1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
4 */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
18
19
20 /* *************************** Data Structures/Defines ****************** */
21
22
23 #define NVMET_LS_CTX_COUNT 256
24
25 struct nvmet_fc_tgtport;
26 struct nvmet_fc_tgt_assoc;
27
28 struct nvmet_fc_ls_iod { /* for an LS RQST RCV */
29 struct nvmefc_ls_rsp *lsrsp;
30 struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */
31
32 struct list_head ls_rcv_list; /* tgtport->ls_rcv_list */
33
34 struct nvmet_fc_tgtport *tgtport;
35 struct nvmet_fc_tgt_assoc *assoc;
36 void *hosthandle;
37
38 union nvmefc_ls_requests *rqstbuf;
39 union nvmefc_ls_responses *rspbuf;
40 u16 rqstdatalen;
41 dma_addr_t rspdma;
42
43 struct scatterlist sg[2];
44
45 struct work_struct work;
46 } __aligned(sizeof(unsigned long long));
47
48 struct nvmet_fc_ls_req_op { /* for an LS RQST XMT */
49 struct nvmefc_ls_req ls_req;
50
51 struct nvmet_fc_tgtport *tgtport;
52 void *hosthandle;
53
54 int ls_error;
55 struct list_head lsreq_list; /* tgtport->ls_req_list */
56 bool req_queued;
57 };
58
59
60 /* desired maximum for a single sequence - if sg list allows it */
61 #define NVMET_FC_MAX_SEQ_LENGTH (256 * 1024)
62
63 enum nvmet_fcp_datadir {
64 NVMET_FCP_NODATA,
65 NVMET_FCP_WRITE,
66 NVMET_FCP_READ,
67 NVMET_FCP_ABORTED,
68 };
69
70 struct nvmet_fc_fcp_iod {
71 struct nvmefc_tgt_fcp_req *fcpreq;
72
73 struct nvme_fc_cmd_iu cmdiubuf;
74 struct nvme_fc_ersp_iu rspiubuf;
75 dma_addr_t rspdma;
76 struct scatterlist *next_sg;
77 struct scatterlist *data_sg;
78 int data_sg_cnt;
79 u32 offset;
80 enum nvmet_fcp_datadir io_dir;
81 bool active;
82 bool abort;
83 bool aborted;
84 bool writedataactive;
85 spinlock_t flock;
86
87 struct nvmet_req req;
88 struct work_struct defer_work;
89
90 struct nvmet_fc_tgtport *tgtport;
91 struct nvmet_fc_tgt_queue *queue;
92
93 struct list_head fcp_list; /* tgtport->fcp_list */
94 };
95
96 struct nvmet_fc_tgtport {
97 struct nvmet_fc_target_port fc_target_port;
98
99 struct list_head tgt_list; /* nvmet_fc_target_list */
100 struct device *dev; /* dev for dma mapping */
101 struct nvmet_fc_target_template *ops;
102
103 struct nvmet_fc_ls_iod *iod;
104 spinlock_t lock;
105 struct list_head ls_rcv_list;
106 struct list_head ls_req_list;
107 struct list_head ls_busylist;
108 struct list_head assoc_list;
109 struct list_head host_list;
110 struct ida assoc_cnt;
111 struct nvmet_fc_port_entry *pe;
112 struct kref ref;
113 u32 max_sg_cnt;
114
115 struct work_struct put_work;
116 };
117
118 struct nvmet_fc_port_entry {
119 struct nvmet_fc_tgtport *tgtport;
120 struct nvmet_port *port;
121 u64 node_name;
122 u64 port_name;
123 struct list_head pe_list;
124 };
125
126 struct nvmet_fc_defer_fcp_req {
127 struct list_head req_list;
128 struct nvmefc_tgt_fcp_req *fcp_req;
129 };
130
131 struct nvmet_fc_tgt_queue {
132 bool ninetypercent;
133 u16 qid;
134 u16 sqsize;
135 u16 ersp_ratio;
136 __le16 sqhd;
137 atomic_t connected;
138 atomic_t sqtail;
139 atomic_t zrspcnt;
140 atomic_t rsn;
141 spinlock_t qlock;
142 struct nvmet_cq nvme_cq;
143 struct nvmet_sq nvme_sq;
144 struct nvmet_fc_tgt_assoc *assoc;
145 struct list_head fod_list;
146 struct list_head pending_cmd_list;
147 struct list_head avail_defer_list;
148 struct workqueue_struct *work_q;
149 struct kref ref;
150 /* array of fcp_iods */
151 struct nvmet_fc_fcp_iod fod[] /* __counted_by(sqsize) */;
152 } __aligned(sizeof(unsigned long long));
153
154 struct nvmet_fc_hostport {
155 struct nvmet_fc_tgtport *tgtport;
156 void *hosthandle;
157 struct list_head host_list;
158 struct kref ref;
159 u8 invalid;
160 };
161
162 struct nvmet_fc_tgt_assoc {
163 u64 association_id;
164 u32 a_id;
165 atomic_t terminating;
166 struct nvmet_fc_tgtport *tgtport;
167 struct nvmet_fc_hostport *hostport;
168 struct nvmet_fc_ls_iod *rcv_disconn;
169 struct list_head a_list;
170 struct nvmet_fc_tgt_queue *queues[NVMET_NR_QUEUES + 1];
171 struct kref ref;
172 struct work_struct del_work;
173 };
174
175 /*
176 * Association and Connection IDs:
177 *
178 * Association ID will have random number in upper 6 bytes and zero
179 * in lower 2 bytes
180 *
181 * Connection IDs will be Association ID with QID or'd in lower 2 bytes
182 *
183 * note: Association ID = Connection ID for queue 0
184 */
185 #define BYTES_FOR_QID sizeof(u16)
186 #define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8)
187 #define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
188
189 static inline u64
nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc * assoc,u16 qid)190 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
191 {
192 return (assoc->association_id | qid);
193 }
194
195 static inline u64
nvmet_fc_getassociationid(u64 connectionid)196 nvmet_fc_getassociationid(u64 connectionid)
197 {
198 return connectionid & ~NVMET_FC_QUEUEID_MASK;
199 }
200
201 static inline u16
nvmet_fc_getqueueid(u64 connectionid)202 nvmet_fc_getqueueid(u64 connectionid)
203 {
204 return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
205 }
206
207 static inline struct nvmet_fc_tgtport *
targetport_to_tgtport(struct nvmet_fc_target_port * targetport)208 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
209 {
210 return container_of(targetport, struct nvmet_fc_tgtport,
211 fc_target_port);
212 }
213
214 static inline struct nvmet_fc_fcp_iod *
nvmet_req_to_fod(struct nvmet_req * nvme_req)215 nvmet_req_to_fod(struct nvmet_req *nvme_req)
216 {
217 return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
218 }
219
220
221 /* *************************** Globals **************************** */
222
223
224 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
225
226 static LIST_HEAD(nvmet_fc_target_list);
227 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
228 static LIST_HEAD(nvmet_fc_portentry_list);
229
230
231 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
232 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
233 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
234 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
235 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
236 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
237 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
nvmet_fc_put_tgtport_work(struct work_struct * work)238 static void nvmet_fc_put_tgtport_work(struct work_struct *work)
239 {
240 struct nvmet_fc_tgtport *tgtport =
241 container_of(work, struct nvmet_fc_tgtport, put_work);
242
243 nvmet_fc_tgtport_put(tgtport);
244 }
245 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
246 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
247 struct nvmet_fc_fcp_iod *fod);
248 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
249 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
250 struct nvmet_fc_ls_iod *iod);
251
252
253 /* *********************** FC-NVME DMA Handling **************************** */
254
255 /*
256 * The fcloop device passes in a NULL device pointer. Real LLD's will
257 * pass in a valid device pointer. If NULL is passed to the dma mapping
258 * routines, depending on the platform, it may or may not succeed, and
259 * may crash.
260 *
261 * As such:
262 * Wrapper all the dma routines and check the dev pointer.
263 *
264 * If simple mappings (return just a dma address, we'll noop them,
265 * returning a dma address of 0.
266 *
267 * On more complex mappings (dma_map_sg), a pseudo routine fills
268 * in the scatter list, setting all dma addresses to 0.
269 */
270
271 static inline dma_addr_t
fc_dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)272 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
273 enum dma_data_direction dir)
274 {
275 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
276 }
277
278 static inline int
fc_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)279 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
280 {
281 return dev ? dma_mapping_error(dev, dma_addr) : 0;
282 }
283
284 static inline void
fc_dma_unmap_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)285 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
286 enum dma_data_direction dir)
287 {
288 if (dev)
289 dma_unmap_single(dev, addr, size, dir);
290 }
291
292 static inline void
fc_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)293 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
294 enum dma_data_direction dir)
295 {
296 if (dev)
297 dma_sync_single_for_cpu(dev, addr, size, dir);
298 }
299
300 static inline void
fc_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)301 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
302 enum dma_data_direction dir)
303 {
304 if (dev)
305 dma_sync_single_for_device(dev, addr, size, dir);
306 }
307
308 /* pseudo dma_map_sg call */
309 static int
fc_map_sg(struct scatterlist * sg,int nents)310 fc_map_sg(struct scatterlist *sg, int nents)
311 {
312 struct scatterlist *s;
313 int i;
314
315 WARN_ON(nents == 0 || sg[0].length == 0);
316
317 for_each_sg(sg, s, nents, i) {
318 s->dma_address = 0L;
319 #ifdef CONFIG_NEED_SG_DMA_LENGTH
320 s->dma_length = s->length;
321 #endif
322 }
323 return nents;
324 }
325
326 static inline int
fc_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)327 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
328 enum dma_data_direction dir)
329 {
330 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
331 }
332
333 static inline void
fc_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)334 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
335 enum dma_data_direction dir)
336 {
337 if (dev)
338 dma_unmap_sg(dev, sg, nents, dir);
339 }
340
341
342 /* ********************** FC-NVME LS XMT Handling ************************* */
343
344
345 static void
__nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op * lsop)346 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
347 {
348 struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
349 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
350 unsigned long flags;
351
352 spin_lock_irqsave(&tgtport->lock, flags);
353
354 if (!lsop->req_queued) {
355 spin_unlock_irqrestore(&tgtport->lock, flags);
356 goto out_putwork;
357 }
358
359 list_del(&lsop->lsreq_list);
360
361 lsop->req_queued = false;
362
363 spin_unlock_irqrestore(&tgtport->lock, flags);
364
365 fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
366 (lsreq->rqstlen + lsreq->rsplen),
367 DMA_BIDIRECTIONAL);
368
369 out_putwork:
370 queue_work(nvmet_wq, &tgtport->put_work);
371 }
372
373 static int
__nvmet_fc_send_ls_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))374 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
375 struct nvmet_fc_ls_req_op *lsop,
376 void (*done)(struct nvmefc_ls_req *req, int status))
377 {
378 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
379 unsigned long flags;
380 int ret = 0;
381
382 if (!tgtport->ops->ls_req)
383 return -EOPNOTSUPP;
384
385 if (!nvmet_fc_tgtport_get(tgtport))
386 return -ESHUTDOWN;
387
388 lsreq->done = done;
389 lsop->req_queued = false;
390 INIT_LIST_HEAD(&lsop->lsreq_list);
391
392 lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
393 lsreq->rqstlen + lsreq->rsplen,
394 DMA_BIDIRECTIONAL);
395 if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
396 ret = -EFAULT;
397 goto out_puttgtport;
398 }
399 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
400
401 spin_lock_irqsave(&tgtport->lock, flags);
402
403 list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
404
405 lsop->req_queued = true;
406
407 spin_unlock_irqrestore(&tgtport->lock, flags);
408
409 ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
410 lsreq);
411 if (ret)
412 goto out_unlink;
413
414 return 0;
415
416 out_unlink:
417 lsop->ls_error = ret;
418 spin_lock_irqsave(&tgtport->lock, flags);
419 lsop->req_queued = false;
420 list_del(&lsop->lsreq_list);
421 spin_unlock_irqrestore(&tgtport->lock, flags);
422 fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
423 (lsreq->rqstlen + lsreq->rsplen),
424 DMA_BIDIRECTIONAL);
425 out_puttgtport:
426 nvmet_fc_tgtport_put(tgtport);
427
428 return ret;
429 }
430
431 static int
nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))432 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
433 struct nvmet_fc_ls_req_op *lsop,
434 void (*done)(struct nvmefc_ls_req *req, int status))
435 {
436 /* don't wait for completion */
437
438 return __nvmet_fc_send_ls_req(tgtport, lsop, done);
439 }
440
441 static void
nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req * lsreq,int status)442 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
443 {
444 struct nvmet_fc_ls_req_op *lsop =
445 container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
446
447 __nvmet_fc_finish_ls_req(lsop);
448
449 /* fc-nvme target doesn't care about success or failure of cmd */
450
451 kfree(lsop);
452 }
453
454 /*
455 * This routine sends a FC-NVME LS to disconnect (aka terminate)
456 * the FC-NVME Association. Terminating the association also
457 * terminates the FC-NVME connections (per queue, both admin and io
458 * queues) that are part of the association. E.g. things are torn
459 * down, and the related FC-NVME Association ID and Connection IDs
460 * become invalid.
461 *
462 * The behavior of the fc-nvme target is such that it's
463 * understanding of the association and connections will implicitly
464 * be torn down. The action is implicit as it may be due to a loss of
465 * connectivity with the fc-nvme host, so the target may never get a
466 * response even if it tried. As such, the action of this routine
467 * is to asynchronously send the LS, ignore any results of the LS, and
468 * continue on with terminating the association. If the fc-nvme host
469 * is present and receives the LS, it too can tear down.
470 */
471 static void
nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc * assoc)472 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
473 {
474 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
475 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
476 struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
477 struct nvmet_fc_ls_req_op *lsop;
478 struct nvmefc_ls_req *lsreq;
479 int ret;
480
481 /*
482 * If ls_req is NULL or no hosthandle, it's an older lldd and no
483 * message is normal. Otherwise, send unless the hostport has
484 * already been invalidated by the lldd.
485 */
486 if (!tgtport->ops->ls_req || assoc->hostport->invalid)
487 return;
488
489 lsop = kzalloc((sizeof(*lsop) +
490 sizeof(*discon_rqst) + sizeof(*discon_acc) +
491 tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
492 if (!lsop) {
493 dev_info(tgtport->dev,
494 "{%d:%d} send Disconnect Association failed: ENOMEM\n",
495 tgtport->fc_target_port.port_num, assoc->a_id);
496 return;
497 }
498
499 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
500 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
501 lsreq = &lsop->ls_req;
502 if (tgtport->ops->lsrqst_priv_sz)
503 lsreq->private = (void *)&discon_acc[1];
504 else
505 lsreq->private = NULL;
506
507 lsop->tgtport = tgtport;
508 lsop->hosthandle = assoc->hostport->hosthandle;
509
510 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
511 assoc->association_id);
512
513 ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
514 nvmet_fc_disconnect_assoc_done);
515 if (ret) {
516 dev_info(tgtport->dev,
517 "{%d:%d} XMT Disconnect Association failed: %d\n",
518 tgtport->fc_target_port.port_num, assoc->a_id, ret);
519 kfree(lsop);
520 }
521 }
522
523
524 /* *********************** FC-NVME Port Management ************************ */
525
526
527 static int
nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport * tgtport)528 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
529 {
530 struct nvmet_fc_ls_iod *iod;
531 int i;
532
533 iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
534 GFP_KERNEL);
535 if (!iod)
536 return -ENOMEM;
537
538 tgtport->iod = iod;
539
540 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
541 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
542 iod->tgtport = tgtport;
543 list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
544
545 iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
546 sizeof(union nvmefc_ls_responses),
547 GFP_KERNEL);
548 if (!iod->rqstbuf)
549 goto out_fail;
550
551 iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
552
553 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
554 sizeof(*iod->rspbuf),
555 DMA_TO_DEVICE);
556 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
557 goto out_fail;
558 }
559
560 return 0;
561
562 out_fail:
563 kfree(iod->rqstbuf);
564 list_del(&iod->ls_rcv_list);
565 for (iod--, i--; i >= 0; iod--, i--) {
566 fc_dma_unmap_single(tgtport->dev, iod->rspdma,
567 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
568 kfree(iod->rqstbuf);
569 list_del(&iod->ls_rcv_list);
570 }
571
572 kfree(iod);
573
574 return -EFAULT;
575 }
576
577 static void
nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport * tgtport)578 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
579 {
580 struct nvmet_fc_ls_iod *iod = tgtport->iod;
581 int i;
582
583 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
584 fc_dma_unmap_single(tgtport->dev,
585 iod->rspdma, sizeof(*iod->rspbuf),
586 DMA_TO_DEVICE);
587 kfree(iod->rqstbuf);
588 list_del(&iod->ls_rcv_list);
589 }
590 kfree(tgtport->iod);
591 }
592
593 static struct nvmet_fc_ls_iod *
nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport * tgtport)594 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
595 {
596 struct nvmet_fc_ls_iod *iod;
597 unsigned long flags;
598
599 spin_lock_irqsave(&tgtport->lock, flags);
600 iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
601 struct nvmet_fc_ls_iod, ls_rcv_list);
602 if (iod)
603 list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
604 spin_unlock_irqrestore(&tgtport->lock, flags);
605 return iod;
606 }
607
608
609 static void
nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)610 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
611 struct nvmet_fc_ls_iod *iod)
612 {
613 unsigned long flags;
614
615 spin_lock_irqsave(&tgtport->lock, flags);
616 list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
617 spin_unlock_irqrestore(&tgtport->lock, flags);
618 }
619
620 static void
nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)621 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
622 struct nvmet_fc_tgt_queue *queue)
623 {
624 struct nvmet_fc_fcp_iod *fod = queue->fod;
625 int i;
626
627 for (i = 0; i < queue->sqsize; fod++, i++) {
628 INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
629 fod->tgtport = tgtport;
630 fod->queue = queue;
631 fod->active = false;
632 fod->abort = false;
633 fod->aborted = false;
634 fod->fcpreq = NULL;
635 list_add_tail(&fod->fcp_list, &queue->fod_list);
636 spin_lock_init(&fod->flock);
637
638 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
639 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
640 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
641 list_del(&fod->fcp_list);
642 for (fod--, i--; i >= 0; fod--, i--) {
643 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
644 sizeof(fod->rspiubuf),
645 DMA_TO_DEVICE);
646 fod->rspdma = 0L;
647 list_del(&fod->fcp_list);
648 }
649
650 return;
651 }
652 }
653 }
654
655 static void
nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)656 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
657 struct nvmet_fc_tgt_queue *queue)
658 {
659 struct nvmet_fc_fcp_iod *fod = queue->fod;
660 int i;
661
662 for (i = 0; i < queue->sqsize; fod++, i++) {
663 if (fod->rspdma)
664 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
665 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
666 }
667 }
668
669 static struct nvmet_fc_fcp_iod *
nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue * queue)670 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
671 {
672 struct nvmet_fc_fcp_iod *fod;
673
674 lockdep_assert_held(&queue->qlock);
675
676 fod = list_first_entry_or_null(&queue->fod_list,
677 struct nvmet_fc_fcp_iod, fcp_list);
678 if (fod) {
679 list_del(&fod->fcp_list);
680 fod->active = true;
681 /*
682 * no queue reference is taken, as it was taken by the
683 * queue lookup just prior to the allocation. The iod
684 * will "inherit" that reference.
685 */
686 }
687 return fod;
688 }
689
690
691 static void
nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue,struct nvmefc_tgt_fcp_req * fcpreq)692 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
693 struct nvmet_fc_tgt_queue *queue,
694 struct nvmefc_tgt_fcp_req *fcpreq)
695 {
696 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
697
698 /*
699 * put all admin cmds on hw queue id 0. All io commands go to
700 * the respective hw queue based on a modulo basis
701 */
702 fcpreq->hwqid = queue->qid ?
703 ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
704
705 nvmet_fc_handle_fcp_rqst(tgtport, fod);
706 }
707
708 static void
nvmet_fc_fcp_rqst_op_defer_work(struct work_struct * work)709 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
710 {
711 struct nvmet_fc_fcp_iod *fod =
712 container_of(work, struct nvmet_fc_fcp_iod, defer_work);
713
714 /* Submit deferred IO for processing */
715 nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
716
717 }
718
719 static void
nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue * queue,struct nvmet_fc_fcp_iod * fod)720 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
721 struct nvmet_fc_fcp_iod *fod)
722 {
723 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
724 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
725 struct nvmet_fc_defer_fcp_req *deferfcp;
726 unsigned long flags;
727
728 fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
729 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
730
731 fcpreq->nvmet_fc_private = NULL;
732
733 fod->active = false;
734 fod->abort = false;
735 fod->aborted = false;
736 fod->writedataactive = false;
737 fod->fcpreq = NULL;
738
739 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
740
741 /* release the queue lookup reference on the completed IO */
742 nvmet_fc_tgt_q_put(queue);
743
744 spin_lock_irqsave(&queue->qlock, flags);
745 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
746 struct nvmet_fc_defer_fcp_req, req_list);
747 if (!deferfcp) {
748 list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
749 spin_unlock_irqrestore(&queue->qlock, flags);
750 return;
751 }
752
753 /* Re-use the fod for the next pending cmd that was deferred */
754 list_del(&deferfcp->req_list);
755
756 fcpreq = deferfcp->fcp_req;
757
758 /* deferfcp can be reused for another IO at a later date */
759 list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
760
761 spin_unlock_irqrestore(&queue->qlock, flags);
762
763 /* Save NVME CMD IO in fod */
764 memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
765
766 /* Setup new fcpreq to be processed */
767 fcpreq->rspaddr = NULL;
768 fcpreq->rsplen = 0;
769 fcpreq->nvmet_fc_private = fod;
770 fod->fcpreq = fcpreq;
771 fod->active = true;
772
773 /* inform LLDD IO is now being processed */
774 tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
775
776 /*
777 * Leave the queue lookup get reference taken when
778 * fod was originally allocated.
779 */
780
781 queue_work(queue->work_q, &fod->defer_work);
782 }
783
784 static struct nvmet_fc_tgt_queue *
nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc * assoc,u16 qid,u16 sqsize)785 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
786 u16 qid, u16 sqsize)
787 {
788 struct nvmet_fc_tgt_queue *queue;
789 int ret;
790
791 if (qid > NVMET_NR_QUEUES)
792 return NULL;
793
794 queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
795 if (!queue)
796 return NULL;
797
798 queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
799 assoc->tgtport->fc_target_port.port_num,
800 assoc->a_id, qid);
801 if (!queue->work_q)
802 goto out_free_queue;
803
804 queue->qid = qid;
805 queue->sqsize = sqsize;
806 queue->assoc = assoc;
807 INIT_LIST_HEAD(&queue->fod_list);
808 INIT_LIST_HEAD(&queue->avail_defer_list);
809 INIT_LIST_HEAD(&queue->pending_cmd_list);
810 atomic_set(&queue->connected, 0);
811 atomic_set(&queue->sqtail, 0);
812 atomic_set(&queue->rsn, 1);
813 atomic_set(&queue->zrspcnt, 0);
814 spin_lock_init(&queue->qlock);
815 kref_init(&queue->ref);
816
817 nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
818
819 nvmet_cq_init(&queue->nvme_cq);
820 ret = nvmet_sq_init(&queue->nvme_sq, &queue->nvme_cq);
821 if (ret)
822 goto out_fail_iodlist;
823
824 WARN_ON(assoc->queues[qid]);
825 assoc->queues[qid] = queue;
826
827 return queue;
828
829 out_fail_iodlist:
830 nvmet_cq_put(&queue->nvme_cq);
831 nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
832 destroy_workqueue(queue->work_q);
833 out_free_queue:
834 kfree(queue);
835 return NULL;
836 }
837
838
839 static void
nvmet_fc_tgt_queue_free(struct kref * ref)840 nvmet_fc_tgt_queue_free(struct kref *ref)
841 {
842 struct nvmet_fc_tgt_queue *queue =
843 container_of(ref, struct nvmet_fc_tgt_queue, ref);
844
845 nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
846
847 destroy_workqueue(queue->work_q);
848
849 kfree(queue);
850 }
851
852 static void
nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue * queue)853 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
854 {
855 kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
856 }
857
858 static int
nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue * queue)859 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
860 {
861 return kref_get_unless_zero(&queue->ref);
862 }
863
864
865 static void
nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue * queue)866 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
867 {
868 struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
869 struct nvmet_fc_fcp_iod *fod = queue->fod;
870 struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
871 unsigned long flags;
872 int i;
873 bool disconnect;
874
875 disconnect = atomic_xchg(&queue->connected, 0);
876
877 /* if not connected, nothing to do */
878 if (!disconnect)
879 return;
880
881 spin_lock_irqsave(&queue->qlock, flags);
882 /* abort outstanding io's */
883 for (i = 0; i < queue->sqsize; fod++, i++) {
884 if (fod->active) {
885 spin_lock(&fod->flock);
886 fod->abort = true;
887 /*
888 * only call lldd abort routine if waiting for
889 * writedata. other outstanding ops should finish
890 * on their own.
891 */
892 if (fod->writedataactive) {
893 fod->aborted = true;
894 spin_unlock(&fod->flock);
895 tgtport->ops->fcp_abort(
896 &tgtport->fc_target_port, fod->fcpreq);
897 } else
898 spin_unlock(&fod->flock);
899 }
900 }
901
902 /* Cleanup defer'ed IOs in queue */
903 list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
904 req_list) {
905 list_del(&deferfcp->req_list);
906 kfree(deferfcp);
907 }
908
909 for (;;) {
910 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
911 struct nvmet_fc_defer_fcp_req, req_list);
912 if (!deferfcp)
913 break;
914
915 list_del(&deferfcp->req_list);
916 spin_unlock_irqrestore(&queue->qlock, flags);
917
918 tgtport->ops->defer_rcv(&tgtport->fc_target_port,
919 deferfcp->fcp_req);
920
921 tgtport->ops->fcp_abort(&tgtport->fc_target_port,
922 deferfcp->fcp_req);
923
924 tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
925 deferfcp->fcp_req);
926
927 /* release the queue lookup reference */
928 nvmet_fc_tgt_q_put(queue);
929
930 kfree(deferfcp);
931
932 spin_lock_irqsave(&queue->qlock, flags);
933 }
934 spin_unlock_irqrestore(&queue->qlock, flags);
935
936 flush_workqueue(queue->work_q);
937
938 nvmet_sq_destroy(&queue->nvme_sq);
939 nvmet_cq_put(&queue->nvme_cq);
940
941 nvmet_fc_tgt_q_put(queue);
942 }
943
944 static struct nvmet_fc_tgt_queue *
nvmet_fc_find_target_queue(struct nvmet_fc_tgtport * tgtport,u64 connection_id)945 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
946 u64 connection_id)
947 {
948 struct nvmet_fc_tgt_assoc *assoc;
949 struct nvmet_fc_tgt_queue *queue;
950 u64 association_id = nvmet_fc_getassociationid(connection_id);
951 u16 qid = nvmet_fc_getqueueid(connection_id);
952
953 if (qid > NVMET_NR_QUEUES)
954 return NULL;
955
956 rcu_read_lock();
957 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
958 if (association_id == assoc->association_id) {
959 queue = assoc->queues[qid];
960 if (queue &&
961 (!atomic_read(&queue->connected) ||
962 !nvmet_fc_tgt_q_get(queue)))
963 queue = NULL;
964 rcu_read_unlock();
965 return queue;
966 }
967 }
968 rcu_read_unlock();
969 return NULL;
970 }
971
972 static void
nvmet_fc_hostport_free(struct kref * ref)973 nvmet_fc_hostport_free(struct kref *ref)
974 {
975 struct nvmet_fc_hostport *hostport =
976 container_of(ref, struct nvmet_fc_hostport, ref);
977 struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
978 unsigned long flags;
979
980 spin_lock_irqsave(&tgtport->lock, flags);
981 list_del(&hostport->host_list);
982 spin_unlock_irqrestore(&tgtport->lock, flags);
983 if (tgtport->ops->host_release && hostport->invalid)
984 tgtport->ops->host_release(hostport->hosthandle);
985 kfree(hostport);
986 nvmet_fc_tgtport_put(tgtport);
987 }
988
989 static void
nvmet_fc_hostport_put(struct nvmet_fc_hostport * hostport)990 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
991 {
992 kref_put(&hostport->ref, nvmet_fc_hostport_free);
993 }
994
995 static int
nvmet_fc_hostport_get(struct nvmet_fc_hostport * hostport)996 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
997 {
998 return kref_get_unless_zero(&hostport->ref);
999 }
1000
1001 static struct nvmet_fc_hostport *
nvmet_fc_match_hostport(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1002 nvmet_fc_match_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1003 {
1004 struct nvmet_fc_hostport *host;
1005
1006 lockdep_assert_held(&tgtport->lock);
1007
1008 list_for_each_entry(host, &tgtport->host_list, host_list) {
1009 if (host->hosthandle == hosthandle && !host->invalid) {
1010 if (nvmet_fc_hostport_get(host))
1011 return host;
1012 }
1013 }
1014
1015 return NULL;
1016 }
1017
1018 static struct nvmet_fc_hostport *
nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1019 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1020 {
1021 struct nvmet_fc_hostport *newhost, *match = NULL;
1022 unsigned long flags;
1023
1024 /*
1025 * Caller holds a reference on tgtport.
1026 */
1027
1028 /* if LLDD not implemented, leave as NULL */
1029 if (!hosthandle)
1030 return NULL;
1031
1032 spin_lock_irqsave(&tgtport->lock, flags);
1033 match = nvmet_fc_match_hostport(tgtport, hosthandle);
1034 spin_unlock_irqrestore(&tgtport->lock, flags);
1035
1036 if (match)
1037 return match;
1038
1039 newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1040 if (!newhost)
1041 return ERR_PTR(-ENOMEM);
1042
1043 spin_lock_irqsave(&tgtport->lock, flags);
1044 match = nvmet_fc_match_hostport(tgtport, hosthandle);
1045 if (match) {
1046 /* new allocation not needed */
1047 kfree(newhost);
1048 newhost = match;
1049 } else {
1050 nvmet_fc_tgtport_get(tgtport);
1051 newhost->tgtport = tgtport;
1052 newhost->hosthandle = hosthandle;
1053 INIT_LIST_HEAD(&newhost->host_list);
1054 kref_init(&newhost->ref);
1055
1056 list_add_tail(&newhost->host_list, &tgtport->host_list);
1057 }
1058 spin_unlock_irqrestore(&tgtport->lock, flags);
1059
1060 return newhost;
1061 }
1062
1063 static void
nvmet_fc_delete_assoc_work(struct work_struct * work)1064 nvmet_fc_delete_assoc_work(struct work_struct *work)
1065 {
1066 struct nvmet_fc_tgt_assoc *assoc =
1067 container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1068 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1069
1070 nvmet_fc_delete_target_assoc(assoc);
1071 nvmet_fc_tgt_a_put(assoc);
1072 nvmet_fc_tgtport_put(tgtport);
1073 }
1074
1075 static void
nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc * assoc)1076 nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc *assoc)
1077 {
1078 nvmet_fc_tgtport_get(assoc->tgtport);
1079 if (!queue_work(nvmet_wq, &assoc->del_work))
1080 nvmet_fc_tgtport_put(assoc->tgtport);
1081 }
1082
1083 static bool
nvmet_fc_assoc_exists(struct nvmet_fc_tgtport * tgtport,u64 association_id)1084 nvmet_fc_assoc_exists(struct nvmet_fc_tgtport *tgtport, u64 association_id)
1085 {
1086 struct nvmet_fc_tgt_assoc *a;
1087 bool found = false;
1088
1089 rcu_read_lock();
1090 list_for_each_entry_rcu(a, &tgtport->assoc_list, a_list) {
1091 if (association_id == a->association_id) {
1092 found = true;
1093 break;
1094 }
1095 }
1096 rcu_read_unlock();
1097
1098 return found;
1099 }
1100
1101 static struct nvmet_fc_tgt_assoc *
nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1102 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1103 {
1104 struct nvmet_fc_tgt_assoc *assoc;
1105 unsigned long flags;
1106 bool done;
1107 u64 ran;
1108 int idx;
1109
1110 if (!tgtport->pe)
1111 return NULL;
1112
1113 assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1114 if (!assoc)
1115 return NULL;
1116
1117 idx = ida_alloc(&tgtport->assoc_cnt, GFP_KERNEL);
1118 if (idx < 0)
1119 goto out_free_assoc;
1120
1121 assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1122 if (IS_ERR(assoc->hostport))
1123 goto out_ida;
1124
1125 assoc->tgtport = tgtport;
1126 nvmet_fc_tgtport_get(tgtport);
1127 assoc->a_id = idx;
1128 INIT_LIST_HEAD(&assoc->a_list);
1129 kref_init(&assoc->ref);
1130 INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc_work);
1131 atomic_set(&assoc->terminating, 0);
1132
1133 done = false;
1134 do {
1135 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1136 ran = ran << BYTES_FOR_QID_SHIFT;
1137
1138 spin_lock_irqsave(&tgtport->lock, flags);
1139 if (!nvmet_fc_assoc_exists(tgtport, ran)) {
1140 assoc->association_id = ran;
1141 list_add_tail_rcu(&assoc->a_list, &tgtport->assoc_list);
1142 done = true;
1143 }
1144 spin_unlock_irqrestore(&tgtport->lock, flags);
1145 } while (!done);
1146
1147 return assoc;
1148
1149 out_ida:
1150 ida_free(&tgtport->assoc_cnt, idx);
1151 out_free_assoc:
1152 kfree(assoc);
1153 return NULL;
1154 }
1155
1156 static void
nvmet_fc_target_assoc_free(struct kref * ref)1157 nvmet_fc_target_assoc_free(struct kref *ref)
1158 {
1159 struct nvmet_fc_tgt_assoc *assoc =
1160 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1161 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1162 struct nvmet_fc_ls_iod *oldls;
1163 unsigned long flags;
1164 int i;
1165
1166 for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1167 if (assoc->queues[i])
1168 nvmet_fc_delete_target_queue(assoc->queues[i]);
1169 }
1170
1171 /* Send Disconnect now that all i/o has completed */
1172 nvmet_fc_xmt_disconnect_assoc(assoc);
1173
1174 nvmet_fc_hostport_put(assoc->hostport);
1175 spin_lock_irqsave(&tgtport->lock, flags);
1176 oldls = assoc->rcv_disconn;
1177 spin_unlock_irqrestore(&tgtport->lock, flags);
1178 /* if pending Rcv Disconnect Association LS, send rsp now */
1179 if (oldls)
1180 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1181 ida_free(&tgtport->assoc_cnt, assoc->a_id);
1182 dev_info(tgtport->dev,
1183 "{%d:%d} Association freed\n",
1184 tgtport->fc_target_port.port_num, assoc->a_id);
1185 kfree(assoc);
1186 }
1187
1188 static void
nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc * assoc)1189 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1190 {
1191 kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1192 }
1193
1194 static int
nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc * assoc)1195 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1196 {
1197 return kref_get_unless_zero(&assoc->ref);
1198 }
1199
1200 static void
nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc * assoc)1201 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1202 {
1203 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1204 unsigned long flags;
1205 int i, terminating;
1206
1207 terminating = atomic_xchg(&assoc->terminating, 1);
1208
1209 /* if already terminating, do nothing */
1210 if (terminating)
1211 return;
1212
1213 spin_lock_irqsave(&tgtport->lock, flags);
1214 list_del_rcu(&assoc->a_list);
1215 spin_unlock_irqrestore(&tgtport->lock, flags);
1216
1217 synchronize_rcu();
1218
1219 /* ensure all in-flight I/Os have been processed */
1220 for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1221 if (assoc->queues[i])
1222 flush_workqueue(assoc->queues[i]->work_q);
1223 }
1224
1225 dev_info(tgtport->dev,
1226 "{%d:%d} Association deleted\n",
1227 tgtport->fc_target_port.port_num, assoc->a_id);
1228
1229 nvmet_fc_tgtport_put(tgtport);
1230 }
1231
1232 static struct nvmet_fc_tgt_assoc *
nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport * tgtport,u64 association_id)1233 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1234 u64 association_id)
1235 {
1236 struct nvmet_fc_tgt_assoc *assoc;
1237 struct nvmet_fc_tgt_assoc *ret = NULL;
1238
1239 rcu_read_lock();
1240 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1241 if (association_id == assoc->association_id) {
1242 ret = assoc;
1243 if (!nvmet_fc_tgt_a_get(assoc))
1244 ret = NULL;
1245 break;
1246 }
1247 }
1248 rcu_read_unlock();
1249
1250 return ret;
1251 }
1252
1253 static void
nvmet_fc_portentry_bind(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_port_entry * pe,struct nvmet_port * port)1254 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1255 struct nvmet_fc_port_entry *pe,
1256 struct nvmet_port *port)
1257 {
1258 lockdep_assert_held(&nvmet_fc_tgtlock);
1259
1260 nvmet_fc_tgtport_get(tgtport);
1261 pe->tgtport = tgtport;
1262 tgtport->pe = pe;
1263
1264 pe->port = port;
1265 port->priv = pe;
1266
1267 pe->node_name = tgtport->fc_target_port.node_name;
1268 pe->port_name = tgtport->fc_target_port.port_name;
1269 INIT_LIST_HEAD(&pe->pe_list);
1270
1271 list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1272 }
1273
1274 static void
nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry * pe)1275 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1276 {
1277 unsigned long flags;
1278
1279 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1280 if (pe->tgtport) {
1281 nvmet_fc_tgtport_put(pe->tgtport);
1282 pe->tgtport->pe = NULL;
1283 }
1284 list_del(&pe->pe_list);
1285 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1286 }
1287
1288 /*
1289 * called when a targetport deregisters. Breaks the relationship
1290 * with the nvmet port, but leaves the port_entry in place so that
1291 * re-registration can resume operation.
1292 */
1293 static void
nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport * tgtport)1294 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1295 {
1296 struct nvmet_fc_port_entry *pe;
1297 unsigned long flags;
1298
1299 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1300 pe = tgtport->pe;
1301 if (pe) {
1302 nvmet_fc_tgtport_put(pe->tgtport);
1303 pe->tgtport = NULL;
1304 }
1305 tgtport->pe = NULL;
1306 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1307 }
1308
1309 /*
1310 * called when a new targetport is registered. Looks in the
1311 * existing nvmet port_entries to see if the nvmet layer is
1312 * configured for the targetport's wwn's. (the targetport existed,
1313 * nvmet configured, the lldd unregistered the tgtport, and is now
1314 * reregistering the same targetport). If so, set the nvmet port
1315 * port entry on the targetport.
1316 */
1317 static void
nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport * tgtport)1318 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1319 {
1320 struct nvmet_fc_port_entry *pe;
1321 unsigned long flags;
1322
1323 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1324 list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1325 if (tgtport->fc_target_port.node_name == pe->node_name &&
1326 tgtport->fc_target_port.port_name == pe->port_name) {
1327 if (!nvmet_fc_tgtport_get(tgtport))
1328 continue;
1329
1330 WARN_ON(pe->tgtport);
1331 tgtport->pe = pe;
1332 pe->tgtport = tgtport;
1333 break;
1334 }
1335 }
1336 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1337 }
1338
1339 /**
1340 * nvmet_fc_register_targetport - transport entry point called by an
1341 * LLDD to register the existence of a local
1342 * NVME subsystem FC port.
1343 * @pinfo: pointer to information about the port to be registered
1344 * @template: LLDD entrypoints and operational parameters for the port
1345 * @dev: physical hardware device node port corresponds to. Will be
1346 * used for DMA mappings
1347 * @portptr: pointer to a local port pointer. Upon success, the routine
1348 * will allocate a nvme_fc_local_port structure and place its
1349 * address in the local port pointer. Upon failure, local port
1350 * pointer will be set to NULL.
1351 *
1352 * Returns:
1353 * a completion status. Must be 0 upon success; a negative errno
1354 * (ex: -ENXIO) upon failure.
1355 */
1356 int
nvmet_fc_register_targetport(struct nvmet_fc_port_info * pinfo,struct nvmet_fc_target_template * template,struct device * dev,struct nvmet_fc_target_port ** portptr)1357 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1358 struct nvmet_fc_target_template *template,
1359 struct device *dev,
1360 struct nvmet_fc_target_port **portptr)
1361 {
1362 struct nvmet_fc_tgtport *newrec;
1363 unsigned long flags;
1364 int ret, idx;
1365
1366 if (!template->xmt_ls_rsp || !template->fcp_op ||
1367 !template->fcp_abort ||
1368 !template->fcp_req_release || !template->targetport_delete ||
1369 !template->max_hw_queues || !template->max_sgl_segments ||
1370 !template->max_dif_sgl_segments || !template->dma_boundary) {
1371 ret = -EINVAL;
1372 goto out_regtgt_failed;
1373 }
1374
1375 newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1376 GFP_KERNEL);
1377 if (!newrec) {
1378 ret = -ENOMEM;
1379 goto out_regtgt_failed;
1380 }
1381
1382 idx = ida_alloc(&nvmet_fc_tgtport_cnt, GFP_KERNEL);
1383 if (idx < 0) {
1384 ret = -ENOSPC;
1385 goto out_fail_kfree;
1386 }
1387
1388 if (!get_device(dev) && dev) {
1389 ret = -ENODEV;
1390 goto out_ida_put;
1391 }
1392
1393 newrec->fc_target_port.node_name = pinfo->node_name;
1394 newrec->fc_target_port.port_name = pinfo->port_name;
1395 if (template->target_priv_sz)
1396 newrec->fc_target_port.private = &newrec[1];
1397 else
1398 newrec->fc_target_port.private = NULL;
1399 newrec->fc_target_port.port_id = pinfo->port_id;
1400 newrec->fc_target_port.port_num = idx;
1401 INIT_LIST_HEAD(&newrec->tgt_list);
1402 newrec->dev = dev;
1403 newrec->ops = template;
1404 spin_lock_init(&newrec->lock);
1405 INIT_LIST_HEAD(&newrec->ls_rcv_list);
1406 INIT_LIST_HEAD(&newrec->ls_req_list);
1407 INIT_LIST_HEAD(&newrec->ls_busylist);
1408 INIT_LIST_HEAD(&newrec->assoc_list);
1409 INIT_LIST_HEAD(&newrec->host_list);
1410 kref_init(&newrec->ref);
1411 ida_init(&newrec->assoc_cnt);
1412 newrec->max_sg_cnt = template->max_sgl_segments;
1413 INIT_WORK(&newrec->put_work, nvmet_fc_put_tgtport_work);
1414
1415 ret = nvmet_fc_alloc_ls_iodlist(newrec);
1416 if (ret) {
1417 ret = -ENOMEM;
1418 goto out_free_newrec;
1419 }
1420
1421 nvmet_fc_portentry_rebind_tgt(newrec);
1422
1423 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1424 list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1425 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1426
1427 *portptr = &newrec->fc_target_port;
1428 return 0;
1429
1430 out_free_newrec:
1431 put_device(dev);
1432 out_ida_put:
1433 ida_free(&nvmet_fc_tgtport_cnt, idx);
1434 out_fail_kfree:
1435 kfree(newrec);
1436 out_regtgt_failed:
1437 *portptr = NULL;
1438 return ret;
1439 }
1440 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1441
1442
1443 static void
nvmet_fc_free_tgtport(struct kref * ref)1444 nvmet_fc_free_tgtport(struct kref *ref)
1445 {
1446 struct nvmet_fc_tgtport *tgtport =
1447 container_of(ref, struct nvmet_fc_tgtport, ref);
1448 struct device *dev = tgtport->dev;
1449
1450 nvmet_fc_free_ls_iodlist(tgtport);
1451
1452 /* let the LLDD know we've finished tearing it down */
1453 tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1454
1455 ida_free(&nvmet_fc_tgtport_cnt,
1456 tgtport->fc_target_port.port_num);
1457
1458 ida_destroy(&tgtport->assoc_cnt);
1459
1460 kfree(tgtport);
1461
1462 put_device(dev);
1463 }
1464
1465 static void
nvmet_fc_tgtport_put(struct nvmet_fc_tgtport * tgtport)1466 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1467 {
1468 kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1469 }
1470
1471 static int
nvmet_fc_tgtport_get(struct nvmet_fc_tgtport * tgtport)1472 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1473 {
1474 return kref_get_unless_zero(&tgtport->ref);
1475 }
1476
1477 static void
__nvmet_fc_free_assocs(struct nvmet_fc_tgtport * tgtport)1478 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1479 {
1480 struct nvmet_fc_tgt_assoc *assoc;
1481
1482 rcu_read_lock();
1483 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1484 if (!nvmet_fc_tgt_a_get(assoc))
1485 continue;
1486 nvmet_fc_schedule_delete_assoc(assoc);
1487 nvmet_fc_tgt_a_put(assoc);
1488 }
1489 rcu_read_unlock();
1490 }
1491
1492 /**
1493 * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1494 * to remove references to a hosthandle for LS's.
1495 *
1496 * The nvmet-fc layer ensures that any references to the hosthandle
1497 * on the targetport are forgotten (set to NULL). The LLDD will
1498 * typically call this when a login with a remote host port has been
1499 * lost, thus LS's for the remote host port are no longer possible.
1500 *
1501 * If an LS request is outstanding to the targetport/hosthandle (or
1502 * issued concurrently with the call to invalidate the host), the
1503 * LLDD is responsible for terminating/aborting the LS and completing
1504 * the LS request. It is recommended that these terminations/aborts
1505 * occur after calling to invalidate the host handle to avoid additional
1506 * retries by the nvmet-fc transport. The nvmet-fc transport may
1507 * continue to reference host handle while it cleans up outstanding
1508 * NVME associations. The nvmet-fc transport will call the
1509 * ops->host_release() callback to notify the LLDD that all references
1510 * are complete and the related host handle can be recovered.
1511 * Note: if there are no references, the callback may be called before
1512 * the invalidate host call returns.
1513 *
1514 * @target_port: pointer to the (registered) target port that a prior
1515 * LS was received on and which supplied the transport the
1516 * hosthandle.
1517 * @hosthandle: the handle (pointer) that represents the host port
1518 * that no longer has connectivity and that LS's should
1519 * no longer be directed to.
1520 */
1521 void
nvmet_fc_invalidate_host(struct nvmet_fc_target_port * target_port,void * hosthandle)1522 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1523 void *hosthandle)
1524 {
1525 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1526 struct nvmet_fc_tgt_assoc *assoc, *next;
1527 unsigned long flags;
1528 bool noassoc = true;
1529
1530 spin_lock_irqsave(&tgtport->lock, flags);
1531 list_for_each_entry_safe(assoc, next,
1532 &tgtport->assoc_list, a_list) {
1533 if (assoc->hostport->hosthandle != hosthandle)
1534 continue;
1535 if (!nvmet_fc_tgt_a_get(assoc))
1536 continue;
1537 assoc->hostport->invalid = 1;
1538 noassoc = false;
1539 nvmet_fc_schedule_delete_assoc(assoc);
1540 nvmet_fc_tgt_a_put(assoc);
1541 }
1542 spin_unlock_irqrestore(&tgtport->lock, flags);
1543
1544 /* if there's nothing to wait for - call the callback */
1545 if (noassoc && tgtport->ops->host_release)
1546 tgtport->ops->host_release(hosthandle);
1547 }
1548 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1549
1550 /*
1551 * nvmet layer has called to terminate an association
1552 */
1553 static void
nvmet_fc_delete_ctrl(struct nvmet_ctrl * ctrl)1554 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1555 {
1556 struct nvmet_fc_tgtport *tgtport, *next;
1557 struct nvmet_fc_tgt_assoc *assoc;
1558 struct nvmet_fc_tgt_queue *queue;
1559 unsigned long flags;
1560 bool found_ctrl = false;
1561
1562 /* this is a bit ugly, but don't want to make locks layered */
1563 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1564 list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1565 tgt_list) {
1566 if (!nvmet_fc_tgtport_get(tgtport))
1567 continue;
1568 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1569
1570 rcu_read_lock();
1571 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1572 queue = assoc->queues[0];
1573 if (queue && queue->nvme_sq.ctrl == ctrl) {
1574 if (nvmet_fc_tgt_a_get(assoc))
1575 found_ctrl = true;
1576 break;
1577 }
1578 }
1579 rcu_read_unlock();
1580
1581 nvmet_fc_tgtport_put(tgtport);
1582
1583 if (found_ctrl) {
1584 nvmet_fc_schedule_delete_assoc(assoc);
1585 nvmet_fc_tgt_a_put(assoc);
1586 return;
1587 }
1588
1589 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1590 }
1591 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1592 }
1593
1594 static void
nvmet_fc_free_pending_reqs(struct nvmet_fc_tgtport * tgtport)1595 nvmet_fc_free_pending_reqs(struct nvmet_fc_tgtport *tgtport)
1596 {
1597 struct nvmet_fc_ls_req_op *lsop;
1598 struct nvmefc_ls_req *lsreq;
1599 struct nvmet_fc_ls_iod *iod;
1600 int i;
1601
1602 iod = tgtport->iod;
1603 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++)
1604 cancel_work(&iod->work);
1605
1606 /*
1607 * After this point the connection is lost and thus any pending
1608 * request can't be processed by the normal completion path. This
1609 * is likely a request from nvmet_fc_send_ls_req_async.
1610 */
1611 while ((lsop = list_first_entry_or_null(&tgtport->ls_req_list,
1612 struct nvmet_fc_ls_req_op, lsreq_list))) {
1613 list_del(&lsop->lsreq_list);
1614
1615 if (!lsop->req_queued)
1616 continue;
1617
1618 lsreq = &lsop->ls_req;
1619 fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
1620 (lsreq->rqstlen + lsreq->rsplen),
1621 DMA_BIDIRECTIONAL);
1622 nvmet_fc_tgtport_put(tgtport);
1623 kfree(lsop);
1624 }
1625 }
1626
1627 /**
1628 * nvmet_fc_unregister_targetport - transport entry point called by an
1629 * LLDD to deregister/remove a previously
1630 * registered a local NVME subsystem FC port.
1631 * @target_port: pointer to the (registered) target port that is to be
1632 * deregistered.
1633 *
1634 * Returns:
1635 * a completion status. Must be 0 upon success; a negative errno
1636 * (ex: -ENXIO) upon failure.
1637 */
1638 int
nvmet_fc_unregister_targetport(struct nvmet_fc_target_port * target_port)1639 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1640 {
1641 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1642 unsigned long flags;
1643
1644 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1645 list_del(&tgtport->tgt_list);
1646 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1647
1648 nvmet_fc_portentry_unbind_tgt(tgtport);
1649
1650 /* terminate any outstanding associations */
1651 __nvmet_fc_free_assocs(tgtport);
1652
1653 flush_workqueue(nvmet_wq);
1654
1655 nvmet_fc_free_pending_reqs(tgtport);
1656 nvmet_fc_tgtport_put(tgtport);
1657
1658 return 0;
1659 }
1660 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1661
1662
1663 /* ********************** FC-NVME LS RCV Handling ************************* */
1664
1665
1666 static void
nvmet_fc_ls_create_association(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1667 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1668 struct nvmet_fc_ls_iod *iod)
1669 {
1670 struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1671 struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1672 struct nvmet_fc_tgt_queue *queue;
1673 int ret = 0;
1674
1675 memset(acc, 0, sizeof(*acc));
1676
1677 /*
1678 * FC-NVME spec changes. There are initiators sending different
1679 * lengths as padding sizes for Create Association Cmd descriptor
1680 * was incorrect.
1681 * Accept anything of "minimum" length. Assume format per 1.15
1682 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1683 * trailing pad length is.
1684 */
1685 if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1686 ret = VERR_CR_ASSOC_LEN;
1687 else if (be32_to_cpu(rqst->desc_list_len) <
1688 FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1689 ret = VERR_CR_ASSOC_RQST_LEN;
1690 else if (rqst->assoc_cmd.desc_tag !=
1691 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1692 ret = VERR_CR_ASSOC_CMD;
1693 else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1694 FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1695 ret = VERR_CR_ASSOC_CMD_LEN;
1696 else if (!rqst->assoc_cmd.ersp_ratio ||
1697 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1698 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1699 ret = VERR_ERSP_RATIO;
1700
1701 else {
1702 /* new association w/ admin queue */
1703 iod->assoc = nvmet_fc_alloc_target_assoc(
1704 tgtport, iod->hosthandle);
1705 if (!iod->assoc)
1706 ret = VERR_ASSOC_ALLOC_FAIL;
1707 else {
1708 queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1709 be16_to_cpu(rqst->assoc_cmd.sqsize));
1710 if (!queue) {
1711 ret = VERR_QUEUE_ALLOC_FAIL;
1712 nvmet_fc_tgt_a_put(iod->assoc);
1713 }
1714 }
1715 }
1716
1717 if (ret) {
1718 dev_err(tgtport->dev,
1719 "Create Association LS failed: %s\n",
1720 validation_errors[ret]);
1721 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1722 sizeof(*acc), rqst->w0.ls_cmd,
1723 FCNVME_RJT_RC_LOGIC,
1724 FCNVME_RJT_EXP_NONE, 0);
1725 return;
1726 }
1727
1728 queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1729 atomic_set(&queue->connected, 1);
1730 queue->sqhd = 0; /* best place to init value */
1731
1732 dev_info(tgtport->dev,
1733 "{%d:%d} Association created\n",
1734 tgtport->fc_target_port.port_num, iod->assoc->a_id);
1735
1736 /* format a response */
1737
1738 iod->lsrsp->rsplen = sizeof(*acc);
1739
1740 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1741 fcnvme_lsdesc_len(
1742 sizeof(struct fcnvme_ls_cr_assoc_acc)),
1743 FCNVME_LS_CREATE_ASSOCIATION);
1744 acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1745 acc->associd.desc_len =
1746 fcnvme_lsdesc_len(
1747 sizeof(struct fcnvme_lsdesc_assoc_id));
1748 acc->associd.association_id =
1749 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1750 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1751 acc->connectid.desc_len =
1752 fcnvme_lsdesc_len(
1753 sizeof(struct fcnvme_lsdesc_conn_id));
1754 acc->connectid.connection_id = acc->associd.association_id;
1755 }
1756
1757 static void
nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1758 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1759 struct nvmet_fc_ls_iod *iod)
1760 {
1761 struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1762 struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1763 struct nvmet_fc_tgt_queue *queue;
1764 int ret = 0;
1765
1766 memset(acc, 0, sizeof(*acc));
1767
1768 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1769 ret = VERR_CR_CONN_LEN;
1770 else if (rqst->desc_list_len !=
1771 fcnvme_lsdesc_len(
1772 sizeof(struct fcnvme_ls_cr_conn_rqst)))
1773 ret = VERR_CR_CONN_RQST_LEN;
1774 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1775 ret = VERR_ASSOC_ID;
1776 else if (rqst->associd.desc_len !=
1777 fcnvme_lsdesc_len(
1778 sizeof(struct fcnvme_lsdesc_assoc_id)))
1779 ret = VERR_ASSOC_ID_LEN;
1780 else if (rqst->connect_cmd.desc_tag !=
1781 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1782 ret = VERR_CR_CONN_CMD;
1783 else if (rqst->connect_cmd.desc_len !=
1784 fcnvme_lsdesc_len(
1785 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1786 ret = VERR_CR_CONN_CMD_LEN;
1787 else if (!rqst->connect_cmd.ersp_ratio ||
1788 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1789 be16_to_cpu(rqst->connect_cmd.sqsize)))
1790 ret = VERR_ERSP_RATIO;
1791
1792 else {
1793 /* new io queue */
1794 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1795 be64_to_cpu(rqst->associd.association_id));
1796 if (!iod->assoc)
1797 ret = VERR_NO_ASSOC;
1798 else {
1799 queue = nvmet_fc_alloc_target_queue(iod->assoc,
1800 be16_to_cpu(rqst->connect_cmd.qid),
1801 be16_to_cpu(rqst->connect_cmd.sqsize));
1802 if (!queue)
1803 ret = VERR_QUEUE_ALLOC_FAIL;
1804
1805 /* release get taken in nvmet_fc_find_target_assoc */
1806 nvmet_fc_tgt_a_put(iod->assoc);
1807 }
1808 }
1809
1810 if (ret) {
1811 dev_err(tgtport->dev,
1812 "Create Connection LS failed: %s\n",
1813 validation_errors[ret]);
1814 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1815 sizeof(*acc), rqst->w0.ls_cmd,
1816 (ret == VERR_NO_ASSOC) ?
1817 FCNVME_RJT_RC_INV_ASSOC :
1818 FCNVME_RJT_RC_LOGIC,
1819 FCNVME_RJT_EXP_NONE, 0);
1820 return;
1821 }
1822
1823 queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1824 atomic_set(&queue->connected, 1);
1825 queue->sqhd = 0; /* best place to init value */
1826
1827 /* format a response */
1828
1829 iod->lsrsp->rsplen = sizeof(*acc);
1830
1831 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1832 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1833 FCNVME_LS_CREATE_CONNECTION);
1834 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1835 acc->connectid.desc_len =
1836 fcnvme_lsdesc_len(
1837 sizeof(struct fcnvme_lsdesc_conn_id));
1838 acc->connectid.connection_id =
1839 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1840 be16_to_cpu(rqst->connect_cmd.qid)));
1841 }
1842
1843 /*
1844 * Returns true if the LS response is to be transmit
1845 * Returns false if the LS response is to be delayed
1846 */
1847 static int
nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1848 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1849 struct nvmet_fc_ls_iod *iod)
1850 {
1851 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1852 &iod->rqstbuf->rq_dis_assoc;
1853 struct fcnvme_ls_disconnect_assoc_acc *acc =
1854 &iod->rspbuf->rsp_dis_assoc;
1855 struct nvmet_fc_tgt_assoc *assoc = NULL;
1856 struct nvmet_fc_ls_iod *oldls = NULL;
1857 unsigned long flags;
1858 int ret = 0;
1859
1860 memset(acc, 0, sizeof(*acc));
1861
1862 ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1863 if (!ret) {
1864 /* match an active association - takes an assoc ref if !NULL */
1865 assoc = nvmet_fc_find_target_assoc(tgtport,
1866 be64_to_cpu(rqst->associd.association_id));
1867 iod->assoc = assoc;
1868 if (!assoc)
1869 ret = VERR_NO_ASSOC;
1870 }
1871
1872 if (ret || !assoc) {
1873 dev_err(tgtport->dev,
1874 "Disconnect LS failed: %s\n",
1875 validation_errors[ret]);
1876 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1877 sizeof(*acc), rqst->w0.ls_cmd,
1878 (ret == VERR_NO_ASSOC) ?
1879 FCNVME_RJT_RC_INV_ASSOC :
1880 FCNVME_RJT_RC_LOGIC,
1881 FCNVME_RJT_EXP_NONE, 0);
1882 return true;
1883 }
1884
1885 /* format a response */
1886
1887 iod->lsrsp->rsplen = sizeof(*acc);
1888
1889 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1890 fcnvme_lsdesc_len(
1891 sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1892 FCNVME_LS_DISCONNECT_ASSOC);
1893
1894 /*
1895 * The rules for LS response says the response cannot
1896 * go back until ABTS's have been sent for all outstanding
1897 * I/O and a Disconnect Association LS has been sent.
1898 * So... save off the Disconnect LS to send the response
1899 * later. If there was a prior LS already saved, replace
1900 * it with the newer one and send a can't perform reject
1901 * on the older one.
1902 */
1903 spin_lock_irqsave(&tgtport->lock, flags);
1904 oldls = assoc->rcv_disconn;
1905 assoc->rcv_disconn = iod;
1906 spin_unlock_irqrestore(&tgtport->lock, flags);
1907
1908 if (oldls) {
1909 dev_info(tgtport->dev,
1910 "{%d:%d} Multiple Disconnect Association LS's "
1911 "received\n",
1912 tgtport->fc_target_port.port_num, assoc->a_id);
1913 /* overwrite good response with bogus failure */
1914 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1915 sizeof(*iod->rspbuf),
1916 /* ok to use rqst, LS is same */
1917 rqst->w0.ls_cmd,
1918 FCNVME_RJT_RC_UNAB,
1919 FCNVME_RJT_EXP_NONE, 0);
1920 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1921 }
1922
1923 nvmet_fc_schedule_delete_assoc(assoc);
1924 nvmet_fc_tgt_a_put(assoc);
1925
1926 return false;
1927 }
1928
1929
1930 /* *********************** NVME Ctrl Routines **************************** */
1931
1932
1933 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1934
1935 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1936
1937 static void
nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp * lsrsp)1938 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1939 {
1940 struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1941 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1942
1943 fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1944 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1945 nvmet_fc_free_ls_iod(tgtport, iod);
1946 nvmet_fc_tgtport_put(tgtport);
1947 }
1948
1949 static void
nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1950 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1951 struct nvmet_fc_ls_iod *iod)
1952 {
1953 int ret;
1954
1955 fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1956 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1957
1958 ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1959 if (ret)
1960 nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1961 }
1962
1963 /*
1964 * Actual processing routine for received FC-NVME LS Requests from the LLD
1965 */
1966 static void
nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1967 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1968 struct nvmet_fc_ls_iod *iod)
1969 {
1970 struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1971 bool sendrsp = true;
1972
1973 iod->lsrsp->nvme_fc_private = iod;
1974 iod->lsrsp->rspbuf = iod->rspbuf;
1975 iod->lsrsp->rspdma = iod->rspdma;
1976 iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1977 /* Be preventative. handlers will later set to valid length */
1978 iod->lsrsp->rsplen = 0;
1979
1980 iod->assoc = NULL;
1981
1982 /*
1983 * handlers:
1984 * parse request input, execute the request, and format the
1985 * LS response
1986 */
1987 switch (w0->ls_cmd) {
1988 case FCNVME_LS_CREATE_ASSOCIATION:
1989 /* Creates Association and initial Admin Queue/Connection */
1990 nvmet_fc_ls_create_association(tgtport, iod);
1991 break;
1992 case FCNVME_LS_CREATE_CONNECTION:
1993 /* Creates an IO Queue/Connection */
1994 nvmet_fc_ls_create_connection(tgtport, iod);
1995 break;
1996 case FCNVME_LS_DISCONNECT_ASSOC:
1997 /* Terminate a Queue/Connection or the Association */
1998 sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1999 break;
2000 default:
2001 iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
2002 sizeof(*iod->rspbuf), w0->ls_cmd,
2003 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
2004 }
2005
2006 if (sendrsp)
2007 nvmet_fc_xmt_ls_rsp(tgtport, iod);
2008 }
2009
2010 /*
2011 * Actual processing routine for received FC-NVME LS Requests from the LLD
2012 */
2013 static void
nvmet_fc_handle_ls_rqst_work(struct work_struct * work)2014 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
2015 {
2016 struct nvmet_fc_ls_iod *iod =
2017 container_of(work, struct nvmet_fc_ls_iod, work);
2018 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
2019
2020 nvmet_fc_handle_ls_rqst(tgtport, iod);
2021 }
2022
2023
2024 /**
2025 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
2026 * upon the reception of a NVME LS request.
2027 *
2028 * The nvmet-fc layer will copy payload to an internal structure for
2029 * processing. As such, upon completion of the routine, the LLDD may
2030 * immediately free/reuse the LS request buffer passed in the call.
2031 *
2032 * If this routine returns error, the LLDD should abort the exchange.
2033 *
2034 * @target_port: pointer to the (registered) target port the LS was
2035 * received on.
2036 * @hosthandle: pointer to the host specific data, gets stored in iod.
2037 * @lsrsp: pointer to a lsrsp structure to be used to reference
2038 * the exchange corresponding to the LS.
2039 * @lsreqbuf: pointer to the buffer containing the LS Request
2040 * @lsreqbuf_len: length, in bytes, of the received LS request
2041 */
2042 int
nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port * target_port,void * hosthandle,struct nvmefc_ls_rsp * lsrsp,void * lsreqbuf,u32 lsreqbuf_len)2043 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2044 void *hosthandle,
2045 struct nvmefc_ls_rsp *lsrsp,
2046 void *lsreqbuf, u32 lsreqbuf_len)
2047 {
2048 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2049 struct nvmet_fc_ls_iod *iod;
2050 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2051
2052 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2053 dev_info(tgtport->dev,
2054 "RCV %s LS failed: payload too large (%d)\n",
2055 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2056 nvmefc_ls_names[w0->ls_cmd] : "",
2057 lsreqbuf_len);
2058 return -E2BIG;
2059 }
2060
2061 if (!nvmet_fc_tgtport_get(tgtport)) {
2062 dev_info(tgtport->dev,
2063 "RCV %s LS failed: target deleting\n",
2064 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2065 nvmefc_ls_names[w0->ls_cmd] : "");
2066 return -ESHUTDOWN;
2067 }
2068
2069 iod = nvmet_fc_alloc_ls_iod(tgtport);
2070 if (!iod) {
2071 dev_info(tgtport->dev,
2072 "RCV %s LS failed: context allocation failed\n",
2073 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2074 nvmefc_ls_names[w0->ls_cmd] : "");
2075 nvmet_fc_tgtport_put(tgtport);
2076 return -ENOENT;
2077 }
2078
2079 iod->lsrsp = lsrsp;
2080 iod->fcpreq = NULL;
2081 memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2082 iod->rqstdatalen = lsreqbuf_len;
2083 iod->hosthandle = hosthandle;
2084
2085 queue_work(nvmet_wq, &iod->work);
2086
2087 return 0;
2088 }
2089 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2090
2091
2092 /*
2093 * **********************
2094 * Start of FCP handling
2095 * **********************
2096 */
2097
2098 static int
nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2099 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2100 {
2101 struct scatterlist *sg;
2102 unsigned int nent;
2103
2104 sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2105 if (!sg)
2106 goto out;
2107
2108 fod->data_sg = sg;
2109 fod->data_sg_cnt = nent;
2110 fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2111 ((fod->io_dir == NVMET_FCP_WRITE) ?
2112 DMA_FROM_DEVICE : DMA_TO_DEVICE));
2113 /* note: write from initiator perspective */
2114 fod->next_sg = fod->data_sg;
2115
2116 return 0;
2117
2118 out:
2119 return NVME_SC_INTERNAL;
2120 }
2121
2122 static void
nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2123 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2124 {
2125 if (!fod->data_sg || !fod->data_sg_cnt)
2126 return;
2127
2128 fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2129 ((fod->io_dir == NVMET_FCP_WRITE) ?
2130 DMA_FROM_DEVICE : DMA_TO_DEVICE));
2131 sgl_free(fod->data_sg);
2132 fod->data_sg = NULL;
2133 fod->data_sg_cnt = 0;
2134 }
2135
2136
2137 static bool
queue_90percent_full(struct nvmet_fc_tgt_queue * q,u32 sqhd)2138 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2139 {
2140 u32 sqtail, used;
2141
2142 /* egad, this is ugly. And sqtail is just a best guess */
2143 sqtail = atomic_read(&q->sqtail) % q->sqsize;
2144
2145 used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2146 return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2147 }
2148
2149 /*
2150 * Prep RSP payload.
2151 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2152 */
2153 static void
nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2154 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2155 struct nvmet_fc_fcp_iod *fod)
2156 {
2157 struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2158 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2159 struct nvme_completion *cqe = &ersp->cqe;
2160 u32 *cqewd = (u32 *)cqe;
2161 bool send_ersp = false;
2162 u32 rsn, rspcnt, xfr_length;
2163
2164 if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2165 xfr_length = fod->req.transfer_len;
2166 else
2167 xfr_length = fod->offset;
2168
2169 /*
2170 * check to see if we can send a 0's rsp.
2171 * Note: to send a 0's response, the NVME-FC host transport will
2172 * recreate the CQE. The host transport knows: sq id, SQHD (last
2173 * seen in an ersp), and command_id. Thus it will create a
2174 * zero-filled CQE with those known fields filled in. Transport
2175 * must send an ersp for any condition where the cqe won't match
2176 * this.
2177 *
2178 * Here are the FC-NVME mandated cases where we must send an ersp:
2179 * every N responses, where N=ersp_ratio
2180 * force fabric commands to send ersp's (not in FC-NVME but good
2181 * practice)
2182 * normal cmds: any time status is non-zero, or status is zero
2183 * but words 0 or 1 are non-zero.
2184 * the SQ is 90% or more full
2185 * the cmd is a fused command
2186 * transferred data length not equal to cmd iu length
2187 */
2188 rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2189 if (!(rspcnt % fod->queue->ersp_ratio) ||
2190 nvme_is_fabrics((struct nvme_command *) sqe) ||
2191 xfr_length != fod->req.transfer_len ||
2192 (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2193 (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2194 queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2195 send_ersp = true;
2196
2197 /* re-set the fields */
2198 fod->fcpreq->rspaddr = ersp;
2199 fod->fcpreq->rspdma = fod->rspdma;
2200
2201 if (!send_ersp) {
2202 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2203 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2204 } else {
2205 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2206 rsn = atomic_inc_return(&fod->queue->rsn);
2207 ersp->rsn = cpu_to_be32(rsn);
2208 ersp->xfrd_len = cpu_to_be32(xfr_length);
2209 fod->fcpreq->rsplen = sizeof(*ersp);
2210 }
2211
2212 fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2213 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2214 }
2215
2216 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2217
2218 static void
nvmet_fc_abort_op(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2219 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2220 struct nvmet_fc_fcp_iod *fod)
2221 {
2222 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2223
2224 /* data no longer needed */
2225 nvmet_fc_free_tgt_pgs(fod);
2226
2227 /*
2228 * if an ABTS was received or we issued the fcp_abort early
2229 * don't call abort routine again.
2230 */
2231 /* no need to take lock - lock was taken earlier to get here */
2232 if (!fod->aborted)
2233 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2234
2235 nvmet_fc_free_fcp_iod(fod->queue, fod);
2236 }
2237
2238 static void
nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2239 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2240 struct nvmet_fc_fcp_iod *fod)
2241 {
2242 int ret;
2243
2244 fod->fcpreq->op = NVMET_FCOP_RSP;
2245 fod->fcpreq->timeout = 0;
2246
2247 nvmet_fc_prep_fcp_rsp(tgtport, fod);
2248
2249 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2250 if (ret)
2251 nvmet_fc_abort_op(tgtport, fod);
2252 }
2253
2254 static void
nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,u8 op)2255 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2256 struct nvmet_fc_fcp_iod *fod, u8 op)
2257 {
2258 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2259 struct scatterlist *sg = fod->next_sg;
2260 unsigned long flags;
2261 u32 remaininglen = fod->req.transfer_len - fod->offset;
2262 u32 tlen = 0;
2263 int ret;
2264
2265 fcpreq->op = op;
2266 fcpreq->offset = fod->offset;
2267 fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2268
2269 /*
2270 * for next sequence:
2271 * break at a sg element boundary
2272 * attempt to keep sequence length capped at
2273 * NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2274 * be longer if a single sg element is larger
2275 * than that amount. This is done to avoid creating
2276 * a new sg list to use for the tgtport api.
2277 */
2278 fcpreq->sg = sg;
2279 fcpreq->sg_cnt = 0;
2280 while (tlen < remaininglen &&
2281 fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2282 tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2283 fcpreq->sg_cnt++;
2284 tlen += sg_dma_len(sg);
2285 sg = sg_next(sg);
2286 }
2287 if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2288 fcpreq->sg_cnt++;
2289 tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2290 sg = sg_next(sg);
2291 }
2292 if (tlen < remaininglen)
2293 fod->next_sg = sg;
2294 else
2295 fod->next_sg = NULL;
2296
2297 fcpreq->transfer_length = tlen;
2298 fcpreq->transferred_length = 0;
2299 fcpreq->fcp_error = 0;
2300 fcpreq->rsplen = 0;
2301
2302 /*
2303 * If the last READDATA request: check if LLDD supports
2304 * combined xfr with response.
2305 */
2306 if ((op == NVMET_FCOP_READDATA) &&
2307 ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2308 (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2309 fcpreq->op = NVMET_FCOP_READDATA_RSP;
2310 nvmet_fc_prep_fcp_rsp(tgtport, fod);
2311 }
2312
2313 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2314 if (ret) {
2315 /*
2316 * should be ok to set w/o lock as its in the thread of
2317 * execution (not an async timer routine) and doesn't
2318 * contend with any clearing action
2319 */
2320 fod->abort = true;
2321
2322 if (op == NVMET_FCOP_WRITEDATA) {
2323 spin_lock_irqsave(&fod->flock, flags);
2324 fod->writedataactive = false;
2325 spin_unlock_irqrestore(&fod->flock, flags);
2326 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2327 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2328 fcpreq->fcp_error = ret;
2329 fcpreq->transferred_length = 0;
2330 nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2331 }
2332 }
2333 }
2334
2335 static inline bool
__nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod * fod,bool abort)2336 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2337 {
2338 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2339 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2340
2341 /* if in the middle of an io and we need to tear down */
2342 if (abort) {
2343 if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2344 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2345 return true;
2346 }
2347
2348 nvmet_fc_abort_op(tgtport, fod);
2349 return true;
2350 }
2351
2352 return false;
2353 }
2354
2355 /*
2356 * actual done handler for FCP operations when completed by the lldd
2357 */
2358 static void
nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod * fod)2359 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2360 {
2361 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2362 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2363 unsigned long flags;
2364 bool abort;
2365
2366 spin_lock_irqsave(&fod->flock, flags);
2367 abort = fod->abort;
2368 fod->writedataactive = false;
2369 spin_unlock_irqrestore(&fod->flock, flags);
2370
2371 switch (fcpreq->op) {
2372
2373 case NVMET_FCOP_WRITEDATA:
2374 if (__nvmet_fc_fod_op_abort(fod, abort))
2375 return;
2376 if (fcpreq->fcp_error ||
2377 fcpreq->transferred_length != fcpreq->transfer_length) {
2378 spin_lock_irqsave(&fod->flock, flags);
2379 fod->abort = true;
2380 spin_unlock_irqrestore(&fod->flock, flags);
2381
2382 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2383 return;
2384 }
2385
2386 fod->offset += fcpreq->transferred_length;
2387 if (fod->offset != fod->req.transfer_len) {
2388 spin_lock_irqsave(&fod->flock, flags);
2389 fod->writedataactive = true;
2390 spin_unlock_irqrestore(&fod->flock, flags);
2391
2392 /* transfer the next chunk */
2393 nvmet_fc_transfer_fcp_data(tgtport, fod,
2394 NVMET_FCOP_WRITEDATA);
2395 return;
2396 }
2397
2398 /* data transfer complete, resume with nvmet layer */
2399 fod->req.execute(&fod->req);
2400 break;
2401
2402 case NVMET_FCOP_READDATA:
2403 case NVMET_FCOP_READDATA_RSP:
2404 if (__nvmet_fc_fod_op_abort(fod, abort))
2405 return;
2406 if (fcpreq->fcp_error ||
2407 fcpreq->transferred_length != fcpreq->transfer_length) {
2408 nvmet_fc_abort_op(tgtport, fod);
2409 return;
2410 }
2411
2412 /* success */
2413
2414 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2415 /* data no longer needed */
2416 nvmet_fc_free_tgt_pgs(fod);
2417 nvmet_fc_free_fcp_iod(fod->queue, fod);
2418 return;
2419 }
2420
2421 fod->offset += fcpreq->transferred_length;
2422 if (fod->offset != fod->req.transfer_len) {
2423 /* transfer the next chunk */
2424 nvmet_fc_transfer_fcp_data(tgtport, fod,
2425 NVMET_FCOP_READDATA);
2426 return;
2427 }
2428
2429 /* data transfer complete, send response */
2430
2431 /* data no longer needed */
2432 nvmet_fc_free_tgt_pgs(fod);
2433
2434 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2435
2436 break;
2437
2438 case NVMET_FCOP_RSP:
2439 if (__nvmet_fc_fod_op_abort(fod, abort))
2440 return;
2441 nvmet_fc_free_fcp_iod(fod->queue, fod);
2442 break;
2443
2444 default:
2445 break;
2446 }
2447 }
2448
2449 static void
nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req * fcpreq)2450 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2451 {
2452 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2453
2454 nvmet_fc_fod_op_done(fod);
2455 }
2456
2457 /*
2458 * actual completion handler after execution by the nvmet layer
2459 */
2460 static void
__nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,int status)2461 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2462 struct nvmet_fc_fcp_iod *fod, int status)
2463 {
2464 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2465 struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2466 unsigned long flags;
2467 bool abort;
2468
2469 spin_lock_irqsave(&fod->flock, flags);
2470 abort = fod->abort;
2471 spin_unlock_irqrestore(&fod->flock, flags);
2472
2473 /* if we have a CQE, snoop the last sq_head value */
2474 if (!status)
2475 fod->queue->sqhd = cqe->sq_head;
2476
2477 if (abort) {
2478 nvmet_fc_abort_op(tgtport, fod);
2479 return;
2480 }
2481
2482 /* if an error handling the cmd post initial parsing */
2483 if (status) {
2484 /* fudge up a failed CQE status for our transport error */
2485 memset(cqe, 0, sizeof(*cqe));
2486 cqe->sq_head = fod->queue->sqhd; /* echo last cqe sqhd */
2487 cqe->sq_id = cpu_to_le16(fod->queue->qid);
2488 cqe->command_id = sqe->command_id;
2489 cqe->status = cpu_to_le16(status);
2490 } else {
2491
2492 /*
2493 * try to push the data even if the SQE status is non-zero.
2494 * There may be a status where data still was intended to
2495 * be moved
2496 */
2497 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2498 /* push the data over before sending rsp */
2499 nvmet_fc_transfer_fcp_data(tgtport, fod,
2500 NVMET_FCOP_READDATA);
2501 return;
2502 }
2503
2504 /* writes & no data - fall thru */
2505 }
2506
2507 /* data no longer needed */
2508 nvmet_fc_free_tgt_pgs(fod);
2509
2510 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2511 }
2512
2513
2514 static void
nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req * nvme_req)2515 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2516 {
2517 struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2518 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2519
2520 __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2521 }
2522
2523
2524 /*
2525 * Actual processing routine for received FC-NVME I/O Requests from the LLD
2526 */
2527 static void
nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2528 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2529 struct nvmet_fc_fcp_iod *fod)
2530 {
2531 struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2532 u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2533 int ret;
2534
2535 /*
2536 * Fused commands are currently not supported in the linux
2537 * implementation.
2538 *
2539 * As such, the implementation of the FC transport does not
2540 * look at the fused commands and order delivery to the upper
2541 * layer until we have both based on csn.
2542 */
2543
2544 fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2545
2546 if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2547 fod->io_dir = NVMET_FCP_WRITE;
2548 if (!nvme_is_write(&cmdiu->sqe))
2549 goto transport_error;
2550 } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2551 fod->io_dir = NVMET_FCP_READ;
2552 if (nvme_is_write(&cmdiu->sqe))
2553 goto transport_error;
2554 } else {
2555 fod->io_dir = NVMET_FCP_NODATA;
2556 if (xfrlen)
2557 goto transport_error;
2558 }
2559
2560 fod->req.cmd = &fod->cmdiubuf.sqe;
2561 fod->req.cqe = &fod->rspiubuf.cqe;
2562 if (!tgtport->pe)
2563 goto transport_error;
2564 fod->req.port = tgtport->pe->port;
2565
2566 /* clear any response payload */
2567 memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2568
2569 fod->data_sg = NULL;
2570 fod->data_sg_cnt = 0;
2571
2572 ret = nvmet_req_init(&fod->req, &fod->queue->nvme_sq,
2573 &nvmet_fc_tgt_fcp_ops);
2574 if (!ret) {
2575 /* bad SQE content or invalid ctrl state */
2576 /* nvmet layer has already called op done to send rsp. */
2577 return;
2578 }
2579
2580 fod->req.transfer_len = xfrlen;
2581
2582 /* keep a running counter of tail position */
2583 atomic_inc(&fod->queue->sqtail);
2584
2585 if (fod->req.transfer_len) {
2586 ret = nvmet_fc_alloc_tgt_pgs(fod);
2587 if (ret) {
2588 nvmet_req_complete(&fod->req, ret);
2589 return;
2590 }
2591 }
2592 fod->req.sg = fod->data_sg;
2593 fod->req.sg_cnt = fod->data_sg_cnt;
2594 fod->offset = 0;
2595
2596 if (fod->io_dir == NVMET_FCP_WRITE) {
2597 /* pull the data over before invoking nvmet layer */
2598 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2599 return;
2600 }
2601
2602 /*
2603 * Reads or no data:
2604 *
2605 * can invoke the nvmet_layer now. If read data, cmd completion will
2606 * push the data
2607 */
2608 fod->req.execute(&fod->req);
2609 return;
2610
2611 transport_error:
2612 nvmet_fc_abort_op(tgtport, fod);
2613 }
2614
2615 /**
2616 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2617 * upon the reception of a NVME FCP CMD IU.
2618 *
2619 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2620 * layer for processing.
2621 *
2622 * The nvmet_fc layer allocates a local job structure (struct
2623 * nvmet_fc_fcp_iod) from the queue for the io and copies the
2624 * CMD IU buffer to the job structure. As such, on a successful
2625 * completion (returns 0), the LLDD may immediately free/reuse
2626 * the CMD IU buffer passed in the call.
2627 *
2628 * However, in some circumstances, due to the packetized nature of FC
2629 * and the api of the FC LLDD which may issue a hw command to send the
2630 * response, but the LLDD may not get the hw completion for that command
2631 * and upcall the nvmet_fc layer before a new command may be
2632 * asynchronously received - its possible for a command to be received
2633 * before the LLDD and nvmet_fc have recycled the job structure. It gives
2634 * the appearance of more commands received than fits in the sq.
2635 * To alleviate this scenario, a temporary queue is maintained in the
2636 * transport for pending LLDD requests waiting for a queue job structure.
2637 * In these "overrun" cases, a temporary queue element is allocated
2638 * the LLDD request and CMD iu buffer information remembered, and the
2639 * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2640 * structure is freed, it is immediately reallocated for anything on the
2641 * pending request list. The LLDDs defer_rcv() callback is called,
2642 * informing the LLDD that it may reuse the CMD IU buffer, and the io
2643 * is then started normally with the transport.
2644 *
2645 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2646 * the completion as successful but must not reuse the CMD IU buffer
2647 * until the LLDD's defer_rcv() callback has been called for the
2648 * corresponding struct nvmefc_tgt_fcp_req pointer.
2649 *
2650 * If there is any other condition in which an error occurs, the
2651 * transport will return a non-zero status indicating the error.
2652 * In all cases other than -EOVERFLOW, the transport has not accepted the
2653 * request and the LLDD should abort the exchange.
2654 *
2655 * @target_port: pointer to the (registered) target port the FCP CMD IU
2656 * was received on.
2657 * @fcpreq: pointer to a fcpreq request structure to be used to reference
2658 * the exchange corresponding to the FCP Exchange.
2659 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU
2660 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2661 */
2662 int
nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq,void * cmdiubuf,u32 cmdiubuf_len)2663 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2664 struct nvmefc_tgt_fcp_req *fcpreq,
2665 void *cmdiubuf, u32 cmdiubuf_len)
2666 {
2667 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2668 struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2669 struct nvmet_fc_tgt_queue *queue;
2670 struct nvmet_fc_fcp_iod *fod;
2671 struct nvmet_fc_defer_fcp_req *deferfcp;
2672 unsigned long flags;
2673
2674 /* validate iu, so the connection id can be used to find the queue */
2675 if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2676 (cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2677 (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2678 (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2679 return -EIO;
2680
2681 queue = nvmet_fc_find_target_queue(tgtport,
2682 be64_to_cpu(cmdiu->connection_id));
2683 if (!queue)
2684 return -ENOTCONN;
2685
2686 /*
2687 * note: reference taken by find_target_queue
2688 * After successful fod allocation, the fod will inherit the
2689 * ownership of that reference and will remove the reference
2690 * when the fod is freed.
2691 */
2692
2693 spin_lock_irqsave(&queue->qlock, flags);
2694
2695 fod = nvmet_fc_alloc_fcp_iod(queue);
2696 if (fod) {
2697 spin_unlock_irqrestore(&queue->qlock, flags);
2698
2699 fcpreq->nvmet_fc_private = fod;
2700 fod->fcpreq = fcpreq;
2701
2702 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2703
2704 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2705
2706 return 0;
2707 }
2708
2709 if (!tgtport->ops->defer_rcv) {
2710 spin_unlock_irqrestore(&queue->qlock, flags);
2711 /* release the queue lookup reference */
2712 nvmet_fc_tgt_q_put(queue);
2713 return -ENOENT;
2714 }
2715
2716 deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2717 struct nvmet_fc_defer_fcp_req, req_list);
2718 if (deferfcp) {
2719 /* Just re-use one that was previously allocated */
2720 list_del(&deferfcp->req_list);
2721 } else {
2722 spin_unlock_irqrestore(&queue->qlock, flags);
2723
2724 /* Now we need to dynamically allocate one */
2725 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2726 if (!deferfcp) {
2727 /* release the queue lookup reference */
2728 nvmet_fc_tgt_q_put(queue);
2729 return -ENOMEM;
2730 }
2731 spin_lock_irqsave(&queue->qlock, flags);
2732 }
2733
2734 /* For now, use rspaddr / rsplen to save payload information */
2735 fcpreq->rspaddr = cmdiubuf;
2736 fcpreq->rsplen = cmdiubuf_len;
2737 deferfcp->fcp_req = fcpreq;
2738
2739 /* defer processing till a fod becomes available */
2740 list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2741
2742 /* NOTE: the queue lookup reference is still valid */
2743
2744 spin_unlock_irqrestore(&queue->qlock, flags);
2745
2746 return -EOVERFLOW;
2747 }
2748 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2749
2750 /**
2751 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2752 * upon the reception of an ABTS for a FCP command
2753 *
2754 * Notify the transport that an ABTS has been received for a FCP command
2755 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2756 * LLDD believes the command is still being worked on
2757 * (template_ops->fcp_req_release() has not been called).
2758 *
2759 * The transport will wait for any outstanding work (an op to the LLDD,
2760 * which the lldd should complete with error due to the ABTS; or the
2761 * completion from the nvmet layer of the nvme command), then will
2762 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2763 * return the i/o context to the LLDD. The LLDD may send the BA_ACC
2764 * to the ABTS either after return from this function (assuming any
2765 * outstanding op work has been terminated) or upon the callback being
2766 * called.
2767 *
2768 * @target_port: pointer to the (registered) target port the FCP CMD IU
2769 * was received on.
2770 * @fcpreq: pointer to the fcpreq request structure that corresponds
2771 * to the exchange that received the ABTS.
2772 */
2773 void
nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq)2774 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2775 struct nvmefc_tgt_fcp_req *fcpreq)
2776 {
2777 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2778 struct nvmet_fc_tgt_queue *queue;
2779 unsigned long flags;
2780
2781 if (!fod || fod->fcpreq != fcpreq)
2782 /* job appears to have already completed, ignore abort */
2783 return;
2784
2785 queue = fod->queue;
2786
2787 spin_lock_irqsave(&queue->qlock, flags);
2788 if (fod->active) {
2789 /*
2790 * mark as abort. The abort handler, invoked upon completion
2791 * of any work, will detect the aborted status and do the
2792 * callback.
2793 */
2794 spin_lock(&fod->flock);
2795 fod->abort = true;
2796 fod->aborted = true;
2797 spin_unlock(&fod->flock);
2798 }
2799 spin_unlock_irqrestore(&queue->qlock, flags);
2800 }
2801 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2802
2803
2804 struct nvmet_fc_traddr {
2805 u64 nn;
2806 u64 pn;
2807 };
2808
2809 static int
__nvme_fc_parse_u64(substring_t * sstr,u64 * val)2810 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2811 {
2812 u64 token64;
2813
2814 if (match_u64(sstr, &token64))
2815 return -EINVAL;
2816 *val = token64;
2817
2818 return 0;
2819 }
2820
2821 /*
2822 * This routine validates and extracts the WWN's from the TRADDR string.
2823 * As kernel parsers need the 0x to determine number base, universally
2824 * build string to parse with 0x prefix before parsing name strings.
2825 */
2826 static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr * traddr,char * buf,size_t blen)2827 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2828 {
2829 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2830 substring_t wwn = { name, &name[sizeof(name)-1] };
2831 int nnoffset, pnoffset;
2832
2833 /* validate if string is one of the 2 allowed formats */
2834 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2835 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2836 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2837 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2838 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2839 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2840 NVME_FC_TRADDR_OXNNLEN;
2841 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2842 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2843 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2844 "pn-", NVME_FC_TRADDR_NNLEN))) {
2845 nnoffset = NVME_FC_TRADDR_NNLEN;
2846 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2847 } else
2848 goto out_einval;
2849
2850 name[0] = '0';
2851 name[1] = 'x';
2852 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2853
2854 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2855 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2856 goto out_einval;
2857
2858 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2859 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2860 goto out_einval;
2861
2862 return 0;
2863
2864 out_einval:
2865 pr_warn("%s: bad traddr string\n", __func__);
2866 return -EINVAL;
2867 }
2868
2869 static int
nvmet_fc_add_port(struct nvmet_port * port)2870 nvmet_fc_add_port(struct nvmet_port *port)
2871 {
2872 struct nvmet_fc_tgtport *tgtport;
2873 struct nvmet_fc_port_entry *pe;
2874 struct nvmet_fc_traddr traddr = { 0L, 0L };
2875 unsigned long flags;
2876 int ret;
2877
2878 /* validate the address info */
2879 if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2880 (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2881 return -EINVAL;
2882
2883 /* map the traddr address info to a target port */
2884
2885 ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2886 sizeof(port->disc_addr.traddr));
2887 if (ret)
2888 return ret;
2889
2890 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2891 if (!pe)
2892 return -ENOMEM;
2893
2894 ret = -ENXIO;
2895 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2896 list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2897 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2898 (tgtport->fc_target_port.port_name == traddr.pn)) {
2899 if (!nvmet_fc_tgtport_get(tgtport))
2900 continue;
2901
2902 /* a FC port can only be 1 nvmet port id */
2903 if (!tgtport->pe) {
2904 nvmet_fc_portentry_bind(tgtport, pe, port);
2905 ret = 0;
2906 } else
2907 ret = -EALREADY;
2908
2909 nvmet_fc_tgtport_put(tgtport);
2910 break;
2911 }
2912 }
2913 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2914
2915 if (ret)
2916 kfree(pe);
2917
2918 return ret;
2919 }
2920
2921 static void
nvmet_fc_remove_port(struct nvmet_port * port)2922 nvmet_fc_remove_port(struct nvmet_port *port)
2923 {
2924 struct nvmet_fc_port_entry *pe = port->priv;
2925 struct nvmet_fc_tgtport *tgtport = NULL;
2926 unsigned long flags;
2927
2928 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2929 if (pe->tgtport && nvmet_fc_tgtport_get(pe->tgtport))
2930 tgtport = pe->tgtport;
2931 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2932
2933 nvmet_fc_portentry_unbind(pe);
2934
2935 if (tgtport) {
2936 /* terminate any outstanding associations */
2937 __nvmet_fc_free_assocs(tgtport);
2938 nvmet_fc_tgtport_put(tgtport);
2939 }
2940
2941 kfree(pe);
2942 }
2943
2944 static void
nvmet_fc_discovery_chg(struct nvmet_port * port)2945 nvmet_fc_discovery_chg(struct nvmet_port *port)
2946 {
2947 struct nvmet_fc_port_entry *pe = port->priv;
2948 struct nvmet_fc_tgtport *tgtport = NULL;
2949 unsigned long flags;
2950
2951 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2952 if (pe->tgtport && nvmet_fc_tgtport_get(pe->tgtport))
2953 tgtport = pe->tgtport;
2954 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2955
2956 if (!tgtport)
2957 return;
2958
2959 if (tgtport && tgtport->ops->discovery_event)
2960 tgtport->ops->discovery_event(&tgtport->fc_target_port);
2961
2962 nvmet_fc_tgtport_put(tgtport);
2963 }
2964
2965 static ssize_t
nvmet_fc_host_traddr(struct nvmet_ctrl * ctrl,char * traddr,size_t traddr_size)2966 nvmet_fc_host_traddr(struct nvmet_ctrl *ctrl,
2967 char *traddr, size_t traddr_size)
2968 {
2969 struct nvmet_sq *sq = ctrl->sqs[0];
2970 struct nvmet_fc_tgt_queue *queue =
2971 container_of(sq, struct nvmet_fc_tgt_queue, nvme_sq);
2972 struct nvmet_fc_tgtport *tgtport = queue->assoc ? queue->assoc->tgtport : NULL;
2973 struct nvmet_fc_hostport *hostport = queue->assoc ? queue->assoc->hostport : NULL;
2974 u64 wwnn, wwpn;
2975 ssize_t ret = 0;
2976
2977 if (!tgtport || !nvmet_fc_tgtport_get(tgtport))
2978 return -ENODEV;
2979 if (!hostport || !nvmet_fc_hostport_get(hostport)) {
2980 ret = -ENODEV;
2981 goto out_put;
2982 }
2983
2984 if (tgtport->ops->host_traddr) {
2985 ret = tgtport->ops->host_traddr(hostport->hosthandle, &wwnn, &wwpn);
2986 if (ret)
2987 goto out_put_host;
2988 ret = snprintf(traddr, traddr_size, "nn-0x%llx:pn-0x%llx", wwnn, wwpn);
2989 }
2990 out_put_host:
2991 nvmet_fc_hostport_put(hostport);
2992 out_put:
2993 nvmet_fc_tgtport_put(tgtport);
2994 return ret;
2995 }
2996
2997 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2998 .owner = THIS_MODULE,
2999 .type = NVMF_TRTYPE_FC,
3000 .msdbd = 1,
3001 .add_port = nvmet_fc_add_port,
3002 .remove_port = nvmet_fc_remove_port,
3003 .queue_response = nvmet_fc_fcp_nvme_cmd_done,
3004 .delete_ctrl = nvmet_fc_delete_ctrl,
3005 .discovery_chg = nvmet_fc_discovery_chg,
3006 .host_traddr = nvmet_fc_host_traddr,
3007 };
3008
nvmet_fc_init_module(void)3009 static int __init nvmet_fc_init_module(void)
3010 {
3011 return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
3012 }
3013
nvmet_fc_exit_module(void)3014 static void __exit nvmet_fc_exit_module(void)
3015 {
3016 /* ensure any shutdown operation, e.g. delete ctrls have finished */
3017 flush_workqueue(nvmet_wq);
3018
3019 /* sanity check - all lports should be removed */
3020 if (!list_empty(&nvmet_fc_target_list))
3021 pr_warn("%s: targetport list not empty\n", __func__);
3022
3023 nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
3024
3025 ida_destroy(&nvmet_fc_tgtport_cnt);
3026 }
3027
3028 module_init(nvmet_fc_init_module);
3029 module_exit(nvmet_fc_exit_module);
3030
3031 MODULE_DESCRIPTION("NVMe target FC transport driver");
3032 MODULE_LICENSE("GPL v2");
3033