1 /* SPDX-License-Identifier: MIT */ 2 #ifndef _INTEL_RINGBUFFER_H_ 3 #define _INTEL_RINGBUFFER_H_ 4 5 #include <asm/cacheflush.h> 6 #include <drm/drm_util.h> 7 #include <drm/drm_cache.h> 8 9 #include <linux/hashtable.h> 10 #include <linux/irq_work.h> 11 #include <linux/random.h> 12 #include <linux/seqlock.h> 13 14 #include "i915_pmu.h" 15 #include "i915_request.h" 16 #include "i915_selftest.h" 17 #include "intel_engine_types.h" 18 #include "intel_gt_types.h" 19 #include "intel_timeline.h" 20 #include "intel_workarounds.h" 21 22 struct drm_printer; 23 struct intel_context; 24 struct intel_gt; 25 struct lock_class_key; 26 27 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill, 28 * but keeps the logic simple. Indeed, the whole purpose of this macro is just 29 * to give some inclination as to some of the magic values used in the various 30 * workarounds! 31 */ 32 #define CACHELINE_BYTES 64 33 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(u32)) 34 35 #define ENGINE_TRACE(e, fmt, ...) do { \ 36 const struct intel_engine_cs *e__ __maybe_unused = (e); \ 37 GEM_TRACE("%s %s: " fmt, \ 38 dev_name(e__->i915->drm.dev), e__->name, \ 39 ##__VA_ARGS__); \ 40 } while (0) 41 42 /* 43 * The register defines to be used with the following macros need to accept a 44 * base param, e.g: 45 * 46 * REG_FOO(base) _MMIO((base) + <relative offset>) 47 * ENGINE_READ(engine, REG_FOO); 48 * 49 * register arrays are to be defined and accessed as follows: 50 * 51 * REG_BAR(base, i) _MMIO((base) + <relative offset> + (i) * <shift>) 52 * ENGINE_READ_IDX(engine, REG_BAR, i) 53 */ 54 55 #define __ENGINE_REG_OP(op__, engine__, ...) \ 56 intel_uncore_##op__((engine__)->uncore, __VA_ARGS__) 57 58 #define __ENGINE_READ_OP(op__, engine__, reg__) \ 59 __ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base)) 60 61 #define ENGINE_READ16(...) __ENGINE_READ_OP(read16, __VA_ARGS__) 62 #define ENGINE_READ(...) __ENGINE_READ_OP(read, __VA_ARGS__) 63 #define ENGINE_READ_FW(...) __ENGINE_READ_OP(read_fw, __VA_ARGS__) 64 #define ENGINE_POSTING_READ(...) __ENGINE_READ_OP(posting_read_fw, __VA_ARGS__) 65 #define ENGINE_POSTING_READ16(...) __ENGINE_READ_OP(posting_read16, __VA_ARGS__) 66 67 #define ENGINE_READ64(engine__, lower_reg__, upper_reg__) \ 68 __ENGINE_REG_OP(read64_2x32, (engine__), \ 69 lower_reg__((engine__)->mmio_base), \ 70 upper_reg__((engine__)->mmio_base)) 71 72 #define ENGINE_READ_IDX(engine__, reg__, idx__) \ 73 __ENGINE_REG_OP(read, (engine__), reg__((engine__)->mmio_base, (idx__))) 74 75 #define __ENGINE_WRITE_OP(op__, engine__, reg__, val__) \ 76 __ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base), (val__)) 77 78 #define ENGINE_WRITE16(...) __ENGINE_WRITE_OP(write16, __VA_ARGS__) 79 #define ENGINE_WRITE(...) __ENGINE_WRITE_OP(write, __VA_ARGS__) 80 #define ENGINE_WRITE_FW(...) __ENGINE_WRITE_OP(write_fw, __VA_ARGS__) 81 82 #define GEN6_RING_FAULT_REG_READ(engine__) \ 83 intel_uncore_read((engine__)->uncore, RING_FAULT_REG(engine__)) 84 85 #define GEN6_RING_FAULT_REG_POSTING_READ(engine__) \ 86 intel_uncore_posting_read((engine__)->uncore, RING_FAULT_REG(engine__)) 87 88 #define GEN6_RING_FAULT_REG_RMW(engine__, clear__, set__) \ 89 ({ \ 90 u32 __val; \ 91 \ 92 __val = intel_uncore_read((engine__)->uncore, \ 93 RING_FAULT_REG(engine__)); \ 94 __val &= ~(clear__); \ 95 __val |= (set__); \ 96 intel_uncore_write((engine__)->uncore, RING_FAULT_REG(engine__), \ 97 __val); \ 98 }) 99 100 /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to 101 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b. 102 */ 103 104 static inline unsigned int execlists_num_ports(const struct intel_engine_execlists * const execlists)105 execlists_num_ports(const struct intel_engine_execlists * const execlists) 106 { 107 return execlists->port_mask + 1; 108 } 109 110 static inline struct i915_request * execlists_active(const struct intel_engine_execlists * execlists)111 execlists_active(const struct intel_engine_execlists *execlists) 112 { 113 struct i915_request * const *cur, * const *old, *active; 114 115 cur = READ_ONCE(execlists->active); 116 smp_rmb(); /* pairs with overwrite protection in process_csb() */ 117 do { 118 old = cur; 119 120 active = READ_ONCE(*cur); 121 cur = READ_ONCE(execlists->active); 122 123 smp_rmb(); /* and complete the seqlock retry */ 124 } while (unlikely(cur != old)); 125 126 return active; 127 } 128 129 static inline u32 intel_read_status_page(const struct intel_engine_cs * engine,int reg)130 intel_read_status_page(const struct intel_engine_cs *engine, int reg) 131 { 132 /* Ensure that the compiler doesn't optimize away the load. */ 133 return READ_ONCE(engine->status_page.addr[reg]); 134 } 135 136 static inline void intel_write_status_page(struct intel_engine_cs * engine,int reg,u32 value)137 intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value) 138 { 139 /* Writing into the status page should be done sparingly. Since 140 * we do when we are uncertain of the device state, we take a bit 141 * of extra paranoia to try and ensure that the HWS takes the value 142 * we give and that it doesn't end up trapped inside the CPU! 143 */ 144 drm_clflush_virt_range(&engine->status_page.addr[reg], sizeof(value)); 145 WRITE_ONCE(engine->status_page.addr[reg], value); 146 drm_clflush_virt_range(&engine->status_page.addr[reg], sizeof(value)); 147 } 148 149 /* 150 * Reads a dword out of the status page, which is written to from the command 151 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or 152 * MI_STORE_DATA_IMM. 153 * 154 * The following dwords have a reserved meaning: 155 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes. 156 * 0x04: ring 0 head pointer 157 * 0x05: ring 1 head pointer (915-class) 158 * 0x06: ring 2 head pointer (915-class) 159 * 0x10-0x1b: Context status DWords (GM45) 160 * 0x1f: Last written status offset. (GM45) 161 * 0x20-0x2f: Reserved (Gen6+) 162 * 163 * The area from dword 0x30 to 0x3ff is available for driver usage. 164 */ 165 #define I915_GEM_HWS_PREEMPT 0x32 166 #define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT * sizeof(u32)) 167 #define I915_GEM_HWS_SEQNO 0x40 168 #define I915_GEM_HWS_SEQNO_ADDR (I915_GEM_HWS_SEQNO * sizeof(u32)) 169 #define I915_GEM_HWS_MIGRATE (0x42 * sizeof(u32)) 170 #define I915_GEM_HWS_GGTT_BIND 0x46 171 #define I915_GEM_HWS_GGTT_BIND_ADDR (I915_GEM_HWS_GGTT_BIND * sizeof(u32)) 172 #define I915_GEM_HWS_PXP 0x60 173 #define I915_GEM_HWS_PXP_ADDR (I915_GEM_HWS_PXP * sizeof(u32)) 174 #define I915_GEM_HWS_GSC 0x62 175 #define I915_GEM_HWS_GSC_ADDR (I915_GEM_HWS_GSC * sizeof(u32)) 176 #define I915_GEM_HWS_SCRATCH 0x80 177 178 #define I915_HWS_CSB_BUF0_INDEX 0x10 179 #define I915_HWS_CSB_WRITE_INDEX 0x1f 180 #define ICL_HWS_CSB_WRITE_INDEX 0x2f 181 #define INTEL_HWS_CSB_WRITE_INDEX(__i915) \ 182 (GRAPHICS_VER(__i915) >= 11 ? ICL_HWS_CSB_WRITE_INDEX : I915_HWS_CSB_WRITE_INDEX) 183 184 void intel_engine_stop(struct intel_engine_cs *engine); 185 void intel_engine_cleanup(struct intel_engine_cs *engine); 186 187 int intel_engines_init_mmio(struct intel_gt *gt); 188 int intel_engines_init(struct intel_gt *gt); 189 190 void intel_engine_free_request_pool(struct intel_engine_cs *engine); 191 192 void intel_engines_release(struct intel_gt *gt); 193 void intel_engines_free(struct intel_gt *gt); 194 195 int intel_engine_init_common(struct intel_engine_cs *engine); 196 void intel_engine_cleanup_common(struct intel_engine_cs *engine); 197 198 int intel_engine_resume(struct intel_engine_cs *engine); 199 200 int intel_ring_submission_setup(struct intel_engine_cs *engine); 201 202 int intel_engine_stop_cs(struct intel_engine_cs *engine); 203 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine); 204 205 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine); 206 207 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask); 208 209 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine); 210 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine); 211 212 void intel_engine_get_instdone(const struct intel_engine_cs *engine, 213 struct intel_instdone *instdone); 214 215 void intel_engine_init_execlists(struct intel_engine_cs *engine); 216 217 bool intel_engine_irq_enable(struct intel_engine_cs *engine); 218 void intel_engine_irq_disable(struct intel_engine_cs *engine); 219 __intel_engine_reset(struct intel_engine_cs * engine,bool stalled)220 static inline void __intel_engine_reset(struct intel_engine_cs *engine, 221 bool stalled) 222 { 223 if (engine->reset.rewind) 224 engine->reset.rewind(engine, stalled); 225 engine->serial++; /* contexts lost */ 226 } 227 228 bool intel_engines_are_idle(struct intel_gt *gt); 229 bool intel_engine_is_idle(struct intel_engine_cs *engine); 230 231 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync); intel_engine_flush_submission(struct intel_engine_cs * engine)232 static inline void intel_engine_flush_submission(struct intel_engine_cs *engine) 233 { 234 __intel_engine_flush_submission(engine, true); 235 } 236 237 void intel_engines_reset_default_submission(struct intel_gt *gt); 238 239 bool intel_engine_can_store_dword(struct intel_engine_cs *engine); 240 241 __printf(3, 4) 242 void intel_engine_dump(struct intel_engine_cs *engine, 243 struct drm_printer *m, 244 const char *header, ...); 245 void intel_engine_dump_active_requests(struct list_head *requests, 246 struct i915_request *hung_rq, 247 struct drm_printer *m); 248 249 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, 250 ktime_t *now); 251 252 void intel_engine_get_hung_entity(struct intel_engine_cs *engine, 253 struct intel_context **ce, struct i915_request **rq); 254 255 u32 intel_engine_context_size(struct intel_gt *gt, u8 class); 256 struct intel_context * 257 intel_engine_create_pinned_context(struct intel_engine_cs *engine, 258 struct i915_address_space *vm, 259 unsigned int ring_size, 260 unsigned int hwsp, 261 struct lock_class_key *key, 262 const char *name); 263 264 void intel_engine_destroy_pinned_context(struct intel_context *ce); 265 266 void xehp_enable_ccs_engines(struct intel_engine_cs *engine); 267 268 #define ENGINE_PHYSICAL 0 269 #define ENGINE_MOCK 1 270 #define ENGINE_VIRTUAL 2 271 intel_engine_uses_guc(const struct intel_engine_cs * engine)272 static inline bool intel_engine_uses_guc(const struct intel_engine_cs *engine) 273 { 274 return engine->gt->submission_method >= INTEL_SUBMISSION_GUC; 275 } 276 277 static inline bool intel_engine_has_preempt_reset(const struct intel_engine_cs * engine)278 intel_engine_has_preempt_reset(const struct intel_engine_cs *engine) 279 { 280 if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT) 281 return false; 282 283 return intel_engine_has_preemption(engine); 284 } 285 286 #define FORCE_VIRTUAL BIT(0) 287 struct intel_context * 288 intel_engine_create_virtual(struct intel_engine_cs **siblings, 289 unsigned int count, unsigned long flags); 290 291 static inline struct intel_context * intel_engine_create_parallel(struct intel_engine_cs ** engines,unsigned int num_engines,unsigned int width)292 intel_engine_create_parallel(struct intel_engine_cs **engines, 293 unsigned int num_engines, 294 unsigned int width) 295 { 296 GEM_BUG_ON(!engines[0]->cops->create_parallel); 297 return engines[0]->cops->create_parallel(engines, num_engines, width); 298 } 299 300 static inline bool intel_virtual_engine_has_heartbeat(const struct intel_engine_cs * engine)301 intel_virtual_engine_has_heartbeat(const struct intel_engine_cs *engine) 302 { 303 /* 304 * For non-GuC submission we expect the back-end to look at the 305 * heartbeat status of the actual physical engine that the work 306 * has been (or is being) scheduled on, so we should only reach 307 * here with GuC submission enabled. 308 */ 309 GEM_BUG_ON(!intel_engine_uses_guc(engine)); 310 311 return intel_guc_virtual_engine_has_heartbeat(engine); 312 } 313 314 static inline bool intel_engine_has_heartbeat(const struct intel_engine_cs * engine)315 intel_engine_has_heartbeat(const struct intel_engine_cs *engine) 316 { 317 if (!CONFIG_DRM_I915_HEARTBEAT_INTERVAL) 318 return false; 319 320 if (intel_engine_is_virtual(engine)) 321 return intel_virtual_engine_has_heartbeat(engine); 322 else 323 return READ_ONCE(engine->props.heartbeat_interval_ms); 324 } 325 326 static inline struct intel_engine_cs * intel_engine_get_sibling(struct intel_engine_cs * engine,unsigned int sibling)327 intel_engine_get_sibling(struct intel_engine_cs *engine, unsigned int sibling) 328 { 329 GEM_BUG_ON(!intel_engine_is_virtual(engine)); 330 return engine->cops->get_sibling(engine, sibling); 331 } 332 333 static inline void intel_engine_set_hung_context(struct intel_engine_cs * engine,struct intel_context * ce)334 intel_engine_set_hung_context(struct intel_engine_cs *engine, 335 struct intel_context *ce) 336 { 337 engine->hung_ce = ce; 338 } 339 340 static inline void intel_engine_clear_hung_context(struct intel_engine_cs * engine)341 intel_engine_clear_hung_context(struct intel_engine_cs *engine) 342 { 343 intel_engine_set_hung_context(engine, NULL); 344 } 345 346 static inline struct intel_context * intel_engine_get_hung_context(struct intel_engine_cs * engine)347 intel_engine_get_hung_context(struct intel_engine_cs *engine) 348 { 349 return engine->hung_ce; 350 } 351 352 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value); 353 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value); 354 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value); 355 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value); 356 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value); 357 358 #endif /* _INTEL_RINGBUFFER_H_ */ 359