std::vector<std::string> * vector,const char * id)6894   SequenceTestingListener(std::vector<std::string>* vector, const char* id)
6895       : vector_(vector), id_(id) {}
6896 
6897  protected:
OnTestProgramStart(const UnitTest &)6898   void OnTestProgramStart(const UnitTest& /*unit_test*/) override {
6899     vector_->push_back(GetEventDescription("OnTestProgramStart"));
6900   }
6901 
OnTestProgramEnd(const UnitTest &)6902   void OnTestProgramEnd(const UnitTest& /*unit_test*/) override {
6903     vector_->push_back(GetEventDescription("OnTestProgramEnd"));
6904   }
6905 
OnTestIterationStart(const UnitTest &,int)6906   void OnTestIterationStart(const UnitTest& /*unit_test*/,
6907                             int /*iteration*/) override {
6908     vector_->push_back(GetEventDescription("OnTestIterationStart"));
6909   }
6910 
OnTestIterationEnd(const UnitTest &,int)6911   void OnTestIterationEnd(const UnitTest& /*unit_test*/,
6912                           int /*iteration*/) override {
6913     vector_->push_back(GetEventDescription("OnTestIterationEnd"));
6914   }
6915 
6916  private:
GetEventDescription(const char * method)6917   std::string GetEventDescription(const char* method) {
6918     Message message;
6919     message << id_ << "." << method;
6920     return message.GetString();
6921   }
6922 
6923   std::vector<std::string>* vector_;
6924   const char* const id_;
6925 
6926   SequenceTestingListener(const SequenceTestingListener&) = delete;
6927   SequenceTestingListener& operator=(const SequenceTestingListener&) = delete;
6928 };
6929 
TEST(EventListenerTest,AppendKeepsOrder)6930 TEST(EventListenerTest, AppendKeepsOrder) {
6931   std::vector<std::string> vec;
6932   TestEventListeners listeners;
6933   listeners.Append(new SequenceTestingListener(&vec, "1st"));
6934   listeners.Append(new SequenceTestingListener(&vec, "2nd"));
6935   listeners.Append(new SequenceTestingListener(&vec, "3rd"));
6936 
6937   TestEventListenersAccessor::GetRepeater(&listeners)
6938       ->OnTestProgramStart(*UnitTest::GetInstance());
6939   ASSERT_EQ(3U, vec.size());
6940   EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
6941   EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
6942   EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
6943 
6944   vec.clear();
6945   TestEventListenersAccessor::GetRepeater(&listeners)
6946       ->OnTestProgramEnd(*UnitTest::GetInstance());
6947   ASSERT_EQ(3U, vec.size());
6948   EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
6949   EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
6950   EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
6951 
6952   vec.clear();
6953   TestEventListenersAccessor::GetRepeater(&listeners)
6954       ->OnTestIterationStart(*UnitTest::GetInstance(), 0);
6955   ASSERT_EQ(3U, vec.size());
6956   EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
6957   EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
6958   EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
6959 
6960   vec.clear();
6961   TestEventListenersAccessor::GetRepeater(&listeners)
6962       ->OnTestIterationEnd(*UnitTest::GetInstance(), 0);
6963   ASSERT_EQ(3U, vec.size());
6964   EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
6965   EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
6966   EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
6967 }
6968 
6969 // Tests that a listener removed from a TestEventListeners list stops receiving
6970 // events and is not deleted when the list is destroyed.
TEST(TestEventListenersTest,Release)6971 TEST(TestEventListenersTest, Release) {
6972   int on_start_counter = 0;
6973   bool is_destroyed = false;
6974   // Although Append passes the ownership of this object to the list,
6975   // the following calls release it, and we need to delete it before the
6976   // test ends.
6977   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6978   {
6979     TestEventListeners listeners;
6980     listeners.Append(listener);
6981     EXPECT_EQ(listener, listeners.Release(listener));
6982     TestEventListenersAccessor::GetRepeater(&listeners)
6983         ->OnTestProgramStart(*UnitTest::GetInstance());
6984     EXPECT_TRUE(listeners.Release(listener) == nullptr);
6985   }
6986   EXPECT_EQ(0, on_start_counter);
6987   EXPECT_FALSE(is_destroyed);
6988   delete listener;
6989 }
6990 
6991 // Tests that no events are forwarded when event forwarding is disabled.
TEST(EventListenerTest,SuppressEventForwarding)6992 TEST(EventListenerTest, SuppressEventForwarding) {
6993   int on_start_counter = 0;
6994   TestListener* listener = new TestListener(&on_start_counter, nullptr);
6995 
6996   TestEventListeners listeners;
6997   listeners.Append(listener);
6998   ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
6999   TestEventListenersAccessor::SuppressEventForwarding(&listeners);
7000   ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
7001   TestEventListenersAccessor::GetRepeater(&listeners)
7002       ->OnTestProgramStart(*UnitTest::GetInstance());
7003   EXPECT_EQ(0, on_start_counter);
7004 }
7005 
7006 // Tests that events generated by Google Test are not forwarded in
7007 // death test subprocesses.
TEST(EventListenerDeathTest,EventsNotForwardedInDeathTestSubprocesses)7008 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprocesses) {
7009   EXPECT_DEATH_IF_SUPPORTED(
7010       {
7011         GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
7012             *GetUnitTestImpl()->listeners()))
7013             << "expected failure";
7014       },
7015       "expected failure");
7016 }
7017 
7018 // Tests that a listener installed via SetDefaultResultPrinter() starts
7019 // receiving events and is returned via default_result_printer() and that
7020 // the previous default_result_printer is removed from the list and deleted.
TEST(EventListenerTest,default_result_printer)7021 TEST(EventListenerTest, default_result_printer) {
7022   int on_start_counter = 0;
7023   bool is_destroyed = false;
7024   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7025 
7026   TestEventListeners listeners;
7027   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7028 
7029   EXPECT_EQ(listener, listeners.default_result_printer());
7030 
7031   TestEventListenersAccessor::GetRepeater(&listeners)
7032       ->OnTestProgramStart(*UnitTest::GetInstance());
7033 
7034   EXPECT_EQ(1, on_start_counter);
7035 
7036   // Replacing default_result_printer with something else should remove it
7037   // from the list and destroy it.
7038   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, nullptr);
7039 
7040   EXPECT_TRUE(listeners.default_result_printer() == nullptr);
7041   EXPECT_TRUE(is_destroyed);
7042 
7043   // After broadcasting an event the counter is still the same, indicating
7044   // the listener is not in the list anymore.
7045   TestEventListenersAccessor::GetRepeater(&listeners)
7046       ->OnTestProgramStart(*UnitTest::GetInstance());
7047   EXPECT_EQ(1, on_start_counter);
7048 }
7049 
7050 // Tests that the default_result_printer listener stops receiving events
7051 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultResultPrinterWorks)7052 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
7053   int on_start_counter = 0;
7054   bool is_destroyed = false;
7055   // Although Append passes the ownership of this object to the list,
7056   // the following calls release it, and we need to delete it before the
7057   // test ends.
7058   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7059   {
7060     TestEventListeners listeners;
7061     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7062 
7063     EXPECT_EQ(listener, listeners.Release(listener));
7064     EXPECT_TRUE(listeners.default_result_printer() == nullptr);
7065     EXPECT_FALSE(is_destroyed);
7066 
7067     // Broadcasting events now should not affect default_result_printer.
7068     TestEventListenersAccessor::GetRepeater(&listeners)
7069         ->OnTestProgramStart(*UnitTest::GetInstance());
7070     EXPECT_EQ(0, on_start_counter);
7071   }
7072   // Destroying the list should not affect the listener now, too.
7073   EXPECT_FALSE(is_destroyed);
7074   delete listener;
7075 }
7076 
7077 // Tests that a listener installed via SetDefaultXmlGenerator() starts
7078 // receiving events and is returned via default_xml_generator() and that
7079 // the previous default_xml_generator is removed from the list and deleted.
TEST(EventListenerTest,default_xml_generator)7080 TEST(EventListenerTest, default_xml_generator) {
7081   int on_start_counter = 0;
7082   bool is_destroyed = false;
7083   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7084 
7085   TestEventListeners listeners;
7086   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7087 
7088   EXPECT_EQ(listener, listeners.default_xml_generator());
7089 
7090   TestEventListenersAccessor::GetRepeater(&listeners)
7091       ->OnTestProgramStart(*UnitTest::GetInstance());
7092 
7093   EXPECT_EQ(1, on_start_counter);
7094 
7095   // Replacing default_xml_generator with something else should remove it
7096   // from the list and destroy it.
7097   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, nullptr);
7098 
7099   EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
7100   EXPECT_TRUE(is_destroyed);
7101 
7102   // After broadcasting an event the counter is still the same, indicating
7103   // the listener is not in the list anymore.
7104   TestEventListenersAccessor::GetRepeater(&listeners)
7105       ->OnTestProgramStart(*UnitTest::GetInstance());
7106   EXPECT_EQ(1, on_start_counter);
7107 }
7108 
7109 // Tests that the default_xml_generator listener stops receiving events
7110 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultXmlGeneratorWorks)7111 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
7112   int on_start_counter = 0;
7113   bool is_destroyed = false;
7114   // Although Append passes the ownership of this object to the list,
7115   // the following calls release it, and we need to delete it before the
7116   // test ends.
7117   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7118   {
7119     TestEventListeners listeners;
7120     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7121 
7122     EXPECT_EQ(listener, listeners.Release(listener));
7123     EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
7124     EXPECT_FALSE(is_destroyed);
7125 
7126     // Broadcasting events now should not affect default_xml_generator.
7127     TestEventListenersAccessor::GetRepeater(&listeners)
7128         ->OnTestProgramStart(*UnitTest::GetInstance());
7129     EXPECT_EQ(0, on_start_counter);
7130   }
7131   // Destroying the list should not affect the listener now, too.
7132   EXPECT_FALSE(is_destroyed);
7133   delete listener;
7134 }
7135 
7136 // Tests to ensure that the alternative, verbose spellings of
7137 // some of the macros work.  We don't test them thoroughly as that
7138 // would be quite involved.  Since their implementations are
7139 // straightforward, and they are rarely used, we'll just rely on the
7140 // users to tell us when they are broken.
GTEST_TEST(AlternativeNameTest,Works)7141 GTEST_TEST(AlternativeNameTest, Works) {  // GTEST_TEST is the same as TEST.
7142   GTEST_SUCCEED() << "OK";  // GTEST_SUCCEED is the same as SUCCEED.
7143 
7144   // GTEST_FAIL is the same as FAIL.
7145   EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
7146                        "An expected failure");
7147 
7148   // GTEST_ASSERT_XY is the same as ASSERT_XY.
7149 
7150   GTEST_ASSERT_EQ(0, 0);
7151   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
7152                        "An expected failure");
7153   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
7154                        "An expected failure");
7155 
7156   GTEST_ASSERT_NE(0, 1);
7157   GTEST_ASSERT_NE(1, 0);
7158   EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
7159                        "An expected failure");
7160 
7161   GTEST_ASSERT_LE(0, 0);
7162   GTEST_ASSERT_LE(0, 1);
7163   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
7164                        "An expected failure");
7165 
7166   GTEST_ASSERT_LT(0, 1);
7167   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
7168                        "An expected failure");
7169   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
7170                        "An expected failure");
7171 
7172   GTEST_ASSERT_GE(0, 0);
7173   GTEST_ASSERT_GE(1, 0);
7174   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
7175                        "An expected failure");
7176 
7177   GTEST_ASSERT_GT(1, 0);
7178   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
7179                        "An expected failure");
7180   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
7181                        "An expected failure");
7182 }
7183 
7184 // Tests for internal utilities necessary for implementation of the universal
7185 // printing.
7186 
7187 class ConversionHelperBase {};
7188 class ConversionHelperDerived : public ConversionHelperBase {};
7189 
7190 struct HasDebugStringMethods {
DebugStringHasDebugStringMethods7191   std::string DebugString() const { return ""; }
ShortDebugStringHasDebugStringMethods7192   std::string ShortDebugString() const { return ""; }
7193 };
7194 
7195 struct InheritsDebugStringMethods : public HasDebugStringMethods {};
7196 
7197 struct WrongTypeDebugStringMethod {
DebugStringWrongTypeDebugStringMethod7198   std::string DebugString() const { return ""; }
ShortDebugStringWrongTypeDebugStringMethod7199   int ShortDebugString() const { return 1; }
7200 };
7201 
7202 struct NotConstDebugStringMethod {
DebugStringNotConstDebugStringMethod7203   std::string DebugString() { return ""; }
ShortDebugStringNotConstDebugStringMethod7204   std::string ShortDebugString() const { return ""; }
7205 };
7206 
7207 struct MissingDebugStringMethod {
DebugStringMissingDebugStringMethod7208   std::string DebugString() { return ""; }
7209 };
7210 
7211 struct IncompleteType;
7212 
7213 // Tests that HasDebugStringAndShortDebugString<T>::value is a compile-time
7214 // constant.
TEST(HasDebugStringAndShortDebugStringTest,ValueIsCompileTimeConstant)7215 TEST(HasDebugStringAndShortDebugStringTest, ValueIsCompileTimeConstant) {
7216   static_assert(HasDebugStringAndShortDebugString<HasDebugStringMethods>::value,
7217                 "const_true");
7218   static_assert(
7219       HasDebugStringAndShortDebugString<InheritsDebugStringMethods>::value,
7220       "const_true");
7221   static_assert(HasDebugStringAndShortDebugString<
7222                     const InheritsDebugStringMethods>::value,
7223                 "const_true");
7224   static_assert(
7225       !HasDebugStringAndShortDebugString<WrongTypeDebugStringMethod>::value,
7226       "const_false");
7227   static_assert(
7228       !HasDebugStringAndShortDebugString<NotConstDebugStringMethod>::value,
7229       "const_false");
7230   static_assert(
7231       !HasDebugStringAndShortDebugString<MissingDebugStringMethod>::value,
7232       "const_false");
7233   static_assert(!HasDebugStringAndShortDebugString<IncompleteType>::value,
7234                 "const_false");
7235   static_assert(!HasDebugStringAndShortDebugString<int>::value, "const_false");
7236 }
7237 
7238 // Tests that HasDebugStringAndShortDebugString<T>::value is true when T has
7239 // needed methods.
TEST(HasDebugStringAndShortDebugStringTest,ValueIsTrueWhenTypeHasDebugStringAndShortDebugString)7240 TEST(HasDebugStringAndShortDebugStringTest,
7241      ValueIsTrueWhenTypeHasDebugStringAndShortDebugString) {
7242   EXPECT_TRUE(
7243       HasDebugStringAndShortDebugString<InheritsDebugStringMethods>::value);
7244 }
7245 
7246 // Tests that HasDebugStringAndShortDebugString<T>::value is false when T
7247 // doesn't have needed methods.
TEST(HasDebugStringAndShortDebugStringTest,ValueIsFalseWhenTypeIsNotAProtocolMessage)7248 TEST(HasDebugStringAndShortDebugStringTest,
7249      ValueIsFalseWhenTypeIsNotAProtocolMessage) {
7250   EXPECT_FALSE(HasDebugStringAndShortDebugString<int>::value);
7251   EXPECT_FALSE(
7252       HasDebugStringAndShortDebugString<const ConversionHelperBase>::value);
7253 }
7254 
7255 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
7256 
7257 template <typename T1, typename T2>
TestGTestRemoveReferenceAndConst()7258 void TestGTestRemoveReferenceAndConst() {
7259   static_assert(std::is_same<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>::value,
7260                 "GTEST_REMOVE_REFERENCE_AND_CONST_ failed.");
7261 }
7262 
TEST(RemoveReferenceToConstTest,Works)7263 TEST(RemoveReferenceToConstTest, Works) {
7264   TestGTestRemoveReferenceAndConst<int, int>();
7265   TestGTestRemoveReferenceAndConst<double, double&>();
7266   TestGTestRemoveReferenceAndConst<char, const char>();
7267   TestGTestRemoveReferenceAndConst<char, const char&>();
7268   TestGTestRemoveReferenceAndConst<const char*, const char*>();
7269 }
7270 
7271 // Tests GTEST_REFERENCE_TO_CONST_.
7272 
7273 template <typename T1, typename T2>
TestGTestReferenceToConst()7274 void TestGTestReferenceToConst() {
7275   static_assert(std::is_same<T1, GTEST_REFERENCE_TO_CONST_(T2)>::value,
7276                 "GTEST_REFERENCE_TO_CONST_ failed.");
7277 }
7278 
TEST(GTestReferenceToConstTest,Works)7279 TEST(GTestReferenceToConstTest, Works) {
7280   TestGTestReferenceToConst<const char&, char>();
7281   TestGTestReferenceToConst<const int&, const int>();
7282   TestGTestReferenceToConst<const double&, double>();
7283   TestGTestReferenceToConst<const std::string&, const std::string&>();
7284 }
7285 
7286 // Tests IsContainerTest.
7287 
7288 class NonContainer {};
7289 
TEST(IsContainerTestTest,WorksForNonContainer)7290 TEST(IsContainerTestTest, WorksForNonContainer) {
7291   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
7292   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
7293   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
7294 }
7295 
TEST(IsContainerTestTest,WorksForContainer)7296 TEST(IsContainerTestTest, WorksForContainer) {
7297   EXPECT_EQ(sizeof(IsContainer), sizeof(IsContainerTest<std::vector<bool>>(0)));
7298   EXPECT_EQ(sizeof(IsContainer),
7299             sizeof(IsContainerTest<std::map<int, double>>(0)));
7300 }
7301 
7302 struct ConstOnlyContainerWithPointerIterator {
7303   using const_iterator = int*;
7304   const_iterator begin() const;
7305   const_iterator end() const;
7306 };
7307 
7308 struct ConstOnlyContainerWithClassIterator {
7309   struct const_iterator {
7310     const int& operator*() const;
7311     const_iterator& operator++(/* pre-increment */);
7312   };
7313   const_iterator begin() const;
7314   const_iterator end() const;
7315 };
7316 
TEST(IsContainerTestTest,ConstOnlyContainer)7317 TEST(IsContainerTestTest, ConstOnlyContainer) {
7318   EXPECT_EQ(sizeof(IsContainer),
7319             sizeof(IsContainerTest<ConstOnlyContainerWithPointerIterator>(0)));
7320   EXPECT_EQ(sizeof(IsContainer),
7321             sizeof(IsContainerTest<ConstOnlyContainerWithClassIterator>(0)));
7322 }
7323 
7324 // Tests IsHashTable.
7325 struct AHashTable {
7326   typedef void hasher;
7327 };
7328 struct NotReallyAHashTable {
7329   typedef void hasher;
7330   typedef void reverse_iterator;
7331 };
TEST(IsHashTable,Basic)7332 TEST(IsHashTable, Basic) {
7333   EXPECT_TRUE(testing::internal::IsHashTable<AHashTable>::value);
7334   EXPECT_FALSE(testing::internal::IsHashTable<NotReallyAHashTable>::value);
7335   EXPECT_FALSE(testing::internal::IsHashTable<std::vector<int>>::value);
7336   EXPECT_TRUE(testing::internal::IsHashTable<std::unordered_set<int>>::value);
7337 }
7338 
7339 // Tests ArrayEq().
7340 
TEST(ArrayEqTest,WorksForDegeneratedArrays)7341 TEST(ArrayEqTest, WorksForDegeneratedArrays) {
7342   EXPECT_TRUE(ArrayEq(5, 5L));
7343   EXPECT_FALSE(ArrayEq('a', 0));
7344 }
7345 
TEST(ArrayEqTest,WorksForOneDimensionalArrays)7346 TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
7347   // Note that a and b are distinct but compatible types.
7348   const int a[] = {0, 1};
7349   long b[] = {0, 1};
7350   EXPECT_TRUE(ArrayEq(a, b));
7351   EXPECT_TRUE(ArrayEq(a, 2, b));
7352 
7353   b[0] = 2;
7354   EXPECT_FALSE(ArrayEq(a, b));
7355   EXPECT_FALSE(ArrayEq(a, 1, b));
7356 }
7357 
TEST(ArrayEqTest,WorksForTwoDimensionalArrays)7358 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
7359   const char a[][3] = {"hi", "lo"};
7360   const char b[][3] = {"hi", "lo"};
7361   const char c[][3] = {"hi", "li"};
7362 
7363   EXPECT_TRUE(ArrayEq(a, b));
7364   EXPECT_TRUE(ArrayEq(a, 2, b));
7365 
7366   EXPECT_FALSE(ArrayEq(a, c));
7367   EXPECT_FALSE(ArrayEq(a, 2, c));
7368 }
7369 
7370 // Tests ArrayAwareFind().
7371 
TEST(ArrayAwareFindTest,WorksForOneDimensionalArray)7372 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
7373   const char a[] = "hello";
7374   EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
7375   EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
7376 }
7377 
TEST(ArrayAwareFindTest,WorksForTwoDimensionalArray)7378 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
7379   int a[][2] = {{0, 1}, {2, 3}, {4, 5}};
7380   const int b[2] = {2, 3};
7381   EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
7382 
7383   const int c[2] = {6, 7};
7384   EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
7385 }
7386 
7387 // Tests CopyArray().
7388 
TEST(CopyArrayTest,WorksForDegeneratedArrays)7389 TEST(CopyArrayTest, WorksForDegeneratedArrays) {
7390   int n = 0;
7391   CopyArray('a', &n);
7392   EXPECT_EQ('a', n);
7393 }
7394 
TEST(CopyArrayTest,WorksForOneDimensionalArrays)7395 TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
7396   const char a[3] = "hi";
7397   int b[3];
7398 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7399   CopyArray(a, &b);
7400   EXPECT_TRUE(ArrayEq(a, b));
7401 #endif
7402 
7403   int c[3];
7404   CopyArray(a, 3, c);
7405   EXPECT_TRUE(ArrayEq(a, c));
7406 }
7407 
TEST(CopyArrayTest,WorksForTwoDimensionalArrays)7408 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
7409   const int a[2][3] = {{0, 1, 2}, {3, 4, 5}};
7410   int b[2][3];
7411 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7412   CopyArray(a, &b);
7413   EXPECT_TRUE(ArrayEq(a, b));
7414 #endif
7415 
7416   int c[2][3];
7417   CopyArray(a, 2, c);
7418   EXPECT_TRUE(ArrayEq(a, c));
7419 }
7420 
7421 // Tests NativeArray.
7422 
TEST(NativeArrayTest,ConstructorFromArrayWorks)7423 TEST(NativeArrayTest, ConstructorFromArrayWorks) {
7424   const int a[3] = {0, 1, 2};
7425   NativeArray<int> na(a, 3, RelationToSourceReference());
7426   EXPECT_EQ(3U, na.size());
7427   EXPECT_EQ(a, na.begin());
7428 }
7429 
TEST(NativeArrayTest,CreatesAndDeletesCopyOfArrayWhenAskedTo)7430 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
7431   typedef int Array[2];
7432   Array* a = new Array[1];
7433   (*a)[0] = 0;
7434   (*a)[1] = 1;
7435   NativeArray<int> na(*a, 2, RelationToSourceCopy());
7436   EXPECT_NE(*a, na.begin());
7437   delete[] a;
7438   EXPECT_EQ(0, na.begin()[0]);
7439   EXPECT_EQ(1, na.begin()[1]);
7440 
7441   // We rely on the heap checker to verify that na deletes the copy of
7442   // array.
7443 }
7444 
TEST(NativeArrayTest,TypeMembersAreCorrect)7445 TEST(NativeArrayTest, TypeMembersAreCorrect) {
7446   StaticAssertTypeEq<char, NativeArray<char>::value_type>();
7447   StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
7448 
7449   StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
7450   StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
7451 }
7452 
TEST(NativeArrayTest,MethodsWork)7453 TEST(NativeArrayTest, MethodsWork) {
7454   const int a[3] = {0, 1, 2};
7455   NativeArray<int> na(a, 3, RelationToSourceCopy());
7456   ASSERT_EQ(3U, na.size());
7457   EXPECT_EQ(3, na.end() - na.begin());
7458 
7459   NativeArray<int>::const_iterator it = na.begin();
7460   EXPECT_EQ(0, *it);
7461   ++it;
7462   EXPECT_EQ(1, *it);
7463   it++;
7464   EXPECT_EQ(2, *it);
7465   ++it;
7466   EXPECT_EQ(na.end(), it);
7467 
7468   EXPECT_TRUE(na == na);
7469 
7470   NativeArray<int> na2(a, 3, RelationToSourceReference());
7471   EXPECT_TRUE(na == na2);
7472 
7473   const int b1[3] = {0, 1, 1};
7474   const int b2[4] = {0, 1, 2, 3};
7475   EXPECT_FALSE(na == NativeArray<int>(b1, 3, RelationToSourceReference()));
7476   EXPECT_FALSE(na == NativeArray<int>(b2, 4, RelationToSourceCopy()));
7477 }
7478 
TEST(NativeArrayTest,WorksForTwoDimensionalArray)7479 TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
7480   const char a[2][3] = {"hi", "lo"};
7481   NativeArray<char[3]> na(a, 2, RelationToSourceReference());
7482   ASSERT_EQ(2U, na.size());
7483   EXPECT_EQ(a, na.begin());
7484 }
7485 
7486 // ElemFromList
TEST(ElemFromList,Basic)7487 TEST(ElemFromList, Basic) {
7488   using testing::internal::ElemFromList;
7489   EXPECT_TRUE(
7490       (std::is_same<int, ElemFromList<0, int, double, char>::type>::value));
7491   EXPECT_TRUE(
7492       (std::is_same<double, ElemFromList<1, int, double, char>::type>::value));
7493   EXPECT_TRUE(
7494       (std::is_same<char, ElemFromList<2, int, double, char>::type>::value));
7495   EXPECT_TRUE((
7496       std::is_same<char, ElemFromList<7, int, int, int, int, int, int, int,
7497                                       char, int, int, int, int>::type>::value));
7498 }
7499 
7500 // FlatTuple
TEST(FlatTuple,Basic)7501 TEST(FlatTuple, Basic) {
7502   using testing::internal::FlatTuple;
7503 
7504   FlatTuple<int, double, const char*> tuple = {};
7505   EXPECT_EQ(0, tuple.Get<0>());
7506   EXPECT_EQ(0.0, tuple.Get<1>());
7507   EXPECT_EQ(nullptr, tuple.Get<2>());
7508 
7509   tuple = FlatTuple<int, double, const char*>(
7510       testing::internal::FlatTupleConstructTag{}, 7, 3.2, "Foo");
7511   EXPECT_EQ(7, tuple.Get<0>());
7512   EXPECT_EQ(3.2, tuple.Get<1>());
7513   EXPECT_EQ(std::string("Foo"), tuple.Get<2>());
7514 
7515   tuple.Get<1>() = 5.1;
7516   EXPECT_EQ(5.1, tuple.Get<1>());
7517 }
7518 
7519 namespace {
AddIntToString(int i,const std::string & s)7520 std::string AddIntToString(int i, const std::string& s) {
7521   return s + std::to_string(i);
7522 }
7523 }  // namespace
7524 
TEST(FlatTuple,Apply)7525 TEST(FlatTuple, Apply) {
7526   using testing::internal::FlatTuple;
7527 
7528   FlatTuple<int, std::string> tuple{testing::internal::FlatTupleConstructTag{},
7529                                     5, "Hello"};
7530 
7531   // Lambda.
7532   EXPECT_TRUE(tuple.Apply([](int i, const std::string& s) -> bool {
7533     return i == static_cast<int>(s.size());
7534   }));
7535 
7536   // Function.
7537   EXPECT_EQ(tuple.Apply(AddIntToString), "Hello5");
7538 
7539   // Mutating operations.
7540   tuple.Apply([](int& i, std::string& s) {
7541     ++i;
7542     s += s;
7543   });
7544   EXPECT_EQ(tuple.Get<0>(), 6);
7545   EXPECT_EQ(tuple.Get<1>(), "HelloHello");
7546 }
7547 
7548 struct ConstructionCounting {
ConstructionCountingConstructionCounting7549   ConstructionCounting() { ++default_ctor_calls; }
~ConstructionCountingConstructionCounting7550   ~ConstructionCounting() { ++dtor_calls; }
ConstructionCountingConstructionCounting7551   ConstructionCounting(const ConstructionCounting&) { ++copy_ctor_calls; }
ConstructionCountingConstructionCounting7552   ConstructionCounting(ConstructionCounting&&) noexcept { ++move_ctor_calls; }
operator =ConstructionCounting7553   ConstructionCounting& operator=(const ConstructionCounting&) {
7554     ++copy_assignment_calls;
7555     return *this;
7556   }
operator =ConstructionCounting7557   ConstructionCounting& operator=(ConstructionCounting&&) noexcept {
7558     ++move_assignment_calls;
7559     return *this;
7560   }
7561 
ResetConstructionCounting7562   static void Reset() {
7563     default_ctor_calls = 0;
7564     dtor_calls = 0;
7565     copy_ctor_calls = 0;
7566     move_ctor_calls = 0;
7567     copy_assignment_calls = 0;
7568     move_assignment_calls = 0;
7569   }
7570 
7571   static int default_ctor_calls;
7572   static int dtor_calls;
7573   static int copy_ctor_calls;
7574   static int move_ctor_calls;
7575   static int copy_assignment_calls;
7576   static int move_assignment_calls;
7577 };
7578 
7579 int ConstructionCounting::default_ctor_calls = 0;
7580 int ConstructionCounting::dtor_calls = 0;
7581 int ConstructionCounting::copy_ctor_calls = 0;
7582 int ConstructionCounting::move_ctor_calls = 0;
7583 int ConstructionCounting::copy_assignment_calls = 0;
7584 int ConstructionCounting::move_assignment_calls = 0;
7585 
TEST(FlatTuple,ConstructorCalls)7586 TEST(FlatTuple, ConstructorCalls) {
7587   using testing::internal::FlatTuple;
7588 
7589   // Default construction.
7590   ConstructionCounting::Reset();
7591   { FlatTuple<ConstructionCounting> tuple; }
7592   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7593   EXPECT_EQ(ConstructionCounting::dtor_calls, 1);
7594   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7595   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7596   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7597   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7598 
7599   // Copy construction.
7600   ConstructionCounting::Reset();
7601   {
7602     ConstructionCounting elem;
7603     FlatTuple<ConstructionCounting> tuple{
7604         testing::internal::FlatTupleConstructTag{}, elem};
7605   }
7606   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7607   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7608   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 1);
7609   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7610   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7611   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7612 
7613   // Move construction.
7614   ConstructionCounting::Reset();
7615   {
7616     FlatTuple<ConstructionCounting> tuple{
7617         testing::internal::FlatTupleConstructTag{}, ConstructionCounting{}};
7618   }
7619   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7620   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7621   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7622   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 1);
7623   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7624   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7625 
7626   // Copy assignment.
7627   // TODO(ofats): it should be testing assignment operator of FlatTuple, not its
7628   // elements
7629   ConstructionCounting::Reset();
7630   {
7631     FlatTuple<ConstructionCounting> tuple;
7632     ConstructionCounting elem;
7633     tuple.Get<0>() = elem;
7634   }
7635   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 2);
7636   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7637   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7638   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7639   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 1);
7640   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7641 
7642   // Move assignment.
7643   // TODO(ofats): it should be testing assignment operator of FlatTuple, not its
7644   // elements
7645   ConstructionCounting::Reset();
7646   {
7647     FlatTuple<ConstructionCounting> tuple;
7648     tuple.Get<0>() = ConstructionCounting{};
7649   }
7650   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 2);
7651   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7652   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7653   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7654   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7655   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 1);
7656 
7657   ConstructionCounting::Reset();
7658 }
7659 
TEST(FlatTuple,ManyTypes)7660 TEST(FlatTuple, ManyTypes) {
7661   using testing::internal::FlatTuple;
7662 
7663   // Instantiate FlatTuple with 257 ints.
7664   // Tests show that we can do it with thousands of elements, but very long
7665   // compile times makes it unusuitable for this test.
7666 #define GTEST_FLAT_TUPLE_INT8 int, int, int, int, int, int, int, int,
7667 #define GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT8 GTEST_FLAT_TUPLE_INT8
7668 #define GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT16
7669 #define GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT32
7670 #define GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT64
7671 #define GTEST_FLAT_TUPLE_INT256 GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT128
7672 
7673   // Let's make sure that we can have a very long list of types without blowing
7674   // up the template instantiation depth.
7675   FlatTuple<GTEST_FLAT_TUPLE_INT256 int> tuple;
7676 
7677   tuple.Get<0>() = 7;
7678   tuple.Get<99>() = 17;
7679   tuple.Get<256>() = 1000;
7680   EXPECT_EQ(7, tuple.Get<0>());
7681   EXPECT_EQ(17, tuple.Get<99>());
7682   EXPECT_EQ(1000, tuple.Get<256>());
7683 }
7684 
7685 // Tests SkipPrefix().
7686 
TEST(SkipPrefixTest,SkipsWhenPrefixMatches)7687 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
7688   const char* const str = "hello";
7689 
7690   const char* p = str;
7691   EXPECT_TRUE(SkipPrefix("", &p));
7692   EXPECT_EQ(str, p);
7693 
7694   p = str;
7695   EXPECT_TRUE(SkipPrefix("hell", &p));
7696   EXPECT_EQ(str + 4, p);
7697 }
7698 
TEST(SkipPrefixTest,DoesNotSkipWhenPrefixDoesNotMatch)7699 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
7700   const char* const str = "world";
7701 
7702   const char* p = str;
7703   EXPECT_FALSE(SkipPrefix("W", &p));
7704   EXPECT_EQ(str, p);
7705 
7706   p = str;
7707   EXPECT_FALSE(SkipPrefix("world!", &p));
7708   EXPECT_EQ(str, p);
7709 }
7710 
7711 // Tests ad_hoc_test_result().
TEST(AdHocTestResultTest,AdHocTestResultForUnitTestDoesNotShowFailure)7712 TEST(AdHocTestResultTest, AdHocTestResultForUnitTestDoesNotShowFailure) {
7713   const testing::TestResult& test_result =
7714       testing::UnitTest::GetInstance()->ad_hoc_test_result();
7715   EXPECT_FALSE(test_result.Failed());
7716 }
7717 
7718 class DynamicUnitTestFixture : public testing::Test {};
7719 
7720 class DynamicTest : public DynamicUnitTestFixture {
TestBody()7721   void TestBody() override { EXPECT_TRUE(true); }
7722 };
7723 
7724 auto* dynamic_test = testing::RegisterTest(
7725     "DynamicUnitTestFixture", "DynamicTest", "TYPE", "VALUE", __FILE__,
__anon19f4cde20a02() 7726     __LINE__, []() -> DynamicUnitTestFixture* { return new DynamicTest; });
7727 
TEST(RegisterTest,WasRegistered)7728 TEST(RegisterTest, WasRegistered) {
7729   const auto& unittest = testing::UnitTest::GetInstance();
7730   for (int i = 0; i < unittest->total_test_suite_count(); ++i) {
7731     auto* tests = unittest->GetTestSuite(i);
7732     if (tests->name() != std::string("DynamicUnitTestFixture")) continue;
7733     for (int j = 0; j < tests->total_test_count(); ++j) {
7734       if (tests->GetTestInfo(j)->name() != std::string("DynamicTest")) continue;
7735       // Found it.
7736       EXPECT_STREQ(tests->GetTestInfo(j)->value_param(), "VALUE");
7737       EXPECT_STREQ(tests->GetTestInfo(j)->type_param(), "TYPE");
7738       return;
7739     }
7740   }
7741 
7742   FAIL() << "Didn't find the test!";
7743 }
7744 
7745 // Test that the pattern globbing algorithm is linear. If not, this test should
7746 // time out.
TEST(PatternGlobbingTest,MatchesFilterLinearRuntime)7747 TEST(PatternGlobbingTest, MatchesFilterLinearRuntime) {
7748   std::string name(100, 'a');  // Construct the string (a^100)b
7749   name.push_back('b');
7750 
7751   std::string pattern;  // Construct the string ((a*)^100)b
7752   for (int i = 0; i < 100; ++i) {
7753     pattern.append("a*");
7754   }
7755   pattern.push_back('b');
7756 
7757   EXPECT_TRUE(
7758       testing::internal::UnitTestOptions::MatchesFilter(name, pattern.c_str()));
7759 }
7760 
TEST(PatternGlobbingTest,MatchesFilterWithMultiplePatterns)7761 TEST(PatternGlobbingTest, MatchesFilterWithMultiplePatterns) {
7762   const std::string name = "aaaa";
7763   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "a*"));
7764   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "a*:"));
7765   EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab"));
7766   EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab:"));
7767   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab:a*"));
7768 }
7769 
TEST(PatternGlobbingTest,MatchesFilterEdgeCases)7770 TEST(PatternGlobbingTest, MatchesFilterEdgeCases) {
7771   EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter("", "*a"));
7772   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter("", "*"));
7773   EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter("a", ""));
7774   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter("", ""));
7775 }
7776