1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
6 * Copyright (C) 2002, 2003 H. Peter Anvin
7 *
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
11 */
12
13 /*
14 * BITMAP UNPLUGGING:
15 *
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
18 * explanation.
19 *
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
24 * new additions.
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
31 * batch.
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
35 * miss any bits.
36 */
37
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
49
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
52
53 #include "md.h"
54 #include "raid5.h"
55 #include "raid0.h"
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
58
59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
60
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
63
64 #define RAID5_MAX_REQ_STRIPES 256
65
66 static bool devices_handle_discard_safely = false;
67 module_param(devices_handle_discard_safely, bool, 0644);
68 MODULE_PARM_DESC(devices_handle_discard_safely,
69 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
70 static struct workqueue_struct *raid5_wq;
71
72 static void raid5_quiesce(struct mddev *mddev, int quiesce);
73
stripe_hash(struct r5conf * conf,sector_t sect)74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
77 return &conf->stripe_hashtbl[hash];
78 }
79
stripe_hash_locks_hash(struct r5conf * conf,sector_t sect)80 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
81 {
82 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
83 }
84
lock_device_hash_lock(struct r5conf * conf,int hash)85 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
86 __acquires(&conf->device_lock)
87 {
88 spin_lock_irq(conf->hash_locks + hash);
89 spin_lock(&conf->device_lock);
90 }
91
unlock_device_hash_lock(struct r5conf * conf,int hash)92 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
93 __releases(&conf->device_lock)
94 {
95 spin_unlock(&conf->device_lock);
96 spin_unlock_irq(conf->hash_locks + hash);
97 }
98
lock_all_device_hash_locks_irq(struct r5conf * conf)99 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
100 __acquires(&conf->device_lock)
101 {
102 int i;
103 spin_lock_irq(conf->hash_locks);
104 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
105 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
106 spin_lock(&conf->device_lock);
107 }
108
unlock_all_device_hash_locks_irq(struct r5conf * conf)109 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
110 __releases(&conf->device_lock)
111 {
112 int i;
113 spin_unlock(&conf->device_lock);
114 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
115 spin_unlock(conf->hash_locks + i);
116 spin_unlock_irq(conf->hash_locks);
117 }
118
119 /* Find first data disk in a raid6 stripe */
raid6_d0(struct stripe_head * sh)120 static inline int raid6_d0(struct stripe_head *sh)
121 {
122 if (sh->ddf_layout)
123 /* ddf always start from first device */
124 return 0;
125 /* md starts just after Q block */
126 if (sh->qd_idx == sh->disks - 1)
127 return 0;
128 else
129 return sh->qd_idx + 1;
130 }
raid6_next_disk(int disk,int raid_disks)131 static inline int raid6_next_disk(int disk, int raid_disks)
132 {
133 disk++;
134 return (disk < raid_disks) ? disk : 0;
135 }
136
137 /* When walking through the disks in a raid5, starting at raid6_d0,
138 * We need to map each disk to a 'slot', where the data disks are slot
139 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
140 * is raid_disks-1. This help does that mapping.
141 */
raid6_idx_to_slot(int idx,struct stripe_head * sh,int * count,int syndrome_disks)142 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
143 int *count, int syndrome_disks)
144 {
145 int slot = *count;
146
147 if (sh->ddf_layout)
148 (*count)++;
149 if (idx == sh->pd_idx)
150 return syndrome_disks;
151 if (idx == sh->qd_idx)
152 return syndrome_disks + 1;
153 if (!sh->ddf_layout)
154 (*count)++;
155 return slot;
156 }
157
158 static void print_raid5_conf(struct r5conf *conf);
159
stripe_operations_active(struct stripe_head * sh)160 static int stripe_operations_active(struct stripe_head *sh)
161 {
162 return sh->check_state || sh->reconstruct_state ||
163 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
164 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
165 }
166
stripe_is_lowprio(struct stripe_head * sh)167 static bool stripe_is_lowprio(struct stripe_head *sh)
168 {
169 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
170 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
171 !test_bit(STRIPE_R5C_CACHING, &sh->state);
172 }
173
raid5_wakeup_stripe_thread(struct stripe_head * sh)174 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
175 __must_hold(&sh->raid_conf->device_lock)
176 {
177 struct r5conf *conf = sh->raid_conf;
178 struct r5worker_group *group;
179 int thread_cnt;
180 int i, cpu = sh->cpu;
181
182 if (!cpu_online(cpu)) {
183 cpu = cpumask_any(cpu_online_mask);
184 sh->cpu = cpu;
185 }
186
187 if (list_empty(&sh->lru)) {
188 struct r5worker_group *group;
189 group = conf->worker_groups + cpu_to_group(cpu);
190 if (stripe_is_lowprio(sh))
191 list_add_tail(&sh->lru, &group->loprio_list);
192 else
193 list_add_tail(&sh->lru, &group->handle_list);
194 group->stripes_cnt++;
195 sh->group = group;
196 }
197
198 if (conf->worker_cnt_per_group == 0) {
199 md_wakeup_thread(conf->mddev->thread);
200 return;
201 }
202
203 group = conf->worker_groups + cpu_to_group(sh->cpu);
204
205 group->workers[0].working = true;
206 /* at least one worker should run to avoid race */
207 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
208
209 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210 /* wakeup more workers */
211 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212 if (group->workers[i].working == false) {
213 group->workers[i].working = true;
214 queue_work_on(sh->cpu, raid5_wq,
215 &group->workers[i].work);
216 thread_cnt--;
217 }
218 }
219 }
220
do_release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222 struct list_head *temp_inactive_list)
223 __must_hold(&conf->device_lock)
224 {
225 int i;
226 int injournal = 0; /* number of date pages with R5_InJournal */
227
228 BUG_ON(!list_empty(&sh->lru));
229 BUG_ON(atomic_read(&conf->active_stripes)==0);
230
231 if (r5c_is_writeback(conf->log))
232 for (i = sh->disks; i--; )
233 if (test_bit(R5_InJournal, &sh->dev[i].flags))
234 injournal++;
235 /*
236 * In the following cases, the stripe cannot be released to cached
237 * lists. Therefore, we make the stripe write out and set
238 * STRIPE_HANDLE:
239 * 1. when quiesce in r5c write back;
240 * 2. when resync is requested fot the stripe.
241 */
242 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
243 (conf->quiesce && r5c_is_writeback(conf->log) &&
244 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
245 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
246 r5c_make_stripe_write_out(sh);
247 set_bit(STRIPE_HANDLE, &sh->state);
248 }
249
250 if (test_bit(STRIPE_HANDLE, &sh->state)) {
251 if (test_bit(STRIPE_DELAYED, &sh->state) &&
252 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
253 list_add_tail(&sh->lru, &conf->delayed_list);
254 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
255 sh->bm_seq - conf->seq_write > 0)
256 list_add_tail(&sh->lru, &conf->bitmap_list);
257 else {
258 clear_bit(STRIPE_DELAYED, &sh->state);
259 clear_bit(STRIPE_BIT_DELAY, &sh->state);
260 if (conf->worker_cnt_per_group == 0) {
261 if (stripe_is_lowprio(sh))
262 list_add_tail(&sh->lru,
263 &conf->loprio_list);
264 else
265 list_add_tail(&sh->lru,
266 &conf->handle_list);
267 } else {
268 raid5_wakeup_stripe_thread(sh);
269 return;
270 }
271 }
272 md_wakeup_thread(conf->mddev->thread);
273 } else {
274 BUG_ON(stripe_operations_active(sh));
275 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
276 if (atomic_dec_return(&conf->preread_active_stripes)
277 < IO_THRESHOLD)
278 md_wakeup_thread(conf->mddev->thread);
279 atomic_dec(&conf->active_stripes);
280 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
281 if (!r5c_is_writeback(conf->log))
282 list_add_tail(&sh->lru, temp_inactive_list);
283 else {
284 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
285 if (injournal == 0)
286 list_add_tail(&sh->lru, temp_inactive_list);
287 else if (injournal == conf->raid_disks - conf->max_degraded) {
288 /* full stripe */
289 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
290 atomic_inc(&conf->r5c_cached_full_stripes);
291 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
292 atomic_dec(&conf->r5c_cached_partial_stripes);
293 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
294 r5c_check_cached_full_stripe(conf);
295 } else
296 /*
297 * STRIPE_R5C_PARTIAL_STRIPE is set in
298 * r5c_try_caching_write(). No need to
299 * set it again.
300 */
301 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
302 }
303 }
304 }
305 }
306
__release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)307 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
308 struct list_head *temp_inactive_list)
309 __must_hold(&conf->device_lock)
310 {
311 if (atomic_dec_and_test(&sh->count))
312 do_release_stripe(conf, sh, temp_inactive_list);
313 }
314
315 /*
316 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
317 *
318 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
319 * given time. Adding stripes only takes device lock, while deleting stripes
320 * only takes hash lock.
321 */
release_inactive_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list,int hash)322 static void release_inactive_stripe_list(struct r5conf *conf,
323 struct list_head *temp_inactive_list,
324 int hash)
325 {
326 int size;
327 bool do_wakeup = false;
328 unsigned long flags;
329
330 if (hash == NR_STRIPE_HASH_LOCKS) {
331 size = NR_STRIPE_HASH_LOCKS;
332 hash = NR_STRIPE_HASH_LOCKS - 1;
333 } else
334 size = 1;
335 while (size) {
336 struct list_head *list = &temp_inactive_list[size - 1];
337
338 /*
339 * We don't hold any lock here yet, raid5_get_active_stripe() might
340 * remove stripes from the list
341 */
342 if (!list_empty_careful(list)) {
343 spin_lock_irqsave(conf->hash_locks + hash, flags);
344 if (list_empty(conf->inactive_list + hash) &&
345 !list_empty(list))
346 atomic_dec(&conf->empty_inactive_list_nr);
347 list_splice_tail_init(list, conf->inactive_list + hash);
348 do_wakeup = true;
349 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
350 }
351 size--;
352 hash--;
353 }
354
355 if (do_wakeup) {
356 wake_up(&conf->wait_for_stripe);
357 if (atomic_read(&conf->active_stripes) == 0)
358 wake_up(&conf->wait_for_quiescent);
359 if (conf->retry_read_aligned)
360 md_wakeup_thread(conf->mddev->thread);
361 }
362 }
363
release_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list)364 static int release_stripe_list(struct r5conf *conf,
365 struct list_head *temp_inactive_list)
366 __must_hold(&conf->device_lock)
367 {
368 struct stripe_head *sh, *t;
369 int count = 0;
370 struct llist_node *head;
371
372 head = llist_del_all(&conf->released_stripes);
373 head = llist_reverse_order(head);
374 llist_for_each_entry_safe(sh, t, head, release_list) {
375 int hash;
376
377 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
378 smp_mb();
379 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
380 /*
381 * Don't worry the bit is set here, because if the bit is set
382 * again, the count is always > 1. This is true for
383 * STRIPE_ON_UNPLUG_LIST bit too.
384 */
385 hash = sh->hash_lock_index;
386 __release_stripe(conf, sh, &temp_inactive_list[hash]);
387 count++;
388 }
389
390 return count;
391 }
392
raid5_release_stripe(struct stripe_head * sh)393 void raid5_release_stripe(struct stripe_head *sh)
394 {
395 struct r5conf *conf = sh->raid_conf;
396 unsigned long flags;
397 struct list_head list;
398 int hash;
399 bool wakeup;
400
401 /* Avoid release_list until the last reference.
402 */
403 if (atomic_add_unless(&sh->count, -1, 1))
404 return;
405
406 if (unlikely(!conf->mddev->thread) ||
407 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
408 goto slow_path;
409 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
410 if (wakeup)
411 md_wakeup_thread(conf->mddev->thread);
412 return;
413 slow_path:
414 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
415 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
416 INIT_LIST_HEAD(&list);
417 hash = sh->hash_lock_index;
418 do_release_stripe(conf, sh, &list);
419 spin_unlock_irqrestore(&conf->device_lock, flags);
420 release_inactive_stripe_list(conf, &list, hash);
421 }
422 }
423
remove_hash(struct stripe_head * sh)424 static inline void remove_hash(struct stripe_head *sh)
425 {
426 pr_debug("remove_hash(), stripe %llu\n",
427 (unsigned long long)sh->sector);
428
429 hlist_del_init(&sh->hash);
430 }
431
insert_hash(struct r5conf * conf,struct stripe_head * sh)432 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
433 {
434 struct hlist_head *hp = stripe_hash(conf, sh->sector);
435
436 pr_debug("insert_hash(), stripe %llu\n",
437 (unsigned long long)sh->sector);
438
439 hlist_add_head(&sh->hash, hp);
440 }
441
442 /* find an idle stripe, make sure it is unhashed, and return it. */
get_free_stripe(struct r5conf * conf,int hash)443 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
444 {
445 struct stripe_head *sh = NULL;
446 struct list_head *first;
447
448 if (list_empty(conf->inactive_list + hash))
449 goto out;
450 first = (conf->inactive_list + hash)->next;
451 sh = list_entry(first, struct stripe_head, lru);
452 list_del_init(first);
453 remove_hash(sh);
454 atomic_inc(&conf->active_stripes);
455 BUG_ON(hash != sh->hash_lock_index);
456 if (list_empty(conf->inactive_list + hash))
457 atomic_inc(&conf->empty_inactive_list_nr);
458 out:
459 return sh;
460 }
461
462 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
free_stripe_pages(struct stripe_head * sh)463 static void free_stripe_pages(struct stripe_head *sh)
464 {
465 int i;
466 struct page *p;
467
468 /* Have not allocate page pool */
469 if (!sh->pages)
470 return;
471
472 for (i = 0; i < sh->nr_pages; i++) {
473 p = sh->pages[i];
474 if (p)
475 put_page(p);
476 sh->pages[i] = NULL;
477 }
478 }
479
alloc_stripe_pages(struct stripe_head * sh,gfp_t gfp)480 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
481 {
482 int i;
483 struct page *p;
484
485 for (i = 0; i < sh->nr_pages; i++) {
486 /* The page have allocated. */
487 if (sh->pages[i])
488 continue;
489
490 p = alloc_page(gfp);
491 if (!p) {
492 free_stripe_pages(sh);
493 return -ENOMEM;
494 }
495 sh->pages[i] = p;
496 }
497 return 0;
498 }
499
500 static int
init_stripe_shared_pages(struct stripe_head * sh,struct r5conf * conf,int disks)501 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
502 {
503 int nr_pages, cnt;
504
505 if (sh->pages)
506 return 0;
507
508 /* Each of the sh->dev[i] need one conf->stripe_size */
509 cnt = PAGE_SIZE / conf->stripe_size;
510 nr_pages = (disks + cnt - 1) / cnt;
511
512 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
513 if (!sh->pages)
514 return -ENOMEM;
515 sh->nr_pages = nr_pages;
516 sh->stripes_per_page = cnt;
517 return 0;
518 }
519 #endif
520
shrink_buffers(struct stripe_head * sh)521 static void shrink_buffers(struct stripe_head *sh)
522 {
523 int i;
524 int num = sh->raid_conf->pool_size;
525
526 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
527 for (i = 0; i < num ; i++) {
528 struct page *p;
529
530 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
531 p = sh->dev[i].page;
532 if (!p)
533 continue;
534 sh->dev[i].page = NULL;
535 put_page(p);
536 }
537 #else
538 for (i = 0; i < num; i++)
539 sh->dev[i].page = NULL;
540 free_stripe_pages(sh); /* Free pages */
541 #endif
542 }
543
grow_buffers(struct stripe_head * sh,gfp_t gfp)544 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
545 {
546 int i;
547 int num = sh->raid_conf->pool_size;
548
549 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
550 for (i = 0; i < num; i++) {
551 struct page *page;
552
553 if (!(page = alloc_page(gfp))) {
554 return 1;
555 }
556 sh->dev[i].page = page;
557 sh->dev[i].orig_page = page;
558 sh->dev[i].offset = 0;
559 }
560 #else
561 if (alloc_stripe_pages(sh, gfp))
562 return -ENOMEM;
563
564 for (i = 0; i < num; i++) {
565 sh->dev[i].page = raid5_get_dev_page(sh, i);
566 sh->dev[i].orig_page = sh->dev[i].page;
567 sh->dev[i].offset = raid5_get_page_offset(sh, i);
568 }
569 #endif
570 return 0;
571 }
572
573 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
574 struct stripe_head *sh);
575
init_stripe(struct stripe_head * sh,sector_t sector,int previous)576 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
577 {
578 struct r5conf *conf = sh->raid_conf;
579 int i, seq;
580
581 BUG_ON(atomic_read(&sh->count) != 0);
582 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
583 BUG_ON(stripe_operations_active(sh));
584 BUG_ON(sh->batch_head);
585
586 pr_debug("init_stripe called, stripe %llu\n",
587 (unsigned long long)sector);
588 retry:
589 seq = read_seqcount_begin(&conf->gen_lock);
590 sh->generation = conf->generation - previous;
591 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
592 sh->sector = sector;
593 stripe_set_idx(sector, conf, previous, sh);
594 sh->state = 0;
595
596 for (i = sh->disks; i--; ) {
597 struct r5dev *dev = &sh->dev[i];
598
599 if (dev->toread || dev->read || dev->towrite || dev->written ||
600 test_bit(R5_LOCKED, &dev->flags)) {
601 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
602 (unsigned long long)sh->sector, i, dev->toread,
603 dev->read, dev->towrite, dev->written,
604 test_bit(R5_LOCKED, &dev->flags));
605 WARN_ON(1);
606 }
607 dev->flags = 0;
608 dev->sector = raid5_compute_blocknr(sh, i, previous);
609 }
610 if (read_seqcount_retry(&conf->gen_lock, seq))
611 goto retry;
612 sh->overwrite_disks = 0;
613 insert_hash(conf, sh);
614 sh->cpu = smp_processor_id();
615 set_bit(STRIPE_BATCH_READY, &sh->state);
616 }
617
__find_stripe(struct r5conf * conf,sector_t sector,short generation)618 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
619 short generation)
620 {
621 struct stripe_head *sh;
622
623 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
624 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
625 if (sh->sector == sector && sh->generation == generation)
626 return sh;
627 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
628 return NULL;
629 }
630
find_get_stripe(struct r5conf * conf,sector_t sector,short generation,int hash)631 static struct stripe_head *find_get_stripe(struct r5conf *conf,
632 sector_t sector, short generation, int hash)
633 {
634 int inc_empty_inactive_list_flag;
635 struct stripe_head *sh;
636
637 sh = __find_stripe(conf, sector, generation);
638 if (!sh)
639 return NULL;
640
641 if (atomic_inc_not_zero(&sh->count))
642 return sh;
643
644 /*
645 * Slow path. The reference count is zero which means the stripe must
646 * be on a list (sh->lru). Must remove the stripe from the list that
647 * references it with the device_lock held.
648 */
649
650 spin_lock(&conf->device_lock);
651 if (!atomic_read(&sh->count)) {
652 if (!test_bit(STRIPE_HANDLE, &sh->state))
653 atomic_inc(&conf->active_stripes);
654 BUG_ON(list_empty(&sh->lru) &&
655 !test_bit(STRIPE_EXPANDING, &sh->state));
656 inc_empty_inactive_list_flag = 0;
657 if (!list_empty(conf->inactive_list + hash))
658 inc_empty_inactive_list_flag = 1;
659 list_del_init(&sh->lru);
660 if (list_empty(conf->inactive_list + hash) &&
661 inc_empty_inactive_list_flag)
662 atomic_inc(&conf->empty_inactive_list_nr);
663 if (sh->group) {
664 sh->group->stripes_cnt--;
665 sh->group = NULL;
666 }
667 }
668 atomic_inc(&sh->count);
669 spin_unlock(&conf->device_lock);
670
671 return sh;
672 }
673
674 /*
675 * Need to check if array has failed when deciding whether to:
676 * - start an array
677 * - remove non-faulty devices
678 * - add a spare
679 * - allow a reshape
680 * This determination is simple when no reshape is happening.
681 * However if there is a reshape, we need to carefully check
682 * both the before and after sections.
683 * This is because some failed devices may only affect one
684 * of the two sections, and some non-in_sync devices may
685 * be insync in the section most affected by failed devices.
686 *
687 * Most calls to this function hold &conf->device_lock. Calls
688 * in raid5_run() do not require the lock as no other threads
689 * have been started yet.
690 */
raid5_calc_degraded(struct r5conf * conf)691 int raid5_calc_degraded(struct r5conf *conf)
692 {
693 int degraded, degraded2;
694 int i;
695
696 degraded = 0;
697 for (i = 0; i < conf->previous_raid_disks; i++) {
698 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
699
700 if (rdev && test_bit(Faulty, &rdev->flags))
701 rdev = READ_ONCE(conf->disks[i].replacement);
702 if (!rdev || test_bit(Faulty, &rdev->flags))
703 degraded++;
704 else if (test_bit(In_sync, &rdev->flags))
705 ;
706 else
707 /* not in-sync or faulty.
708 * If the reshape increases the number of devices,
709 * this is being recovered by the reshape, so
710 * this 'previous' section is not in_sync.
711 * If the number of devices is being reduced however,
712 * the device can only be part of the array if
713 * we are reverting a reshape, so this section will
714 * be in-sync.
715 */
716 if (conf->raid_disks >= conf->previous_raid_disks)
717 degraded++;
718 }
719 if (conf->raid_disks == conf->previous_raid_disks)
720 return degraded;
721 degraded2 = 0;
722 for (i = 0; i < conf->raid_disks; i++) {
723 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
724
725 if (rdev && test_bit(Faulty, &rdev->flags))
726 rdev = READ_ONCE(conf->disks[i].replacement);
727 if (!rdev || test_bit(Faulty, &rdev->flags))
728 degraded2++;
729 else if (test_bit(In_sync, &rdev->flags))
730 ;
731 else
732 /* not in-sync or faulty.
733 * If reshape increases the number of devices, this
734 * section has already been recovered, else it
735 * almost certainly hasn't.
736 */
737 if (conf->raid_disks <= conf->previous_raid_disks)
738 degraded2++;
739 }
740 if (degraded2 > degraded)
741 return degraded2;
742 return degraded;
743 }
744
has_failed(struct r5conf * conf)745 static bool has_failed(struct r5conf *conf)
746 {
747 int degraded = conf->mddev->degraded;
748
749 if (test_bit(MD_BROKEN, &conf->mddev->flags))
750 return true;
751
752 if (conf->mddev->reshape_position != MaxSector)
753 degraded = raid5_calc_degraded(conf);
754
755 return degraded > conf->max_degraded;
756 }
757
758 enum stripe_result {
759 STRIPE_SUCCESS = 0,
760 STRIPE_RETRY,
761 STRIPE_SCHEDULE_AND_RETRY,
762 STRIPE_FAIL,
763 STRIPE_WAIT_RESHAPE,
764 };
765
766 struct stripe_request_ctx {
767 /* a reference to the last stripe_head for batching */
768 struct stripe_head *batch_last;
769
770 /* first sector in the request */
771 sector_t first_sector;
772
773 /* last sector in the request */
774 sector_t last_sector;
775
776 /*
777 * bitmap to track stripe sectors that have been added to stripes
778 * add one to account for unaligned requests
779 */
780 DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1);
781
782 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */
783 bool do_flush;
784 };
785
786 /*
787 * Block until another thread clears R5_INACTIVE_BLOCKED or
788 * there are fewer than 3/4 the maximum number of active stripes
789 * and there is an inactive stripe available.
790 */
is_inactive_blocked(struct r5conf * conf,int hash)791 static bool is_inactive_blocked(struct r5conf *conf, int hash)
792 {
793 if (list_empty(conf->inactive_list + hash))
794 return false;
795
796 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
797 return true;
798
799 return (atomic_read(&conf->active_stripes) <
800 (conf->max_nr_stripes * 3 / 4));
801 }
802
raid5_get_active_stripe(struct r5conf * conf,struct stripe_request_ctx * ctx,sector_t sector,unsigned int flags)803 struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
804 struct stripe_request_ctx *ctx, sector_t sector,
805 unsigned int flags)
806 {
807 struct stripe_head *sh;
808 int hash = stripe_hash_locks_hash(conf, sector);
809 int previous = !!(flags & R5_GAS_PREVIOUS);
810
811 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
812
813 spin_lock_irq(conf->hash_locks + hash);
814
815 for (;;) {
816 if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) {
817 /*
818 * Must release the reference to batch_last before
819 * waiting, on quiesce, otherwise the batch_last will
820 * hold a reference to a stripe and raid5_quiesce()
821 * will deadlock waiting for active_stripes to go to
822 * zero.
823 */
824 if (ctx && ctx->batch_last) {
825 raid5_release_stripe(ctx->batch_last);
826 ctx->batch_last = NULL;
827 }
828
829 wait_event_lock_irq(conf->wait_for_quiescent,
830 !conf->quiesce,
831 *(conf->hash_locks + hash));
832 }
833
834 sh = find_get_stripe(conf, sector, conf->generation - previous,
835 hash);
836 if (sh)
837 break;
838
839 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
840 sh = get_free_stripe(conf, hash);
841 if (sh) {
842 r5c_check_stripe_cache_usage(conf);
843 init_stripe(sh, sector, previous);
844 atomic_inc(&sh->count);
845 break;
846 }
847
848 if (!test_bit(R5_DID_ALLOC, &conf->cache_state))
849 set_bit(R5_ALLOC_MORE, &conf->cache_state);
850 }
851
852 if (flags & R5_GAS_NOBLOCK)
853 break;
854
855 set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
856 r5l_wake_reclaim(conf->log, 0);
857
858 /* release batch_last before wait to avoid risk of deadlock */
859 if (ctx && ctx->batch_last) {
860 raid5_release_stripe(ctx->batch_last);
861 ctx->batch_last = NULL;
862 }
863
864 wait_event_lock_irq(conf->wait_for_stripe,
865 is_inactive_blocked(conf, hash),
866 *(conf->hash_locks + hash));
867 clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
868 }
869
870 spin_unlock_irq(conf->hash_locks + hash);
871 return sh;
872 }
873
is_full_stripe_write(struct stripe_head * sh)874 static bool is_full_stripe_write(struct stripe_head *sh)
875 {
876 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
877 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
878 }
879
lock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)880 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
881 __acquires(&sh1->stripe_lock)
882 __acquires(&sh2->stripe_lock)
883 {
884 if (sh1 > sh2) {
885 spin_lock_irq(&sh2->stripe_lock);
886 spin_lock_nested(&sh1->stripe_lock, 1);
887 } else {
888 spin_lock_irq(&sh1->stripe_lock);
889 spin_lock_nested(&sh2->stripe_lock, 1);
890 }
891 }
892
unlock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)893 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
894 __releases(&sh1->stripe_lock)
895 __releases(&sh2->stripe_lock)
896 {
897 spin_unlock(&sh1->stripe_lock);
898 spin_unlock_irq(&sh2->stripe_lock);
899 }
900
901 /* Only freshly new full stripe normal write stripe can be added to a batch list */
stripe_can_batch(struct stripe_head * sh)902 static bool stripe_can_batch(struct stripe_head *sh)
903 {
904 struct r5conf *conf = sh->raid_conf;
905
906 if (raid5_has_log(conf) || raid5_has_ppl(conf))
907 return false;
908 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
909 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
910 is_full_stripe_write(sh);
911 }
912
913 /* we only do back search */
stripe_add_to_batch_list(struct r5conf * conf,struct stripe_head * sh,struct stripe_head * last_sh)914 static void stripe_add_to_batch_list(struct r5conf *conf,
915 struct stripe_head *sh, struct stripe_head *last_sh)
916 {
917 struct stripe_head *head;
918 sector_t head_sector, tmp_sec;
919 int hash;
920 int dd_idx;
921
922 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
923 tmp_sec = sh->sector;
924 if (!sector_div(tmp_sec, conf->chunk_sectors))
925 return;
926 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
927
928 if (last_sh && head_sector == last_sh->sector) {
929 head = last_sh;
930 atomic_inc(&head->count);
931 } else {
932 hash = stripe_hash_locks_hash(conf, head_sector);
933 spin_lock_irq(conf->hash_locks + hash);
934 head = find_get_stripe(conf, head_sector, conf->generation,
935 hash);
936 spin_unlock_irq(conf->hash_locks + hash);
937 if (!head)
938 return;
939 if (!stripe_can_batch(head))
940 goto out;
941 }
942
943 lock_two_stripes(head, sh);
944 /* clear_batch_ready clear the flag */
945 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
946 goto unlock_out;
947
948 if (sh->batch_head)
949 goto unlock_out;
950
951 dd_idx = 0;
952 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
953 dd_idx++;
954 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
955 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
956 goto unlock_out;
957
958 if (head->batch_head) {
959 spin_lock(&head->batch_head->batch_lock);
960 /* This batch list is already running */
961 if (!stripe_can_batch(head)) {
962 spin_unlock(&head->batch_head->batch_lock);
963 goto unlock_out;
964 }
965 /*
966 * We must assign batch_head of this stripe within the
967 * batch_lock, otherwise clear_batch_ready of batch head
968 * stripe could clear BATCH_READY bit of this stripe and
969 * this stripe->batch_head doesn't get assigned, which
970 * could confuse clear_batch_ready for this stripe
971 */
972 sh->batch_head = head->batch_head;
973
974 /*
975 * at this point, head's BATCH_READY could be cleared, but we
976 * can still add the stripe to batch list
977 */
978 list_add(&sh->batch_list, &head->batch_list);
979 spin_unlock(&head->batch_head->batch_lock);
980 } else {
981 head->batch_head = head;
982 sh->batch_head = head->batch_head;
983 spin_lock(&head->batch_lock);
984 list_add_tail(&sh->batch_list, &head->batch_list);
985 spin_unlock(&head->batch_lock);
986 }
987
988 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
989 if (atomic_dec_return(&conf->preread_active_stripes)
990 < IO_THRESHOLD)
991 md_wakeup_thread(conf->mddev->thread);
992
993 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
994 int seq = sh->bm_seq;
995 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
996 sh->batch_head->bm_seq > seq)
997 seq = sh->batch_head->bm_seq;
998 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
999 sh->batch_head->bm_seq = seq;
1000 }
1001
1002 atomic_inc(&sh->count);
1003 unlock_out:
1004 unlock_two_stripes(head, sh);
1005 out:
1006 raid5_release_stripe(head);
1007 }
1008
1009 /* Determine if 'data_offset' or 'new_data_offset' should be used
1010 * in this stripe_head.
1011 */
use_new_offset(struct r5conf * conf,struct stripe_head * sh)1012 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
1013 {
1014 sector_t progress = conf->reshape_progress;
1015 /* Need a memory barrier to make sure we see the value
1016 * of conf->generation, or ->data_offset that was set before
1017 * reshape_progress was updated.
1018 */
1019 smp_rmb();
1020 if (progress == MaxSector)
1021 return 0;
1022 if (sh->generation == conf->generation - 1)
1023 return 0;
1024 /* We are in a reshape, and this is a new-generation stripe,
1025 * so use new_data_offset.
1026 */
1027 return 1;
1028 }
1029
dispatch_bio_list(struct bio_list * tmp)1030 static void dispatch_bio_list(struct bio_list *tmp)
1031 {
1032 struct bio *bio;
1033
1034 while ((bio = bio_list_pop(tmp)))
1035 submit_bio_noacct(bio);
1036 }
1037
cmp_stripe(void * priv,const struct list_head * a,const struct list_head * b)1038 static int cmp_stripe(void *priv, const struct list_head *a,
1039 const struct list_head *b)
1040 {
1041 const struct r5pending_data *da = list_entry(a,
1042 struct r5pending_data, sibling);
1043 const struct r5pending_data *db = list_entry(b,
1044 struct r5pending_data, sibling);
1045 if (da->sector > db->sector)
1046 return 1;
1047 if (da->sector < db->sector)
1048 return -1;
1049 return 0;
1050 }
1051
dispatch_defer_bios(struct r5conf * conf,int target,struct bio_list * list)1052 static void dispatch_defer_bios(struct r5conf *conf, int target,
1053 struct bio_list *list)
1054 {
1055 struct r5pending_data *data;
1056 struct list_head *first, *next = NULL;
1057 int cnt = 0;
1058
1059 if (conf->pending_data_cnt == 0)
1060 return;
1061
1062 list_sort(NULL, &conf->pending_list, cmp_stripe);
1063
1064 first = conf->pending_list.next;
1065
1066 /* temporarily move the head */
1067 if (conf->next_pending_data)
1068 list_move_tail(&conf->pending_list,
1069 &conf->next_pending_data->sibling);
1070
1071 while (!list_empty(&conf->pending_list)) {
1072 data = list_first_entry(&conf->pending_list,
1073 struct r5pending_data, sibling);
1074 if (&data->sibling == first)
1075 first = data->sibling.next;
1076 next = data->sibling.next;
1077
1078 bio_list_merge(list, &data->bios);
1079 list_move(&data->sibling, &conf->free_list);
1080 cnt++;
1081 if (cnt >= target)
1082 break;
1083 }
1084 conf->pending_data_cnt -= cnt;
1085 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1086
1087 if (next != &conf->pending_list)
1088 conf->next_pending_data = list_entry(next,
1089 struct r5pending_data, sibling);
1090 else
1091 conf->next_pending_data = NULL;
1092 /* list isn't empty */
1093 if (first != &conf->pending_list)
1094 list_move_tail(&conf->pending_list, first);
1095 }
1096
flush_deferred_bios(struct r5conf * conf)1097 static void flush_deferred_bios(struct r5conf *conf)
1098 {
1099 struct bio_list tmp = BIO_EMPTY_LIST;
1100
1101 if (conf->pending_data_cnt == 0)
1102 return;
1103
1104 spin_lock(&conf->pending_bios_lock);
1105 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1106 BUG_ON(conf->pending_data_cnt != 0);
1107 spin_unlock(&conf->pending_bios_lock);
1108
1109 dispatch_bio_list(&tmp);
1110 }
1111
defer_issue_bios(struct r5conf * conf,sector_t sector,struct bio_list * bios)1112 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1113 struct bio_list *bios)
1114 {
1115 struct bio_list tmp = BIO_EMPTY_LIST;
1116 struct r5pending_data *ent;
1117
1118 spin_lock(&conf->pending_bios_lock);
1119 ent = list_first_entry(&conf->free_list, struct r5pending_data,
1120 sibling);
1121 list_move_tail(&ent->sibling, &conf->pending_list);
1122 ent->sector = sector;
1123 bio_list_init(&ent->bios);
1124 bio_list_merge(&ent->bios, bios);
1125 conf->pending_data_cnt++;
1126 if (conf->pending_data_cnt >= PENDING_IO_MAX)
1127 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1128
1129 spin_unlock(&conf->pending_bios_lock);
1130
1131 dispatch_bio_list(&tmp);
1132 }
1133
1134 static void
1135 raid5_end_read_request(struct bio *bi);
1136 static void
1137 raid5_end_write_request(struct bio *bi);
1138
ops_run_io(struct stripe_head * sh,struct stripe_head_state * s)1139 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1140 {
1141 struct r5conf *conf = sh->raid_conf;
1142 int i, disks = sh->disks;
1143 struct stripe_head *head_sh = sh;
1144 struct bio_list pending_bios = BIO_EMPTY_LIST;
1145 struct r5dev *dev;
1146 bool should_defer;
1147
1148 might_sleep();
1149
1150 if (log_stripe(sh, s) == 0)
1151 return;
1152
1153 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1154
1155 for (i = disks; i--; ) {
1156 enum req_op op;
1157 blk_opf_t op_flags = 0;
1158 int replace_only = 0;
1159 struct bio *bi, *rbi;
1160 struct md_rdev *rdev, *rrdev = NULL;
1161
1162 sh = head_sh;
1163 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1164 op = REQ_OP_WRITE;
1165 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1166 op_flags = REQ_FUA;
1167 if (test_bit(R5_Discard, &sh->dev[i].flags))
1168 op = REQ_OP_DISCARD;
1169 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1170 op = REQ_OP_READ;
1171 else if (test_and_clear_bit(R5_WantReplace,
1172 &sh->dev[i].flags)) {
1173 op = REQ_OP_WRITE;
1174 replace_only = 1;
1175 } else
1176 continue;
1177 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1178 op_flags |= REQ_SYNC;
1179
1180 again:
1181 dev = &sh->dev[i];
1182 bi = &dev->req;
1183 rbi = &dev->rreq; /* For writing to replacement */
1184
1185 rdev = conf->disks[i].rdev;
1186 rrdev = conf->disks[i].replacement;
1187 if (op_is_write(op)) {
1188 if (replace_only)
1189 rdev = NULL;
1190 if (rdev == rrdev)
1191 /* We raced and saw duplicates */
1192 rrdev = NULL;
1193 } else {
1194 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1195 rdev = rrdev;
1196 rrdev = NULL;
1197 }
1198
1199 if (rdev && test_bit(Faulty, &rdev->flags))
1200 rdev = NULL;
1201 if (rdev)
1202 atomic_inc(&rdev->nr_pending);
1203 if (rrdev && test_bit(Faulty, &rrdev->flags))
1204 rrdev = NULL;
1205 if (rrdev)
1206 atomic_inc(&rrdev->nr_pending);
1207
1208 /* We have already checked bad blocks for reads. Now
1209 * need to check for writes. We never accept write errors
1210 * on the replacement, so we don't to check rrdev.
1211 */
1212 while (op_is_write(op) && rdev &&
1213 test_bit(WriteErrorSeen, &rdev->flags)) {
1214 int bad = rdev_has_badblock(rdev, sh->sector,
1215 RAID5_STRIPE_SECTORS(conf));
1216 if (!bad)
1217 break;
1218
1219 if (bad < 0) {
1220 set_bit(BlockedBadBlocks, &rdev->flags);
1221 if (!conf->mddev->external &&
1222 conf->mddev->sb_flags) {
1223 /* It is very unlikely, but we might
1224 * still need to write out the
1225 * bad block log - better give it
1226 * a chance*/
1227 md_check_recovery(conf->mddev);
1228 }
1229 /*
1230 * Because md_wait_for_blocked_rdev
1231 * will dec nr_pending, we must
1232 * increment it first.
1233 */
1234 atomic_inc(&rdev->nr_pending);
1235 md_wait_for_blocked_rdev(rdev, conf->mddev);
1236 } else {
1237 /* Acknowledged bad block - skip the write */
1238 rdev_dec_pending(rdev, conf->mddev);
1239 rdev = NULL;
1240 }
1241 }
1242
1243 if (rdev) {
1244 if (s->syncing || s->expanding || s->expanded
1245 || s->replacing)
1246 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1247
1248 set_bit(STRIPE_IO_STARTED, &sh->state);
1249
1250 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1251 bi->bi_end_io = op_is_write(op)
1252 ? raid5_end_write_request
1253 : raid5_end_read_request;
1254 bi->bi_private = sh;
1255
1256 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1257 __func__, (unsigned long long)sh->sector,
1258 bi->bi_opf, i);
1259 atomic_inc(&sh->count);
1260 if (sh != head_sh)
1261 atomic_inc(&head_sh->count);
1262 if (use_new_offset(conf, sh))
1263 bi->bi_iter.bi_sector = (sh->sector
1264 + rdev->new_data_offset);
1265 else
1266 bi->bi_iter.bi_sector = (sh->sector
1267 + rdev->data_offset);
1268 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1269 bi->bi_opf |= REQ_NOMERGE;
1270
1271 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1272 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1273
1274 if (!op_is_write(op) &&
1275 test_bit(R5_InJournal, &sh->dev[i].flags))
1276 /*
1277 * issuing read for a page in journal, this
1278 * must be preparing for prexor in rmw; read
1279 * the data into orig_page
1280 */
1281 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1282 else
1283 sh->dev[i].vec.bv_page = sh->dev[i].page;
1284 bi->bi_vcnt = 1;
1285 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1286 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1287 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1288 /*
1289 * If this is discard request, set bi_vcnt 0. We don't
1290 * want to confuse SCSI because SCSI will replace payload
1291 */
1292 if (op == REQ_OP_DISCARD)
1293 bi->bi_vcnt = 0;
1294 if (rrdev)
1295 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1296
1297 mddev_trace_remap(conf->mddev, bi, sh->dev[i].sector);
1298 if (should_defer && op_is_write(op))
1299 bio_list_add(&pending_bios, bi);
1300 else
1301 submit_bio_noacct(bi);
1302 }
1303 if (rrdev) {
1304 if (s->syncing || s->expanding || s->expanded
1305 || s->replacing)
1306 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1307
1308 set_bit(STRIPE_IO_STARTED, &sh->state);
1309
1310 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1311 BUG_ON(!op_is_write(op));
1312 rbi->bi_end_io = raid5_end_write_request;
1313 rbi->bi_private = sh;
1314
1315 pr_debug("%s: for %llu schedule op %d on "
1316 "replacement disc %d\n",
1317 __func__, (unsigned long long)sh->sector,
1318 rbi->bi_opf, i);
1319 atomic_inc(&sh->count);
1320 if (sh != head_sh)
1321 atomic_inc(&head_sh->count);
1322 if (use_new_offset(conf, sh))
1323 rbi->bi_iter.bi_sector = (sh->sector
1324 + rrdev->new_data_offset);
1325 else
1326 rbi->bi_iter.bi_sector = (sh->sector
1327 + rrdev->data_offset);
1328 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1329 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1330 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1331 rbi->bi_vcnt = 1;
1332 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1333 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1334 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1335 /*
1336 * If this is discard request, set bi_vcnt 0. We don't
1337 * want to confuse SCSI because SCSI will replace payload
1338 */
1339 if (op == REQ_OP_DISCARD)
1340 rbi->bi_vcnt = 0;
1341 mddev_trace_remap(conf->mddev, rbi, sh->dev[i].sector);
1342 if (should_defer && op_is_write(op))
1343 bio_list_add(&pending_bios, rbi);
1344 else
1345 submit_bio_noacct(rbi);
1346 }
1347 if (!rdev && !rrdev) {
1348 if (op_is_write(op))
1349 set_bit(STRIPE_DEGRADED, &sh->state);
1350 pr_debug("skip op %d on disc %d for sector %llu\n",
1351 bi->bi_opf, i, (unsigned long long)sh->sector);
1352 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1353 set_bit(STRIPE_HANDLE, &sh->state);
1354 }
1355
1356 if (!head_sh->batch_head)
1357 continue;
1358 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1359 batch_list);
1360 if (sh != head_sh)
1361 goto again;
1362 }
1363
1364 if (should_defer && !bio_list_empty(&pending_bios))
1365 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1366 }
1367
1368 static struct dma_async_tx_descriptor *
async_copy_data(int frombio,struct bio * bio,struct page ** page,unsigned int poff,sector_t sector,struct dma_async_tx_descriptor * tx,struct stripe_head * sh,int no_skipcopy)1369 async_copy_data(int frombio, struct bio *bio, struct page **page,
1370 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1371 struct stripe_head *sh, int no_skipcopy)
1372 {
1373 struct bio_vec bvl;
1374 struct bvec_iter iter;
1375 struct page *bio_page;
1376 int page_offset;
1377 struct async_submit_ctl submit;
1378 enum async_tx_flags flags = 0;
1379 struct r5conf *conf = sh->raid_conf;
1380
1381 if (bio->bi_iter.bi_sector >= sector)
1382 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1383 else
1384 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1385
1386 if (frombio)
1387 flags |= ASYNC_TX_FENCE;
1388 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1389
1390 bio_for_each_segment(bvl, bio, iter) {
1391 int len = bvl.bv_len;
1392 int clen;
1393 int b_offset = 0;
1394
1395 if (page_offset < 0) {
1396 b_offset = -page_offset;
1397 page_offset += b_offset;
1398 len -= b_offset;
1399 }
1400
1401 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1402 clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1403 else
1404 clen = len;
1405
1406 if (clen > 0) {
1407 b_offset += bvl.bv_offset;
1408 bio_page = bvl.bv_page;
1409 if (frombio) {
1410 if (conf->skip_copy &&
1411 b_offset == 0 && page_offset == 0 &&
1412 clen == RAID5_STRIPE_SIZE(conf) &&
1413 !no_skipcopy)
1414 *page = bio_page;
1415 else
1416 tx = async_memcpy(*page, bio_page, page_offset + poff,
1417 b_offset, clen, &submit);
1418 } else
1419 tx = async_memcpy(bio_page, *page, b_offset,
1420 page_offset + poff, clen, &submit);
1421 }
1422 /* chain the operations */
1423 submit.depend_tx = tx;
1424
1425 if (clen < len) /* hit end of page */
1426 break;
1427 page_offset += len;
1428 }
1429
1430 return tx;
1431 }
1432
ops_complete_biofill(void * stripe_head_ref)1433 static void ops_complete_biofill(void *stripe_head_ref)
1434 {
1435 struct stripe_head *sh = stripe_head_ref;
1436 int i;
1437 struct r5conf *conf = sh->raid_conf;
1438
1439 pr_debug("%s: stripe %llu\n", __func__,
1440 (unsigned long long)sh->sector);
1441
1442 /* clear completed biofills */
1443 for (i = sh->disks; i--; ) {
1444 struct r5dev *dev = &sh->dev[i];
1445
1446 /* acknowledge completion of a biofill operation */
1447 /* and check if we need to reply to a read request,
1448 * new R5_Wantfill requests are held off until
1449 * !STRIPE_BIOFILL_RUN
1450 */
1451 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1452 struct bio *rbi, *rbi2;
1453
1454 BUG_ON(!dev->read);
1455 rbi = dev->read;
1456 dev->read = NULL;
1457 while (rbi && rbi->bi_iter.bi_sector <
1458 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1459 rbi2 = r5_next_bio(conf, rbi, dev->sector);
1460 bio_endio(rbi);
1461 rbi = rbi2;
1462 }
1463 }
1464 }
1465 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1466
1467 set_bit(STRIPE_HANDLE, &sh->state);
1468 raid5_release_stripe(sh);
1469 }
1470
ops_run_biofill(struct stripe_head * sh)1471 static void ops_run_biofill(struct stripe_head *sh)
1472 {
1473 struct dma_async_tx_descriptor *tx = NULL;
1474 struct async_submit_ctl submit;
1475 int i;
1476 struct r5conf *conf = sh->raid_conf;
1477
1478 BUG_ON(sh->batch_head);
1479 pr_debug("%s: stripe %llu\n", __func__,
1480 (unsigned long long)sh->sector);
1481
1482 for (i = sh->disks; i--; ) {
1483 struct r5dev *dev = &sh->dev[i];
1484 if (test_bit(R5_Wantfill, &dev->flags)) {
1485 struct bio *rbi;
1486 spin_lock_irq(&sh->stripe_lock);
1487 dev->read = rbi = dev->toread;
1488 dev->toread = NULL;
1489 spin_unlock_irq(&sh->stripe_lock);
1490 while (rbi && rbi->bi_iter.bi_sector <
1491 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1492 tx = async_copy_data(0, rbi, &dev->page,
1493 dev->offset,
1494 dev->sector, tx, sh, 0);
1495 rbi = r5_next_bio(conf, rbi, dev->sector);
1496 }
1497 }
1498 }
1499
1500 atomic_inc(&sh->count);
1501 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1502 async_trigger_callback(&submit);
1503 }
1504
mark_target_uptodate(struct stripe_head * sh,int target)1505 static void mark_target_uptodate(struct stripe_head *sh, int target)
1506 {
1507 struct r5dev *tgt;
1508
1509 if (target < 0)
1510 return;
1511
1512 tgt = &sh->dev[target];
1513 set_bit(R5_UPTODATE, &tgt->flags);
1514 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1515 clear_bit(R5_Wantcompute, &tgt->flags);
1516 }
1517
ops_complete_compute(void * stripe_head_ref)1518 static void ops_complete_compute(void *stripe_head_ref)
1519 {
1520 struct stripe_head *sh = stripe_head_ref;
1521
1522 pr_debug("%s: stripe %llu\n", __func__,
1523 (unsigned long long)sh->sector);
1524
1525 /* mark the computed target(s) as uptodate */
1526 mark_target_uptodate(sh, sh->ops.target);
1527 mark_target_uptodate(sh, sh->ops.target2);
1528
1529 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1530 if (sh->check_state == check_state_compute_run)
1531 sh->check_state = check_state_compute_result;
1532 set_bit(STRIPE_HANDLE, &sh->state);
1533 raid5_release_stripe(sh);
1534 }
1535
1536 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_page(struct raid5_percpu * percpu,int i)1537 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1538 {
1539 return percpu->scribble + i * percpu->scribble_obj_size;
1540 }
1541
1542 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_conv(struct stripe_head * sh,struct raid5_percpu * percpu,int i)1543 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1544 struct raid5_percpu *percpu, int i)
1545 {
1546 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1547 }
1548
1549 /*
1550 * Return a pointer to record offset address.
1551 */
1552 static unsigned int *
to_addr_offs(struct stripe_head * sh,struct raid5_percpu * percpu)1553 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1554 {
1555 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1556 }
1557
1558 static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head * sh,struct raid5_percpu * percpu)1559 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1560 {
1561 int disks = sh->disks;
1562 struct page **xor_srcs = to_addr_page(percpu, 0);
1563 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1564 int target = sh->ops.target;
1565 struct r5dev *tgt = &sh->dev[target];
1566 struct page *xor_dest = tgt->page;
1567 unsigned int off_dest = tgt->offset;
1568 int count = 0;
1569 struct dma_async_tx_descriptor *tx;
1570 struct async_submit_ctl submit;
1571 int i;
1572
1573 BUG_ON(sh->batch_head);
1574
1575 pr_debug("%s: stripe %llu block: %d\n",
1576 __func__, (unsigned long long)sh->sector, target);
1577 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1578
1579 for (i = disks; i--; ) {
1580 if (i != target) {
1581 off_srcs[count] = sh->dev[i].offset;
1582 xor_srcs[count++] = sh->dev[i].page;
1583 }
1584 }
1585
1586 atomic_inc(&sh->count);
1587
1588 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1589 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1590 if (unlikely(count == 1))
1591 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1592 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1593 else
1594 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1595 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1596
1597 return tx;
1598 }
1599
1600 /* set_syndrome_sources - populate source buffers for gen_syndrome
1601 * @srcs - (struct page *) array of size sh->disks
1602 * @offs - (unsigned int) array of offset for each page
1603 * @sh - stripe_head to parse
1604 *
1605 * Populates srcs in proper layout order for the stripe and returns the
1606 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1607 * destination buffer is recorded in srcs[count] and the Q destination
1608 * is recorded in srcs[count+1]].
1609 */
set_syndrome_sources(struct page ** srcs,unsigned int * offs,struct stripe_head * sh,int srctype)1610 static int set_syndrome_sources(struct page **srcs,
1611 unsigned int *offs,
1612 struct stripe_head *sh,
1613 int srctype)
1614 {
1615 int disks = sh->disks;
1616 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1617 int d0_idx = raid6_d0(sh);
1618 int count;
1619 int i;
1620
1621 for (i = 0; i < disks; i++)
1622 srcs[i] = NULL;
1623
1624 count = 0;
1625 i = d0_idx;
1626 do {
1627 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1628 struct r5dev *dev = &sh->dev[i];
1629
1630 if (i == sh->qd_idx || i == sh->pd_idx ||
1631 (srctype == SYNDROME_SRC_ALL) ||
1632 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1633 (test_bit(R5_Wantdrain, &dev->flags) ||
1634 test_bit(R5_InJournal, &dev->flags))) ||
1635 (srctype == SYNDROME_SRC_WRITTEN &&
1636 (dev->written ||
1637 test_bit(R5_InJournal, &dev->flags)))) {
1638 if (test_bit(R5_InJournal, &dev->flags))
1639 srcs[slot] = sh->dev[i].orig_page;
1640 else
1641 srcs[slot] = sh->dev[i].page;
1642 /*
1643 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1644 * not shared page. In that case, dev[i].offset
1645 * is 0.
1646 */
1647 offs[slot] = sh->dev[i].offset;
1648 }
1649 i = raid6_next_disk(i, disks);
1650 } while (i != d0_idx);
1651
1652 return syndrome_disks;
1653 }
1654
1655 static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head * sh,struct raid5_percpu * percpu)1656 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1657 {
1658 int disks = sh->disks;
1659 struct page **blocks = to_addr_page(percpu, 0);
1660 unsigned int *offs = to_addr_offs(sh, percpu);
1661 int target;
1662 int qd_idx = sh->qd_idx;
1663 struct dma_async_tx_descriptor *tx;
1664 struct async_submit_ctl submit;
1665 struct r5dev *tgt;
1666 struct page *dest;
1667 unsigned int dest_off;
1668 int i;
1669 int count;
1670
1671 BUG_ON(sh->batch_head);
1672 if (sh->ops.target < 0)
1673 target = sh->ops.target2;
1674 else if (sh->ops.target2 < 0)
1675 target = sh->ops.target;
1676 else
1677 /* we should only have one valid target */
1678 BUG();
1679 BUG_ON(target < 0);
1680 pr_debug("%s: stripe %llu block: %d\n",
1681 __func__, (unsigned long long)sh->sector, target);
1682
1683 tgt = &sh->dev[target];
1684 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1685 dest = tgt->page;
1686 dest_off = tgt->offset;
1687
1688 atomic_inc(&sh->count);
1689
1690 if (target == qd_idx) {
1691 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1692 blocks[count] = NULL; /* regenerating p is not necessary */
1693 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1694 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1695 ops_complete_compute, sh,
1696 to_addr_conv(sh, percpu, 0));
1697 tx = async_gen_syndrome(blocks, offs, count+2,
1698 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1699 } else {
1700 /* Compute any data- or p-drive using XOR */
1701 count = 0;
1702 for (i = disks; i-- ; ) {
1703 if (i == target || i == qd_idx)
1704 continue;
1705 offs[count] = sh->dev[i].offset;
1706 blocks[count++] = sh->dev[i].page;
1707 }
1708
1709 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1710 NULL, ops_complete_compute, sh,
1711 to_addr_conv(sh, percpu, 0));
1712 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1713 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1714 }
1715
1716 return tx;
1717 }
1718
1719 static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head * sh,struct raid5_percpu * percpu)1720 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1721 {
1722 int i, count, disks = sh->disks;
1723 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1724 int d0_idx = raid6_d0(sh);
1725 int faila = -1, failb = -1;
1726 int target = sh->ops.target;
1727 int target2 = sh->ops.target2;
1728 struct r5dev *tgt = &sh->dev[target];
1729 struct r5dev *tgt2 = &sh->dev[target2];
1730 struct dma_async_tx_descriptor *tx;
1731 struct page **blocks = to_addr_page(percpu, 0);
1732 unsigned int *offs = to_addr_offs(sh, percpu);
1733 struct async_submit_ctl submit;
1734
1735 BUG_ON(sh->batch_head);
1736 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1737 __func__, (unsigned long long)sh->sector, target, target2);
1738 BUG_ON(target < 0 || target2 < 0);
1739 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1740 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1741
1742 /* we need to open-code set_syndrome_sources to handle the
1743 * slot number conversion for 'faila' and 'failb'
1744 */
1745 for (i = 0; i < disks ; i++) {
1746 offs[i] = 0;
1747 blocks[i] = NULL;
1748 }
1749 count = 0;
1750 i = d0_idx;
1751 do {
1752 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1753
1754 offs[slot] = sh->dev[i].offset;
1755 blocks[slot] = sh->dev[i].page;
1756
1757 if (i == target)
1758 faila = slot;
1759 if (i == target2)
1760 failb = slot;
1761 i = raid6_next_disk(i, disks);
1762 } while (i != d0_idx);
1763
1764 BUG_ON(faila == failb);
1765 if (failb < faila)
1766 swap(faila, failb);
1767 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1768 __func__, (unsigned long long)sh->sector, faila, failb);
1769
1770 atomic_inc(&sh->count);
1771
1772 if (failb == syndrome_disks+1) {
1773 /* Q disk is one of the missing disks */
1774 if (faila == syndrome_disks) {
1775 /* Missing P+Q, just recompute */
1776 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1777 ops_complete_compute, sh,
1778 to_addr_conv(sh, percpu, 0));
1779 return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1780 RAID5_STRIPE_SIZE(sh->raid_conf),
1781 &submit);
1782 } else {
1783 struct page *dest;
1784 unsigned int dest_off;
1785 int data_target;
1786 int qd_idx = sh->qd_idx;
1787
1788 /* Missing D+Q: recompute D from P, then recompute Q */
1789 if (target == qd_idx)
1790 data_target = target2;
1791 else
1792 data_target = target;
1793
1794 count = 0;
1795 for (i = disks; i-- ; ) {
1796 if (i == data_target || i == qd_idx)
1797 continue;
1798 offs[count] = sh->dev[i].offset;
1799 blocks[count++] = sh->dev[i].page;
1800 }
1801 dest = sh->dev[data_target].page;
1802 dest_off = sh->dev[data_target].offset;
1803 init_async_submit(&submit,
1804 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1805 NULL, NULL, NULL,
1806 to_addr_conv(sh, percpu, 0));
1807 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1808 RAID5_STRIPE_SIZE(sh->raid_conf),
1809 &submit);
1810
1811 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1812 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1813 ops_complete_compute, sh,
1814 to_addr_conv(sh, percpu, 0));
1815 return async_gen_syndrome(blocks, offs, count+2,
1816 RAID5_STRIPE_SIZE(sh->raid_conf),
1817 &submit);
1818 }
1819 } else {
1820 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1821 ops_complete_compute, sh,
1822 to_addr_conv(sh, percpu, 0));
1823 if (failb == syndrome_disks) {
1824 /* We're missing D+P. */
1825 return async_raid6_datap_recov(syndrome_disks+2,
1826 RAID5_STRIPE_SIZE(sh->raid_conf),
1827 faila,
1828 blocks, offs, &submit);
1829 } else {
1830 /* We're missing D+D. */
1831 return async_raid6_2data_recov(syndrome_disks+2,
1832 RAID5_STRIPE_SIZE(sh->raid_conf),
1833 faila, failb,
1834 blocks, offs, &submit);
1835 }
1836 }
1837 }
1838
ops_complete_prexor(void * stripe_head_ref)1839 static void ops_complete_prexor(void *stripe_head_ref)
1840 {
1841 struct stripe_head *sh = stripe_head_ref;
1842
1843 pr_debug("%s: stripe %llu\n", __func__,
1844 (unsigned long long)sh->sector);
1845
1846 if (r5c_is_writeback(sh->raid_conf->log))
1847 /*
1848 * raid5-cache write back uses orig_page during prexor.
1849 * After prexor, it is time to free orig_page
1850 */
1851 r5c_release_extra_page(sh);
1852 }
1853
1854 static struct dma_async_tx_descriptor *
ops_run_prexor5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1855 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1856 struct dma_async_tx_descriptor *tx)
1857 {
1858 int disks = sh->disks;
1859 struct page **xor_srcs = to_addr_page(percpu, 0);
1860 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1861 int count = 0, pd_idx = sh->pd_idx, i;
1862 struct async_submit_ctl submit;
1863
1864 /* existing parity data subtracted */
1865 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1866 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1867
1868 BUG_ON(sh->batch_head);
1869 pr_debug("%s: stripe %llu\n", __func__,
1870 (unsigned long long)sh->sector);
1871
1872 for (i = disks; i--; ) {
1873 struct r5dev *dev = &sh->dev[i];
1874 /* Only process blocks that are known to be uptodate */
1875 if (test_bit(R5_InJournal, &dev->flags)) {
1876 /*
1877 * For this case, PAGE_SIZE must be equal to 4KB and
1878 * page offset is zero.
1879 */
1880 off_srcs[count] = dev->offset;
1881 xor_srcs[count++] = dev->orig_page;
1882 } else if (test_bit(R5_Wantdrain, &dev->flags)) {
1883 off_srcs[count] = dev->offset;
1884 xor_srcs[count++] = dev->page;
1885 }
1886 }
1887
1888 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1889 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1890 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1891 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1892
1893 return tx;
1894 }
1895
1896 static struct dma_async_tx_descriptor *
ops_run_prexor6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1897 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1898 struct dma_async_tx_descriptor *tx)
1899 {
1900 struct page **blocks = to_addr_page(percpu, 0);
1901 unsigned int *offs = to_addr_offs(sh, percpu);
1902 int count;
1903 struct async_submit_ctl submit;
1904
1905 pr_debug("%s: stripe %llu\n", __func__,
1906 (unsigned long long)sh->sector);
1907
1908 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1909
1910 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1911 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1912 tx = async_gen_syndrome(blocks, offs, count+2,
1913 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1914
1915 return tx;
1916 }
1917
1918 static struct dma_async_tx_descriptor *
ops_run_biodrain(struct stripe_head * sh,struct dma_async_tx_descriptor * tx)1919 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1920 {
1921 struct r5conf *conf = sh->raid_conf;
1922 int disks = sh->disks;
1923 int i;
1924 struct stripe_head *head_sh = sh;
1925
1926 pr_debug("%s: stripe %llu\n", __func__,
1927 (unsigned long long)sh->sector);
1928
1929 for (i = disks; i--; ) {
1930 struct r5dev *dev;
1931 struct bio *chosen;
1932
1933 sh = head_sh;
1934 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1935 struct bio *wbi;
1936
1937 again:
1938 dev = &sh->dev[i];
1939 /*
1940 * clear R5_InJournal, so when rewriting a page in
1941 * journal, it is not skipped by r5l_log_stripe()
1942 */
1943 clear_bit(R5_InJournal, &dev->flags);
1944 spin_lock_irq(&sh->stripe_lock);
1945 chosen = dev->towrite;
1946 dev->towrite = NULL;
1947 sh->overwrite_disks = 0;
1948 BUG_ON(dev->written);
1949 wbi = dev->written = chosen;
1950 spin_unlock_irq(&sh->stripe_lock);
1951 WARN_ON(dev->page != dev->orig_page);
1952
1953 while (wbi && wbi->bi_iter.bi_sector <
1954 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1955 if (wbi->bi_opf & REQ_FUA)
1956 set_bit(R5_WantFUA, &dev->flags);
1957 if (wbi->bi_opf & REQ_SYNC)
1958 set_bit(R5_SyncIO, &dev->flags);
1959 if (bio_op(wbi) == REQ_OP_DISCARD)
1960 set_bit(R5_Discard, &dev->flags);
1961 else {
1962 tx = async_copy_data(1, wbi, &dev->page,
1963 dev->offset,
1964 dev->sector, tx, sh,
1965 r5c_is_writeback(conf->log));
1966 if (dev->page != dev->orig_page &&
1967 !r5c_is_writeback(conf->log)) {
1968 set_bit(R5_SkipCopy, &dev->flags);
1969 clear_bit(R5_UPTODATE, &dev->flags);
1970 clear_bit(R5_OVERWRITE, &dev->flags);
1971 }
1972 }
1973 wbi = r5_next_bio(conf, wbi, dev->sector);
1974 }
1975
1976 if (head_sh->batch_head) {
1977 sh = list_first_entry(&sh->batch_list,
1978 struct stripe_head,
1979 batch_list);
1980 if (sh == head_sh)
1981 continue;
1982 goto again;
1983 }
1984 }
1985 }
1986
1987 return tx;
1988 }
1989
ops_complete_reconstruct(void * stripe_head_ref)1990 static void ops_complete_reconstruct(void *stripe_head_ref)
1991 {
1992 struct stripe_head *sh = stripe_head_ref;
1993 int disks = sh->disks;
1994 int pd_idx = sh->pd_idx;
1995 int qd_idx = sh->qd_idx;
1996 int i;
1997 bool fua = false, sync = false, discard = false;
1998
1999 pr_debug("%s: stripe %llu\n", __func__,
2000 (unsigned long long)sh->sector);
2001
2002 for (i = disks; i--; ) {
2003 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
2004 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
2005 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
2006 }
2007
2008 for (i = disks; i--; ) {
2009 struct r5dev *dev = &sh->dev[i];
2010
2011 if (dev->written || i == pd_idx || i == qd_idx) {
2012 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
2013 set_bit(R5_UPTODATE, &dev->flags);
2014 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
2015 set_bit(R5_Expanded, &dev->flags);
2016 }
2017 if (fua)
2018 set_bit(R5_WantFUA, &dev->flags);
2019 if (sync)
2020 set_bit(R5_SyncIO, &dev->flags);
2021 }
2022 }
2023
2024 if (sh->reconstruct_state == reconstruct_state_drain_run)
2025 sh->reconstruct_state = reconstruct_state_drain_result;
2026 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
2027 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
2028 else {
2029 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
2030 sh->reconstruct_state = reconstruct_state_result;
2031 }
2032
2033 set_bit(STRIPE_HANDLE, &sh->state);
2034 raid5_release_stripe(sh);
2035 }
2036
2037 static void
ops_run_reconstruct5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)2038 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
2039 struct dma_async_tx_descriptor *tx)
2040 {
2041 int disks = sh->disks;
2042 struct page **xor_srcs;
2043 unsigned int *off_srcs;
2044 struct async_submit_ctl submit;
2045 int count, pd_idx = sh->pd_idx, i;
2046 struct page *xor_dest;
2047 unsigned int off_dest;
2048 int prexor = 0;
2049 unsigned long flags;
2050 int j = 0;
2051 struct stripe_head *head_sh = sh;
2052 int last_stripe;
2053
2054 pr_debug("%s: stripe %llu\n", __func__,
2055 (unsigned long long)sh->sector);
2056
2057 for (i = 0; i < sh->disks; i++) {
2058 if (pd_idx == i)
2059 continue;
2060 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2061 break;
2062 }
2063 if (i >= sh->disks) {
2064 atomic_inc(&sh->count);
2065 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2066 ops_complete_reconstruct(sh);
2067 return;
2068 }
2069 again:
2070 count = 0;
2071 xor_srcs = to_addr_page(percpu, j);
2072 off_srcs = to_addr_offs(sh, percpu);
2073 /* check if prexor is active which means only process blocks
2074 * that are part of a read-modify-write (written)
2075 */
2076 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2077 prexor = 1;
2078 off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2079 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2080 for (i = disks; i--; ) {
2081 struct r5dev *dev = &sh->dev[i];
2082 if (head_sh->dev[i].written ||
2083 test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2084 off_srcs[count] = dev->offset;
2085 xor_srcs[count++] = dev->page;
2086 }
2087 }
2088 } else {
2089 xor_dest = sh->dev[pd_idx].page;
2090 off_dest = sh->dev[pd_idx].offset;
2091 for (i = disks; i--; ) {
2092 struct r5dev *dev = &sh->dev[i];
2093 if (i != pd_idx) {
2094 off_srcs[count] = dev->offset;
2095 xor_srcs[count++] = dev->page;
2096 }
2097 }
2098 }
2099
2100 /* 1/ if we prexor'd then the dest is reused as a source
2101 * 2/ if we did not prexor then we are redoing the parity
2102 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2103 * for the synchronous xor case
2104 */
2105 last_stripe = !head_sh->batch_head ||
2106 list_first_entry(&sh->batch_list,
2107 struct stripe_head, batch_list) == head_sh;
2108 if (last_stripe) {
2109 flags = ASYNC_TX_ACK |
2110 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2111
2112 atomic_inc(&head_sh->count);
2113 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2114 to_addr_conv(sh, percpu, j));
2115 } else {
2116 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2117 init_async_submit(&submit, flags, tx, NULL, NULL,
2118 to_addr_conv(sh, percpu, j));
2119 }
2120
2121 if (unlikely(count == 1))
2122 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2123 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2124 else
2125 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2126 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2127 if (!last_stripe) {
2128 j++;
2129 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2130 batch_list);
2131 goto again;
2132 }
2133 }
2134
2135 static void
ops_run_reconstruct6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)2136 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2137 struct dma_async_tx_descriptor *tx)
2138 {
2139 struct async_submit_ctl submit;
2140 struct page **blocks;
2141 unsigned int *offs;
2142 int count, i, j = 0;
2143 struct stripe_head *head_sh = sh;
2144 int last_stripe;
2145 int synflags;
2146 unsigned long txflags;
2147
2148 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2149
2150 for (i = 0; i < sh->disks; i++) {
2151 if (sh->pd_idx == i || sh->qd_idx == i)
2152 continue;
2153 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2154 break;
2155 }
2156 if (i >= sh->disks) {
2157 atomic_inc(&sh->count);
2158 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2159 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2160 ops_complete_reconstruct(sh);
2161 return;
2162 }
2163
2164 again:
2165 blocks = to_addr_page(percpu, j);
2166 offs = to_addr_offs(sh, percpu);
2167
2168 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2169 synflags = SYNDROME_SRC_WRITTEN;
2170 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2171 } else {
2172 synflags = SYNDROME_SRC_ALL;
2173 txflags = ASYNC_TX_ACK;
2174 }
2175
2176 count = set_syndrome_sources(blocks, offs, sh, synflags);
2177 last_stripe = !head_sh->batch_head ||
2178 list_first_entry(&sh->batch_list,
2179 struct stripe_head, batch_list) == head_sh;
2180
2181 if (last_stripe) {
2182 atomic_inc(&head_sh->count);
2183 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2184 head_sh, to_addr_conv(sh, percpu, j));
2185 } else
2186 init_async_submit(&submit, 0, tx, NULL, NULL,
2187 to_addr_conv(sh, percpu, j));
2188 tx = async_gen_syndrome(blocks, offs, count+2,
2189 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2190 if (!last_stripe) {
2191 j++;
2192 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2193 batch_list);
2194 goto again;
2195 }
2196 }
2197
ops_complete_check(void * stripe_head_ref)2198 static void ops_complete_check(void *stripe_head_ref)
2199 {
2200 struct stripe_head *sh = stripe_head_ref;
2201
2202 pr_debug("%s: stripe %llu\n", __func__,
2203 (unsigned long long)sh->sector);
2204
2205 sh->check_state = check_state_check_result;
2206 set_bit(STRIPE_HANDLE, &sh->state);
2207 raid5_release_stripe(sh);
2208 }
2209
ops_run_check_p(struct stripe_head * sh,struct raid5_percpu * percpu)2210 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2211 {
2212 int disks = sh->disks;
2213 int pd_idx = sh->pd_idx;
2214 int qd_idx = sh->qd_idx;
2215 struct page *xor_dest;
2216 unsigned int off_dest;
2217 struct page **xor_srcs = to_addr_page(percpu, 0);
2218 unsigned int *off_srcs = to_addr_offs(sh, percpu);
2219 struct dma_async_tx_descriptor *tx;
2220 struct async_submit_ctl submit;
2221 int count;
2222 int i;
2223
2224 pr_debug("%s: stripe %llu\n", __func__,
2225 (unsigned long long)sh->sector);
2226
2227 BUG_ON(sh->batch_head);
2228 count = 0;
2229 xor_dest = sh->dev[pd_idx].page;
2230 off_dest = sh->dev[pd_idx].offset;
2231 off_srcs[count] = off_dest;
2232 xor_srcs[count++] = xor_dest;
2233 for (i = disks; i--; ) {
2234 if (i == pd_idx || i == qd_idx)
2235 continue;
2236 off_srcs[count] = sh->dev[i].offset;
2237 xor_srcs[count++] = sh->dev[i].page;
2238 }
2239
2240 init_async_submit(&submit, 0, NULL, NULL, NULL,
2241 to_addr_conv(sh, percpu, 0));
2242 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2243 RAID5_STRIPE_SIZE(sh->raid_conf),
2244 &sh->ops.zero_sum_result, &submit);
2245
2246 atomic_inc(&sh->count);
2247 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2248 tx = async_trigger_callback(&submit);
2249 }
2250
ops_run_check_pq(struct stripe_head * sh,struct raid5_percpu * percpu,int checkp)2251 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2252 {
2253 struct page **srcs = to_addr_page(percpu, 0);
2254 unsigned int *offs = to_addr_offs(sh, percpu);
2255 struct async_submit_ctl submit;
2256 int count;
2257
2258 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2259 (unsigned long long)sh->sector, checkp);
2260
2261 BUG_ON(sh->batch_head);
2262 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2263 if (!checkp)
2264 srcs[count] = NULL;
2265
2266 atomic_inc(&sh->count);
2267 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2268 sh, to_addr_conv(sh, percpu, 0));
2269 async_syndrome_val(srcs, offs, count+2,
2270 RAID5_STRIPE_SIZE(sh->raid_conf),
2271 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2272 }
2273
raid_run_ops(struct stripe_head * sh,unsigned long ops_request)2274 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2275 {
2276 int overlap_clear = 0, i, disks = sh->disks;
2277 struct dma_async_tx_descriptor *tx = NULL;
2278 struct r5conf *conf = sh->raid_conf;
2279 int level = conf->level;
2280 struct raid5_percpu *percpu;
2281
2282 local_lock(&conf->percpu->lock);
2283 percpu = this_cpu_ptr(conf->percpu);
2284 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2285 ops_run_biofill(sh);
2286 overlap_clear++;
2287 }
2288
2289 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2290 if (level < 6)
2291 tx = ops_run_compute5(sh, percpu);
2292 else {
2293 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2294 tx = ops_run_compute6_1(sh, percpu);
2295 else
2296 tx = ops_run_compute6_2(sh, percpu);
2297 }
2298 /* terminate the chain if reconstruct is not set to be run */
2299 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2300 async_tx_ack(tx);
2301 }
2302
2303 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2304 if (level < 6)
2305 tx = ops_run_prexor5(sh, percpu, tx);
2306 else
2307 tx = ops_run_prexor6(sh, percpu, tx);
2308 }
2309
2310 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2311 tx = ops_run_partial_parity(sh, percpu, tx);
2312
2313 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2314 tx = ops_run_biodrain(sh, tx);
2315 overlap_clear++;
2316 }
2317
2318 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2319 if (level < 6)
2320 ops_run_reconstruct5(sh, percpu, tx);
2321 else
2322 ops_run_reconstruct6(sh, percpu, tx);
2323 }
2324
2325 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2326 if (sh->check_state == check_state_run)
2327 ops_run_check_p(sh, percpu);
2328 else if (sh->check_state == check_state_run_q)
2329 ops_run_check_pq(sh, percpu, 0);
2330 else if (sh->check_state == check_state_run_pq)
2331 ops_run_check_pq(sh, percpu, 1);
2332 else
2333 BUG();
2334 }
2335
2336 if (overlap_clear && !sh->batch_head) {
2337 for (i = disks; i--; ) {
2338 struct r5dev *dev = &sh->dev[i];
2339 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2340 wake_up_bit(&dev->flags, R5_Overlap);
2341 }
2342 }
2343 local_unlock(&conf->percpu->lock);
2344 }
2345
free_stripe(struct kmem_cache * sc,struct stripe_head * sh)2346 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2347 {
2348 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2349 kfree(sh->pages);
2350 #endif
2351 if (sh->ppl_page)
2352 __free_page(sh->ppl_page);
2353 kmem_cache_free(sc, sh);
2354 }
2355
alloc_stripe(struct kmem_cache * sc,gfp_t gfp,int disks,struct r5conf * conf)2356 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2357 int disks, struct r5conf *conf)
2358 {
2359 struct stripe_head *sh;
2360
2361 sh = kmem_cache_zalloc(sc, gfp);
2362 if (sh) {
2363 spin_lock_init(&sh->stripe_lock);
2364 spin_lock_init(&sh->batch_lock);
2365 INIT_LIST_HEAD(&sh->batch_list);
2366 INIT_LIST_HEAD(&sh->lru);
2367 INIT_LIST_HEAD(&sh->r5c);
2368 INIT_LIST_HEAD(&sh->log_list);
2369 atomic_set(&sh->count, 1);
2370 sh->raid_conf = conf;
2371 sh->log_start = MaxSector;
2372
2373 if (raid5_has_ppl(conf)) {
2374 sh->ppl_page = alloc_page(gfp);
2375 if (!sh->ppl_page) {
2376 free_stripe(sc, sh);
2377 return NULL;
2378 }
2379 }
2380 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2381 if (init_stripe_shared_pages(sh, conf, disks)) {
2382 free_stripe(sc, sh);
2383 return NULL;
2384 }
2385 #endif
2386 }
2387 return sh;
2388 }
grow_one_stripe(struct r5conf * conf,gfp_t gfp)2389 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2390 {
2391 struct stripe_head *sh;
2392
2393 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2394 if (!sh)
2395 return 0;
2396
2397 if (grow_buffers(sh, gfp)) {
2398 shrink_buffers(sh);
2399 free_stripe(conf->slab_cache, sh);
2400 return 0;
2401 }
2402 sh->hash_lock_index =
2403 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2404 /* we just created an active stripe so... */
2405 atomic_inc(&conf->active_stripes);
2406
2407 raid5_release_stripe(sh);
2408 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes + 1);
2409 return 1;
2410 }
2411
grow_stripes(struct r5conf * conf,int num)2412 static int grow_stripes(struct r5conf *conf, int num)
2413 {
2414 struct kmem_cache *sc;
2415 size_t namelen = sizeof(conf->cache_name[0]);
2416 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2417
2418 if (mddev_is_dm(conf->mddev))
2419 snprintf(conf->cache_name[0], namelen,
2420 "raid%d-%p", conf->level, conf->mddev);
2421 else
2422 snprintf(conf->cache_name[0], namelen,
2423 "raid%d-%s", conf->level, mdname(conf->mddev));
2424 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2425
2426 conf->active_name = 0;
2427 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2428 struct_size_t(struct stripe_head, dev, devs),
2429 0, 0, NULL);
2430 if (!sc)
2431 return 1;
2432 conf->slab_cache = sc;
2433 conf->pool_size = devs;
2434 while (num--)
2435 if (!grow_one_stripe(conf, GFP_KERNEL))
2436 return 1;
2437
2438 return 0;
2439 }
2440
2441 /**
2442 * scribble_alloc - allocate percpu scribble buffer for required size
2443 * of the scribble region
2444 * @percpu: from for_each_present_cpu() of the caller
2445 * @num: total number of disks in the array
2446 * @cnt: scribble objs count for required size of the scribble region
2447 *
2448 * The scribble buffer size must be enough to contain:
2449 * 1/ a struct page pointer for each device in the array +2
2450 * 2/ room to convert each entry in (1) to its corresponding dma
2451 * (dma_map_page()) or page (page_address()) address.
2452 *
2453 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2454 * calculate over all devices (not just the data blocks), using zeros in place
2455 * of the P and Q blocks.
2456 */
scribble_alloc(struct raid5_percpu * percpu,int num,int cnt)2457 static int scribble_alloc(struct raid5_percpu *percpu,
2458 int num, int cnt)
2459 {
2460 size_t obj_size =
2461 sizeof(struct page *) * (num + 2) +
2462 sizeof(addr_conv_t) * (num + 2) +
2463 sizeof(unsigned int) * (num + 2);
2464 void *scribble;
2465
2466 /*
2467 * If here is in raid array suspend context, it is in memalloc noio
2468 * context as well, there is no potential recursive memory reclaim
2469 * I/Os with the GFP_KERNEL flag.
2470 */
2471 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2472 if (!scribble)
2473 return -ENOMEM;
2474
2475 kvfree(percpu->scribble);
2476
2477 percpu->scribble = scribble;
2478 percpu->scribble_obj_size = obj_size;
2479 return 0;
2480 }
2481
resize_chunks(struct r5conf * conf,int new_disks,int new_sectors)2482 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2483 {
2484 unsigned long cpu;
2485 int err = 0;
2486
2487 /* Never shrink. */
2488 if (conf->scribble_disks >= new_disks &&
2489 conf->scribble_sectors >= new_sectors)
2490 return 0;
2491
2492 raid5_quiesce(conf->mddev, true);
2493 cpus_read_lock();
2494
2495 for_each_present_cpu(cpu) {
2496 struct raid5_percpu *percpu;
2497
2498 percpu = per_cpu_ptr(conf->percpu, cpu);
2499 err = scribble_alloc(percpu, new_disks,
2500 new_sectors / RAID5_STRIPE_SECTORS(conf));
2501 if (err)
2502 break;
2503 }
2504
2505 cpus_read_unlock();
2506 raid5_quiesce(conf->mddev, false);
2507
2508 if (!err) {
2509 conf->scribble_disks = new_disks;
2510 conf->scribble_sectors = new_sectors;
2511 }
2512 return err;
2513 }
2514
resize_stripes(struct r5conf * conf,int newsize)2515 static int resize_stripes(struct r5conf *conf, int newsize)
2516 {
2517 /* Make all the stripes able to hold 'newsize' devices.
2518 * New slots in each stripe get 'page' set to a new page.
2519 *
2520 * This happens in stages:
2521 * 1/ create a new kmem_cache and allocate the required number of
2522 * stripe_heads.
2523 * 2/ gather all the old stripe_heads and transfer the pages across
2524 * to the new stripe_heads. This will have the side effect of
2525 * freezing the array as once all stripe_heads have been collected,
2526 * no IO will be possible. Old stripe heads are freed once their
2527 * pages have been transferred over, and the old kmem_cache is
2528 * freed when all stripes are done.
2529 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2530 * we simple return a failure status - no need to clean anything up.
2531 * 4/ allocate new pages for the new slots in the new stripe_heads.
2532 * If this fails, we don't bother trying the shrink the
2533 * stripe_heads down again, we just leave them as they are.
2534 * As each stripe_head is processed the new one is released into
2535 * active service.
2536 *
2537 * Once step2 is started, we cannot afford to wait for a write,
2538 * so we use GFP_NOIO allocations.
2539 */
2540 struct stripe_head *osh, *nsh;
2541 LIST_HEAD(newstripes);
2542 struct disk_info *ndisks;
2543 int err = 0;
2544 struct kmem_cache *sc;
2545 int i;
2546 int hash, cnt;
2547
2548 md_allow_write(conf->mddev);
2549
2550 /* Step 1 */
2551 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2552 struct_size_t(struct stripe_head, dev, newsize),
2553 0, 0, NULL);
2554 if (!sc)
2555 return -ENOMEM;
2556
2557 /* Need to ensure auto-resizing doesn't interfere */
2558 mutex_lock(&conf->cache_size_mutex);
2559
2560 for (i = conf->max_nr_stripes; i; i--) {
2561 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2562 if (!nsh)
2563 break;
2564
2565 list_add(&nsh->lru, &newstripes);
2566 }
2567 if (i) {
2568 /* didn't get enough, give up */
2569 while (!list_empty(&newstripes)) {
2570 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2571 list_del(&nsh->lru);
2572 free_stripe(sc, nsh);
2573 }
2574 kmem_cache_destroy(sc);
2575 mutex_unlock(&conf->cache_size_mutex);
2576 return -ENOMEM;
2577 }
2578 /* Step 2 - Must use GFP_NOIO now.
2579 * OK, we have enough stripes, start collecting inactive
2580 * stripes and copying them over
2581 */
2582 hash = 0;
2583 cnt = 0;
2584 list_for_each_entry(nsh, &newstripes, lru) {
2585 lock_device_hash_lock(conf, hash);
2586 wait_event_cmd(conf->wait_for_stripe,
2587 !list_empty(conf->inactive_list + hash),
2588 unlock_device_hash_lock(conf, hash),
2589 lock_device_hash_lock(conf, hash));
2590 osh = get_free_stripe(conf, hash);
2591 unlock_device_hash_lock(conf, hash);
2592
2593 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2594 for (i = 0; i < osh->nr_pages; i++) {
2595 nsh->pages[i] = osh->pages[i];
2596 osh->pages[i] = NULL;
2597 }
2598 #endif
2599 for(i=0; i<conf->pool_size; i++) {
2600 nsh->dev[i].page = osh->dev[i].page;
2601 nsh->dev[i].orig_page = osh->dev[i].page;
2602 nsh->dev[i].offset = osh->dev[i].offset;
2603 }
2604 nsh->hash_lock_index = hash;
2605 free_stripe(conf->slab_cache, osh);
2606 cnt++;
2607 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2608 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2609 hash++;
2610 cnt = 0;
2611 }
2612 }
2613 kmem_cache_destroy(conf->slab_cache);
2614
2615 /* Step 3.
2616 * At this point, we are holding all the stripes so the array
2617 * is completely stalled, so now is a good time to resize
2618 * conf->disks and the scribble region
2619 */
2620 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2621 if (ndisks) {
2622 for (i = 0; i < conf->pool_size; i++)
2623 ndisks[i] = conf->disks[i];
2624
2625 for (i = conf->pool_size; i < newsize; i++) {
2626 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2627 if (!ndisks[i].extra_page)
2628 err = -ENOMEM;
2629 }
2630
2631 if (err) {
2632 for (i = conf->pool_size; i < newsize; i++)
2633 if (ndisks[i].extra_page)
2634 put_page(ndisks[i].extra_page);
2635 kfree(ndisks);
2636 } else {
2637 kfree(conf->disks);
2638 conf->disks = ndisks;
2639 }
2640 } else
2641 err = -ENOMEM;
2642
2643 conf->slab_cache = sc;
2644 conf->active_name = 1-conf->active_name;
2645
2646 /* Step 4, return new stripes to service */
2647 while(!list_empty(&newstripes)) {
2648 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2649 list_del_init(&nsh->lru);
2650
2651 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2652 for (i = 0; i < nsh->nr_pages; i++) {
2653 if (nsh->pages[i])
2654 continue;
2655 nsh->pages[i] = alloc_page(GFP_NOIO);
2656 if (!nsh->pages[i])
2657 err = -ENOMEM;
2658 }
2659
2660 for (i = conf->raid_disks; i < newsize; i++) {
2661 if (nsh->dev[i].page)
2662 continue;
2663 nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2664 nsh->dev[i].orig_page = nsh->dev[i].page;
2665 nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2666 }
2667 #else
2668 for (i=conf->raid_disks; i < newsize; i++)
2669 if (nsh->dev[i].page == NULL) {
2670 struct page *p = alloc_page(GFP_NOIO);
2671 nsh->dev[i].page = p;
2672 nsh->dev[i].orig_page = p;
2673 nsh->dev[i].offset = 0;
2674 if (!p)
2675 err = -ENOMEM;
2676 }
2677 #endif
2678 raid5_release_stripe(nsh);
2679 }
2680 /* critical section pass, GFP_NOIO no longer needed */
2681
2682 if (!err)
2683 conf->pool_size = newsize;
2684 mutex_unlock(&conf->cache_size_mutex);
2685
2686 return err;
2687 }
2688
drop_one_stripe(struct r5conf * conf)2689 static int drop_one_stripe(struct r5conf *conf)
2690 {
2691 struct stripe_head *sh;
2692 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2693
2694 spin_lock_irq(conf->hash_locks + hash);
2695 sh = get_free_stripe(conf, hash);
2696 spin_unlock_irq(conf->hash_locks + hash);
2697 if (!sh)
2698 return 0;
2699 BUG_ON(atomic_read(&sh->count));
2700 shrink_buffers(sh);
2701 free_stripe(conf->slab_cache, sh);
2702 atomic_dec(&conf->active_stripes);
2703 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes - 1);
2704 return 1;
2705 }
2706
shrink_stripes(struct r5conf * conf)2707 static void shrink_stripes(struct r5conf *conf)
2708 {
2709 while (conf->max_nr_stripes &&
2710 drop_one_stripe(conf))
2711 ;
2712
2713 kmem_cache_destroy(conf->slab_cache);
2714 conf->slab_cache = NULL;
2715 }
2716
raid5_end_read_request(struct bio * bi)2717 static void raid5_end_read_request(struct bio * bi)
2718 {
2719 struct stripe_head *sh = bi->bi_private;
2720 struct r5conf *conf = sh->raid_conf;
2721 int disks = sh->disks, i;
2722 struct md_rdev *rdev = NULL;
2723 sector_t s;
2724
2725 for (i=0 ; i<disks; i++)
2726 if (bi == &sh->dev[i].req)
2727 break;
2728
2729 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2730 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2731 bi->bi_status);
2732 if (i == disks) {
2733 BUG();
2734 return;
2735 }
2736 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2737 /* If replacement finished while this request was outstanding,
2738 * 'replacement' might be NULL already.
2739 * In that case it moved down to 'rdev'.
2740 * rdev is not removed until all requests are finished.
2741 */
2742 rdev = conf->disks[i].replacement;
2743 if (!rdev)
2744 rdev = conf->disks[i].rdev;
2745
2746 if (use_new_offset(conf, sh))
2747 s = sh->sector + rdev->new_data_offset;
2748 else
2749 s = sh->sector + rdev->data_offset;
2750 if (!bi->bi_status) {
2751 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2752 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2753 /* Note that this cannot happen on a
2754 * replacement device. We just fail those on
2755 * any error
2756 */
2757 pr_info_ratelimited(
2758 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
2759 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2760 (unsigned long long)s,
2761 rdev->bdev);
2762 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2763 clear_bit(R5_ReadError, &sh->dev[i].flags);
2764 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2765 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2766 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2767
2768 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2769 /*
2770 * end read for a page in journal, this
2771 * must be preparing for prexor in rmw
2772 */
2773 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2774
2775 if (atomic_read(&rdev->read_errors))
2776 atomic_set(&rdev->read_errors, 0);
2777 } else {
2778 int retry = 0;
2779 int set_bad = 0;
2780
2781 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2782 if (!(bi->bi_status == BLK_STS_PROTECTION))
2783 atomic_inc(&rdev->read_errors);
2784 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2785 pr_warn_ratelimited(
2786 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
2787 mdname(conf->mddev),
2788 (unsigned long long)s,
2789 rdev->bdev);
2790 else if (conf->mddev->degraded >= conf->max_degraded) {
2791 set_bad = 1;
2792 pr_warn_ratelimited(
2793 "md/raid:%s: read error not correctable (sector %llu on %pg).\n",
2794 mdname(conf->mddev),
2795 (unsigned long long)s,
2796 rdev->bdev);
2797 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2798 /* Oh, no!!! */
2799 set_bad = 1;
2800 pr_warn_ratelimited(
2801 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
2802 mdname(conf->mddev),
2803 (unsigned long long)s,
2804 rdev->bdev);
2805 } else if (atomic_read(&rdev->read_errors)
2806 > conf->max_nr_stripes) {
2807 if (!test_bit(Faulty, &rdev->flags)) {
2808 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2809 mdname(conf->mddev),
2810 atomic_read(&rdev->read_errors),
2811 conf->max_nr_stripes);
2812 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2813 mdname(conf->mddev), rdev->bdev);
2814 }
2815 } else
2816 retry = 1;
2817 if (set_bad && test_bit(In_sync, &rdev->flags)
2818 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2819 retry = 1;
2820 if (retry)
2821 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2822 set_bit(R5_ReadError, &sh->dev[i].flags);
2823 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2824 set_bit(R5_ReadError, &sh->dev[i].flags);
2825 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2826 } else
2827 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2828 else {
2829 clear_bit(R5_ReadError, &sh->dev[i].flags);
2830 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2831 if (!(set_bad
2832 && test_bit(In_sync, &rdev->flags)
2833 && rdev_set_badblocks(
2834 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2835 md_error(conf->mddev, rdev);
2836 }
2837 }
2838 rdev_dec_pending(rdev, conf->mddev);
2839 bio_uninit(bi);
2840 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2841 set_bit(STRIPE_HANDLE, &sh->state);
2842 raid5_release_stripe(sh);
2843 }
2844
raid5_end_write_request(struct bio * bi)2845 static void raid5_end_write_request(struct bio *bi)
2846 {
2847 struct stripe_head *sh = bi->bi_private;
2848 struct r5conf *conf = sh->raid_conf;
2849 int disks = sh->disks, i;
2850 struct md_rdev *rdev;
2851 int replacement = 0;
2852
2853 for (i = 0 ; i < disks; i++) {
2854 if (bi == &sh->dev[i].req) {
2855 rdev = conf->disks[i].rdev;
2856 break;
2857 }
2858 if (bi == &sh->dev[i].rreq) {
2859 rdev = conf->disks[i].replacement;
2860 if (rdev)
2861 replacement = 1;
2862 else
2863 /* rdev was removed and 'replacement'
2864 * replaced it. rdev is not removed
2865 * until all requests are finished.
2866 */
2867 rdev = conf->disks[i].rdev;
2868 break;
2869 }
2870 }
2871 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2872 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2873 bi->bi_status);
2874 if (i == disks) {
2875 BUG();
2876 return;
2877 }
2878
2879 if (replacement) {
2880 if (bi->bi_status)
2881 md_error(conf->mddev, rdev);
2882 else if (rdev_has_badblock(rdev, sh->sector,
2883 RAID5_STRIPE_SECTORS(conf)))
2884 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2885 } else {
2886 if (bi->bi_status) {
2887 set_bit(STRIPE_DEGRADED, &sh->state);
2888 set_bit(WriteErrorSeen, &rdev->flags);
2889 set_bit(R5_WriteError, &sh->dev[i].flags);
2890 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2891 set_bit(MD_RECOVERY_NEEDED,
2892 &rdev->mddev->recovery);
2893 } else if (rdev_has_badblock(rdev, sh->sector,
2894 RAID5_STRIPE_SECTORS(conf))) {
2895 set_bit(R5_MadeGood, &sh->dev[i].flags);
2896 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2897 /* That was a successful write so make
2898 * sure it looks like we already did
2899 * a re-write.
2900 */
2901 set_bit(R5_ReWrite, &sh->dev[i].flags);
2902 }
2903 }
2904 rdev_dec_pending(rdev, conf->mddev);
2905
2906 if (sh->batch_head && bi->bi_status && !replacement)
2907 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2908
2909 bio_uninit(bi);
2910 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2911 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2912 set_bit(STRIPE_HANDLE, &sh->state);
2913
2914 if (sh->batch_head && sh != sh->batch_head)
2915 raid5_release_stripe(sh->batch_head);
2916 raid5_release_stripe(sh);
2917 }
2918
raid5_error(struct mddev * mddev,struct md_rdev * rdev)2919 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2920 {
2921 struct r5conf *conf = mddev->private;
2922 unsigned long flags;
2923 pr_debug("raid456: error called\n");
2924
2925 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2926 mdname(mddev), rdev->bdev);
2927
2928 spin_lock_irqsave(&conf->device_lock, flags);
2929 set_bit(Faulty, &rdev->flags);
2930 clear_bit(In_sync, &rdev->flags);
2931 mddev->degraded = raid5_calc_degraded(conf);
2932
2933 if (has_failed(conf)) {
2934 set_bit(MD_BROKEN, &conf->mddev->flags);
2935 conf->recovery_disabled = mddev->recovery_disabled;
2936
2937 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2938 mdname(mddev), mddev->degraded, conf->raid_disks);
2939 } else {
2940 pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2941 mdname(mddev), conf->raid_disks - mddev->degraded);
2942 }
2943
2944 spin_unlock_irqrestore(&conf->device_lock, flags);
2945 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2946
2947 set_bit(Blocked, &rdev->flags);
2948 set_mask_bits(&mddev->sb_flags, 0,
2949 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2950 r5c_update_on_rdev_error(mddev, rdev);
2951 }
2952
2953 /*
2954 * Input: a 'big' sector number,
2955 * Output: index of the data and parity disk, and the sector # in them.
2956 */
raid5_compute_sector(struct r5conf * conf,sector_t r_sector,int previous,int * dd_idx,struct stripe_head * sh)2957 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2958 int previous, int *dd_idx,
2959 struct stripe_head *sh)
2960 {
2961 sector_t stripe, stripe2;
2962 sector_t chunk_number;
2963 unsigned int chunk_offset;
2964 int pd_idx, qd_idx;
2965 int ddf_layout = 0;
2966 sector_t new_sector;
2967 int algorithm = previous ? conf->prev_algo
2968 : conf->algorithm;
2969 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2970 : conf->chunk_sectors;
2971 int raid_disks = previous ? conf->previous_raid_disks
2972 : conf->raid_disks;
2973 int data_disks = raid_disks - conf->max_degraded;
2974
2975 /* First compute the information on this sector */
2976
2977 /*
2978 * Compute the chunk number and the sector offset inside the chunk
2979 */
2980 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2981 chunk_number = r_sector;
2982
2983 /*
2984 * Compute the stripe number
2985 */
2986 stripe = chunk_number;
2987 *dd_idx = sector_div(stripe, data_disks);
2988 stripe2 = stripe;
2989 /*
2990 * Select the parity disk based on the user selected algorithm.
2991 */
2992 pd_idx = qd_idx = -1;
2993 switch(conf->level) {
2994 case 4:
2995 pd_idx = data_disks;
2996 break;
2997 case 5:
2998 switch (algorithm) {
2999 case ALGORITHM_LEFT_ASYMMETRIC:
3000 pd_idx = data_disks - sector_div(stripe2, raid_disks);
3001 if (*dd_idx >= pd_idx)
3002 (*dd_idx)++;
3003 break;
3004 case ALGORITHM_RIGHT_ASYMMETRIC:
3005 pd_idx = sector_div(stripe2, raid_disks);
3006 if (*dd_idx >= pd_idx)
3007 (*dd_idx)++;
3008 break;
3009 case ALGORITHM_LEFT_SYMMETRIC:
3010 pd_idx = data_disks - sector_div(stripe2, raid_disks);
3011 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3012 break;
3013 case ALGORITHM_RIGHT_SYMMETRIC:
3014 pd_idx = sector_div(stripe2, raid_disks);
3015 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3016 break;
3017 case ALGORITHM_PARITY_0:
3018 pd_idx = 0;
3019 (*dd_idx)++;
3020 break;
3021 case ALGORITHM_PARITY_N:
3022 pd_idx = data_disks;
3023 break;
3024 default:
3025 BUG();
3026 }
3027 break;
3028 case 6:
3029
3030 switch (algorithm) {
3031 case ALGORITHM_LEFT_ASYMMETRIC:
3032 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3033 qd_idx = pd_idx + 1;
3034 if (pd_idx == raid_disks-1) {
3035 (*dd_idx)++; /* Q D D D P */
3036 qd_idx = 0;
3037 } else if (*dd_idx >= pd_idx)
3038 (*dd_idx) += 2; /* D D P Q D */
3039 break;
3040 case ALGORITHM_RIGHT_ASYMMETRIC:
3041 pd_idx = sector_div(stripe2, raid_disks);
3042 qd_idx = pd_idx + 1;
3043 if (pd_idx == raid_disks-1) {
3044 (*dd_idx)++; /* Q D D D P */
3045 qd_idx = 0;
3046 } else if (*dd_idx >= pd_idx)
3047 (*dd_idx) += 2; /* D D P Q D */
3048 break;
3049 case ALGORITHM_LEFT_SYMMETRIC:
3050 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3051 qd_idx = (pd_idx + 1) % raid_disks;
3052 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3053 break;
3054 case ALGORITHM_RIGHT_SYMMETRIC:
3055 pd_idx = sector_div(stripe2, raid_disks);
3056 qd_idx = (pd_idx + 1) % raid_disks;
3057 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3058 break;
3059
3060 case ALGORITHM_PARITY_0:
3061 pd_idx = 0;
3062 qd_idx = 1;
3063 (*dd_idx) += 2;
3064 break;
3065 case ALGORITHM_PARITY_N:
3066 pd_idx = data_disks;
3067 qd_idx = data_disks + 1;
3068 break;
3069
3070 case ALGORITHM_ROTATING_ZERO_RESTART:
3071 /* Exactly the same as RIGHT_ASYMMETRIC, but or
3072 * of blocks for computing Q is different.
3073 */
3074 pd_idx = sector_div(stripe2, raid_disks);
3075 qd_idx = pd_idx + 1;
3076 if (pd_idx == raid_disks-1) {
3077 (*dd_idx)++; /* Q D D D P */
3078 qd_idx = 0;
3079 } else if (*dd_idx >= pd_idx)
3080 (*dd_idx) += 2; /* D D P Q D */
3081 ddf_layout = 1;
3082 break;
3083
3084 case ALGORITHM_ROTATING_N_RESTART:
3085 /* Same a left_asymmetric, by first stripe is
3086 * D D D P Q rather than
3087 * Q D D D P
3088 */
3089 stripe2 += 1;
3090 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3091 qd_idx = pd_idx + 1;
3092 if (pd_idx == raid_disks-1) {
3093 (*dd_idx)++; /* Q D D D P */
3094 qd_idx = 0;
3095 } else if (*dd_idx >= pd_idx)
3096 (*dd_idx) += 2; /* D D P Q D */
3097 ddf_layout = 1;
3098 break;
3099
3100 case ALGORITHM_ROTATING_N_CONTINUE:
3101 /* Same as left_symmetric but Q is before P */
3102 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3103 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3104 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3105 ddf_layout = 1;
3106 break;
3107
3108 case ALGORITHM_LEFT_ASYMMETRIC_6:
3109 /* RAID5 left_asymmetric, with Q on last device */
3110 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3111 if (*dd_idx >= pd_idx)
3112 (*dd_idx)++;
3113 qd_idx = raid_disks - 1;
3114 break;
3115
3116 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3117 pd_idx = sector_div(stripe2, raid_disks-1);
3118 if (*dd_idx >= pd_idx)
3119 (*dd_idx)++;
3120 qd_idx = raid_disks - 1;
3121 break;
3122
3123 case ALGORITHM_LEFT_SYMMETRIC_6:
3124 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3125 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3126 qd_idx = raid_disks - 1;
3127 break;
3128
3129 case ALGORITHM_RIGHT_SYMMETRIC_6:
3130 pd_idx = sector_div(stripe2, raid_disks-1);
3131 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3132 qd_idx = raid_disks - 1;
3133 break;
3134
3135 case ALGORITHM_PARITY_0_6:
3136 pd_idx = 0;
3137 (*dd_idx)++;
3138 qd_idx = raid_disks - 1;
3139 break;
3140
3141 default:
3142 BUG();
3143 }
3144 break;
3145 }
3146
3147 if (sh) {
3148 sh->pd_idx = pd_idx;
3149 sh->qd_idx = qd_idx;
3150 sh->ddf_layout = ddf_layout;
3151 }
3152 /*
3153 * Finally, compute the new sector number
3154 */
3155 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3156 return new_sector;
3157 }
3158
raid5_compute_blocknr(struct stripe_head * sh,int i,int previous)3159 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3160 {
3161 struct r5conf *conf = sh->raid_conf;
3162 int raid_disks = sh->disks;
3163 int data_disks = raid_disks - conf->max_degraded;
3164 sector_t new_sector = sh->sector, check;
3165 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3166 : conf->chunk_sectors;
3167 int algorithm = previous ? conf->prev_algo
3168 : conf->algorithm;
3169 sector_t stripe;
3170 int chunk_offset;
3171 sector_t chunk_number;
3172 int dummy1, dd_idx = i;
3173 sector_t r_sector;
3174 struct stripe_head sh2;
3175
3176 chunk_offset = sector_div(new_sector, sectors_per_chunk);
3177 stripe = new_sector;
3178
3179 if (i == sh->pd_idx)
3180 return 0;
3181 switch(conf->level) {
3182 case 4: break;
3183 case 5:
3184 switch (algorithm) {
3185 case ALGORITHM_LEFT_ASYMMETRIC:
3186 case ALGORITHM_RIGHT_ASYMMETRIC:
3187 if (i > sh->pd_idx)
3188 i--;
3189 break;
3190 case ALGORITHM_LEFT_SYMMETRIC:
3191 case ALGORITHM_RIGHT_SYMMETRIC:
3192 if (i < sh->pd_idx)
3193 i += raid_disks;
3194 i -= (sh->pd_idx + 1);
3195 break;
3196 case ALGORITHM_PARITY_0:
3197 i -= 1;
3198 break;
3199 case ALGORITHM_PARITY_N:
3200 break;
3201 default:
3202 BUG();
3203 }
3204 break;
3205 case 6:
3206 if (i == sh->qd_idx)
3207 return 0; /* It is the Q disk */
3208 switch (algorithm) {
3209 case ALGORITHM_LEFT_ASYMMETRIC:
3210 case ALGORITHM_RIGHT_ASYMMETRIC:
3211 case ALGORITHM_ROTATING_ZERO_RESTART:
3212 case ALGORITHM_ROTATING_N_RESTART:
3213 if (sh->pd_idx == raid_disks-1)
3214 i--; /* Q D D D P */
3215 else if (i > sh->pd_idx)
3216 i -= 2; /* D D P Q D */
3217 break;
3218 case ALGORITHM_LEFT_SYMMETRIC:
3219 case ALGORITHM_RIGHT_SYMMETRIC:
3220 if (sh->pd_idx == raid_disks-1)
3221 i--; /* Q D D D P */
3222 else {
3223 /* D D P Q D */
3224 if (i < sh->pd_idx)
3225 i += raid_disks;
3226 i -= (sh->pd_idx + 2);
3227 }
3228 break;
3229 case ALGORITHM_PARITY_0:
3230 i -= 2;
3231 break;
3232 case ALGORITHM_PARITY_N:
3233 break;
3234 case ALGORITHM_ROTATING_N_CONTINUE:
3235 /* Like left_symmetric, but P is before Q */
3236 if (sh->pd_idx == 0)
3237 i--; /* P D D D Q */
3238 else {
3239 /* D D Q P D */
3240 if (i < sh->pd_idx)
3241 i += raid_disks;
3242 i -= (sh->pd_idx + 1);
3243 }
3244 break;
3245 case ALGORITHM_LEFT_ASYMMETRIC_6:
3246 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3247 if (i > sh->pd_idx)
3248 i--;
3249 break;
3250 case ALGORITHM_LEFT_SYMMETRIC_6:
3251 case ALGORITHM_RIGHT_SYMMETRIC_6:
3252 if (i < sh->pd_idx)
3253 i += data_disks + 1;
3254 i -= (sh->pd_idx + 1);
3255 break;
3256 case ALGORITHM_PARITY_0_6:
3257 i -= 1;
3258 break;
3259 default:
3260 BUG();
3261 }
3262 break;
3263 }
3264
3265 chunk_number = stripe * data_disks + i;
3266 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3267
3268 check = raid5_compute_sector(conf, r_sector,
3269 previous, &dummy1, &sh2);
3270 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3271 || sh2.qd_idx != sh->qd_idx) {
3272 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3273 mdname(conf->mddev));
3274 return 0;
3275 }
3276 return r_sector;
3277 }
3278
3279 /*
3280 * There are cases where we want handle_stripe_dirtying() and
3281 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3282 *
3283 * This function checks whether we want to delay the towrite. Specifically,
3284 * we delay the towrite when:
3285 *
3286 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3287 * stripe has data in journal (for other devices).
3288 *
3289 * In this case, when reading data for the non-overwrite dev, it is
3290 * necessary to handle complex rmw of write back cache (prexor with
3291 * orig_page, and xor with page). To keep read path simple, we would
3292 * like to flush data in journal to RAID disks first, so complex rmw
3293 * is handled in the write patch (handle_stripe_dirtying).
3294 *
3295 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3296 *
3297 * It is important to be able to flush all stripes in raid5-cache.
3298 * Therefore, we need reserve some space on the journal device for
3299 * these flushes. If flush operation includes pending writes to the
3300 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3301 * for the flush out. If we exclude these pending writes from flush
3302 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3303 * Therefore, excluding pending writes in these cases enables more
3304 * efficient use of the journal device.
3305 *
3306 * Note: To make sure the stripe makes progress, we only delay
3307 * towrite for stripes with data already in journal (injournal > 0).
3308 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3309 * no_space_stripes list.
3310 *
3311 * 3. during journal failure
3312 * In journal failure, we try to flush all cached data to raid disks
3313 * based on data in stripe cache. The array is read-only to upper
3314 * layers, so we would skip all pending writes.
3315 *
3316 */
delay_towrite(struct r5conf * conf,struct r5dev * dev,struct stripe_head_state * s)3317 static inline bool delay_towrite(struct r5conf *conf,
3318 struct r5dev *dev,
3319 struct stripe_head_state *s)
3320 {
3321 /* case 1 above */
3322 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3323 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3324 return true;
3325 /* case 2 above */
3326 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3327 s->injournal > 0)
3328 return true;
3329 /* case 3 above */
3330 if (s->log_failed && s->injournal)
3331 return true;
3332 return false;
3333 }
3334
3335 static void
schedule_reconstruction(struct stripe_head * sh,struct stripe_head_state * s,int rcw,int expand)3336 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3337 int rcw, int expand)
3338 {
3339 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3340 struct r5conf *conf = sh->raid_conf;
3341 int level = conf->level;
3342
3343 if (rcw) {
3344 /*
3345 * In some cases, handle_stripe_dirtying initially decided to
3346 * run rmw and allocates extra page for prexor. However, rcw is
3347 * cheaper later on. We need to free the extra page now,
3348 * because we won't be able to do that in ops_complete_prexor().
3349 */
3350 r5c_release_extra_page(sh);
3351
3352 for (i = disks; i--; ) {
3353 struct r5dev *dev = &sh->dev[i];
3354
3355 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3356 set_bit(R5_LOCKED, &dev->flags);
3357 set_bit(R5_Wantdrain, &dev->flags);
3358 if (!expand)
3359 clear_bit(R5_UPTODATE, &dev->flags);
3360 s->locked++;
3361 } else if (test_bit(R5_InJournal, &dev->flags)) {
3362 set_bit(R5_LOCKED, &dev->flags);
3363 s->locked++;
3364 }
3365 }
3366 /* if we are not expanding this is a proper write request, and
3367 * there will be bios with new data to be drained into the
3368 * stripe cache
3369 */
3370 if (!expand) {
3371 if (!s->locked)
3372 /* False alarm, nothing to do */
3373 return;
3374 sh->reconstruct_state = reconstruct_state_drain_run;
3375 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3376 } else
3377 sh->reconstruct_state = reconstruct_state_run;
3378
3379 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3380
3381 if (s->locked + conf->max_degraded == disks)
3382 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3383 atomic_inc(&conf->pending_full_writes);
3384 } else {
3385 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3386 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3387 BUG_ON(level == 6 &&
3388 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3389 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3390
3391 for (i = disks; i--; ) {
3392 struct r5dev *dev = &sh->dev[i];
3393 if (i == pd_idx || i == qd_idx)
3394 continue;
3395
3396 if (dev->towrite &&
3397 (test_bit(R5_UPTODATE, &dev->flags) ||
3398 test_bit(R5_Wantcompute, &dev->flags))) {
3399 set_bit(R5_Wantdrain, &dev->flags);
3400 set_bit(R5_LOCKED, &dev->flags);
3401 clear_bit(R5_UPTODATE, &dev->flags);
3402 s->locked++;
3403 } else if (test_bit(R5_InJournal, &dev->flags)) {
3404 set_bit(R5_LOCKED, &dev->flags);
3405 s->locked++;
3406 }
3407 }
3408 if (!s->locked)
3409 /* False alarm - nothing to do */
3410 return;
3411 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3412 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3413 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3414 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3415 }
3416
3417 /* keep the parity disk(s) locked while asynchronous operations
3418 * are in flight
3419 */
3420 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3421 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3422 s->locked++;
3423
3424 if (level == 6) {
3425 int qd_idx = sh->qd_idx;
3426 struct r5dev *dev = &sh->dev[qd_idx];
3427
3428 set_bit(R5_LOCKED, &dev->flags);
3429 clear_bit(R5_UPTODATE, &dev->flags);
3430 s->locked++;
3431 }
3432
3433 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3434 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3435 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3436 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3437 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3438
3439 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3440 __func__, (unsigned long long)sh->sector,
3441 s->locked, s->ops_request);
3442 }
3443
stripe_bio_overlaps(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite)3444 static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
3445 int dd_idx, int forwrite)
3446 {
3447 struct r5conf *conf = sh->raid_conf;
3448 struct bio **bip;
3449
3450 pr_debug("checking bi b#%llu to stripe s#%llu\n",
3451 bi->bi_iter.bi_sector, sh->sector);
3452
3453 /* Don't allow new IO added to stripes in batch list */
3454 if (sh->batch_head)
3455 return true;
3456
3457 if (forwrite)
3458 bip = &sh->dev[dd_idx].towrite;
3459 else
3460 bip = &sh->dev[dd_idx].toread;
3461
3462 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3463 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3464 return true;
3465 bip = &(*bip)->bi_next;
3466 }
3467
3468 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3469 return true;
3470
3471 if (forwrite && raid5_has_ppl(conf)) {
3472 /*
3473 * With PPL only writes to consecutive data chunks within a
3474 * stripe are allowed because for a single stripe_head we can
3475 * only have one PPL entry at a time, which describes one data
3476 * range. Not really an overlap, but R5_Overlap can be
3477 * used to handle this.
3478 */
3479 sector_t sector;
3480 sector_t first = 0;
3481 sector_t last = 0;
3482 int count = 0;
3483 int i;
3484
3485 for (i = 0; i < sh->disks; i++) {
3486 if (i != sh->pd_idx &&
3487 (i == dd_idx || sh->dev[i].towrite)) {
3488 sector = sh->dev[i].sector;
3489 if (count == 0 || sector < first)
3490 first = sector;
3491 if (sector > last)
3492 last = sector;
3493 count++;
3494 }
3495 }
3496
3497 if (first + conf->chunk_sectors * (count - 1) != last)
3498 return true;
3499 }
3500
3501 return false;
3502 }
3503
__add_stripe_bio(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite,int previous)3504 static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3505 int dd_idx, int forwrite, int previous)
3506 {
3507 struct r5conf *conf = sh->raid_conf;
3508 struct bio **bip;
3509 int firstwrite = 0;
3510
3511 if (forwrite) {
3512 bip = &sh->dev[dd_idx].towrite;
3513 if (!*bip)
3514 firstwrite = 1;
3515 } else {
3516 bip = &sh->dev[dd_idx].toread;
3517 }
3518
3519 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector)
3520 bip = &(*bip)->bi_next;
3521
3522 if (!forwrite || previous)
3523 clear_bit(STRIPE_BATCH_READY, &sh->state);
3524
3525 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3526 if (*bip)
3527 bi->bi_next = *bip;
3528 *bip = bi;
3529 bio_inc_remaining(bi);
3530 md_write_inc(conf->mddev, bi);
3531
3532 if (forwrite) {
3533 /* check if page is covered */
3534 sector_t sector = sh->dev[dd_idx].sector;
3535 for (bi=sh->dev[dd_idx].towrite;
3536 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3537 bi && bi->bi_iter.bi_sector <= sector;
3538 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3539 if (bio_end_sector(bi) >= sector)
3540 sector = bio_end_sector(bi);
3541 }
3542 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3543 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3544 sh->overwrite_disks++;
3545 }
3546
3547 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
3548 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx,
3549 sh->dev[dd_idx].sector);
3550
3551 if (conf->mddev->bitmap && firstwrite) {
3552 /* Cannot hold spinlock over bitmap_startwrite,
3553 * but must ensure this isn't added to a batch until
3554 * we have added to the bitmap and set bm_seq.
3555 * So set STRIPE_BITMAP_PENDING to prevent
3556 * batching.
3557 * If multiple __add_stripe_bio() calls race here they
3558 * much all set STRIPE_BITMAP_PENDING. So only the first one
3559 * to complete "bitmap_startwrite" gets to set
3560 * STRIPE_BIT_DELAY. This is important as once a stripe
3561 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3562 * any more.
3563 */
3564 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3565 spin_unlock_irq(&sh->stripe_lock);
3566 conf->mddev->bitmap_ops->startwrite(conf->mddev, sh->sector,
3567 RAID5_STRIPE_SECTORS(conf), false);
3568 spin_lock_irq(&sh->stripe_lock);
3569 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3570 if (!sh->batch_head) {
3571 sh->bm_seq = conf->seq_flush+1;
3572 set_bit(STRIPE_BIT_DELAY, &sh->state);
3573 }
3574 }
3575 }
3576
3577 /*
3578 * Each stripe/dev can have one or more bios attached.
3579 * toread/towrite point to the first in a chain.
3580 * The bi_next chain must be in order.
3581 */
add_stripe_bio(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite,int previous)3582 static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3583 int dd_idx, int forwrite, int previous)
3584 {
3585 spin_lock_irq(&sh->stripe_lock);
3586
3587 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
3588 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3589 spin_unlock_irq(&sh->stripe_lock);
3590 return false;
3591 }
3592
3593 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
3594 spin_unlock_irq(&sh->stripe_lock);
3595 return true;
3596 }
3597
3598 static void end_reshape(struct r5conf *conf);
3599
stripe_set_idx(sector_t stripe,struct r5conf * conf,int previous,struct stripe_head * sh)3600 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3601 struct stripe_head *sh)
3602 {
3603 int sectors_per_chunk =
3604 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3605 int dd_idx;
3606 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3607 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3608
3609 raid5_compute_sector(conf,
3610 stripe * (disks - conf->max_degraded)
3611 *sectors_per_chunk + chunk_offset,
3612 previous,
3613 &dd_idx, sh);
3614 }
3615
3616 static void
handle_failed_stripe(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3617 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3618 struct stripe_head_state *s, int disks)
3619 {
3620 int i;
3621 BUG_ON(sh->batch_head);
3622 for (i = disks; i--; ) {
3623 struct bio *bi;
3624 int bitmap_end = 0;
3625
3626 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3627 struct md_rdev *rdev = conf->disks[i].rdev;
3628
3629 if (rdev && test_bit(In_sync, &rdev->flags) &&
3630 !test_bit(Faulty, &rdev->flags))
3631 atomic_inc(&rdev->nr_pending);
3632 else
3633 rdev = NULL;
3634 if (rdev) {
3635 if (!rdev_set_badblocks(
3636 rdev,
3637 sh->sector,
3638 RAID5_STRIPE_SECTORS(conf), 0))
3639 md_error(conf->mddev, rdev);
3640 rdev_dec_pending(rdev, conf->mddev);
3641 }
3642 }
3643 spin_lock_irq(&sh->stripe_lock);
3644 /* fail all writes first */
3645 bi = sh->dev[i].towrite;
3646 sh->dev[i].towrite = NULL;
3647 sh->overwrite_disks = 0;
3648 spin_unlock_irq(&sh->stripe_lock);
3649 if (bi)
3650 bitmap_end = 1;
3651
3652 log_stripe_write_finished(sh);
3653
3654 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3655 wake_up_bit(&sh->dev[i].flags, R5_Overlap);
3656
3657 while (bi && bi->bi_iter.bi_sector <
3658 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3659 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3660
3661 md_write_end(conf->mddev);
3662 bio_io_error(bi);
3663 bi = nextbi;
3664 }
3665 if (bitmap_end)
3666 conf->mddev->bitmap_ops->endwrite(conf->mddev,
3667 sh->sector, RAID5_STRIPE_SECTORS(conf),
3668 false, false);
3669 bitmap_end = 0;
3670 /* and fail all 'written' */
3671 bi = sh->dev[i].written;
3672 sh->dev[i].written = NULL;
3673 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3674 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3675 sh->dev[i].page = sh->dev[i].orig_page;
3676 }
3677
3678 if (bi) bitmap_end = 1;
3679 while (bi && bi->bi_iter.bi_sector <
3680 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3681 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3682
3683 md_write_end(conf->mddev);
3684 bio_io_error(bi);
3685 bi = bi2;
3686 }
3687
3688 /* fail any reads if this device is non-operational and
3689 * the data has not reached the cache yet.
3690 */
3691 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3692 s->failed > conf->max_degraded &&
3693 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3694 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3695 spin_lock_irq(&sh->stripe_lock);
3696 bi = sh->dev[i].toread;
3697 sh->dev[i].toread = NULL;
3698 spin_unlock_irq(&sh->stripe_lock);
3699 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3700 wake_up_bit(&sh->dev[i].flags, R5_Overlap);
3701 if (bi)
3702 s->to_read--;
3703 while (bi && bi->bi_iter.bi_sector <
3704 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3705 struct bio *nextbi =
3706 r5_next_bio(conf, bi, sh->dev[i].sector);
3707
3708 bio_io_error(bi);
3709 bi = nextbi;
3710 }
3711 }
3712 if (bitmap_end)
3713 conf->mddev->bitmap_ops->endwrite(conf->mddev,
3714 sh->sector, RAID5_STRIPE_SECTORS(conf),
3715 false, false);
3716 /* If we were in the middle of a write the parity block might
3717 * still be locked - so just clear all R5_LOCKED flags
3718 */
3719 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3720 }
3721 s->to_write = 0;
3722 s->written = 0;
3723
3724 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3725 if (atomic_dec_and_test(&conf->pending_full_writes))
3726 md_wakeup_thread(conf->mddev->thread);
3727 }
3728
3729 static void
handle_failed_sync(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s)3730 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3731 struct stripe_head_state *s)
3732 {
3733 int abort = 0;
3734 int i;
3735
3736 BUG_ON(sh->batch_head);
3737 clear_bit(STRIPE_SYNCING, &sh->state);
3738 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3739 wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap);
3740 s->syncing = 0;
3741 s->replacing = 0;
3742 /* There is nothing more to do for sync/check/repair.
3743 * Don't even need to abort as that is handled elsewhere
3744 * if needed, and not always wanted e.g. if there is a known
3745 * bad block here.
3746 * For recover/replace we need to record a bad block on all
3747 * non-sync devices, or abort the recovery
3748 */
3749 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3750 /* During recovery devices cannot be removed, so
3751 * locking and refcounting of rdevs is not needed
3752 */
3753 for (i = 0; i < conf->raid_disks; i++) {
3754 struct md_rdev *rdev = conf->disks[i].rdev;
3755
3756 if (rdev
3757 && !test_bit(Faulty, &rdev->flags)
3758 && !test_bit(In_sync, &rdev->flags)
3759 && !rdev_set_badblocks(rdev, sh->sector,
3760 RAID5_STRIPE_SECTORS(conf), 0))
3761 abort = 1;
3762 rdev = conf->disks[i].replacement;
3763
3764 if (rdev
3765 && !test_bit(Faulty, &rdev->flags)
3766 && !test_bit(In_sync, &rdev->flags)
3767 && !rdev_set_badblocks(rdev, sh->sector,
3768 RAID5_STRIPE_SECTORS(conf), 0))
3769 abort = 1;
3770 }
3771 if (abort)
3772 conf->recovery_disabled =
3773 conf->mddev->recovery_disabled;
3774 }
3775 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3776 }
3777
want_replace(struct stripe_head * sh,int disk_idx)3778 static int want_replace(struct stripe_head *sh, int disk_idx)
3779 {
3780 struct md_rdev *rdev;
3781 int rv = 0;
3782
3783 rdev = sh->raid_conf->disks[disk_idx].replacement;
3784 if (rdev
3785 && !test_bit(Faulty, &rdev->flags)
3786 && !test_bit(In_sync, &rdev->flags)
3787 && (rdev->recovery_offset <= sh->sector
3788 || rdev->mddev->recovery_cp <= sh->sector))
3789 rv = 1;
3790 return rv;
3791 }
3792
need_this_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3793 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3794 int disk_idx, int disks)
3795 {
3796 struct r5dev *dev = &sh->dev[disk_idx];
3797 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3798 &sh->dev[s->failed_num[1]] };
3799 int i;
3800 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3801
3802
3803 if (test_bit(R5_LOCKED, &dev->flags) ||
3804 test_bit(R5_UPTODATE, &dev->flags))
3805 /* No point reading this as we already have it or have
3806 * decided to get it.
3807 */
3808 return 0;
3809
3810 if (dev->toread ||
3811 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3812 /* We need this block to directly satisfy a request */
3813 return 1;
3814
3815 if (s->syncing || s->expanding ||
3816 (s->replacing && want_replace(sh, disk_idx)))
3817 /* When syncing, or expanding we read everything.
3818 * When replacing, we need the replaced block.
3819 */
3820 return 1;
3821
3822 if ((s->failed >= 1 && fdev[0]->toread) ||
3823 (s->failed >= 2 && fdev[1]->toread))
3824 /* If we want to read from a failed device, then
3825 * we need to actually read every other device.
3826 */
3827 return 1;
3828
3829 /* Sometimes neither read-modify-write nor reconstruct-write
3830 * cycles can work. In those cases we read every block we
3831 * can. Then the parity-update is certain to have enough to
3832 * work with.
3833 * This can only be a problem when we need to write something,
3834 * and some device has failed. If either of those tests
3835 * fail we need look no further.
3836 */
3837 if (!s->failed || !s->to_write)
3838 return 0;
3839
3840 if (test_bit(R5_Insync, &dev->flags) &&
3841 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3842 /* Pre-reads at not permitted until after short delay
3843 * to gather multiple requests. However if this
3844 * device is no Insync, the block could only be computed
3845 * and there is no need to delay that.
3846 */
3847 return 0;
3848
3849 for (i = 0; i < s->failed && i < 2; i++) {
3850 if (fdev[i]->towrite &&
3851 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3852 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3853 /* If we have a partial write to a failed
3854 * device, then we will need to reconstruct
3855 * the content of that device, so all other
3856 * devices must be read.
3857 */
3858 return 1;
3859
3860 if (s->failed >= 2 &&
3861 (fdev[i]->towrite ||
3862 s->failed_num[i] == sh->pd_idx ||
3863 s->failed_num[i] == sh->qd_idx) &&
3864 !test_bit(R5_UPTODATE, &fdev[i]->flags))
3865 /* In max degraded raid6, If the failed disk is P, Q,
3866 * or we want to read the failed disk, we need to do
3867 * reconstruct-write.
3868 */
3869 force_rcw = true;
3870 }
3871
3872 /* If we are forced to do a reconstruct-write, because parity
3873 * cannot be trusted and we are currently recovering it, there
3874 * is extra need to be careful.
3875 * If one of the devices that we would need to read, because
3876 * it is not being overwritten (and maybe not written at all)
3877 * is missing/faulty, then we need to read everything we can.
3878 */
3879 if (!force_rcw &&
3880 sh->sector < sh->raid_conf->mddev->recovery_cp)
3881 /* reconstruct-write isn't being forced */
3882 return 0;
3883 for (i = 0; i < s->failed && i < 2; i++) {
3884 if (s->failed_num[i] != sh->pd_idx &&
3885 s->failed_num[i] != sh->qd_idx &&
3886 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3887 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3888 return 1;
3889 }
3890
3891 return 0;
3892 }
3893
3894 /* fetch_block - checks the given member device to see if its data needs
3895 * to be read or computed to satisfy a request.
3896 *
3897 * Returns 1 when no more member devices need to be checked, otherwise returns
3898 * 0 to tell the loop in handle_stripe_fill to continue
3899 */
fetch_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3900 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3901 int disk_idx, int disks)
3902 {
3903 struct r5dev *dev = &sh->dev[disk_idx];
3904
3905 /* is the data in this block needed, and can we get it? */
3906 if (need_this_block(sh, s, disk_idx, disks)) {
3907 /* we would like to get this block, possibly by computing it,
3908 * otherwise read it if the backing disk is insync
3909 */
3910 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3911 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3912 BUG_ON(sh->batch_head);
3913
3914 /*
3915 * In the raid6 case if the only non-uptodate disk is P
3916 * then we already trusted P to compute the other failed
3917 * drives. It is safe to compute rather than re-read P.
3918 * In other cases we only compute blocks from failed
3919 * devices, otherwise check/repair might fail to detect
3920 * a real inconsistency.
3921 */
3922
3923 if ((s->uptodate == disks - 1) &&
3924 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3925 (s->failed && (disk_idx == s->failed_num[0] ||
3926 disk_idx == s->failed_num[1])))) {
3927 /* have disk failed, and we're requested to fetch it;
3928 * do compute it
3929 */
3930 pr_debug("Computing stripe %llu block %d\n",
3931 (unsigned long long)sh->sector, disk_idx);
3932 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3933 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3934 set_bit(R5_Wantcompute, &dev->flags);
3935 sh->ops.target = disk_idx;
3936 sh->ops.target2 = -1; /* no 2nd target */
3937 s->req_compute = 1;
3938 /* Careful: from this point on 'uptodate' is in the eye
3939 * of raid_run_ops which services 'compute' operations
3940 * before writes. R5_Wantcompute flags a block that will
3941 * be R5_UPTODATE by the time it is needed for a
3942 * subsequent operation.
3943 */
3944 s->uptodate++;
3945 return 1;
3946 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3947 /* Computing 2-failure is *very* expensive; only
3948 * do it if failed >= 2
3949 */
3950 int other;
3951 for (other = disks; other--; ) {
3952 if (other == disk_idx)
3953 continue;
3954 if (!test_bit(R5_UPTODATE,
3955 &sh->dev[other].flags))
3956 break;
3957 }
3958 BUG_ON(other < 0);
3959 pr_debug("Computing stripe %llu blocks %d,%d\n",
3960 (unsigned long long)sh->sector,
3961 disk_idx, other);
3962 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3963 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3964 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3965 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3966 sh->ops.target = disk_idx;
3967 sh->ops.target2 = other;
3968 s->uptodate += 2;
3969 s->req_compute = 1;
3970 return 1;
3971 } else if (test_bit(R5_Insync, &dev->flags)) {
3972 set_bit(R5_LOCKED, &dev->flags);
3973 set_bit(R5_Wantread, &dev->flags);
3974 s->locked++;
3975 pr_debug("Reading block %d (sync=%d)\n",
3976 disk_idx, s->syncing);
3977 }
3978 }
3979
3980 return 0;
3981 }
3982
3983 /*
3984 * handle_stripe_fill - read or compute data to satisfy pending requests.
3985 */
handle_stripe_fill(struct stripe_head * sh,struct stripe_head_state * s,int disks)3986 static void handle_stripe_fill(struct stripe_head *sh,
3987 struct stripe_head_state *s,
3988 int disks)
3989 {
3990 int i;
3991
3992 /* look for blocks to read/compute, skip this if a compute
3993 * is already in flight, or if the stripe contents are in the
3994 * midst of changing due to a write
3995 */
3996 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3997 !sh->reconstruct_state) {
3998
3999 /*
4000 * For degraded stripe with data in journal, do not handle
4001 * read requests yet, instead, flush the stripe to raid
4002 * disks first, this avoids handling complex rmw of write
4003 * back cache (prexor with orig_page, and then xor with
4004 * page) in the read path
4005 */
4006 if (s->to_read && s->injournal && s->failed) {
4007 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
4008 r5c_make_stripe_write_out(sh);
4009 goto out;
4010 }
4011
4012 for (i = disks; i--; )
4013 if (fetch_block(sh, s, i, disks))
4014 break;
4015 }
4016 out:
4017 set_bit(STRIPE_HANDLE, &sh->state);
4018 }
4019
4020 static void break_stripe_batch_list(struct stripe_head *head_sh,
4021 unsigned long handle_flags);
4022 /* handle_stripe_clean_event
4023 * any written block on an uptodate or failed drive can be returned.
4024 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
4025 * never LOCKED, so we don't need to test 'failed' directly.
4026 */
handle_stripe_clean_event(struct r5conf * conf,struct stripe_head * sh,int disks)4027 static void handle_stripe_clean_event(struct r5conf *conf,
4028 struct stripe_head *sh, int disks)
4029 {
4030 int i;
4031 struct r5dev *dev;
4032 int discard_pending = 0;
4033 struct stripe_head *head_sh = sh;
4034 bool do_endio = false;
4035
4036 for (i = disks; i--; )
4037 if (sh->dev[i].written) {
4038 dev = &sh->dev[i];
4039 if (!test_bit(R5_LOCKED, &dev->flags) &&
4040 (test_bit(R5_UPTODATE, &dev->flags) ||
4041 test_bit(R5_Discard, &dev->flags) ||
4042 test_bit(R5_SkipCopy, &dev->flags))) {
4043 /* We can return any write requests */
4044 struct bio *wbi, *wbi2;
4045 pr_debug("Return write for disc %d\n", i);
4046 if (test_and_clear_bit(R5_Discard, &dev->flags))
4047 clear_bit(R5_UPTODATE, &dev->flags);
4048 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
4049 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
4050 }
4051 do_endio = true;
4052
4053 returnbi:
4054 dev->page = dev->orig_page;
4055 wbi = dev->written;
4056 dev->written = NULL;
4057 while (wbi && wbi->bi_iter.bi_sector <
4058 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4059 wbi2 = r5_next_bio(conf, wbi, dev->sector);
4060 md_write_end(conf->mddev);
4061 bio_endio(wbi);
4062 wbi = wbi2;
4063 }
4064 conf->mddev->bitmap_ops->endwrite(conf->mddev,
4065 sh->sector, RAID5_STRIPE_SECTORS(conf),
4066 !test_bit(STRIPE_DEGRADED, &sh->state),
4067 false);
4068 if (head_sh->batch_head) {
4069 sh = list_first_entry(&sh->batch_list,
4070 struct stripe_head,
4071 batch_list);
4072 if (sh != head_sh) {
4073 dev = &sh->dev[i];
4074 goto returnbi;
4075 }
4076 }
4077 sh = head_sh;
4078 dev = &sh->dev[i];
4079 } else if (test_bit(R5_Discard, &dev->flags))
4080 discard_pending = 1;
4081 }
4082
4083 log_stripe_write_finished(sh);
4084
4085 if (!discard_pending &&
4086 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4087 int hash;
4088 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4089 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4090 if (sh->qd_idx >= 0) {
4091 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4092 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4093 }
4094 /* now that discard is done we can proceed with any sync */
4095 clear_bit(STRIPE_DISCARD, &sh->state);
4096 /*
4097 * SCSI discard will change some bio fields and the stripe has
4098 * no updated data, so remove it from hash list and the stripe
4099 * will be reinitialized
4100 */
4101 unhash:
4102 hash = sh->hash_lock_index;
4103 spin_lock_irq(conf->hash_locks + hash);
4104 remove_hash(sh);
4105 spin_unlock_irq(conf->hash_locks + hash);
4106 if (head_sh->batch_head) {
4107 sh = list_first_entry(&sh->batch_list,
4108 struct stripe_head, batch_list);
4109 if (sh != head_sh)
4110 goto unhash;
4111 }
4112 sh = head_sh;
4113
4114 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4115 set_bit(STRIPE_HANDLE, &sh->state);
4116
4117 }
4118
4119 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4120 if (atomic_dec_and_test(&conf->pending_full_writes))
4121 md_wakeup_thread(conf->mddev->thread);
4122
4123 if (head_sh->batch_head && do_endio)
4124 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4125 }
4126
4127 /*
4128 * For RMW in write back cache, we need extra page in prexor to store the
4129 * old data. This page is stored in dev->orig_page.
4130 *
4131 * This function checks whether we have data for prexor. The exact logic
4132 * is:
4133 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4134 */
uptodate_for_rmw(struct r5dev * dev)4135 static inline bool uptodate_for_rmw(struct r5dev *dev)
4136 {
4137 return (test_bit(R5_UPTODATE, &dev->flags)) &&
4138 (!test_bit(R5_InJournal, &dev->flags) ||
4139 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4140 }
4141
handle_stripe_dirtying(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4142 static int handle_stripe_dirtying(struct r5conf *conf,
4143 struct stripe_head *sh,
4144 struct stripe_head_state *s,
4145 int disks)
4146 {
4147 int rmw = 0, rcw = 0, i;
4148 sector_t recovery_cp = conf->mddev->recovery_cp;
4149
4150 /* Check whether resync is now happening or should start.
4151 * If yes, then the array is dirty (after unclean shutdown or
4152 * initial creation), so parity in some stripes might be inconsistent.
4153 * In this case, we need to always do reconstruct-write, to ensure
4154 * that in case of drive failure or read-error correction, we
4155 * generate correct data from the parity.
4156 */
4157 if (conf->rmw_level == PARITY_DISABLE_RMW ||
4158 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4159 s->failed == 0)) {
4160 /* Calculate the real rcw later - for now make it
4161 * look like rcw is cheaper
4162 */
4163 rcw = 1; rmw = 2;
4164 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4165 conf->rmw_level, (unsigned long long)recovery_cp,
4166 (unsigned long long)sh->sector);
4167 } else for (i = disks; i--; ) {
4168 /* would I have to read this buffer for read_modify_write */
4169 struct r5dev *dev = &sh->dev[i];
4170 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4171 i == sh->pd_idx || i == sh->qd_idx ||
4172 test_bit(R5_InJournal, &dev->flags)) &&
4173 !test_bit(R5_LOCKED, &dev->flags) &&
4174 !(uptodate_for_rmw(dev) ||
4175 test_bit(R5_Wantcompute, &dev->flags))) {
4176 if (test_bit(R5_Insync, &dev->flags))
4177 rmw++;
4178 else
4179 rmw += 2*disks; /* cannot read it */
4180 }
4181 /* Would I have to read this buffer for reconstruct_write */
4182 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4183 i != sh->pd_idx && i != sh->qd_idx &&
4184 !test_bit(R5_LOCKED, &dev->flags) &&
4185 !(test_bit(R5_UPTODATE, &dev->flags) ||
4186 test_bit(R5_Wantcompute, &dev->flags))) {
4187 if (test_bit(R5_Insync, &dev->flags))
4188 rcw++;
4189 else
4190 rcw += 2*disks;
4191 }
4192 }
4193
4194 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4195 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4196 set_bit(STRIPE_HANDLE, &sh->state);
4197 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4198 /* prefer read-modify-write, but need to get some data */
4199 mddev_add_trace_msg(conf->mddev, "raid5 rmw %llu %d",
4200 sh->sector, rmw);
4201
4202 for (i = disks; i--; ) {
4203 struct r5dev *dev = &sh->dev[i];
4204 if (test_bit(R5_InJournal, &dev->flags) &&
4205 dev->page == dev->orig_page &&
4206 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4207 /* alloc page for prexor */
4208 struct page *p = alloc_page(GFP_NOIO);
4209
4210 if (p) {
4211 dev->orig_page = p;
4212 continue;
4213 }
4214
4215 /*
4216 * alloc_page() failed, try use
4217 * disk_info->extra_page
4218 */
4219 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4220 &conf->cache_state)) {
4221 r5c_use_extra_page(sh);
4222 break;
4223 }
4224
4225 /* extra_page in use, add to delayed_list */
4226 set_bit(STRIPE_DELAYED, &sh->state);
4227 s->waiting_extra_page = 1;
4228 return -EAGAIN;
4229 }
4230 }
4231
4232 for (i = disks; i--; ) {
4233 struct r5dev *dev = &sh->dev[i];
4234 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4235 i == sh->pd_idx || i == sh->qd_idx ||
4236 test_bit(R5_InJournal, &dev->flags)) &&
4237 !test_bit(R5_LOCKED, &dev->flags) &&
4238 !(uptodate_for_rmw(dev) ||
4239 test_bit(R5_Wantcompute, &dev->flags)) &&
4240 test_bit(R5_Insync, &dev->flags)) {
4241 if (test_bit(STRIPE_PREREAD_ACTIVE,
4242 &sh->state)) {
4243 pr_debug("Read_old block %d for r-m-w\n",
4244 i);
4245 set_bit(R5_LOCKED, &dev->flags);
4246 set_bit(R5_Wantread, &dev->flags);
4247 s->locked++;
4248 } else
4249 set_bit(STRIPE_DELAYED, &sh->state);
4250 }
4251 }
4252 }
4253 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4254 /* want reconstruct write, but need to get some data */
4255 int qread =0;
4256 rcw = 0;
4257 for (i = disks; i--; ) {
4258 struct r5dev *dev = &sh->dev[i];
4259 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4260 i != sh->pd_idx && i != sh->qd_idx &&
4261 !test_bit(R5_LOCKED, &dev->flags) &&
4262 !(test_bit(R5_UPTODATE, &dev->flags) ||
4263 test_bit(R5_Wantcompute, &dev->flags))) {
4264 rcw++;
4265 if (test_bit(R5_Insync, &dev->flags) &&
4266 test_bit(STRIPE_PREREAD_ACTIVE,
4267 &sh->state)) {
4268 pr_debug("Read_old block "
4269 "%d for Reconstruct\n", i);
4270 set_bit(R5_LOCKED, &dev->flags);
4271 set_bit(R5_Wantread, &dev->flags);
4272 s->locked++;
4273 qread++;
4274 } else
4275 set_bit(STRIPE_DELAYED, &sh->state);
4276 }
4277 }
4278 if (rcw && !mddev_is_dm(conf->mddev))
4279 blk_add_trace_msg(conf->mddev->gendisk->queue,
4280 "raid5 rcw %llu %d %d %d",
4281 (unsigned long long)sh->sector, rcw, qread,
4282 test_bit(STRIPE_DELAYED, &sh->state));
4283 }
4284
4285 if (rcw > disks && rmw > disks &&
4286 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4287 set_bit(STRIPE_DELAYED, &sh->state);
4288
4289 /* now if nothing is locked, and if we have enough data,
4290 * we can start a write request
4291 */
4292 /* since handle_stripe can be called at any time we need to handle the
4293 * case where a compute block operation has been submitted and then a
4294 * subsequent call wants to start a write request. raid_run_ops only
4295 * handles the case where compute block and reconstruct are requested
4296 * simultaneously. If this is not the case then new writes need to be
4297 * held off until the compute completes.
4298 */
4299 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4300 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4301 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4302 schedule_reconstruction(sh, s, rcw == 0, 0);
4303 return 0;
4304 }
4305
handle_parity_checks5(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4306 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4307 struct stripe_head_state *s, int disks)
4308 {
4309 struct r5dev *dev = NULL;
4310
4311 BUG_ON(sh->batch_head);
4312 set_bit(STRIPE_HANDLE, &sh->state);
4313
4314 switch (sh->check_state) {
4315 case check_state_idle:
4316 /* start a new check operation if there are no failures */
4317 if (s->failed == 0) {
4318 BUG_ON(s->uptodate != disks);
4319 sh->check_state = check_state_run;
4320 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4321 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4322 s->uptodate--;
4323 break;
4324 }
4325 dev = &sh->dev[s->failed_num[0]];
4326 fallthrough;
4327 case check_state_compute_result:
4328 sh->check_state = check_state_idle;
4329 if (!dev)
4330 dev = &sh->dev[sh->pd_idx];
4331
4332 /* check that a write has not made the stripe insync */
4333 if (test_bit(STRIPE_INSYNC, &sh->state))
4334 break;
4335
4336 /* either failed parity check, or recovery is happening */
4337 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4338 BUG_ON(s->uptodate != disks);
4339
4340 set_bit(R5_LOCKED, &dev->flags);
4341 s->locked++;
4342 set_bit(R5_Wantwrite, &dev->flags);
4343
4344 clear_bit(STRIPE_DEGRADED, &sh->state);
4345 set_bit(STRIPE_INSYNC, &sh->state);
4346 break;
4347 case check_state_run:
4348 break; /* we will be called again upon completion */
4349 case check_state_check_result:
4350 sh->check_state = check_state_idle;
4351
4352 /* if a failure occurred during the check operation, leave
4353 * STRIPE_INSYNC not set and let the stripe be handled again
4354 */
4355 if (s->failed)
4356 break;
4357
4358 /* handle a successful check operation, if parity is correct
4359 * we are done. Otherwise update the mismatch count and repair
4360 * parity if !MD_RECOVERY_CHECK
4361 */
4362 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4363 /* parity is correct (on disc,
4364 * not in buffer any more)
4365 */
4366 set_bit(STRIPE_INSYNC, &sh->state);
4367 else {
4368 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4369 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4370 /* don't try to repair!! */
4371 set_bit(STRIPE_INSYNC, &sh->state);
4372 pr_warn_ratelimited("%s: mismatch sector in range "
4373 "%llu-%llu\n", mdname(conf->mddev),
4374 (unsigned long long) sh->sector,
4375 (unsigned long long) sh->sector +
4376 RAID5_STRIPE_SECTORS(conf));
4377 } else {
4378 sh->check_state = check_state_compute_run;
4379 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4380 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4381 set_bit(R5_Wantcompute,
4382 &sh->dev[sh->pd_idx].flags);
4383 sh->ops.target = sh->pd_idx;
4384 sh->ops.target2 = -1;
4385 s->uptodate++;
4386 }
4387 }
4388 break;
4389 case check_state_compute_run:
4390 break;
4391 default:
4392 pr_err("%s: unknown check_state: %d sector: %llu\n",
4393 __func__, sh->check_state,
4394 (unsigned long long) sh->sector);
4395 BUG();
4396 }
4397 }
4398
handle_parity_checks6(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4399 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4400 struct stripe_head_state *s,
4401 int disks)
4402 {
4403 int pd_idx = sh->pd_idx;
4404 int qd_idx = sh->qd_idx;
4405 struct r5dev *dev;
4406
4407 BUG_ON(sh->batch_head);
4408 set_bit(STRIPE_HANDLE, &sh->state);
4409
4410 BUG_ON(s->failed > 2);
4411
4412 /* Want to check and possibly repair P and Q.
4413 * However there could be one 'failed' device, in which
4414 * case we can only check one of them, possibly using the
4415 * other to generate missing data
4416 */
4417
4418 switch (sh->check_state) {
4419 case check_state_idle:
4420 /* start a new check operation if there are < 2 failures */
4421 if (s->failed == s->q_failed) {
4422 /* The only possible failed device holds Q, so it
4423 * makes sense to check P (If anything else were failed,
4424 * we would have used P to recreate it).
4425 */
4426 sh->check_state = check_state_run;
4427 }
4428 if (!s->q_failed && s->failed < 2) {
4429 /* Q is not failed, and we didn't use it to generate
4430 * anything, so it makes sense to check it
4431 */
4432 if (sh->check_state == check_state_run)
4433 sh->check_state = check_state_run_pq;
4434 else
4435 sh->check_state = check_state_run_q;
4436 }
4437
4438 /* discard potentially stale zero_sum_result */
4439 sh->ops.zero_sum_result = 0;
4440
4441 if (sh->check_state == check_state_run) {
4442 /* async_xor_zero_sum destroys the contents of P */
4443 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4444 s->uptodate--;
4445 }
4446 if (sh->check_state >= check_state_run &&
4447 sh->check_state <= check_state_run_pq) {
4448 /* async_syndrome_zero_sum preserves P and Q, so
4449 * no need to mark them !uptodate here
4450 */
4451 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4452 break;
4453 }
4454
4455 /* we have 2-disk failure */
4456 BUG_ON(s->failed != 2);
4457 fallthrough;
4458 case check_state_compute_result:
4459 sh->check_state = check_state_idle;
4460
4461 /* check that a write has not made the stripe insync */
4462 if (test_bit(STRIPE_INSYNC, &sh->state))
4463 break;
4464
4465 /* now write out any block on a failed drive,
4466 * or P or Q if they were recomputed
4467 */
4468 dev = NULL;
4469 if (s->failed == 2) {
4470 dev = &sh->dev[s->failed_num[1]];
4471 s->locked++;
4472 set_bit(R5_LOCKED, &dev->flags);
4473 set_bit(R5_Wantwrite, &dev->flags);
4474 }
4475 if (s->failed >= 1) {
4476 dev = &sh->dev[s->failed_num[0]];
4477 s->locked++;
4478 set_bit(R5_LOCKED, &dev->flags);
4479 set_bit(R5_Wantwrite, &dev->flags);
4480 }
4481 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4482 dev = &sh->dev[pd_idx];
4483 s->locked++;
4484 set_bit(R5_LOCKED, &dev->flags);
4485 set_bit(R5_Wantwrite, &dev->flags);
4486 }
4487 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4488 dev = &sh->dev[qd_idx];
4489 s->locked++;
4490 set_bit(R5_LOCKED, &dev->flags);
4491 set_bit(R5_Wantwrite, &dev->flags);
4492 }
4493 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4494 "%s: disk%td not up to date\n",
4495 mdname(conf->mddev),
4496 dev - (struct r5dev *) &sh->dev)) {
4497 clear_bit(R5_LOCKED, &dev->flags);
4498 clear_bit(R5_Wantwrite, &dev->flags);
4499 s->locked--;
4500 }
4501 clear_bit(STRIPE_DEGRADED, &sh->state);
4502
4503 set_bit(STRIPE_INSYNC, &sh->state);
4504 break;
4505 case check_state_run:
4506 case check_state_run_q:
4507 case check_state_run_pq:
4508 break; /* we will be called again upon completion */
4509 case check_state_check_result:
4510 sh->check_state = check_state_idle;
4511
4512 /* handle a successful check operation, if parity is correct
4513 * we are done. Otherwise update the mismatch count and repair
4514 * parity if !MD_RECOVERY_CHECK
4515 */
4516 if (sh->ops.zero_sum_result == 0) {
4517 /* both parities are correct */
4518 if (!s->failed)
4519 set_bit(STRIPE_INSYNC, &sh->state);
4520 else {
4521 /* in contrast to the raid5 case we can validate
4522 * parity, but still have a failure to write
4523 * back
4524 */
4525 sh->check_state = check_state_compute_result;
4526 /* Returning at this point means that we may go
4527 * off and bring p and/or q uptodate again so
4528 * we make sure to check zero_sum_result again
4529 * to verify if p or q need writeback
4530 */
4531 }
4532 } else {
4533 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4534 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4535 /* don't try to repair!! */
4536 set_bit(STRIPE_INSYNC, &sh->state);
4537 pr_warn_ratelimited("%s: mismatch sector in range "
4538 "%llu-%llu\n", mdname(conf->mddev),
4539 (unsigned long long) sh->sector,
4540 (unsigned long long) sh->sector +
4541 RAID5_STRIPE_SECTORS(conf));
4542 } else {
4543 int *target = &sh->ops.target;
4544
4545 sh->ops.target = -1;
4546 sh->ops.target2 = -1;
4547 sh->check_state = check_state_compute_run;
4548 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4549 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4550 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4551 set_bit(R5_Wantcompute,
4552 &sh->dev[pd_idx].flags);
4553 *target = pd_idx;
4554 target = &sh->ops.target2;
4555 s->uptodate++;
4556 }
4557 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4558 set_bit(R5_Wantcompute,
4559 &sh->dev[qd_idx].flags);
4560 *target = qd_idx;
4561 s->uptodate++;
4562 }
4563 }
4564 }
4565 break;
4566 case check_state_compute_run:
4567 break;
4568 default:
4569 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4570 __func__, sh->check_state,
4571 (unsigned long long) sh->sector);
4572 BUG();
4573 }
4574 }
4575
handle_stripe_expansion(struct r5conf * conf,struct stripe_head * sh)4576 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4577 {
4578 int i;
4579
4580 /* We have read all the blocks in this stripe and now we need to
4581 * copy some of them into a target stripe for expand.
4582 */
4583 struct dma_async_tx_descriptor *tx = NULL;
4584 BUG_ON(sh->batch_head);
4585 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4586 for (i = 0; i < sh->disks; i++)
4587 if (i != sh->pd_idx && i != sh->qd_idx) {
4588 int dd_idx, j;
4589 struct stripe_head *sh2;
4590 struct async_submit_ctl submit;
4591
4592 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4593 sector_t s = raid5_compute_sector(conf, bn, 0,
4594 &dd_idx, NULL);
4595 sh2 = raid5_get_active_stripe(conf, NULL, s,
4596 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
4597 if (sh2 == NULL)
4598 /* so far only the early blocks of this stripe
4599 * have been requested. When later blocks
4600 * get requested, we will try again
4601 */
4602 continue;
4603 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4604 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4605 /* must have already done this block */
4606 raid5_release_stripe(sh2);
4607 continue;
4608 }
4609
4610 /* place all the copies on one channel */
4611 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4612 tx = async_memcpy(sh2->dev[dd_idx].page,
4613 sh->dev[i].page, sh2->dev[dd_idx].offset,
4614 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4615 &submit);
4616
4617 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4618 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4619 for (j = 0; j < conf->raid_disks; j++)
4620 if (j != sh2->pd_idx &&
4621 j != sh2->qd_idx &&
4622 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4623 break;
4624 if (j == conf->raid_disks) {
4625 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4626 set_bit(STRIPE_HANDLE, &sh2->state);
4627 }
4628 raid5_release_stripe(sh2);
4629
4630 }
4631 /* done submitting copies, wait for them to complete */
4632 async_tx_quiesce(&tx);
4633 }
4634
4635 /*
4636 * handle_stripe - do things to a stripe.
4637 *
4638 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4639 * state of various bits to see what needs to be done.
4640 * Possible results:
4641 * return some read requests which now have data
4642 * return some write requests which are safely on storage
4643 * schedule a read on some buffers
4644 * schedule a write of some buffers
4645 * return confirmation of parity correctness
4646 *
4647 */
4648
analyse_stripe(struct stripe_head * sh,struct stripe_head_state * s)4649 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4650 {
4651 struct r5conf *conf = sh->raid_conf;
4652 int disks = sh->disks;
4653 struct r5dev *dev;
4654 int i;
4655 int do_recovery = 0;
4656
4657 memset(s, 0, sizeof(*s));
4658
4659 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4660 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4661 s->failed_num[0] = -1;
4662 s->failed_num[1] = -1;
4663 s->log_failed = r5l_log_disk_error(conf);
4664
4665 /* Now to look around and see what can be done */
4666 for (i=disks; i--; ) {
4667 struct md_rdev *rdev;
4668 int is_bad = 0;
4669
4670 dev = &sh->dev[i];
4671
4672 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4673 i, dev->flags,
4674 dev->toread, dev->towrite, dev->written);
4675 /* maybe we can reply to a read
4676 *
4677 * new wantfill requests are only permitted while
4678 * ops_complete_biofill is guaranteed to be inactive
4679 */
4680 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4681 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4682 set_bit(R5_Wantfill, &dev->flags);
4683
4684 /* now count some things */
4685 if (test_bit(R5_LOCKED, &dev->flags))
4686 s->locked++;
4687 if (test_bit(R5_UPTODATE, &dev->flags))
4688 s->uptodate++;
4689 if (test_bit(R5_Wantcompute, &dev->flags)) {
4690 s->compute++;
4691 BUG_ON(s->compute > 2);
4692 }
4693
4694 if (test_bit(R5_Wantfill, &dev->flags))
4695 s->to_fill++;
4696 else if (dev->toread)
4697 s->to_read++;
4698 if (dev->towrite) {
4699 s->to_write++;
4700 if (!test_bit(R5_OVERWRITE, &dev->flags))
4701 s->non_overwrite++;
4702 }
4703 if (dev->written)
4704 s->written++;
4705 /* Prefer to use the replacement for reads, but only
4706 * if it is recovered enough and has no bad blocks.
4707 */
4708 rdev = conf->disks[i].replacement;
4709 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4710 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4711 !rdev_has_badblock(rdev, sh->sector,
4712 RAID5_STRIPE_SECTORS(conf)))
4713 set_bit(R5_ReadRepl, &dev->flags);
4714 else {
4715 if (rdev && !test_bit(Faulty, &rdev->flags))
4716 set_bit(R5_NeedReplace, &dev->flags);
4717 else
4718 clear_bit(R5_NeedReplace, &dev->flags);
4719 rdev = conf->disks[i].rdev;
4720 clear_bit(R5_ReadRepl, &dev->flags);
4721 }
4722 if (rdev && test_bit(Faulty, &rdev->flags))
4723 rdev = NULL;
4724 if (rdev) {
4725 is_bad = rdev_has_badblock(rdev, sh->sector,
4726 RAID5_STRIPE_SECTORS(conf));
4727 if (s->blocked_rdev == NULL) {
4728 if (is_bad < 0)
4729 set_bit(BlockedBadBlocks, &rdev->flags);
4730 if (rdev_blocked(rdev)) {
4731 s->blocked_rdev = rdev;
4732 atomic_inc(&rdev->nr_pending);
4733 }
4734 }
4735 }
4736 clear_bit(R5_Insync, &dev->flags);
4737 if (!rdev)
4738 /* Not in-sync */;
4739 else if (is_bad) {
4740 /* also not in-sync */
4741 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4742 test_bit(R5_UPTODATE, &dev->flags)) {
4743 /* treat as in-sync, but with a read error
4744 * which we can now try to correct
4745 */
4746 set_bit(R5_Insync, &dev->flags);
4747 set_bit(R5_ReadError, &dev->flags);
4748 }
4749 } else if (test_bit(In_sync, &rdev->flags))
4750 set_bit(R5_Insync, &dev->flags);
4751 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4752 /* in sync if before recovery_offset */
4753 set_bit(R5_Insync, &dev->flags);
4754 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4755 test_bit(R5_Expanded, &dev->flags))
4756 /* If we've reshaped into here, we assume it is Insync.
4757 * We will shortly update recovery_offset to make
4758 * it official.
4759 */
4760 set_bit(R5_Insync, &dev->flags);
4761
4762 if (test_bit(R5_WriteError, &dev->flags)) {
4763 /* This flag does not apply to '.replacement'
4764 * only to .rdev, so make sure to check that*/
4765 struct md_rdev *rdev2 = conf->disks[i].rdev;
4766
4767 if (rdev2 == rdev)
4768 clear_bit(R5_Insync, &dev->flags);
4769 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4770 s->handle_bad_blocks = 1;
4771 atomic_inc(&rdev2->nr_pending);
4772 } else
4773 clear_bit(R5_WriteError, &dev->flags);
4774 }
4775 if (test_bit(R5_MadeGood, &dev->flags)) {
4776 /* This flag does not apply to '.replacement'
4777 * only to .rdev, so make sure to check that*/
4778 struct md_rdev *rdev2 = conf->disks[i].rdev;
4779
4780 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4781 s->handle_bad_blocks = 1;
4782 atomic_inc(&rdev2->nr_pending);
4783 } else
4784 clear_bit(R5_MadeGood, &dev->flags);
4785 }
4786 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4787 struct md_rdev *rdev2 = conf->disks[i].replacement;
4788
4789 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4790 s->handle_bad_blocks = 1;
4791 atomic_inc(&rdev2->nr_pending);
4792 } else
4793 clear_bit(R5_MadeGoodRepl, &dev->flags);
4794 }
4795 if (!test_bit(R5_Insync, &dev->flags)) {
4796 /* The ReadError flag will just be confusing now */
4797 clear_bit(R5_ReadError, &dev->flags);
4798 clear_bit(R5_ReWrite, &dev->flags);
4799 }
4800 if (test_bit(R5_ReadError, &dev->flags))
4801 clear_bit(R5_Insync, &dev->flags);
4802 if (!test_bit(R5_Insync, &dev->flags)) {
4803 if (s->failed < 2)
4804 s->failed_num[s->failed] = i;
4805 s->failed++;
4806 if (rdev && !test_bit(Faulty, &rdev->flags))
4807 do_recovery = 1;
4808 else if (!rdev) {
4809 rdev = conf->disks[i].replacement;
4810 if (rdev && !test_bit(Faulty, &rdev->flags))
4811 do_recovery = 1;
4812 }
4813 }
4814
4815 if (test_bit(R5_InJournal, &dev->flags))
4816 s->injournal++;
4817 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4818 s->just_cached++;
4819 }
4820 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4821 /* If there is a failed device being replaced,
4822 * we must be recovering.
4823 * else if we are after recovery_cp, we must be syncing
4824 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4825 * else we can only be replacing
4826 * sync and recovery both need to read all devices, and so
4827 * use the same flag.
4828 */
4829 if (do_recovery ||
4830 sh->sector >= conf->mddev->recovery_cp ||
4831 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4832 s->syncing = 1;
4833 else
4834 s->replacing = 1;
4835 }
4836 }
4837
4838 /*
4839 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4840 * a head which can now be handled.
4841 */
clear_batch_ready(struct stripe_head * sh)4842 static int clear_batch_ready(struct stripe_head *sh)
4843 {
4844 struct stripe_head *tmp;
4845 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4846 return (sh->batch_head && sh->batch_head != sh);
4847 spin_lock(&sh->stripe_lock);
4848 if (!sh->batch_head) {
4849 spin_unlock(&sh->stripe_lock);
4850 return 0;
4851 }
4852
4853 /*
4854 * this stripe could be added to a batch list before we check
4855 * BATCH_READY, skips it
4856 */
4857 if (sh->batch_head != sh) {
4858 spin_unlock(&sh->stripe_lock);
4859 return 1;
4860 }
4861 spin_lock(&sh->batch_lock);
4862 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4863 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4864 spin_unlock(&sh->batch_lock);
4865 spin_unlock(&sh->stripe_lock);
4866
4867 /*
4868 * BATCH_READY is cleared, no new stripes can be added.
4869 * batch_list can be accessed without lock
4870 */
4871 return 0;
4872 }
4873
break_stripe_batch_list(struct stripe_head * head_sh,unsigned long handle_flags)4874 static void break_stripe_batch_list(struct stripe_head *head_sh,
4875 unsigned long handle_flags)
4876 {
4877 struct stripe_head *sh, *next;
4878 int i;
4879
4880 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4881
4882 list_del_init(&sh->batch_list);
4883
4884 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4885 (1 << STRIPE_SYNCING) |
4886 (1 << STRIPE_REPLACED) |
4887 (1 << STRIPE_DELAYED) |
4888 (1 << STRIPE_BIT_DELAY) |
4889 (1 << STRIPE_FULL_WRITE) |
4890 (1 << STRIPE_BIOFILL_RUN) |
4891 (1 << STRIPE_COMPUTE_RUN) |
4892 (1 << STRIPE_DISCARD) |
4893 (1 << STRIPE_BATCH_READY) |
4894 (1 << STRIPE_BATCH_ERR) |
4895 (1 << STRIPE_BITMAP_PENDING)),
4896 "stripe state: %lx\n", sh->state);
4897 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4898 (1 << STRIPE_REPLACED)),
4899 "head stripe state: %lx\n", head_sh->state);
4900
4901 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4902 (1 << STRIPE_PREREAD_ACTIVE) |
4903 (1 << STRIPE_DEGRADED) |
4904 (1 << STRIPE_ON_UNPLUG_LIST)),
4905 head_sh->state & (1 << STRIPE_INSYNC));
4906
4907 sh->check_state = head_sh->check_state;
4908 sh->reconstruct_state = head_sh->reconstruct_state;
4909 spin_lock_irq(&sh->stripe_lock);
4910 sh->batch_head = NULL;
4911 spin_unlock_irq(&sh->stripe_lock);
4912 for (i = 0; i < sh->disks; i++) {
4913 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4914 wake_up_bit(&sh->dev[i].flags, R5_Overlap);
4915 sh->dev[i].flags = head_sh->dev[i].flags &
4916 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4917 }
4918 if (handle_flags == 0 ||
4919 sh->state & handle_flags)
4920 set_bit(STRIPE_HANDLE, &sh->state);
4921 raid5_release_stripe(sh);
4922 }
4923 spin_lock_irq(&head_sh->stripe_lock);
4924 head_sh->batch_head = NULL;
4925 spin_unlock_irq(&head_sh->stripe_lock);
4926 for (i = 0; i < head_sh->disks; i++)
4927 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4928 wake_up_bit(&head_sh->dev[i].flags, R5_Overlap);
4929 if (head_sh->state & handle_flags)
4930 set_bit(STRIPE_HANDLE, &head_sh->state);
4931 }
4932
handle_stripe(struct stripe_head * sh)4933 static void handle_stripe(struct stripe_head *sh)
4934 {
4935 struct stripe_head_state s;
4936 struct r5conf *conf = sh->raid_conf;
4937 int i;
4938 int prexor;
4939 int disks = sh->disks;
4940 struct r5dev *pdev, *qdev;
4941
4942 clear_bit(STRIPE_HANDLE, &sh->state);
4943
4944 /*
4945 * handle_stripe should not continue handle the batched stripe, only
4946 * the head of batch list or lone stripe can continue. Otherwise we
4947 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4948 * is set for the batched stripe.
4949 */
4950 if (clear_batch_ready(sh))
4951 return;
4952
4953 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4954 /* already being handled, ensure it gets handled
4955 * again when current action finishes */
4956 set_bit(STRIPE_HANDLE, &sh->state);
4957 return;
4958 }
4959
4960 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4961 break_stripe_batch_list(sh, 0);
4962
4963 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4964 spin_lock(&sh->stripe_lock);
4965 /*
4966 * Cannot process 'sync' concurrently with 'discard'.
4967 * Flush data in r5cache before 'sync'.
4968 */
4969 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4970 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4971 !test_bit(STRIPE_DISCARD, &sh->state) &&
4972 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4973 set_bit(STRIPE_SYNCING, &sh->state);
4974 clear_bit(STRIPE_INSYNC, &sh->state);
4975 clear_bit(STRIPE_REPLACED, &sh->state);
4976 }
4977 spin_unlock(&sh->stripe_lock);
4978 }
4979 clear_bit(STRIPE_DELAYED, &sh->state);
4980
4981 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4982 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4983 (unsigned long long)sh->sector, sh->state,
4984 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4985 sh->check_state, sh->reconstruct_state);
4986
4987 analyse_stripe(sh, &s);
4988
4989 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4990 goto finish;
4991
4992 if (s.handle_bad_blocks ||
4993 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4994 set_bit(STRIPE_HANDLE, &sh->state);
4995 goto finish;
4996 }
4997
4998 if (unlikely(s.blocked_rdev)) {
4999 if (s.syncing || s.expanding || s.expanded ||
5000 s.replacing || s.to_write || s.written) {
5001 set_bit(STRIPE_HANDLE, &sh->state);
5002 goto finish;
5003 }
5004 /* There is nothing for the blocked_rdev to block */
5005 rdev_dec_pending(s.blocked_rdev, conf->mddev);
5006 s.blocked_rdev = NULL;
5007 }
5008
5009 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
5010 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
5011 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
5012 }
5013
5014 pr_debug("locked=%d uptodate=%d to_read=%d"
5015 " to_write=%d failed=%d failed_num=%d,%d\n",
5016 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
5017 s.failed_num[0], s.failed_num[1]);
5018 /*
5019 * check if the array has lost more than max_degraded devices and,
5020 * if so, some requests might need to be failed.
5021 *
5022 * When journal device failed (log_failed), we will only process
5023 * the stripe if there is data need write to raid disks
5024 */
5025 if (s.failed > conf->max_degraded ||
5026 (s.log_failed && s.injournal == 0)) {
5027 sh->check_state = 0;
5028 sh->reconstruct_state = 0;
5029 break_stripe_batch_list(sh, 0);
5030 if (s.to_read+s.to_write+s.written)
5031 handle_failed_stripe(conf, sh, &s, disks);
5032 if (s.syncing + s.replacing)
5033 handle_failed_sync(conf, sh, &s);
5034 }
5035
5036 /* Now we check to see if any write operations have recently
5037 * completed
5038 */
5039 prexor = 0;
5040 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
5041 prexor = 1;
5042 if (sh->reconstruct_state == reconstruct_state_drain_result ||
5043 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
5044 sh->reconstruct_state = reconstruct_state_idle;
5045
5046 /* All the 'written' buffers and the parity block are ready to
5047 * be written back to disk
5048 */
5049 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
5050 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
5051 BUG_ON(sh->qd_idx >= 0 &&
5052 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5053 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
5054 for (i = disks; i--; ) {
5055 struct r5dev *dev = &sh->dev[i];
5056 if (test_bit(R5_LOCKED, &dev->flags) &&
5057 (i == sh->pd_idx || i == sh->qd_idx ||
5058 dev->written || test_bit(R5_InJournal,
5059 &dev->flags))) {
5060 pr_debug("Writing block %d\n", i);
5061 set_bit(R5_Wantwrite, &dev->flags);
5062 if (prexor)
5063 continue;
5064 if (s.failed > 1)
5065 continue;
5066 if (!test_bit(R5_Insync, &dev->flags) ||
5067 ((i == sh->pd_idx || i == sh->qd_idx) &&
5068 s.failed == 0))
5069 set_bit(STRIPE_INSYNC, &sh->state);
5070 }
5071 }
5072 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5073 s.dec_preread_active = 1;
5074 }
5075
5076 /*
5077 * might be able to return some write requests if the parity blocks
5078 * are safe, or on a failed drive
5079 */
5080 pdev = &sh->dev[sh->pd_idx];
5081 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5082 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5083 qdev = &sh->dev[sh->qd_idx];
5084 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5085 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5086 || conf->level < 6;
5087
5088 if (s.written &&
5089 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5090 && !test_bit(R5_LOCKED, &pdev->flags)
5091 && (test_bit(R5_UPTODATE, &pdev->flags) ||
5092 test_bit(R5_Discard, &pdev->flags))))) &&
5093 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5094 && !test_bit(R5_LOCKED, &qdev->flags)
5095 && (test_bit(R5_UPTODATE, &qdev->flags) ||
5096 test_bit(R5_Discard, &qdev->flags))))))
5097 handle_stripe_clean_event(conf, sh, disks);
5098
5099 if (s.just_cached)
5100 r5c_handle_cached_data_endio(conf, sh, disks);
5101 log_stripe_write_finished(sh);
5102
5103 /* Now we might consider reading some blocks, either to check/generate
5104 * parity, or to satisfy requests
5105 * or to load a block that is being partially written.
5106 */
5107 if (s.to_read || s.non_overwrite
5108 || (s.to_write && s.failed)
5109 || (s.syncing && (s.uptodate + s.compute < disks))
5110 || s.replacing
5111 || s.expanding)
5112 handle_stripe_fill(sh, &s, disks);
5113
5114 /*
5115 * When the stripe finishes full journal write cycle (write to journal
5116 * and raid disk), this is the clean up procedure so it is ready for
5117 * next operation.
5118 */
5119 r5c_finish_stripe_write_out(conf, sh, &s);
5120
5121 /*
5122 * Now to consider new write requests, cache write back and what else,
5123 * if anything should be read. We do not handle new writes when:
5124 * 1/ A 'write' operation (copy+xor) is already in flight.
5125 * 2/ A 'check' operation is in flight, as it may clobber the parity
5126 * block.
5127 * 3/ A r5c cache log write is in flight.
5128 */
5129
5130 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5131 if (!r5c_is_writeback(conf->log)) {
5132 if (s.to_write)
5133 handle_stripe_dirtying(conf, sh, &s, disks);
5134 } else { /* write back cache */
5135 int ret = 0;
5136
5137 /* First, try handle writes in caching phase */
5138 if (s.to_write)
5139 ret = r5c_try_caching_write(conf, sh, &s,
5140 disks);
5141 /*
5142 * If caching phase failed: ret == -EAGAIN
5143 * OR
5144 * stripe under reclaim: !caching && injournal
5145 *
5146 * fall back to handle_stripe_dirtying()
5147 */
5148 if (ret == -EAGAIN ||
5149 /* stripe under reclaim: !caching && injournal */
5150 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5151 s.injournal > 0)) {
5152 ret = handle_stripe_dirtying(conf, sh, &s,
5153 disks);
5154 if (ret == -EAGAIN)
5155 goto finish;
5156 }
5157 }
5158 }
5159
5160 /* maybe we need to check and possibly fix the parity for this stripe
5161 * Any reads will already have been scheduled, so we just see if enough
5162 * data is available. The parity check is held off while parity
5163 * dependent operations are in flight.
5164 */
5165 if (sh->check_state ||
5166 (s.syncing && s.locked == 0 &&
5167 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5168 !test_bit(STRIPE_INSYNC, &sh->state))) {
5169 if (conf->level == 6)
5170 handle_parity_checks6(conf, sh, &s, disks);
5171 else
5172 handle_parity_checks5(conf, sh, &s, disks);
5173 }
5174
5175 if ((s.replacing || s.syncing) && s.locked == 0
5176 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5177 && !test_bit(STRIPE_REPLACED, &sh->state)) {
5178 /* Write out to replacement devices where possible */
5179 for (i = 0; i < conf->raid_disks; i++)
5180 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5181 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5182 set_bit(R5_WantReplace, &sh->dev[i].flags);
5183 set_bit(R5_LOCKED, &sh->dev[i].flags);
5184 s.locked++;
5185 }
5186 if (s.replacing)
5187 set_bit(STRIPE_INSYNC, &sh->state);
5188 set_bit(STRIPE_REPLACED, &sh->state);
5189 }
5190 if ((s.syncing || s.replacing) && s.locked == 0 &&
5191 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5192 test_bit(STRIPE_INSYNC, &sh->state)) {
5193 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5194 clear_bit(STRIPE_SYNCING, &sh->state);
5195 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5196 wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap);
5197 }
5198
5199 /* If the failed drives are just a ReadError, then we might need
5200 * to progress the repair/check process
5201 */
5202 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5203 for (i = 0; i < s.failed; i++) {
5204 struct r5dev *dev = &sh->dev[s.failed_num[i]];
5205 if (test_bit(R5_ReadError, &dev->flags)
5206 && !test_bit(R5_LOCKED, &dev->flags)
5207 && test_bit(R5_UPTODATE, &dev->flags)
5208 ) {
5209 if (!test_bit(R5_ReWrite, &dev->flags)) {
5210 set_bit(R5_Wantwrite, &dev->flags);
5211 set_bit(R5_ReWrite, &dev->flags);
5212 } else
5213 /* let's read it back */
5214 set_bit(R5_Wantread, &dev->flags);
5215 set_bit(R5_LOCKED, &dev->flags);
5216 s.locked++;
5217 }
5218 }
5219
5220 /* Finish reconstruct operations initiated by the expansion process */
5221 if (sh->reconstruct_state == reconstruct_state_result) {
5222 struct stripe_head *sh_src
5223 = raid5_get_active_stripe(conf, NULL, sh->sector,
5224 R5_GAS_PREVIOUS | R5_GAS_NOBLOCK |
5225 R5_GAS_NOQUIESCE);
5226 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5227 /* sh cannot be written until sh_src has been read.
5228 * so arrange for sh to be delayed a little
5229 */
5230 set_bit(STRIPE_DELAYED, &sh->state);
5231 set_bit(STRIPE_HANDLE, &sh->state);
5232 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5233 &sh_src->state))
5234 atomic_inc(&conf->preread_active_stripes);
5235 raid5_release_stripe(sh_src);
5236 goto finish;
5237 }
5238 if (sh_src)
5239 raid5_release_stripe(sh_src);
5240
5241 sh->reconstruct_state = reconstruct_state_idle;
5242 clear_bit(STRIPE_EXPANDING, &sh->state);
5243 for (i = conf->raid_disks; i--; ) {
5244 set_bit(R5_Wantwrite, &sh->dev[i].flags);
5245 set_bit(R5_LOCKED, &sh->dev[i].flags);
5246 s.locked++;
5247 }
5248 }
5249
5250 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5251 !sh->reconstruct_state) {
5252 /* Need to write out all blocks after computing parity */
5253 sh->disks = conf->raid_disks;
5254 stripe_set_idx(sh->sector, conf, 0, sh);
5255 schedule_reconstruction(sh, &s, 1, 1);
5256 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5257 clear_bit(STRIPE_EXPAND_READY, &sh->state);
5258 atomic_dec(&conf->reshape_stripes);
5259 wake_up(&conf->wait_for_reshape);
5260 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5261 }
5262
5263 if (s.expanding && s.locked == 0 &&
5264 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5265 handle_stripe_expansion(conf, sh);
5266
5267 finish:
5268 /* wait for this device to become unblocked */
5269 if (unlikely(s.blocked_rdev)) {
5270 if (conf->mddev->external)
5271 md_wait_for_blocked_rdev(s.blocked_rdev,
5272 conf->mddev);
5273 else
5274 /* Internal metadata will immediately
5275 * be written by raid5d, so we don't
5276 * need to wait here.
5277 */
5278 rdev_dec_pending(s.blocked_rdev,
5279 conf->mddev);
5280 }
5281
5282 if (s.handle_bad_blocks)
5283 for (i = disks; i--; ) {
5284 struct md_rdev *rdev;
5285 struct r5dev *dev = &sh->dev[i];
5286 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5287 /* We own a safe reference to the rdev */
5288 rdev = conf->disks[i].rdev;
5289 if (!rdev_set_badblocks(rdev, sh->sector,
5290 RAID5_STRIPE_SECTORS(conf), 0))
5291 md_error(conf->mddev, rdev);
5292 rdev_dec_pending(rdev, conf->mddev);
5293 }
5294 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5295 rdev = conf->disks[i].rdev;
5296 rdev_clear_badblocks(rdev, sh->sector,
5297 RAID5_STRIPE_SECTORS(conf), 0);
5298 rdev_dec_pending(rdev, conf->mddev);
5299 }
5300 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5301 rdev = conf->disks[i].replacement;
5302 if (!rdev)
5303 /* rdev have been moved down */
5304 rdev = conf->disks[i].rdev;
5305 rdev_clear_badblocks(rdev, sh->sector,
5306 RAID5_STRIPE_SECTORS(conf), 0);
5307 rdev_dec_pending(rdev, conf->mddev);
5308 }
5309 }
5310
5311 if (s.ops_request)
5312 raid_run_ops(sh, s.ops_request);
5313
5314 ops_run_io(sh, &s);
5315
5316 if (s.dec_preread_active) {
5317 /* We delay this until after ops_run_io so that if make_request
5318 * is waiting on a flush, it won't continue until the writes
5319 * have actually been submitted.
5320 */
5321 atomic_dec(&conf->preread_active_stripes);
5322 if (atomic_read(&conf->preread_active_stripes) <
5323 IO_THRESHOLD)
5324 md_wakeup_thread(conf->mddev->thread);
5325 }
5326
5327 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5328 }
5329
raid5_activate_delayed(struct r5conf * conf)5330 static void raid5_activate_delayed(struct r5conf *conf)
5331 __must_hold(&conf->device_lock)
5332 {
5333 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5334 while (!list_empty(&conf->delayed_list)) {
5335 struct list_head *l = conf->delayed_list.next;
5336 struct stripe_head *sh;
5337 sh = list_entry(l, struct stripe_head, lru);
5338 list_del_init(l);
5339 clear_bit(STRIPE_DELAYED, &sh->state);
5340 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5341 atomic_inc(&conf->preread_active_stripes);
5342 list_add_tail(&sh->lru, &conf->hold_list);
5343 raid5_wakeup_stripe_thread(sh);
5344 }
5345 }
5346 }
5347
activate_bit_delay(struct r5conf * conf,struct list_head * temp_inactive_list)5348 static void activate_bit_delay(struct r5conf *conf,
5349 struct list_head *temp_inactive_list)
5350 __must_hold(&conf->device_lock)
5351 {
5352 struct list_head head;
5353 list_add(&head, &conf->bitmap_list);
5354 list_del_init(&conf->bitmap_list);
5355 while (!list_empty(&head)) {
5356 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5357 int hash;
5358 list_del_init(&sh->lru);
5359 atomic_inc(&sh->count);
5360 hash = sh->hash_lock_index;
5361 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5362 }
5363 }
5364
in_chunk_boundary(struct mddev * mddev,struct bio * bio)5365 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5366 {
5367 struct r5conf *conf = mddev->private;
5368 sector_t sector = bio->bi_iter.bi_sector;
5369 unsigned int chunk_sectors;
5370 unsigned int bio_sectors = bio_sectors(bio);
5371
5372 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5373 return chunk_sectors >=
5374 ((sector & (chunk_sectors - 1)) + bio_sectors);
5375 }
5376
5377 /*
5378 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5379 * later sampled by raid5d.
5380 */
add_bio_to_retry(struct bio * bi,struct r5conf * conf)5381 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5382 {
5383 unsigned long flags;
5384
5385 spin_lock_irqsave(&conf->device_lock, flags);
5386
5387 bi->bi_next = conf->retry_read_aligned_list;
5388 conf->retry_read_aligned_list = bi;
5389
5390 spin_unlock_irqrestore(&conf->device_lock, flags);
5391 md_wakeup_thread(conf->mddev->thread);
5392 }
5393
remove_bio_from_retry(struct r5conf * conf,unsigned int * offset)5394 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5395 unsigned int *offset)
5396 {
5397 struct bio *bi;
5398
5399 bi = conf->retry_read_aligned;
5400 if (bi) {
5401 *offset = conf->retry_read_offset;
5402 conf->retry_read_aligned = NULL;
5403 return bi;
5404 }
5405 bi = conf->retry_read_aligned_list;
5406 if(bi) {
5407 conf->retry_read_aligned_list = bi->bi_next;
5408 bi->bi_next = NULL;
5409 *offset = 0;
5410 }
5411
5412 return bi;
5413 }
5414
5415 /*
5416 * The "raid5_align_endio" should check if the read succeeded and if it
5417 * did, call bio_endio on the original bio (having bio_put the new bio
5418 * first).
5419 * If the read failed..
5420 */
raid5_align_endio(struct bio * bi)5421 static void raid5_align_endio(struct bio *bi)
5422 {
5423 struct bio *raid_bi = bi->bi_private;
5424 struct md_rdev *rdev = (void *)raid_bi->bi_next;
5425 struct mddev *mddev = rdev->mddev;
5426 struct r5conf *conf = mddev->private;
5427 blk_status_t error = bi->bi_status;
5428
5429 bio_put(bi);
5430 raid_bi->bi_next = NULL;
5431 rdev_dec_pending(rdev, conf->mddev);
5432
5433 if (!error) {
5434 bio_endio(raid_bi);
5435 if (atomic_dec_and_test(&conf->active_aligned_reads))
5436 wake_up(&conf->wait_for_quiescent);
5437 return;
5438 }
5439
5440 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5441
5442 add_bio_to_retry(raid_bi, conf);
5443 }
5444
raid5_read_one_chunk(struct mddev * mddev,struct bio * raid_bio)5445 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5446 {
5447 struct r5conf *conf = mddev->private;
5448 struct bio *align_bio;
5449 struct md_rdev *rdev;
5450 sector_t sector, end_sector;
5451 int dd_idx;
5452 bool did_inc;
5453
5454 if (!in_chunk_boundary(mddev, raid_bio)) {
5455 pr_debug("%s: non aligned\n", __func__);
5456 return 0;
5457 }
5458
5459 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5460 &dd_idx, NULL);
5461 end_sector = sector + bio_sectors(raid_bio);
5462
5463 if (r5c_big_stripe_cached(conf, sector))
5464 return 0;
5465
5466 rdev = conf->disks[dd_idx].replacement;
5467 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5468 rdev->recovery_offset < end_sector) {
5469 rdev = conf->disks[dd_idx].rdev;
5470 if (!rdev)
5471 return 0;
5472 if (test_bit(Faulty, &rdev->flags) ||
5473 !(test_bit(In_sync, &rdev->flags) ||
5474 rdev->recovery_offset >= end_sector))
5475 return 0;
5476 }
5477
5478 atomic_inc(&rdev->nr_pending);
5479
5480 if (rdev_has_badblock(rdev, sector, bio_sectors(raid_bio))) {
5481 rdev_dec_pending(rdev, mddev);
5482 return 0;
5483 }
5484
5485 md_account_bio(mddev, &raid_bio);
5486 raid_bio->bi_next = (void *)rdev;
5487
5488 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5489 &mddev->bio_set);
5490 align_bio->bi_end_io = raid5_align_endio;
5491 align_bio->bi_private = raid_bio;
5492 align_bio->bi_iter.bi_sector = sector;
5493
5494 /* No reshape active, so we can trust rdev->data_offset */
5495 align_bio->bi_iter.bi_sector += rdev->data_offset;
5496
5497 did_inc = false;
5498 if (conf->quiesce == 0) {
5499 atomic_inc(&conf->active_aligned_reads);
5500 did_inc = true;
5501 }
5502 /* need a memory barrier to detect the race with raid5_quiesce() */
5503 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5504 /* quiesce is in progress, so we need to undo io activation and wait
5505 * for it to finish
5506 */
5507 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5508 wake_up(&conf->wait_for_quiescent);
5509 spin_lock_irq(&conf->device_lock);
5510 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5511 conf->device_lock);
5512 atomic_inc(&conf->active_aligned_reads);
5513 spin_unlock_irq(&conf->device_lock);
5514 }
5515
5516 mddev_trace_remap(mddev, align_bio, raid_bio->bi_iter.bi_sector);
5517 submit_bio_noacct(align_bio);
5518 return 1;
5519 }
5520
chunk_aligned_read(struct mddev * mddev,struct bio * raid_bio)5521 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5522 {
5523 struct bio *split;
5524 sector_t sector = raid_bio->bi_iter.bi_sector;
5525 unsigned chunk_sects = mddev->chunk_sectors;
5526 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5527
5528 if (sectors < bio_sectors(raid_bio)) {
5529 struct r5conf *conf = mddev->private;
5530 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5531 bio_chain(split, raid_bio);
5532 submit_bio_noacct(raid_bio);
5533 raid_bio = split;
5534 }
5535
5536 if (!raid5_read_one_chunk(mddev, raid_bio))
5537 return raid_bio;
5538
5539 return NULL;
5540 }
5541
5542 /* __get_priority_stripe - get the next stripe to process
5543 *
5544 * Full stripe writes are allowed to pass preread active stripes up until
5545 * the bypass_threshold is exceeded. In general the bypass_count
5546 * increments when the handle_list is handled before the hold_list; however, it
5547 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5548 * stripe with in flight i/o. The bypass_count will be reset when the
5549 * head of the hold_list has changed, i.e. the head was promoted to the
5550 * handle_list.
5551 */
__get_priority_stripe(struct r5conf * conf,int group)5552 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5553 __must_hold(&conf->device_lock)
5554 {
5555 struct stripe_head *sh, *tmp;
5556 struct list_head *handle_list = NULL;
5557 struct r5worker_group *wg;
5558 bool second_try = !r5c_is_writeback(conf->log) &&
5559 !r5l_log_disk_error(conf);
5560 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5561 r5l_log_disk_error(conf);
5562
5563 again:
5564 wg = NULL;
5565 sh = NULL;
5566 if (conf->worker_cnt_per_group == 0) {
5567 handle_list = try_loprio ? &conf->loprio_list :
5568 &conf->handle_list;
5569 } else if (group != ANY_GROUP) {
5570 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5571 &conf->worker_groups[group].handle_list;
5572 wg = &conf->worker_groups[group];
5573 } else {
5574 int i;
5575 for (i = 0; i < conf->group_cnt; i++) {
5576 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5577 &conf->worker_groups[i].handle_list;
5578 wg = &conf->worker_groups[i];
5579 if (!list_empty(handle_list))
5580 break;
5581 }
5582 }
5583
5584 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5585 __func__,
5586 list_empty(handle_list) ? "empty" : "busy",
5587 list_empty(&conf->hold_list) ? "empty" : "busy",
5588 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5589
5590 if (!list_empty(handle_list)) {
5591 sh = list_entry(handle_list->next, typeof(*sh), lru);
5592
5593 if (list_empty(&conf->hold_list))
5594 conf->bypass_count = 0;
5595 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5596 if (conf->hold_list.next == conf->last_hold)
5597 conf->bypass_count++;
5598 else {
5599 conf->last_hold = conf->hold_list.next;
5600 conf->bypass_count -= conf->bypass_threshold;
5601 if (conf->bypass_count < 0)
5602 conf->bypass_count = 0;
5603 }
5604 }
5605 } else if (!list_empty(&conf->hold_list) &&
5606 ((conf->bypass_threshold &&
5607 conf->bypass_count > conf->bypass_threshold) ||
5608 atomic_read(&conf->pending_full_writes) == 0)) {
5609
5610 list_for_each_entry(tmp, &conf->hold_list, lru) {
5611 if (conf->worker_cnt_per_group == 0 ||
5612 group == ANY_GROUP ||
5613 !cpu_online(tmp->cpu) ||
5614 cpu_to_group(tmp->cpu) == group) {
5615 sh = tmp;
5616 break;
5617 }
5618 }
5619
5620 if (sh) {
5621 conf->bypass_count -= conf->bypass_threshold;
5622 if (conf->bypass_count < 0)
5623 conf->bypass_count = 0;
5624 }
5625 wg = NULL;
5626 }
5627
5628 if (!sh) {
5629 if (second_try)
5630 return NULL;
5631 second_try = true;
5632 try_loprio = !try_loprio;
5633 goto again;
5634 }
5635
5636 if (wg) {
5637 wg->stripes_cnt--;
5638 sh->group = NULL;
5639 }
5640 list_del_init(&sh->lru);
5641 BUG_ON(atomic_inc_return(&sh->count) != 1);
5642 return sh;
5643 }
5644
5645 struct raid5_plug_cb {
5646 struct blk_plug_cb cb;
5647 struct list_head list;
5648 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5649 };
5650
raid5_unplug(struct blk_plug_cb * blk_cb,bool from_schedule)5651 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5652 {
5653 struct raid5_plug_cb *cb = container_of(
5654 blk_cb, struct raid5_plug_cb, cb);
5655 struct stripe_head *sh;
5656 struct mddev *mddev = cb->cb.data;
5657 struct r5conf *conf = mddev->private;
5658 int cnt = 0;
5659 int hash;
5660
5661 if (cb->list.next && !list_empty(&cb->list)) {
5662 spin_lock_irq(&conf->device_lock);
5663 while (!list_empty(&cb->list)) {
5664 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5665 list_del_init(&sh->lru);
5666 /*
5667 * avoid race release_stripe_plug() sees
5668 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5669 * is still in our list
5670 */
5671 smp_mb__before_atomic();
5672 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5673 /*
5674 * STRIPE_ON_RELEASE_LIST could be set here. In that
5675 * case, the count is always > 1 here
5676 */
5677 hash = sh->hash_lock_index;
5678 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5679 cnt++;
5680 }
5681 spin_unlock_irq(&conf->device_lock);
5682 }
5683 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5684 NR_STRIPE_HASH_LOCKS);
5685 if (!mddev_is_dm(mddev))
5686 trace_block_unplug(mddev->gendisk->queue, cnt, !from_schedule);
5687 kfree(cb);
5688 }
5689
release_stripe_plug(struct mddev * mddev,struct stripe_head * sh)5690 static void release_stripe_plug(struct mddev *mddev,
5691 struct stripe_head *sh)
5692 {
5693 struct blk_plug_cb *blk_cb = blk_check_plugged(
5694 raid5_unplug, mddev,
5695 sizeof(struct raid5_plug_cb));
5696 struct raid5_plug_cb *cb;
5697
5698 if (!blk_cb) {
5699 raid5_release_stripe(sh);
5700 return;
5701 }
5702
5703 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5704
5705 if (cb->list.next == NULL) {
5706 int i;
5707 INIT_LIST_HEAD(&cb->list);
5708 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5709 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5710 }
5711
5712 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5713 list_add_tail(&sh->lru, &cb->list);
5714 else
5715 raid5_release_stripe(sh);
5716 }
5717
make_discard_request(struct mddev * mddev,struct bio * bi)5718 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5719 {
5720 struct r5conf *conf = mddev->private;
5721 sector_t logical_sector, last_sector;
5722 struct stripe_head *sh;
5723 int stripe_sectors;
5724
5725 /* We need to handle this when io_uring supports discard/trim */
5726 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5727 return;
5728
5729 if (mddev->reshape_position != MaxSector)
5730 /* Skip discard while reshape is happening */
5731 return;
5732
5733 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5734 last_sector = bio_end_sector(bi);
5735
5736 bi->bi_next = NULL;
5737
5738 stripe_sectors = conf->chunk_sectors *
5739 (conf->raid_disks - conf->max_degraded);
5740 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5741 stripe_sectors);
5742 sector_div(last_sector, stripe_sectors);
5743
5744 logical_sector *= conf->chunk_sectors;
5745 last_sector *= conf->chunk_sectors;
5746
5747 for (; logical_sector < last_sector;
5748 logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5749 DEFINE_WAIT(w);
5750 int d;
5751 again:
5752 sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0);
5753 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5754 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5755 raid5_release_stripe(sh);
5756 wait_on_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap,
5757 TASK_UNINTERRUPTIBLE);
5758 goto again;
5759 }
5760 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5761 spin_lock_irq(&sh->stripe_lock);
5762 for (d = 0; d < conf->raid_disks; d++) {
5763 if (d == sh->pd_idx || d == sh->qd_idx)
5764 continue;
5765 if (sh->dev[d].towrite || sh->dev[d].toread) {
5766 set_bit(R5_Overlap, &sh->dev[d].flags);
5767 spin_unlock_irq(&sh->stripe_lock);
5768 raid5_release_stripe(sh);
5769 wait_on_bit(&sh->dev[d].flags, R5_Overlap,
5770 TASK_UNINTERRUPTIBLE);
5771 goto again;
5772 }
5773 }
5774 set_bit(STRIPE_DISCARD, &sh->state);
5775 sh->overwrite_disks = 0;
5776 for (d = 0; d < conf->raid_disks; d++) {
5777 if (d == sh->pd_idx || d == sh->qd_idx)
5778 continue;
5779 sh->dev[d].towrite = bi;
5780 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5781 bio_inc_remaining(bi);
5782 md_write_inc(mddev, bi);
5783 sh->overwrite_disks++;
5784 }
5785 spin_unlock_irq(&sh->stripe_lock);
5786 if (conf->mddev->bitmap) {
5787 for (d = 0; d < conf->raid_disks - conf->max_degraded;
5788 d++)
5789 mddev->bitmap_ops->startwrite(mddev, sh->sector,
5790 RAID5_STRIPE_SECTORS(conf), false);
5791 sh->bm_seq = conf->seq_flush + 1;
5792 set_bit(STRIPE_BIT_DELAY, &sh->state);
5793 }
5794
5795 set_bit(STRIPE_HANDLE, &sh->state);
5796 clear_bit(STRIPE_DELAYED, &sh->state);
5797 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5798 atomic_inc(&conf->preread_active_stripes);
5799 release_stripe_plug(mddev, sh);
5800 }
5801
5802 bio_endio(bi);
5803 }
5804
ahead_of_reshape(struct mddev * mddev,sector_t sector,sector_t reshape_sector)5805 static bool ahead_of_reshape(struct mddev *mddev, sector_t sector,
5806 sector_t reshape_sector)
5807 {
5808 return mddev->reshape_backwards ? sector < reshape_sector :
5809 sector >= reshape_sector;
5810 }
5811
range_ahead_of_reshape(struct mddev * mddev,sector_t min,sector_t max,sector_t reshape_sector)5812 static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min,
5813 sector_t max, sector_t reshape_sector)
5814 {
5815 return mddev->reshape_backwards ? max < reshape_sector :
5816 min >= reshape_sector;
5817 }
5818
stripe_ahead_of_reshape(struct mddev * mddev,struct r5conf * conf,struct stripe_head * sh)5819 static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf,
5820 struct stripe_head *sh)
5821 {
5822 sector_t max_sector = 0, min_sector = MaxSector;
5823 bool ret = false;
5824 int dd_idx;
5825
5826 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5827 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5828 continue;
5829
5830 min_sector = min(min_sector, sh->dev[dd_idx].sector);
5831 max_sector = max(max_sector, sh->dev[dd_idx].sector);
5832 }
5833
5834 spin_lock_irq(&conf->device_lock);
5835
5836 if (!range_ahead_of_reshape(mddev, min_sector, max_sector,
5837 conf->reshape_progress))
5838 /* mismatch, need to try again */
5839 ret = true;
5840
5841 spin_unlock_irq(&conf->device_lock);
5842
5843 return ret;
5844 }
5845
add_all_stripe_bios(struct r5conf * conf,struct stripe_request_ctx * ctx,struct stripe_head * sh,struct bio * bi,int forwrite,int previous)5846 static int add_all_stripe_bios(struct r5conf *conf,
5847 struct stripe_request_ctx *ctx, struct stripe_head *sh,
5848 struct bio *bi, int forwrite, int previous)
5849 {
5850 int dd_idx;
5851
5852 spin_lock_irq(&sh->stripe_lock);
5853
5854 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5855 struct r5dev *dev = &sh->dev[dd_idx];
5856
5857 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5858 continue;
5859
5860 if (dev->sector < ctx->first_sector ||
5861 dev->sector >= ctx->last_sector)
5862 continue;
5863
5864 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
5865 set_bit(R5_Overlap, &dev->flags);
5866 spin_unlock_irq(&sh->stripe_lock);
5867 raid5_release_stripe(sh);
5868 /* release batch_last before wait to avoid risk of deadlock */
5869 if (ctx->batch_last) {
5870 raid5_release_stripe(ctx->batch_last);
5871 ctx->batch_last = NULL;
5872 }
5873 md_wakeup_thread(conf->mddev->thread);
5874 wait_on_bit(&dev->flags, R5_Overlap, TASK_UNINTERRUPTIBLE);
5875 return 0;
5876 }
5877 }
5878
5879 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5880 struct r5dev *dev = &sh->dev[dd_idx];
5881
5882 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5883 continue;
5884
5885 if (dev->sector < ctx->first_sector ||
5886 dev->sector >= ctx->last_sector)
5887 continue;
5888
5889 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
5890 clear_bit((dev->sector - ctx->first_sector) >>
5891 RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do);
5892 }
5893
5894 spin_unlock_irq(&sh->stripe_lock);
5895 return 1;
5896 }
5897
5898 enum reshape_loc {
5899 LOC_NO_RESHAPE,
5900 LOC_AHEAD_OF_RESHAPE,
5901 LOC_INSIDE_RESHAPE,
5902 LOC_BEHIND_RESHAPE,
5903 };
5904
get_reshape_loc(struct mddev * mddev,struct r5conf * conf,sector_t logical_sector)5905 static enum reshape_loc get_reshape_loc(struct mddev *mddev,
5906 struct r5conf *conf, sector_t logical_sector)
5907 {
5908 sector_t reshape_progress, reshape_safe;
5909 /*
5910 * Spinlock is needed as reshape_progress may be
5911 * 64bit on a 32bit platform, and so it might be
5912 * possible to see a half-updated value
5913 * Of course reshape_progress could change after
5914 * the lock is dropped, so once we get a reference
5915 * to the stripe that we think it is, we will have
5916 * to check again.
5917 */
5918 spin_lock_irq(&conf->device_lock);
5919 reshape_progress = conf->reshape_progress;
5920 reshape_safe = conf->reshape_safe;
5921 spin_unlock_irq(&conf->device_lock);
5922 if (reshape_progress == MaxSector)
5923 return LOC_NO_RESHAPE;
5924 if (ahead_of_reshape(mddev, logical_sector, reshape_progress))
5925 return LOC_AHEAD_OF_RESHAPE;
5926 if (ahead_of_reshape(mddev, logical_sector, reshape_safe))
5927 return LOC_INSIDE_RESHAPE;
5928 return LOC_BEHIND_RESHAPE;
5929 }
5930
make_stripe_request(struct mddev * mddev,struct r5conf * conf,struct stripe_request_ctx * ctx,sector_t logical_sector,struct bio * bi)5931 static enum stripe_result make_stripe_request(struct mddev *mddev,
5932 struct r5conf *conf, struct stripe_request_ctx *ctx,
5933 sector_t logical_sector, struct bio *bi)
5934 {
5935 const int rw = bio_data_dir(bi);
5936 enum stripe_result ret;
5937 struct stripe_head *sh;
5938 sector_t new_sector;
5939 int previous = 0, flags = 0;
5940 int seq, dd_idx;
5941
5942 seq = read_seqcount_begin(&conf->gen_lock);
5943
5944 if (unlikely(conf->reshape_progress != MaxSector)) {
5945 enum reshape_loc loc = get_reshape_loc(mddev, conf,
5946 logical_sector);
5947 if (loc == LOC_INSIDE_RESHAPE) {
5948 ret = STRIPE_SCHEDULE_AND_RETRY;
5949 goto out;
5950 }
5951 if (loc == LOC_AHEAD_OF_RESHAPE)
5952 previous = 1;
5953 }
5954
5955 new_sector = raid5_compute_sector(conf, logical_sector, previous,
5956 &dd_idx, NULL);
5957 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__,
5958 new_sector, logical_sector);
5959
5960 if (previous)
5961 flags |= R5_GAS_PREVIOUS;
5962 if (bi->bi_opf & REQ_RAHEAD)
5963 flags |= R5_GAS_NOBLOCK;
5964 sh = raid5_get_active_stripe(conf, ctx, new_sector, flags);
5965 if (unlikely(!sh)) {
5966 /* cannot get stripe, just give-up */
5967 bi->bi_status = BLK_STS_IOERR;
5968 return STRIPE_FAIL;
5969 }
5970
5971 if (unlikely(previous) &&
5972 stripe_ahead_of_reshape(mddev, conf, sh)) {
5973 /*
5974 * Expansion moved on while waiting for a stripe.
5975 * Expansion could still move past after this
5976 * test, but as we are holding a reference to
5977 * 'sh', we know that if that happens,
5978 * STRIPE_EXPANDING will get set and the expansion
5979 * won't proceed until we finish with the stripe.
5980 */
5981 ret = STRIPE_SCHEDULE_AND_RETRY;
5982 goto out_release;
5983 }
5984
5985 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5986 /* Might have got the wrong stripe_head by accident */
5987 ret = STRIPE_RETRY;
5988 goto out_release;
5989 }
5990
5991 if (test_bit(STRIPE_EXPANDING, &sh->state)) {
5992 md_wakeup_thread(mddev->thread);
5993 ret = STRIPE_SCHEDULE_AND_RETRY;
5994 goto out_release;
5995 }
5996
5997 if (!add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
5998 ret = STRIPE_RETRY;
5999 goto out;
6000 }
6001
6002 if (stripe_can_batch(sh)) {
6003 stripe_add_to_batch_list(conf, sh, ctx->batch_last);
6004 if (ctx->batch_last)
6005 raid5_release_stripe(ctx->batch_last);
6006 atomic_inc(&sh->count);
6007 ctx->batch_last = sh;
6008 }
6009
6010 if (ctx->do_flush) {
6011 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
6012 /* we only need flush for one stripe */
6013 ctx->do_flush = false;
6014 }
6015
6016 set_bit(STRIPE_HANDLE, &sh->state);
6017 clear_bit(STRIPE_DELAYED, &sh->state);
6018 if ((!sh->batch_head || sh == sh->batch_head) &&
6019 (bi->bi_opf & REQ_SYNC) &&
6020 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
6021 atomic_inc(&conf->preread_active_stripes);
6022
6023 release_stripe_plug(mddev, sh);
6024 return STRIPE_SUCCESS;
6025
6026 out_release:
6027 raid5_release_stripe(sh);
6028 out:
6029 if (ret == STRIPE_SCHEDULE_AND_RETRY && reshape_interrupted(mddev)) {
6030 bi->bi_status = BLK_STS_RESOURCE;
6031 ret = STRIPE_WAIT_RESHAPE;
6032 pr_err_ratelimited("dm-raid456: io across reshape position while reshape can't make progress");
6033 }
6034 return ret;
6035 }
6036
6037 /*
6038 * If the bio covers multiple data disks, find sector within the bio that has
6039 * the lowest chunk offset in the first chunk.
6040 */
raid5_bio_lowest_chunk_sector(struct r5conf * conf,struct bio * bi)6041 static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf,
6042 struct bio *bi)
6043 {
6044 int sectors_per_chunk = conf->chunk_sectors;
6045 int raid_disks = conf->raid_disks;
6046 int dd_idx;
6047 struct stripe_head sh;
6048 unsigned int chunk_offset;
6049 sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6050 sector_t sector;
6051
6052 /* We pass in fake stripe_head to get back parity disk numbers */
6053 sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh);
6054 chunk_offset = sector_div(sector, sectors_per_chunk);
6055 if (sectors_per_chunk - chunk_offset >= bio_sectors(bi))
6056 return r_sector;
6057 /*
6058 * Bio crosses to the next data disk. Check whether it's in the same
6059 * chunk.
6060 */
6061 dd_idx++;
6062 while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx)
6063 dd_idx++;
6064 if (dd_idx >= raid_disks)
6065 return r_sector;
6066 return r_sector + sectors_per_chunk - chunk_offset;
6067 }
6068
raid5_make_request(struct mddev * mddev,struct bio * bi)6069 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
6070 {
6071 DEFINE_WAIT_FUNC(wait, woken_wake_function);
6072 bool on_wq;
6073 struct r5conf *conf = mddev->private;
6074 sector_t logical_sector;
6075 struct stripe_request_ctx ctx = {};
6076 const int rw = bio_data_dir(bi);
6077 enum stripe_result res;
6078 int s, stripe_cnt;
6079
6080 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
6081 int ret = log_handle_flush_request(conf, bi);
6082
6083 if (ret == 0)
6084 return true;
6085 if (ret == -ENODEV) {
6086 if (md_flush_request(mddev, bi))
6087 return true;
6088 }
6089 /* ret == -EAGAIN, fallback */
6090 /*
6091 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
6092 * we need to flush journal device
6093 */
6094 ctx.do_flush = bi->bi_opf & REQ_PREFLUSH;
6095 }
6096
6097 md_write_start(mddev, bi);
6098 /*
6099 * If array is degraded, better not do chunk aligned read because
6100 * later we might have to read it again in order to reconstruct
6101 * data on failed drives.
6102 */
6103 if (rw == READ && mddev->degraded == 0 &&
6104 mddev->reshape_position == MaxSector) {
6105 bi = chunk_aligned_read(mddev, bi);
6106 if (!bi)
6107 return true;
6108 }
6109
6110 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
6111 make_discard_request(mddev, bi);
6112 md_write_end(mddev);
6113 return true;
6114 }
6115
6116 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6117 ctx.first_sector = logical_sector;
6118 ctx.last_sector = bio_end_sector(bi);
6119 bi->bi_next = NULL;
6120
6121 stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector,
6122 RAID5_STRIPE_SECTORS(conf));
6123 bitmap_set(ctx.sectors_to_do, 0, stripe_cnt);
6124
6125 pr_debug("raid456: %s, logical %llu to %llu\n", __func__,
6126 bi->bi_iter.bi_sector, ctx.last_sector);
6127
6128 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */
6129 if ((bi->bi_opf & REQ_NOWAIT) &&
6130 (conf->reshape_progress != MaxSector) &&
6131 get_reshape_loc(mddev, conf, logical_sector) == LOC_INSIDE_RESHAPE) {
6132 bio_wouldblock_error(bi);
6133 if (rw == WRITE)
6134 md_write_end(mddev);
6135 return true;
6136 }
6137 md_account_bio(mddev, &bi);
6138
6139 /*
6140 * Lets start with the stripe with the lowest chunk offset in the first
6141 * chunk. That has the best chances of creating IOs adjacent to
6142 * previous IOs in case of sequential IO and thus creates the most
6143 * sequential IO pattern. We don't bother with the optimization when
6144 * reshaping as the performance benefit is not worth the complexity.
6145 */
6146 if (likely(conf->reshape_progress == MaxSector)) {
6147 logical_sector = raid5_bio_lowest_chunk_sector(conf, bi);
6148 on_wq = false;
6149 } else {
6150 add_wait_queue(&conf->wait_for_reshape, &wait);
6151 on_wq = true;
6152 }
6153 s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf);
6154
6155 while (1) {
6156 res = make_stripe_request(mddev, conf, &ctx, logical_sector,
6157 bi);
6158 if (res == STRIPE_FAIL || res == STRIPE_WAIT_RESHAPE)
6159 break;
6160
6161 if (res == STRIPE_RETRY)
6162 continue;
6163
6164 if (res == STRIPE_SCHEDULE_AND_RETRY) {
6165 WARN_ON_ONCE(!on_wq);
6166 /*
6167 * Must release the reference to batch_last before
6168 * scheduling and waiting for work to be done,
6169 * otherwise the batch_last stripe head could prevent
6170 * raid5_activate_delayed() from making progress
6171 * and thus deadlocking.
6172 */
6173 if (ctx.batch_last) {
6174 raid5_release_stripe(ctx.batch_last);
6175 ctx.batch_last = NULL;
6176 }
6177
6178 wait_woken(&wait, TASK_UNINTERRUPTIBLE,
6179 MAX_SCHEDULE_TIMEOUT);
6180 continue;
6181 }
6182
6183 s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s);
6184 if (s == stripe_cnt)
6185 break;
6186
6187 logical_sector = ctx.first_sector +
6188 (s << RAID5_STRIPE_SHIFT(conf));
6189 }
6190 if (unlikely(on_wq))
6191 remove_wait_queue(&conf->wait_for_reshape, &wait);
6192
6193 if (ctx.batch_last)
6194 raid5_release_stripe(ctx.batch_last);
6195
6196 if (rw == WRITE)
6197 md_write_end(mddev);
6198 if (res == STRIPE_WAIT_RESHAPE) {
6199 md_free_cloned_bio(bi);
6200 return false;
6201 }
6202
6203 bio_endio(bi);
6204 return true;
6205 }
6206
6207 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
6208
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)6209 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
6210 {
6211 /* reshaping is quite different to recovery/resync so it is
6212 * handled quite separately ... here.
6213 *
6214 * On each call to sync_request, we gather one chunk worth of
6215 * destination stripes and flag them as expanding.
6216 * Then we find all the source stripes and request reads.
6217 * As the reads complete, handle_stripe will copy the data
6218 * into the destination stripe and release that stripe.
6219 */
6220 struct r5conf *conf = mddev->private;
6221 struct stripe_head *sh;
6222 struct md_rdev *rdev;
6223 sector_t first_sector, last_sector;
6224 int raid_disks = conf->previous_raid_disks;
6225 int data_disks = raid_disks - conf->max_degraded;
6226 int new_data_disks = conf->raid_disks - conf->max_degraded;
6227 int i;
6228 int dd_idx;
6229 sector_t writepos, readpos, safepos;
6230 sector_t stripe_addr;
6231 int reshape_sectors;
6232 struct list_head stripes;
6233 sector_t retn;
6234
6235 if (sector_nr == 0) {
6236 /* If restarting in the middle, skip the initial sectors */
6237 if (mddev->reshape_backwards &&
6238 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6239 sector_nr = raid5_size(mddev, 0, 0)
6240 - conf->reshape_progress;
6241 } else if (mddev->reshape_backwards &&
6242 conf->reshape_progress == MaxSector) {
6243 /* shouldn't happen, but just in case, finish up.*/
6244 sector_nr = MaxSector;
6245 } else if (!mddev->reshape_backwards &&
6246 conf->reshape_progress > 0)
6247 sector_nr = conf->reshape_progress;
6248 sector_div(sector_nr, new_data_disks);
6249 if (sector_nr) {
6250 mddev->curr_resync_completed = sector_nr;
6251 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6252 *skipped = 1;
6253 retn = sector_nr;
6254 goto finish;
6255 }
6256 }
6257
6258 /* We need to process a full chunk at a time.
6259 * If old and new chunk sizes differ, we need to process the
6260 * largest of these
6261 */
6262
6263 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6264
6265 /* We update the metadata at least every 10 seconds, or when
6266 * the data about to be copied would over-write the source of
6267 * the data at the front of the range. i.e. one new_stripe
6268 * along from reshape_progress new_maps to after where
6269 * reshape_safe old_maps to
6270 */
6271 writepos = conf->reshape_progress;
6272 sector_div(writepos, new_data_disks);
6273 readpos = conf->reshape_progress;
6274 sector_div(readpos, data_disks);
6275 safepos = conf->reshape_safe;
6276 sector_div(safepos, data_disks);
6277 if (mddev->reshape_backwards) {
6278 if (WARN_ON(writepos < reshape_sectors))
6279 return MaxSector;
6280
6281 writepos -= reshape_sectors;
6282 readpos += reshape_sectors;
6283 safepos += reshape_sectors;
6284 } else {
6285 writepos += reshape_sectors;
6286 /* readpos and safepos are worst-case calculations.
6287 * A negative number is overly pessimistic, and causes
6288 * obvious problems for unsigned storage. So clip to 0.
6289 */
6290 readpos -= min_t(sector_t, reshape_sectors, readpos);
6291 safepos -= min_t(sector_t, reshape_sectors, safepos);
6292 }
6293
6294 /* Having calculated the 'writepos' possibly use it
6295 * to set 'stripe_addr' which is where we will write to.
6296 */
6297 if (mddev->reshape_backwards) {
6298 if (WARN_ON(conf->reshape_progress == 0))
6299 return MaxSector;
6300
6301 stripe_addr = writepos;
6302 if (WARN_ON((mddev->dev_sectors &
6303 ~((sector_t)reshape_sectors - 1)) -
6304 reshape_sectors - stripe_addr != sector_nr))
6305 return MaxSector;
6306 } else {
6307 if (WARN_ON(writepos != sector_nr + reshape_sectors))
6308 return MaxSector;
6309
6310 stripe_addr = sector_nr;
6311 }
6312
6313 /* 'writepos' is the most advanced device address we might write.
6314 * 'readpos' is the least advanced device address we might read.
6315 * 'safepos' is the least address recorded in the metadata as having
6316 * been reshaped.
6317 * If there is a min_offset_diff, these are adjusted either by
6318 * increasing the safepos/readpos if diff is negative, or
6319 * increasing writepos if diff is positive.
6320 * If 'readpos' is then behind 'writepos', there is no way that we can
6321 * ensure safety in the face of a crash - that must be done by userspace
6322 * making a backup of the data. So in that case there is no particular
6323 * rush to update metadata.
6324 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6325 * update the metadata to advance 'safepos' to match 'readpos' so that
6326 * we can be safe in the event of a crash.
6327 * So we insist on updating metadata if safepos is behind writepos and
6328 * readpos is beyond writepos.
6329 * In any case, update the metadata every 10 seconds.
6330 * Maybe that number should be configurable, but I'm not sure it is
6331 * worth it.... maybe it could be a multiple of safemode_delay???
6332 */
6333 if (conf->min_offset_diff < 0) {
6334 safepos += -conf->min_offset_diff;
6335 readpos += -conf->min_offset_diff;
6336 } else
6337 writepos += conf->min_offset_diff;
6338
6339 if ((mddev->reshape_backwards
6340 ? (safepos > writepos && readpos < writepos)
6341 : (safepos < writepos && readpos > writepos)) ||
6342 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6343 /* Cannot proceed until we've updated the superblock... */
6344 wait_event(conf->wait_for_reshape,
6345 atomic_read(&conf->reshape_stripes)==0
6346 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6347 if (atomic_read(&conf->reshape_stripes) != 0)
6348 return 0;
6349 mddev->reshape_position = conf->reshape_progress;
6350 mddev->curr_resync_completed = sector_nr;
6351 if (!mddev->reshape_backwards)
6352 /* Can update recovery_offset */
6353 rdev_for_each(rdev, mddev)
6354 if (rdev->raid_disk >= 0 &&
6355 !test_bit(Journal, &rdev->flags) &&
6356 !test_bit(In_sync, &rdev->flags) &&
6357 rdev->recovery_offset < sector_nr)
6358 rdev->recovery_offset = sector_nr;
6359
6360 conf->reshape_checkpoint = jiffies;
6361 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6362 md_wakeup_thread(mddev->thread);
6363 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6364 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6365 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6366 return 0;
6367 spin_lock_irq(&conf->device_lock);
6368 conf->reshape_safe = mddev->reshape_position;
6369 spin_unlock_irq(&conf->device_lock);
6370 wake_up(&conf->wait_for_reshape);
6371 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6372 }
6373
6374 INIT_LIST_HEAD(&stripes);
6375 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6376 int j;
6377 int skipped_disk = 0;
6378 sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i,
6379 R5_GAS_NOQUIESCE);
6380 set_bit(STRIPE_EXPANDING, &sh->state);
6381 atomic_inc(&conf->reshape_stripes);
6382 /* If any of this stripe is beyond the end of the old
6383 * array, then we need to zero those blocks
6384 */
6385 for (j=sh->disks; j--;) {
6386 sector_t s;
6387 if (j == sh->pd_idx)
6388 continue;
6389 if (conf->level == 6 &&
6390 j == sh->qd_idx)
6391 continue;
6392 s = raid5_compute_blocknr(sh, j, 0);
6393 if (s < raid5_size(mddev, 0, 0)) {
6394 skipped_disk = 1;
6395 continue;
6396 }
6397 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6398 set_bit(R5_Expanded, &sh->dev[j].flags);
6399 set_bit(R5_UPTODATE, &sh->dev[j].flags);
6400 }
6401 if (!skipped_disk) {
6402 set_bit(STRIPE_EXPAND_READY, &sh->state);
6403 set_bit(STRIPE_HANDLE, &sh->state);
6404 }
6405 list_add(&sh->lru, &stripes);
6406 }
6407 spin_lock_irq(&conf->device_lock);
6408 if (mddev->reshape_backwards)
6409 conf->reshape_progress -= reshape_sectors * new_data_disks;
6410 else
6411 conf->reshape_progress += reshape_sectors * new_data_disks;
6412 spin_unlock_irq(&conf->device_lock);
6413 /* Ok, those stripe are ready. We can start scheduling
6414 * reads on the source stripes.
6415 * The source stripes are determined by mapping the first and last
6416 * block on the destination stripes.
6417 */
6418 first_sector =
6419 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6420 1, &dd_idx, NULL);
6421 last_sector =
6422 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6423 * new_data_disks - 1),
6424 1, &dd_idx, NULL);
6425 if (last_sector >= mddev->dev_sectors)
6426 last_sector = mddev->dev_sectors - 1;
6427 while (first_sector <= last_sector) {
6428 sh = raid5_get_active_stripe(conf, NULL, first_sector,
6429 R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE);
6430 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6431 set_bit(STRIPE_HANDLE, &sh->state);
6432 raid5_release_stripe(sh);
6433 first_sector += RAID5_STRIPE_SECTORS(conf);
6434 }
6435 /* Now that the sources are clearly marked, we can release
6436 * the destination stripes
6437 */
6438 while (!list_empty(&stripes)) {
6439 sh = list_entry(stripes.next, struct stripe_head, lru);
6440 list_del_init(&sh->lru);
6441 raid5_release_stripe(sh);
6442 }
6443 /* If this takes us to the resync_max point where we have to pause,
6444 * then we need to write out the superblock.
6445 */
6446 sector_nr += reshape_sectors;
6447 retn = reshape_sectors;
6448 finish:
6449 if (mddev->curr_resync_completed > mddev->resync_max ||
6450 (sector_nr - mddev->curr_resync_completed) * 2
6451 >= mddev->resync_max - mddev->curr_resync_completed) {
6452 /* Cannot proceed until we've updated the superblock... */
6453 wait_event(conf->wait_for_reshape,
6454 atomic_read(&conf->reshape_stripes) == 0
6455 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6456 if (atomic_read(&conf->reshape_stripes) != 0)
6457 goto ret;
6458 mddev->reshape_position = conf->reshape_progress;
6459 mddev->curr_resync_completed = sector_nr;
6460 if (!mddev->reshape_backwards)
6461 /* Can update recovery_offset */
6462 rdev_for_each(rdev, mddev)
6463 if (rdev->raid_disk >= 0 &&
6464 !test_bit(Journal, &rdev->flags) &&
6465 !test_bit(In_sync, &rdev->flags) &&
6466 rdev->recovery_offset < sector_nr)
6467 rdev->recovery_offset = sector_nr;
6468 conf->reshape_checkpoint = jiffies;
6469 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6470 md_wakeup_thread(mddev->thread);
6471 wait_event(mddev->sb_wait,
6472 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6473 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6474 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6475 goto ret;
6476 spin_lock_irq(&conf->device_lock);
6477 conf->reshape_safe = mddev->reshape_position;
6478 spin_unlock_irq(&conf->device_lock);
6479 wake_up(&conf->wait_for_reshape);
6480 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6481 }
6482 ret:
6483 return retn;
6484 }
6485
raid5_sync_request(struct mddev * mddev,sector_t sector_nr,sector_t max_sector,int * skipped)6486 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6487 sector_t max_sector, int *skipped)
6488 {
6489 struct r5conf *conf = mddev->private;
6490 struct stripe_head *sh;
6491 sector_t sync_blocks;
6492 bool still_degraded = false;
6493 int i;
6494
6495 if (sector_nr >= max_sector) {
6496 /* just being told to finish up .. nothing much to do */
6497
6498 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6499 end_reshape(conf);
6500 return 0;
6501 }
6502
6503 if (mddev->curr_resync < max_sector) /* aborted */
6504 mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync,
6505 &sync_blocks);
6506 else /* completed sync */
6507 conf->fullsync = 0;
6508 mddev->bitmap_ops->close_sync(mddev);
6509
6510 return 0;
6511 }
6512
6513 /* Allow raid5_quiesce to complete */
6514 wait_event(conf->wait_for_reshape, conf->quiesce != 2);
6515
6516 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6517 return reshape_request(mddev, sector_nr, skipped);
6518
6519 /* No need to check resync_max as we never do more than one
6520 * stripe, and as resync_max will always be on a chunk boundary,
6521 * if the check in md_do_sync didn't fire, there is no chance
6522 * of overstepping resync_max here
6523 */
6524
6525 /* if there is too many failed drives and we are trying
6526 * to resync, then assert that we are finished, because there is
6527 * nothing we can do.
6528 */
6529 if (mddev->degraded >= conf->max_degraded &&
6530 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6531 sector_t rv = mddev->dev_sectors - sector_nr;
6532 *skipped = 1;
6533 return rv;
6534 }
6535 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6536 !conf->fullsync &&
6537 !mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks,
6538 true) &&
6539 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6540 /* we can skip this block, and probably more */
6541 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6542 *skipped = 1;
6543 /* keep things rounded to whole stripes */
6544 return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6545 }
6546
6547 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, false);
6548
6549 sh = raid5_get_active_stripe(conf, NULL, sector_nr,
6550 R5_GAS_NOBLOCK);
6551 if (sh == NULL) {
6552 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0);
6553 /* make sure we don't swamp the stripe cache if someone else
6554 * is trying to get access
6555 */
6556 schedule_timeout_uninterruptible(1);
6557 }
6558 /* Need to check if array will still be degraded after recovery/resync
6559 * Note in case of > 1 drive failures it's possible we're rebuilding
6560 * one drive while leaving another faulty drive in array.
6561 */
6562 for (i = 0; i < conf->raid_disks; i++) {
6563 struct md_rdev *rdev = conf->disks[i].rdev;
6564
6565 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6566 still_degraded = true;
6567 }
6568
6569 mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks,
6570 still_degraded);
6571
6572 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6573 set_bit(STRIPE_HANDLE, &sh->state);
6574
6575 raid5_release_stripe(sh);
6576
6577 return RAID5_STRIPE_SECTORS(conf);
6578 }
6579
retry_aligned_read(struct r5conf * conf,struct bio * raid_bio,unsigned int offset)6580 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6581 unsigned int offset)
6582 {
6583 /* We may not be able to submit a whole bio at once as there
6584 * may not be enough stripe_heads available.
6585 * We cannot pre-allocate enough stripe_heads as we may need
6586 * more than exist in the cache (if we allow ever large chunks).
6587 * So we do one stripe head at a time and record in
6588 * ->bi_hw_segments how many have been done.
6589 *
6590 * We *know* that this entire raid_bio is in one chunk, so
6591 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6592 */
6593 struct stripe_head *sh;
6594 int dd_idx;
6595 sector_t sector, logical_sector, last_sector;
6596 int scnt = 0;
6597 int handled = 0;
6598
6599 logical_sector = raid_bio->bi_iter.bi_sector &
6600 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6601 sector = raid5_compute_sector(conf, logical_sector,
6602 0, &dd_idx, NULL);
6603 last_sector = bio_end_sector(raid_bio);
6604
6605 for (; logical_sector < last_sector;
6606 logical_sector += RAID5_STRIPE_SECTORS(conf),
6607 sector += RAID5_STRIPE_SECTORS(conf),
6608 scnt++) {
6609
6610 if (scnt < offset)
6611 /* already done this stripe */
6612 continue;
6613
6614 sh = raid5_get_active_stripe(conf, NULL, sector,
6615 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
6616 if (!sh) {
6617 /* failed to get a stripe - must wait */
6618 conf->retry_read_aligned = raid_bio;
6619 conf->retry_read_offset = scnt;
6620 return handled;
6621 }
6622
6623 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6624 raid5_release_stripe(sh);
6625 conf->retry_read_aligned = raid_bio;
6626 conf->retry_read_offset = scnt;
6627 return handled;
6628 }
6629
6630 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6631 handle_stripe(sh);
6632 raid5_release_stripe(sh);
6633 handled++;
6634 }
6635
6636 bio_endio(raid_bio);
6637
6638 if (atomic_dec_and_test(&conf->active_aligned_reads))
6639 wake_up(&conf->wait_for_quiescent);
6640 return handled;
6641 }
6642
handle_active_stripes(struct r5conf * conf,int group,struct r5worker * worker,struct list_head * temp_inactive_list)6643 static int handle_active_stripes(struct r5conf *conf, int group,
6644 struct r5worker *worker,
6645 struct list_head *temp_inactive_list)
6646 __must_hold(&conf->device_lock)
6647 {
6648 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6649 int i, batch_size = 0, hash;
6650 bool release_inactive = false;
6651
6652 while (batch_size < MAX_STRIPE_BATCH &&
6653 (sh = __get_priority_stripe(conf, group)) != NULL)
6654 batch[batch_size++] = sh;
6655
6656 if (batch_size == 0) {
6657 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6658 if (!list_empty(temp_inactive_list + i))
6659 break;
6660 if (i == NR_STRIPE_HASH_LOCKS) {
6661 spin_unlock_irq(&conf->device_lock);
6662 log_flush_stripe_to_raid(conf);
6663 spin_lock_irq(&conf->device_lock);
6664 return batch_size;
6665 }
6666 release_inactive = true;
6667 }
6668 spin_unlock_irq(&conf->device_lock);
6669
6670 release_inactive_stripe_list(conf, temp_inactive_list,
6671 NR_STRIPE_HASH_LOCKS);
6672
6673 r5l_flush_stripe_to_raid(conf->log);
6674 if (release_inactive) {
6675 spin_lock_irq(&conf->device_lock);
6676 return 0;
6677 }
6678
6679 for (i = 0; i < batch_size; i++)
6680 handle_stripe(batch[i]);
6681 log_write_stripe_run(conf);
6682
6683 cond_resched();
6684
6685 spin_lock_irq(&conf->device_lock);
6686 for (i = 0; i < batch_size; i++) {
6687 hash = batch[i]->hash_lock_index;
6688 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6689 }
6690 return batch_size;
6691 }
6692
raid5_do_work(struct work_struct * work)6693 static void raid5_do_work(struct work_struct *work)
6694 {
6695 struct r5worker *worker = container_of(work, struct r5worker, work);
6696 struct r5worker_group *group = worker->group;
6697 struct r5conf *conf = group->conf;
6698 struct mddev *mddev = conf->mddev;
6699 int group_id = group - conf->worker_groups;
6700 int handled;
6701 struct blk_plug plug;
6702
6703 pr_debug("+++ raid5worker active\n");
6704
6705 blk_start_plug(&plug);
6706 handled = 0;
6707 spin_lock_irq(&conf->device_lock);
6708 while (1) {
6709 int batch_size, released;
6710
6711 released = release_stripe_list(conf, worker->temp_inactive_list);
6712
6713 batch_size = handle_active_stripes(conf, group_id, worker,
6714 worker->temp_inactive_list);
6715 worker->working = false;
6716 if (!batch_size && !released)
6717 break;
6718 handled += batch_size;
6719 wait_event_lock_irq(mddev->sb_wait,
6720 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6721 conf->device_lock);
6722 }
6723 pr_debug("%d stripes handled\n", handled);
6724
6725 spin_unlock_irq(&conf->device_lock);
6726
6727 flush_deferred_bios(conf);
6728
6729 r5l_flush_stripe_to_raid(conf->log);
6730
6731 async_tx_issue_pending_all();
6732 blk_finish_plug(&plug);
6733
6734 pr_debug("--- raid5worker inactive\n");
6735 }
6736
6737 /*
6738 * This is our raid5 kernel thread.
6739 *
6740 * We scan the hash table for stripes which can be handled now.
6741 * During the scan, completed stripes are saved for us by the interrupt
6742 * handler, so that they will not have to wait for our next wakeup.
6743 */
raid5d(struct md_thread * thread)6744 static void raid5d(struct md_thread *thread)
6745 {
6746 struct mddev *mddev = thread->mddev;
6747 struct r5conf *conf = mddev->private;
6748 int handled;
6749 struct blk_plug plug;
6750
6751 pr_debug("+++ raid5d active\n");
6752
6753 md_check_recovery(mddev);
6754
6755 blk_start_plug(&plug);
6756 handled = 0;
6757 spin_lock_irq(&conf->device_lock);
6758 while (1) {
6759 struct bio *bio;
6760 int batch_size, released;
6761 unsigned int offset;
6762
6763 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6764 break;
6765
6766 released = release_stripe_list(conf, conf->temp_inactive_list);
6767 if (released)
6768 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6769
6770 if (
6771 !list_empty(&conf->bitmap_list)) {
6772 /* Now is a good time to flush some bitmap updates */
6773 conf->seq_flush++;
6774 spin_unlock_irq(&conf->device_lock);
6775 mddev->bitmap_ops->unplug(mddev, true);
6776 spin_lock_irq(&conf->device_lock);
6777 conf->seq_write = conf->seq_flush;
6778 activate_bit_delay(conf, conf->temp_inactive_list);
6779 }
6780 raid5_activate_delayed(conf);
6781
6782 while ((bio = remove_bio_from_retry(conf, &offset))) {
6783 int ok;
6784 spin_unlock_irq(&conf->device_lock);
6785 ok = retry_aligned_read(conf, bio, offset);
6786 spin_lock_irq(&conf->device_lock);
6787 if (!ok)
6788 break;
6789 handled++;
6790 }
6791
6792 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6793 conf->temp_inactive_list);
6794 if (!batch_size && !released)
6795 break;
6796 handled += batch_size;
6797
6798 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6799 spin_unlock_irq(&conf->device_lock);
6800 md_check_recovery(mddev);
6801 spin_lock_irq(&conf->device_lock);
6802 }
6803 }
6804 pr_debug("%d stripes handled\n", handled);
6805
6806 spin_unlock_irq(&conf->device_lock);
6807 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6808 mutex_trylock(&conf->cache_size_mutex)) {
6809 grow_one_stripe(conf, __GFP_NOWARN);
6810 /* Set flag even if allocation failed. This helps
6811 * slow down allocation requests when mem is short
6812 */
6813 set_bit(R5_DID_ALLOC, &conf->cache_state);
6814 mutex_unlock(&conf->cache_size_mutex);
6815 }
6816
6817 flush_deferred_bios(conf);
6818
6819 r5l_flush_stripe_to_raid(conf->log);
6820
6821 async_tx_issue_pending_all();
6822 blk_finish_plug(&plug);
6823
6824 pr_debug("--- raid5d inactive\n");
6825 }
6826
6827 static ssize_t
raid5_show_stripe_cache_size(struct mddev * mddev,char * page)6828 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6829 {
6830 struct r5conf *conf;
6831 int ret = 0;
6832 spin_lock(&mddev->lock);
6833 conf = mddev->private;
6834 if (conf)
6835 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6836 spin_unlock(&mddev->lock);
6837 return ret;
6838 }
6839
6840 int
raid5_set_cache_size(struct mddev * mddev,int size)6841 raid5_set_cache_size(struct mddev *mddev, int size)
6842 {
6843 int result = 0;
6844 struct r5conf *conf = mddev->private;
6845
6846 if (size <= 16 || size > 32768)
6847 return -EINVAL;
6848
6849 WRITE_ONCE(conf->min_nr_stripes, size);
6850 mutex_lock(&conf->cache_size_mutex);
6851 while (size < conf->max_nr_stripes &&
6852 drop_one_stripe(conf))
6853 ;
6854 mutex_unlock(&conf->cache_size_mutex);
6855
6856 md_allow_write(mddev);
6857
6858 mutex_lock(&conf->cache_size_mutex);
6859 while (size > conf->max_nr_stripes)
6860 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6861 WRITE_ONCE(conf->min_nr_stripes, conf->max_nr_stripes);
6862 result = -ENOMEM;
6863 break;
6864 }
6865 mutex_unlock(&conf->cache_size_mutex);
6866
6867 return result;
6868 }
6869 EXPORT_SYMBOL(raid5_set_cache_size);
6870
6871 static ssize_t
raid5_store_stripe_cache_size(struct mddev * mddev,const char * page,size_t len)6872 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6873 {
6874 struct r5conf *conf;
6875 unsigned long new;
6876 int err;
6877
6878 if (len >= PAGE_SIZE)
6879 return -EINVAL;
6880 if (kstrtoul(page, 10, &new))
6881 return -EINVAL;
6882 err = mddev_lock(mddev);
6883 if (err)
6884 return err;
6885 conf = mddev->private;
6886 if (!conf)
6887 err = -ENODEV;
6888 else
6889 err = raid5_set_cache_size(mddev, new);
6890 mddev_unlock(mddev);
6891
6892 return err ?: len;
6893 }
6894
6895 static struct md_sysfs_entry
6896 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6897 raid5_show_stripe_cache_size,
6898 raid5_store_stripe_cache_size);
6899
6900 static ssize_t
raid5_show_rmw_level(struct mddev * mddev,char * page)6901 raid5_show_rmw_level(struct mddev *mddev, char *page)
6902 {
6903 struct r5conf *conf = mddev->private;
6904 if (conf)
6905 return sprintf(page, "%d\n", conf->rmw_level);
6906 else
6907 return 0;
6908 }
6909
6910 static ssize_t
raid5_store_rmw_level(struct mddev * mddev,const char * page,size_t len)6911 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6912 {
6913 struct r5conf *conf = mddev->private;
6914 unsigned long new;
6915
6916 if (!conf)
6917 return -ENODEV;
6918
6919 if (len >= PAGE_SIZE)
6920 return -EINVAL;
6921
6922 if (kstrtoul(page, 10, &new))
6923 return -EINVAL;
6924
6925 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6926 return -EINVAL;
6927
6928 if (new != PARITY_DISABLE_RMW &&
6929 new != PARITY_ENABLE_RMW &&
6930 new != PARITY_PREFER_RMW)
6931 return -EINVAL;
6932
6933 conf->rmw_level = new;
6934 return len;
6935 }
6936
6937 static struct md_sysfs_entry
6938 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6939 raid5_show_rmw_level,
6940 raid5_store_rmw_level);
6941
6942 static ssize_t
raid5_show_stripe_size(struct mddev * mddev,char * page)6943 raid5_show_stripe_size(struct mddev *mddev, char *page)
6944 {
6945 struct r5conf *conf;
6946 int ret = 0;
6947
6948 spin_lock(&mddev->lock);
6949 conf = mddev->private;
6950 if (conf)
6951 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6952 spin_unlock(&mddev->lock);
6953 return ret;
6954 }
6955
6956 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6957 static ssize_t
raid5_store_stripe_size(struct mddev * mddev,const char * page,size_t len)6958 raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len)
6959 {
6960 struct r5conf *conf;
6961 unsigned long new;
6962 int err;
6963 int size;
6964
6965 if (len >= PAGE_SIZE)
6966 return -EINVAL;
6967 if (kstrtoul(page, 10, &new))
6968 return -EINVAL;
6969
6970 /*
6971 * The value should not be bigger than PAGE_SIZE. It requires to
6972 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6973 * of two.
6974 */
6975 if (new % DEFAULT_STRIPE_SIZE != 0 ||
6976 new > PAGE_SIZE || new == 0 ||
6977 new != roundup_pow_of_two(new))
6978 return -EINVAL;
6979
6980 err = mddev_suspend_and_lock(mddev);
6981 if (err)
6982 return err;
6983
6984 conf = mddev->private;
6985 if (!conf) {
6986 err = -ENODEV;
6987 goto out_unlock;
6988 }
6989
6990 if (new == conf->stripe_size)
6991 goto out_unlock;
6992
6993 pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6994 conf->stripe_size, new);
6995
6996 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6997 mddev->reshape_position != MaxSector || mddev->sysfs_active) {
6998 err = -EBUSY;
6999 goto out_unlock;
7000 }
7001
7002 mutex_lock(&conf->cache_size_mutex);
7003 size = conf->max_nr_stripes;
7004
7005 shrink_stripes(conf);
7006
7007 conf->stripe_size = new;
7008 conf->stripe_shift = ilog2(new) - 9;
7009 conf->stripe_sectors = new >> 9;
7010 if (grow_stripes(conf, size)) {
7011 pr_warn("md/raid:%s: couldn't allocate buffers\n",
7012 mdname(mddev));
7013 err = -ENOMEM;
7014 }
7015 mutex_unlock(&conf->cache_size_mutex);
7016
7017 out_unlock:
7018 mddev_unlock_and_resume(mddev);
7019 return err ?: len;
7020 }
7021
7022 static struct md_sysfs_entry
7023 raid5_stripe_size = __ATTR(stripe_size, 0644,
7024 raid5_show_stripe_size,
7025 raid5_store_stripe_size);
7026 #else
7027 static struct md_sysfs_entry
7028 raid5_stripe_size = __ATTR(stripe_size, 0444,
7029 raid5_show_stripe_size,
7030 NULL);
7031 #endif
7032
7033 static ssize_t
raid5_show_preread_threshold(struct mddev * mddev,char * page)7034 raid5_show_preread_threshold(struct mddev *mddev, char *page)
7035 {
7036 struct r5conf *conf;
7037 int ret = 0;
7038 spin_lock(&mddev->lock);
7039 conf = mddev->private;
7040 if (conf)
7041 ret = sprintf(page, "%d\n", conf->bypass_threshold);
7042 spin_unlock(&mddev->lock);
7043 return ret;
7044 }
7045
7046 static ssize_t
raid5_store_preread_threshold(struct mddev * mddev,const char * page,size_t len)7047 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
7048 {
7049 struct r5conf *conf;
7050 unsigned long new;
7051 int err;
7052
7053 if (len >= PAGE_SIZE)
7054 return -EINVAL;
7055 if (kstrtoul(page, 10, &new))
7056 return -EINVAL;
7057
7058 err = mddev_lock(mddev);
7059 if (err)
7060 return err;
7061 conf = mddev->private;
7062 if (!conf)
7063 err = -ENODEV;
7064 else if (new > conf->min_nr_stripes)
7065 err = -EINVAL;
7066 else
7067 conf->bypass_threshold = new;
7068 mddev_unlock(mddev);
7069 return err ?: len;
7070 }
7071
7072 static struct md_sysfs_entry
7073 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
7074 S_IRUGO | S_IWUSR,
7075 raid5_show_preread_threshold,
7076 raid5_store_preread_threshold);
7077
7078 static ssize_t
raid5_show_skip_copy(struct mddev * mddev,char * page)7079 raid5_show_skip_copy(struct mddev *mddev, char *page)
7080 {
7081 struct r5conf *conf;
7082 int ret = 0;
7083 spin_lock(&mddev->lock);
7084 conf = mddev->private;
7085 if (conf)
7086 ret = sprintf(page, "%d\n", conf->skip_copy);
7087 spin_unlock(&mddev->lock);
7088 return ret;
7089 }
7090
7091 static ssize_t
raid5_store_skip_copy(struct mddev * mddev,const char * page,size_t len)7092 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
7093 {
7094 struct r5conf *conf;
7095 unsigned long new;
7096 int err;
7097
7098 if (len >= PAGE_SIZE)
7099 return -EINVAL;
7100 if (kstrtoul(page, 10, &new))
7101 return -EINVAL;
7102 new = !!new;
7103
7104 err = mddev_suspend_and_lock(mddev);
7105 if (err)
7106 return err;
7107 conf = mddev->private;
7108 if (!conf)
7109 err = -ENODEV;
7110 else if (new != conf->skip_copy) {
7111 struct request_queue *q = mddev->gendisk->queue;
7112 struct queue_limits lim = queue_limits_start_update(q);
7113
7114 conf->skip_copy = new;
7115 if (new)
7116 lim.features |= BLK_FEAT_STABLE_WRITES;
7117 else
7118 lim.features &= ~BLK_FEAT_STABLE_WRITES;
7119 err = queue_limits_commit_update(q, &lim);
7120 }
7121 mddev_unlock_and_resume(mddev);
7122 return err ?: len;
7123 }
7124
7125 static struct md_sysfs_entry
7126 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
7127 raid5_show_skip_copy,
7128 raid5_store_skip_copy);
7129
7130 static ssize_t
stripe_cache_active_show(struct mddev * mddev,char * page)7131 stripe_cache_active_show(struct mddev *mddev, char *page)
7132 {
7133 struct r5conf *conf = mddev->private;
7134 if (conf)
7135 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
7136 else
7137 return 0;
7138 }
7139
7140 static struct md_sysfs_entry
7141 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
7142
7143 static ssize_t
raid5_show_group_thread_cnt(struct mddev * mddev,char * page)7144 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
7145 {
7146 struct r5conf *conf;
7147 int ret = 0;
7148 spin_lock(&mddev->lock);
7149 conf = mddev->private;
7150 if (conf)
7151 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
7152 spin_unlock(&mddev->lock);
7153 return ret;
7154 }
7155
7156 static int alloc_thread_groups(struct r5conf *conf, int cnt,
7157 int *group_cnt,
7158 struct r5worker_group **worker_groups);
7159 static ssize_t
raid5_store_group_thread_cnt(struct mddev * mddev,const char * page,size_t len)7160 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
7161 {
7162 struct r5conf *conf;
7163 unsigned int new;
7164 int err;
7165 struct r5worker_group *new_groups, *old_groups;
7166 int group_cnt;
7167
7168 if (len >= PAGE_SIZE)
7169 return -EINVAL;
7170 if (kstrtouint(page, 10, &new))
7171 return -EINVAL;
7172 /* 8192 should be big enough */
7173 if (new > 8192)
7174 return -EINVAL;
7175
7176 err = mddev_suspend_and_lock(mddev);
7177 if (err)
7178 return err;
7179 raid5_quiesce(mddev, true);
7180
7181 conf = mddev->private;
7182 if (!conf)
7183 err = -ENODEV;
7184 else if (new != conf->worker_cnt_per_group) {
7185 old_groups = conf->worker_groups;
7186 if (old_groups)
7187 flush_workqueue(raid5_wq);
7188
7189 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
7190 if (!err) {
7191 spin_lock_irq(&conf->device_lock);
7192 conf->group_cnt = group_cnt;
7193 conf->worker_cnt_per_group = new;
7194 conf->worker_groups = new_groups;
7195 spin_unlock_irq(&conf->device_lock);
7196
7197 if (old_groups)
7198 kfree(old_groups[0].workers);
7199 kfree(old_groups);
7200 }
7201 }
7202
7203 raid5_quiesce(mddev, false);
7204 mddev_unlock_and_resume(mddev);
7205
7206 return err ?: len;
7207 }
7208
7209 static struct md_sysfs_entry
7210 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
7211 raid5_show_group_thread_cnt,
7212 raid5_store_group_thread_cnt);
7213
7214 static struct attribute *raid5_attrs[] = {
7215 &raid5_stripecache_size.attr,
7216 &raid5_stripecache_active.attr,
7217 &raid5_preread_bypass_threshold.attr,
7218 &raid5_group_thread_cnt.attr,
7219 &raid5_skip_copy.attr,
7220 &raid5_rmw_level.attr,
7221 &raid5_stripe_size.attr,
7222 &r5c_journal_mode.attr,
7223 &ppl_write_hint.attr,
7224 NULL,
7225 };
7226 static const struct attribute_group raid5_attrs_group = {
7227 .name = NULL,
7228 .attrs = raid5_attrs,
7229 };
7230
alloc_thread_groups(struct r5conf * conf,int cnt,int * group_cnt,struct r5worker_group ** worker_groups)7231 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
7232 struct r5worker_group **worker_groups)
7233 {
7234 int i, j, k;
7235 ssize_t size;
7236 struct r5worker *workers;
7237
7238 if (cnt == 0) {
7239 *group_cnt = 0;
7240 *worker_groups = NULL;
7241 return 0;
7242 }
7243 *group_cnt = num_possible_nodes();
7244 size = sizeof(struct r5worker) * cnt;
7245 workers = kcalloc(size, *group_cnt, GFP_NOIO);
7246 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7247 GFP_NOIO);
7248 if (!*worker_groups || !workers) {
7249 kfree(workers);
7250 kfree(*worker_groups);
7251 return -ENOMEM;
7252 }
7253
7254 for (i = 0; i < *group_cnt; i++) {
7255 struct r5worker_group *group;
7256
7257 group = &(*worker_groups)[i];
7258 INIT_LIST_HEAD(&group->handle_list);
7259 INIT_LIST_HEAD(&group->loprio_list);
7260 group->conf = conf;
7261 group->workers = workers + i * cnt;
7262
7263 for (j = 0; j < cnt; j++) {
7264 struct r5worker *worker = group->workers + j;
7265 worker->group = group;
7266 INIT_WORK(&worker->work, raid5_do_work);
7267
7268 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7269 INIT_LIST_HEAD(worker->temp_inactive_list + k);
7270 }
7271 }
7272
7273 return 0;
7274 }
7275
free_thread_groups(struct r5conf * conf)7276 static void free_thread_groups(struct r5conf *conf)
7277 {
7278 if (conf->worker_groups)
7279 kfree(conf->worker_groups[0].workers);
7280 kfree(conf->worker_groups);
7281 conf->worker_groups = NULL;
7282 }
7283
7284 static sector_t
raid5_size(struct mddev * mddev,sector_t sectors,int raid_disks)7285 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7286 {
7287 struct r5conf *conf = mddev->private;
7288
7289 if (!sectors)
7290 sectors = mddev->dev_sectors;
7291 if (!raid_disks)
7292 /* size is defined by the smallest of previous and new size */
7293 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7294
7295 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7296 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7297 return sectors * (raid_disks - conf->max_degraded);
7298 }
7299
free_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)7300 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7301 {
7302 safe_put_page(percpu->spare_page);
7303 percpu->spare_page = NULL;
7304 kvfree(percpu->scribble);
7305 percpu->scribble = NULL;
7306 }
7307
alloc_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)7308 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7309 {
7310 if (conf->level == 6 && !percpu->spare_page) {
7311 percpu->spare_page = alloc_page(GFP_KERNEL);
7312 if (!percpu->spare_page)
7313 return -ENOMEM;
7314 }
7315
7316 if (scribble_alloc(percpu,
7317 max(conf->raid_disks,
7318 conf->previous_raid_disks),
7319 max(conf->chunk_sectors,
7320 conf->prev_chunk_sectors)
7321 / RAID5_STRIPE_SECTORS(conf))) {
7322 free_scratch_buffer(conf, percpu);
7323 return -ENOMEM;
7324 }
7325
7326 local_lock_init(&percpu->lock);
7327 return 0;
7328 }
7329
raid456_cpu_dead(unsigned int cpu,struct hlist_node * node)7330 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7331 {
7332 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7333
7334 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7335 return 0;
7336 }
7337
raid5_free_percpu(struct r5conf * conf)7338 static void raid5_free_percpu(struct r5conf *conf)
7339 {
7340 if (!conf->percpu)
7341 return;
7342
7343 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7344 free_percpu(conf->percpu);
7345 }
7346
free_conf(struct r5conf * conf)7347 static void free_conf(struct r5conf *conf)
7348 {
7349 int i;
7350
7351 log_exit(conf);
7352
7353 shrinker_free(conf->shrinker);
7354 free_thread_groups(conf);
7355 shrink_stripes(conf);
7356 raid5_free_percpu(conf);
7357 for (i = 0; i < conf->pool_size; i++)
7358 if (conf->disks[i].extra_page)
7359 put_page(conf->disks[i].extra_page);
7360 kfree(conf->disks);
7361 bioset_exit(&conf->bio_split);
7362 kfree(conf->stripe_hashtbl);
7363 kfree(conf->pending_data);
7364 kfree(conf);
7365 }
7366
raid456_cpu_up_prepare(unsigned int cpu,struct hlist_node * node)7367 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7368 {
7369 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7370 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7371
7372 if (alloc_scratch_buffer(conf, percpu)) {
7373 pr_warn("%s: failed memory allocation for cpu%u\n",
7374 __func__, cpu);
7375 return -ENOMEM;
7376 }
7377 return 0;
7378 }
7379
raid5_alloc_percpu(struct r5conf * conf)7380 static int raid5_alloc_percpu(struct r5conf *conf)
7381 {
7382 int err = 0;
7383
7384 conf->percpu = alloc_percpu(struct raid5_percpu);
7385 if (!conf->percpu)
7386 return -ENOMEM;
7387
7388 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7389 if (!err) {
7390 conf->scribble_disks = max(conf->raid_disks,
7391 conf->previous_raid_disks);
7392 conf->scribble_sectors = max(conf->chunk_sectors,
7393 conf->prev_chunk_sectors);
7394 }
7395 return err;
7396 }
7397
raid5_cache_scan(struct shrinker * shrink,struct shrink_control * sc)7398 static unsigned long raid5_cache_scan(struct shrinker *shrink,
7399 struct shrink_control *sc)
7400 {
7401 struct r5conf *conf = shrink->private_data;
7402 unsigned long ret = SHRINK_STOP;
7403
7404 if (mutex_trylock(&conf->cache_size_mutex)) {
7405 ret= 0;
7406 while (ret < sc->nr_to_scan &&
7407 conf->max_nr_stripes > conf->min_nr_stripes) {
7408 if (drop_one_stripe(conf) == 0) {
7409 ret = SHRINK_STOP;
7410 break;
7411 }
7412 ret++;
7413 }
7414 mutex_unlock(&conf->cache_size_mutex);
7415 }
7416 return ret;
7417 }
7418
raid5_cache_count(struct shrinker * shrink,struct shrink_control * sc)7419 static unsigned long raid5_cache_count(struct shrinker *shrink,
7420 struct shrink_control *sc)
7421 {
7422 struct r5conf *conf = shrink->private_data;
7423 int max_stripes = READ_ONCE(conf->max_nr_stripes);
7424 int min_stripes = READ_ONCE(conf->min_nr_stripes);
7425
7426 if (max_stripes < min_stripes)
7427 /* unlikely, but not impossible */
7428 return 0;
7429 return max_stripes - min_stripes;
7430 }
7431
setup_conf(struct mddev * mddev)7432 static struct r5conf *setup_conf(struct mddev *mddev)
7433 {
7434 struct r5conf *conf;
7435 int raid_disk, memory, max_disks;
7436 struct md_rdev *rdev;
7437 struct disk_info *disk;
7438 char pers_name[6];
7439 int i;
7440 int group_cnt;
7441 struct r5worker_group *new_group;
7442 int ret = -ENOMEM;
7443
7444 if (mddev->new_level != 5
7445 && mddev->new_level != 4
7446 && mddev->new_level != 6) {
7447 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7448 mdname(mddev), mddev->new_level);
7449 return ERR_PTR(-EIO);
7450 }
7451 if ((mddev->new_level == 5
7452 && !algorithm_valid_raid5(mddev->new_layout)) ||
7453 (mddev->new_level == 6
7454 && !algorithm_valid_raid6(mddev->new_layout))) {
7455 pr_warn("md/raid:%s: layout %d not supported\n",
7456 mdname(mddev), mddev->new_layout);
7457 return ERR_PTR(-EIO);
7458 }
7459 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7460 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7461 mdname(mddev), mddev->raid_disks);
7462 return ERR_PTR(-EINVAL);
7463 }
7464
7465 if (!mddev->new_chunk_sectors ||
7466 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7467 !is_power_of_2(mddev->new_chunk_sectors)) {
7468 pr_warn("md/raid:%s: invalid chunk size %d\n",
7469 mdname(mddev), mddev->new_chunk_sectors << 9);
7470 return ERR_PTR(-EINVAL);
7471 }
7472
7473 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7474 if (conf == NULL)
7475 goto abort;
7476
7477 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7478 conf->stripe_size = DEFAULT_STRIPE_SIZE;
7479 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7480 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7481 #endif
7482 INIT_LIST_HEAD(&conf->free_list);
7483 INIT_LIST_HEAD(&conf->pending_list);
7484 conf->pending_data = kcalloc(PENDING_IO_MAX,
7485 sizeof(struct r5pending_data),
7486 GFP_KERNEL);
7487 if (!conf->pending_data)
7488 goto abort;
7489 for (i = 0; i < PENDING_IO_MAX; i++)
7490 list_add(&conf->pending_data[i].sibling, &conf->free_list);
7491 /* Don't enable multi-threading by default*/
7492 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7493 conf->group_cnt = group_cnt;
7494 conf->worker_cnt_per_group = 0;
7495 conf->worker_groups = new_group;
7496 } else
7497 goto abort;
7498 spin_lock_init(&conf->device_lock);
7499 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7500 mutex_init(&conf->cache_size_mutex);
7501
7502 init_waitqueue_head(&conf->wait_for_quiescent);
7503 init_waitqueue_head(&conf->wait_for_stripe);
7504 init_waitqueue_head(&conf->wait_for_reshape);
7505 INIT_LIST_HEAD(&conf->handle_list);
7506 INIT_LIST_HEAD(&conf->loprio_list);
7507 INIT_LIST_HEAD(&conf->hold_list);
7508 INIT_LIST_HEAD(&conf->delayed_list);
7509 INIT_LIST_HEAD(&conf->bitmap_list);
7510 init_llist_head(&conf->released_stripes);
7511 atomic_set(&conf->active_stripes, 0);
7512 atomic_set(&conf->preread_active_stripes, 0);
7513 atomic_set(&conf->active_aligned_reads, 0);
7514 spin_lock_init(&conf->pending_bios_lock);
7515 conf->batch_bio_dispatch = true;
7516 rdev_for_each(rdev, mddev) {
7517 if (test_bit(Journal, &rdev->flags))
7518 continue;
7519 if (bdev_nonrot(rdev->bdev)) {
7520 conf->batch_bio_dispatch = false;
7521 break;
7522 }
7523 }
7524
7525 conf->bypass_threshold = BYPASS_THRESHOLD;
7526 conf->recovery_disabled = mddev->recovery_disabled - 1;
7527
7528 conf->raid_disks = mddev->raid_disks;
7529 if (mddev->reshape_position == MaxSector)
7530 conf->previous_raid_disks = mddev->raid_disks;
7531 else
7532 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7533 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7534
7535 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7536 GFP_KERNEL);
7537
7538 if (!conf->disks)
7539 goto abort;
7540
7541 for (i = 0; i < max_disks; i++) {
7542 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7543 if (!conf->disks[i].extra_page)
7544 goto abort;
7545 }
7546
7547 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7548 if (ret)
7549 goto abort;
7550 conf->mddev = mddev;
7551
7552 ret = -ENOMEM;
7553 conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
7554 if (!conf->stripe_hashtbl)
7555 goto abort;
7556
7557 /* We init hash_locks[0] separately to that it can be used
7558 * as the reference lock in the spin_lock_nest_lock() call
7559 * in lock_all_device_hash_locks_irq in order to convince
7560 * lockdep that we know what we are doing.
7561 */
7562 spin_lock_init(conf->hash_locks);
7563 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7564 spin_lock_init(conf->hash_locks + i);
7565
7566 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7567 INIT_LIST_HEAD(conf->inactive_list + i);
7568
7569 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7570 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7571
7572 atomic_set(&conf->r5c_cached_full_stripes, 0);
7573 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7574 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7575 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7576 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7577 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7578
7579 conf->level = mddev->new_level;
7580 conf->chunk_sectors = mddev->new_chunk_sectors;
7581 ret = raid5_alloc_percpu(conf);
7582 if (ret)
7583 goto abort;
7584
7585 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7586
7587 ret = -EIO;
7588 rdev_for_each(rdev, mddev) {
7589 raid_disk = rdev->raid_disk;
7590 if (raid_disk >= max_disks
7591 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7592 continue;
7593 disk = conf->disks + raid_disk;
7594
7595 if (test_bit(Replacement, &rdev->flags)) {
7596 if (disk->replacement)
7597 goto abort;
7598 disk->replacement = rdev;
7599 } else {
7600 if (disk->rdev)
7601 goto abort;
7602 disk->rdev = rdev;
7603 }
7604
7605 if (test_bit(In_sync, &rdev->flags)) {
7606 pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7607 mdname(mddev), rdev->bdev, raid_disk);
7608 } else if (rdev->saved_raid_disk != raid_disk)
7609 /* Cannot rely on bitmap to complete recovery */
7610 conf->fullsync = 1;
7611 }
7612
7613 conf->level = mddev->new_level;
7614 if (conf->level == 6) {
7615 conf->max_degraded = 2;
7616 if (raid6_call.xor_syndrome)
7617 conf->rmw_level = PARITY_ENABLE_RMW;
7618 else
7619 conf->rmw_level = PARITY_DISABLE_RMW;
7620 } else {
7621 conf->max_degraded = 1;
7622 conf->rmw_level = PARITY_ENABLE_RMW;
7623 }
7624 conf->algorithm = mddev->new_layout;
7625 conf->reshape_progress = mddev->reshape_position;
7626 if (conf->reshape_progress != MaxSector) {
7627 conf->prev_chunk_sectors = mddev->chunk_sectors;
7628 conf->prev_algo = mddev->layout;
7629 } else {
7630 conf->prev_chunk_sectors = conf->chunk_sectors;
7631 conf->prev_algo = conf->algorithm;
7632 }
7633
7634 conf->min_nr_stripes = NR_STRIPES;
7635 if (mddev->reshape_position != MaxSector) {
7636 int stripes = max_t(int,
7637 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7638 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7639 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7640 if (conf->min_nr_stripes != NR_STRIPES)
7641 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7642 mdname(mddev), conf->min_nr_stripes);
7643 }
7644 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7645 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7646 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7647 if (grow_stripes(conf, conf->min_nr_stripes)) {
7648 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7649 mdname(mddev), memory);
7650 ret = -ENOMEM;
7651 goto abort;
7652 } else
7653 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7654 /*
7655 * Losing a stripe head costs more than the time to refill it,
7656 * it reduces the queue depth and so can hurt throughput.
7657 * So set it rather large, scaled by number of devices.
7658 */
7659 conf->shrinker = shrinker_alloc(0, "md-raid5:%s", mdname(mddev));
7660 if (!conf->shrinker) {
7661 ret = -ENOMEM;
7662 pr_warn("md/raid:%s: couldn't allocate shrinker.\n",
7663 mdname(mddev));
7664 goto abort;
7665 }
7666
7667 conf->shrinker->seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7668 conf->shrinker->scan_objects = raid5_cache_scan;
7669 conf->shrinker->count_objects = raid5_cache_count;
7670 conf->shrinker->batch = 128;
7671 conf->shrinker->private_data = conf;
7672
7673 shrinker_register(conf->shrinker);
7674
7675 sprintf(pers_name, "raid%d", mddev->new_level);
7676 rcu_assign_pointer(conf->thread,
7677 md_register_thread(raid5d, mddev, pers_name));
7678 if (!conf->thread) {
7679 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7680 mdname(mddev));
7681 ret = -ENOMEM;
7682 goto abort;
7683 }
7684
7685 return conf;
7686
7687 abort:
7688 if (conf)
7689 free_conf(conf);
7690 return ERR_PTR(ret);
7691 }
7692
only_parity(int raid_disk,int algo,int raid_disks,int max_degraded)7693 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7694 {
7695 switch (algo) {
7696 case ALGORITHM_PARITY_0:
7697 if (raid_disk < max_degraded)
7698 return 1;
7699 break;
7700 case ALGORITHM_PARITY_N:
7701 if (raid_disk >= raid_disks - max_degraded)
7702 return 1;
7703 break;
7704 case ALGORITHM_PARITY_0_6:
7705 if (raid_disk == 0 ||
7706 raid_disk == raid_disks - 1)
7707 return 1;
7708 break;
7709 case ALGORITHM_LEFT_ASYMMETRIC_6:
7710 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7711 case ALGORITHM_LEFT_SYMMETRIC_6:
7712 case ALGORITHM_RIGHT_SYMMETRIC_6:
7713 if (raid_disk == raid_disks - 1)
7714 return 1;
7715 }
7716 return 0;
7717 }
7718
raid5_set_limits(struct mddev * mddev)7719 static int raid5_set_limits(struct mddev *mddev)
7720 {
7721 struct r5conf *conf = mddev->private;
7722 struct queue_limits lim;
7723 int data_disks, stripe;
7724 struct md_rdev *rdev;
7725
7726 /*
7727 * The read-ahead size must cover two whole stripes, which is
7728 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices.
7729 */
7730 data_disks = conf->previous_raid_disks - conf->max_degraded;
7731
7732 /*
7733 * We can only discard a whole stripe. It doesn't make sense to
7734 * discard data disk but write parity disk
7735 */
7736 stripe = roundup_pow_of_two(data_disks * (mddev->chunk_sectors << 9));
7737
7738 md_init_stacking_limits(&lim);
7739 lim.io_min = mddev->chunk_sectors << 9;
7740 lim.io_opt = lim.io_min * (conf->raid_disks - conf->max_degraded);
7741 lim.features |= BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE;
7742 lim.discard_granularity = stripe;
7743 lim.max_write_zeroes_sectors = 0;
7744 mddev_stack_rdev_limits(mddev, &lim, 0);
7745 rdev_for_each(rdev, mddev)
7746 queue_limits_stack_bdev(&lim, rdev->bdev, rdev->new_data_offset,
7747 mddev->gendisk->disk_name);
7748
7749 /*
7750 * Zeroing is required for discard, otherwise data could be lost.
7751 *
7752 * Consider a scenario: discard a stripe (the stripe could be
7753 * inconsistent if discard_zeroes_data is 0); write one disk of the
7754 * stripe (the stripe could be inconsistent again depending on which
7755 * disks are used to calculate parity); the disk is broken; The stripe
7756 * data of this disk is lost.
7757 *
7758 * We only allow DISCARD if the sysadmin has confirmed that only safe
7759 * devices are in use by setting a module parameter. A better idea
7760 * might be to turn DISCARD into WRITE_ZEROES requests, as that is
7761 * required to be safe.
7762 */
7763 if (!devices_handle_discard_safely ||
7764 lim.max_discard_sectors < (stripe >> 9) ||
7765 lim.discard_granularity < stripe)
7766 lim.max_hw_discard_sectors = 0;
7767
7768 /*
7769 * Requests require having a bitmap for each stripe.
7770 * Limit the max sectors based on this.
7771 */
7772 lim.max_hw_sectors = RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf);
7773
7774 /* No restrictions on the number of segments in the request */
7775 lim.max_segments = USHRT_MAX;
7776
7777 return queue_limits_set(mddev->gendisk->queue, &lim);
7778 }
7779
raid5_run(struct mddev * mddev)7780 static int raid5_run(struct mddev *mddev)
7781 {
7782 struct r5conf *conf;
7783 int dirty_parity_disks = 0;
7784 struct md_rdev *rdev;
7785 struct md_rdev *journal_dev = NULL;
7786 sector_t reshape_offset = 0;
7787 int i;
7788 long long min_offset_diff = 0;
7789 int first = 1;
7790 int ret = -EIO;
7791
7792 if (mddev->recovery_cp != MaxSector)
7793 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7794 mdname(mddev));
7795
7796 rdev_for_each(rdev, mddev) {
7797 long long diff;
7798
7799 if (test_bit(Journal, &rdev->flags)) {
7800 journal_dev = rdev;
7801 continue;
7802 }
7803 if (rdev->raid_disk < 0)
7804 continue;
7805 diff = (rdev->new_data_offset - rdev->data_offset);
7806 if (first) {
7807 min_offset_diff = diff;
7808 first = 0;
7809 } else if (mddev->reshape_backwards &&
7810 diff < min_offset_diff)
7811 min_offset_diff = diff;
7812 else if (!mddev->reshape_backwards &&
7813 diff > min_offset_diff)
7814 min_offset_diff = diff;
7815 }
7816
7817 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7818 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7819 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7820 mdname(mddev));
7821 return -EINVAL;
7822 }
7823
7824 if (mddev->reshape_position != MaxSector) {
7825 /* Check that we can continue the reshape.
7826 * Difficulties arise if the stripe we would write to
7827 * next is at or after the stripe we would read from next.
7828 * For a reshape that changes the number of devices, this
7829 * is only possible for a very short time, and mdadm makes
7830 * sure that time appears to have past before assembling
7831 * the array. So we fail if that time hasn't passed.
7832 * For a reshape that keeps the number of devices the same
7833 * mdadm must be monitoring the reshape can keeping the
7834 * critical areas read-only and backed up. It will start
7835 * the array in read-only mode, so we check for that.
7836 */
7837 sector_t here_new, here_old;
7838 int old_disks;
7839 int max_degraded = (mddev->level == 6 ? 2 : 1);
7840 int chunk_sectors;
7841 int new_data_disks;
7842
7843 if (journal_dev) {
7844 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7845 mdname(mddev));
7846 return -EINVAL;
7847 }
7848
7849 if (mddev->new_level != mddev->level) {
7850 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7851 mdname(mddev));
7852 return -EINVAL;
7853 }
7854 old_disks = mddev->raid_disks - mddev->delta_disks;
7855 /* reshape_position must be on a new-stripe boundary, and one
7856 * further up in new geometry must map after here in old
7857 * geometry.
7858 * If the chunk sizes are different, then as we perform reshape
7859 * in units of the largest of the two, reshape_position needs
7860 * be a multiple of the largest chunk size times new data disks.
7861 */
7862 here_new = mddev->reshape_position;
7863 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7864 new_data_disks = mddev->raid_disks - max_degraded;
7865 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7866 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7867 mdname(mddev));
7868 return -EINVAL;
7869 }
7870 reshape_offset = here_new * chunk_sectors;
7871 /* here_new is the stripe we will write to */
7872 here_old = mddev->reshape_position;
7873 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7874 /* here_old is the first stripe that we might need to read
7875 * from */
7876 if (mddev->delta_disks == 0) {
7877 /* We cannot be sure it is safe to start an in-place
7878 * reshape. It is only safe if user-space is monitoring
7879 * and taking constant backups.
7880 * mdadm always starts a situation like this in
7881 * readonly mode so it can take control before
7882 * allowing any writes. So just check for that.
7883 */
7884 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7885 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7886 /* not really in-place - so OK */;
7887 else if (mddev->ro == 0) {
7888 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7889 mdname(mddev));
7890 return -EINVAL;
7891 }
7892 } else if (mddev->reshape_backwards
7893 ? (here_new * chunk_sectors + min_offset_diff <=
7894 here_old * chunk_sectors)
7895 : (here_new * chunk_sectors >=
7896 here_old * chunk_sectors + (-min_offset_diff))) {
7897 /* Reading from the same stripe as writing to - bad */
7898 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7899 mdname(mddev));
7900 return -EINVAL;
7901 }
7902 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7903 /* OK, we should be able to continue; */
7904 } else {
7905 BUG_ON(mddev->level != mddev->new_level);
7906 BUG_ON(mddev->layout != mddev->new_layout);
7907 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7908 BUG_ON(mddev->delta_disks != 0);
7909 }
7910
7911 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7912 test_bit(MD_HAS_PPL, &mddev->flags)) {
7913 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7914 mdname(mddev));
7915 clear_bit(MD_HAS_PPL, &mddev->flags);
7916 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7917 }
7918
7919 if (mddev->private == NULL)
7920 conf = setup_conf(mddev);
7921 else
7922 conf = mddev->private;
7923
7924 if (IS_ERR(conf))
7925 return PTR_ERR(conf);
7926
7927 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7928 if (!journal_dev) {
7929 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7930 mdname(mddev));
7931 mddev->ro = 1;
7932 set_disk_ro(mddev->gendisk, 1);
7933 } else if (mddev->recovery_cp == MaxSector)
7934 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7935 }
7936
7937 conf->min_offset_diff = min_offset_diff;
7938 rcu_assign_pointer(mddev->thread, conf->thread);
7939 rcu_assign_pointer(conf->thread, NULL);
7940 mddev->private = conf;
7941
7942 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7943 i++) {
7944 rdev = conf->disks[i].rdev;
7945 if (!rdev)
7946 continue;
7947 if (conf->disks[i].replacement &&
7948 conf->reshape_progress != MaxSector) {
7949 /* replacements and reshape simply do not mix. */
7950 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7951 goto abort;
7952 }
7953 if (test_bit(In_sync, &rdev->flags))
7954 continue;
7955 /* This disc is not fully in-sync. However if it
7956 * just stored parity (beyond the recovery_offset),
7957 * when we don't need to be concerned about the
7958 * array being dirty.
7959 * When reshape goes 'backwards', we never have
7960 * partially completed devices, so we only need
7961 * to worry about reshape going forwards.
7962 */
7963 /* Hack because v0.91 doesn't store recovery_offset properly. */
7964 if (mddev->major_version == 0 &&
7965 mddev->minor_version > 90)
7966 rdev->recovery_offset = reshape_offset;
7967
7968 if (rdev->recovery_offset < reshape_offset) {
7969 /* We need to check old and new layout */
7970 if (!only_parity(rdev->raid_disk,
7971 conf->algorithm,
7972 conf->raid_disks,
7973 conf->max_degraded))
7974 continue;
7975 }
7976 if (!only_parity(rdev->raid_disk,
7977 conf->prev_algo,
7978 conf->previous_raid_disks,
7979 conf->max_degraded))
7980 continue;
7981 dirty_parity_disks++;
7982 }
7983
7984 /*
7985 * 0 for a fully functional array, 1 or 2 for a degraded array.
7986 */
7987 mddev->degraded = raid5_calc_degraded(conf);
7988
7989 if (has_failed(conf)) {
7990 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7991 mdname(mddev), mddev->degraded, conf->raid_disks);
7992 goto abort;
7993 }
7994
7995 /* device size must be a multiple of chunk size */
7996 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7997 mddev->resync_max_sectors = mddev->dev_sectors;
7998
7999 if (mddev->degraded > dirty_parity_disks &&
8000 mddev->recovery_cp != MaxSector) {
8001 if (test_bit(MD_HAS_PPL, &mddev->flags))
8002 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
8003 mdname(mddev));
8004 else if (mddev->ok_start_degraded)
8005 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
8006 mdname(mddev));
8007 else {
8008 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
8009 mdname(mddev));
8010 goto abort;
8011 }
8012 }
8013
8014 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
8015 mdname(mddev), conf->level,
8016 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
8017 mddev->new_layout);
8018
8019 print_raid5_conf(conf);
8020
8021 if (conf->reshape_progress != MaxSector) {
8022 conf->reshape_safe = conf->reshape_progress;
8023 atomic_set(&conf->reshape_stripes, 0);
8024 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8025 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8026 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8027 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8028 }
8029
8030 /* Ok, everything is just fine now */
8031 if (mddev->to_remove == &raid5_attrs_group)
8032 mddev->to_remove = NULL;
8033 else if (mddev->kobj.sd &&
8034 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
8035 pr_warn("raid5: failed to create sysfs attributes for %s\n",
8036 mdname(mddev));
8037 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
8038
8039 if (!mddev_is_dm(mddev)) {
8040 ret = raid5_set_limits(mddev);
8041 if (ret)
8042 goto abort;
8043 }
8044
8045 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
8046 goto abort;
8047
8048 return 0;
8049 abort:
8050 md_unregister_thread(mddev, &mddev->thread);
8051 print_raid5_conf(conf);
8052 free_conf(conf);
8053 mddev->private = NULL;
8054 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
8055 return ret;
8056 }
8057
raid5_free(struct mddev * mddev,void * priv)8058 static void raid5_free(struct mddev *mddev, void *priv)
8059 {
8060 struct r5conf *conf = priv;
8061
8062 free_conf(conf);
8063 mddev->to_remove = &raid5_attrs_group;
8064 }
8065
raid5_status(struct seq_file * seq,struct mddev * mddev)8066 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
8067 {
8068 struct r5conf *conf = mddev->private;
8069 int i;
8070
8071 lockdep_assert_held(&mddev->lock);
8072
8073 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
8074 conf->chunk_sectors / 2, mddev->layout);
8075 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
8076 for (i = 0; i < conf->raid_disks; i++) {
8077 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
8078
8079 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
8080 }
8081 seq_printf (seq, "]");
8082 }
8083
print_raid5_conf(struct r5conf * conf)8084 static void print_raid5_conf(struct r5conf *conf)
8085 {
8086 struct md_rdev *rdev;
8087 int i;
8088
8089 pr_debug("RAID conf printout:\n");
8090 if (!conf) {
8091 pr_debug("(conf==NULL)\n");
8092 return;
8093 }
8094 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
8095 conf->raid_disks,
8096 conf->raid_disks - conf->mddev->degraded);
8097
8098 for (i = 0; i < conf->raid_disks; i++) {
8099 rdev = conf->disks[i].rdev;
8100 if (rdev)
8101 pr_debug(" disk %d, o:%d, dev:%pg\n",
8102 i, !test_bit(Faulty, &rdev->flags),
8103 rdev->bdev);
8104 }
8105 }
8106
raid5_spare_active(struct mddev * mddev)8107 static int raid5_spare_active(struct mddev *mddev)
8108 {
8109 int i;
8110 struct r5conf *conf = mddev->private;
8111 struct md_rdev *rdev, *replacement;
8112 int count = 0;
8113 unsigned long flags;
8114
8115 for (i = 0; i < conf->raid_disks; i++) {
8116 rdev = conf->disks[i].rdev;
8117 replacement = conf->disks[i].replacement;
8118 if (replacement
8119 && replacement->recovery_offset == MaxSector
8120 && !test_bit(Faulty, &replacement->flags)
8121 && !test_and_set_bit(In_sync, &replacement->flags)) {
8122 /* Replacement has just become active. */
8123 if (!rdev
8124 || !test_and_clear_bit(In_sync, &rdev->flags))
8125 count++;
8126 if (rdev) {
8127 /* Replaced device not technically faulty,
8128 * but we need to be sure it gets removed
8129 * and never re-added.
8130 */
8131 set_bit(Faulty, &rdev->flags);
8132 sysfs_notify_dirent_safe(
8133 rdev->sysfs_state);
8134 }
8135 sysfs_notify_dirent_safe(replacement->sysfs_state);
8136 } else if (rdev
8137 && rdev->recovery_offset == MaxSector
8138 && !test_bit(Faulty, &rdev->flags)
8139 && !test_and_set_bit(In_sync, &rdev->flags)) {
8140 count++;
8141 sysfs_notify_dirent_safe(rdev->sysfs_state);
8142 }
8143 }
8144 spin_lock_irqsave(&conf->device_lock, flags);
8145 mddev->degraded = raid5_calc_degraded(conf);
8146 spin_unlock_irqrestore(&conf->device_lock, flags);
8147 print_raid5_conf(conf);
8148 return count;
8149 }
8150
raid5_remove_disk(struct mddev * mddev,struct md_rdev * rdev)8151 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
8152 {
8153 struct r5conf *conf = mddev->private;
8154 int err = 0;
8155 int number = rdev->raid_disk;
8156 struct md_rdev **rdevp;
8157 struct disk_info *p;
8158 struct md_rdev *tmp;
8159
8160 print_raid5_conf(conf);
8161 if (test_bit(Journal, &rdev->flags) && conf->log) {
8162 /*
8163 * we can't wait pending write here, as this is called in
8164 * raid5d, wait will deadlock.
8165 * neilb: there is no locking about new writes here,
8166 * so this cannot be safe.
8167 */
8168 if (atomic_read(&conf->active_stripes) ||
8169 atomic_read(&conf->r5c_cached_full_stripes) ||
8170 atomic_read(&conf->r5c_cached_partial_stripes)) {
8171 return -EBUSY;
8172 }
8173 log_exit(conf);
8174 return 0;
8175 }
8176 if (unlikely(number >= conf->pool_size))
8177 return 0;
8178 p = conf->disks + number;
8179 if (rdev == p->rdev)
8180 rdevp = &p->rdev;
8181 else if (rdev == p->replacement)
8182 rdevp = &p->replacement;
8183 else
8184 return 0;
8185
8186 if (number >= conf->raid_disks &&
8187 conf->reshape_progress == MaxSector)
8188 clear_bit(In_sync, &rdev->flags);
8189
8190 if (test_bit(In_sync, &rdev->flags) ||
8191 atomic_read(&rdev->nr_pending)) {
8192 err = -EBUSY;
8193 goto abort;
8194 }
8195 /* Only remove non-faulty devices if recovery
8196 * isn't possible.
8197 */
8198 if (!test_bit(Faulty, &rdev->flags) &&
8199 mddev->recovery_disabled != conf->recovery_disabled &&
8200 !has_failed(conf) &&
8201 (!p->replacement || p->replacement == rdev) &&
8202 number < conf->raid_disks) {
8203 err = -EBUSY;
8204 goto abort;
8205 }
8206 WRITE_ONCE(*rdevp, NULL);
8207 if (!err) {
8208 err = log_modify(conf, rdev, false);
8209 if (err)
8210 goto abort;
8211 }
8212
8213 tmp = p->replacement;
8214 if (tmp) {
8215 /* We must have just cleared 'rdev' */
8216 WRITE_ONCE(p->rdev, tmp);
8217 clear_bit(Replacement, &tmp->flags);
8218 WRITE_ONCE(p->replacement, NULL);
8219
8220 if (!err)
8221 err = log_modify(conf, tmp, true);
8222 }
8223
8224 clear_bit(WantReplacement, &rdev->flags);
8225 abort:
8226
8227 print_raid5_conf(conf);
8228 return err;
8229 }
8230
raid5_add_disk(struct mddev * mddev,struct md_rdev * rdev)8231 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
8232 {
8233 struct r5conf *conf = mddev->private;
8234 int ret, err = -EEXIST;
8235 int disk;
8236 struct disk_info *p;
8237 struct md_rdev *tmp;
8238 int first = 0;
8239 int last = conf->raid_disks - 1;
8240
8241 if (test_bit(Journal, &rdev->flags)) {
8242 if (conf->log)
8243 return -EBUSY;
8244
8245 rdev->raid_disk = 0;
8246 /*
8247 * The array is in readonly mode if journal is missing, so no
8248 * write requests running. We should be safe
8249 */
8250 ret = log_init(conf, rdev, false);
8251 if (ret)
8252 return ret;
8253
8254 ret = r5l_start(conf->log);
8255 if (ret)
8256 return ret;
8257
8258 return 0;
8259 }
8260 if (mddev->recovery_disabled == conf->recovery_disabled)
8261 return -EBUSY;
8262
8263 if (rdev->saved_raid_disk < 0 && has_failed(conf))
8264 /* no point adding a device */
8265 return -EINVAL;
8266
8267 if (rdev->raid_disk >= 0)
8268 first = last = rdev->raid_disk;
8269
8270 /*
8271 * find the disk ... but prefer rdev->saved_raid_disk
8272 * if possible.
8273 */
8274 if (rdev->saved_raid_disk >= first &&
8275 rdev->saved_raid_disk <= last &&
8276 conf->disks[rdev->saved_raid_disk].rdev == NULL)
8277 first = rdev->saved_raid_disk;
8278
8279 for (disk = first; disk <= last; disk++) {
8280 p = conf->disks + disk;
8281 if (p->rdev == NULL) {
8282 clear_bit(In_sync, &rdev->flags);
8283 rdev->raid_disk = disk;
8284 if (rdev->saved_raid_disk != disk)
8285 conf->fullsync = 1;
8286 WRITE_ONCE(p->rdev, rdev);
8287
8288 err = log_modify(conf, rdev, true);
8289
8290 goto out;
8291 }
8292 }
8293 for (disk = first; disk <= last; disk++) {
8294 p = conf->disks + disk;
8295 tmp = p->rdev;
8296 if (test_bit(WantReplacement, &tmp->flags) &&
8297 mddev->reshape_position == MaxSector &&
8298 p->replacement == NULL) {
8299 clear_bit(In_sync, &rdev->flags);
8300 set_bit(Replacement, &rdev->flags);
8301 rdev->raid_disk = disk;
8302 err = 0;
8303 conf->fullsync = 1;
8304 WRITE_ONCE(p->replacement, rdev);
8305 break;
8306 }
8307 }
8308 out:
8309 print_raid5_conf(conf);
8310 return err;
8311 }
8312
raid5_resize(struct mddev * mddev,sector_t sectors)8313 static int raid5_resize(struct mddev *mddev, sector_t sectors)
8314 {
8315 /* no resync is happening, and there is enough space
8316 * on all devices, so we can resize.
8317 * We need to make sure resync covers any new space.
8318 * If the array is shrinking we should possibly wait until
8319 * any io in the removed space completes, but it hardly seems
8320 * worth it.
8321 */
8322 sector_t newsize;
8323 struct r5conf *conf = mddev->private;
8324 int ret;
8325
8326 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8327 return -EINVAL;
8328 sectors &= ~((sector_t)conf->chunk_sectors - 1);
8329 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8330 if (mddev->external_size &&
8331 mddev->array_sectors > newsize)
8332 return -EINVAL;
8333
8334 ret = mddev->bitmap_ops->resize(mddev, sectors, 0, false);
8335 if (ret)
8336 return ret;
8337
8338 md_set_array_sectors(mddev, newsize);
8339 if (sectors > mddev->dev_sectors &&
8340 mddev->recovery_cp > mddev->dev_sectors) {
8341 mddev->recovery_cp = mddev->dev_sectors;
8342 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8343 }
8344 mddev->dev_sectors = sectors;
8345 mddev->resync_max_sectors = sectors;
8346 return 0;
8347 }
8348
check_stripe_cache(struct mddev * mddev)8349 static int check_stripe_cache(struct mddev *mddev)
8350 {
8351 /* Can only proceed if there are plenty of stripe_heads.
8352 * We need a minimum of one full stripe,, and for sensible progress
8353 * it is best to have about 4 times that.
8354 * If we require 4 times, then the default 256 4K stripe_heads will
8355 * allow for chunk sizes up to 256K, which is probably OK.
8356 * If the chunk size is greater, user-space should request more
8357 * stripe_heads first.
8358 */
8359 struct r5conf *conf = mddev->private;
8360 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8361 > conf->min_nr_stripes ||
8362 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8363 > conf->min_nr_stripes) {
8364 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
8365 mdname(mddev),
8366 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8367 / RAID5_STRIPE_SIZE(conf))*4);
8368 return 0;
8369 }
8370 return 1;
8371 }
8372
check_reshape(struct mddev * mddev)8373 static int check_reshape(struct mddev *mddev)
8374 {
8375 struct r5conf *conf = mddev->private;
8376
8377 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8378 return -EINVAL;
8379 if (mddev->delta_disks == 0 &&
8380 mddev->new_layout == mddev->layout &&
8381 mddev->new_chunk_sectors == mddev->chunk_sectors)
8382 return 0; /* nothing to do */
8383 if (has_failed(conf))
8384 return -EINVAL;
8385 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8386 /* We might be able to shrink, but the devices must
8387 * be made bigger first.
8388 * For raid6, 4 is the minimum size.
8389 * Otherwise 2 is the minimum
8390 */
8391 int min = 2;
8392 if (mddev->level == 6)
8393 min = 4;
8394 if (mddev->raid_disks + mddev->delta_disks < min)
8395 return -EINVAL;
8396 }
8397
8398 if (!check_stripe_cache(mddev))
8399 return -ENOSPC;
8400
8401 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8402 mddev->delta_disks > 0)
8403 if (resize_chunks(conf,
8404 conf->previous_raid_disks
8405 + max(0, mddev->delta_disks),
8406 max(mddev->new_chunk_sectors,
8407 mddev->chunk_sectors)
8408 ) < 0)
8409 return -ENOMEM;
8410
8411 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8412 return 0; /* never bother to shrink */
8413 return resize_stripes(conf, (conf->previous_raid_disks
8414 + mddev->delta_disks));
8415 }
8416
raid5_start_reshape(struct mddev * mddev)8417 static int raid5_start_reshape(struct mddev *mddev)
8418 {
8419 struct r5conf *conf = mddev->private;
8420 struct md_rdev *rdev;
8421 int spares = 0;
8422 int i;
8423 unsigned long flags;
8424
8425 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8426 return -EBUSY;
8427
8428 if (!check_stripe_cache(mddev))
8429 return -ENOSPC;
8430
8431 if (has_failed(conf))
8432 return -EINVAL;
8433
8434 /* raid5 can't handle concurrent reshape and recovery */
8435 if (mddev->recovery_cp < MaxSector)
8436 return -EBUSY;
8437 for (i = 0; i < conf->raid_disks; i++)
8438 if (conf->disks[i].replacement)
8439 return -EBUSY;
8440
8441 rdev_for_each(rdev, mddev) {
8442 if (!test_bit(In_sync, &rdev->flags)
8443 && !test_bit(Faulty, &rdev->flags))
8444 spares++;
8445 }
8446
8447 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8448 /* Not enough devices even to make a degraded array
8449 * of that size
8450 */
8451 return -EINVAL;
8452
8453 /* Refuse to reduce size of the array. Any reductions in
8454 * array size must be through explicit setting of array_size
8455 * attribute.
8456 */
8457 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8458 < mddev->array_sectors) {
8459 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8460 mdname(mddev));
8461 return -EINVAL;
8462 }
8463
8464 atomic_set(&conf->reshape_stripes, 0);
8465 spin_lock_irq(&conf->device_lock);
8466 write_seqcount_begin(&conf->gen_lock);
8467 conf->previous_raid_disks = conf->raid_disks;
8468 conf->raid_disks += mddev->delta_disks;
8469 conf->prev_chunk_sectors = conf->chunk_sectors;
8470 conf->chunk_sectors = mddev->new_chunk_sectors;
8471 conf->prev_algo = conf->algorithm;
8472 conf->algorithm = mddev->new_layout;
8473 conf->generation++;
8474 /* Code that selects data_offset needs to see the generation update
8475 * if reshape_progress has been set - so a memory barrier needed.
8476 */
8477 smp_mb();
8478 if (mddev->reshape_backwards)
8479 conf->reshape_progress = raid5_size(mddev, 0, 0);
8480 else
8481 conf->reshape_progress = 0;
8482 conf->reshape_safe = conf->reshape_progress;
8483 write_seqcount_end(&conf->gen_lock);
8484 spin_unlock_irq(&conf->device_lock);
8485
8486 /* Now make sure any requests that proceeded on the assumption
8487 * the reshape wasn't running - like Discard or Read - have
8488 * completed.
8489 */
8490 raid5_quiesce(mddev, true);
8491 raid5_quiesce(mddev, false);
8492
8493 /* Add some new drives, as many as will fit.
8494 * We know there are enough to make the newly sized array work.
8495 * Don't add devices if we are reducing the number of
8496 * devices in the array. This is because it is not possible
8497 * to correctly record the "partially reconstructed" state of
8498 * such devices during the reshape and confusion could result.
8499 */
8500 if (mddev->delta_disks >= 0) {
8501 rdev_for_each(rdev, mddev)
8502 if (rdev->raid_disk < 0 &&
8503 !test_bit(Faulty, &rdev->flags)) {
8504 if (raid5_add_disk(mddev, rdev) == 0) {
8505 if (rdev->raid_disk
8506 >= conf->previous_raid_disks)
8507 set_bit(In_sync, &rdev->flags);
8508 else
8509 rdev->recovery_offset = 0;
8510
8511 /* Failure here is OK */
8512 sysfs_link_rdev(mddev, rdev);
8513 }
8514 } else if (rdev->raid_disk >= conf->previous_raid_disks
8515 && !test_bit(Faulty, &rdev->flags)) {
8516 /* This is a spare that was manually added */
8517 set_bit(In_sync, &rdev->flags);
8518 }
8519
8520 /* When a reshape changes the number of devices,
8521 * ->degraded is measured against the larger of the
8522 * pre and post number of devices.
8523 */
8524 spin_lock_irqsave(&conf->device_lock, flags);
8525 mddev->degraded = raid5_calc_degraded(conf);
8526 spin_unlock_irqrestore(&conf->device_lock, flags);
8527 }
8528 mddev->raid_disks = conf->raid_disks;
8529 mddev->reshape_position = conf->reshape_progress;
8530 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8531
8532 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8533 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8534 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8535 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8536 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8537 conf->reshape_checkpoint = jiffies;
8538 md_new_event();
8539 return 0;
8540 }
8541
8542 /* This is called from the reshape thread and should make any
8543 * changes needed in 'conf'
8544 */
end_reshape(struct r5conf * conf)8545 static void end_reshape(struct r5conf *conf)
8546 {
8547
8548 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8549 struct md_rdev *rdev;
8550
8551 spin_lock_irq(&conf->device_lock);
8552 conf->previous_raid_disks = conf->raid_disks;
8553 md_finish_reshape(conf->mddev);
8554 smp_wmb();
8555 conf->reshape_progress = MaxSector;
8556 conf->mddev->reshape_position = MaxSector;
8557 rdev_for_each(rdev, conf->mddev)
8558 if (rdev->raid_disk >= 0 &&
8559 !test_bit(Journal, &rdev->flags) &&
8560 !test_bit(In_sync, &rdev->flags))
8561 rdev->recovery_offset = MaxSector;
8562 spin_unlock_irq(&conf->device_lock);
8563 wake_up(&conf->wait_for_reshape);
8564
8565 mddev_update_io_opt(conf->mddev,
8566 conf->raid_disks - conf->max_degraded);
8567 }
8568 }
8569
8570 /* This is called from the raid5d thread with mddev_lock held.
8571 * It makes config changes to the device.
8572 */
raid5_finish_reshape(struct mddev * mddev)8573 static void raid5_finish_reshape(struct mddev *mddev)
8574 {
8575 struct r5conf *conf = mddev->private;
8576 struct md_rdev *rdev;
8577
8578 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8579
8580 if (mddev->delta_disks <= 0) {
8581 int d;
8582 spin_lock_irq(&conf->device_lock);
8583 mddev->degraded = raid5_calc_degraded(conf);
8584 spin_unlock_irq(&conf->device_lock);
8585 for (d = conf->raid_disks ;
8586 d < conf->raid_disks - mddev->delta_disks;
8587 d++) {
8588 rdev = conf->disks[d].rdev;
8589 if (rdev)
8590 clear_bit(In_sync, &rdev->flags);
8591 rdev = conf->disks[d].replacement;
8592 if (rdev)
8593 clear_bit(In_sync, &rdev->flags);
8594 }
8595 }
8596 mddev->layout = conf->algorithm;
8597 mddev->chunk_sectors = conf->chunk_sectors;
8598 mddev->reshape_position = MaxSector;
8599 mddev->delta_disks = 0;
8600 mddev->reshape_backwards = 0;
8601 }
8602 }
8603
raid5_quiesce(struct mddev * mddev,int quiesce)8604 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8605 {
8606 struct r5conf *conf = mddev->private;
8607
8608 if (quiesce) {
8609 /* stop all writes */
8610 lock_all_device_hash_locks_irq(conf);
8611 /* '2' tells resync/reshape to pause so that all
8612 * active stripes can drain
8613 */
8614 r5c_flush_cache(conf, INT_MAX);
8615 /* need a memory barrier to make sure read_one_chunk() sees
8616 * quiesce started and reverts to slow (locked) path.
8617 */
8618 smp_store_release(&conf->quiesce, 2);
8619 wait_event_cmd(conf->wait_for_quiescent,
8620 atomic_read(&conf->active_stripes) == 0 &&
8621 atomic_read(&conf->active_aligned_reads) == 0,
8622 unlock_all_device_hash_locks_irq(conf),
8623 lock_all_device_hash_locks_irq(conf));
8624 conf->quiesce = 1;
8625 unlock_all_device_hash_locks_irq(conf);
8626 /* allow reshape to continue */
8627 wake_up(&conf->wait_for_reshape);
8628 } else {
8629 /* re-enable writes */
8630 lock_all_device_hash_locks_irq(conf);
8631 conf->quiesce = 0;
8632 wake_up(&conf->wait_for_quiescent);
8633 wake_up(&conf->wait_for_reshape);
8634 unlock_all_device_hash_locks_irq(conf);
8635 }
8636 log_quiesce(conf, quiesce);
8637 }
8638
raid45_takeover_raid0(struct mddev * mddev,int level)8639 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8640 {
8641 struct r0conf *raid0_conf = mddev->private;
8642 sector_t sectors;
8643
8644 /* for raid0 takeover only one zone is supported */
8645 if (raid0_conf->nr_strip_zones > 1) {
8646 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8647 mdname(mddev));
8648 return ERR_PTR(-EINVAL);
8649 }
8650
8651 sectors = raid0_conf->strip_zone[0].zone_end;
8652 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8653 mddev->dev_sectors = sectors;
8654 mddev->new_level = level;
8655 mddev->new_layout = ALGORITHM_PARITY_N;
8656 mddev->new_chunk_sectors = mddev->chunk_sectors;
8657 mddev->raid_disks += 1;
8658 mddev->delta_disks = 1;
8659 /* make sure it will be not marked as dirty */
8660 mddev->recovery_cp = MaxSector;
8661
8662 return setup_conf(mddev);
8663 }
8664
raid5_takeover_raid1(struct mddev * mddev)8665 static void *raid5_takeover_raid1(struct mddev *mddev)
8666 {
8667 int chunksect;
8668 void *ret;
8669
8670 if (mddev->raid_disks != 2 ||
8671 mddev->degraded > 1)
8672 return ERR_PTR(-EINVAL);
8673
8674 /* Should check if there are write-behind devices? */
8675
8676 chunksect = 64*2; /* 64K by default */
8677
8678 /* The array must be an exact multiple of chunksize */
8679 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8680 chunksect >>= 1;
8681
8682 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8683 /* array size does not allow a suitable chunk size */
8684 return ERR_PTR(-EINVAL);
8685
8686 mddev->new_level = 5;
8687 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8688 mddev->new_chunk_sectors = chunksect;
8689
8690 ret = setup_conf(mddev);
8691 if (!IS_ERR(ret))
8692 mddev_clear_unsupported_flags(mddev,
8693 UNSUPPORTED_MDDEV_FLAGS);
8694 return ret;
8695 }
8696
raid5_takeover_raid6(struct mddev * mddev)8697 static void *raid5_takeover_raid6(struct mddev *mddev)
8698 {
8699 int new_layout;
8700
8701 switch (mddev->layout) {
8702 case ALGORITHM_LEFT_ASYMMETRIC_6:
8703 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8704 break;
8705 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8706 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8707 break;
8708 case ALGORITHM_LEFT_SYMMETRIC_6:
8709 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8710 break;
8711 case ALGORITHM_RIGHT_SYMMETRIC_6:
8712 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8713 break;
8714 case ALGORITHM_PARITY_0_6:
8715 new_layout = ALGORITHM_PARITY_0;
8716 break;
8717 case ALGORITHM_PARITY_N:
8718 new_layout = ALGORITHM_PARITY_N;
8719 break;
8720 default:
8721 return ERR_PTR(-EINVAL);
8722 }
8723 mddev->new_level = 5;
8724 mddev->new_layout = new_layout;
8725 mddev->delta_disks = -1;
8726 mddev->raid_disks -= 1;
8727 return setup_conf(mddev);
8728 }
8729
raid5_check_reshape(struct mddev * mddev)8730 static int raid5_check_reshape(struct mddev *mddev)
8731 {
8732 /* For a 2-drive array, the layout and chunk size can be changed
8733 * immediately as not restriping is needed.
8734 * For larger arrays we record the new value - after validation
8735 * to be used by a reshape pass.
8736 */
8737 struct r5conf *conf = mddev->private;
8738 int new_chunk = mddev->new_chunk_sectors;
8739
8740 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8741 return -EINVAL;
8742 if (new_chunk > 0) {
8743 if (!is_power_of_2(new_chunk))
8744 return -EINVAL;
8745 if (new_chunk < (PAGE_SIZE>>9))
8746 return -EINVAL;
8747 if (mddev->array_sectors & (new_chunk-1))
8748 /* not factor of array size */
8749 return -EINVAL;
8750 }
8751
8752 /* They look valid */
8753
8754 if (mddev->raid_disks == 2) {
8755 /* can make the change immediately */
8756 if (mddev->new_layout >= 0) {
8757 conf->algorithm = mddev->new_layout;
8758 mddev->layout = mddev->new_layout;
8759 }
8760 if (new_chunk > 0) {
8761 conf->chunk_sectors = new_chunk ;
8762 mddev->chunk_sectors = new_chunk;
8763 }
8764 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8765 md_wakeup_thread(mddev->thread);
8766 }
8767 return check_reshape(mddev);
8768 }
8769
raid6_check_reshape(struct mddev * mddev)8770 static int raid6_check_reshape(struct mddev *mddev)
8771 {
8772 int new_chunk = mddev->new_chunk_sectors;
8773
8774 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8775 return -EINVAL;
8776 if (new_chunk > 0) {
8777 if (!is_power_of_2(new_chunk))
8778 return -EINVAL;
8779 if (new_chunk < (PAGE_SIZE >> 9))
8780 return -EINVAL;
8781 if (mddev->array_sectors & (new_chunk-1))
8782 /* not factor of array size */
8783 return -EINVAL;
8784 }
8785
8786 /* They look valid */
8787 return check_reshape(mddev);
8788 }
8789
raid5_takeover(struct mddev * mddev)8790 static void *raid5_takeover(struct mddev *mddev)
8791 {
8792 /* raid5 can take over:
8793 * raid0 - if there is only one strip zone - make it a raid4 layout
8794 * raid1 - if there are two drives. We need to know the chunk size
8795 * raid4 - trivial - just use a raid4 layout.
8796 * raid6 - Providing it is a *_6 layout
8797 */
8798 if (mddev->level == 0)
8799 return raid45_takeover_raid0(mddev, 5);
8800 if (mddev->level == 1)
8801 return raid5_takeover_raid1(mddev);
8802 if (mddev->level == 4) {
8803 mddev->new_layout = ALGORITHM_PARITY_N;
8804 mddev->new_level = 5;
8805 return setup_conf(mddev);
8806 }
8807 if (mddev->level == 6)
8808 return raid5_takeover_raid6(mddev);
8809
8810 return ERR_PTR(-EINVAL);
8811 }
8812
raid4_takeover(struct mddev * mddev)8813 static void *raid4_takeover(struct mddev *mddev)
8814 {
8815 /* raid4 can take over:
8816 * raid0 - if there is only one strip zone
8817 * raid5 - if layout is right
8818 */
8819 if (mddev->level == 0)
8820 return raid45_takeover_raid0(mddev, 4);
8821 if (mddev->level == 5 &&
8822 mddev->layout == ALGORITHM_PARITY_N) {
8823 mddev->new_layout = 0;
8824 mddev->new_level = 4;
8825 return setup_conf(mddev);
8826 }
8827 return ERR_PTR(-EINVAL);
8828 }
8829
8830 static struct md_personality raid5_personality;
8831
raid6_takeover(struct mddev * mddev)8832 static void *raid6_takeover(struct mddev *mddev)
8833 {
8834 /* Currently can only take over a raid5. We map the
8835 * personality to an equivalent raid6 personality
8836 * with the Q block at the end.
8837 */
8838 int new_layout;
8839
8840 if (mddev->pers != &raid5_personality)
8841 return ERR_PTR(-EINVAL);
8842 if (mddev->degraded > 1)
8843 return ERR_PTR(-EINVAL);
8844 if (mddev->raid_disks > 253)
8845 return ERR_PTR(-EINVAL);
8846 if (mddev->raid_disks < 3)
8847 return ERR_PTR(-EINVAL);
8848
8849 switch (mddev->layout) {
8850 case ALGORITHM_LEFT_ASYMMETRIC:
8851 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8852 break;
8853 case ALGORITHM_RIGHT_ASYMMETRIC:
8854 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8855 break;
8856 case ALGORITHM_LEFT_SYMMETRIC:
8857 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8858 break;
8859 case ALGORITHM_RIGHT_SYMMETRIC:
8860 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8861 break;
8862 case ALGORITHM_PARITY_0:
8863 new_layout = ALGORITHM_PARITY_0_6;
8864 break;
8865 case ALGORITHM_PARITY_N:
8866 new_layout = ALGORITHM_PARITY_N;
8867 break;
8868 default:
8869 return ERR_PTR(-EINVAL);
8870 }
8871 mddev->new_level = 6;
8872 mddev->new_layout = new_layout;
8873 mddev->delta_disks = 1;
8874 mddev->raid_disks += 1;
8875 return setup_conf(mddev);
8876 }
8877
raid5_change_consistency_policy(struct mddev * mddev,const char * buf)8878 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8879 {
8880 struct r5conf *conf;
8881 int err;
8882
8883 err = mddev_suspend_and_lock(mddev);
8884 if (err)
8885 return err;
8886 conf = mddev->private;
8887 if (!conf) {
8888 mddev_unlock_and_resume(mddev);
8889 return -ENODEV;
8890 }
8891
8892 if (strncmp(buf, "ppl", 3) == 0) {
8893 /* ppl only works with RAID 5 */
8894 if (!raid5_has_ppl(conf) && conf->level == 5) {
8895 err = log_init(conf, NULL, true);
8896 if (!err) {
8897 err = resize_stripes(conf, conf->pool_size);
8898 if (err)
8899 log_exit(conf);
8900 }
8901 } else
8902 err = -EINVAL;
8903 } else if (strncmp(buf, "resync", 6) == 0) {
8904 if (raid5_has_ppl(conf)) {
8905 log_exit(conf);
8906 err = resize_stripes(conf, conf->pool_size);
8907 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8908 r5l_log_disk_error(conf)) {
8909 bool journal_dev_exists = false;
8910 struct md_rdev *rdev;
8911
8912 rdev_for_each(rdev, mddev)
8913 if (test_bit(Journal, &rdev->flags)) {
8914 journal_dev_exists = true;
8915 break;
8916 }
8917
8918 if (!journal_dev_exists)
8919 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8920 else /* need remove journal device first */
8921 err = -EBUSY;
8922 } else
8923 err = -EINVAL;
8924 } else {
8925 err = -EINVAL;
8926 }
8927
8928 if (!err)
8929 md_update_sb(mddev, 1);
8930
8931 mddev_unlock_and_resume(mddev);
8932
8933 return err;
8934 }
8935
raid5_start(struct mddev * mddev)8936 static int raid5_start(struct mddev *mddev)
8937 {
8938 struct r5conf *conf = mddev->private;
8939
8940 return r5l_start(conf->log);
8941 }
8942
8943 /*
8944 * This is only used for dm-raid456, caller already frozen sync_thread, hence
8945 * if rehsape is still in progress, io that is waiting for reshape can never be
8946 * done now, hence wake up and handle those IO.
8947 */
raid5_prepare_suspend(struct mddev * mddev)8948 static void raid5_prepare_suspend(struct mddev *mddev)
8949 {
8950 struct r5conf *conf = mddev->private;
8951
8952 wake_up(&conf->wait_for_reshape);
8953 }
8954
8955 static struct md_personality raid6_personality =
8956 {
8957 .name = "raid6",
8958 .level = 6,
8959 .owner = THIS_MODULE,
8960 .make_request = raid5_make_request,
8961 .run = raid5_run,
8962 .start = raid5_start,
8963 .free = raid5_free,
8964 .status = raid5_status,
8965 .error_handler = raid5_error,
8966 .hot_add_disk = raid5_add_disk,
8967 .hot_remove_disk= raid5_remove_disk,
8968 .spare_active = raid5_spare_active,
8969 .sync_request = raid5_sync_request,
8970 .resize = raid5_resize,
8971 .size = raid5_size,
8972 .check_reshape = raid6_check_reshape,
8973 .start_reshape = raid5_start_reshape,
8974 .finish_reshape = raid5_finish_reshape,
8975 .quiesce = raid5_quiesce,
8976 .takeover = raid6_takeover,
8977 .change_consistency_policy = raid5_change_consistency_policy,
8978 .prepare_suspend = raid5_prepare_suspend,
8979 };
8980 static struct md_personality raid5_personality =
8981 {
8982 .name = "raid5",
8983 .level = 5,
8984 .owner = THIS_MODULE,
8985 .make_request = raid5_make_request,
8986 .run = raid5_run,
8987 .start = raid5_start,
8988 .free = raid5_free,
8989 .status = raid5_status,
8990 .error_handler = raid5_error,
8991 .hot_add_disk = raid5_add_disk,
8992 .hot_remove_disk= raid5_remove_disk,
8993 .spare_active = raid5_spare_active,
8994 .sync_request = raid5_sync_request,
8995 .resize = raid5_resize,
8996 .size = raid5_size,
8997 .check_reshape = raid5_check_reshape,
8998 .start_reshape = raid5_start_reshape,
8999 .finish_reshape = raid5_finish_reshape,
9000 .quiesce = raid5_quiesce,
9001 .takeover = raid5_takeover,
9002 .change_consistency_policy = raid5_change_consistency_policy,
9003 .prepare_suspend = raid5_prepare_suspend,
9004 };
9005
9006 static struct md_personality raid4_personality =
9007 {
9008 .name = "raid4",
9009 .level = 4,
9010 .owner = THIS_MODULE,
9011 .make_request = raid5_make_request,
9012 .run = raid5_run,
9013 .start = raid5_start,
9014 .free = raid5_free,
9015 .status = raid5_status,
9016 .error_handler = raid5_error,
9017 .hot_add_disk = raid5_add_disk,
9018 .hot_remove_disk= raid5_remove_disk,
9019 .spare_active = raid5_spare_active,
9020 .sync_request = raid5_sync_request,
9021 .resize = raid5_resize,
9022 .size = raid5_size,
9023 .check_reshape = raid5_check_reshape,
9024 .start_reshape = raid5_start_reshape,
9025 .finish_reshape = raid5_finish_reshape,
9026 .quiesce = raid5_quiesce,
9027 .takeover = raid4_takeover,
9028 .change_consistency_policy = raid5_change_consistency_policy,
9029 .prepare_suspend = raid5_prepare_suspend,
9030 };
9031
raid5_init(void)9032 static int __init raid5_init(void)
9033 {
9034 int ret;
9035
9036 raid5_wq = alloc_workqueue("raid5wq",
9037 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
9038 if (!raid5_wq)
9039 return -ENOMEM;
9040
9041 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
9042 "md/raid5:prepare",
9043 raid456_cpu_up_prepare,
9044 raid456_cpu_dead);
9045 if (ret) {
9046 destroy_workqueue(raid5_wq);
9047 return ret;
9048 }
9049 register_md_personality(&raid6_personality);
9050 register_md_personality(&raid5_personality);
9051 register_md_personality(&raid4_personality);
9052 return 0;
9053 }
9054
raid5_exit(void)9055 static void raid5_exit(void)
9056 {
9057 unregister_md_personality(&raid6_personality);
9058 unregister_md_personality(&raid5_personality);
9059 unregister_md_personality(&raid4_personality);
9060 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9061 destroy_workqueue(raid5_wq);
9062 }
9063
9064 module_init(raid5_init);
9065 module_exit(raid5_exit);
9066 MODULE_LICENSE("GPL");
9067 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
9068 MODULE_ALIAS("md-personality-4"); /* RAID5 */
9069 MODULE_ALIAS("md-raid5");
9070 MODULE_ALIAS("md-raid4");
9071 MODULE_ALIAS("md-level-5");
9072 MODULE_ALIAS("md-level-4");
9073 MODULE_ALIAS("md-personality-8"); /* RAID6 */
9074 MODULE_ALIAS("md-raid6");
9075 MODULE_ALIAS("md-level-6");
9076
9077 /* This used to be two separate modules, they were: */
9078 MODULE_ALIAS("raid5");
9079 MODULE_ALIAS("raid6");
9080