1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2019 Conrad Meyer <cem@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28 #include <sys/param.h>
29 #include <sys/domainset.h>
30 #include <sys/fail.h>
31 #include <sys/limits.h>
32 #include <sys/lock.h>
33 #include <sys/kernel.h>
34 #include <sys/malloc.h>
35 #include <sys/mutex.h>
36 #include <sys/queue.h>
37 #include <sys/random.h>
38 #include <sys/sdt.h>
39 #include <sys/sysctl.h>
40 #include <sys/systm.h>
41 #include <sys/taskqueue.h>
42
43 #include <machine/atomic.h>
44 #include <machine/smp.h>
45
46 #include <dev/random/randomdev.h>
47 #include <dev/random/random_harvestq.h>
48
49 #include <dev/random/fenestrasX/fx_brng.h>
50 #include <dev/random/fenestrasX/fx_hash.h>
51 #include <dev/random/fenestrasX/fx_pool.h>
52 #include <dev/random/fenestrasX/fx_priv.h>
53 #include <dev/random/fenestrasX/fx_pub.h>
54
55 /*
56 * Timer-based reseed interval growth factor and limit in seconds. (§ 3.2)
57 */
58 #define FXENT_RESSED_INTVL_GFACT 3
59 #define FXENT_RESEED_INTVL_MAX 3600
60
61 /*
62 * Pool reseed schedule. Initially, only pool 0 is active. Until the timer
63 * interval reaches INTVL_MAX, only pool 0 is used.
64 *
65 * After reaching INTVL_MAX, pool k is either activated (if inactive) or used
66 * (if active) every 3^k timer reseeds. (§ 3.3)
67 *
68 * (Entropy harvesting only round robins across active pools.)
69 */
70 #define FXENT_RESEED_BASE 3
71
72 /*
73 * Number of bytes from high quality sources to allocate to pool 0 before
74 * normal round-robin allocation after each timer reseed. (§ 3.4)
75 */
76 #define FXENT_HI_SRC_POOL0_BYTES 32
77
78 /*
79 * § 3.1
80 *
81 * Low sources provide unconditioned entropy, such as mouse movements; high
82 * sources are assumed to provide high-quality random bytes. Pull sources are
83 * those which can be polled, i.e., anything randomdev calls a "random_source."
84 *
85 * In the whitepaper, low sources are pull. For us, at least in the existing
86 * design, low-quality sources push into some global ring buffer and then get
87 * forwarded into the RNG by a thread that continually polls. Presumably their
88 * design batches low entopy signals in some way (SHA512?) and only requests
89 * them dynamically on reseed. I'm not sure what the benefit is vs feeding
90 * into the pools directly.
91 */
92 enum fxrng_ent_access_cls {
93 FXRNG_PUSH,
94 FXRNG_PULL,
95 };
96 enum fxrng_ent_source_cls {
97 FXRNG_HI,
98 FXRNG_LO,
99 FXRNG_GARBAGE,
100 };
101 struct fxrng_ent_cls {
102 enum fxrng_ent_access_cls entc_axx_cls;
103 enum fxrng_ent_source_cls entc_src_cls;
104 };
105
106 static const struct fxrng_ent_cls fxrng_hi_pull = {
107 .entc_axx_cls = FXRNG_PULL,
108 .entc_src_cls = FXRNG_HI,
109 };
110 static const struct fxrng_ent_cls fxrng_hi_push = {
111 .entc_axx_cls = FXRNG_PUSH,
112 .entc_src_cls = FXRNG_HI,
113 };
114 static const struct fxrng_ent_cls fxrng_lo_push = {
115 .entc_axx_cls = FXRNG_PUSH,
116 .entc_src_cls = FXRNG_LO,
117 };
118 static const struct fxrng_ent_cls fxrng_garbage = {
119 .entc_axx_cls = FXRNG_PUSH,
120 .entc_src_cls = FXRNG_GARBAGE,
121 };
122
123 /*
124 * This table is a mapping of randomdev's current source abstractions to the
125 * designations above; at some point, if the design seems reasonable, it would
126 * make more sense to pull this up into the abstraction layer instead.
127 */
128 static const struct fxrng_ent_char {
129 const struct fxrng_ent_cls *entc_cls;
130 } fxrng_ent_char[ENTROPYSOURCE] = {
131 [RANDOM_CACHED] = {
132 .entc_cls = &fxrng_hi_push,
133 },
134 [RANDOM_ATTACH] = {
135 .entc_cls = &fxrng_lo_push,
136 },
137 [RANDOM_KEYBOARD] = {
138 .entc_cls = &fxrng_lo_push,
139 },
140 [RANDOM_MOUSE] = {
141 .entc_cls = &fxrng_lo_push,
142 },
143 [RANDOM_NET_TUN] = {
144 .entc_cls = &fxrng_lo_push,
145 },
146 [RANDOM_NET_ETHER] = {
147 .entc_cls = &fxrng_lo_push,
148 },
149 [RANDOM_NET_NG] = {
150 .entc_cls = &fxrng_lo_push,
151 },
152 [RANDOM_INTERRUPT] = {
153 .entc_cls = &fxrng_lo_push,
154 },
155 [RANDOM_SWI] = {
156 .entc_cls = &fxrng_lo_push,
157 },
158 [RANDOM_FS_ATIME] = {
159 .entc_cls = &fxrng_lo_push,
160 },
161 [RANDOM_UMA] = {
162 .entc_cls = &fxrng_lo_push,
163 },
164 [RANDOM_CALLOUT] = {
165 .entc_cls = &fxrng_lo_push,
166 },
167 [RANDOM_PURE_OCTEON] = {
168 .entc_cls = &fxrng_hi_push, /* Could be made pull. */
169 },
170 [RANDOM_PURE_SAFE] = {
171 .entc_cls = &fxrng_hi_push,
172 },
173 [RANDOM_PURE_GLXSB] = {
174 .entc_cls = &fxrng_hi_push,
175 },
176 [RANDOM_PURE_HIFN] = {
177 .entc_cls = &fxrng_hi_push,
178 },
179 [RANDOM_PURE_RDRAND] = {
180 .entc_cls = &fxrng_hi_pull,
181 },
182 [RANDOM_PURE_NEHEMIAH] = {
183 .entc_cls = &fxrng_hi_pull,
184 },
185 [RANDOM_PURE_RNDTEST] = {
186 .entc_cls = &fxrng_garbage,
187 },
188 [RANDOM_PURE_VIRTIO] = {
189 .entc_cls = &fxrng_hi_pull,
190 },
191 [RANDOM_PURE_BROADCOM] = {
192 .entc_cls = &fxrng_hi_push,
193 },
194 [RANDOM_PURE_CCP] = {
195 .entc_cls = &fxrng_hi_pull,
196 },
197 [RANDOM_PURE_DARN] = {
198 .entc_cls = &fxrng_hi_pull,
199 },
200 [RANDOM_PURE_TPM] = {
201 .entc_cls = &fxrng_hi_push,
202 },
203 [RANDOM_PURE_VMGENID] = {
204 .entc_cls = &fxrng_hi_push,
205 },
206 };
207
208 /* Useful for single-bit-per-source state. */
209 BITSET_DEFINE(fxrng_bits, ENTROPYSOURCE);
210
211 /* XXX Borrowed from not-yet-committed D22702. */
212 #ifndef BIT_TEST_SET_ATOMIC_ACQ
213 #define BIT_TEST_SET_ATOMIC_ACQ(_s, n, p) \
214 (atomic_testandset_acq_long( \
215 &(p)->__bits[__bitset_word((_s), (n))], (n)) != 0)
216 #endif
217 #define FXENT_TEST_SET_ATOMIC_ACQ(n, p) \
218 BIT_TEST_SET_ATOMIC_ACQ(ENTROPYSOURCE, n, p)
219
220 /* For special behavior on first-time entropy sources. (§ 3.1) */
221 static struct fxrng_bits __read_mostly fxrng_seen;
222
223 /* For special behavior for high-entropy sources after a reseed. (§ 3.4) */
224 _Static_assert(FXENT_HI_SRC_POOL0_BYTES <= UINT8_MAX, "");
225 static uint8_t __read_mostly fxrng_reseed_seen[ENTROPYSOURCE];
226
227 /* Entropy pools. Lock order is ENT -> RNG(root) -> RNG(leaf). */
228 static struct mtx fxent_pool_lk;
229 MTX_SYSINIT(fx_pool, &fxent_pool_lk, "fx entropy pool lock", MTX_DEF);
230 #define FXENT_LOCK() mtx_lock(&fxent_pool_lk)
231 #define FXENT_UNLOCK() mtx_unlock(&fxent_pool_lk)
232 #define FXENT_ASSERT(rng) mtx_assert(&fxent_pool_lk, MA_OWNED)
233 #define FXENT_ASSERT_NOT(rng) mtx_assert(&fxent_pool_lk, MA_NOTOWNED)
234 static struct fxrng_hash fxent_pool[FXRNG_NPOOLS];
235 static unsigned __read_mostly fxent_nactpools = 1;
236 static struct timeout_task fxent_reseed_timer;
237 static int __read_mostly fxent_timer_ready;
238
239 /*
240 * Track number of bytes of entropy harvested from high-quality sources prior
241 * to initial keying. The idea is to collect more jitter entropy when fewer
242 * high-quality bytes were available and less if we had other good sources. We
243 * want to provide always-on availability but don't necessarily have *any*
244 * great sources on some platforms.
245 *
246 * Like fxrng_ent_char: at some point, if the design seems reasonable, it would
247 * make more sense to pull this up into the abstraction layer instead.
248 *
249 * Jitter entropy is unimplemented for now.
250 */
251 static unsigned long fxrng_preseed_ent;
252
253 void
fxrng_pools_init(void)254 fxrng_pools_init(void)
255 {
256 size_t i;
257
258 for (i = 0; i < nitems(fxent_pool); i++)
259 fxrng_hash_init(&fxent_pool[i]);
260 }
261
262 static inline bool
fxrng_hi_source(enum random_entropy_source src)263 fxrng_hi_source(enum random_entropy_source src)
264 {
265 return (fxrng_ent_char[src].entc_cls->entc_src_cls == FXRNG_HI);
266 }
267
268 /*
269 * A racy check that this high-entropy source's event should contribute to
270 * pool0 on the basis of per-source byte count. The check is racy for two
271 * reasons:
272 * - Performance: The vast majority of the time, we've already taken 32 bytes
273 * from any present high quality source and the racy check lets us avoid
274 * dirtying the cache for the global array.
275 * - Correctness: It's fine that the check is racy. The failure modes are:
276 * • False positive: We will detect when we take the lock.
277 * • False negative: We still collect the entropy; it just won't be
278 * preferentially placed in pool0 in this case.
279 */
280 static inline bool
fxrng_hi_pool0_eligible_racy(enum random_entropy_source src)281 fxrng_hi_pool0_eligible_racy(enum random_entropy_source src)
282 {
283 return (atomic_load_acq_8(&fxrng_reseed_seen[src]) <
284 FXENT_HI_SRC_POOL0_BYTES);
285 }
286
287 /*
288 * Top level entropy processing API from randomdev.
289 *
290 * Invoked by the core randomdev subsystem both for preload entropy, "push"
291 * sources (like interrupts, keyboard, etc) and pull sources (RDRAND, etc).
292 */
293 void
fxrng_event_processor(struct harvest_event * event)294 fxrng_event_processor(struct harvest_event *event)
295 {
296 enum random_entropy_source src;
297 unsigned pool;
298 bool first_time, first_32;
299
300 src = event->he_source;
301
302 ASSERT_DEBUG(event->he_size <= sizeof(event->he_entropy),
303 "%s: he_size: %u > sizeof(he_entropy): %zu", __func__,
304 (unsigned)event->he_size, sizeof(event->he_entropy));
305
306 /*
307 * Zero bytes of source entropy doesn't count as observing this source
308 * for the first time. We still harvest the counter entropy.
309 */
310 first_time = event->he_size > 0 &&
311 !FXENT_TEST_SET_ATOMIC_ACQ(src, &fxrng_seen);
312 if (__predict_false(first_time)) {
313 /*
314 * "The first time [any source] provides entropy, it is used to
315 * directly reseed the root PRNG. The entropy pools are
316 * bypassed." (§ 3.1)
317 *
318 * Unlike Windows, we cannot rely on loader(8) seed material
319 * being present, so we perform initial keying in the kernel.
320 * We use brng_generation 0 to represent an unkeyed state.
321 *
322 * Prior to initial keying, it doesn't make sense to try to mix
323 * the entropy directly with the root PRNG state, as the root
324 * PRNG is unkeyed. Instead, we collect pre-keying dynamic
325 * entropy in pool0 and do not bump the root PRNG seed version
326 * or set its key. Initial keying will incorporate pool0 and
327 * bump the brng_generation (seed version).
328 *
329 * After initial keying, we do directly mix in first-time
330 * entropy sources. We use the root BRNG to generate 32 bytes
331 * and use fxrng_hash to mix it with the new entropy source and
332 * re-key with the first 256 bits of hash output.
333 */
334 FXENT_LOCK();
335 FXRNG_BRNG_LOCK(&fxrng_root);
336 if (__predict_true(fxrng_root.brng_generation > 0)) {
337 /* Bypass the pools: */
338 FXENT_UNLOCK();
339 fxrng_brng_src_reseed(event);
340 FXRNG_BRNG_ASSERT_NOT(&fxrng_root);
341 return;
342 }
343
344 /*
345 * Keying the root PRNG requires both FXENT_LOCK and the PRNG's
346 * lock, so we only need to hold on to the pool lock to prevent
347 * initial keying without this entropy.
348 */
349 FXRNG_BRNG_UNLOCK(&fxrng_root);
350
351 /* Root PRNG hasn't been keyed yet, just accumulate event. */
352 fxrng_hash_update(&fxent_pool[0], &event->he_somecounter,
353 sizeof(event->he_somecounter));
354 fxrng_hash_update(&fxent_pool[0], event->he_entropy,
355 event->he_size);
356
357 if (fxrng_hi_source(src)) {
358 /* Prevent overflow. */
359 if (fxrng_preseed_ent <= ULONG_MAX - event->he_size)
360 fxrng_preseed_ent += event->he_size;
361 }
362 FXENT_UNLOCK();
363 return;
364 }
365 /* !first_time */
366
367 /*
368 * "The first 32 bytes produced by a high entropy source after a reseed
369 * from the pools is always put in pool 0." (§ 3.4)
370 *
371 * The first-32-byte tracking data in fxrng_reseed_seen is reset in
372 * fxent_timer_reseed_npools() below.
373 */
374 first_32 = event->he_size > 0 &&
375 fxrng_hi_source(src) &&
376 atomic_load_acq_int(&fxent_nactpools) > 1 &&
377 fxrng_hi_pool0_eligible_racy(src);
378 if (__predict_false(first_32)) {
379 unsigned rem, seen;
380
381 FXENT_LOCK();
382 seen = fxrng_reseed_seen[src];
383 if (seen == FXENT_HI_SRC_POOL0_BYTES)
384 goto round_robin;
385
386 rem = FXENT_HI_SRC_POOL0_BYTES - seen;
387 rem = MIN(rem, event->he_size);
388
389 fxrng_reseed_seen[src] = seen + rem;
390
391 /*
392 * We put 'rem' bytes in pool0, and any remaining bytes are
393 * round-robin'd across other pools.
394 */
395 fxrng_hash_update(&fxent_pool[0],
396 ((uint8_t *)event->he_entropy) + event->he_size - rem,
397 rem);
398 if (rem == event->he_size) {
399 fxrng_hash_update(&fxent_pool[0], &event->he_somecounter,
400 sizeof(event->he_somecounter));
401 FXENT_UNLOCK();
402 return;
403 }
404
405 /*
406 * If fewer bytes were needed than this even provied, We only
407 * take the last rem bytes of the entropy buffer and leave the
408 * timecounter to be round-robin'd with the remaining entropy.
409 */
410 event->he_size -= rem;
411 goto round_robin;
412 }
413 /* !first_32 */
414
415 FXENT_LOCK();
416
417 round_robin:
418 FXENT_ASSERT();
419 pool = event->he_destination % fxent_nactpools;
420 fxrng_hash_update(&fxent_pool[pool], event->he_entropy,
421 event->he_size);
422 fxrng_hash_update(&fxent_pool[pool], &event->he_somecounter,
423 sizeof(event->he_somecounter));
424
425 if (__predict_false(fxrng_hi_source(src) &&
426 atomic_load_acq_64(&fxrng_root_generation) == 0)) {
427 /* Prevent overflow. */
428 if (fxrng_preseed_ent <= ULONG_MAX - event->he_size)
429 fxrng_preseed_ent += event->he_size;
430 }
431 FXENT_UNLOCK();
432 }
433
434 /*
435 * Top level "seeded" API/signal from randomdev.
436 *
437 * This is our warning that a request is coming: we need to be seeded. In
438 * fenestrasX, a request for random bytes _never_ fails. "We (ed: ditto) have
439 * observed that there are many callers that never check for the error code,
440 * even if they are generating cryptographic key material." (§ 1.6)
441 *
442 * If we returned 'false', both read_random(9) and chacha20_randomstir()
443 * (arc4random(9)) will blindly charge on with something almost certainly worse
444 * than what we've got, or are able to get quickly enough.
445 */
446 bool
fxrng_alg_seeded(void)447 fxrng_alg_seeded(void)
448 {
449 uint8_t hash[FXRNG_HASH_SZ];
450 sbintime_t sbt;
451
452 /* The vast majority of the time, we expect to already be seeded. */
453 if (__predict_true(atomic_load_acq_64(&fxrng_root_generation) != 0))
454 return (true);
455
456 /*
457 * Take the lock and recheck; only one thread needs to do the initial
458 * seeding work.
459 */
460 FXENT_LOCK();
461 if (atomic_load_acq_64(&fxrng_root_generation) != 0) {
462 FXENT_UNLOCK();
463 return (true);
464 }
465 /* XXX Any one-off initial seeding goes here. */
466
467 fxrng_hash_finish(&fxent_pool[0], hash, sizeof(hash));
468 fxrng_hash_init(&fxent_pool[0]);
469
470 fxrng_brng_reseed(hash, sizeof(hash));
471 FXENT_UNLOCK();
472
473 randomdev_unblock();
474 explicit_bzero(hash, sizeof(hash));
475
476 /*
477 * This may be called too early for taskqueue_thread to be initialized.
478 * fxent_pool_timer_init will detect if we've already unblocked and
479 * queue the first timer reseed at that point.
480 */
481 if (atomic_load_acq_int(&fxent_timer_ready) != 0) {
482 sbt = SBT_1S;
483 taskqueue_enqueue_timeout_sbt(taskqueue_thread,
484 &fxent_reseed_timer, -sbt, (sbt / 3), C_PREL(2));
485 }
486 return (true);
487 }
488
489 /*
490 * Timer-based reseeds and pool expansion.
491 */
492 static void
fxent_timer_reseed_npools(unsigned n)493 fxent_timer_reseed_npools(unsigned n)
494 {
495 /*
496 * 64 * 8 => moderately large 512 bytes. Could be static, as we are
497 * only used in a static context. On the other hand, this is in
498 * threadqueue TASK context and we're likely nearly at top of stack
499 * already.
500 */
501 uint8_t hash[FXRNG_HASH_SZ * FXRNG_NPOOLS];
502 unsigned i;
503
504 ASSERT_DEBUG(n > 0 && n <= FXRNG_NPOOLS, "n:%u", n);
505
506 FXENT_ASSERT();
507 /*
508 * Collect entropy from pools 0..n-1 by concatenating the output hashes
509 * and then feeding them into fxrng_brng_reseed, which will hash the
510 * aggregate together with the current root PRNG keystate to produce a
511 * new key. It will also bump the global generation counter
512 * appropriately.
513 */
514 for (i = 0; i < n; i++) {
515 fxrng_hash_finish(&fxent_pool[i], hash + i * FXRNG_HASH_SZ,
516 FXRNG_HASH_SZ);
517 fxrng_hash_init(&fxent_pool[i]);
518 }
519
520 fxrng_brng_reseed(hash, n * FXRNG_HASH_SZ);
521 explicit_bzero(hash, n * FXRNG_HASH_SZ);
522
523 /*
524 * "The first 32 bytes produced by a high entropy source after a reseed
525 * from the pools is always put in pool 0." (§ 3.4)
526 *
527 * So here we reset the tracking (somewhat naively given the majority
528 * of sources on most machines are not what we consider "high", but at
529 * 32 bytes it's smaller than a cache line), so the next 32 bytes are
530 * prioritized into pool0.
531 *
532 * See corresponding use of fxrng_reseed_seen in fxrng_event_processor.
533 */
534 memset(fxrng_reseed_seen, 0, sizeof(fxrng_reseed_seen));
535 FXENT_ASSERT();
536 }
537
538 static void
fxent_timer_reseed(void * ctx __unused,int pending __unused)539 fxent_timer_reseed(void *ctx __unused, int pending __unused)
540 {
541 static unsigned reseed_intvl_sec = 1;
542 /* Only reseeds after FXENT_RESEED_INTVL_MAX is achieved. */
543 static uint64_t reseed_number = 1;
544
545 unsigned next_ival, i, k;
546 sbintime_t sbt;
547
548 if (reseed_intvl_sec < FXENT_RESEED_INTVL_MAX) {
549 next_ival = FXENT_RESSED_INTVL_GFACT * reseed_intvl_sec;
550 if (next_ival > FXENT_RESEED_INTVL_MAX)
551 next_ival = FXENT_RESEED_INTVL_MAX;
552 FXENT_LOCK();
553 fxent_timer_reseed_npools(1);
554 FXENT_UNLOCK();
555 } else {
556 /*
557 * The creation of entropy pools beyond 0 is enabled when the
558 * reseed interval hits the maximum. (§ 3.3)
559 */
560 next_ival = reseed_intvl_sec;
561
562 /*
563 * Pool 0 is used every reseed; pool 1..0 every 3rd reseed; and in
564 * general, pool n..0 every 3^n reseeds.
565 */
566 k = reseed_number;
567 reseed_number++;
568
569 /* Count how many pools, from [0, i), to use for reseed. */
570 for (i = 1; i < MIN(fxent_nactpools + 1, FXRNG_NPOOLS); i++) {
571 if ((k % FXENT_RESEED_BASE) != 0)
572 break;
573 k /= FXENT_RESEED_BASE;
574 }
575
576 /*
577 * If we haven't activated pool i yet, activate it and only
578 * reseed from [0, i-1). (§ 3.3)
579 */
580 FXENT_LOCK();
581 if (i == fxent_nactpools + 1) {
582 fxent_timer_reseed_npools(fxent_nactpools);
583 fxent_nactpools++;
584 } else {
585 /* Just reseed from [0, i). */
586 fxent_timer_reseed_npools(i);
587 }
588 FXENT_UNLOCK();
589 }
590
591 /* Schedule the next reseed. */
592 sbt = next_ival * SBT_1S;
593 taskqueue_enqueue_timeout_sbt(taskqueue_thread, &fxent_reseed_timer,
594 -sbt, (sbt / 3), C_PREL(2));
595
596 reseed_intvl_sec = next_ival;
597 }
598
599 static void
fxent_pool_timer_init(void * dummy __unused)600 fxent_pool_timer_init(void *dummy __unused)
601 {
602 sbintime_t sbt;
603
604 TIMEOUT_TASK_INIT(taskqueue_thread, &fxent_reseed_timer, 0,
605 fxent_timer_reseed, NULL);
606
607 if (atomic_load_acq_64(&fxrng_root_generation) != 0) {
608 sbt = SBT_1S;
609 taskqueue_enqueue_timeout_sbt(taskqueue_thread,
610 &fxent_reseed_timer, -sbt, (sbt / 3), C_PREL(2));
611 }
612 atomic_store_rel_int(&fxent_timer_ready, 1);
613 }
614 /* After taskqueue_thread is initialized in SI_SUB_TASKQ:SI_ORDER_SECOND. */
615 SYSINIT(fxent_pool_timer_init, SI_SUB_TASKQ, SI_ORDER_ANY,
616 fxent_pool_timer_init, NULL);
617