xref: /linux/arch/x86/entry/entry_64.S (revision 6f5bf947bab06f37ff931c359fd5770c4d9cbf87)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/arch/x86_64/entry.S
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/arch/x86/entry_64.rst
12 *
13 * A note on terminology:
14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
15 *			at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 * - idtentry:		Define exception entry points.
20 */
21#include <linux/export.h>
22#include <linux/linkage.h>
23#include <asm/segment.h>
24#include <asm/cache.h>
25#include <asm/errno.h>
26#include <asm/asm-offsets.h>
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
31#include <asm/page_types.h>
32#include <asm/irqflags.h>
33#include <asm/paravirt.h>
34#include <asm/percpu.h>
35#include <asm/asm.h>
36#include <asm/smap.h>
37#include <asm/pgtable_types.h>
38#include <asm/frame.h>
39#include <asm/trapnr.h>
40#include <asm/nospec-branch.h>
41#include <asm/fsgsbase.h>
42#include <linux/err.h>
43
44#include "calling.h"
45
46.code64
47.section .entry.text, "ax"
48
49/*
50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
51 *
52 * This is the only entry point used for 64-bit system calls.  The
53 * hardware interface is reasonably well designed and the register to
54 * argument mapping Linux uses fits well with the registers that are
55 * available when SYSCALL is used.
56 *
57 * SYSCALL instructions can be found inlined in libc implementations as
58 * well as some other programs and libraries.  There are also a handful
59 * of SYSCALL instructions in the vDSO used, for example, as a
60 * clock_gettimeofday fallback.
61 *
62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
63 * then loads new ss, cs, and rip from previously programmed MSRs.
64 * rflags gets masked by a value from another MSR (so CLD and CLAC
65 * are not needed). SYSCALL does not save anything on the stack
66 * and does not change rsp.
67 *
68 * Registers on entry:
69 * rax  system call number
70 * rcx  return address
71 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
72 * rdi  arg0
73 * rsi  arg1
74 * rdx  arg2
75 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
76 * r8   arg4
77 * r9   arg5
78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
79 *
80 * Only called from user space.
81 *
82 * When user can change pt_regs->foo always force IRET. That is because
83 * it deals with uncanonical addresses better. SYSRET has trouble
84 * with them due to bugs in both AMD and Intel CPUs.
85 */
86
87SYM_CODE_START(entry_SYSCALL_64)
88	UNWIND_HINT_ENTRY
89	ENDBR
90
91	swapgs
92	/* tss.sp2 is scratch space. */
93	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
94	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
95	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
96
97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
98	ANNOTATE_NOENDBR
99
100	/* Construct struct pt_regs on stack */
101	pushq	$__USER_DS				/* pt_regs->ss */
102	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
103	pushq	%r11					/* pt_regs->flags */
104	pushq	$__USER_CS				/* pt_regs->cs */
105	pushq	%rcx					/* pt_regs->ip */
106SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
107	pushq	%rax					/* pt_regs->orig_ax */
108
109	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
110
111	/* IRQs are off. */
112	movq	%rsp, %rdi
113	/* Sign extend the lower 32bit as syscall numbers are treated as int */
114	movslq	%eax, %rsi
115
116	/* clobbers %rax, make sure it is after saving the syscall nr */
117	IBRS_ENTER
118	UNTRAIN_RET
119	CLEAR_BRANCH_HISTORY
120
121	call	do_syscall_64		/* returns with IRQs disabled */
122
123	/*
124	 * Try to use SYSRET instead of IRET if we're returning to
125	 * a completely clean 64-bit userspace context.  If we're not,
126	 * go to the slow exit path.
127	 * In the Xen PV case we must use iret anyway.
128	 */
129
130	ALTERNATIVE "testb %al, %al; jz swapgs_restore_regs_and_return_to_usermode", \
131		"jmp swapgs_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
132
133	/*
134	 * We win! This label is here just for ease of understanding
135	 * perf profiles. Nothing jumps here.
136	 */
137syscall_return_via_sysret:
138	IBRS_EXIT
139	POP_REGS pop_rdi=0
140
141	/*
142	 * Now all regs are restored except RSP and RDI.
143	 * Save old stack pointer and switch to trampoline stack.
144	 */
145	movq	%rsp, %rdi
146	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
147	UNWIND_HINT_END_OF_STACK
148
149	pushq	RSP-RDI(%rdi)	/* RSP */
150	pushq	(%rdi)		/* RDI */
151
152	/*
153	 * We are on the trampoline stack.  All regs except RDI are live.
154	 * We can do future final exit work right here.
155	 */
156	STACKLEAK_ERASE_NOCLOBBER
157
158	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
159
160	popq	%rdi
161	popq	%rsp
162SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL)
163	ANNOTATE_NOENDBR
164	swapgs
165	CLEAR_CPU_BUFFERS
166	sysretq
167SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL)
168	ANNOTATE_NOENDBR
169	int3
170SYM_CODE_END(entry_SYSCALL_64)
171
172/*
173 * %rdi: prev task
174 * %rsi: next task
175 */
176.pushsection .text, "ax"
177SYM_FUNC_START(__switch_to_asm)
178	ANNOTATE_NOENDBR
179	/*
180	 * Save callee-saved registers
181	 * This must match the order in inactive_task_frame
182	 */
183	pushq	%rbp
184	pushq	%rbx
185	pushq	%r12
186	pushq	%r13
187	pushq	%r14
188	pushq	%r15
189
190	/* switch stack */
191	movq	%rsp, TASK_threadsp(%rdi)
192	movq	TASK_threadsp(%rsi), %rsp
193
194#ifdef CONFIG_STACKPROTECTOR
195	movq	TASK_stack_canary(%rsi), %rbx
196	movq	%rbx, PER_CPU_VAR(__stack_chk_guard)
197#endif
198
199	/*
200	 * When switching from a shallower to a deeper call stack
201	 * the RSB may either underflow or use entries populated
202	 * with userspace addresses. On CPUs where those concerns
203	 * exist, overwrite the RSB with entries which capture
204	 * speculative execution to prevent attack.
205	 */
206	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
207
208	/* restore callee-saved registers */
209	popq	%r15
210	popq	%r14
211	popq	%r13
212	popq	%r12
213	popq	%rbx
214	popq	%rbp
215
216	jmp	__switch_to
217SYM_FUNC_END(__switch_to_asm)
218.popsection
219
220/*
221 * A newly forked process directly context switches into this address.
222 *
223 * rax: prev task we switched from
224 * rbx: kernel thread func (NULL for user thread)
225 * r12: kernel thread arg
226 */
227.pushsection .text, "ax"
228SYM_CODE_START(ret_from_fork_asm)
229	/*
230	 * This is the start of the kernel stack; even through there's a
231	 * register set at the top, the regset isn't necessarily coherent
232	 * (consider kthreads) and one cannot unwind further.
233	 *
234	 * This ensures stack unwinds of kernel threads terminate in a known
235	 * good state.
236	 */
237	UNWIND_HINT_END_OF_STACK
238	ANNOTATE_NOENDBR // copy_thread
239	CALL_DEPTH_ACCOUNT
240
241	movq	%rax, %rdi		/* prev */
242	movq	%rsp, %rsi		/* regs */
243	movq	%rbx, %rdx		/* fn */
244	movq	%r12, %rcx		/* fn_arg */
245	call	ret_from_fork
246
247	/*
248	 * Set the stack state to what is expected for the target function
249	 * -- at this point the register set should be a valid user set
250	 * and unwind should work normally.
251	 */
252	UNWIND_HINT_REGS
253
254#ifdef CONFIG_X86_FRED
255	ALTERNATIVE "jmp swapgs_restore_regs_and_return_to_usermode", \
256		    "jmp asm_fred_exit_user", X86_FEATURE_FRED
257#else
258	jmp	swapgs_restore_regs_and_return_to_usermode
259#endif
260SYM_CODE_END(ret_from_fork_asm)
261.popsection
262
263.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
264#ifdef CONFIG_DEBUG_ENTRY
265	pushq %rax
266	SAVE_FLAGS
267	testl $X86_EFLAGS_IF, %eax
268	jz .Lokay_\@
269	ud2
270.Lokay_\@:
271	popq %rax
272#endif
273.endm
274
275SYM_CODE_START(xen_error_entry)
276	ANNOTATE_NOENDBR
277	UNWIND_HINT_FUNC
278	PUSH_AND_CLEAR_REGS save_ret=1
279	ENCODE_FRAME_POINTER 8
280	UNTRAIN_RET_FROM_CALL
281	RET
282SYM_CODE_END(xen_error_entry)
283
284/**
285 * idtentry_body - Macro to emit code calling the C function
286 * @cfunc:		C function to be called
287 * @has_error_code:	Hardware pushed error code on stack
288 */
289.macro idtentry_body cfunc has_error_code:req
290
291	/*
292	 * Call error_entry() and switch to the task stack if from userspace.
293	 *
294	 * When in XENPV, it is already in the task stack, and it can't fault
295	 * for native_iret() nor native_load_gs_index() since XENPV uses its
296	 * own pvops for IRET and load_gs_index().  And it doesn't need to
297	 * switch the CR3.  So it can skip invoking error_entry().
298	 */
299	ALTERNATIVE "call error_entry; movq %rax, %rsp", \
300		    "call xen_error_entry", X86_FEATURE_XENPV
301
302	ENCODE_FRAME_POINTER
303	UNWIND_HINT_REGS
304
305	movq	%rsp, %rdi			/* pt_regs pointer into 1st argument*/
306
307	.if \has_error_code == 1
308		movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
309		movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
310	.endif
311
312	/* For some configurations \cfunc ends up being a noreturn. */
313	ANNOTATE_REACHABLE
314	call	\cfunc
315
316	jmp	error_return
317.endm
318
319/**
320 * idtentry - Macro to generate entry stubs for simple IDT entries
321 * @vector:		Vector number
322 * @asmsym:		ASM symbol for the entry point
323 * @cfunc:		C function to be called
324 * @has_error_code:	Hardware pushed error code on stack
325 *
326 * The macro emits code to set up the kernel context for straight forward
327 * and simple IDT entries. No IST stack, no paranoid entry checks.
328 */
329.macro idtentry vector asmsym cfunc has_error_code:req
330SYM_CODE_START(\asmsym)
331
332	.if \vector == X86_TRAP_BP
333		/* #BP advances %rip to the next instruction */
334		UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 signal=0
335	.else
336		UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8
337	.endif
338
339	ENDBR
340	ASM_CLAC
341	cld
342
343	.if \has_error_code == 0
344		pushq	$-1			/* ORIG_RAX: no syscall to restart */
345	.endif
346
347	.if \vector == X86_TRAP_BP
348		/*
349		 * If coming from kernel space, create a 6-word gap to allow the
350		 * int3 handler to emulate a call instruction.
351		 */
352		testb	$3, CS-ORIG_RAX(%rsp)
353		jnz	.Lfrom_usermode_no_gap_\@
354		.rept	6
355		pushq	5*8(%rsp)
356		.endr
357		UNWIND_HINT_IRET_REGS offset=8
358.Lfrom_usermode_no_gap_\@:
359	.endif
360
361	idtentry_body \cfunc \has_error_code
362
363_ASM_NOKPROBE(\asmsym)
364SYM_CODE_END(\asmsym)
365.endm
366
367/*
368 * Interrupt entry/exit.
369 *
370 + The interrupt stubs push (vector) onto the stack, which is the error_code
371 * position of idtentry exceptions, and jump to one of the two idtentry points
372 * (common/spurious).
373 *
374 * common_interrupt is a hotpath, align it to a cache line
375 */
376.macro idtentry_irq vector cfunc
377	.p2align CONFIG_X86_L1_CACHE_SHIFT
378	idtentry \vector asm_\cfunc \cfunc has_error_code=1
379.endm
380
381/**
382 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
383 * @vector:		Vector number
384 * @asmsym:		ASM symbol for the entry point
385 * @cfunc:		C function to be called
386 *
387 * The macro emits code to set up the kernel context for #MC and #DB
388 *
389 * If the entry comes from user space it uses the normal entry path
390 * including the return to user space work and preemption checks on
391 * exit.
392 *
393 * If hits in kernel mode then it needs to go through the paranoid
394 * entry as the exception can hit any random state. No preemption
395 * check on exit to keep the paranoid path simple.
396 */
397.macro idtentry_mce_db vector asmsym cfunc
398SYM_CODE_START(\asmsym)
399	UNWIND_HINT_IRET_ENTRY
400	ENDBR
401	ASM_CLAC
402	cld
403
404	pushq	$-1			/* ORIG_RAX: no syscall to restart */
405
406	/*
407	 * If the entry is from userspace, switch stacks and treat it as
408	 * a normal entry.
409	 */
410	testb	$3, CS-ORIG_RAX(%rsp)
411	jnz	.Lfrom_usermode_switch_stack_\@
412
413	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
414	call	paranoid_entry
415
416	UNWIND_HINT_REGS
417
418	movq	%rsp, %rdi		/* pt_regs pointer */
419
420	call	\cfunc
421
422	jmp	paranoid_exit
423
424	/* Switch to the regular task stack and use the noist entry point */
425.Lfrom_usermode_switch_stack_\@:
426	idtentry_body noist_\cfunc, has_error_code=0
427
428_ASM_NOKPROBE(\asmsym)
429SYM_CODE_END(\asmsym)
430.endm
431
432#ifdef CONFIG_AMD_MEM_ENCRYPT
433/**
434 * idtentry_vc - Macro to generate entry stub for #VC
435 * @vector:		Vector number
436 * @asmsym:		ASM symbol for the entry point
437 * @cfunc:		C function to be called
438 *
439 * The macro emits code to set up the kernel context for #VC. The #VC handler
440 * runs on an IST stack and needs to be able to cause nested #VC exceptions.
441 *
442 * To make this work the #VC entry code tries its best to pretend it doesn't use
443 * an IST stack by switching to the task stack if coming from user-space (which
444 * includes early SYSCALL entry path) or back to the stack in the IRET frame if
445 * entered from kernel-mode.
446 *
447 * If entered from kernel-mode the return stack is validated first, and if it is
448 * not safe to use (e.g. because it points to the entry stack) the #VC handler
449 * will switch to a fall-back stack (VC2) and call a special handler function.
450 *
451 * The macro is only used for one vector, but it is planned to be extended in
452 * the future for the #HV exception.
453 */
454.macro idtentry_vc vector asmsym cfunc
455SYM_CODE_START(\asmsym)
456	UNWIND_HINT_IRET_ENTRY
457	ENDBR
458	ASM_CLAC
459	cld
460
461	/*
462	 * If the entry is from userspace, switch stacks and treat it as
463	 * a normal entry.
464	 */
465	testb	$3, CS-ORIG_RAX(%rsp)
466	jnz	.Lfrom_usermode_switch_stack_\@
467
468	/*
469	 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
470	 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
471	 */
472	call	paranoid_entry
473
474	UNWIND_HINT_REGS
475
476	/*
477	 * Switch off the IST stack to make it free for nested exceptions. The
478	 * vc_switch_off_ist() function will switch back to the interrupted
479	 * stack if it is safe to do so. If not it switches to the VC fall-back
480	 * stack.
481	 */
482	movq	%rsp, %rdi		/* pt_regs pointer */
483	call	vc_switch_off_ist
484	movq	%rax, %rsp		/* Switch to new stack */
485
486	ENCODE_FRAME_POINTER
487	UNWIND_HINT_REGS
488
489	/* Update pt_regs */
490	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
491	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
492
493	movq	%rsp, %rdi		/* pt_regs pointer */
494
495	call	kernel_\cfunc
496
497	/*
498	 * No need to switch back to the IST stack. The current stack is either
499	 * identical to the stack in the IRET frame or the VC fall-back stack,
500	 * so it is definitely mapped even with PTI enabled.
501	 */
502	jmp	paranoid_exit
503
504	/* Switch to the regular task stack */
505.Lfrom_usermode_switch_stack_\@:
506	idtentry_body user_\cfunc, has_error_code=1
507
508_ASM_NOKPROBE(\asmsym)
509SYM_CODE_END(\asmsym)
510.endm
511#endif
512
513/*
514 * Double fault entry. Straight paranoid. No checks from which context
515 * this comes because for the espfix induced #DF this would do the wrong
516 * thing.
517 */
518.macro idtentry_df vector asmsym cfunc
519SYM_CODE_START(\asmsym)
520	UNWIND_HINT_IRET_ENTRY offset=8
521	ENDBR
522	ASM_CLAC
523	cld
524
525	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
526	call	paranoid_entry
527	UNWIND_HINT_REGS
528
529	movq	%rsp, %rdi		/* pt_regs pointer into first argument */
530	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
531	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
532
533	/* For some configurations \cfunc ends up being a noreturn. */
534	ANNOTATE_REACHABLE
535	call	\cfunc
536
537	jmp	paranoid_exit
538
539_ASM_NOKPROBE(\asmsym)
540SYM_CODE_END(\asmsym)
541.endm
542
543/*
544 * Include the defines which emit the idt entries which are shared
545 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
546 * so the stacktrace boundary checks work.
547 */
548	__ALIGN
549	.globl __irqentry_text_start
550__irqentry_text_start:
551
552#include <asm/idtentry.h>
553
554	__ALIGN
555	.globl __irqentry_text_end
556__irqentry_text_end:
557	ANNOTATE_NOENDBR
558
559SYM_CODE_START_LOCAL(common_interrupt_return)
560SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
561	IBRS_EXIT
562#ifdef CONFIG_XEN_PV
563	ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
564#endif
565#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
566	ALTERNATIVE "", "jmp .Lpti_restore_regs_and_return_to_usermode", X86_FEATURE_PTI
567#endif
568
569	STACKLEAK_ERASE
570	POP_REGS
571	add	$8, %rsp	/* orig_ax */
572	UNWIND_HINT_IRET_REGS
573
574.Lswapgs_and_iret:
575	swapgs
576	CLEAR_CPU_BUFFERS
577	/* Assert that the IRET frame indicates user mode. */
578	testb	$3, 8(%rsp)
579	jnz	.Lnative_iret
580	ud2
581
582#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
583.Lpti_restore_regs_and_return_to_usermode:
584	POP_REGS pop_rdi=0
585
586	/*
587	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
588	 * Save old stack pointer and switch to trampoline stack.
589	 */
590	movq	%rsp, %rdi
591	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
592	UNWIND_HINT_END_OF_STACK
593
594	/* Copy the IRET frame to the trampoline stack. */
595	pushq	6*8(%rdi)	/* SS */
596	pushq	5*8(%rdi)	/* RSP */
597	pushq	4*8(%rdi)	/* EFLAGS */
598	pushq	3*8(%rdi)	/* CS */
599	pushq	2*8(%rdi)	/* RIP */
600
601	/* Push user RDI on the trampoline stack. */
602	pushq	(%rdi)
603
604	/*
605	 * We are on the trampoline stack.  All regs except RDI are live.
606	 * We can do future final exit work right here.
607	 */
608	STACKLEAK_ERASE_NOCLOBBER
609
610	push	%rax
611	SWITCH_TO_USER_CR3 scratch_reg=%rdi scratch_reg2=%rax
612	pop	%rax
613
614	/* Restore RDI. */
615	popq	%rdi
616	jmp	.Lswapgs_and_iret
617#endif
618
619SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
620#ifdef CONFIG_DEBUG_ENTRY
621	/* Assert that pt_regs indicates kernel mode. */
622	testb	$3, CS(%rsp)
623	jz	1f
624	ud2
6251:
626#endif
627	POP_REGS
628	addq	$8, %rsp	/* skip regs->orig_ax */
629	/*
630	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
631	 * when returning from IPI handler.
632	 */
633#ifdef CONFIG_XEN_PV
634SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL)
635	ANNOTATE_NOENDBR
636	.byte 0xe9
637	.long .Lnative_iret - (. + 4)
638#endif
639
640.Lnative_iret:
641	UNWIND_HINT_IRET_REGS
642	/*
643	 * Are we returning to a stack segment from the LDT?  Note: in
644	 * 64-bit mode SS:RSP on the exception stack is always valid.
645	 */
646#ifdef CONFIG_X86_ESPFIX64
647	testb	$4, (SS-RIP)(%rsp)
648	jnz	native_irq_return_ldt
649#endif
650
651SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
652	ANNOTATE_NOENDBR // exc_double_fault
653	/*
654	 * This may fault.  Non-paranoid faults on return to userspace are
655	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
656	 * Double-faults due to espfix64 are handled in exc_double_fault.
657	 * Other faults here are fatal.
658	 */
659	iretq
660
661#ifdef CONFIG_X86_ESPFIX64
662native_irq_return_ldt:
663	/*
664	 * We are running with user GSBASE.  All GPRs contain their user
665	 * values.  We have a percpu ESPFIX stack that is eight slots
666	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
667	 * of the ESPFIX stack.
668	 *
669	 * We clobber RAX and RDI in this code.  We stash RDI on the
670	 * normal stack and RAX on the ESPFIX stack.
671	 *
672	 * The ESPFIX stack layout we set up looks like this:
673	 *
674	 * --- top of ESPFIX stack ---
675	 * SS
676	 * RSP
677	 * RFLAGS
678	 * CS
679	 * RIP  <-- RSP points here when we're done
680	 * RAX  <-- espfix_waddr points here
681	 * --- bottom of ESPFIX stack ---
682	 */
683
684	pushq	%rdi				/* Stash user RDI */
685	swapgs					/* to kernel GS */
686	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */
687
688	movq	PER_CPU_VAR(espfix_waddr), %rdi
689	movq	%rax, (0*8)(%rdi)		/* user RAX */
690	movq	(1*8)(%rsp), %rax		/* user RIP */
691	movq	%rax, (1*8)(%rdi)
692	movq	(2*8)(%rsp), %rax		/* user CS */
693	movq	%rax, (2*8)(%rdi)
694	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
695	movq	%rax, (3*8)(%rdi)
696	movq	(5*8)(%rsp), %rax		/* user SS */
697	movq	%rax, (5*8)(%rdi)
698	movq	(4*8)(%rsp), %rax		/* user RSP */
699	movq	%rax, (4*8)(%rdi)
700	/* Now RAX == RSP. */
701
702	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
703
704	/*
705	 * espfix_stack[31:16] == 0.  The page tables are set up such that
706	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
707	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
708	 * the same page.  Set up RSP so that RSP[31:16] contains the
709	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
710	 * still points to an RO alias of the ESPFIX stack.
711	 */
712	orq	PER_CPU_VAR(espfix_stack), %rax
713
714	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
715	swapgs					/* to user GS */
716	popq	%rdi				/* Restore user RDI */
717
718	movq	%rax, %rsp
719	UNWIND_HINT_IRET_REGS offset=8
720
721	/*
722	 * At this point, we cannot write to the stack any more, but we can
723	 * still read.
724	 */
725	popq	%rax				/* Restore user RAX */
726
727	CLEAR_CPU_BUFFERS
728
729	/*
730	 * RSP now points to an ordinary IRET frame, except that the page
731	 * is read-only and RSP[31:16] are preloaded with the userspace
732	 * values.  We can now IRET back to userspace.
733	 */
734	jmp	native_irq_return_iret
735#endif
736SYM_CODE_END(common_interrupt_return)
737_ASM_NOKPROBE(common_interrupt_return)
738
739/*
740 * Reload gs selector with exception handling
741 *  di:  new selector
742 *
743 * Is in entry.text as it shouldn't be instrumented.
744 */
745SYM_FUNC_START(asm_load_gs_index)
746	ANNOTATE_NOENDBR
747	FRAME_BEGIN
748	swapgs
749.Lgs_change:
750	ANNOTATE_NOENDBR // error_entry
751	movl	%edi, %gs
7522:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
753	swapgs
754	FRAME_END
755	RET
756
757	/* running with kernelgs */
758.Lbad_gs:
759	swapgs					/* switch back to user gs */
760.macro ZAP_GS
761	/* This can't be a string because the preprocessor needs to see it. */
762	movl $__USER_DS, %eax
763	movl %eax, %gs
764.endm
765	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
766	xorl	%eax, %eax
767	movl	%eax, %gs
768	jmp	2b
769
770	_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
771
772SYM_FUNC_END(asm_load_gs_index)
773EXPORT_SYMBOL(asm_load_gs_index)
774
775#ifdef CONFIG_XEN_PV
776/*
777 * A note on the "critical region" in our callback handler.
778 * We want to avoid stacking callback handlers due to events occurring
779 * during handling of the last event. To do this, we keep events disabled
780 * until we've done all processing. HOWEVER, we must enable events before
781 * popping the stack frame (can't be done atomically) and so it would still
782 * be possible to get enough handler activations to overflow the stack.
783 * Although unlikely, bugs of that kind are hard to track down, so we'd
784 * like to avoid the possibility.
785 * So, on entry to the handler we detect whether we interrupted an
786 * existing activation in its critical region -- if so, we pop the current
787 * activation and restart the handler using the previous one.
788 *
789 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
790 */
791	__FUNC_ALIGN
792SYM_CODE_START_LOCAL_NOALIGN(exc_xen_hypervisor_callback)
793
794/*
795 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
796 * see the correct pointer to the pt_regs
797 */
798	UNWIND_HINT_FUNC
799	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
800	UNWIND_HINT_REGS
801
802	call	xen_pv_evtchn_do_upcall
803
804	jmp	error_return
805SYM_CODE_END(exc_xen_hypervisor_callback)
806
807/*
808 * Hypervisor uses this for application faults while it executes.
809 * We get here for two reasons:
810 *  1. Fault while reloading DS, ES, FS or GS
811 *  2. Fault while executing IRET
812 * Category 1 we do not need to fix up as Xen has already reloaded all segment
813 * registers that could be reloaded and zeroed the others.
814 * Category 2 we fix up by killing the current process. We cannot use the
815 * normal Linux return path in this case because if we use the IRET hypercall
816 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
817 * We distinguish between categories by comparing each saved segment register
818 * with its current contents: any discrepancy means we in category 1.
819 */
820	__FUNC_ALIGN
821SYM_CODE_START_NOALIGN(xen_failsafe_callback)
822	UNWIND_HINT_UNDEFINED
823	ENDBR
824	movl	%ds, %ecx
825	cmpw	%cx, 0x10(%rsp)
826	jne	1f
827	movl	%es, %ecx
828	cmpw	%cx, 0x18(%rsp)
829	jne	1f
830	movl	%fs, %ecx
831	cmpw	%cx, 0x20(%rsp)
832	jne	1f
833	movl	%gs, %ecx
834	cmpw	%cx, 0x28(%rsp)
835	jne	1f
836	/* All segments match their saved values => Category 2 (Bad IRET). */
837	movq	(%rsp), %rcx
838	movq	8(%rsp), %r11
839	addq	$0x30, %rsp
840	pushq	$0				/* RIP */
841	UNWIND_HINT_IRET_REGS offset=8
842	jmp	asm_exc_general_protection
8431:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
844	movq	(%rsp), %rcx
845	movq	8(%rsp), %r11
846	addq	$0x30, %rsp
847	UNWIND_HINT_IRET_REGS
848	pushq	$-1 /* orig_ax = -1 => not a system call */
849	PUSH_AND_CLEAR_REGS
850	ENCODE_FRAME_POINTER
851	jmp	error_return
852SYM_CODE_END(xen_failsafe_callback)
853#endif /* CONFIG_XEN_PV */
854
855/*
856 * Save all registers in pt_regs. Return GSBASE related information
857 * in EBX depending on the availability of the FSGSBASE instructions:
858 *
859 * FSGSBASE	R/EBX
860 *     N        0 -> SWAPGS on exit
861 *              1 -> no SWAPGS on exit
862 *
863 *     Y        GSBASE value at entry, must be restored in paranoid_exit
864 *
865 * R14 - old CR3
866 * R15 - old SPEC_CTRL
867 */
868SYM_CODE_START(paranoid_entry)
869	ANNOTATE_NOENDBR
870	UNWIND_HINT_FUNC
871	PUSH_AND_CLEAR_REGS save_ret=1
872	ENCODE_FRAME_POINTER 8
873
874	/*
875	 * Always stash CR3 in %r14.  This value will be restored,
876	 * verbatim, at exit.  Needed if paranoid_entry interrupted
877	 * another entry that already switched to the user CR3 value
878	 * but has not yet returned to userspace.
879	 *
880	 * This is also why CS (stashed in the "iret frame" by the
881	 * hardware at entry) can not be used: this may be a return
882	 * to kernel code, but with a user CR3 value.
883	 *
884	 * Switching CR3 does not depend on kernel GSBASE so it can
885	 * be done before switching to the kernel GSBASE. This is
886	 * required for FSGSBASE because the kernel GSBASE has to
887	 * be retrieved from a kernel internal table.
888	 */
889	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
890
891	/*
892	 * Handling GSBASE depends on the availability of FSGSBASE.
893	 *
894	 * Without FSGSBASE the kernel enforces that negative GSBASE
895	 * values indicate kernel GSBASE. With FSGSBASE no assumptions
896	 * can be made about the GSBASE value when entering from user
897	 * space.
898	 */
899	ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
900
901	/*
902	 * Read the current GSBASE and store it in %rbx unconditionally,
903	 * retrieve and set the current CPUs kernel GSBASE. The stored value
904	 * has to be restored in paranoid_exit unconditionally.
905	 *
906	 * The unconditional write to GS base below ensures that no subsequent
907	 * loads based on a mispredicted GS base can happen, therefore no LFENCE
908	 * is needed here.
909	 */
910	SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
911	jmp .Lparanoid_gsbase_done
912
913.Lparanoid_entry_checkgs:
914	/* EBX = 1 -> kernel GSBASE active, no restore required */
915	movl	$1, %ebx
916
917	/*
918	 * The kernel-enforced convention is a negative GSBASE indicates
919	 * a kernel value. No SWAPGS needed on entry and exit.
920	 */
921	movl	$MSR_GS_BASE, %ecx
922	rdmsr
923	testl	%edx, %edx
924	js	.Lparanoid_kernel_gsbase
925
926	/* EBX = 0 -> SWAPGS required on exit */
927	xorl	%ebx, %ebx
928	swapgs
929.Lparanoid_kernel_gsbase:
930	FENCE_SWAPGS_KERNEL_ENTRY
931.Lparanoid_gsbase_done:
932
933	/*
934	 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like
935	 * CR3 above, keep the old value in a callee saved register.
936	 */
937	IBRS_ENTER save_reg=%r15
938	UNTRAIN_RET_FROM_CALL
939
940	RET
941SYM_CODE_END(paranoid_entry)
942
943/*
944 * "Paranoid" exit path from exception stack.  This is invoked
945 * only on return from non-NMI IST interrupts that came
946 * from kernel space.
947 *
948 * We may be returning to very strange contexts (e.g. very early
949 * in syscall entry), so checking for preemption here would
950 * be complicated.  Fortunately, there's no good reason to try
951 * to handle preemption here.
952 *
953 * R/EBX contains the GSBASE related information depending on the
954 * availability of the FSGSBASE instructions:
955 *
956 * FSGSBASE	R/EBX
957 *     N        0 -> SWAPGS on exit
958 *              1 -> no SWAPGS on exit
959 *
960 *     Y        User space GSBASE, must be restored unconditionally
961 *
962 * R14 - old CR3
963 * R15 - old SPEC_CTRL
964 */
965SYM_CODE_START_LOCAL(paranoid_exit)
966	UNWIND_HINT_REGS
967
968	/*
969	 * Must restore IBRS state before both CR3 and %GS since we need access
970	 * to the per-CPU x86_spec_ctrl_shadow variable.
971	 */
972	IBRS_EXIT save_reg=%r15
973
974	/*
975	 * The order of operations is important. PARANOID_RESTORE_CR3 requires
976	 * kernel GSBASE.
977	 *
978	 * NB to anyone to try to optimize this code: this code does
979	 * not execute at all for exceptions from user mode. Those
980	 * exceptions go through error_return instead.
981	 */
982	PARANOID_RESTORE_CR3 scratch_reg=%rax save_reg=%r14
983
984	/* Handle the three GSBASE cases */
985	ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
986
987	/* With FSGSBASE enabled, unconditionally restore GSBASE */
988	wrgsbase	%rbx
989	jmp		restore_regs_and_return_to_kernel
990
991.Lparanoid_exit_checkgs:
992	/* On non-FSGSBASE systems, conditionally do SWAPGS */
993	testl		%ebx, %ebx
994	jnz		restore_regs_and_return_to_kernel
995
996	/* We are returning to a context with user GSBASE */
997	swapgs
998	jmp		restore_regs_and_return_to_kernel
999SYM_CODE_END(paranoid_exit)
1000
1001/*
1002 * Switch GS and CR3 if needed.
1003 */
1004SYM_CODE_START(error_entry)
1005	ANNOTATE_NOENDBR
1006	UNWIND_HINT_FUNC
1007
1008	PUSH_AND_CLEAR_REGS save_ret=1
1009	ENCODE_FRAME_POINTER 8
1010
1011	testb	$3, CS+8(%rsp)
1012	jz	.Lerror_kernelspace
1013
1014	/*
1015	 * We entered from user mode or we're pretending to have entered
1016	 * from user mode due to an IRET fault.
1017	 */
1018	swapgs
1019	FENCE_SWAPGS_USER_ENTRY
1020	/* We have user CR3.  Change to kernel CR3. */
1021	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1022	IBRS_ENTER
1023	UNTRAIN_RET_FROM_CALL
1024
1025	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
1026	/* Put us onto the real thread stack. */
1027	jmp	sync_regs
1028
1029	/*
1030	 * There are two places in the kernel that can potentially fault with
1031	 * usergs. Handle them here.  B stepping K8s sometimes report a
1032	 * truncated RIP for IRET exceptions returning to compat mode. Check
1033	 * for these here too.
1034	 */
1035.Lerror_kernelspace:
1036	leaq	native_irq_return_iret(%rip), %rcx
1037	cmpq	%rcx, RIP+8(%rsp)
1038	je	.Lerror_bad_iret
1039	movl	%ecx, %eax			/* zero extend */
1040	cmpq	%rax, RIP+8(%rsp)
1041	je	.Lbstep_iret
1042	cmpq	$.Lgs_change, RIP+8(%rsp)
1043	jne	.Lerror_entry_done_lfence
1044
1045	/*
1046	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1047	 * gsbase and proceed.  We'll fix up the exception and land in
1048	 * .Lgs_change's error handler with kernel gsbase.
1049	 */
1050	swapgs
1051
1052	/*
1053	 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a
1054	 * kernel or user gsbase.
1055	 */
1056.Lerror_entry_done_lfence:
1057	FENCE_SWAPGS_KERNEL_ENTRY
1058	CALL_DEPTH_ACCOUNT
1059	leaq	8(%rsp), %rax			/* return pt_regs pointer */
1060	VALIDATE_UNRET_END
1061	RET
1062
1063.Lbstep_iret:
1064	/* Fix truncated RIP */
1065	movq	%rcx, RIP+8(%rsp)
1066	/* fall through */
1067
1068.Lerror_bad_iret:
1069	/*
1070	 * We came from an IRET to user mode, so we have user
1071	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1072	 */
1073	swapgs
1074	FENCE_SWAPGS_USER_ENTRY
1075	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1076	IBRS_ENTER
1077	UNTRAIN_RET_FROM_CALL
1078
1079	/*
1080	 * Pretend that the exception came from user mode: set up pt_regs
1081	 * as if we faulted immediately after IRET.
1082	 */
1083	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
1084	call	fixup_bad_iret
1085	mov	%rax, %rdi
1086	jmp	sync_regs
1087SYM_CODE_END(error_entry)
1088
1089SYM_CODE_START_LOCAL(error_return)
1090	UNWIND_HINT_REGS
1091	DEBUG_ENTRY_ASSERT_IRQS_OFF
1092	testb	$3, CS(%rsp)
1093	jz	restore_regs_and_return_to_kernel
1094	jmp	swapgs_restore_regs_and_return_to_usermode
1095SYM_CODE_END(error_return)
1096
1097/*
1098 * Runs on exception stack.  Xen PV does not go through this path at all,
1099 * so we can use real assembly here.
1100 *
1101 * Registers:
1102 *	%r14: Used to save/restore the CR3 of the interrupted context
1103 *	      when MITIGATION_PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1104 */
1105SYM_CODE_START(asm_exc_nmi)
1106	UNWIND_HINT_IRET_ENTRY
1107	ENDBR
1108
1109	/*
1110	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1111	 * the iretq it performs will take us out of NMI context.
1112	 * This means that we can have nested NMIs where the next
1113	 * NMI is using the top of the stack of the previous NMI. We
1114	 * can't let it execute because the nested NMI will corrupt the
1115	 * stack of the previous NMI. NMI handlers are not re-entrant
1116	 * anyway.
1117	 *
1118	 * To handle this case we do the following:
1119	 *  Check a special location on the stack that contains a
1120	 *  variable that is set when NMIs are executing.
1121	 *  The interrupted task's stack is also checked to see if it
1122	 *  is an NMI stack.
1123	 *  If the variable is not set and the stack is not the NMI
1124	 *  stack then:
1125	 *    o Set the special variable on the stack
1126	 *    o Copy the interrupt frame into an "outermost" location on the
1127	 *      stack
1128	 *    o Copy the interrupt frame into an "iret" location on the stack
1129	 *    o Continue processing the NMI
1130	 *  If the variable is set or the previous stack is the NMI stack:
1131	 *    o Modify the "iret" location to jump to the repeat_nmi
1132	 *    o return back to the first NMI
1133	 *
1134	 * Now on exit of the first NMI, we first clear the stack variable
1135	 * The NMI stack will tell any nested NMIs at that point that it is
1136	 * nested. Then we pop the stack normally with iret, and if there was
1137	 * a nested NMI that updated the copy interrupt stack frame, a
1138	 * jump will be made to the repeat_nmi code that will handle the second
1139	 * NMI.
1140	 *
1141	 * However, espfix prevents us from directly returning to userspace
1142	 * with a single IRET instruction.  Similarly, IRET to user mode
1143	 * can fault.  We therefore handle NMIs from user space like
1144	 * other IST entries.
1145	 */
1146
1147	ASM_CLAC
1148	cld
1149
1150	/* Use %rdx as our temp variable throughout */
1151	pushq	%rdx
1152
1153	testb	$3, CS-RIP+8(%rsp)
1154	jz	.Lnmi_from_kernel
1155
1156	/*
1157	 * NMI from user mode.  We need to run on the thread stack, but we
1158	 * can't go through the normal entry paths: NMIs are masked, and
1159	 * we don't want to enable interrupts, because then we'll end
1160	 * up in an awkward situation in which IRQs are on but NMIs
1161	 * are off.
1162	 *
1163	 * We also must not push anything to the stack before switching
1164	 * stacks lest we corrupt the "NMI executing" variable.
1165	 */
1166
1167	swapgs
1168	FENCE_SWAPGS_USER_ENTRY
1169	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1170	movq	%rsp, %rdx
1171	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1172	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1173	pushq	5*8(%rdx)	/* pt_regs->ss */
1174	pushq	4*8(%rdx)	/* pt_regs->rsp */
1175	pushq	3*8(%rdx)	/* pt_regs->flags */
1176	pushq	2*8(%rdx)	/* pt_regs->cs */
1177	pushq	1*8(%rdx)	/* pt_regs->rip */
1178	UNWIND_HINT_IRET_REGS
1179	pushq   $-1		/* pt_regs->orig_ax */
1180	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1181	ENCODE_FRAME_POINTER
1182
1183	IBRS_ENTER
1184	UNTRAIN_RET
1185
1186	/*
1187	 * At this point we no longer need to worry about stack damage
1188	 * due to nesting -- we're on the normal thread stack and we're
1189	 * done with the NMI stack.
1190	 */
1191
1192	movq	%rsp, %rdi
1193	call	exc_nmi
1194
1195	/*
1196	 * Return back to user mode.  We must *not* do the normal exit
1197	 * work, because we don't want to enable interrupts.
1198	 */
1199	jmp	swapgs_restore_regs_and_return_to_usermode
1200
1201.Lnmi_from_kernel:
1202	/*
1203	 * Here's what our stack frame will look like:
1204	 * +---------------------------------------------------------+
1205	 * | original SS                                             |
1206	 * | original Return RSP                                     |
1207	 * | original RFLAGS                                         |
1208	 * | original CS                                             |
1209	 * | original RIP                                            |
1210	 * +---------------------------------------------------------+
1211	 * | temp storage for rdx                                    |
1212	 * +---------------------------------------------------------+
1213	 * | "NMI executing" variable                                |
1214	 * +---------------------------------------------------------+
1215	 * | iret SS          } Copied from "outermost" frame        |
1216	 * | iret Return RSP  } on each loop iteration; overwritten  |
1217	 * | iret RFLAGS      } by a nested NMI to force another     |
1218	 * | iret CS          } iteration if needed.                 |
1219	 * | iret RIP         }                                      |
1220	 * +---------------------------------------------------------+
1221	 * | outermost SS          } initialized in first_nmi;       |
1222	 * | outermost Return RSP  } will not be changed before      |
1223	 * | outermost RFLAGS      } NMI processing is done.         |
1224	 * | outermost CS          } Copied to "iret" frame on each  |
1225	 * | outermost RIP         } iteration.                      |
1226	 * +---------------------------------------------------------+
1227	 * | pt_regs                                                 |
1228	 * +---------------------------------------------------------+
1229	 *
1230	 * The "original" frame is used by hardware.  Before re-enabling
1231	 * NMIs, we need to be done with it, and we need to leave enough
1232	 * space for the asm code here.
1233	 *
1234	 * We return by executing IRET while RSP points to the "iret" frame.
1235	 * That will either return for real or it will loop back into NMI
1236	 * processing.
1237	 *
1238	 * The "outermost" frame is copied to the "iret" frame on each
1239	 * iteration of the loop, so each iteration starts with the "iret"
1240	 * frame pointing to the final return target.
1241	 */
1242
1243	/*
1244	 * Determine whether we're a nested NMI.
1245	 *
1246	 * If we interrupted kernel code between repeat_nmi and
1247	 * end_repeat_nmi, then we are a nested NMI.  We must not
1248	 * modify the "iret" frame because it's being written by
1249	 * the outer NMI.  That's okay; the outer NMI handler is
1250	 * about to call exc_nmi() anyway, so we can just resume
1251	 * the outer NMI.
1252	 */
1253
1254	movq	$repeat_nmi, %rdx
1255	cmpq	8(%rsp), %rdx
1256	ja	1f
1257	movq	$end_repeat_nmi, %rdx
1258	cmpq	8(%rsp), %rdx
1259	ja	nested_nmi_out
12601:
1261
1262	/*
1263	 * Now check "NMI executing".  If it's set, then we're nested.
1264	 * This will not detect if we interrupted an outer NMI just
1265	 * before IRET.
1266	 */
1267	cmpl	$1, -8(%rsp)
1268	je	nested_nmi
1269
1270	/*
1271	 * Now test if the previous stack was an NMI stack.  This covers
1272	 * the case where we interrupt an outer NMI after it clears
1273	 * "NMI executing" but before IRET.  We need to be careful, though:
1274	 * there is one case in which RSP could point to the NMI stack
1275	 * despite there being no NMI active: naughty userspace controls
1276	 * RSP at the very beginning of the SYSCALL targets.  We can
1277	 * pull a fast one on naughty userspace, though: we program
1278	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1279	 * if it controls the kernel's RSP.  We set DF before we clear
1280	 * "NMI executing".
1281	 */
1282	lea	6*8(%rsp), %rdx
1283	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1284	cmpq	%rdx, 4*8(%rsp)
1285	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1286	ja	first_nmi
1287
1288	subq	$EXCEPTION_STKSZ, %rdx
1289	cmpq	%rdx, 4*8(%rsp)
1290	/* If it is below the NMI stack, it is a normal NMI */
1291	jb	first_nmi
1292
1293	/* Ah, it is within the NMI stack. */
1294
1295	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1296	jz	first_nmi	/* RSP was user controlled. */
1297
1298	/* This is a nested NMI. */
1299
1300nested_nmi:
1301	/*
1302	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1303	 * iteration of NMI handling.
1304	 */
1305	subq	$8, %rsp
1306	leaq	-10*8(%rsp), %rdx
1307	pushq	$__KERNEL_DS
1308	pushq	%rdx
1309	pushfq
1310	pushq	$__KERNEL_CS
1311	pushq	$repeat_nmi
1312
1313	/* Put stack back */
1314	addq	$(6*8), %rsp
1315
1316nested_nmi_out:
1317	popq	%rdx
1318
1319	/* We are returning to kernel mode, so this cannot result in a fault. */
1320	iretq
1321
1322first_nmi:
1323	/* Restore rdx. */
1324	movq	(%rsp), %rdx
1325
1326	/* Make room for "NMI executing". */
1327	pushq	$0
1328
1329	/* Leave room for the "iret" frame */
1330	subq	$(5*8), %rsp
1331
1332	/* Copy the "original" frame to the "outermost" frame */
1333	.rept 5
1334	pushq	11*8(%rsp)
1335	.endr
1336	UNWIND_HINT_IRET_REGS
1337
1338	/* Everything up to here is safe from nested NMIs */
1339
1340#ifdef CONFIG_DEBUG_ENTRY
1341	/*
1342	 * For ease of testing, unmask NMIs right away.  Disabled by
1343	 * default because IRET is very expensive.
1344	 */
1345	pushq	$0		/* SS */
1346	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1347	addq	$8, (%rsp)	/* Fix up RSP */
1348	pushfq			/* RFLAGS */
1349	pushq	$__KERNEL_CS	/* CS */
1350	pushq	$1f		/* RIP */
1351	iretq			/* continues at repeat_nmi below */
1352	UNWIND_HINT_IRET_REGS
13531:
1354#endif
1355
1356repeat_nmi:
1357	ANNOTATE_NOENDBR // this code
1358	/*
1359	 * If there was a nested NMI, the first NMI's iret will return
1360	 * here. But NMIs are still enabled and we can take another
1361	 * nested NMI. The nested NMI checks the interrupted RIP to see
1362	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1363	 * it will just return, as we are about to repeat an NMI anyway.
1364	 * This makes it safe to copy to the stack frame that a nested
1365	 * NMI will update.
1366	 *
1367	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1368	 * we're repeating an NMI, gsbase has the same value that it had on
1369	 * the first iteration.  paranoid_entry will load the kernel
1370	 * gsbase if needed before we call exc_nmi().  "NMI executing"
1371	 * is zero.
1372	 */
1373	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1374
1375	/*
1376	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1377	 * here must not modify the "iret" frame while we're writing to
1378	 * it or it will end up containing garbage.
1379	 */
1380	addq	$(10*8), %rsp
1381	.rept 5
1382	pushq	-6*8(%rsp)
1383	.endr
1384	subq	$(5*8), %rsp
1385end_repeat_nmi:
1386	ANNOTATE_NOENDBR // this code
1387
1388	/*
1389	 * Everything below this point can be preempted by a nested NMI.
1390	 * If this happens, then the inner NMI will change the "iret"
1391	 * frame to point back to repeat_nmi.
1392	 */
1393	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1394
1395	/*
1396	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1397	 * as we should not be calling schedule in NMI context.
1398	 * Even with normal interrupts enabled. An NMI should not be
1399	 * setting NEED_RESCHED or anything that normal interrupts and
1400	 * exceptions might do.
1401	 */
1402	call	paranoid_entry
1403	UNWIND_HINT_REGS
1404
1405	movq	%rsp, %rdi
1406	call	exc_nmi
1407
1408	/* Always restore stashed SPEC_CTRL value (see paranoid_entry) */
1409	IBRS_EXIT save_reg=%r15
1410
1411	PARANOID_RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1412
1413	/*
1414	 * The above invocation of paranoid_entry stored the GSBASE
1415	 * related information in R/EBX depending on the availability
1416	 * of FSGSBASE.
1417	 *
1418	 * If FSGSBASE is enabled, restore the saved GSBASE value
1419	 * unconditionally, otherwise take the conditional SWAPGS path.
1420	 */
1421	ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1422
1423	wrgsbase	%rbx
1424	jmp	nmi_restore
1425
1426nmi_no_fsgsbase:
1427	/* EBX == 0 -> invoke SWAPGS */
1428	testl	%ebx, %ebx
1429	jnz	nmi_restore
1430
1431nmi_swapgs:
1432	swapgs
1433
1434nmi_restore:
1435	POP_REGS
1436
1437	/*
1438	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1439	 * at the "iret" frame.
1440	 */
1441	addq	$6*8, %rsp
1442
1443	/*
1444	 * Clear "NMI executing".  Set DF first so that we can easily
1445	 * distinguish the remaining code between here and IRET from
1446	 * the SYSCALL entry and exit paths.
1447	 *
1448	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1449	 * this code when I had the misapprehension that Xen PV supported
1450	 * NMIs, and Xen PV would break that approach.
1451	 */
1452	std
1453	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1454
1455	/*
1456	 * Skip CLEAR_CPU_BUFFERS here, since it only helps in rare cases like
1457	 * NMI in kernel after user state is restored. For an unprivileged user
1458	 * these conditions are hard to meet.
1459	 */
1460
1461	/*
1462	 * iretq reads the "iret" frame and exits the NMI stack in a
1463	 * single instruction.  We are returning to kernel mode, so this
1464	 * cannot result in a fault.  Similarly, we don't need to worry
1465	 * about espfix64 on the way back to kernel mode.
1466	 */
1467	iretq
1468SYM_CODE_END(asm_exc_nmi)
1469
1470/*
1471 * This handles SYSCALL from 32-bit code.  There is no way to program
1472 * MSRs to fully disable 32-bit SYSCALL.
1473 */
1474SYM_CODE_START(entry_SYSCALL32_ignore)
1475	UNWIND_HINT_END_OF_STACK
1476	ENDBR
1477	mov	$-ENOSYS, %eax
1478	CLEAR_CPU_BUFFERS
1479	sysretl
1480SYM_CODE_END(entry_SYSCALL32_ignore)
1481
1482.pushsection .text, "ax"
1483	__FUNC_ALIGN
1484SYM_CODE_START_NOALIGN(rewind_stack_and_make_dead)
1485	UNWIND_HINT_FUNC
1486	/* Prevent any naive code from trying to unwind to our caller. */
1487	xorl	%ebp, %ebp
1488
1489	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1490	leaq	-PTREGS_SIZE(%rax), %rsp
1491	UNWIND_HINT_REGS
1492
1493	call	make_task_dead
1494SYM_CODE_END(rewind_stack_and_make_dead)
1495.popsection
1496
1497/*
1498 * This sequence executes branches in order to remove user branch information
1499 * from the branch history tracker in the Branch Predictor, therefore removing
1500 * user influence on subsequent BTB lookups.
1501 *
1502 * It should be used on parts prior to Alder Lake. Newer parts should use the
1503 * BHI_DIS_S hardware control instead. If a pre-Alder Lake part is being
1504 * virtualized on newer hardware the VMM should protect against BHI attacks by
1505 * setting BHI_DIS_S for the guests.
1506 *
1507 * CALLs/RETs are necessary to prevent Loop Stream Detector(LSD) from engaging
1508 * and not clearing the branch history. The call tree looks like:
1509 *
1510 * call 1
1511 *    call 2
1512 *      call 2
1513 *        call 2
1514 *          call 2
1515 * 	      call 2
1516 * 	      ret
1517 * 	    ret
1518 *        ret
1519 *      ret
1520 *    ret
1521 * ret
1522 *
1523 * This means that the stack is non-constant and ORC can't unwind it with %rsp
1524 * alone.  Therefore we unconditionally set up the frame pointer, which allows
1525 * ORC to unwind properly.
1526 *
1527 * The alignment is for performance and not for safety, and may be safely
1528 * refactored in the future if needed. The .skips are for safety, to ensure
1529 * that all RETs are in the second half of a cacheline to mitigate Indirect
1530 * Target Selection, rather than taking the slowpath via its_return_thunk.
1531 */
1532SYM_FUNC_START(clear_bhb_loop)
1533	ANNOTATE_NOENDBR
1534	push	%rbp
1535	mov	%rsp, %rbp
1536	movl	$5, %ecx
1537	ANNOTATE_INTRA_FUNCTION_CALL
1538	call	1f
1539	jmp	5f
1540	.align 64, 0xcc
1541	/*
1542	 * Shift instructions so that the RET is in the upper half of the
1543	 * cacheline and don't take the slowpath to its_return_thunk.
1544	 */
1545	.skip 32 - (.Lret1 - 1f), 0xcc
1546	ANNOTATE_INTRA_FUNCTION_CALL
15471:	call	2f
1548.Lret1:	RET
1549	.align 64, 0xcc
1550	/*
1551	 * As above shift instructions for RET at .Lret2 as well.
1552	 *
1553	 * This should be ideally be: .skip 32 - (.Lret2 - 2f), 0xcc
1554	 * but some Clang versions (e.g. 18) don't like this.
1555	 */
1556	.skip 32 - 18, 0xcc
15572:	movl	$5, %eax
15583:	jmp	4f
1559	nop
15604:	sub	$1, %eax
1561	jnz	3b
1562	sub	$1, %ecx
1563	jnz	1b
1564.Lret2:	RET
15655:	lfence
1566	pop	%rbp
1567	RET
1568SYM_FUNC_END(clear_bhb_loop)
1569EXPORT_SYMBOL_GPL(clear_bhb_loop)
1570STACK_FRAME_NON_STANDARD(clear_bhb_loop)
1571