xref: /linux/drivers/nvme/target/fc.c (revision 6d8854216ebb60959ddb6f4ea4123bd449ba6cf6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13 
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
18 
19 
20 /* *************************** Data Structures/Defines ****************** */
21 
22 
23 #define NVMET_LS_CTX_COUNT		256
24 
25 struct nvmet_fc_tgtport;
26 struct nvmet_fc_tgt_assoc;
27 
28 struct nvmet_fc_ls_iod {		/* for an LS RQST RCV */
29 	struct nvmefc_ls_rsp		*lsrsp;
30 	struct nvmefc_tgt_fcp_req	*fcpreq;	/* only if RS */
31 
32 	struct list_head		ls_rcv_list; /* tgtport->ls_rcv_list */
33 
34 	struct nvmet_fc_tgtport		*tgtport;
35 	struct nvmet_fc_tgt_assoc	*assoc;
36 	void				*hosthandle;
37 
38 	union nvmefc_ls_requests	*rqstbuf;
39 	union nvmefc_ls_responses	*rspbuf;
40 	u16				rqstdatalen;
41 	dma_addr_t			rspdma;
42 
43 	struct scatterlist		sg[2];
44 
45 	struct work_struct		work;
46 } __aligned(sizeof(unsigned long long));
47 
48 struct nvmet_fc_ls_req_op {		/* for an LS RQST XMT */
49 	struct nvmefc_ls_req		ls_req;
50 
51 	struct nvmet_fc_tgtport		*tgtport;
52 	void				*hosthandle;
53 
54 	int				ls_error;
55 	struct list_head		lsreq_list; /* tgtport->ls_req_list */
56 	bool				req_queued;
57 };
58 
59 
60 /* desired maximum for a single sequence - if sg list allows it */
61 #define NVMET_FC_MAX_SEQ_LENGTH		(256 * 1024)
62 
63 enum nvmet_fcp_datadir {
64 	NVMET_FCP_NODATA,
65 	NVMET_FCP_WRITE,
66 	NVMET_FCP_READ,
67 	NVMET_FCP_ABORTED,
68 };
69 
70 struct nvmet_fc_fcp_iod {
71 	struct nvmefc_tgt_fcp_req	*fcpreq;
72 
73 	struct nvme_fc_cmd_iu		cmdiubuf;
74 	struct nvme_fc_ersp_iu		rspiubuf;
75 	dma_addr_t			rspdma;
76 	struct scatterlist		*next_sg;
77 	struct scatterlist		*data_sg;
78 	int				data_sg_cnt;
79 	u32				offset;
80 	enum nvmet_fcp_datadir		io_dir;
81 	bool				active;
82 	bool				abort;
83 	bool				aborted;
84 	bool				writedataactive;
85 	spinlock_t			flock;
86 
87 	struct nvmet_req		req;
88 	struct work_struct		defer_work;
89 
90 	struct nvmet_fc_tgtport		*tgtport;
91 	struct nvmet_fc_tgt_queue	*queue;
92 
93 	struct list_head		fcp_list;	/* tgtport->fcp_list */
94 };
95 
96 struct nvmet_fc_tgtport {
97 	struct nvmet_fc_target_port	fc_target_port;
98 
99 	struct list_head		tgt_list; /* nvmet_fc_target_list */
100 	struct device			*dev;	/* dev for dma mapping */
101 	struct nvmet_fc_target_template	*ops;
102 
103 	struct nvmet_fc_ls_iod		*iod;
104 	spinlock_t			lock;
105 	struct list_head		ls_rcv_list;
106 	struct list_head		ls_req_list;
107 	struct list_head		ls_busylist;
108 	struct list_head		assoc_list;
109 	struct list_head		host_list;
110 	struct ida			assoc_cnt;
111 	struct nvmet_fc_port_entry	*pe;
112 	struct kref			ref;
113 	u32				max_sg_cnt;
114 
115 	struct work_struct		put_work;
116 };
117 
118 struct nvmet_fc_port_entry {
119 	struct nvmet_fc_tgtport		*tgtport;
120 	struct nvmet_port		*port;
121 	u64				node_name;
122 	u64				port_name;
123 	struct list_head		pe_list;
124 };
125 
126 struct nvmet_fc_defer_fcp_req {
127 	struct list_head		req_list;
128 	struct nvmefc_tgt_fcp_req	*fcp_req;
129 };
130 
131 struct nvmet_fc_tgt_queue {
132 	bool				ninetypercent;
133 	u16				qid;
134 	u16				sqsize;
135 	u16				ersp_ratio;
136 	__le16				sqhd;
137 	atomic_t			connected;
138 	atomic_t			sqtail;
139 	atomic_t			zrspcnt;
140 	atomic_t			rsn;
141 	spinlock_t			qlock;
142 	struct nvmet_cq			nvme_cq;
143 	struct nvmet_sq			nvme_sq;
144 	struct nvmet_fc_tgt_assoc	*assoc;
145 	struct list_head		fod_list;
146 	struct list_head		pending_cmd_list;
147 	struct list_head		avail_defer_list;
148 	struct workqueue_struct		*work_q;
149 	struct kref			ref;
150 	/* array of fcp_iods */
151 	struct nvmet_fc_fcp_iod		fod[] /* __counted_by(sqsize) */;
152 } __aligned(sizeof(unsigned long long));
153 
154 struct nvmet_fc_hostport {
155 	struct nvmet_fc_tgtport		*tgtport;
156 	void				*hosthandle;
157 	struct list_head		host_list;
158 	struct kref			ref;
159 	u8				invalid;
160 };
161 
162 struct nvmet_fc_tgt_assoc {
163 	u64				association_id;
164 	u32				a_id;
165 	atomic_t			terminating;
166 	struct nvmet_fc_tgtport		*tgtport;
167 	struct nvmet_fc_hostport	*hostport;
168 	struct nvmet_fc_ls_iod		*rcv_disconn;
169 	struct list_head		a_list;
170 	struct nvmet_fc_tgt_queue 	*queues[NVMET_NR_QUEUES + 1];
171 	struct kref			ref;
172 	struct work_struct		del_work;
173 };
174 
175 /*
176  * Association and Connection IDs:
177  *
178  * Association ID will have random number in upper 6 bytes and zero
179  *   in lower 2 bytes
180  *
181  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
182  *
183  * note: Association ID = Connection ID for queue 0
184  */
185 #define BYTES_FOR_QID			sizeof(u16)
186 #define BYTES_FOR_QID_SHIFT		(BYTES_FOR_QID * 8)
187 #define NVMET_FC_QUEUEID_MASK		((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
188 
189 static inline u64
nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc * assoc,u16 qid)190 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
191 {
192 	return (assoc->association_id | qid);
193 }
194 
195 static inline u64
nvmet_fc_getassociationid(u64 connectionid)196 nvmet_fc_getassociationid(u64 connectionid)
197 {
198 	return connectionid & ~NVMET_FC_QUEUEID_MASK;
199 }
200 
201 static inline u16
nvmet_fc_getqueueid(u64 connectionid)202 nvmet_fc_getqueueid(u64 connectionid)
203 {
204 	return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
205 }
206 
207 static inline struct nvmet_fc_tgtport *
targetport_to_tgtport(struct nvmet_fc_target_port * targetport)208 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
209 {
210 	return container_of(targetport, struct nvmet_fc_tgtport,
211 				 fc_target_port);
212 }
213 
214 static inline struct nvmet_fc_fcp_iod *
nvmet_req_to_fod(struct nvmet_req * nvme_req)215 nvmet_req_to_fod(struct nvmet_req *nvme_req)
216 {
217 	return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
218 }
219 
220 
221 /* *************************** Globals **************************** */
222 
223 
224 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
225 
226 static LIST_HEAD(nvmet_fc_target_list);
227 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
228 static LIST_HEAD(nvmet_fc_portentry_list);
229 
230 
231 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
232 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
233 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
234 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
235 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
236 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
237 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
nvmet_fc_put_tgtport_work(struct work_struct * work)238 static void nvmet_fc_put_tgtport_work(struct work_struct *work)
239 {
240 	struct nvmet_fc_tgtport *tgtport =
241 		container_of(work, struct nvmet_fc_tgtport, put_work);
242 
243 	nvmet_fc_tgtport_put(tgtport);
244 }
245 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
246 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
247 					struct nvmet_fc_fcp_iod *fod);
248 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
249 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
250 				struct nvmet_fc_ls_iod *iod);
251 
252 
253 /* *********************** FC-NVME DMA Handling **************************** */
254 
255 /*
256  * The fcloop device passes in a NULL device pointer. Real LLD's will
257  * pass in a valid device pointer. If NULL is passed to the dma mapping
258  * routines, depending on the platform, it may or may not succeed, and
259  * may crash.
260  *
261  * As such:
262  * Wrapper all the dma routines and check the dev pointer.
263  *
264  * If simple mappings (return just a dma address, we'll noop them,
265  * returning a dma address of 0.
266  *
267  * On more complex mappings (dma_map_sg), a pseudo routine fills
268  * in the scatter list, setting all dma addresses to 0.
269  */
270 
271 static inline dma_addr_t
fc_dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)272 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
273 		enum dma_data_direction dir)
274 {
275 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
276 }
277 
278 static inline int
fc_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)279 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
280 {
281 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
282 }
283 
284 static inline void
fc_dma_unmap_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)285 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
286 	enum dma_data_direction dir)
287 {
288 	if (dev)
289 		dma_unmap_single(dev, addr, size, dir);
290 }
291 
292 static inline void
fc_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)293 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
294 		enum dma_data_direction dir)
295 {
296 	if (dev)
297 		dma_sync_single_for_cpu(dev, addr, size, dir);
298 }
299 
300 static inline void
fc_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)301 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
302 		enum dma_data_direction dir)
303 {
304 	if (dev)
305 		dma_sync_single_for_device(dev, addr, size, dir);
306 }
307 
308 /* pseudo dma_map_sg call */
309 static int
fc_map_sg(struct scatterlist * sg,int nents)310 fc_map_sg(struct scatterlist *sg, int nents)
311 {
312 	struct scatterlist *s;
313 	int i;
314 
315 	WARN_ON(nents == 0 || sg[0].length == 0);
316 
317 	for_each_sg(sg, s, nents, i) {
318 		s->dma_address = 0L;
319 #ifdef CONFIG_NEED_SG_DMA_LENGTH
320 		s->dma_length = s->length;
321 #endif
322 	}
323 	return nents;
324 }
325 
326 static inline int
fc_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)327 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
328 		enum dma_data_direction dir)
329 {
330 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
331 }
332 
333 static inline void
fc_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)334 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
335 		enum dma_data_direction dir)
336 {
337 	if (dev)
338 		dma_unmap_sg(dev, sg, nents, dir);
339 }
340 
341 
342 /* ********************** FC-NVME LS XMT Handling ************************* */
343 
344 
345 static void
__nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op * lsop)346 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
347 {
348 	struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
349 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
350 	unsigned long flags;
351 
352 	spin_lock_irqsave(&tgtport->lock, flags);
353 
354 	if (!lsop->req_queued) {
355 		spin_unlock_irqrestore(&tgtport->lock, flags);
356 		goto out_putwork;
357 	}
358 
359 	list_del(&lsop->lsreq_list);
360 
361 	lsop->req_queued = false;
362 
363 	spin_unlock_irqrestore(&tgtport->lock, flags);
364 
365 	fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
366 				  (lsreq->rqstlen + lsreq->rsplen),
367 				  DMA_BIDIRECTIONAL);
368 
369 out_putwork:
370 	queue_work(nvmet_wq, &tgtport->put_work);
371 }
372 
373 static int
__nvmet_fc_send_ls_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))374 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
375 		struct nvmet_fc_ls_req_op *lsop,
376 		void (*done)(struct nvmefc_ls_req *req, int status))
377 {
378 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
379 	unsigned long flags;
380 	int ret = 0;
381 
382 	if (!tgtport->ops->ls_req)
383 		return -EOPNOTSUPP;
384 
385 	if (!nvmet_fc_tgtport_get(tgtport))
386 		return -ESHUTDOWN;
387 
388 	lsreq->done = done;
389 	lsop->req_queued = false;
390 	INIT_LIST_HEAD(&lsop->lsreq_list);
391 
392 	lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
393 				  lsreq->rqstlen + lsreq->rsplen,
394 				  DMA_BIDIRECTIONAL);
395 	if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
396 		ret = -EFAULT;
397 		goto out_puttgtport;
398 	}
399 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
400 
401 	spin_lock_irqsave(&tgtport->lock, flags);
402 
403 	list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
404 
405 	lsop->req_queued = true;
406 
407 	spin_unlock_irqrestore(&tgtport->lock, flags);
408 
409 	ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
410 				   lsreq);
411 	if (ret)
412 		goto out_unlink;
413 
414 	return 0;
415 
416 out_unlink:
417 	lsop->ls_error = ret;
418 	spin_lock_irqsave(&tgtport->lock, flags);
419 	lsop->req_queued = false;
420 	list_del(&lsop->lsreq_list);
421 	spin_unlock_irqrestore(&tgtport->lock, flags);
422 	fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
423 				  (lsreq->rqstlen + lsreq->rsplen),
424 				  DMA_BIDIRECTIONAL);
425 out_puttgtport:
426 	nvmet_fc_tgtport_put(tgtport);
427 
428 	return ret;
429 }
430 
431 static int
nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))432 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
433 		struct nvmet_fc_ls_req_op *lsop,
434 		void (*done)(struct nvmefc_ls_req *req, int status))
435 {
436 	/* don't wait for completion */
437 
438 	return __nvmet_fc_send_ls_req(tgtport, lsop, done);
439 }
440 
441 static void
nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req * lsreq,int status)442 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
443 {
444 	struct nvmet_fc_ls_req_op *lsop =
445 		container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
446 
447 	__nvmet_fc_finish_ls_req(lsop);
448 
449 	/* fc-nvme target doesn't care about success or failure of cmd */
450 
451 	kfree(lsop);
452 }
453 
454 /*
455  * This routine sends a FC-NVME LS to disconnect (aka terminate)
456  * the FC-NVME Association.  Terminating the association also
457  * terminates the FC-NVME connections (per queue, both admin and io
458  * queues) that are part of the association. E.g. things are torn
459  * down, and the related FC-NVME Association ID and Connection IDs
460  * become invalid.
461  *
462  * The behavior of the fc-nvme target is such that it's
463  * understanding of the association and connections will implicitly
464  * be torn down. The action is implicit as it may be due to a loss of
465  * connectivity with the fc-nvme host, so the target may never get a
466  * response even if it tried.  As such, the action of this routine
467  * is to asynchronously send the LS, ignore any results of the LS, and
468  * continue on with terminating the association. If the fc-nvme host
469  * is present and receives the LS, it too can tear down.
470  */
471 static void
nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc * assoc)472 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
473 {
474 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
475 	struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
476 	struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
477 	struct nvmet_fc_ls_req_op *lsop;
478 	struct nvmefc_ls_req *lsreq;
479 	int ret;
480 
481 	/*
482 	 * If ls_req is NULL or no hosthandle, it's an older lldd and no
483 	 * message is normal. Otherwise, send unless the hostport has
484 	 * already been invalidated by the lldd.
485 	 */
486 	if (!tgtport->ops->ls_req || assoc->hostport->invalid)
487 		return;
488 
489 	lsop = kzalloc((sizeof(*lsop) +
490 			sizeof(*discon_rqst) + sizeof(*discon_acc) +
491 			tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
492 	if (!lsop) {
493 		dev_info(tgtport->dev,
494 			"{%d:%d} send Disconnect Association failed: ENOMEM\n",
495 			tgtport->fc_target_port.port_num, assoc->a_id);
496 		return;
497 	}
498 
499 	discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
500 	discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
501 	lsreq = &lsop->ls_req;
502 	if (tgtport->ops->lsrqst_priv_sz)
503 		lsreq->private = (void *)&discon_acc[1];
504 	else
505 		lsreq->private = NULL;
506 
507 	lsop->tgtport = tgtport;
508 	lsop->hosthandle = assoc->hostport->hosthandle;
509 
510 	nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
511 				assoc->association_id);
512 
513 	ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
514 				nvmet_fc_disconnect_assoc_done);
515 	if (ret) {
516 		dev_info(tgtport->dev,
517 			"{%d:%d} XMT Disconnect Association failed: %d\n",
518 			tgtport->fc_target_port.port_num, assoc->a_id, ret);
519 		kfree(lsop);
520 	}
521 }
522 
523 
524 /* *********************** FC-NVME Port Management ************************ */
525 
526 
527 static int
nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport * tgtport)528 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
529 {
530 	struct nvmet_fc_ls_iod *iod;
531 	int i;
532 
533 	iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
534 			GFP_KERNEL);
535 	if (!iod)
536 		return -ENOMEM;
537 
538 	tgtport->iod = iod;
539 
540 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
541 		INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
542 		iod->tgtport = tgtport;
543 		list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
544 
545 		iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
546 				       sizeof(union nvmefc_ls_responses),
547 				       GFP_KERNEL);
548 		if (!iod->rqstbuf)
549 			goto out_fail;
550 
551 		iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
552 
553 		iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
554 						sizeof(*iod->rspbuf),
555 						DMA_TO_DEVICE);
556 		if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
557 			goto out_fail;
558 	}
559 
560 	return 0;
561 
562 out_fail:
563 	kfree(iod->rqstbuf);
564 	list_del(&iod->ls_rcv_list);
565 	for (iod--, i--; i >= 0; iod--, i--) {
566 		fc_dma_unmap_single(tgtport->dev, iod->rspdma,
567 				sizeof(*iod->rspbuf), DMA_TO_DEVICE);
568 		kfree(iod->rqstbuf);
569 		list_del(&iod->ls_rcv_list);
570 	}
571 
572 	kfree(iod);
573 
574 	return -EFAULT;
575 }
576 
577 static void
nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport * tgtport)578 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
579 {
580 	struct nvmet_fc_ls_iod *iod = tgtport->iod;
581 	int i;
582 
583 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
584 		fc_dma_unmap_single(tgtport->dev,
585 				iod->rspdma, sizeof(*iod->rspbuf),
586 				DMA_TO_DEVICE);
587 		kfree(iod->rqstbuf);
588 		list_del(&iod->ls_rcv_list);
589 	}
590 	kfree(tgtport->iod);
591 }
592 
593 static struct nvmet_fc_ls_iod *
nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport * tgtport)594 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
595 {
596 	struct nvmet_fc_ls_iod *iod;
597 	unsigned long flags;
598 
599 	spin_lock_irqsave(&tgtport->lock, flags);
600 	iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
601 					struct nvmet_fc_ls_iod, ls_rcv_list);
602 	if (iod)
603 		list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
604 	spin_unlock_irqrestore(&tgtport->lock, flags);
605 	return iod;
606 }
607 
608 
609 static void
nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)610 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
611 			struct nvmet_fc_ls_iod *iod)
612 {
613 	unsigned long flags;
614 
615 	spin_lock_irqsave(&tgtport->lock, flags);
616 	list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
617 	spin_unlock_irqrestore(&tgtport->lock, flags);
618 }
619 
620 static void
nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)621 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
622 				struct nvmet_fc_tgt_queue *queue)
623 {
624 	struct nvmet_fc_fcp_iod *fod = queue->fod;
625 	int i;
626 
627 	for (i = 0; i < queue->sqsize; fod++, i++) {
628 		INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
629 		fod->tgtport = tgtport;
630 		fod->queue = queue;
631 		fod->active = false;
632 		fod->abort = false;
633 		fod->aborted = false;
634 		fod->fcpreq = NULL;
635 		list_add_tail(&fod->fcp_list, &queue->fod_list);
636 		spin_lock_init(&fod->flock);
637 
638 		fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
639 					sizeof(fod->rspiubuf), DMA_TO_DEVICE);
640 		if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
641 			list_del(&fod->fcp_list);
642 			for (fod--, i--; i >= 0; fod--, i--) {
643 				fc_dma_unmap_single(tgtport->dev, fod->rspdma,
644 						sizeof(fod->rspiubuf),
645 						DMA_TO_DEVICE);
646 				fod->rspdma = 0L;
647 				list_del(&fod->fcp_list);
648 			}
649 
650 			return;
651 		}
652 	}
653 }
654 
655 static void
nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)656 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
657 				struct nvmet_fc_tgt_queue *queue)
658 {
659 	struct nvmet_fc_fcp_iod *fod = queue->fod;
660 	int i;
661 
662 	for (i = 0; i < queue->sqsize; fod++, i++) {
663 		if (fod->rspdma)
664 			fc_dma_unmap_single(tgtport->dev, fod->rspdma,
665 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
666 	}
667 }
668 
669 static struct nvmet_fc_fcp_iod *
nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue * queue)670 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
671 {
672 	struct nvmet_fc_fcp_iod *fod;
673 
674 	lockdep_assert_held(&queue->qlock);
675 
676 	fod = list_first_entry_or_null(&queue->fod_list,
677 					struct nvmet_fc_fcp_iod, fcp_list);
678 	if (fod) {
679 		list_del(&fod->fcp_list);
680 		fod->active = true;
681 		/*
682 		 * no queue reference is taken, as it was taken by the
683 		 * queue lookup just prior to the allocation. The iod
684 		 * will "inherit" that reference.
685 		 */
686 	}
687 	return fod;
688 }
689 
690 
691 static void
nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue,struct nvmefc_tgt_fcp_req * fcpreq)692 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
693 		       struct nvmet_fc_tgt_queue *queue,
694 		       struct nvmefc_tgt_fcp_req *fcpreq)
695 {
696 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
697 
698 	/*
699 	 * put all admin cmds on hw queue id 0. All io commands go to
700 	 * the respective hw queue based on a modulo basis
701 	 */
702 	fcpreq->hwqid = queue->qid ?
703 			((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
704 
705 	nvmet_fc_handle_fcp_rqst(tgtport, fod);
706 }
707 
708 static void
nvmet_fc_fcp_rqst_op_defer_work(struct work_struct * work)709 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
710 {
711 	struct nvmet_fc_fcp_iod *fod =
712 		container_of(work, struct nvmet_fc_fcp_iod, defer_work);
713 
714 	/* Submit deferred IO for processing */
715 	nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
716 
717 }
718 
719 static void
nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue * queue,struct nvmet_fc_fcp_iod * fod)720 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
721 			struct nvmet_fc_fcp_iod *fod)
722 {
723 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
724 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
725 	struct nvmet_fc_defer_fcp_req *deferfcp;
726 	unsigned long flags;
727 
728 	fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
729 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
730 
731 	fcpreq->nvmet_fc_private = NULL;
732 
733 	fod->active = false;
734 	fod->abort = false;
735 	fod->aborted = false;
736 	fod->writedataactive = false;
737 	fod->fcpreq = NULL;
738 
739 	tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
740 
741 	/* release the queue lookup reference on the completed IO */
742 	nvmet_fc_tgt_q_put(queue);
743 
744 	spin_lock_irqsave(&queue->qlock, flags);
745 	deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
746 				struct nvmet_fc_defer_fcp_req, req_list);
747 	if (!deferfcp) {
748 		list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
749 		spin_unlock_irqrestore(&queue->qlock, flags);
750 		return;
751 	}
752 
753 	/* Re-use the fod for the next pending cmd that was deferred */
754 	list_del(&deferfcp->req_list);
755 
756 	fcpreq = deferfcp->fcp_req;
757 
758 	/* deferfcp can be reused for another IO at a later date */
759 	list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
760 
761 	spin_unlock_irqrestore(&queue->qlock, flags);
762 
763 	/* Save NVME CMD IO in fod */
764 	memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
765 
766 	/* Setup new fcpreq to be processed */
767 	fcpreq->rspaddr = NULL;
768 	fcpreq->rsplen  = 0;
769 	fcpreq->nvmet_fc_private = fod;
770 	fod->fcpreq = fcpreq;
771 	fod->active = true;
772 
773 	/* inform LLDD IO is now being processed */
774 	tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
775 
776 	/*
777 	 * Leave the queue lookup get reference taken when
778 	 * fod was originally allocated.
779 	 */
780 
781 	queue_work(queue->work_q, &fod->defer_work);
782 }
783 
784 static struct nvmet_fc_tgt_queue *
nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc * assoc,u16 qid,u16 sqsize)785 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
786 			u16 qid, u16 sqsize)
787 {
788 	struct nvmet_fc_tgt_queue *queue;
789 	int ret;
790 
791 	if (qid > NVMET_NR_QUEUES)
792 		return NULL;
793 
794 	queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
795 	if (!queue)
796 		return NULL;
797 
798 	queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
799 				assoc->tgtport->fc_target_port.port_num,
800 				assoc->a_id, qid);
801 	if (!queue->work_q)
802 		goto out_free_queue;
803 
804 	queue->qid = qid;
805 	queue->sqsize = sqsize;
806 	queue->assoc = assoc;
807 	INIT_LIST_HEAD(&queue->fod_list);
808 	INIT_LIST_HEAD(&queue->avail_defer_list);
809 	INIT_LIST_HEAD(&queue->pending_cmd_list);
810 	atomic_set(&queue->connected, 0);
811 	atomic_set(&queue->sqtail, 0);
812 	atomic_set(&queue->rsn, 1);
813 	atomic_set(&queue->zrspcnt, 0);
814 	spin_lock_init(&queue->qlock);
815 	kref_init(&queue->ref);
816 
817 	nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
818 
819 	nvmet_cq_init(&queue->nvme_cq);
820 	ret = nvmet_sq_init(&queue->nvme_sq, &queue->nvme_cq);
821 	if (ret)
822 		goto out_fail_iodlist;
823 
824 	WARN_ON(assoc->queues[qid]);
825 	assoc->queues[qid] = queue;
826 
827 	return queue;
828 
829 out_fail_iodlist:
830 	nvmet_cq_put(&queue->nvme_cq);
831 	nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
832 	destroy_workqueue(queue->work_q);
833 out_free_queue:
834 	kfree(queue);
835 	return NULL;
836 }
837 
838 
839 static void
nvmet_fc_tgt_queue_free(struct kref * ref)840 nvmet_fc_tgt_queue_free(struct kref *ref)
841 {
842 	struct nvmet_fc_tgt_queue *queue =
843 		container_of(ref, struct nvmet_fc_tgt_queue, ref);
844 
845 	nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
846 
847 	destroy_workqueue(queue->work_q);
848 
849 	kfree(queue);
850 }
851 
852 static void
nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue * queue)853 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
854 {
855 	kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
856 }
857 
858 static int
nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue * queue)859 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
860 {
861 	return kref_get_unless_zero(&queue->ref);
862 }
863 
864 
865 static void
nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue * queue)866 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
867 {
868 	struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
869 	struct nvmet_fc_fcp_iod *fod = queue->fod;
870 	struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
871 	unsigned long flags;
872 	int i;
873 	bool disconnect;
874 
875 	disconnect = atomic_xchg(&queue->connected, 0);
876 
877 	/* if not connected, nothing to do */
878 	if (!disconnect)
879 		return;
880 
881 	spin_lock_irqsave(&queue->qlock, flags);
882 	/* abort outstanding io's */
883 	for (i = 0; i < queue->sqsize; fod++, i++) {
884 		if (fod->active) {
885 			spin_lock(&fod->flock);
886 			fod->abort = true;
887 			/*
888 			 * only call lldd abort routine if waiting for
889 			 * writedata. other outstanding ops should finish
890 			 * on their own.
891 			 */
892 			if (fod->writedataactive) {
893 				fod->aborted = true;
894 				spin_unlock(&fod->flock);
895 				tgtport->ops->fcp_abort(
896 					&tgtport->fc_target_port, fod->fcpreq);
897 			} else
898 				spin_unlock(&fod->flock);
899 		}
900 	}
901 
902 	/* Cleanup defer'ed IOs in queue */
903 	list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
904 				req_list) {
905 		list_del(&deferfcp->req_list);
906 		kfree(deferfcp);
907 	}
908 
909 	for (;;) {
910 		deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
911 				struct nvmet_fc_defer_fcp_req, req_list);
912 		if (!deferfcp)
913 			break;
914 
915 		list_del(&deferfcp->req_list);
916 		spin_unlock_irqrestore(&queue->qlock, flags);
917 
918 		tgtport->ops->defer_rcv(&tgtport->fc_target_port,
919 				deferfcp->fcp_req);
920 
921 		tgtport->ops->fcp_abort(&tgtport->fc_target_port,
922 				deferfcp->fcp_req);
923 
924 		tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
925 				deferfcp->fcp_req);
926 
927 		/* release the queue lookup reference */
928 		nvmet_fc_tgt_q_put(queue);
929 
930 		kfree(deferfcp);
931 
932 		spin_lock_irqsave(&queue->qlock, flags);
933 	}
934 	spin_unlock_irqrestore(&queue->qlock, flags);
935 
936 	flush_workqueue(queue->work_q);
937 
938 	nvmet_sq_destroy(&queue->nvme_sq);
939 	nvmet_cq_put(&queue->nvme_cq);
940 
941 	nvmet_fc_tgt_q_put(queue);
942 }
943 
944 static struct nvmet_fc_tgt_queue *
nvmet_fc_find_target_queue(struct nvmet_fc_tgtport * tgtport,u64 connection_id)945 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
946 				u64 connection_id)
947 {
948 	struct nvmet_fc_tgt_assoc *assoc;
949 	struct nvmet_fc_tgt_queue *queue;
950 	u64 association_id = nvmet_fc_getassociationid(connection_id);
951 	u16 qid = nvmet_fc_getqueueid(connection_id);
952 
953 	if (qid > NVMET_NR_QUEUES)
954 		return NULL;
955 
956 	rcu_read_lock();
957 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
958 		if (association_id == assoc->association_id) {
959 			queue = assoc->queues[qid];
960 			if (queue &&
961 			    (!atomic_read(&queue->connected) ||
962 			     !nvmet_fc_tgt_q_get(queue)))
963 				queue = NULL;
964 			rcu_read_unlock();
965 			return queue;
966 		}
967 	}
968 	rcu_read_unlock();
969 	return NULL;
970 }
971 
972 static void
nvmet_fc_hostport_free(struct kref * ref)973 nvmet_fc_hostport_free(struct kref *ref)
974 {
975 	struct nvmet_fc_hostport *hostport =
976 		container_of(ref, struct nvmet_fc_hostport, ref);
977 	struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
978 	unsigned long flags;
979 
980 	spin_lock_irqsave(&tgtport->lock, flags);
981 	list_del(&hostport->host_list);
982 	spin_unlock_irqrestore(&tgtport->lock, flags);
983 	if (tgtport->ops->host_release && hostport->invalid)
984 		tgtport->ops->host_release(hostport->hosthandle);
985 	kfree(hostport);
986 	nvmet_fc_tgtport_put(tgtport);
987 }
988 
989 static void
nvmet_fc_hostport_put(struct nvmet_fc_hostport * hostport)990 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
991 {
992 	kref_put(&hostport->ref, nvmet_fc_hostport_free);
993 }
994 
995 static int
nvmet_fc_hostport_get(struct nvmet_fc_hostport * hostport)996 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
997 {
998 	return kref_get_unless_zero(&hostport->ref);
999 }
1000 
1001 static struct nvmet_fc_hostport *
nvmet_fc_match_hostport(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1002 nvmet_fc_match_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1003 {
1004 	struct nvmet_fc_hostport *host;
1005 
1006 	lockdep_assert_held(&tgtport->lock);
1007 
1008 	list_for_each_entry(host, &tgtport->host_list, host_list) {
1009 		if (host->hosthandle == hosthandle && !host->invalid) {
1010 			if (nvmet_fc_hostport_get(host))
1011 				return host;
1012 		}
1013 	}
1014 
1015 	return NULL;
1016 }
1017 
1018 static struct nvmet_fc_hostport *
nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1019 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1020 {
1021 	struct nvmet_fc_hostport *newhost, *match = NULL;
1022 	unsigned long flags;
1023 
1024 	/*
1025 	 * Caller holds a reference on tgtport.
1026 	 */
1027 
1028 	/* if LLDD not implemented, leave as NULL */
1029 	if (!hosthandle)
1030 		return NULL;
1031 
1032 	spin_lock_irqsave(&tgtport->lock, flags);
1033 	match = nvmet_fc_match_hostport(tgtport, hosthandle);
1034 	spin_unlock_irqrestore(&tgtport->lock, flags);
1035 
1036 	if (match)
1037 		return match;
1038 
1039 	newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1040 	if (!newhost)
1041 		return ERR_PTR(-ENOMEM);
1042 
1043 	spin_lock_irqsave(&tgtport->lock, flags);
1044 	match = nvmet_fc_match_hostport(tgtport, hosthandle);
1045 	if (match) {
1046 		/* new allocation not needed */
1047 		kfree(newhost);
1048 		newhost = match;
1049 	} else {
1050 		nvmet_fc_tgtport_get(tgtport);
1051 		newhost->tgtport = tgtport;
1052 		newhost->hosthandle = hosthandle;
1053 		INIT_LIST_HEAD(&newhost->host_list);
1054 		kref_init(&newhost->ref);
1055 
1056 		list_add_tail(&newhost->host_list, &tgtport->host_list);
1057 	}
1058 	spin_unlock_irqrestore(&tgtport->lock, flags);
1059 
1060 	return newhost;
1061 }
1062 
1063 static void
nvmet_fc_delete_assoc_work(struct work_struct * work)1064 nvmet_fc_delete_assoc_work(struct work_struct *work)
1065 {
1066 	struct nvmet_fc_tgt_assoc *assoc =
1067 		container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1068 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1069 
1070 	nvmet_fc_delete_target_assoc(assoc);
1071 	nvmet_fc_tgt_a_put(assoc);
1072 	nvmet_fc_tgtport_put(tgtport);
1073 }
1074 
1075 static void
nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc * assoc)1076 nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc *assoc)
1077 {
1078 	nvmet_fc_tgtport_get(assoc->tgtport);
1079 	if (!queue_work(nvmet_wq, &assoc->del_work))
1080 		nvmet_fc_tgtport_put(assoc->tgtport);
1081 }
1082 
1083 static bool
nvmet_fc_assoc_exists(struct nvmet_fc_tgtport * tgtport,u64 association_id)1084 nvmet_fc_assoc_exists(struct nvmet_fc_tgtport *tgtport, u64 association_id)
1085 {
1086 	struct nvmet_fc_tgt_assoc *a;
1087 	bool found = false;
1088 
1089 	rcu_read_lock();
1090 	list_for_each_entry_rcu(a, &tgtport->assoc_list, a_list) {
1091 		if (association_id == a->association_id) {
1092 			found = true;
1093 			break;
1094 		}
1095 	}
1096 	rcu_read_unlock();
1097 
1098 	return found;
1099 }
1100 
1101 static struct nvmet_fc_tgt_assoc *
nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1102 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1103 {
1104 	struct nvmet_fc_tgt_assoc *assoc;
1105 	unsigned long flags;
1106 	bool done;
1107 	u64 ran;
1108 	int idx;
1109 
1110 	if (!tgtport->pe)
1111 		return NULL;
1112 
1113 	assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1114 	if (!assoc)
1115 		return NULL;
1116 
1117 	idx = ida_alloc(&tgtport->assoc_cnt, GFP_KERNEL);
1118 	if (idx < 0)
1119 		goto out_free_assoc;
1120 
1121 	assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1122 	if (IS_ERR(assoc->hostport))
1123 		goto out_ida;
1124 
1125 	assoc->tgtport = tgtport;
1126 	nvmet_fc_tgtport_get(tgtport);
1127 	assoc->a_id = idx;
1128 	INIT_LIST_HEAD(&assoc->a_list);
1129 	kref_init(&assoc->ref);
1130 	INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc_work);
1131 	atomic_set(&assoc->terminating, 0);
1132 
1133 	done = false;
1134 	do {
1135 		get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1136 		ran = ran << BYTES_FOR_QID_SHIFT;
1137 
1138 		spin_lock_irqsave(&tgtport->lock, flags);
1139 		if (!nvmet_fc_assoc_exists(tgtport, ran)) {
1140 			assoc->association_id = ran;
1141 			list_add_tail_rcu(&assoc->a_list, &tgtport->assoc_list);
1142 			done = true;
1143 		}
1144 		spin_unlock_irqrestore(&tgtport->lock, flags);
1145 	} while (!done);
1146 
1147 	return assoc;
1148 
1149 out_ida:
1150 	ida_free(&tgtport->assoc_cnt, idx);
1151 out_free_assoc:
1152 	kfree(assoc);
1153 	return NULL;
1154 }
1155 
1156 static void
nvmet_fc_target_assoc_free(struct kref * ref)1157 nvmet_fc_target_assoc_free(struct kref *ref)
1158 {
1159 	struct nvmet_fc_tgt_assoc *assoc =
1160 		container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1161 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1162 	struct nvmet_fc_ls_iod	*oldls;
1163 	unsigned long flags;
1164 	int i;
1165 
1166 	for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1167 		if (assoc->queues[i])
1168 			nvmet_fc_delete_target_queue(assoc->queues[i]);
1169 	}
1170 
1171 	/* Send Disconnect now that all i/o has completed */
1172 	nvmet_fc_xmt_disconnect_assoc(assoc);
1173 
1174 	nvmet_fc_hostport_put(assoc->hostport);
1175 	spin_lock_irqsave(&tgtport->lock, flags);
1176 	oldls = assoc->rcv_disconn;
1177 	spin_unlock_irqrestore(&tgtport->lock, flags);
1178 	/* if pending Rcv Disconnect Association LS, send rsp now */
1179 	if (oldls)
1180 		nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1181 	ida_free(&tgtport->assoc_cnt, assoc->a_id);
1182 	dev_info(tgtport->dev,
1183 		"{%d:%d} Association freed\n",
1184 		tgtport->fc_target_port.port_num, assoc->a_id);
1185 	kfree(assoc);
1186 }
1187 
1188 static void
nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc * assoc)1189 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1190 {
1191 	kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1192 }
1193 
1194 static int
nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc * assoc)1195 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1196 {
1197 	return kref_get_unless_zero(&assoc->ref);
1198 }
1199 
1200 static void
nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc * assoc)1201 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1202 {
1203 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1204 	unsigned long flags;
1205 	int i, terminating;
1206 
1207 	terminating = atomic_xchg(&assoc->terminating, 1);
1208 
1209 	/* if already terminating, do nothing */
1210 	if (terminating)
1211 		return;
1212 
1213 	spin_lock_irqsave(&tgtport->lock, flags);
1214 	list_del_rcu(&assoc->a_list);
1215 	spin_unlock_irqrestore(&tgtport->lock, flags);
1216 
1217 	synchronize_rcu();
1218 
1219 	/* ensure all in-flight I/Os have been processed */
1220 	for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1221 		if (assoc->queues[i])
1222 			flush_workqueue(assoc->queues[i]->work_q);
1223 	}
1224 
1225 	dev_info(tgtport->dev,
1226 		"{%d:%d} Association deleted\n",
1227 		tgtport->fc_target_port.port_num, assoc->a_id);
1228 
1229 	nvmet_fc_tgtport_put(tgtport);
1230 }
1231 
1232 static struct nvmet_fc_tgt_assoc *
nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport * tgtport,u64 association_id)1233 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1234 				u64 association_id)
1235 {
1236 	struct nvmet_fc_tgt_assoc *assoc;
1237 	struct nvmet_fc_tgt_assoc *ret = NULL;
1238 
1239 	rcu_read_lock();
1240 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1241 		if (association_id == assoc->association_id) {
1242 			ret = assoc;
1243 			if (!nvmet_fc_tgt_a_get(assoc))
1244 				ret = NULL;
1245 			break;
1246 		}
1247 	}
1248 	rcu_read_unlock();
1249 
1250 	return ret;
1251 }
1252 
1253 static void
nvmet_fc_portentry_bind(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_port_entry * pe,struct nvmet_port * port)1254 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1255 			struct nvmet_fc_port_entry *pe,
1256 			struct nvmet_port *port)
1257 {
1258 	lockdep_assert_held(&nvmet_fc_tgtlock);
1259 
1260 	nvmet_fc_tgtport_get(tgtport);
1261 	pe->tgtport = tgtport;
1262 	tgtport->pe = pe;
1263 
1264 	pe->port = port;
1265 	port->priv = pe;
1266 
1267 	pe->node_name = tgtport->fc_target_port.node_name;
1268 	pe->port_name = tgtport->fc_target_port.port_name;
1269 	INIT_LIST_HEAD(&pe->pe_list);
1270 
1271 	list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1272 }
1273 
1274 static void
nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry * pe)1275 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1276 {
1277 	unsigned long flags;
1278 
1279 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1280 	if (pe->tgtport) {
1281 		nvmet_fc_tgtport_put(pe->tgtport);
1282 		pe->tgtport->pe = NULL;
1283 	}
1284 	list_del(&pe->pe_list);
1285 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1286 }
1287 
1288 /*
1289  * called when a targetport deregisters. Breaks the relationship
1290  * with the nvmet port, but leaves the port_entry in place so that
1291  * re-registration can resume operation.
1292  */
1293 static void
nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport * tgtport)1294 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1295 {
1296 	struct nvmet_fc_port_entry *pe;
1297 	unsigned long flags;
1298 
1299 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1300 	pe = tgtport->pe;
1301 	if (pe) {
1302 		nvmet_fc_tgtport_put(pe->tgtport);
1303 		pe->tgtport = NULL;
1304 	}
1305 	tgtport->pe = NULL;
1306 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1307 }
1308 
1309 /*
1310  * called when a new targetport is registered. Looks in the
1311  * existing nvmet port_entries to see if the nvmet layer is
1312  * configured for the targetport's wwn's. (the targetport existed,
1313  * nvmet configured, the lldd unregistered the tgtport, and is now
1314  * reregistering the same targetport).  If so, set the nvmet port
1315  * port entry on the targetport.
1316  */
1317 static void
nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport * tgtport)1318 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1319 {
1320 	struct nvmet_fc_port_entry *pe;
1321 	unsigned long flags;
1322 
1323 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1324 	list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1325 		if (tgtport->fc_target_port.node_name == pe->node_name &&
1326 		    tgtport->fc_target_port.port_name == pe->port_name) {
1327 			if (!nvmet_fc_tgtport_get(tgtport))
1328 				continue;
1329 
1330 			WARN_ON(pe->tgtport);
1331 			tgtport->pe = pe;
1332 			pe->tgtport = tgtport;
1333 			break;
1334 		}
1335 	}
1336 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1337 }
1338 
1339 /**
1340  * nvmet_fc_register_targetport - transport entry point called by an
1341  *                              LLDD to register the existence of a local
1342  *                              NVME subsystem FC port.
1343  * @pinfo:     pointer to information about the port to be registered
1344  * @template:  LLDD entrypoints and operational parameters for the port
1345  * @dev:       physical hardware device node port corresponds to. Will be
1346  *             used for DMA mappings
1347  * @portptr:   pointer to a local port pointer. Upon success, the routine
1348  *             will allocate a nvme_fc_local_port structure and place its
1349  *             address in the local port pointer. Upon failure, local port
1350  *             pointer will be set to NULL.
1351  *
1352  * Returns:
1353  * a completion status. Must be 0 upon success; a negative errno
1354  * (ex: -ENXIO) upon failure.
1355  */
1356 int
nvmet_fc_register_targetport(struct nvmet_fc_port_info * pinfo,struct nvmet_fc_target_template * template,struct device * dev,struct nvmet_fc_target_port ** portptr)1357 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1358 			struct nvmet_fc_target_template *template,
1359 			struct device *dev,
1360 			struct nvmet_fc_target_port **portptr)
1361 {
1362 	struct nvmet_fc_tgtport *newrec;
1363 	unsigned long flags;
1364 	int ret, idx;
1365 
1366 	if (!template->xmt_ls_rsp || !template->fcp_op ||
1367 	    !template->fcp_abort ||
1368 	    !template->fcp_req_release || !template->targetport_delete ||
1369 	    !template->max_hw_queues || !template->max_sgl_segments ||
1370 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
1371 		ret = -EINVAL;
1372 		goto out_regtgt_failed;
1373 	}
1374 
1375 	newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1376 			 GFP_KERNEL);
1377 	if (!newrec) {
1378 		ret = -ENOMEM;
1379 		goto out_regtgt_failed;
1380 	}
1381 
1382 	idx = ida_alloc(&nvmet_fc_tgtport_cnt, GFP_KERNEL);
1383 	if (idx < 0) {
1384 		ret = -ENOSPC;
1385 		goto out_fail_kfree;
1386 	}
1387 
1388 	if (!get_device(dev) && dev) {
1389 		ret = -ENODEV;
1390 		goto out_ida_put;
1391 	}
1392 
1393 	newrec->fc_target_port.node_name = pinfo->node_name;
1394 	newrec->fc_target_port.port_name = pinfo->port_name;
1395 	if (template->target_priv_sz)
1396 		newrec->fc_target_port.private = &newrec[1];
1397 	else
1398 		newrec->fc_target_port.private = NULL;
1399 	newrec->fc_target_port.port_id = pinfo->port_id;
1400 	newrec->fc_target_port.port_num = idx;
1401 	INIT_LIST_HEAD(&newrec->tgt_list);
1402 	newrec->dev = dev;
1403 	newrec->ops = template;
1404 	spin_lock_init(&newrec->lock);
1405 	INIT_LIST_HEAD(&newrec->ls_rcv_list);
1406 	INIT_LIST_HEAD(&newrec->ls_req_list);
1407 	INIT_LIST_HEAD(&newrec->ls_busylist);
1408 	INIT_LIST_HEAD(&newrec->assoc_list);
1409 	INIT_LIST_HEAD(&newrec->host_list);
1410 	kref_init(&newrec->ref);
1411 	ida_init(&newrec->assoc_cnt);
1412 	newrec->max_sg_cnt = template->max_sgl_segments;
1413 	INIT_WORK(&newrec->put_work, nvmet_fc_put_tgtport_work);
1414 
1415 	ret = nvmet_fc_alloc_ls_iodlist(newrec);
1416 	if (ret) {
1417 		ret = -ENOMEM;
1418 		goto out_free_newrec;
1419 	}
1420 
1421 	nvmet_fc_portentry_rebind_tgt(newrec);
1422 
1423 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1424 	list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1425 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1426 
1427 	*portptr = &newrec->fc_target_port;
1428 	return 0;
1429 
1430 out_free_newrec:
1431 	put_device(dev);
1432 out_ida_put:
1433 	ida_free(&nvmet_fc_tgtport_cnt, idx);
1434 out_fail_kfree:
1435 	kfree(newrec);
1436 out_regtgt_failed:
1437 	*portptr = NULL;
1438 	return ret;
1439 }
1440 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1441 
1442 
1443 static void
nvmet_fc_free_tgtport(struct kref * ref)1444 nvmet_fc_free_tgtport(struct kref *ref)
1445 {
1446 	struct nvmet_fc_tgtport *tgtport =
1447 		container_of(ref, struct nvmet_fc_tgtport, ref);
1448 	struct device *dev = tgtport->dev;
1449 
1450 	nvmet_fc_free_ls_iodlist(tgtport);
1451 
1452 	/* let the LLDD know we've finished tearing it down */
1453 	tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1454 
1455 	ida_free(&nvmet_fc_tgtport_cnt,
1456 			tgtport->fc_target_port.port_num);
1457 
1458 	ida_destroy(&tgtport->assoc_cnt);
1459 
1460 	kfree(tgtport);
1461 
1462 	put_device(dev);
1463 }
1464 
1465 static void
nvmet_fc_tgtport_put(struct nvmet_fc_tgtport * tgtport)1466 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1467 {
1468 	kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1469 }
1470 
1471 static int
nvmet_fc_tgtport_get(struct nvmet_fc_tgtport * tgtport)1472 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1473 {
1474 	return kref_get_unless_zero(&tgtport->ref);
1475 }
1476 
1477 static void
__nvmet_fc_free_assocs(struct nvmet_fc_tgtport * tgtport)1478 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1479 {
1480 	struct nvmet_fc_tgt_assoc *assoc;
1481 
1482 	rcu_read_lock();
1483 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1484 		if (!nvmet_fc_tgt_a_get(assoc))
1485 			continue;
1486 		nvmet_fc_schedule_delete_assoc(assoc);
1487 		nvmet_fc_tgt_a_put(assoc);
1488 	}
1489 	rcu_read_unlock();
1490 }
1491 
1492 /**
1493  * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1494  *                       to remove references to a hosthandle for LS's.
1495  *
1496  * The nvmet-fc layer ensures that any references to the hosthandle
1497  * on the targetport are forgotten (set to NULL).  The LLDD will
1498  * typically call this when a login with a remote host port has been
1499  * lost, thus LS's for the remote host port are no longer possible.
1500  *
1501  * If an LS request is outstanding to the targetport/hosthandle (or
1502  * issued concurrently with the call to invalidate the host), the
1503  * LLDD is responsible for terminating/aborting the LS and completing
1504  * the LS request. It is recommended that these terminations/aborts
1505  * occur after calling to invalidate the host handle to avoid additional
1506  * retries by the nvmet-fc transport. The nvmet-fc transport may
1507  * continue to reference host handle while it cleans up outstanding
1508  * NVME associations. The nvmet-fc transport will call the
1509  * ops->host_release() callback to notify the LLDD that all references
1510  * are complete and the related host handle can be recovered.
1511  * Note: if there are no references, the callback may be called before
1512  * the invalidate host call returns.
1513  *
1514  * @target_port: pointer to the (registered) target port that a prior
1515  *              LS was received on and which supplied the transport the
1516  *              hosthandle.
1517  * @hosthandle: the handle (pointer) that represents the host port
1518  *              that no longer has connectivity and that LS's should
1519  *              no longer be directed to.
1520  */
1521 void
nvmet_fc_invalidate_host(struct nvmet_fc_target_port * target_port,void * hosthandle)1522 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1523 			void *hosthandle)
1524 {
1525 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1526 	struct nvmet_fc_tgt_assoc *assoc, *next;
1527 	unsigned long flags;
1528 	bool noassoc = true;
1529 
1530 	spin_lock_irqsave(&tgtport->lock, flags);
1531 	list_for_each_entry_safe(assoc, next,
1532 				&tgtport->assoc_list, a_list) {
1533 		if (assoc->hostport->hosthandle != hosthandle)
1534 			continue;
1535 		if (!nvmet_fc_tgt_a_get(assoc))
1536 			continue;
1537 		assoc->hostport->invalid = 1;
1538 		noassoc = false;
1539 		nvmet_fc_schedule_delete_assoc(assoc);
1540 		nvmet_fc_tgt_a_put(assoc);
1541 	}
1542 	spin_unlock_irqrestore(&tgtport->lock, flags);
1543 
1544 	/* if there's nothing to wait for - call the callback */
1545 	if (noassoc && tgtport->ops->host_release)
1546 		tgtport->ops->host_release(hosthandle);
1547 }
1548 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1549 
1550 /*
1551  * nvmet layer has called to terminate an association
1552  */
1553 static void
nvmet_fc_delete_ctrl(struct nvmet_ctrl * ctrl)1554 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1555 {
1556 	struct nvmet_fc_tgtport *tgtport, *next;
1557 	struct nvmet_fc_tgt_assoc *assoc;
1558 	struct nvmet_fc_tgt_queue *queue;
1559 	unsigned long flags;
1560 	bool found_ctrl = false;
1561 
1562 	/* this is a bit ugly, but don't want to make locks layered */
1563 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1564 	list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1565 			tgt_list) {
1566 		if (!nvmet_fc_tgtport_get(tgtport))
1567 			continue;
1568 		spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1569 
1570 		rcu_read_lock();
1571 		list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1572 			queue = assoc->queues[0];
1573 			if (queue && queue->nvme_sq.ctrl == ctrl) {
1574 				if (nvmet_fc_tgt_a_get(assoc))
1575 					found_ctrl = true;
1576 				break;
1577 			}
1578 		}
1579 		rcu_read_unlock();
1580 
1581 		nvmet_fc_tgtport_put(tgtport);
1582 
1583 		if (found_ctrl) {
1584 			nvmet_fc_schedule_delete_assoc(assoc);
1585 			nvmet_fc_tgt_a_put(assoc);
1586 			return;
1587 		}
1588 
1589 		spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1590 	}
1591 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1592 }
1593 
1594 static void
nvmet_fc_free_pending_reqs(struct nvmet_fc_tgtport * tgtport)1595 nvmet_fc_free_pending_reqs(struct nvmet_fc_tgtport *tgtport)
1596 {
1597 	struct nvmet_fc_ls_req_op *lsop;
1598 	struct nvmefc_ls_req *lsreq;
1599 	struct nvmet_fc_ls_iod *iod;
1600 	int i;
1601 
1602 	iod = tgtport->iod;
1603 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++)
1604 		cancel_work(&iod->work);
1605 
1606 	/*
1607 	 * After this point the connection is lost and thus any pending
1608 	 * request can't be processed by the normal completion path. This
1609 	 * is likely a request from nvmet_fc_send_ls_req_async.
1610 	 */
1611 	while ((lsop = list_first_entry_or_null(&tgtport->ls_req_list,
1612 				struct nvmet_fc_ls_req_op, lsreq_list))) {
1613 		list_del(&lsop->lsreq_list);
1614 
1615 		if (!lsop->req_queued)
1616 			continue;
1617 
1618 		lsreq = &lsop->ls_req;
1619 		fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
1620 				    (lsreq->rqstlen + lsreq->rsplen),
1621 				    DMA_BIDIRECTIONAL);
1622 		nvmet_fc_tgtport_put(tgtport);
1623 		kfree(lsop);
1624 	}
1625 }
1626 
1627 /**
1628  * nvmet_fc_unregister_targetport - transport entry point called by an
1629  *                              LLDD to deregister/remove a previously
1630  *                              registered a local NVME subsystem FC port.
1631  * @target_port: pointer to the (registered) target port that is to be
1632  *               deregistered.
1633  *
1634  * Returns:
1635  * a completion status. Must be 0 upon success; a negative errno
1636  * (ex: -ENXIO) upon failure.
1637  */
1638 int
nvmet_fc_unregister_targetport(struct nvmet_fc_target_port * target_port)1639 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1640 {
1641 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1642 	unsigned long flags;
1643 
1644 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1645 	list_del(&tgtport->tgt_list);
1646 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1647 
1648 	nvmet_fc_portentry_unbind_tgt(tgtport);
1649 
1650 	/* terminate any outstanding associations */
1651 	__nvmet_fc_free_assocs(tgtport);
1652 
1653 	flush_workqueue(nvmet_wq);
1654 
1655 	nvmet_fc_free_pending_reqs(tgtport);
1656 	nvmet_fc_tgtport_put(tgtport);
1657 
1658 	return 0;
1659 }
1660 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1661 
1662 
1663 /* ********************** FC-NVME LS RCV Handling ************************* */
1664 
1665 
1666 static void
nvmet_fc_ls_create_association(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1667 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1668 			struct nvmet_fc_ls_iod *iod)
1669 {
1670 	struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1671 	struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1672 	struct nvmet_fc_tgt_queue *queue;
1673 	int ret = 0;
1674 
1675 	memset(acc, 0, sizeof(*acc));
1676 
1677 	/*
1678 	 * FC-NVME spec changes. There are initiators sending different
1679 	 * lengths as padding sizes for Create Association Cmd descriptor
1680 	 * was incorrect.
1681 	 * Accept anything of "minimum" length. Assume format per 1.15
1682 	 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1683 	 * trailing pad length is.
1684 	 */
1685 	if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1686 		ret = VERR_CR_ASSOC_LEN;
1687 	else if (be32_to_cpu(rqst->desc_list_len) <
1688 			FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1689 		ret = VERR_CR_ASSOC_RQST_LEN;
1690 	else if (rqst->assoc_cmd.desc_tag !=
1691 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1692 		ret = VERR_CR_ASSOC_CMD;
1693 	else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1694 			FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1695 		ret = VERR_CR_ASSOC_CMD_LEN;
1696 	else if (!rqst->assoc_cmd.ersp_ratio ||
1697 		 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1698 				be16_to_cpu(rqst->assoc_cmd.sqsize)))
1699 		ret = VERR_ERSP_RATIO;
1700 
1701 	else {
1702 		/* new association w/ admin queue */
1703 		iod->assoc = nvmet_fc_alloc_target_assoc(
1704 						tgtport, iod->hosthandle);
1705 		if (!iod->assoc)
1706 			ret = VERR_ASSOC_ALLOC_FAIL;
1707 		else {
1708 			queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1709 					be16_to_cpu(rqst->assoc_cmd.sqsize));
1710 			if (!queue) {
1711 				ret = VERR_QUEUE_ALLOC_FAIL;
1712 				nvmet_fc_tgt_a_put(iod->assoc);
1713 			}
1714 		}
1715 	}
1716 
1717 	if (ret) {
1718 		dev_err(tgtport->dev,
1719 			"Create Association LS failed: %s\n",
1720 			validation_errors[ret]);
1721 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1722 				sizeof(*acc), rqst->w0.ls_cmd,
1723 				FCNVME_RJT_RC_LOGIC,
1724 				FCNVME_RJT_EXP_NONE, 0);
1725 		return;
1726 	}
1727 
1728 	queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1729 	atomic_set(&queue->connected, 1);
1730 	queue->sqhd = 0;	/* best place to init value */
1731 
1732 	dev_info(tgtport->dev,
1733 		"{%d:%d} Association created\n",
1734 		tgtport->fc_target_port.port_num, iod->assoc->a_id);
1735 
1736 	/* format a response */
1737 
1738 	iod->lsrsp->rsplen = sizeof(*acc);
1739 
1740 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1741 			fcnvme_lsdesc_len(
1742 				sizeof(struct fcnvme_ls_cr_assoc_acc)),
1743 			FCNVME_LS_CREATE_ASSOCIATION);
1744 	acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1745 	acc->associd.desc_len =
1746 			fcnvme_lsdesc_len(
1747 				sizeof(struct fcnvme_lsdesc_assoc_id));
1748 	acc->associd.association_id =
1749 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1750 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1751 	acc->connectid.desc_len =
1752 			fcnvme_lsdesc_len(
1753 				sizeof(struct fcnvme_lsdesc_conn_id));
1754 	acc->connectid.connection_id = acc->associd.association_id;
1755 }
1756 
1757 static void
nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1758 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1759 			struct nvmet_fc_ls_iod *iod)
1760 {
1761 	struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1762 	struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1763 	struct nvmet_fc_tgt_queue *queue;
1764 	int ret = 0;
1765 
1766 	memset(acc, 0, sizeof(*acc));
1767 
1768 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1769 		ret = VERR_CR_CONN_LEN;
1770 	else if (rqst->desc_list_len !=
1771 			fcnvme_lsdesc_len(
1772 				sizeof(struct fcnvme_ls_cr_conn_rqst)))
1773 		ret = VERR_CR_CONN_RQST_LEN;
1774 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1775 		ret = VERR_ASSOC_ID;
1776 	else if (rqst->associd.desc_len !=
1777 			fcnvme_lsdesc_len(
1778 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1779 		ret = VERR_ASSOC_ID_LEN;
1780 	else if (rqst->connect_cmd.desc_tag !=
1781 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1782 		ret = VERR_CR_CONN_CMD;
1783 	else if (rqst->connect_cmd.desc_len !=
1784 			fcnvme_lsdesc_len(
1785 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1786 		ret = VERR_CR_CONN_CMD_LEN;
1787 	else if (!rqst->connect_cmd.ersp_ratio ||
1788 		 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1789 				be16_to_cpu(rqst->connect_cmd.sqsize)))
1790 		ret = VERR_ERSP_RATIO;
1791 
1792 	else {
1793 		/* new io queue */
1794 		iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1795 				be64_to_cpu(rqst->associd.association_id));
1796 		if (!iod->assoc)
1797 			ret = VERR_NO_ASSOC;
1798 		else {
1799 			queue = nvmet_fc_alloc_target_queue(iod->assoc,
1800 					be16_to_cpu(rqst->connect_cmd.qid),
1801 					be16_to_cpu(rqst->connect_cmd.sqsize));
1802 			if (!queue)
1803 				ret = VERR_QUEUE_ALLOC_FAIL;
1804 
1805 			/* release get taken in nvmet_fc_find_target_assoc */
1806 			nvmet_fc_tgt_a_put(iod->assoc);
1807 		}
1808 	}
1809 
1810 	if (ret) {
1811 		dev_err(tgtport->dev,
1812 			"Create Connection LS failed: %s\n",
1813 			validation_errors[ret]);
1814 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1815 				sizeof(*acc), rqst->w0.ls_cmd,
1816 				(ret == VERR_NO_ASSOC) ?
1817 					FCNVME_RJT_RC_INV_ASSOC :
1818 					FCNVME_RJT_RC_LOGIC,
1819 				FCNVME_RJT_EXP_NONE, 0);
1820 		return;
1821 	}
1822 
1823 	queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1824 	atomic_set(&queue->connected, 1);
1825 	queue->sqhd = 0;	/* best place to init value */
1826 
1827 	/* format a response */
1828 
1829 	iod->lsrsp->rsplen = sizeof(*acc);
1830 
1831 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1832 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1833 			FCNVME_LS_CREATE_CONNECTION);
1834 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1835 	acc->connectid.desc_len =
1836 			fcnvme_lsdesc_len(
1837 				sizeof(struct fcnvme_lsdesc_conn_id));
1838 	acc->connectid.connection_id =
1839 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1840 				be16_to_cpu(rqst->connect_cmd.qid)));
1841 }
1842 
1843 /*
1844  * Returns true if the LS response is to be transmit
1845  * Returns false if the LS response is to be delayed
1846  */
1847 static int
nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1848 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1849 			struct nvmet_fc_ls_iod *iod)
1850 {
1851 	struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1852 						&iod->rqstbuf->rq_dis_assoc;
1853 	struct fcnvme_ls_disconnect_assoc_acc *acc =
1854 						&iod->rspbuf->rsp_dis_assoc;
1855 	struct nvmet_fc_tgt_assoc *assoc = NULL;
1856 	struct nvmet_fc_ls_iod *oldls = NULL;
1857 	unsigned long flags;
1858 	int ret = 0;
1859 
1860 	memset(acc, 0, sizeof(*acc));
1861 
1862 	ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1863 	if (!ret) {
1864 		/* match an active association - takes an assoc ref if !NULL */
1865 		assoc = nvmet_fc_find_target_assoc(tgtport,
1866 				be64_to_cpu(rqst->associd.association_id));
1867 		iod->assoc = assoc;
1868 		if (!assoc)
1869 			ret = VERR_NO_ASSOC;
1870 	}
1871 
1872 	if (ret || !assoc) {
1873 		dev_err(tgtport->dev,
1874 			"Disconnect LS failed: %s\n",
1875 			validation_errors[ret]);
1876 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1877 				sizeof(*acc), rqst->w0.ls_cmd,
1878 				(ret == VERR_NO_ASSOC) ?
1879 					FCNVME_RJT_RC_INV_ASSOC :
1880 					FCNVME_RJT_RC_LOGIC,
1881 				FCNVME_RJT_EXP_NONE, 0);
1882 		return true;
1883 	}
1884 
1885 	/* format a response */
1886 
1887 	iod->lsrsp->rsplen = sizeof(*acc);
1888 
1889 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1890 			fcnvme_lsdesc_len(
1891 				sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1892 			FCNVME_LS_DISCONNECT_ASSOC);
1893 
1894 	/*
1895 	 * The rules for LS response says the response cannot
1896 	 * go back until ABTS's have been sent for all outstanding
1897 	 * I/O and a Disconnect Association LS has been sent.
1898 	 * So... save off the Disconnect LS to send the response
1899 	 * later. If there was a prior LS already saved, replace
1900 	 * it with the newer one and send a can't perform reject
1901 	 * on the older one.
1902 	 */
1903 	spin_lock_irqsave(&tgtport->lock, flags);
1904 	oldls = assoc->rcv_disconn;
1905 	assoc->rcv_disconn = iod;
1906 	spin_unlock_irqrestore(&tgtport->lock, flags);
1907 
1908 	if (oldls) {
1909 		dev_info(tgtport->dev,
1910 			"{%d:%d} Multiple Disconnect Association LS's "
1911 			"received\n",
1912 			tgtport->fc_target_port.port_num, assoc->a_id);
1913 		/* overwrite good response with bogus failure */
1914 		oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1915 						sizeof(*iod->rspbuf),
1916 						/* ok to use rqst, LS is same */
1917 						rqst->w0.ls_cmd,
1918 						FCNVME_RJT_RC_UNAB,
1919 						FCNVME_RJT_EXP_NONE, 0);
1920 		nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1921 	}
1922 
1923 	nvmet_fc_schedule_delete_assoc(assoc);
1924 	nvmet_fc_tgt_a_put(assoc);
1925 
1926 	return false;
1927 }
1928 
1929 
1930 /* *********************** NVME Ctrl Routines **************************** */
1931 
1932 
1933 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1934 
1935 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1936 
1937 static void
nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp * lsrsp)1938 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1939 {
1940 	struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1941 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1942 
1943 	fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1944 				sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1945 	nvmet_fc_free_ls_iod(tgtport, iod);
1946 	nvmet_fc_tgtport_put(tgtport);
1947 }
1948 
1949 static void
nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1950 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1951 				struct nvmet_fc_ls_iod *iod)
1952 {
1953 	int ret;
1954 
1955 	fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1956 				  sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1957 
1958 	ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1959 	if (ret)
1960 		nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1961 }
1962 
1963 /*
1964  * Actual processing routine for received FC-NVME LS Requests from the LLD
1965  */
1966 static void
nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1967 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1968 			struct nvmet_fc_ls_iod *iod)
1969 {
1970 	struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1971 	bool sendrsp = true;
1972 
1973 	iod->lsrsp->nvme_fc_private = iod;
1974 	iod->lsrsp->rspbuf = iod->rspbuf;
1975 	iod->lsrsp->rspdma = iod->rspdma;
1976 	iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1977 	/* Be preventative. handlers will later set to valid length */
1978 	iod->lsrsp->rsplen = 0;
1979 
1980 	iod->assoc = NULL;
1981 
1982 	/*
1983 	 * handlers:
1984 	 *   parse request input, execute the request, and format the
1985 	 *   LS response
1986 	 */
1987 	switch (w0->ls_cmd) {
1988 	case FCNVME_LS_CREATE_ASSOCIATION:
1989 		/* Creates Association and initial Admin Queue/Connection */
1990 		nvmet_fc_ls_create_association(tgtport, iod);
1991 		break;
1992 	case FCNVME_LS_CREATE_CONNECTION:
1993 		/* Creates an IO Queue/Connection */
1994 		nvmet_fc_ls_create_connection(tgtport, iod);
1995 		break;
1996 	case FCNVME_LS_DISCONNECT_ASSOC:
1997 		/* Terminate a Queue/Connection or the Association */
1998 		sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1999 		break;
2000 	default:
2001 		iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
2002 				sizeof(*iod->rspbuf), w0->ls_cmd,
2003 				FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
2004 	}
2005 
2006 	if (sendrsp)
2007 		nvmet_fc_xmt_ls_rsp(tgtport, iod);
2008 }
2009 
2010 /*
2011  * Actual processing routine for received FC-NVME LS Requests from the LLD
2012  */
2013 static void
nvmet_fc_handle_ls_rqst_work(struct work_struct * work)2014 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
2015 {
2016 	struct nvmet_fc_ls_iod *iod =
2017 		container_of(work, struct nvmet_fc_ls_iod, work);
2018 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
2019 
2020 	nvmet_fc_handle_ls_rqst(tgtport, iod);
2021 }
2022 
2023 
2024 /**
2025  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
2026  *                       upon the reception of a NVME LS request.
2027  *
2028  * The nvmet-fc layer will copy payload to an internal structure for
2029  * processing.  As such, upon completion of the routine, the LLDD may
2030  * immediately free/reuse the LS request buffer passed in the call.
2031  *
2032  * If this routine returns error, the LLDD should abort the exchange.
2033  *
2034  * @target_port: pointer to the (registered) target port the LS was
2035  *              received on.
2036  * @hosthandle: pointer to the host specific data, gets stored in iod.
2037  * @lsrsp:      pointer to a lsrsp structure to be used to reference
2038  *              the exchange corresponding to the LS.
2039  * @lsreqbuf:   pointer to the buffer containing the LS Request
2040  * @lsreqbuf_len: length, in bytes, of the received LS request
2041  */
2042 int
nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port * target_port,void * hosthandle,struct nvmefc_ls_rsp * lsrsp,void * lsreqbuf,u32 lsreqbuf_len)2043 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2044 			void *hosthandle,
2045 			struct nvmefc_ls_rsp *lsrsp,
2046 			void *lsreqbuf, u32 lsreqbuf_len)
2047 {
2048 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2049 	struct nvmet_fc_ls_iod *iod;
2050 	struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2051 
2052 	if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2053 		dev_info(tgtport->dev,
2054 			"RCV %s LS failed: payload too large (%d)\n",
2055 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2056 				nvmefc_ls_names[w0->ls_cmd] : "",
2057 			lsreqbuf_len);
2058 		return -E2BIG;
2059 	}
2060 
2061 	if (!nvmet_fc_tgtport_get(tgtport)) {
2062 		dev_info(tgtport->dev,
2063 			"RCV %s LS failed: target deleting\n",
2064 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2065 				nvmefc_ls_names[w0->ls_cmd] : "");
2066 		return -ESHUTDOWN;
2067 	}
2068 
2069 	iod = nvmet_fc_alloc_ls_iod(tgtport);
2070 	if (!iod) {
2071 		dev_info(tgtport->dev,
2072 			"RCV %s LS failed: context allocation failed\n",
2073 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2074 				nvmefc_ls_names[w0->ls_cmd] : "");
2075 		nvmet_fc_tgtport_put(tgtport);
2076 		return -ENOENT;
2077 	}
2078 
2079 	iod->lsrsp = lsrsp;
2080 	iod->fcpreq = NULL;
2081 	memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2082 	iod->rqstdatalen = lsreqbuf_len;
2083 	iod->hosthandle = hosthandle;
2084 
2085 	queue_work(nvmet_wq, &iod->work);
2086 
2087 	return 0;
2088 }
2089 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2090 
2091 
2092 /*
2093  * **********************
2094  * Start of FCP handling
2095  * **********************
2096  */
2097 
2098 static int
nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2099 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2100 {
2101 	struct scatterlist *sg;
2102 	unsigned int nent;
2103 
2104 	sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2105 	if (!sg)
2106 		goto out;
2107 
2108 	fod->data_sg = sg;
2109 	fod->data_sg_cnt = nent;
2110 	fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2111 				((fod->io_dir == NVMET_FCP_WRITE) ?
2112 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
2113 				/* note: write from initiator perspective */
2114 	fod->next_sg = fod->data_sg;
2115 
2116 	return 0;
2117 
2118 out:
2119 	return NVME_SC_INTERNAL;
2120 }
2121 
2122 static void
nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2123 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2124 {
2125 	if (!fod->data_sg || !fod->data_sg_cnt)
2126 		return;
2127 
2128 	fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2129 				((fod->io_dir == NVMET_FCP_WRITE) ?
2130 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
2131 	sgl_free(fod->data_sg);
2132 	fod->data_sg = NULL;
2133 	fod->data_sg_cnt = 0;
2134 }
2135 
2136 
2137 static bool
queue_90percent_full(struct nvmet_fc_tgt_queue * q,u32 sqhd)2138 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2139 {
2140 	u32 sqtail, used;
2141 
2142 	/* egad, this is ugly. And sqtail is just a best guess */
2143 	sqtail = atomic_read(&q->sqtail) % q->sqsize;
2144 
2145 	used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2146 	return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2147 }
2148 
2149 /*
2150  * Prep RSP payload.
2151  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2152  */
2153 static void
nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2154 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2155 				struct nvmet_fc_fcp_iod *fod)
2156 {
2157 	struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2158 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2159 	struct nvme_completion *cqe = &ersp->cqe;
2160 	u32 *cqewd = (u32 *)cqe;
2161 	bool send_ersp = false;
2162 	u32 rsn, rspcnt, xfr_length;
2163 
2164 	if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2165 		xfr_length = fod->req.transfer_len;
2166 	else
2167 		xfr_length = fod->offset;
2168 
2169 	/*
2170 	 * check to see if we can send a 0's rsp.
2171 	 *   Note: to send a 0's response, the NVME-FC host transport will
2172 	 *   recreate the CQE. The host transport knows: sq id, SQHD (last
2173 	 *   seen in an ersp), and command_id. Thus it will create a
2174 	 *   zero-filled CQE with those known fields filled in. Transport
2175 	 *   must send an ersp for any condition where the cqe won't match
2176 	 *   this.
2177 	 *
2178 	 * Here are the FC-NVME mandated cases where we must send an ersp:
2179 	 *  every N responses, where N=ersp_ratio
2180 	 *  force fabric commands to send ersp's (not in FC-NVME but good
2181 	 *    practice)
2182 	 *  normal cmds: any time status is non-zero, or status is zero
2183 	 *     but words 0 or 1 are non-zero.
2184 	 *  the SQ is 90% or more full
2185 	 *  the cmd is a fused command
2186 	 *  transferred data length not equal to cmd iu length
2187 	 */
2188 	rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2189 	if (!(rspcnt % fod->queue->ersp_ratio) ||
2190 	    nvme_is_fabrics((struct nvme_command *) sqe) ||
2191 	    xfr_length != fod->req.transfer_len ||
2192 	    (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2193 	    (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2194 	    queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2195 		send_ersp = true;
2196 
2197 	/* re-set the fields */
2198 	fod->fcpreq->rspaddr = ersp;
2199 	fod->fcpreq->rspdma = fod->rspdma;
2200 
2201 	if (!send_ersp) {
2202 		memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2203 		fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2204 	} else {
2205 		ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2206 		rsn = atomic_inc_return(&fod->queue->rsn);
2207 		ersp->rsn = cpu_to_be32(rsn);
2208 		ersp->xfrd_len = cpu_to_be32(xfr_length);
2209 		fod->fcpreq->rsplen = sizeof(*ersp);
2210 	}
2211 
2212 	fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2213 				  sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2214 }
2215 
2216 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2217 
2218 static void
nvmet_fc_abort_op(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2219 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2220 				struct nvmet_fc_fcp_iod *fod)
2221 {
2222 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2223 
2224 	/* data no longer needed */
2225 	nvmet_fc_free_tgt_pgs(fod);
2226 
2227 	/*
2228 	 * if an ABTS was received or we issued the fcp_abort early
2229 	 * don't call abort routine again.
2230 	 */
2231 	/* no need to take lock - lock was taken earlier to get here */
2232 	if (!fod->aborted)
2233 		tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2234 
2235 	nvmet_fc_free_fcp_iod(fod->queue, fod);
2236 }
2237 
2238 static void
nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2239 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2240 				struct nvmet_fc_fcp_iod *fod)
2241 {
2242 	int ret;
2243 
2244 	fod->fcpreq->op = NVMET_FCOP_RSP;
2245 	fod->fcpreq->timeout = 0;
2246 
2247 	nvmet_fc_prep_fcp_rsp(tgtport, fod);
2248 
2249 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2250 	if (ret)
2251 		nvmet_fc_abort_op(tgtport, fod);
2252 }
2253 
2254 static void
nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,u8 op)2255 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2256 				struct nvmet_fc_fcp_iod *fod, u8 op)
2257 {
2258 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2259 	struct scatterlist *sg = fod->next_sg;
2260 	unsigned long flags;
2261 	u32 remaininglen = fod->req.transfer_len - fod->offset;
2262 	u32 tlen = 0;
2263 	int ret;
2264 
2265 	fcpreq->op = op;
2266 	fcpreq->offset = fod->offset;
2267 	fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2268 
2269 	/*
2270 	 * for next sequence:
2271 	 *  break at a sg element boundary
2272 	 *  attempt to keep sequence length capped at
2273 	 *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2274 	 *    be longer if a single sg element is larger
2275 	 *    than that amount. This is done to avoid creating
2276 	 *    a new sg list to use for the tgtport api.
2277 	 */
2278 	fcpreq->sg = sg;
2279 	fcpreq->sg_cnt = 0;
2280 	while (tlen < remaininglen &&
2281 	       fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2282 	       tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2283 		fcpreq->sg_cnt++;
2284 		tlen += sg_dma_len(sg);
2285 		sg = sg_next(sg);
2286 	}
2287 	if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2288 		fcpreq->sg_cnt++;
2289 		tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2290 		sg = sg_next(sg);
2291 	}
2292 	if (tlen < remaininglen)
2293 		fod->next_sg = sg;
2294 	else
2295 		fod->next_sg = NULL;
2296 
2297 	fcpreq->transfer_length = tlen;
2298 	fcpreq->transferred_length = 0;
2299 	fcpreq->fcp_error = 0;
2300 	fcpreq->rsplen = 0;
2301 
2302 	/*
2303 	 * If the last READDATA request: check if LLDD supports
2304 	 * combined xfr with response.
2305 	 */
2306 	if ((op == NVMET_FCOP_READDATA) &&
2307 	    ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2308 	    (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2309 		fcpreq->op = NVMET_FCOP_READDATA_RSP;
2310 		nvmet_fc_prep_fcp_rsp(tgtport, fod);
2311 	}
2312 
2313 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2314 	if (ret) {
2315 		/*
2316 		 * should be ok to set w/o lock as its in the thread of
2317 		 * execution (not an async timer routine) and doesn't
2318 		 * contend with any clearing action
2319 		 */
2320 		fod->abort = true;
2321 
2322 		if (op == NVMET_FCOP_WRITEDATA) {
2323 			spin_lock_irqsave(&fod->flock, flags);
2324 			fod->writedataactive = false;
2325 			spin_unlock_irqrestore(&fod->flock, flags);
2326 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2327 		} else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2328 			fcpreq->fcp_error = ret;
2329 			fcpreq->transferred_length = 0;
2330 			nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2331 		}
2332 	}
2333 }
2334 
2335 static inline bool
__nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod * fod,bool abort)2336 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2337 {
2338 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2339 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2340 
2341 	/* if in the middle of an io and we need to tear down */
2342 	if (abort) {
2343 		if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2344 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2345 			return true;
2346 		}
2347 
2348 		nvmet_fc_abort_op(tgtport, fod);
2349 		return true;
2350 	}
2351 
2352 	return false;
2353 }
2354 
2355 /*
2356  * actual done handler for FCP operations when completed by the lldd
2357  */
2358 static void
nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod * fod)2359 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2360 {
2361 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2362 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2363 	unsigned long flags;
2364 	bool abort;
2365 
2366 	spin_lock_irqsave(&fod->flock, flags);
2367 	abort = fod->abort;
2368 	fod->writedataactive = false;
2369 	spin_unlock_irqrestore(&fod->flock, flags);
2370 
2371 	switch (fcpreq->op) {
2372 
2373 	case NVMET_FCOP_WRITEDATA:
2374 		if (__nvmet_fc_fod_op_abort(fod, abort))
2375 			return;
2376 		if (fcpreq->fcp_error ||
2377 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2378 			spin_lock_irqsave(&fod->flock, flags);
2379 			fod->abort = true;
2380 			spin_unlock_irqrestore(&fod->flock, flags);
2381 
2382 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2383 			return;
2384 		}
2385 
2386 		fod->offset += fcpreq->transferred_length;
2387 		if (fod->offset != fod->req.transfer_len) {
2388 			spin_lock_irqsave(&fod->flock, flags);
2389 			fod->writedataactive = true;
2390 			spin_unlock_irqrestore(&fod->flock, flags);
2391 
2392 			/* transfer the next chunk */
2393 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2394 						NVMET_FCOP_WRITEDATA);
2395 			return;
2396 		}
2397 
2398 		/* data transfer complete, resume with nvmet layer */
2399 		fod->req.execute(&fod->req);
2400 		break;
2401 
2402 	case NVMET_FCOP_READDATA:
2403 	case NVMET_FCOP_READDATA_RSP:
2404 		if (__nvmet_fc_fod_op_abort(fod, abort))
2405 			return;
2406 		if (fcpreq->fcp_error ||
2407 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2408 			nvmet_fc_abort_op(tgtport, fod);
2409 			return;
2410 		}
2411 
2412 		/* success */
2413 
2414 		if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2415 			/* data no longer needed */
2416 			nvmet_fc_free_tgt_pgs(fod);
2417 			nvmet_fc_free_fcp_iod(fod->queue, fod);
2418 			return;
2419 		}
2420 
2421 		fod->offset += fcpreq->transferred_length;
2422 		if (fod->offset != fod->req.transfer_len) {
2423 			/* transfer the next chunk */
2424 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2425 						NVMET_FCOP_READDATA);
2426 			return;
2427 		}
2428 
2429 		/* data transfer complete, send response */
2430 
2431 		/* data no longer needed */
2432 		nvmet_fc_free_tgt_pgs(fod);
2433 
2434 		nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2435 
2436 		break;
2437 
2438 	case NVMET_FCOP_RSP:
2439 		if (__nvmet_fc_fod_op_abort(fod, abort))
2440 			return;
2441 		nvmet_fc_free_fcp_iod(fod->queue, fod);
2442 		break;
2443 
2444 	default:
2445 		break;
2446 	}
2447 }
2448 
2449 static void
nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req * fcpreq)2450 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2451 {
2452 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2453 
2454 	nvmet_fc_fod_op_done(fod);
2455 }
2456 
2457 /*
2458  * actual completion handler after execution by the nvmet layer
2459  */
2460 static void
__nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,int status)2461 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2462 			struct nvmet_fc_fcp_iod *fod, int status)
2463 {
2464 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2465 	struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2466 	unsigned long flags;
2467 	bool abort;
2468 
2469 	spin_lock_irqsave(&fod->flock, flags);
2470 	abort = fod->abort;
2471 	spin_unlock_irqrestore(&fod->flock, flags);
2472 
2473 	/* if we have a CQE, snoop the last sq_head value */
2474 	if (!status)
2475 		fod->queue->sqhd = cqe->sq_head;
2476 
2477 	if (abort) {
2478 		nvmet_fc_abort_op(tgtport, fod);
2479 		return;
2480 	}
2481 
2482 	/* if an error handling the cmd post initial parsing */
2483 	if (status) {
2484 		/* fudge up a failed CQE status for our transport error */
2485 		memset(cqe, 0, sizeof(*cqe));
2486 		cqe->sq_head = fod->queue->sqhd;	/* echo last cqe sqhd */
2487 		cqe->sq_id = cpu_to_le16(fod->queue->qid);
2488 		cqe->command_id = sqe->command_id;
2489 		cqe->status = cpu_to_le16(status);
2490 	} else {
2491 
2492 		/*
2493 		 * try to push the data even if the SQE status is non-zero.
2494 		 * There may be a status where data still was intended to
2495 		 * be moved
2496 		 */
2497 		if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2498 			/* push the data over before sending rsp */
2499 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2500 						NVMET_FCOP_READDATA);
2501 			return;
2502 		}
2503 
2504 		/* writes & no data - fall thru */
2505 	}
2506 
2507 	/* data no longer needed */
2508 	nvmet_fc_free_tgt_pgs(fod);
2509 
2510 	nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2511 }
2512 
2513 
2514 static void
nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req * nvme_req)2515 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2516 {
2517 	struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2518 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2519 
2520 	__nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2521 }
2522 
2523 
2524 /*
2525  * Actual processing routine for received FC-NVME I/O Requests from the LLD
2526  */
2527 static void
nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2528 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2529 			struct nvmet_fc_fcp_iod *fod)
2530 {
2531 	struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2532 	u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2533 	int ret;
2534 
2535 	/*
2536 	 * Fused commands are currently not supported in the linux
2537 	 * implementation.
2538 	 *
2539 	 * As such, the implementation of the FC transport does not
2540 	 * look at the fused commands and order delivery to the upper
2541 	 * layer until we have both based on csn.
2542 	 */
2543 
2544 	fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2545 
2546 	if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2547 		fod->io_dir = NVMET_FCP_WRITE;
2548 		if (!nvme_is_write(&cmdiu->sqe))
2549 			goto transport_error;
2550 	} else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2551 		fod->io_dir = NVMET_FCP_READ;
2552 		if (nvme_is_write(&cmdiu->sqe))
2553 			goto transport_error;
2554 	} else {
2555 		fod->io_dir = NVMET_FCP_NODATA;
2556 		if (xfrlen)
2557 			goto transport_error;
2558 	}
2559 
2560 	fod->req.cmd = &fod->cmdiubuf.sqe;
2561 	fod->req.cqe = &fod->rspiubuf.cqe;
2562 	if (!tgtport->pe)
2563 		goto transport_error;
2564 	fod->req.port = tgtport->pe->port;
2565 
2566 	/* clear any response payload */
2567 	memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2568 
2569 	fod->data_sg = NULL;
2570 	fod->data_sg_cnt = 0;
2571 
2572 	ret = nvmet_req_init(&fod->req, &fod->queue->nvme_sq,
2573 			&nvmet_fc_tgt_fcp_ops);
2574 	if (!ret) {
2575 		/* bad SQE content or invalid ctrl state */
2576 		/* nvmet layer has already called op done to send rsp. */
2577 		return;
2578 	}
2579 
2580 	fod->req.transfer_len = xfrlen;
2581 
2582 	/* keep a running counter of tail position */
2583 	atomic_inc(&fod->queue->sqtail);
2584 
2585 	if (fod->req.transfer_len) {
2586 		ret = nvmet_fc_alloc_tgt_pgs(fod);
2587 		if (ret) {
2588 			nvmet_req_complete(&fod->req, ret);
2589 			return;
2590 		}
2591 	}
2592 	fod->req.sg = fod->data_sg;
2593 	fod->req.sg_cnt = fod->data_sg_cnt;
2594 	fod->offset = 0;
2595 
2596 	if (fod->io_dir == NVMET_FCP_WRITE) {
2597 		/* pull the data over before invoking nvmet layer */
2598 		nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2599 		return;
2600 	}
2601 
2602 	/*
2603 	 * Reads or no data:
2604 	 *
2605 	 * can invoke the nvmet_layer now. If read data, cmd completion will
2606 	 * push the data
2607 	 */
2608 	fod->req.execute(&fod->req);
2609 	return;
2610 
2611 transport_error:
2612 	nvmet_fc_abort_op(tgtport, fod);
2613 }
2614 
2615 /**
2616  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2617  *                       upon the reception of a NVME FCP CMD IU.
2618  *
2619  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2620  * layer for processing.
2621  *
2622  * The nvmet_fc layer allocates a local job structure (struct
2623  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2624  * CMD IU buffer to the job structure. As such, on a successful
2625  * completion (returns 0), the LLDD may immediately free/reuse
2626  * the CMD IU buffer passed in the call.
2627  *
2628  * However, in some circumstances, due to the packetized nature of FC
2629  * and the api of the FC LLDD which may issue a hw command to send the
2630  * response, but the LLDD may not get the hw completion for that command
2631  * and upcall the nvmet_fc layer before a new command may be
2632  * asynchronously received - its possible for a command to be received
2633  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2634  * the appearance of more commands received than fits in the sq.
2635  * To alleviate this scenario, a temporary queue is maintained in the
2636  * transport for pending LLDD requests waiting for a queue job structure.
2637  * In these "overrun" cases, a temporary queue element is allocated
2638  * the LLDD request and CMD iu buffer information remembered, and the
2639  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2640  * structure is freed, it is immediately reallocated for anything on the
2641  * pending request list. The LLDDs defer_rcv() callback is called,
2642  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2643  * is then started normally with the transport.
2644  *
2645  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2646  * the completion as successful but must not reuse the CMD IU buffer
2647  * until the LLDD's defer_rcv() callback has been called for the
2648  * corresponding struct nvmefc_tgt_fcp_req pointer.
2649  *
2650  * If there is any other condition in which an error occurs, the
2651  * transport will return a non-zero status indicating the error.
2652  * In all cases other than -EOVERFLOW, the transport has not accepted the
2653  * request and the LLDD should abort the exchange.
2654  *
2655  * @target_port: pointer to the (registered) target port the FCP CMD IU
2656  *              was received on.
2657  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2658  *              the exchange corresponding to the FCP Exchange.
2659  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2660  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2661  */
2662 int
nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq,void * cmdiubuf,u32 cmdiubuf_len)2663 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2664 			struct nvmefc_tgt_fcp_req *fcpreq,
2665 			void *cmdiubuf, u32 cmdiubuf_len)
2666 {
2667 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2668 	struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2669 	struct nvmet_fc_tgt_queue *queue;
2670 	struct nvmet_fc_fcp_iod *fod;
2671 	struct nvmet_fc_defer_fcp_req *deferfcp;
2672 	unsigned long flags;
2673 
2674 	/* validate iu, so the connection id can be used to find the queue */
2675 	if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2676 			(cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2677 			(cmdiu->fc_id != NVME_CMD_FC_ID) ||
2678 			(be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2679 		return -EIO;
2680 
2681 	queue = nvmet_fc_find_target_queue(tgtport,
2682 				be64_to_cpu(cmdiu->connection_id));
2683 	if (!queue)
2684 		return -ENOTCONN;
2685 
2686 	/*
2687 	 * note: reference taken by find_target_queue
2688 	 * After successful fod allocation, the fod will inherit the
2689 	 * ownership of that reference and will remove the reference
2690 	 * when the fod is freed.
2691 	 */
2692 
2693 	spin_lock_irqsave(&queue->qlock, flags);
2694 
2695 	fod = nvmet_fc_alloc_fcp_iod(queue);
2696 	if (fod) {
2697 		spin_unlock_irqrestore(&queue->qlock, flags);
2698 
2699 		fcpreq->nvmet_fc_private = fod;
2700 		fod->fcpreq = fcpreq;
2701 
2702 		memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2703 
2704 		nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2705 
2706 		return 0;
2707 	}
2708 
2709 	if (!tgtport->ops->defer_rcv) {
2710 		spin_unlock_irqrestore(&queue->qlock, flags);
2711 		/* release the queue lookup reference */
2712 		nvmet_fc_tgt_q_put(queue);
2713 		return -ENOENT;
2714 	}
2715 
2716 	deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2717 			struct nvmet_fc_defer_fcp_req, req_list);
2718 	if (deferfcp) {
2719 		/* Just re-use one that was previously allocated */
2720 		list_del(&deferfcp->req_list);
2721 	} else {
2722 		spin_unlock_irqrestore(&queue->qlock, flags);
2723 
2724 		/* Now we need to dynamically allocate one */
2725 		deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2726 		if (!deferfcp) {
2727 			/* release the queue lookup reference */
2728 			nvmet_fc_tgt_q_put(queue);
2729 			return -ENOMEM;
2730 		}
2731 		spin_lock_irqsave(&queue->qlock, flags);
2732 	}
2733 
2734 	/* For now, use rspaddr / rsplen to save payload information */
2735 	fcpreq->rspaddr = cmdiubuf;
2736 	fcpreq->rsplen  = cmdiubuf_len;
2737 	deferfcp->fcp_req = fcpreq;
2738 
2739 	/* defer processing till a fod becomes available */
2740 	list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2741 
2742 	/* NOTE: the queue lookup reference is still valid */
2743 
2744 	spin_unlock_irqrestore(&queue->qlock, flags);
2745 
2746 	return -EOVERFLOW;
2747 }
2748 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2749 
2750 /**
2751  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2752  *                       upon the reception of an ABTS for a FCP command
2753  *
2754  * Notify the transport that an ABTS has been received for a FCP command
2755  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2756  * LLDD believes the command is still being worked on
2757  * (template_ops->fcp_req_release() has not been called).
2758  *
2759  * The transport will wait for any outstanding work (an op to the LLDD,
2760  * which the lldd should complete with error due to the ABTS; or the
2761  * completion from the nvmet layer of the nvme command), then will
2762  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2763  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2764  * to the ABTS either after return from this function (assuming any
2765  * outstanding op work has been terminated) or upon the callback being
2766  * called.
2767  *
2768  * @target_port: pointer to the (registered) target port the FCP CMD IU
2769  *              was received on.
2770  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2771  *              to the exchange that received the ABTS.
2772  */
2773 void
nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq)2774 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2775 			struct nvmefc_tgt_fcp_req *fcpreq)
2776 {
2777 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2778 	struct nvmet_fc_tgt_queue *queue;
2779 	unsigned long flags;
2780 
2781 	if (!fod || fod->fcpreq != fcpreq)
2782 		/* job appears to have already completed, ignore abort */
2783 		return;
2784 
2785 	queue = fod->queue;
2786 
2787 	spin_lock_irqsave(&queue->qlock, flags);
2788 	if (fod->active) {
2789 		/*
2790 		 * mark as abort. The abort handler, invoked upon completion
2791 		 * of any work, will detect the aborted status and do the
2792 		 * callback.
2793 		 */
2794 		spin_lock(&fod->flock);
2795 		fod->abort = true;
2796 		fod->aborted = true;
2797 		spin_unlock(&fod->flock);
2798 	}
2799 	spin_unlock_irqrestore(&queue->qlock, flags);
2800 }
2801 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2802 
2803 
2804 struct nvmet_fc_traddr {
2805 	u64	nn;
2806 	u64	pn;
2807 };
2808 
2809 static int
__nvme_fc_parse_u64(substring_t * sstr,u64 * val)2810 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2811 {
2812 	u64 token64;
2813 
2814 	if (match_u64(sstr, &token64))
2815 		return -EINVAL;
2816 	*val = token64;
2817 
2818 	return 0;
2819 }
2820 
2821 /*
2822  * This routine validates and extracts the WWN's from the TRADDR string.
2823  * As kernel parsers need the 0x to determine number base, universally
2824  * build string to parse with 0x prefix before parsing name strings.
2825  */
2826 static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr * traddr,char * buf,size_t blen)2827 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2828 {
2829 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2830 	substring_t wwn = { name, &name[sizeof(name)-1] };
2831 	int nnoffset, pnoffset;
2832 
2833 	/* validate if string is one of the 2 allowed formats */
2834 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2835 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2836 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2837 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2838 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
2839 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2840 						NVME_FC_TRADDR_OXNNLEN;
2841 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2842 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2843 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2844 				"pn-", NVME_FC_TRADDR_NNLEN))) {
2845 		nnoffset = NVME_FC_TRADDR_NNLEN;
2846 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2847 	} else
2848 		goto out_einval;
2849 
2850 	name[0] = '0';
2851 	name[1] = 'x';
2852 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2853 
2854 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2855 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2856 		goto out_einval;
2857 
2858 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2859 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2860 		goto out_einval;
2861 
2862 	return 0;
2863 
2864 out_einval:
2865 	pr_warn("%s: bad traddr string\n", __func__);
2866 	return -EINVAL;
2867 }
2868 
2869 static int
nvmet_fc_add_port(struct nvmet_port * port)2870 nvmet_fc_add_port(struct nvmet_port *port)
2871 {
2872 	struct nvmet_fc_tgtport *tgtport;
2873 	struct nvmet_fc_port_entry *pe;
2874 	struct nvmet_fc_traddr traddr = { 0L, 0L };
2875 	unsigned long flags;
2876 	int ret;
2877 
2878 	/* validate the address info */
2879 	if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2880 	    (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2881 		return -EINVAL;
2882 
2883 	/* map the traddr address info to a target port */
2884 
2885 	ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2886 			sizeof(port->disc_addr.traddr));
2887 	if (ret)
2888 		return ret;
2889 
2890 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2891 	if (!pe)
2892 		return -ENOMEM;
2893 
2894 	ret = -ENXIO;
2895 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2896 	list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2897 		if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2898 		    (tgtport->fc_target_port.port_name == traddr.pn)) {
2899 			if (!nvmet_fc_tgtport_get(tgtport))
2900 				continue;
2901 
2902 			/* a FC port can only be 1 nvmet port id */
2903 			if (!tgtport->pe) {
2904 				nvmet_fc_portentry_bind(tgtport, pe, port);
2905 				ret = 0;
2906 			} else
2907 				ret = -EALREADY;
2908 
2909 			nvmet_fc_tgtport_put(tgtport);
2910 			break;
2911 		}
2912 	}
2913 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2914 
2915 	if (ret)
2916 		kfree(pe);
2917 
2918 	return ret;
2919 }
2920 
2921 static void
nvmet_fc_remove_port(struct nvmet_port * port)2922 nvmet_fc_remove_port(struct nvmet_port *port)
2923 {
2924 	struct nvmet_fc_port_entry *pe = port->priv;
2925 	struct nvmet_fc_tgtport *tgtport = NULL;
2926 	unsigned long flags;
2927 
2928 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2929 	if (pe->tgtport && nvmet_fc_tgtport_get(pe->tgtport))
2930 		tgtport = pe->tgtport;
2931 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2932 
2933 	nvmet_fc_portentry_unbind(pe);
2934 
2935 	if (tgtport) {
2936 		/* terminate any outstanding associations */
2937 		__nvmet_fc_free_assocs(tgtport);
2938 		nvmet_fc_tgtport_put(tgtport);
2939 	}
2940 
2941 	kfree(pe);
2942 }
2943 
2944 static void
nvmet_fc_discovery_chg(struct nvmet_port * port)2945 nvmet_fc_discovery_chg(struct nvmet_port *port)
2946 {
2947 	struct nvmet_fc_port_entry *pe = port->priv;
2948 	struct nvmet_fc_tgtport *tgtport = NULL;
2949 	unsigned long flags;
2950 
2951 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2952 	if (pe->tgtport && nvmet_fc_tgtport_get(pe->tgtport))
2953 		tgtport = pe->tgtport;
2954 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2955 
2956 	if (!tgtport)
2957 		return;
2958 
2959 	if (tgtport && tgtport->ops->discovery_event)
2960 		tgtport->ops->discovery_event(&tgtport->fc_target_port);
2961 
2962 	nvmet_fc_tgtport_put(tgtport);
2963 }
2964 
2965 static ssize_t
nvmet_fc_host_traddr(struct nvmet_ctrl * ctrl,char * traddr,size_t traddr_size)2966 nvmet_fc_host_traddr(struct nvmet_ctrl *ctrl,
2967 		char *traddr, size_t traddr_size)
2968 {
2969 	struct nvmet_sq *sq = ctrl->sqs[0];
2970 	struct nvmet_fc_tgt_queue *queue =
2971 		container_of(sq, struct nvmet_fc_tgt_queue, nvme_sq);
2972 	struct nvmet_fc_tgtport *tgtport = queue->assoc ? queue->assoc->tgtport : NULL;
2973 	struct nvmet_fc_hostport *hostport = queue->assoc ? queue->assoc->hostport : NULL;
2974 	u64 wwnn, wwpn;
2975 	ssize_t ret = 0;
2976 
2977 	if (!tgtport || !nvmet_fc_tgtport_get(tgtport))
2978 		return -ENODEV;
2979 	if (!hostport || !nvmet_fc_hostport_get(hostport)) {
2980 		ret = -ENODEV;
2981 		goto out_put;
2982 	}
2983 
2984 	if (tgtport->ops->host_traddr) {
2985 		ret = tgtport->ops->host_traddr(hostport->hosthandle, &wwnn, &wwpn);
2986 		if (ret)
2987 			goto out_put_host;
2988 		ret = snprintf(traddr, traddr_size, "nn-0x%llx:pn-0x%llx", wwnn, wwpn);
2989 	}
2990 out_put_host:
2991 	nvmet_fc_hostport_put(hostport);
2992 out_put:
2993 	nvmet_fc_tgtport_put(tgtport);
2994 	return ret;
2995 }
2996 
2997 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2998 	.owner			= THIS_MODULE,
2999 	.type			= NVMF_TRTYPE_FC,
3000 	.msdbd			= 1,
3001 	.add_port		= nvmet_fc_add_port,
3002 	.remove_port		= nvmet_fc_remove_port,
3003 	.queue_response		= nvmet_fc_fcp_nvme_cmd_done,
3004 	.delete_ctrl		= nvmet_fc_delete_ctrl,
3005 	.discovery_chg		= nvmet_fc_discovery_chg,
3006 	.host_traddr		= nvmet_fc_host_traddr,
3007 };
3008 
nvmet_fc_init_module(void)3009 static int __init nvmet_fc_init_module(void)
3010 {
3011 	return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
3012 }
3013 
nvmet_fc_exit_module(void)3014 static void __exit nvmet_fc_exit_module(void)
3015 {
3016 	/* ensure any shutdown operation, e.g. delete ctrls have finished */
3017 	flush_workqueue(nvmet_wq);
3018 
3019 	/* sanity check - all lports should be removed */
3020 	if (!list_empty(&nvmet_fc_target_list))
3021 		pr_warn("%s: targetport list not empty\n", __func__);
3022 
3023 	nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
3024 
3025 	ida_destroy(&nvmet_fc_tgtport_cnt);
3026 }
3027 
3028 module_init(nvmet_fc_init_module);
3029 module_exit(nvmet_fc_exit_module);
3030 
3031 MODULE_DESCRIPTION("NVMe target FC transport driver");
3032 MODULE_LICENSE("GPL v2");
3033