xref: /linux/drivers/md/raid5.c (revision 26bb0d3f38a764b743a3ad5c8b6e5b5044d7ceb4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid5.c : Multiple Devices driver for Linux
4  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5  *	   Copyright (C) 1999, 2000 Ingo Molnar
6  *	   Copyright (C) 2002, 2003 H. Peter Anvin
7  *
8  * RAID-4/5/6 management functions.
9  * Thanks to Penguin Computing for making the RAID-6 development possible
10  * by donating a test server!
11  */
12 
13 /*
14  * BITMAP UNPLUGGING:
15  *
16  * The sequencing for updating the bitmap reliably is a little
17  * subtle (and I got it wrong the first time) so it deserves some
18  * explanation.
19  *
20  * We group bitmap updates into batches.  Each batch has a number.
21  * We may write out several batches at once, but that isn't very important.
22  * conf->seq_write is the number of the last batch successfully written.
23  * conf->seq_flush is the number of the last batch that was closed to
24  *    new additions.
25  * When we discover that we will need to write to any block in a stripe
26  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27  * the number of the batch it will be in. This is seq_flush+1.
28  * When we are ready to do a write, if that batch hasn't been written yet,
29  *   we plug the array and queue the stripe for later.
30  * When an unplug happens, we increment bm_flush, thus closing the current
31  *   batch.
32  * When we notice that bm_flush > bm_write, we write out all pending updates
33  * to the bitmap, and advance bm_write to where bm_flush was.
34  * This may occasionally write a bit out twice, but is sure never to
35  * miss any bits.
36  */
37 
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
49 
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
52 
53 #include "md.h"
54 #include "raid5.h"
55 #include "raid0.h"
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
58 
59 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
60 
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
63 
64 #define RAID5_MAX_REQ_STRIPES 256
65 
66 static bool devices_handle_discard_safely = false;
67 module_param(devices_handle_discard_safely, bool, 0644);
68 MODULE_PARM_DESC(devices_handle_discard_safely,
69 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
70 static struct workqueue_struct *raid5_wq;
71 
72 static void raid5_quiesce(struct mddev *mddev, int quiesce);
73 
stripe_hash(struct r5conf * conf,sector_t sect)74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76 	int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
77 	return &conf->stripe_hashtbl[hash];
78 }
79 
stripe_hash_locks_hash(struct r5conf * conf,sector_t sect)80 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
81 {
82 	return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
83 }
84 
lock_device_hash_lock(struct r5conf * conf,int hash)85 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
86 	__acquires(&conf->device_lock)
87 {
88 	spin_lock_irq(conf->hash_locks + hash);
89 	spin_lock(&conf->device_lock);
90 }
91 
unlock_device_hash_lock(struct r5conf * conf,int hash)92 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
93 	__releases(&conf->device_lock)
94 {
95 	spin_unlock(&conf->device_lock);
96 	spin_unlock_irq(conf->hash_locks + hash);
97 }
98 
lock_all_device_hash_locks_irq(struct r5conf * conf)99 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
100 	__acquires(&conf->device_lock)
101 {
102 	int i;
103 	spin_lock_irq(conf->hash_locks);
104 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
105 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
106 	spin_lock(&conf->device_lock);
107 }
108 
unlock_all_device_hash_locks_irq(struct r5conf * conf)109 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
110 	__releases(&conf->device_lock)
111 {
112 	int i;
113 	spin_unlock(&conf->device_lock);
114 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
115 		spin_unlock(conf->hash_locks + i);
116 	spin_unlock_irq(conf->hash_locks);
117 }
118 
119 /* Find first data disk in a raid6 stripe */
raid6_d0(struct stripe_head * sh)120 static inline int raid6_d0(struct stripe_head *sh)
121 {
122 	if (sh->ddf_layout)
123 		/* ddf always start from first device */
124 		return 0;
125 	/* md starts just after Q block */
126 	if (sh->qd_idx == sh->disks - 1)
127 		return 0;
128 	else
129 		return sh->qd_idx + 1;
130 }
raid6_next_disk(int disk,int raid_disks)131 static inline int raid6_next_disk(int disk, int raid_disks)
132 {
133 	disk++;
134 	return (disk < raid_disks) ? disk : 0;
135 }
136 
137 /* When walking through the disks in a raid5, starting at raid6_d0,
138  * We need to map each disk to a 'slot', where the data disks are slot
139  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
140  * is raid_disks-1.  This help does that mapping.
141  */
raid6_idx_to_slot(int idx,struct stripe_head * sh,int * count,int syndrome_disks)142 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
143 			     int *count, int syndrome_disks)
144 {
145 	int slot = *count;
146 
147 	if (sh->ddf_layout)
148 		(*count)++;
149 	if (idx == sh->pd_idx)
150 		return syndrome_disks;
151 	if (idx == sh->qd_idx)
152 		return syndrome_disks + 1;
153 	if (!sh->ddf_layout)
154 		(*count)++;
155 	return slot;
156 }
157 
158 static void print_raid5_conf(struct r5conf *conf);
159 
stripe_operations_active(struct stripe_head * sh)160 static int stripe_operations_active(struct stripe_head *sh)
161 {
162 	return sh->check_state || sh->reconstruct_state ||
163 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
164 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
165 }
166 
stripe_is_lowprio(struct stripe_head * sh)167 static bool stripe_is_lowprio(struct stripe_head *sh)
168 {
169 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
170 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
171 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
172 }
173 
raid5_wakeup_stripe_thread(struct stripe_head * sh)174 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
175 	__must_hold(&sh->raid_conf->device_lock)
176 {
177 	struct r5conf *conf = sh->raid_conf;
178 	struct r5worker_group *group;
179 	int thread_cnt;
180 	int i, cpu = sh->cpu;
181 
182 	if (!cpu_online(cpu)) {
183 		cpu = cpumask_any(cpu_online_mask);
184 		sh->cpu = cpu;
185 	}
186 
187 	if (list_empty(&sh->lru)) {
188 		struct r5worker_group *group;
189 		group = conf->worker_groups + cpu_to_group(cpu);
190 		if (stripe_is_lowprio(sh))
191 			list_add_tail(&sh->lru, &group->loprio_list);
192 		else
193 			list_add_tail(&sh->lru, &group->handle_list);
194 		group->stripes_cnt++;
195 		sh->group = group;
196 	}
197 
198 	if (conf->worker_cnt_per_group == 0) {
199 		md_wakeup_thread(conf->mddev->thread);
200 		return;
201 	}
202 
203 	group = conf->worker_groups + cpu_to_group(sh->cpu);
204 
205 	group->workers[0].working = true;
206 	/* at least one worker should run to avoid race */
207 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
208 
209 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210 	/* wakeup more workers */
211 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212 		if (group->workers[i].working == false) {
213 			group->workers[i].working = true;
214 			queue_work_on(sh->cpu, raid5_wq,
215 				      &group->workers[i].work);
216 			thread_cnt--;
217 		}
218 	}
219 }
220 
do_release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222 			      struct list_head *temp_inactive_list)
223 	__must_hold(&conf->device_lock)
224 {
225 	int i;
226 	int injournal = 0;	/* number of date pages with R5_InJournal */
227 
228 	BUG_ON(!list_empty(&sh->lru));
229 	BUG_ON(atomic_read(&conf->active_stripes)==0);
230 
231 	if (r5c_is_writeback(conf->log))
232 		for (i = sh->disks; i--; )
233 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
234 				injournal++;
235 	/*
236 	 * In the following cases, the stripe cannot be released to cached
237 	 * lists. Therefore, we make the stripe write out and set
238 	 * STRIPE_HANDLE:
239 	 *   1. when quiesce in r5c write back;
240 	 *   2. when resync is requested fot the stripe.
241 	 */
242 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
243 	    (conf->quiesce && r5c_is_writeback(conf->log) &&
244 	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
245 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
246 			r5c_make_stripe_write_out(sh);
247 		set_bit(STRIPE_HANDLE, &sh->state);
248 	}
249 
250 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
251 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
252 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
253 			list_add_tail(&sh->lru, &conf->delayed_list);
254 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
255 			   sh->bm_seq - conf->seq_write > 0)
256 			list_add_tail(&sh->lru, &conf->bitmap_list);
257 		else {
258 			clear_bit(STRIPE_DELAYED, &sh->state);
259 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
260 			if (conf->worker_cnt_per_group == 0) {
261 				if (stripe_is_lowprio(sh))
262 					list_add_tail(&sh->lru,
263 							&conf->loprio_list);
264 				else
265 					list_add_tail(&sh->lru,
266 							&conf->handle_list);
267 			} else {
268 				raid5_wakeup_stripe_thread(sh);
269 				return;
270 			}
271 		}
272 		md_wakeup_thread(conf->mddev->thread);
273 	} else {
274 		BUG_ON(stripe_operations_active(sh));
275 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
276 			if (atomic_dec_return(&conf->preread_active_stripes)
277 			    < IO_THRESHOLD)
278 				md_wakeup_thread(conf->mddev->thread);
279 		atomic_dec(&conf->active_stripes);
280 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
281 			if (!r5c_is_writeback(conf->log))
282 				list_add_tail(&sh->lru, temp_inactive_list);
283 			else {
284 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
285 				if (injournal == 0)
286 					list_add_tail(&sh->lru, temp_inactive_list);
287 				else if (injournal == conf->raid_disks - conf->max_degraded) {
288 					/* full stripe */
289 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
290 						atomic_inc(&conf->r5c_cached_full_stripes);
291 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
292 						atomic_dec(&conf->r5c_cached_partial_stripes);
293 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
294 					r5c_check_cached_full_stripe(conf);
295 				} else
296 					/*
297 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
298 					 * r5c_try_caching_write(). No need to
299 					 * set it again.
300 					 */
301 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
302 			}
303 		}
304 	}
305 }
306 
__release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)307 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
308 			     struct list_head *temp_inactive_list)
309 	__must_hold(&conf->device_lock)
310 {
311 	if (atomic_dec_and_test(&sh->count))
312 		do_release_stripe(conf, sh, temp_inactive_list);
313 }
314 
315 /*
316  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
317  *
318  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
319  * given time. Adding stripes only takes device lock, while deleting stripes
320  * only takes hash lock.
321  */
release_inactive_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list,int hash)322 static void release_inactive_stripe_list(struct r5conf *conf,
323 					 struct list_head *temp_inactive_list,
324 					 int hash)
325 {
326 	int size;
327 	bool do_wakeup = false;
328 	unsigned long flags;
329 
330 	if (hash == NR_STRIPE_HASH_LOCKS) {
331 		size = NR_STRIPE_HASH_LOCKS;
332 		hash = NR_STRIPE_HASH_LOCKS - 1;
333 	} else
334 		size = 1;
335 	while (size) {
336 		struct list_head *list = &temp_inactive_list[size - 1];
337 
338 		/*
339 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
340 		 * remove stripes from the list
341 		 */
342 		if (!list_empty_careful(list)) {
343 			spin_lock_irqsave(conf->hash_locks + hash, flags);
344 			if (list_empty(conf->inactive_list + hash) &&
345 			    !list_empty(list))
346 				atomic_dec(&conf->empty_inactive_list_nr);
347 			list_splice_tail_init(list, conf->inactive_list + hash);
348 			do_wakeup = true;
349 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
350 		}
351 		size--;
352 		hash--;
353 	}
354 
355 	if (do_wakeup) {
356 		wake_up(&conf->wait_for_stripe);
357 		if (atomic_read(&conf->active_stripes) == 0)
358 			wake_up(&conf->wait_for_quiescent);
359 		if (conf->retry_read_aligned)
360 			md_wakeup_thread(conf->mddev->thread);
361 	}
362 }
363 
release_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list)364 static int release_stripe_list(struct r5conf *conf,
365 			       struct list_head *temp_inactive_list)
366 	__must_hold(&conf->device_lock)
367 {
368 	struct stripe_head *sh, *t;
369 	int count = 0;
370 	struct llist_node *head;
371 
372 	head = llist_del_all(&conf->released_stripes);
373 	head = llist_reverse_order(head);
374 	llist_for_each_entry_safe(sh, t, head, release_list) {
375 		int hash;
376 
377 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
378 		smp_mb();
379 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
380 		/*
381 		 * Don't worry the bit is set here, because if the bit is set
382 		 * again, the count is always > 1. This is true for
383 		 * STRIPE_ON_UNPLUG_LIST bit too.
384 		 */
385 		hash = sh->hash_lock_index;
386 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
387 		count++;
388 	}
389 
390 	return count;
391 }
392 
raid5_release_stripe(struct stripe_head * sh)393 void raid5_release_stripe(struct stripe_head *sh)
394 {
395 	struct r5conf *conf = sh->raid_conf;
396 	unsigned long flags;
397 	struct list_head list;
398 	int hash;
399 	bool wakeup;
400 
401 	/* Avoid release_list until the last reference.
402 	 */
403 	if (atomic_add_unless(&sh->count, -1, 1))
404 		return;
405 
406 	if (unlikely(!conf->mddev->thread) ||
407 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
408 		goto slow_path;
409 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
410 	if (wakeup)
411 		md_wakeup_thread(conf->mddev->thread);
412 	return;
413 slow_path:
414 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
415 	if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
416 		INIT_LIST_HEAD(&list);
417 		hash = sh->hash_lock_index;
418 		do_release_stripe(conf, sh, &list);
419 		spin_unlock_irqrestore(&conf->device_lock, flags);
420 		release_inactive_stripe_list(conf, &list, hash);
421 	}
422 }
423 
remove_hash(struct stripe_head * sh)424 static inline void remove_hash(struct stripe_head *sh)
425 {
426 	pr_debug("remove_hash(), stripe %llu\n",
427 		(unsigned long long)sh->sector);
428 
429 	hlist_del_init(&sh->hash);
430 }
431 
insert_hash(struct r5conf * conf,struct stripe_head * sh)432 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
433 {
434 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
435 
436 	pr_debug("insert_hash(), stripe %llu\n",
437 		(unsigned long long)sh->sector);
438 
439 	hlist_add_head(&sh->hash, hp);
440 }
441 
442 /* find an idle stripe, make sure it is unhashed, and return it. */
get_free_stripe(struct r5conf * conf,int hash)443 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
444 {
445 	struct stripe_head *sh = NULL;
446 	struct list_head *first;
447 
448 	if (list_empty(conf->inactive_list + hash))
449 		goto out;
450 	first = (conf->inactive_list + hash)->next;
451 	sh = list_entry(first, struct stripe_head, lru);
452 	list_del_init(first);
453 	remove_hash(sh);
454 	atomic_inc(&conf->active_stripes);
455 	BUG_ON(hash != sh->hash_lock_index);
456 	if (list_empty(conf->inactive_list + hash))
457 		atomic_inc(&conf->empty_inactive_list_nr);
458 out:
459 	return sh;
460 }
461 
462 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
free_stripe_pages(struct stripe_head * sh)463 static void free_stripe_pages(struct stripe_head *sh)
464 {
465 	int i;
466 	struct page *p;
467 
468 	/* Have not allocate page pool */
469 	if (!sh->pages)
470 		return;
471 
472 	for (i = 0; i < sh->nr_pages; i++) {
473 		p = sh->pages[i];
474 		if (p)
475 			put_page(p);
476 		sh->pages[i] = NULL;
477 	}
478 }
479 
alloc_stripe_pages(struct stripe_head * sh,gfp_t gfp)480 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
481 {
482 	int i;
483 	struct page *p;
484 
485 	for (i = 0; i < sh->nr_pages; i++) {
486 		/* The page have allocated. */
487 		if (sh->pages[i])
488 			continue;
489 
490 		p = alloc_page(gfp);
491 		if (!p) {
492 			free_stripe_pages(sh);
493 			return -ENOMEM;
494 		}
495 		sh->pages[i] = p;
496 	}
497 	return 0;
498 }
499 
500 static int
init_stripe_shared_pages(struct stripe_head * sh,struct r5conf * conf,int disks)501 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
502 {
503 	int nr_pages, cnt;
504 
505 	if (sh->pages)
506 		return 0;
507 
508 	/* Each of the sh->dev[i] need one conf->stripe_size */
509 	cnt = PAGE_SIZE / conf->stripe_size;
510 	nr_pages = (disks + cnt - 1) / cnt;
511 
512 	sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
513 	if (!sh->pages)
514 		return -ENOMEM;
515 	sh->nr_pages = nr_pages;
516 	sh->stripes_per_page = cnt;
517 	return 0;
518 }
519 #endif
520 
shrink_buffers(struct stripe_head * sh)521 static void shrink_buffers(struct stripe_head *sh)
522 {
523 	int i;
524 	int num = sh->raid_conf->pool_size;
525 
526 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
527 	for (i = 0; i < num ; i++) {
528 		struct page *p;
529 
530 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
531 		p = sh->dev[i].page;
532 		if (!p)
533 			continue;
534 		sh->dev[i].page = NULL;
535 		put_page(p);
536 	}
537 #else
538 	for (i = 0; i < num; i++)
539 		sh->dev[i].page = NULL;
540 	free_stripe_pages(sh); /* Free pages */
541 #endif
542 }
543 
grow_buffers(struct stripe_head * sh,gfp_t gfp)544 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
545 {
546 	int i;
547 	int num = sh->raid_conf->pool_size;
548 
549 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
550 	for (i = 0; i < num; i++) {
551 		struct page *page;
552 
553 		if (!(page = alloc_page(gfp))) {
554 			return 1;
555 		}
556 		sh->dev[i].page = page;
557 		sh->dev[i].orig_page = page;
558 		sh->dev[i].offset = 0;
559 	}
560 #else
561 	if (alloc_stripe_pages(sh, gfp))
562 		return -ENOMEM;
563 
564 	for (i = 0; i < num; i++) {
565 		sh->dev[i].page = raid5_get_dev_page(sh, i);
566 		sh->dev[i].orig_page = sh->dev[i].page;
567 		sh->dev[i].offset = raid5_get_page_offset(sh, i);
568 	}
569 #endif
570 	return 0;
571 }
572 
573 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
574 			    struct stripe_head *sh);
575 
init_stripe(struct stripe_head * sh,sector_t sector,int previous)576 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
577 {
578 	struct r5conf *conf = sh->raid_conf;
579 	int i, seq;
580 
581 	BUG_ON(atomic_read(&sh->count) != 0);
582 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
583 	BUG_ON(stripe_operations_active(sh));
584 	BUG_ON(sh->batch_head);
585 
586 	pr_debug("init_stripe called, stripe %llu\n",
587 		(unsigned long long)sector);
588 retry:
589 	seq = read_seqcount_begin(&conf->gen_lock);
590 	sh->generation = conf->generation - previous;
591 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
592 	sh->sector = sector;
593 	stripe_set_idx(sector, conf, previous, sh);
594 	sh->state = 0;
595 
596 	for (i = sh->disks; i--; ) {
597 		struct r5dev *dev = &sh->dev[i];
598 
599 		if (dev->toread || dev->read || dev->towrite || dev->written ||
600 		    test_bit(R5_LOCKED, &dev->flags)) {
601 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
602 			       (unsigned long long)sh->sector, i, dev->toread,
603 			       dev->read, dev->towrite, dev->written,
604 			       test_bit(R5_LOCKED, &dev->flags));
605 			WARN_ON(1);
606 		}
607 		dev->flags = 0;
608 		dev->sector = raid5_compute_blocknr(sh, i, previous);
609 	}
610 	if (read_seqcount_retry(&conf->gen_lock, seq))
611 		goto retry;
612 	sh->overwrite_disks = 0;
613 	insert_hash(conf, sh);
614 	sh->cpu = smp_processor_id();
615 	set_bit(STRIPE_BATCH_READY, &sh->state);
616 }
617 
__find_stripe(struct r5conf * conf,sector_t sector,short generation)618 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
619 					 short generation)
620 {
621 	struct stripe_head *sh;
622 
623 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
624 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
625 		if (sh->sector == sector && sh->generation == generation)
626 			return sh;
627 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
628 	return NULL;
629 }
630 
find_get_stripe(struct r5conf * conf,sector_t sector,short generation,int hash)631 static struct stripe_head *find_get_stripe(struct r5conf *conf,
632 		sector_t sector, short generation, int hash)
633 {
634 	int inc_empty_inactive_list_flag;
635 	struct stripe_head *sh;
636 
637 	sh = __find_stripe(conf, sector, generation);
638 	if (!sh)
639 		return NULL;
640 
641 	if (atomic_inc_not_zero(&sh->count))
642 		return sh;
643 
644 	/*
645 	 * Slow path. The reference count is zero which means the stripe must
646 	 * be on a list (sh->lru). Must remove the stripe from the list that
647 	 * references it with the device_lock held.
648 	 */
649 
650 	spin_lock(&conf->device_lock);
651 	if (!atomic_read(&sh->count)) {
652 		if (!test_bit(STRIPE_HANDLE, &sh->state))
653 			atomic_inc(&conf->active_stripes);
654 		BUG_ON(list_empty(&sh->lru) &&
655 		       !test_bit(STRIPE_EXPANDING, &sh->state));
656 		inc_empty_inactive_list_flag = 0;
657 		if (!list_empty(conf->inactive_list + hash))
658 			inc_empty_inactive_list_flag = 1;
659 		list_del_init(&sh->lru);
660 		if (list_empty(conf->inactive_list + hash) &&
661 		    inc_empty_inactive_list_flag)
662 			atomic_inc(&conf->empty_inactive_list_nr);
663 		if (sh->group) {
664 			sh->group->stripes_cnt--;
665 			sh->group = NULL;
666 		}
667 	}
668 	atomic_inc(&sh->count);
669 	spin_unlock(&conf->device_lock);
670 
671 	return sh;
672 }
673 
674 /*
675  * Need to check if array has failed when deciding whether to:
676  *  - start an array
677  *  - remove non-faulty devices
678  *  - add a spare
679  *  - allow a reshape
680  * This determination is simple when no reshape is happening.
681  * However if there is a reshape, we need to carefully check
682  * both the before and after sections.
683  * This is because some failed devices may only affect one
684  * of the two sections, and some non-in_sync devices may
685  * be insync in the section most affected by failed devices.
686  *
687  * Most calls to this function hold &conf->device_lock. Calls
688  * in raid5_run() do not require the lock as no other threads
689  * have been started yet.
690  */
raid5_calc_degraded(struct r5conf * conf)691 int raid5_calc_degraded(struct r5conf *conf)
692 {
693 	int degraded, degraded2;
694 	int i;
695 
696 	degraded = 0;
697 	for (i = 0; i < conf->previous_raid_disks; i++) {
698 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
699 
700 		if (rdev && test_bit(Faulty, &rdev->flags))
701 			rdev = READ_ONCE(conf->disks[i].replacement);
702 		if (!rdev || test_bit(Faulty, &rdev->flags))
703 			degraded++;
704 		else if (test_bit(In_sync, &rdev->flags))
705 			;
706 		else
707 			/* not in-sync or faulty.
708 			 * If the reshape increases the number of devices,
709 			 * this is being recovered by the reshape, so
710 			 * this 'previous' section is not in_sync.
711 			 * If the number of devices is being reduced however,
712 			 * the device can only be part of the array if
713 			 * we are reverting a reshape, so this section will
714 			 * be in-sync.
715 			 */
716 			if (conf->raid_disks >= conf->previous_raid_disks)
717 				degraded++;
718 	}
719 	if (conf->raid_disks == conf->previous_raid_disks)
720 		return degraded;
721 	degraded2 = 0;
722 	for (i = 0; i < conf->raid_disks; i++) {
723 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
724 
725 		if (rdev && test_bit(Faulty, &rdev->flags))
726 			rdev = READ_ONCE(conf->disks[i].replacement);
727 		if (!rdev || test_bit(Faulty, &rdev->flags))
728 			degraded2++;
729 		else if (test_bit(In_sync, &rdev->flags))
730 			;
731 		else
732 			/* not in-sync or faulty.
733 			 * If reshape increases the number of devices, this
734 			 * section has already been recovered, else it
735 			 * almost certainly hasn't.
736 			 */
737 			if (conf->raid_disks <= conf->previous_raid_disks)
738 				degraded2++;
739 	}
740 	if (degraded2 > degraded)
741 		return degraded2;
742 	return degraded;
743 }
744 
has_failed(struct r5conf * conf)745 static bool has_failed(struct r5conf *conf)
746 {
747 	int degraded = conf->mddev->degraded;
748 
749 	if (test_bit(MD_BROKEN, &conf->mddev->flags))
750 		return true;
751 
752 	if (conf->mddev->reshape_position != MaxSector)
753 		degraded = raid5_calc_degraded(conf);
754 
755 	return degraded > conf->max_degraded;
756 }
757 
758 enum stripe_result {
759 	STRIPE_SUCCESS = 0,
760 	STRIPE_RETRY,
761 	STRIPE_SCHEDULE_AND_RETRY,
762 	STRIPE_FAIL,
763 	STRIPE_WAIT_RESHAPE,
764 };
765 
766 struct stripe_request_ctx {
767 	/* a reference to the last stripe_head for batching */
768 	struct stripe_head *batch_last;
769 
770 	/* first sector in the request */
771 	sector_t first_sector;
772 
773 	/* last sector in the request */
774 	sector_t last_sector;
775 
776 	/*
777 	 * bitmap to track stripe sectors that have been added to stripes
778 	 * add one to account for unaligned requests
779 	 */
780 	DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1);
781 
782 	/* the request had REQ_PREFLUSH, cleared after the first stripe_head */
783 	bool do_flush;
784 };
785 
786 /*
787  * Block until another thread clears R5_INACTIVE_BLOCKED or
788  * there are fewer than 3/4 the maximum number of active stripes
789  * and there is an inactive stripe available.
790  */
is_inactive_blocked(struct r5conf * conf,int hash)791 static bool is_inactive_blocked(struct r5conf *conf, int hash)
792 {
793 	if (list_empty(conf->inactive_list + hash))
794 		return false;
795 
796 	if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
797 		return true;
798 
799 	return (atomic_read(&conf->active_stripes) <
800 		(conf->max_nr_stripes * 3 / 4));
801 }
802 
raid5_get_active_stripe(struct r5conf * conf,struct stripe_request_ctx * ctx,sector_t sector,unsigned int flags)803 struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
804 		struct stripe_request_ctx *ctx, sector_t sector,
805 		unsigned int flags)
806 {
807 	struct stripe_head *sh;
808 	int hash = stripe_hash_locks_hash(conf, sector);
809 	int previous = !!(flags & R5_GAS_PREVIOUS);
810 
811 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
812 
813 	spin_lock_irq(conf->hash_locks + hash);
814 
815 	for (;;) {
816 		if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) {
817 			/*
818 			 * Must release the reference to batch_last before
819 			 * waiting, on quiesce, otherwise the batch_last will
820 			 * hold a reference to a stripe and raid5_quiesce()
821 			 * will deadlock waiting for active_stripes to go to
822 			 * zero.
823 			 */
824 			if (ctx && ctx->batch_last) {
825 				raid5_release_stripe(ctx->batch_last);
826 				ctx->batch_last = NULL;
827 			}
828 
829 			wait_event_lock_irq(conf->wait_for_quiescent,
830 					    !conf->quiesce,
831 					    *(conf->hash_locks + hash));
832 		}
833 
834 		sh = find_get_stripe(conf, sector, conf->generation - previous,
835 				     hash);
836 		if (sh)
837 			break;
838 
839 		if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
840 			sh = get_free_stripe(conf, hash);
841 			if (sh) {
842 				r5c_check_stripe_cache_usage(conf);
843 				init_stripe(sh, sector, previous);
844 				atomic_inc(&sh->count);
845 				break;
846 			}
847 
848 			if (!test_bit(R5_DID_ALLOC, &conf->cache_state))
849 				set_bit(R5_ALLOC_MORE, &conf->cache_state);
850 		}
851 
852 		if (flags & R5_GAS_NOBLOCK)
853 			break;
854 
855 		set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
856 		r5l_wake_reclaim(conf->log, 0);
857 
858 		/* release batch_last before wait to avoid risk of deadlock */
859 		if (ctx && ctx->batch_last) {
860 			raid5_release_stripe(ctx->batch_last);
861 			ctx->batch_last = NULL;
862 		}
863 
864 		wait_event_lock_irq(conf->wait_for_stripe,
865 				    is_inactive_blocked(conf, hash),
866 				    *(conf->hash_locks + hash));
867 		clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
868 	}
869 
870 	spin_unlock_irq(conf->hash_locks + hash);
871 	return sh;
872 }
873 
is_full_stripe_write(struct stripe_head * sh)874 static bool is_full_stripe_write(struct stripe_head *sh)
875 {
876 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
877 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
878 }
879 
lock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)880 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
881 		__acquires(&sh1->stripe_lock)
882 		__acquires(&sh2->stripe_lock)
883 {
884 	if (sh1 > sh2) {
885 		spin_lock_irq(&sh2->stripe_lock);
886 		spin_lock_nested(&sh1->stripe_lock, 1);
887 	} else {
888 		spin_lock_irq(&sh1->stripe_lock);
889 		spin_lock_nested(&sh2->stripe_lock, 1);
890 	}
891 }
892 
unlock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)893 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
894 		__releases(&sh1->stripe_lock)
895 		__releases(&sh2->stripe_lock)
896 {
897 	spin_unlock(&sh1->stripe_lock);
898 	spin_unlock_irq(&sh2->stripe_lock);
899 }
900 
901 /* Only freshly new full stripe normal write stripe can be added to a batch list */
stripe_can_batch(struct stripe_head * sh)902 static bool stripe_can_batch(struct stripe_head *sh)
903 {
904 	struct r5conf *conf = sh->raid_conf;
905 
906 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
907 		return false;
908 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
909 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
910 		is_full_stripe_write(sh);
911 }
912 
913 /* we only do back search */
stripe_add_to_batch_list(struct r5conf * conf,struct stripe_head * sh,struct stripe_head * last_sh)914 static void stripe_add_to_batch_list(struct r5conf *conf,
915 		struct stripe_head *sh, struct stripe_head *last_sh)
916 {
917 	struct stripe_head *head;
918 	sector_t head_sector, tmp_sec;
919 	int hash;
920 	int dd_idx;
921 
922 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
923 	tmp_sec = sh->sector;
924 	if (!sector_div(tmp_sec, conf->chunk_sectors))
925 		return;
926 	head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
927 
928 	if (last_sh && head_sector == last_sh->sector) {
929 		head = last_sh;
930 		atomic_inc(&head->count);
931 	} else {
932 		hash = stripe_hash_locks_hash(conf, head_sector);
933 		spin_lock_irq(conf->hash_locks + hash);
934 		head = find_get_stripe(conf, head_sector, conf->generation,
935 				       hash);
936 		spin_unlock_irq(conf->hash_locks + hash);
937 		if (!head)
938 			return;
939 		if (!stripe_can_batch(head))
940 			goto out;
941 	}
942 
943 	lock_two_stripes(head, sh);
944 	/* clear_batch_ready clear the flag */
945 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
946 		goto unlock_out;
947 
948 	if (sh->batch_head)
949 		goto unlock_out;
950 
951 	dd_idx = 0;
952 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
953 		dd_idx++;
954 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
955 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
956 		goto unlock_out;
957 
958 	if (head->batch_head) {
959 		spin_lock(&head->batch_head->batch_lock);
960 		/* This batch list is already running */
961 		if (!stripe_can_batch(head)) {
962 			spin_unlock(&head->batch_head->batch_lock);
963 			goto unlock_out;
964 		}
965 		/*
966 		 * We must assign batch_head of this stripe within the
967 		 * batch_lock, otherwise clear_batch_ready of batch head
968 		 * stripe could clear BATCH_READY bit of this stripe and
969 		 * this stripe->batch_head doesn't get assigned, which
970 		 * could confuse clear_batch_ready for this stripe
971 		 */
972 		sh->batch_head = head->batch_head;
973 
974 		/*
975 		 * at this point, head's BATCH_READY could be cleared, but we
976 		 * can still add the stripe to batch list
977 		 */
978 		list_add(&sh->batch_list, &head->batch_list);
979 		spin_unlock(&head->batch_head->batch_lock);
980 	} else {
981 		head->batch_head = head;
982 		sh->batch_head = head->batch_head;
983 		spin_lock(&head->batch_lock);
984 		list_add_tail(&sh->batch_list, &head->batch_list);
985 		spin_unlock(&head->batch_lock);
986 	}
987 
988 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
989 		if (atomic_dec_return(&conf->preread_active_stripes)
990 		    < IO_THRESHOLD)
991 			md_wakeup_thread(conf->mddev->thread);
992 
993 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
994 		int seq = sh->bm_seq;
995 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
996 		    sh->batch_head->bm_seq > seq)
997 			seq = sh->batch_head->bm_seq;
998 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
999 		sh->batch_head->bm_seq = seq;
1000 	}
1001 
1002 	atomic_inc(&sh->count);
1003 unlock_out:
1004 	unlock_two_stripes(head, sh);
1005 out:
1006 	raid5_release_stripe(head);
1007 }
1008 
1009 /* Determine if 'data_offset' or 'new_data_offset' should be used
1010  * in this stripe_head.
1011  */
use_new_offset(struct r5conf * conf,struct stripe_head * sh)1012 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
1013 {
1014 	sector_t progress = conf->reshape_progress;
1015 	/* Need a memory barrier to make sure we see the value
1016 	 * of conf->generation, or ->data_offset that was set before
1017 	 * reshape_progress was updated.
1018 	 */
1019 	smp_rmb();
1020 	if (progress == MaxSector)
1021 		return 0;
1022 	if (sh->generation == conf->generation - 1)
1023 		return 0;
1024 	/* We are in a reshape, and this is a new-generation stripe,
1025 	 * so use new_data_offset.
1026 	 */
1027 	return 1;
1028 }
1029 
dispatch_bio_list(struct bio_list * tmp)1030 static void dispatch_bio_list(struct bio_list *tmp)
1031 {
1032 	struct bio *bio;
1033 
1034 	while ((bio = bio_list_pop(tmp)))
1035 		submit_bio_noacct(bio);
1036 }
1037 
cmp_stripe(void * priv,const struct list_head * a,const struct list_head * b)1038 static int cmp_stripe(void *priv, const struct list_head *a,
1039 		      const struct list_head *b)
1040 {
1041 	const struct r5pending_data *da = list_entry(a,
1042 				struct r5pending_data, sibling);
1043 	const struct r5pending_data *db = list_entry(b,
1044 				struct r5pending_data, sibling);
1045 	if (da->sector > db->sector)
1046 		return 1;
1047 	if (da->sector < db->sector)
1048 		return -1;
1049 	return 0;
1050 }
1051 
dispatch_defer_bios(struct r5conf * conf,int target,struct bio_list * list)1052 static void dispatch_defer_bios(struct r5conf *conf, int target,
1053 				struct bio_list *list)
1054 {
1055 	struct r5pending_data *data;
1056 	struct list_head *first, *next = NULL;
1057 	int cnt = 0;
1058 
1059 	if (conf->pending_data_cnt == 0)
1060 		return;
1061 
1062 	list_sort(NULL, &conf->pending_list, cmp_stripe);
1063 
1064 	first = conf->pending_list.next;
1065 
1066 	/* temporarily move the head */
1067 	if (conf->next_pending_data)
1068 		list_move_tail(&conf->pending_list,
1069 				&conf->next_pending_data->sibling);
1070 
1071 	while (!list_empty(&conf->pending_list)) {
1072 		data = list_first_entry(&conf->pending_list,
1073 			struct r5pending_data, sibling);
1074 		if (&data->sibling == first)
1075 			first = data->sibling.next;
1076 		next = data->sibling.next;
1077 
1078 		bio_list_merge(list, &data->bios);
1079 		list_move(&data->sibling, &conf->free_list);
1080 		cnt++;
1081 		if (cnt >= target)
1082 			break;
1083 	}
1084 	conf->pending_data_cnt -= cnt;
1085 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1086 
1087 	if (next != &conf->pending_list)
1088 		conf->next_pending_data = list_entry(next,
1089 				struct r5pending_data, sibling);
1090 	else
1091 		conf->next_pending_data = NULL;
1092 	/* list isn't empty */
1093 	if (first != &conf->pending_list)
1094 		list_move_tail(&conf->pending_list, first);
1095 }
1096 
flush_deferred_bios(struct r5conf * conf)1097 static void flush_deferred_bios(struct r5conf *conf)
1098 {
1099 	struct bio_list tmp = BIO_EMPTY_LIST;
1100 
1101 	if (conf->pending_data_cnt == 0)
1102 		return;
1103 
1104 	spin_lock(&conf->pending_bios_lock);
1105 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1106 	BUG_ON(conf->pending_data_cnt != 0);
1107 	spin_unlock(&conf->pending_bios_lock);
1108 
1109 	dispatch_bio_list(&tmp);
1110 }
1111 
defer_issue_bios(struct r5conf * conf,sector_t sector,struct bio_list * bios)1112 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1113 				struct bio_list *bios)
1114 {
1115 	struct bio_list tmp = BIO_EMPTY_LIST;
1116 	struct r5pending_data *ent;
1117 
1118 	spin_lock(&conf->pending_bios_lock);
1119 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
1120 							sibling);
1121 	list_move_tail(&ent->sibling, &conf->pending_list);
1122 	ent->sector = sector;
1123 	bio_list_init(&ent->bios);
1124 	bio_list_merge(&ent->bios, bios);
1125 	conf->pending_data_cnt++;
1126 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
1127 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1128 
1129 	spin_unlock(&conf->pending_bios_lock);
1130 
1131 	dispatch_bio_list(&tmp);
1132 }
1133 
1134 static void
1135 raid5_end_read_request(struct bio *bi);
1136 static void
1137 raid5_end_write_request(struct bio *bi);
1138 
ops_run_io(struct stripe_head * sh,struct stripe_head_state * s)1139 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1140 {
1141 	struct r5conf *conf = sh->raid_conf;
1142 	int i, disks = sh->disks;
1143 	struct stripe_head *head_sh = sh;
1144 	struct bio_list pending_bios = BIO_EMPTY_LIST;
1145 	struct r5dev *dev;
1146 	bool should_defer;
1147 
1148 	might_sleep();
1149 
1150 	if (log_stripe(sh, s) == 0)
1151 		return;
1152 
1153 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1154 
1155 	for (i = disks; i--; ) {
1156 		enum req_op op;
1157 		blk_opf_t op_flags = 0;
1158 		int replace_only = 0;
1159 		struct bio *bi, *rbi;
1160 		struct md_rdev *rdev, *rrdev = NULL;
1161 
1162 		sh = head_sh;
1163 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1164 			op = REQ_OP_WRITE;
1165 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1166 				op_flags = REQ_FUA;
1167 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1168 				op = REQ_OP_DISCARD;
1169 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1170 			op = REQ_OP_READ;
1171 		else if (test_and_clear_bit(R5_WantReplace,
1172 					    &sh->dev[i].flags)) {
1173 			op = REQ_OP_WRITE;
1174 			replace_only = 1;
1175 		} else
1176 			continue;
1177 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1178 			op_flags |= REQ_SYNC;
1179 
1180 again:
1181 		dev = &sh->dev[i];
1182 		bi = &dev->req;
1183 		rbi = &dev->rreq; /* For writing to replacement */
1184 
1185 		rdev = conf->disks[i].rdev;
1186 		rrdev = conf->disks[i].replacement;
1187 		if (op_is_write(op)) {
1188 			if (replace_only)
1189 				rdev = NULL;
1190 			if (rdev == rrdev)
1191 				/* We raced and saw duplicates */
1192 				rrdev = NULL;
1193 		} else {
1194 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1195 				rdev = rrdev;
1196 			rrdev = NULL;
1197 		}
1198 
1199 		if (rdev && test_bit(Faulty, &rdev->flags))
1200 			rdev = NULL;
1201 		if (rdev)
1202 			atomic_inc(&rdev->nr_pending);
1203 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1204 			rrdev = NULL;
1205 		if (rrdev)
1206 			atomic_inc(&rrdev->nr_pending);
1207 
1208 		/* We have already checked bad blocks for reads.  Now
1209 		 * need to check for writes.  We never accept write errors
1210 		 * on the replacement, so we don't to check rrdev.
1211 		 */
1212 		while (op_is_write(op) && rdev &&
1213 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1214 			int bad = rdev_has_badblock(rdev, sh->sector,
1215 						    RAID5_STRIPE_SECTORS(conf));
1216 			if (!bad)
1217 				break;
1218 
1219 			if (bad < 0) {
1220 				set_bit(BlockedBadBlocks, &rdev->flags);
1221 				if (!conf->mddev->external &&
1222 				    conf->mddev->sb_flags) {
1223 					/* It is very unlikely, but we might
1224 					 * still need to write out the
1225 					 * bad block log - better give it
1226 					 * a chance*/
1227 					md_check_recovery(conf->mddev);
1228 				}
1229 				/*
1230 				 * Because md_wait_for_blocked_rdev
1231 				 * will dec nr_pending, we must
1232 				 * increment it first.
1233 				 */
1234 				atomic_inc(&rdev->nr_pending);
1235 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1236 			} else {
1237 				/* Acknowledged bad block - skip the write */
1238 				rdev_dec_pending(rdev, conf->mddev);
1239 				rdev = NULL;
1240 			}
1241 		}
1242 
1243 		if (rdev) {
1244 			if (s->syncing || s->expanding || s->expanded
1245 			    || s->replacing)
1246 				md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1247 
1248 			set_bit(STRIPE_IO_STARTED, &sh->state);
1249 
1250 			bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1251 			bi->bi_end_io = op_is_write(op)
1252 				? raid5_end_write_request
1253 				: raid5_end_read_request;
1254 			bi->bi_private = sh;
1255 
1256 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1257 				__func__, (unsigned long long)sh->sector,
1258 				bi->bi_opf, i);
1259 			atomic_inc(&sh->count);
1260 			if (sh != head_sh)
1261 				atomic_inc(&head_sh->count);
1262 			if (use_new_offset(conf, sh))
1263 				bi->bi_iter.bi_sector = (sh->sector
1264 						 + rdev->new_data_offset);
1265 			else
1266 				bi->bi_iter.bi_sector = (sh->sector
1267 						 + rdev->data_offset);
1268 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1269 				bi->bi_opf |= REQ_NOMERGE;
1270 
1271 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1272 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1273 
1274 			if (!op_is_write(op) &&
1275 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1276 				/*
1277 				 * issuing read for a page in journal, this
1278 				 * must be preparing for prexor in rmw; read
1279 				 * the data into orig_page
1280 				 */
1281 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1282 			else
1283 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1284 			bi->bi_vcnt = 1;
1285 			bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1286 			bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1287 			bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1288 			/*
1289 			 * If this is discard request, set bi_vcnt 0. We don't
1290 			 * want to confuse SCSI because SCSI will replace payload
1291 			 */
1292 			if (op == REQ_OP_DISCARD)
1293 				bi->bi_vcnt = 0;
1294 			if (rrdev)
1295 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1296 
1297 			mddev_trace_remap(conf->mddev, bi, sh->dev[i].sector);
1298 			if (should_defer && op_is_write(op))
1299 				bio_list_add(&pending_bios, bi);
1300 			else
1301 				submit_bio_noacct(bi);
1302 		}
1303 		if (rrdev) {
1304 			if (s->syncing || s->expanding || s->expanded
1305 			    || s->replacing)
1306 				md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1307 
1308 			set_bit(STRIPE_IO_STARTED, &sh->state);
1309 
1310 			bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1311 			BUG_ON(!op_is_write(op));
1312 			rbi->bi_end_io = raid5_end_write_request;
1313 			rbi->bi_private = sh;
1314 
1315 			pr_debug("%s: for %llu schedule op %d on "
1316 				 "replacement disc %d\n",
1317 				__func__, (unsigned long long)sh->sector,
1318 				rbi->bi_opf, i);
1319 			atomic_inc(&sh->count);
1320 			if (sh != head_sh)
1321 				atomic_inc(&head_sh->count);
1322 			if (use_new_offset(conf, sh))
1323 				rbi->bi_iter.bi_sector = (sh->sector
1324 						  + rrdev->new_data_offset);
1325 			else
1326 				rbi->bi_iter.bi_sector = (sh->sector
1327 						  + rrdev->data_offset);
1328 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1329 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1330 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1331 			rbi->bi_vcnt = 1;
1332 			rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1333 			rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1334 			rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1335 			/*
1336 			 * If this is discard request, set bi_vcnt 0. We don't
1337 			 * want to confuse SCSI because SCSI will replace payload
1338 			 */
1339 			if (op == REQ_OP_DISCARD)
1340 				rbi->bi_vcnt = 0;
1341 			mddev_trace_remap(conf->mddev, rbi, sh->dev[i].sector);
1342 			if (should_defer && op_is_write(op))
1343 				bio_list_add(&pending_bios, rbi);
1344 			else
1345 				submit_bio_noacct(rbi);
1346 		}
1347 		if (!rdev && !rrdev) {
1348 			if (op_is_write(op))
1349 				set_bit(STRIPE_DEGRADED, &sh->state);
1350 			pr_debug("skip op %d on disc %d for sector %llu\n",
1351 				bi->bi_opf, i, (unsigned long long)sh->sector);
1352 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1353 			set_bit(STRIPE_HANDLE, &sh->state);
1354 		}
1355 
1356 		if (!head_sh->batch_head)
1357 			continue;
1358 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1359 				      batch_list);
1360 		if (sh != head_sh)
1361 			goto again;
1362 	}
1363 
1364 	if (should_defer && !bio_list_empty(&pending_bios))
1365 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1366 }
1367 
1368 static struct dma_async_tx_descriptor *
async_copy_data(int frombio,struct bio * bio,struct page ** page,unsigned int poff,sector_t sector,struct dma_async_tx_descriptor * tx,struct stripe_head * sh,int no_skipcopy)1369 async_copy_data(int frombio, struct bio *bio, struct page **page,
1370 	unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1371 	struct stripe_head *sh, int no_skipcopy)
1372 {
1373 	struct bio_vec bvl;
1374 	struct bvec_iter iter;
1375 	struct page *bio_page;
1376 	int page_offset;
1377 	struct async_submit_ctl submit;
1378 	enum async_tx_flags flags = 0;
1379 	struct r5conf *conf = sh->raid_conf;
1380 
1381 	if (bio->bi_iter.bi_sector >= sector)
1382 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1383 	else
1384 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1385 
1386 	if (frombio)
1387 		flags |= ASYNC_TX_FENCE;
1388 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1389 
1390 	bio_for_each_segment(bvl, bio, iter) {
1391 		int len = bvl.bv_len;
1392 		int clen;
1393 		int b_offset = 0;
1394 
1395 		if (page_offset < 0) {
1396 			b_offset = -page_offset;
1397 			page_offset += b_offset;
1398 			len -= b_offset;
1399 		}
1400 
1401 		if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1402 			clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1403 		else
1404 			clen = len;
1405 
1406 		if (clen > 0) {
1407 			b_offset += bvl.bv_offset;
1408 			bio_page = bvl.bv_page;
1409 			if (frombio) {
1410 				if (conf->skip_copy &&
1411 				    b_offset == 0 && page_offset == 0 &&
1412 				    clen == RAID5_STRIPE_SIZE(conf) &&
1413 				    !no_skipcopy)
1414 					*page = bio_page;
1415 				else
1416 					tx = async_memcpy(*page, bio_page, page_offset + poff,
1417 						  b_offset, clen, &submit);
1418 			} else
1419 				tx = async_memcpy(bio_page, *page, b_offset,
1420 						  page_offset + poff, clen, &submit);
1421 		}
1422 		/* chain the operations */
1423 		submit.depend_tx = tx;
1424 
1425 		if (clen < len) /* hit end of page */
1426 			break;
1427 		page_offset +=  len;
1428 	}
1429 
1430 	return tx;
1431 }
1432 
ops_complete_biofill(void * stripe_head_ref)1433 static void ops_complete_biofill(void *stripe_head_ref)
1434 {
1435 	struct stripe_head *sh = stripe_head_ref;
1436 	int i;
1437 	struct r5conf *conf = sh->raid_conf;
1438 
1439 	pr_debug("%s: stripe %llu\n", __func__,
1440 		(unsigned long long)sh->sector);
1441 
1442 	/* clear completed biofills */
1443 	for (i = sh->disks; i--; ) {
1444 		struct r5dev *dev = &sh->dev[i];
1445 
1446 		/* acknowledge completion of a biofill operation */
1447 		/* and check if we need to reply to a read request,
1448 		 * new R5_Wantfill requests are held off until
1449 		 * !STRIPE_BIOFILL_RUN
1450 		 */
1451 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1452 			struct bio *rbi, *rbi2;
1453 
1454 			BUG_ON(!dev->read);
1455 			rbi = dev->read;
1456 			dev->read = NULL;
1457 			while (rbi && rbi->bi_iter.bi_sector <
1458 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1459 				rbi2 = r5_next_bio(conf, rbi, dev->sector);
1460 				bio_endio(rbi);
1461 				rbi = rbi2;
1462 			}
1463 		}
1464 	}
1465 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1466 
1467 	set_bit(STRIPE_HANDLE, &sh->state);
1468 	raid5_release_stripe(sh);
1469 }
1470 
ops_run_biofill(struct stripe_head * sh)1471 static void ops_run_biofill(struct stripe_head *sh)
1472 {
1473 	struct dma_async_tx_descriptor *tx = NULL;
1474 	struct async_submit_ctl submit;
1475 	int i;
1476 	struct r5conf *conf = sh->raid_conf;
1477 
1478 	BUG_ON(sh->batch_head);
1479 	pr_debug("%s: stripe %llu\n", __func__,
1480 		(unsigned long long)sh->sector);
1481 
1482 	for (i = sh->disks; i--; ) {
1483 		struct r5dev *dev = &sh->dev[i];
1484 		if (test_bit(R5_Wantfill, &dev->flags)) {
1485 			struct bio *rbi;
1486 			spin_lock_irq(&sh->stripe_lock);
1487 			dev->read = rbi = dev->toread;
1488 			dev->toread = NULL;
1489 			spin_unlock_irq(&sh->stripe_lock);
1490 			while (rbi && rbi->bi_iter.bi_sector <
1491 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1492 				tx = async_copy_data(0, rbi, &dev->page,
1493 						     dev->offset,
1494 						     dev->sector, tx, sh, 0);
1495 				rbi = r5_next_bio(conf, rbi, dev->sector);
1496 			}
1497 		}
1498 	}
1499 
1500 	atomic_inc(&sh->count);
1501 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1502 	async_trigger_callback(&submit);
1503 }
1504 
mark_target_uptodate(struct stripe_head * sh,int target)1505 static void mark_target_uptodate(struct stripe_head *sh, int target)
1506 {
1507 	struct r5dev *tgt;
1508 
1509 	if (target < 0)
1510 		return;
1511 
1512 	tgt = &sh->dev[target];
1513 	set_bit(R5_UPTODATE, &tgt->flags);
1514 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1515 	clear_bit(R5_Wantcompute, &tgt->flags);
1516 }
1517 
ops_complete_compute(void * stripe_head_ref)1518 static void ops_complete_compute(void *stripe_head_ref)
1519 {
1520 	struct stripe_head *sh = stripe_head_ref;
1521 
1522 	pr_debug("%s: stripe %llu\n", __func__,
1523 		(unsigned long long)sh->sector);
1524 
1525 	/* mark the computed target(s) as uptodate */
1526 	mark_target_uptodate(sh, sh->ops.target);
1527 	mark_target_uptodate(sh, sh->ops.target2);
1528 
1529 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1530 	if (sh->check_state == check_state_compute_run)
1531 		sh->check_state = check_state_compute_result;
1532 	set_bit(STRIPE_HANDLE, &sh->state);
1533 	raid5_release_stripe(sh);
1534 }
1535 
1536 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_page(struct raid5_percpu * percpu,int i)1537 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1538 {
1539 	return percpu->scribble + i * percpu->scribble_obj_size;
1540 }
1541 
1542 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_conv(struct stripe_head * sh,struct raid5_percpu * percpu,int i)1543 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1544 				 struct raid5_percpu *percpu, int i)
1545 {
1546 	return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1547 }
1548 
1549 /*
1550  * Return a pointer to record offset address.
1551  */
1552 static unsigned int *
to_addr_offs(struct stripe_head * sh,struct raid5_percpu * percpu)1553 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1554 {
1555 	return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1556 }
1557 
1558 static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head * sh,struct raid5_percpu * percpu)1559 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1560 {
1561 	int disks = sh->disks;
1562 	struct page **xor_srcs = to_addr_page(percpu, 0);
1563 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1564 	int target = sh->ops.target;
1565 	struct r5dev *tgt = &sh->dev[target];
1566 	struct page *xor_dest = tgt->page;
1567 	unsigned int off_dest = tgt->offset;
1568 	int count = 0;
1569 	struct dma_async_tx_descriptor *tx;
1570 	struct async_submit_ctl submit;
1571 	int i;
1572 
1573 	BUG_ON(sh->batch_head);
1574 
1575 	pr_debug("%s: stripe %llu block: %d\n",
1576 		__func__, (unsigned long long)sh->sector, target);
1577 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1578 
1579 	for (i = disks; i--; ) {
1580 		if (i != target) {
1581 			off_srcs[count] = sh->dev[i].offset;
1582 			xor_srcs[count++] = sh->dev[i].page;
1583 		}
1584 	}
1585 
1586 	atomic_inc(&sh->count);
1587 
1588 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1589 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1590 	if (unlikely(count == 1))
1591 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1592 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1593 	else
1594 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1595 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1596 
1597 	return tx;
1598 }
1599 
1600 /* set_syndrome_sources - populate source buffers for gen_syndrome
1601  * @srcs - (struct page *) array of size sh->disks
1602  * @offs - (unsigned int) array of offset for each page
1603  * @sh - stripe_head to parse
1604  *
1605  * Populates srcs in proper layout order for the stripe and returns the
1606  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1607  * destination buffer is recorded in srcs[count] and the Q destination
1608  * is recorded in srcs[count+1]].
1609  */
set_syndrome_sources(struct page ** srcs,unsigned int * offs,struct stripe_head * sh,int srctype)1610 static int set_syndrome_sources(struct page **srcs,
1611 				unsigned int *offs,
1612 				struct stripe_head *sh,
1613 				int srctype)
1614 {
1615 	int disks = sh->disks;
1616 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1617 	int d0_idx = raid6_d0(sh);
1618 	int count;
1619 	int i;
1620 
1621 	for (i = 0; i < disks; i++)
1622 		srcs[i] = NULL;
1623 
1624 	count = 0;
1625 	i = d0_idx;
1626 	do {
1627 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1628 		struct r5dev *dev = &sh->dev[i];
1629 
1630 		if (i == sh->qd_idx || i == sh->pd_idx ||
1631 		    (srctype == SYNDROME_SRC_ALL) ||
1632 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1633 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1634 		      test_bit(R5_InJournal, &dev->flags))) ||
1635 		    (srctype == SYNDROME_SRC_WRITTEN &&
1636 		     (dev->written ||
1637 		      test_bit(R5_InJournal, &dev->flags)))) {
1638 			if (test_bit(R5_InJournal, &dev->flags))
1639 				srcs[slot] = sh->dev[i].orig_page;
1640 			else
1641 				srcs[slot] = sh->dev[i].page;
1642 			/*
1643 			 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1644 			 * not shared page. In that case, dev[i].offset
1645 			 * is 0.
1646 			 */
1647 			offs[slot] = sh->dev[i].offset;
1648 		}
1649 		i = raid6_next_disk(i, disks);
1650 	} while (i != d0_idx);
1651 
1652 	return syndrome_disks;
1653 }
1654 
1655 static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head * sh,struct raid5_percpu * percpu)1656 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1657 {
1658 	int disks = sh->disks;
1659 	struct page **blocks = to_addr_page(percpu, 0);
1660 	unsigned int *offs = to_addr_offs(sh, percpu);
1661 	int target;
1662 	int qd_idx = sh->qd_idx;
1663 	struct dma_async_tx_descriptor *tx;
1664 	struct async_submit_ctl submit;
1665 	struct r5dev *tgt;
1666 	struct page *dest;
1667 	unsigned int dest_off;
1668 	int i;
1669 	int count;
1670 
1671 	BUG_ON(sh->batch_head);
1672 	if (sh->ops.target < 0)
1673 		target = sh->ops.target2;
1674 	else if (sh->ops.target2 < 0)
1675 		target = sh->ops.target;
1676 	else
1677 		/* we should only have one valid target */
1678 		BUG();
1679 	BUG_ON(target < 0);
1680 	pr_debug("%s: stripe %llu block: %d\n",
1681 		__func__, (unsigned long long)sh->sector, target);
1682 
1683 	tgt = &sh->dev[target];
1684 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1685 	dest = tgt->page;
1686 	dest_off = tgt->offset;
1687 
1688 	atomic_inc(&sh->count);
1689 
1690 	if (target == qd_idx) {
1691 		count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1692 		blocks[count] = NULL; /* regenerating p is not necessary */
1693 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1694 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1695 				  ops_complete_compute, sh,
1696 				  to_addr_conv(sh, percpu, 0));
1697 		tx = async_gen_syndrome(blocks, offs, count+2,
1698 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1699 	} else {
1700 		/* Compute any data- or p-drive using XOR */
1701 		count = 0;
1702 		for (i = disks; i-- ; ) {
1703 			if (i == target || i == qd_idx)
1704 				continue;
1705 			offs[count] = sh->dev[i].offset;
1706 			blocks[count++] = sh->dev[i].page;
1707 		}
1708 
1709 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1710 				  NULL, ops_complete_compute, sh,
1711 				  to_addr_conv(sh, percpu, 0));
1712 		tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1713 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1714 	}
1715 
1716 	return tx;
1717 }
1718 
1719 static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head * sh,struct raid5_percpu * percpu)1720 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1721 {
1722 	int i, count, disks = sh->disks;
1723 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1724 	int d0_idx = raid6_d0(sh);
1725 	int faila = -1, failb = -1;
1726 	int target = sh->ops.target;
1727 	int target2 = sh->ops.target2;
1728 	struct r5dev *tgt = &sh->dev[target];
1729 	struct r5dev *tgt2 = &sh->dev[target2];
1730 	struct dma_async_tx_descriptor *tx;
1731 	struct page **blocks = to_addr_page(percpu, 0);
1732 	unsigned int *offs = to_addr_offs(sh, percpu);
1733 	struct async_submit_ctl submit;
1734 
1735 	BUG_ON(sh->batch_head);
1736 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1737 		 __func__, (unsigned long long)sh->sector, target, target2);
1738 	BUG_ON(target < 0 || target2 < 0);
1739 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1740 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1741 
1742 	/* we need to open-code set_syndrome_sources to handle the
1743 	 * slot number conversion for 'faila' and 'failb'
1744 	 */
1745 	for (i = 0; i < disks ; i++) {
1746 		offs[i] = 0;
1747 		blocks[i] = NULL;
1748 	}
1749 	count = 0;
1750 	i = d0_idx;
1751 	do {
1752 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1753 
1754 		offs[slot] = sh->dev[i].offset;
1755 		blocks[slot] = sh->dev[i].page;
1756 
1757 		if (i == target)
1758 			faila = slot;
1759 		if (i == target2)
1760 			failb = slot;
1761 		i = raid6_next_disk(i, disks);
1762 	} while (i != d0_idx);
1763 
1764 	BUG_ON(faila == failb);
1765 	if (failb < faila)
1766 		swap(faila, failb);
1767 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1768 		 __func__, (unsigned long long)sh->sector, faila, failb);
1769 
1770 	atomic_inc(&sh->count);
1771 
1772 	if (failb == syndrome_disks+1) {
1773 		/* Q disk is one of the missing disks */
1774 		if (faila == syndrome_disks) {
1775 			/* Missing P+Q, just recompute */
1776 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1777 					  ops_complete_compute, sh,
1778 					  to_addr_conv(sh, percpu, 0));
1779 			return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1780 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1781 						  &submit);
1782 		} else {
1783 			struct page *dest;
1784 			unsigned int dest_off;
1785 			int data_target;
1786 			int qd_idx = sh->qd_idx;
1787 
1788 			/* Missing D+Q: recompute D from P, then recompute Q */
1789 			if (target == qd_idx)
1790 				data_target = target2;
1791 			else
1792 				data_target = target;
1793 
1794 			count = 0;
1795 			for (i = disks; i-- ; ) {
1796 				if (i == data_target || i == qd_idx)
1797 					continue;
1798 				offs[count] = sh->dev[i].offset;
1799 				blocks[count++] = sh->dev[i].page;
1800 			}
1801 			dest = sh->dev[data_target].page;
1802 			dest_off = sh->dev[data_target].offset;
1803 			init_async_submit(&submit,
1804 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1805 					  NULL, NULL, NULL,
1806 					  to_addr_conv(sh, percpu, 0));
1807 			tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1808 				       RAID5_STRIPE_SIZE(sh->raid_conf),
1809 				       &submit);
1810 
1811 			count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1812 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1813 					  ops_complete_compute, sh,
1814 					  to_addr_conv(sh, percpu, 0));
1815 			return async_gen_syndrome(blocks, offs, count+2,
1816 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1817 						  &submit);
1818 		}
1819 	} else {
1820 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1821 				  ops_complete_compute, sh,
1822 				  to_addr_conv(sh, percpu, 0));
1823 		if (failb == syndrome_disks) {
1824 			/* We're missing D+P. */
1825 			return async_raid6_datap_recov(syndrome_disks+2,
1826 						RAID5_STRIPE_SIZE(sh->raid_conf),
1827 						faila,
1828 						blocks, offs, &submit);
1829 		} else {
1830 			/* We're missing D+D. */
1831 			return async_raid6_2data_recov(syndrome_disks+2,
1832 						RAID5_STRIPE_SIZE(sh->raid_conf),
1833 						faila, failb,
1834 						blocks, offs, &submit);
1835 		}
1836 	}
1837 }
1838 
ops_complete_prexor(void * stripe_head_ref)1839 static void ops_complete_prexor(void *stripe_head_ref)
1840 {
1841 	struct stripe_head *sh = stripe_head_ref;
1842 
1843 	pr_debug("%s: stripe %llu\n", __func__,
1844 		(unsigned long long)sh->sector);
1845 
1846 	if (r5c_is_writeback(sh->raid_conf->log))
1847 		/*
1848 		 * raid5-cache write back uses orig_page during prexor.
1849 		 * After prexor, it is time to free orig_page
1850 		 */
1851 		r5c_release_extra_page(sh);
1852 }
1853 
1854 static struct dma_async_tx_descriptor *
ops_run_prexor5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1855 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1856 		struct dma_async_tx_descriptor *tx)
1857 {
1858 	int disks = sh->disks;
1859 	struct page **xor_srcs = to_addr_page(percpu, 0);
1860 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1861 	int count = 0, pd_idx = sh->pd_idx, i;
1862 	struct async_submit_ctl submit;
1863 
1864 	/* existing parity data subtracted */
1865 	unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1866 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1867 
1868 	BUG_ON(sh->batch_head);
1869 	pr_debug("%s: stripe %llu\n", __func__,
1870 		(unsigned long long)sh->sector);
1871 
1872 	for (i = disks; i--; ) {
1873 		struct r5dev *dev = &sh->dev[i];
1874 		/* Only process blocks that are known to be uptodate */
1875 		if (test_bit(R5_InJournal, &dev->flags)) {
1876 			/*
1877 			 * For this case, PAGE_SIZE must be equal to 4KB and
1878 			 * page offset is zero.
1879 			 */
1880 			off_srcs[count] = dev->offset;
1881 			xor_srcs[count++] = dev->orig_page;
1882 		} else if (test_bit(R5_Wantdrain, &dev->flags)) {
1883 			off_srcs[count] = dev->offset;
1884 			xor_srcs[count++] = dev->page;
1885 		}
1886 	}
1887 
1888 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1889 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1890 	tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1891 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1892 
1893 	return tx;
1894 }
1895 
1896 static struct dma_async_tx_descriptor *
ops_run_prexor6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1897 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1898 		struct dma_async_tx_descriptor *tx)
1899 {
1900 	struct page **blocks = to_addr_page(percpu, 0);
1901 	unsigned int *offs = to_addr_offs(sh, percpu);
1902 	int count;
1903 	struct async_submit_ctl submit;
1904 
1905 	pr_debug("%s: stripe %llu\n", __func__,
1906 		(unsigned long long)sh->sector);
1907 
1908 	count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1909 
1910 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1911 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1912 	tx = async_gen_syndrome(blocks, offs, count+2,
1913 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1914 
1915 	return tx;
1916 }
1917 
1918 static struct dma_async_tx_descriptor *
ops_run_biodrain(struct stripe_head * sh,struct dma_async_tx_descriptor * tx)1919 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1920 {
1921 	struct r5conf *conf = sh->raid_conf;
1922 	int disks = sh->disks;
1923 	int i;
1924 	struct stripe_head *head_sh = sh;
1925 
1926 	pr_debug("%s: stripe %llu\n", __func__,
1927 		(unsigned long long)sh->sector);
1928 
1929 	for (i = disks; i--; ) {
1930 		struct r5dev *dev;
1931 		struct bio *chosen;
1932 
1933 		sh = head_sh;
1934 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1935 			struct bio *wbi;
1936 
1937 again:
1938 			dev = &sh->dev[i];
1939 			/*
1940 			 * clear R5_InJournal, so when rewriting a page in
1941 			 * journal, it is not skipped by r5l_log_stripe()
1942 			 */
1943 			clear_bit(R5_InJournal, &dev->flags);
1944 			spin_lock_irq(&sh->stripe_lock);
1945 			chosen = dev->towrite;
1946 			dev->towrite = NULL;
1947 			sh->overwrite_disks = 0;
1948 			BUG_ON(dev->written);
1949 			wbi = dev->written = chosen;
1950 			spin_unlock_irq(&sh->stripe_lock);
1951 			WARN_ON(dev->page != dev->orig_page);
1952 
1953 			while (wbi && wbi->bi_iter.bi_sector <
1954 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1955 				if (wbi->bi_opf & REQ_FUA)
1956 					set_bit(R5_WantFUA, &dev->flags);
1957 				if (wbi->bi_opf & REQ_SYNC)
1958 					set_bit(R5_SyncIO, &dev->flags);
1959 				if (bio_op(wbi) == REQ_OP_DISCARD)
1960 					set_bit(R5_Discard, &dev->flags);
1961 				else {
1962 					tx = async_copy_data(1, wbi, &dev->page,
1963 							     dev->offset,
1964 							     dev->sector, tx, sh,
1965 							     r5c_is_writeback(conf->log));
1966 					if (dev->page != dev->orig_page &&
1967 					    !r5c_is_writeback(conf->log)) {
1968 						set_bit(R5_SkipCopy, &dev->flags);
1969 						clear_bit(R5_UPTODATE, &dev->flags);
1970 						clear_bit(R5_OVERWRITE, &dev->flags);
1971 					}
1972 				}
1973 				wbi = r5_next_bio(conf, wbi, dev->sector);
1974 			}
1975 
1976 			if (head_sh->batch_head) {
1977 				sh = list_first_entry(&sh->batch_list,
1978 						      struct stripe_head,
1979 						      batch_list);
1980 				if (sh == head_sh)
1981 					continue;
1982 				goto again;
1983 			}
1984 		}
1985 	}
1986 
1987 	return tx;
1988 }
1989 
ops_complete_reconstruct(void * stripe_head_ref)1990 static void ops_complete_reconstruct(void *stripe_head_ref)
1991 {
1992 	struct stripe_head *sh = stripe_head_ref;
1993 	int disks = sh->disks;
1994 	int pd_idx = sh->pd_idx;
1995 	int qd_idx = sh->qd_idx;
1996 	int i;
1997 	bool fua = false, sync = false, discard = false;
1998 
1999 	pr_debug("%s: stripe %llu\n", __func__,
2000 		(unsigned long long)sh->sector);
2001 
2002 	for (i = disks; i--; ) {
2003 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
2004 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
2005 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
2006 	}
2007 
2008 	for (i = disks; i--; ) {
2009 		struct r5dev *dev = &sh->dev[i];
2010 
2011 		if (dev->written || i == pd_idx || i == qd_idx) {
2012 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
2013 				set_bit(R5_UPTODATE, &dev->flags);
2014 				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
2015 					set_bit(R5_Expanded, &dev->flags);
2016 			}
2017 			if (fua)
2018 				set_bit(R5_WantFUA, &dev->flags);
2019 			if (sync)
2020 				set_bit(R5_SyncIO, &dev->flags);
2021 		}
2022 	}
2023 
2024 	if (sh->reconstruct_state == reconstruct_state_drain_run)
2025 		sh->reconstruct_state = reconstruct_state_drain_result;
2026 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
2027 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
2028 	else {
2029 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
2030 		sh->reconstruct_state = reconstruct_state_result;
2031 	}
2032 
2033 	set_bit(STRIPE_HANDLE, &sh->state);
2034 	raid5_release_stripe(sh);
2035 }
2036 
2037 static void
ops_run_reconstruct5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)2038 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
2039 		     struct dma_async_tx_descriptor *tx)
2040 {
2041 	int disks = sh->disks;
2042 	struct page **xor_srcs;
2043 	unsigned int *off_srcs;
2044 	struct async_submit_ctl submit;
2045 	int count, pd_idx = sh->pd_idx, i;
2046 	struct page *xor_dest;
2047 	unsigned int off_dest;
2048 	int prexor = 0;
2049 	unsigned long flags;
2050 	int j = 0;
2051 	struct stripe_head *head_sh = sh;
2052 	int last_stripe;
2053 
2054 	pr_debug("%s: stripe %llu\n", __func__,
2055 		(unsigned long long)sh->sector);
2056 
2057 	for (i = 0; i < sh->disks; i++) {
2058 		if (pd_idx == i)
2059 			continue;
2060 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2061 			break;
2062 	}
2063 	if (i >= sh->disks) {
2064 		atomic_inc(&sh->count);
2065 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2066 		ops_complete_reconstruct(sh);
2067 		return;
2068 	}
2069 again:
2070 	count = 0;
2071 	xor_srcs = to_addr_page(percpu, j);
2072 	off_srcs = to_addr_offs(sh, percpu);
2073 	/* check if prexor is active which means only process blocks
2074 	 * that are part of a read-modify-write (written)
2075 	 */
2076 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2077 		prexor = 1;
2078 		off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2079 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2080 		for (i = disks; i--; ) {
2081 			struct r5dev *dev = &sh->dev[i];
2082 			if (head_sh->dev[i].written ||
2083 			    test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2084 				off_srcs[count] = dev->offset;
2085 				xor_srcs[count++] = dev->page;
2086 			}
2087 		}
2088 	} else {
2089 		xor_dest = sh->dev[pd_idx].page;
2090 		off_dest = sh->dev[pd_idx].offset;
2091 		for (i = disks; i--; ) {
2092 			struct r5dev *dev = &sh->dev[i];
2093 			if (i != pd_idx) {
2094 				off_srcs[count] = dev->offset;
2095 				xor_srcs[count++] = dev->page;
2096 			}
2097 		}
2098 	}
2099 
2100 	/* 1/ if we prexor'd then the dest is reused as a source
2101 	 * 2/ if we did not prexor then we are redoing the parity
2102 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2103 	 * for the synchronous xor case
2104 	 */
2105 	last_stripe = !head_sh->batch_head ||
2106 		list_first_entry(&sh->batch_list,
2107 				 struct stripe_head, batch_list) == head_sh;
2108 	if (last_stripe) {
2109 		flags = ASYNC_TX_ACK |
2110 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2111 
2112 		atomic_inc(&head_sh->count);
2113 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2114 				  to_addr_conv(sh, percpu, j));
2115 	} else {
2116 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2117 		init_async_submit(&submit, flags, tx, NULL, NULL,
2118 				  to_addr_conv(sh, percpu, j));
2119 	}
2120 
2121 	if (unlikely(count == 1))
2122 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2123 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2124 	else
2125 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2126 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2127 	if (!last_stripe) {
2128 		j++;
2129 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2130 				      batch_list);
2131 		goto again;
2132 	}
2133 }
2134 
2135 static void
ops_run_reconstruct6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)2136 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2137 		     struct dma_async_tx_descriptor *tx)
2138 {
2139 	struct async_submit_ctl submit;
2140 	struct page **blocks;
2141 	unsigned int *offs;
2142 	int count, i, j = 0;
2143 	struct stripe_head *head_sh = sh;
2144 	int last_stripe;
2145 	int synflags;
2146 	unsigned long txflags;
2147 
2148 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2149 
2150 	for (i = 0; i < sh->disks; i++) {
2151 		if (sh->pd_idx == i || sh->qd_idx == i)
2152 			continue;
2153 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2154 			break;
2155 	}
2156 	if (i >= sh->disks) {
2157 		atomic_inc(&sh->count);
2158 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2159 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2160 		ops_complete_reconstruct(sh);
2161 		return;
2162 	}
2163 
2164 again:
2165 	blocks = to_addr_page(percpu, j);
2166 	offs = to_addr_offs(sh, percpu);
2167 
2168 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2169 		synflags = SYNDROME_SRC_WRITTEN;
2170 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2171 	} else {
2172 		synflags = SYNDROME_SRC_ALL;
2173 		txflags = ASYNC_TX_ACK;
2174 	}
2175 
2176 	count = set_syndrome_sources(blocks, offs, sh, synflags);
2177 	last_stripe = !head_sh->batch_head ||
2178 		list_first_entry(&sh->batch_list,
2179 				 struct stripe_head, batch_list) == head_sh;
2180 
2181 	if (last_stripe) {
2182 		atomic_inc(&head_sh->count);
2183 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2184 				  head_sh, to_addr_conv(sh, percpu, j));
2185 	} else
2186 		init_async_submit(&submit, 0, tx, NULL, NULL,
2187 				  to_addr_conv(sh, percpu, j));
2188 	tx = async_gen_syndrome(blocks, offs, count+2,
2189 			RAID5_STRIPE_SIZE(sh->raid_conf),  &submit);
2190 	if (!last_stripe) {
2191 		j++;
2192 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2193 				      batch_list);
2194 		goto again;
2195 	}
2196 }
2197 
ops_complete_check(void * stripe_head_ref)2198 static void ops_complete_check(void *stripe_head_ref)
2199 {
2200 	struct stripe_head *sh = stripe_head_ref;
2201 
2202 	pr_debug("%s: stripe %llu\n", __func__,
2203 		(unsigned long long)sh->sector);
2204 
2205 	sh->check_state = check_state_check_result;
2206 	set_bit(STRIPE_HANDLE, &sh->state);
2207 	raid5_release_stripe(sh);
2208 }
2209 
ops_run_check_p(struct stripe_head * sh,struct raid5_percpu * percpu)2210 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2211 {
2212 	int disks = sh->disks;
2213 	int pd_idx = sh->pd_idx;
2214 	int qd_idx = sh->qd_idx;
2215 	struct page *xor_dest;
2216 	unsigned int off_dest;
2217 	struct page **xor_srcs = to_addr_page(percpu, 0);
2218 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
2219 	struct dma_async_tx_descriptor *tx;
2220 	struct async_submit_ctl submit;
2221 	int count;
2222 	int i;
2223 
2224 	pr_debug("%s: stripe %llu\n", __func__,
2225 		(unsigned long long)sh->sector);
2226 
2227 	BUG_ON(sh->batch_head);
2228 	count = 0;
2229 	xor_dest = sh->dev[pd_idx].page;
2230 	off_dest = sh->dev[pd_idx].offset;
2231 	off_srcs[count] = off_dest;
2232 	xor_srcs[count++] = xor_dest;
2233 	for (i = disks; i--; ) {
2234 		if (i == pd_idx || i == qd_idx)
2235 			continue;
2236 		off_srcs[count] = sh->dev[i].offset;
2237 		xor_srcs[count++] = sh->dev[i].page;
2238 	}
2239 
2240 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2241 			  to_addr_conv(sh, percpu, 0));
2242 	tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2243 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2244 			   &sh->ops.zero_sum_result, &submit);
2245 
2246 	atomic_inc(&sh->count);
2247 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2248 	tx = async_trigger_callback(&submit);
2249 }
2250 
ops_run_check_pq(struct stripe_head * sh,struct raid5_percpu * percpu,int checkp)2251 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2252 {
2253 	struct page **srcs = to_addr_page(percpu, 0);
2254 	unsigned int *offs = to_addr_offs(sh, percpu);
2255 	struct async_submit_ctl submit;
2256 	int count;
2257 
2258 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2259 		(unsigned long long)sh->sector, checkp);
2260 
2261 	BUG_ON(sh->batch_head);
2262 	count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2263 	if (!checkp)
2264 		srcs[count] = NULL;
2265 
2266 	atomic_inc(&sh->count);
2267 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2268 			  sh, to_addr_conv(sh, percpu, 0));
2269 	async_syndrome_val(srcs, offs, count+2,
2270 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2271 			   &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2272 }
2273 
raid_run_ops(struct stripe_head * sh,unsigned long ops_request)2274 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2275 {
2276 	int overlap_clear = 0, i, disks = sh->disks;
2277 	struct dma_async_tx_descriptor *tx = NULL;
2278 	struct r5conf *conf = sh->raid_conf;
2279 	int level = conf->level;
2280 	struct raid5_percpu *percpu;
2281 
2282 	local_lock(&conf->percpu->lock);
2283 	percpu = this_cpu_ptr(conf->percpu);
2284 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2285 		ops_run_biofill(sh);
2286 		overlap_clear++;
2287 	}
2288 
2289 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2290 		if (level < 6)
2291 			tx = ops_run_compute5(sh, percpu);
2292 		else {
2293 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2294 				tx = ops_run_compute6_1(sh, percpu);
2295 			else
2296 				tx = ops_run_compute6_2(sh, percpu);
2297 		}
2298 		/* terminate the chain if reconstruct is not set to be run */
2299 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2300 			async_tx_ack(tx);
2301 	}
2302 
2303 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2304 		if (level < 6)
2305 			tx = ops_run_prexor5(sh, percpu, tx);
2306 		else
2307 			tx = ops_run_prexor6(sh, percpu, tx);
2308 	}
2309 
2310 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2311 		tx = ops_run_partial_parity(sh, percpu, tx);
2312 
2313 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2314 		tx = ops_run_biodrain(sh, tx);
2315 		overlap_clear++;
2316 	}
2317 
2318 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2319 		if (level < 6)
2320 			ops_run_reconstruct5(sh, percpu, tx);
2321 		else
2322 			ops_run_reconstruct6(sh, percpu, tx);
2323 	}
2324 
2325 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2326 		if (sh->check_state == check_state_run)
2327 			ops_run_check_p(sh, percpu);
2328 		else if (sh->check_state == check_state_run_q)
2329 			ops_run_check_pq(sh, percpu, 0);
2330 		else if (sh->check_state == check_state_run_pq)
2331 			ops_run_check_pq(sh, percpu, 1);
2332 		else
2333 			BUG();
2334 	}
2335 
2336 	if (overlap_clear && !sh->batch_head) {
2337 		for (i = disks; i--; ) {
2338 			struct r5dev *dev = &sh->dev[i];
2339 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2340 				wake_up_bit(&dev->flags, R5_Overlap);
2341 		}
2342 	}
2343 	local_unlock(&conf->percpu->lock);
2344 }
2345 
free_stripe(struct kmem_cache * sc,struct stripe_head * sh)2346 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2347 {
2348 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2349 	kfree(sh->pages);
2350 #endif
2351 	if (sh->ppl_page)
2352 		__free_page(sh->ppl_page);
2353 	kmem_cache_free(sc, sh);
2354 }
2355 
alloc_stripe(struct kmem_cache * sc,gfp_t gfp,int disks,struct r5conf * conf)2356 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2357 	int disks, struct r5conf *conf)
2358 {
2359 	struct stripe_head *sh;
2360 
2361 	sh = kmem_cache_zalloc(sc, gfp);
2362 	if (sh) {
2363 		spin_lock_init(&sh->stripe_lock);
2364 		spin_lock_init(&sh->batch_lock);
2365 		INIT_LIST_HEAD(&sh->batch_list);
2366 		INIT_LIST_HEAD(&sh->lru);
2367 		INIT_LIST_HEAD(&sh->r5c);
2368 		INIT_LIST_HEAD(&sh->log_list);
2369 		atomic_set(&sh->count, 1);
2370 		sh->raid_conf = conf;
2371 		sh->log_start = MaxSector;
2372 
2373 		if (raid5_has_ppl(conf)) {
2374 			sh->ppl_page = alloc_page(gfp);
2375 			if (!sh->ppl_page) {
2376 				free_stripe(sc, sh);
2377 				return NULL;
2378 			}
2379 		}
2380 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2381 		if (init_stripe_shared_pages(sh, conf, disks)) {
2382 			free_stripe(sc, sh);
2383 			return NULL;
2384 		}
2385 #endif
2386 	}
2387 	return sh;
2388 }
grow_one_stripe(struct r5conf * conf,gfp_t gfp)2389 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2390 {
2391 	struct stripe_head *sh;
2392 
2393 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2394 	if (!sh)
2395 		return 0;
2396 
2397 	if (grow_buffers(sh, gfp)) {
2398 		shrink_buffers(sh);
2399 		free_stripe(conf->slab_cache, sh);
2400 		return 0;
2401 	}
2402 	sh->hash_lock_index =
2403 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2404 	/* we just created an active stripe so... */
2405 	atomic_inc(&conf->active_stripes);
2406 
2407 	raid5_release_stripe(sh);
2408 	WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes + 1);
2409 	return 1;
2410 }
2411 
grow_stripes(struct r5conf * conf,int num)2412 static int grow_stripes(struct r5conf *conf, int num)
2413 {
2414 	struct kmem_cache *sc;
2415 	size_t namelen = sizeof(conf->cache_name[0]);
2416 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2417 
2418 	if (mddev_is_dm(conf->mddev))
2419 		snprintf(conf->cache_name[0], namelen,
2420 			"raid%d-%p", conf->level, conf->mddev);
2421 	else
2422 		snprintf(conf->cache_name[0], namelen,
2423 			"raid%d-%s", conf->level, mdname(conf->mddev));
2424 	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2425 
2426 	conf->active_name = 0;
2427 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2428 			       struct_size_t(struct stripe_head, dev, devs),
2429 			       0, 0, NULL);
2430 	if (!sc)
2431 		return 1;
2432 	conf->slab_cache = sc;
2433 	conf->pool_size = devs;
2434 	while (num--)
2435 		if (!grow_one_stripe(conf, GFP_KERNEL))
2436 			return 1;
2437 
2438 	return 0;
2439 }
2440 
2441 /**
2442  * scribble_alloc - allocate percpu scribble buffer for required size
2443  *		    of the scribble region
2444  * @percpu: from for_each_present_cpu() of the caller
2445  * @num: total number of disks in the array
2446  * @cnt: scribble objs count for required size of the scribble region
2447  *
2448  * The scribble buffer size must be enough to contain:
2449  * 1/ a struct page pointer for each device in the array +2
2450  * 2/ room to convert each entry in (1) to its corresponding dma
2451  *    (dma_map_page()) or page (page_address()) address.
2452  *
2453  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2454  * calculate over all devices (not just the data blocks), using zeros in place
2455  * of the P and Q blocks.
2456  */
scribble_alloc(struct raid5_percpu * percpu,int num,int cnt)2457 static int scribble_alloc(struct raid5_percpu *percpu,
2458 			  int num, int cnt)
2459 {
2460 	size_t obj_size =
2461 		sizeof(struct page *) * (num + 2) +
2462 		sizeof(addr_conv_t) * (num + 2) +
2463 		sizeof(unsigned int) * (num + 2);
2464 	void *scribble;
2465 
2466 	/*
2467 	 * If here is in raid array suspend context, it is in memalloc noio
2468 	 * context as well, there is no potential recursive memory reclaim
2469 	 * I/Os with the GFP_KERNEL flag.
2470 	 */
2471 	scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2472 	if (!scribble)
2473 		return -ENOMEM;
2474 
2475 	kvfree(percpu->scribble);
2476 
2477 	percpu->scribble = scribble;
2478 	percpu->scribble_obj_size = obj_size;
2479 	return 0;
2480 }
2481 
resize_chunks(struct r5conf * conf,int new_disks,int new_sectors)2482 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2483 {
2484 	unsigned long cpu;
2485 	int err = 0;
2486 
2487 	/* Never shrink. */
2488 	if (conf->scribble_disks >= new_disks &&
2489 	    conf->scribble_sectors >= new_sectors)
2490 		return 0;
2491 
2492 	raid5_quiesce(conf->mddev, true);
2493 	cpus_read_lock();
2494 
2495 	for_each_present_cpu(cpu) {
2496 		struct raid5_percpu *percpu;
2497 
2498 		percpu = per_cpu_ptr(conf->percpu, cpu);
2499 		err = scribble_alloc(percpu, new_disks,
2500 				     new_sectors / RAID5_STRIPE_SECTORS(conf));
2501 		if (err)
2502 			break;
2503 	}
2504 
2505 	cpus_read_unlock();
2506 	raid5_quiesce(conf->mddev, false);
2507 
2508 	if (!err) {
2509 		conf->scribble_disks = new_disks;
2510 		conf->scribble_sectors = new_sectors;
2511 	}
2512 	return err;
2513 }
2514 
resize_stripes(struct r5conf * conf,int newsize)2515 static int resize_stripes(struct r5conf *conf, int newsize)
2516 {
2517 	/* Make all the stripes able to hold 'newsize' devices.
2518 	 * New slots in each stripe get 'page' set to a new page.
2519 	 *
2520 	 * This happens in stages:
2521 	 * 1/ create a new kmem_cache and allocate the required number of
2522 	 *    stripe_heads.
2523 	 * 2/ gather all the old stripe_heads and transfer the pages across
2524 	 *    to the new stripe_heads.  This will have the side effect of
2525 	 *    freezing the array as once all stripe_heads have been collected,
2526 	 *    no IO will be possible.  Old stripe heads are freed once their
2527 	 *    pages have been transferred over, and the old kmem_cache is
2528 	 *    freed when all stripes are done.
2529 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2530 	 *    we simple return a failure status - no need to clean anything up.
2531 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2532 	 *    If this fails, we don't bother trying the shrink the
2533 	 *    stripe_heads down again, we just leave them as they are.
2534 	 *    As each stripe_head is processed the new one is released into
2535 	 *    active service.
2536 	 *
2537 	 * Once step2 is started, we cannot afford to wait for a write,
2538 	 * so we use GFP_NOIO allocations.
2539 	 */
2540 	struct stripe_head *osh, *nsh;
2541 	LIST_HEAD(newstripes);
2542 	struct disk_info *ndisks;
2543 	int err = 0;
2544 	struct kmem_cache *sc;
2545 	int i;
2546 	int hash, cnt;
2547 
2548 	md_allow_write(conf->mddev);
2549 
2550 	/* Step 1 */
2551 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2552 			       struct_size_t(struct stripe_head, dev, newsize),
2553 			       0, 0, NULL);
2554 	if (!sc)
2555 		return -ENOMEM;
2556 
2557 	/* Need to ensure auto-resizing doesn't interfere */
2558 	mutex_lock(&conf->cache_size_mutex);
2559 
2560 	for (i = conf->max_nr_stripes; i; i--) {
2561 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2562 		if (!nsh)
2563 			break;
2564 
2565 		list_add(&nsh->lru, &newstripes);
2566 	}
2567 	if (i) {
2568 		/* didn't get enough, give up */
2569 		while (!list_empty(&newstripes)) {
2570 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2571 			list_del(&nsh->lru);
2572 			free_stripe(sc, nsh);
2573 		}
2574 		kmem_cache_destroy(sc);
2575 		mutex_unlock(&conf->cache_size_mutex);
2576 		return -ENOMEM;
2577 	}
2578 	/* Step 2 - Must use GFP_NOIO now.
2579 	 * OK, we have enough stripes, start collecting inactive
2580 	 * stripes and copying them over
2581 	 */
2582 	hash = 0;
2583 	cnt = 0;
2584 	list_for_each_entry(nsh, &newstripes, lru) {
2585 		lock_device_hash_lock(conf, hash);
2586 		wait_event_cmd(conf->wait_for_stripe,
2587 				    !list_empty(conf->inactive_list + hash),
2588 				    unlock_device_hash_lock(conf, hash),
2589 				    lock_device_hash_lock(conf, hash));
2590 		osh = get_free_stripe(conf, hash);
2591 		unlock_device_hash_lock(conf, hash);
2592 
2593 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2594 	for (i = 0; i < osh->nr_pages; i++) {
2595 		nsh->pages[i] = osh->pages[i];
2596 		osh->pages[i] = NULL;
2597 	}
2598 #endif
2599 		for(i=0; i<conf->pool_size; i++) {
2600 			nsh->dev[i].page = osh->dev[i].page;
2601 			nsh->dev[i].orig_page = osh->dev[i].page;
2602 			nsh->dev[i].offset = osh->dev[i].offset;
2603 		}
2604 		nsh->hash_lock_index = hash;
2605 		free_stripe(conf->slab_cache, osh);
2606 		cnt++;
2607 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2608 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2609 			hash++;
2610 			cnt = 0;
2611 		}
2612 	}
2613 	kmem_cache_destroy(conf->slab_cache);
2614 
2615 	/* Step 3.
2616 	 * At this point, we are holding all the stripes so the array
2617 	 * is completely stalled, so now is a good time to resize
2618 	 * conf->disks and the scribble region
2619 	 */
2620 	ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2621 	if (ndisks) {
2622 		for (i = 0; i < conf->pool_size; i++)
2623 			ndisks[i] = conf->disks[i];
2624 
2625 		for (i = conf->pool_size; i < newsize; i++) {
2626 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2627 			if (!ndisks[i].extra_page)
2628 				err = -ENOMEM;
2629 		}
2630 
2631 		if (err) {
2632 			for (i = conf->pool_size; i < newsize; i++)
2633 				if (ndisks[i].extra_page)
2634 					put_page(ndisks[i].extra_page);
2635 			kfree(ndisks);
2636 		} else {
2637 			kfree(conf->disks);
2638 			conf->disks = ndisks;
2639 		}
2640 	} else
2641 		err = -ENOMEM;
2642 
2643 	conf->slab_cache = sc;
2644 	conf->active_name = 1-conf->active_name;
2645 
2646 	/* Step 4, return new stripes to service */
2647 	while(!list_empty(&newstripes)) {
2648 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2649 		list_del_init(&nsh->lru);
2650 
2651 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2652 		for (i = 0; i < nsh->nr_pages; i++) {
2653 			if (nsh->pages[i])
2654 				continue;
2655 			nsh->pages[i] = alloc_page(GFP_NOIO);
2656 			if (!nsh->pages[i])
2657 				err = -ENOMEM;
2658 		}
2659 
2660 		for (i = conf->raid_disks; i < newsize; i++) {
2661 			if (nsh->dev[i].page)
2662 				continue;
2663 			nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2664 			nsh->dev[i].orig_page = nsh->dev[i].page;
2665 			nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2666 		}
2667 #else
2668 		for (i=conf->raid_disks; i < newsize; i++)
2669 			if (nsh->dev[i].page == NULL) {
2670 				struct page *p = alloc_page(GFP_NOIO);
2671 				nsh->dev[i].page = p;
2672 				nsh->dev[i].orig_page = p;
2673 				nsh->dev[i].offset = 0;
2674 				if (!p)
2675 					err = -ENOMEM;
2676 			}
2677 #endif
2678 		raid5_release_stripe(nsh);
2679 	}
2680 	/* critical section pass, GFP_NOIO no longer needed */
2681 
2682 	if (!err)
2683 		conf->pool_size = newsize;
2684 	mutex_unlock(&conf->cache_size_mutex);
2685 
2686 	return err;
2687 }
2688 
drop_one_stripe(struct r5conf * conf)2689 static int drop_one_stripe(struct r5conf *conf)
2690 {
2691 	struct stripe_head *sh;
2692 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2693 
2694 	spin_lock_irq(conf->hash_locks + hash);
2695 	sh = get_free_stripe(conf, hash);
2696 	spin_unlock_irq(conf->hash_locks + hash);
2697 	if (!sh)
2698 		return 0;
2699 	BUG_ON(atomic_read(&sh->count));
2700 	shrink_buffers(sh);
2701 	free_stripe(conf->slab_cache, sh);
2702 	atomic_dec(&conf->active_stripes);
2703 	WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes - 1);
2704 	return 1;
2705 }
2706 
shrink_stripes(struct r5conf * conf)2707 static void shrink_stripes(struct r5conf *conf)
2708 {
2709 	while (conf->max_nr_stripes &&
2710 	       drop_one_stripe(conf))
2711 		;
2712 
2713 	kmem_cache_destroy(conf->slab_cache);
2714 	conf->slab_cache = NULL;
2715 }
2716 
raid5_end_read_request(struct bio * bi)2717 static void raid5_end_read_request(struct bio * bi)
2718 {
2719 	struct stripe_head *sh = bi->bi_private;
2720 	struct r5conf *conf = sh->raid_conf;
2721 	int disks = sh->disks, i;
2722 	struct md_rdev *rdev = NULL;
2723 	sector_t s;
2724 
2725 	for (i=0 ; i<disks; i++)
2726 		if (bi == &sh->dev[i].req)
2727 			break;
2728 
2729 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2730 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2731 		bi->bi_status);
2732 	if (i == disks) {
2733 		BUG();
2734 		return;
2735 	}
2736 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2737 		/* If replacement finished while this request was outstanding,
2738 		 * 'replacement' might be NULL already.
2739 		 * In that case it moved down to 'rdev'.
2740 		 * rdev is not removed until all requests are finished.
2741 		 */
2742 		rdev = conf->disks[i].replacement;
2743 	if (!rdev)
2744 		rdev = conf->disks[i].rdev;
2745 
2746 	if (use_new_offset(conf, sh))
2747 		s = sh->sector + rdev->new_data_offset;
2748 	else
2749 		s = sh->sector + rdev->data_offset;
2750 	if (!bi->bi_status) {
2751 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2752 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2753 			/* Note that this cannot happen on a
2754 			 * replacement device.  We just fail those on
2755 			 * any error
2756 			 */
2757 			pr_info_ratelimited(
2758 				"md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
2759 				mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2760 				(unsigned long long)s,
2761 				rdev->bdev);
2762 			atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2763 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2764 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2765 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2766 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2767 
2768 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2769 			/*
2770 			 * end read for a page in journal, this
2771 			 * must be preparing for prexor in rmw
2772 			 */
2773 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2774 
2775 		if (atomic_read(&rdev->read_errors))
2776 			atomic_set(&rdev->read_errors, 0);
2777 	} else {
2778 		int retry = 0;
2779 		int set_bad = 0;
2780 
2781 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2782 		if (!(bi->bi_status == BLK_STS_PROTECTION))
2783 			atomic_inc(&rdev->read_errors);
2784 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2785 			pr_warn_ratelimited(
2786 				"md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
2787 				mdname(conf->mddev),
2788 				(unsigned long long)s,
2789 				rdev->bdev);
2790 		else if (conf->mddev->degraded >= conf->max_degraded) {
2791 			set_bad = 1;
2792 			pr_warn_ratelimited(
2793 				"md/raid:%s: read error not correctable (sector %llu on %pg).\n",
2794 				mdname(conf->mddev),
2795 				(unsigned long long)s,
2796 				rdev->bdev);
2797 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2798 			/* Oh, no!!! */
2799 			set_bad = 1;
2800 			pr_warn_ratelimited(
2801 				"md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
2802 				mdname(conf->mddev),
2803 				(unsigned long long)s,
2804 				rdev->bdev);
2805 		} else if (atomic_read(&rdev->read_errors)
2806 			 > conf->max_nr_stripes) {
2807 			if (!test_bit(Faulty, &rdev->flags)) {
2808 				pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2809 				    mdname(conf->mddev),
2810 				    atomic_read(&rdev->read_errors),
2811 				    conf->max_nr_stripes);
2812 				pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2813 				    mdname(conf->mddev), rdev->bdev);
2814 			}
2815 		} else
2816 			retry = 1;
2817 		if (set_bad && test_bit(In_sync, &rdev->flags)
2818 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2819 			retry = 1;
2820 		if (retry)
2821 			if (sh->qd_idx >= 0 && sh->pd_idx == i)
2822 				set_bit(R5_ReadError, &sh->dev[i].flags);
2823 			else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2824 				set_bit(R5_ReadError, &sh->dev[i].flags);
2825 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2826 			} else
2827 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2828 		else {
2829 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2830 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2831 			if (!(set_bad
2832 			      && test_bit(In_sync, &rdev->flags)
2833 			      && rdev_set_badblocks(
2834 				      rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2835 				md_error(conf->mddev, rdev);
2836 		}
2837 	}
2838 	rdev_dec_pending(rdev, conf->mddev);
2839 	bio_uninit(bi);
2840 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2841 	set_bit(STRIPE_HANDLE, &sh->state);
2842 	raid5_release_stripe(sh);
2843 }
2844 
raid5_end_write_request(struct bio * bi)2845 static void raid5_end_write_request(struct bio *bi)
2846 {
2847 	struct stripe_head *sh = bi->bi_private;
2848 	struct r5conf *conf = sh->raid_conf;
2849 	int disks = sh->disks, i;
2850 	struct md_rdev *rdev;
2851 	int replacement = 0;
2852 
2853 	for (i = 0 ; i < disks; i++) {
2854 		if (bi == &sh->dev[i].req) {
2855 			rdev = conf->disks[i].rdev;
2856 			break;
2857 		}
2858 		if (bi == &sh->dev[i].rreq) {
2859 			rdev = conf->disks[i].replacement;
2860 			if (rdev)
2861 				replacement = 1;
2862 			else
2863 				/* rdev was removed and 'replacement'
2864 				 * replaced it.  rdev is not removed
2865 				 * until all requests are finished.
2866 				 */
2867 				rdev = conf->disks[i].rdev;
2868 			break;
2869 		}
2870 	}
2871 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2872 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2873 		bi->bi_status);
2874 	if (i == disks) {
2875 		BUG();
2876 		return;
2877 	}
2878 
2879 	if (replacement) {
2880 		if (bi->bi_status)
2881 			md_error(conf->mddev, rdev);
2882 		else if (rdev_has_badblock(rdev, sh->sector,
2883 					   RAID5_STRIPE_SECTORS(conf)))
2884 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2885 	} else {
2886 		if (bi->bi_status) {
2887 			set_bit(STRIPE_DEGRADED, &sh->state);
2888 			set_bit(WriteErrorSeen, &rdev->flags);
2889 			set_bit(R5_WriteError, &sh->dev[i].flags);
2890 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2891 				set_bit(MD_RECOVERY_NEEDED,
2892 					&rdev->mddev->recovery);
2893 		} else if (rdev_has_badblock(rdev, sh->sector,
2894 					     RAID5_STRIPE_SECTORS(conf))) {
2895 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2896 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2897 				/* That was a successful write so make
2898 				 * sure it looks like we already did
2899 				 * a re-write.
2900 				 */
2901 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2902 		}
2903 	}
2904 	rdev_dec_pending(rdev, conf->mddev);
2905 
2906 	if (sh->batch_head && bi->bi_status && !replacement)
2907 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2908 
2909 	bio_uninit(bi);
2910 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2911 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2912 	set_bit(STRIPE_HANDLE, &sh->state);
2913 
2914 	if (sh->batch_head && sh != sh->batch_head)
2915 		raid5_release_stripe(sh->batch_head);
2916 	raid5_release_stripe(sh);
2917 }
2918 
raid5_error(struct mddev * mddev,struct md_rdev * rdev)2919 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2920 {
2921 	struct r5conf *conf = mddev->private;
2922 	unsigned long flags;
2923 	pr_debug("raid456: error called\n");
2924 
2925 	pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2926 		mdname(mddev), rdev->bdev);
2927 
2928 	spin_lock_irqsave(&conf->device_lock, flags);
2929 	set_bit(Faulty, &rdev->flags);
2930 	clear_bit(In_sync, &rdev->flags);
2931 	mddev->degraded = raid5_calc_degraded(conf);
2932 
2933 	if (has_failed(conf)) {
2934 		set_bit(MD_BROKEN, &conf->mddev->flags);
2935 		conf->recovery_disabled = mddev->recovery_disabled;
2936 
2937 		pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2938 			mdname(mddev), mddev->degraded, conf->raid_disks);
2939 	} else {
2940 		pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2941 			mdname(mddev), conf->raid_disks - mddev->degraded);
2942 	}
2943 
2944 	spin_unlock_irqrestore(&conf->device_lock, flags);
2945 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2946 
2947 	set_bit(Blocked, &rdev->flags);
2948 	set_mask_bits(&mddev->sb_flags, 0,
2949 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2950 	r5c_update_on_rdev_error(mddev, rdev);
2951 }
2952 
2953 /*
2954  * Input: a 'big' sector number,
2955  * Output: index of the data and parity disk, and the sector # in them.
2956  */
raid5_compute_sector(struct r5conf * conf,sector_t r_sector,int previous,int * dd_idx,struct stripe_head * sh)2957 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2958 			      int previous, int *dd_idx,
2959 			      struct stripe_head *sh)
2960 {
2961 	sector_t stripe, stripe2;
2962 	sector_t chunk_number;
2963 	unsigned int chunk_offset;
2964 	int pd_idx, qd_idx;
2965 	int ddf_layout = 0;
2966 	sector_t new_sector;
2967 	int algorithm = previous ? conf->prev_algo
2968 				 : conf->algorithm;
2969 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2970 					 : conf->chunk_sectors;
2971 	int raid_disks = previous ? conf->previous_raid_disks
2972 				  : conf->raid_disks;
2973 	int data_disks = raid_disks - conf->max_degraded;
2974 
2975 	/* First compute the information on this sector */
2976 
2977 	/*
2978 	 * Compute the chunk number and the sector offset inside the chunk
2979 	 */
2980 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2981 	chunk_number = r_sector;
2982 
2983 	/*
2984 	 * Compute the stripe number
2985 	 */
2986 	stripe = chunk_number;
2987 	*dd_idx = sector_div(stripe, data_disks);
2988 	stripe2 = stripe;
2989 	/*
2990 	 * Select the parity disk based on the user selected algorithm.
2991 	 */
2992 	pd_idx = qd_idx = -1;
2993 	switch(conf->level) {
2994 	case 4:
2995 		pd_idx = data_disks;
2996 		break;
2997 	case 5:
2998 		switch (algorithm) {
2999 		case ALGORITHM_LEFT_ASYMMETRIC:
3000 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
3001 			if (*dd_idx >= pd_idx)
3002 				(*dd_idx)++;
3003 			break;
3004 		case ALGORITHM_RIGHT_ASYMMETRIC:
3005 			pd_idx = sector_div(stripe2, raid_disks);
3006 			if (*dd_idx >= pd_idx)
3007 				(*dd_idx)++;
3008 			break;
3009 		case ALGORITHM_LEFT_SYMMETRIC:
3010 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
3011 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3012 			break;
3013 		case ALGORITHM_RIGHT_SYMMETRIC:
3014 			pd_idx = sector_div(stripe2, raid_disks);
3015 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3016 			break;
3017 		case ALGORITHM_PARITY_0:
3018 			pd_idx = 0;
3019 			(*dd_idx)++;
3020 			break;
3021 		case ALGORITHM_PARITY_N:
3022 			pd_idx = data_disks;
3023 			break;
3024 		default:
3025 			BUG();
3026 		}
3027 		break;
3028 	case 6:
3029 
3030 		switch (algorithm) {
3031 		case ALGORITHM_LEFT_ASYMMETRIC:
3032 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3033 			qd_idx = pd_idx + 1;
3034 			if (pd_idx == raid_disks-1) {
3035 				(*dd_idx)++;	/* Q D D D P */
3036 				qd_idx = 0;
3037 			} else if (*dd_idx >= pd_idx)
3038 				(*dd_idx) += 2; /* D D P Q D */
3039 			break;
3040 		case ALGORITHM_RIGHT_ASYMMETRIC:
3041 			pd_idx = sector_div(stripe2, raid_disks);
3042 			qd_idx = pd_idx + 1;
3043 			if (pd_idx == raid_disks-1) {
3044 				(*dd_idx)++;	/* Q D D D P */
3045 				qd_idx = 0;
3046 			} else if (*dd_idx >= pd_idx)
3047 				(*dd_idx) += 2; /* D D P Q D */
3048 			break;
3049 		case ALGORITHM_LEFT_SYMMETRIC:
3050 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3051 			qd_idx = (pd_idx + 1) % raid_disks;
3052 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3053 			break;
3054 		case ALGORITHM_RIGHT_SYMMETRIC:
3055 			pd_idx = sector_div(stripe2, raid_disks);
3056 			qd_idx = (pd_idx + 1) % raid_disks;
3057 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3058 			break;
3059 
3060 		case ALGORITHM_PARITY_0:
3061 			pd_idx = 0;
3062 			qd_idx = 1;
3063 			(*dd_idx) += 2;
3064 			break;
3065 		case ALGORITHM_PARITY_N:
3066 			pd_idx = data_disks;
3067 			qd_idx = data_disks + 1;
3068 			break;
3069 
3070 		case ALGORITHM_ROTATING_ZERO_RESTART:
3071 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
3072 			 * of blocks for computing Q is different.
3073 			 */
3074 			pd_idx = sector_div(stripe2, raid_disks);
3075 			qd_idx = pd_idx + 1;
3076 			if (pd_idx == raid_disks-1) {
3077 				(*dd_idx)++;	/* Q D D D P */
3078 				qd_idx = 0;
3079 			} else if (*dd_idx >= pd_idx)
3080 				(*dd_idx) += 2; /* D D P Q D */
3081 			ddf_layout = 1;
3082 			break;
3083 
3084 		case ALGORITHM_ROTATING_N_RESTART:
3085 			/* Same a left_asymmetric, by first stripe is
3086 			 * D D D P Q  rather than
3087 			 * Q D D D P
3088 			 */
3089 			stripe2 += 1;
3090 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3091 			qd_idx = pd_idx + 1;
3092 			if (pd_idx == raid_disks-1) {
3093 				(*dd_idx)++;	/* Q D D D P */
3094 				qd_idx = 0;
3095 			} else if (*dd_idx >= pd_idx)
3096 				(*dd_idx) += 2; /* D D P Q D */
3097 			ddf_layout = 1;
3098 			break;
3099 
3100 		case ALGORITHM_ROTATING_N_CONTINUE:
3101 			/* Same as left_symmetric but Q is before P */
3102 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3103 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3104 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3105 			ddf_layout = 1;
3106 			break;
3107 
3108 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3109 			/* RAID5 left_asymmetric, with Q on last device */
3110 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3111 			if (*dd_idx >= pd_idx)
3112 				(*dd_idx)++;
3113 			qd_idx = raid_disks - 1;
3114 			break;
3115 
3116 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3117 			pd_idx = sector_div(stripe2, raid_disks-1);
3118 			if (*dd_idx >= pd_idx)
3119 				(*dd_idx)++;
3120 			qd_idx = raid_disks - 1;
3121 			break;
3122 
3123 		case ALGORITHM_LEFT_SYMMETRIC_6:
3124 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3125 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3126 			qd_idx = raid_disks - 1;
3127 			break;
3128 
3129 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3130 			pd_idx = sector_div(stripe2, raid_disks-1);
3131 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3132 			qd_idx = raid_disks - 1;
3133 			break;
3134 
3135 		case ALGORITHM_PARITY_0_6:
3136 			pd_idx = 0;
3137 			(*dd_idx)++;
3138 			qd_idx = raid_disks - 1;
3139 			break;
3140 
3141 		default:
3142 			BUG();
3143 		}
3144 		break;
3145 	}
3146 
3147 	if (sh) {
3148 		sh->pd_idx = pd_idx;
3149 		sh->qd_idx = qd_idx;
3150 		sh->ddf_layout = ddf_layout;
3151 	}
3152 	/*
3153 	 * Finally, compute the new sector number
3154 	 */
3155 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3156 	return new_sector;
3157 }
3158 
raid5_compute_blocknr(struct stripe_head * sh,int i,int previous)3159 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3160 {
3161 	struct r5conf *conf = sh->raid_conf;
3162 	int raid_disks = sh->disks;
3163 	int data_disks = raid_disks - conf->max_degraded;
3164 	sector_t new_sector = sh->sector, check;
3165 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3166 					 : conf->chunk_sectors;
3167 	int algorithm = previous ? conf->prev_algo
3168 				 : conf->algorithm;
3169 	sector_t stripe;
3170 	int chunk_offset;
3171 	sector_t chunk_number;
3172 	int dummy1, dd_idx = i;
3173 	sector_t r_sector;
3174 	struct stripe_head sh2;
3175 
3176 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
3177 	stripe = new_sector;
3178 
3179 	if (i == sh->pd_idx)
3180 		return 0;
3181 	switch(conf->level) {
3182 	case 4: break;
3183 	case 5:
3184 		switch (algorithm) {
3185 		case ALGORITHM_LEFT_ASYMMETRIC:
3186 		case ALGORITHM_RIGHT_ASYMMETRIC:
3187 			if (i > sh->pd_idx)
3188 				i--;
3189 			break;
3190 		case ALGORITHM_LEFT_SYMMETRIC:
3191 		case ALGORITHM_RIGHT_SYMMETRIC:
3192 			if (i < sh->pd_idx)
3193 				i += raid_disks;
3194 			i -= (sh->pd_idx + 1);
3195 			break;
3196 		case ALGORITHM_PARITY_0:
3197 			i -= 1;
3198 			break;
3199 		case ALGORITHM_PARITY_N:
3200 			break;
3201 		default:
3202 			BUG();
3203 		}
3204 		break;
3205 	case 6:
3206 		if (i == sh->qd_idx)
3207 			return 0; /* It is the Q disk */
3208 		switch (algorithm) {
3209 		case ALGORITHM_LEFT_ASYMMETRIC:
3210 		case ALGORITHM_RIGHT_ASYMMETRIC:
3211 		case ALGORITHM_ROTATING_ZERO_RESTART:
3212 		case ALGORITHM_ROTATING_N_RESTART:
3213 			if (sh->pd_idx == raid_disks-1)
3214 				i--;	/* Q D D D P */
3215 			else if (i > sh->pd_idx)
3216 				i -= 2; /* D D P Q D */
3217 			break;
3218 		case ALGORITHM_LEFT_SYMMETRIC:
3219 		case ALGORITHM_RIGHT_SYMMETRIC:
3220 			if (sh->pd_idx == raid_disks-1)
3221 				i--; /* Q D D D P */
3222 			else {
3223 				/* D D P Q D */
3224 				if (i < sh->pd_idx)
3225 					i += raid_disks;
3226 				i -= (sh->pd_idx + 2);
3227 			}
3228 			break;
3229 		case ALGORITHM_PARITY_0:
3230 			i -= 2;
3231 			break;
3232 		case ALGORITHM_PARITY_N:
3233 			break;
3234 		case ALGORITHM_ROTATING_N_CONTINUE:
3235 			/* Like left_symmetric, but P is before Q */
3236 			if (sh->pd_idx == 0)
3237 				i--;	/* P D D D Q */
3238 			else {
3239 				/* D D Q P D */
3240 				if (i < sh->pd_idx)
3241 					i += raid_disks;
3242 				i -= (sh->pd_idx + 1);
3243 			}
3244 			break;
3245 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3246 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3247 			if (i > sh->pd_idx)
3248 				i--;
3249 			break;
3250 		case ALGORITHM_LEFT_SYMMETRIC_6:
3251 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3252 			if (i < sh->pd_idx)
3253 				i += data_disks + 1;
3254 			i -= (sh->pd_idx + 1);
3255 			break;
3256 		case ALGORITHM_PARITY_0_6:
3257 			i -= 1;
3258 			break;
3259 		default:
3260 			BUG();
3261 		}
3262 		break;
3263 	}
3264 
3265 	chunk_number = stripe * data_disks + i;
3266 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3267 
3268 	check = raid5_compute_sector(conf, r_sector,
3269 				     previous, &dummy1, &sh2);
3270 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3271 		|| sh2.qd_idx != sh->qd_idx) {
3272 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3273 			mdname(conf->mddev));
3274 		return 0;
3275 	}
3276 	return r_sector;
3277 }
3278 
3279 /*
3280  * There are cases where we want handle_stripe_dirtying() and
3281  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3282  *
3283  * This function checks whether we want to delay the towrite. Specifically,
3284  * we delay the towrite when:
3285  *
3286  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3287  *      stripe has data in journal (for other devices).
3288  *
3289  *      In this case, when reading data for the non-overwrite dev, it is
3290  *      necessary to handle complex rmw of write back cache (prexor with
3291  *      orig_page, and xor with page). To keep read path simple, we would
3292  *      like to flush data in journal to RAID disks first, so complex rmw
3293  *      is handled in the write patch (handle_stripe_dirtying).
3294  *
3295  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3296  *
3297  *      It is important to be able to flush all stripes in raid5-cache.
3298  *      Therefore, we need reserve some space on the journal device for
3299  *      these flushes. If flush operation includes pending writes to the
3300  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3301  *      for the flush out. If we exclude these pending writes from flush
3302  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3303  *      Therefore, excluding pending writes in these cases enables more
3304  *      efficient use of the journal device.
3305  *
3306  *      Note: To make sure the stripe makes progress, we only delay
3307  *      towrite for stripes with data already in journal (injournal > 0).
3308  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3309  *      no_space_stripes list.
3310  *
3311  *   3. during journal failure
3312  *      In journal failure, we try to flush all cached data to raid disks
3313  *      based on data in stripe cache. The array is read-only to upper
3314  *      layers, so we would skip all pending writes.
3315  *
3316  */
delay_towrite(struct r5conf * conf,struct r5dev * dev,struct stripe_head_state * s)3317 static inline bool delay_towrite(struct r5conf *conf,
3318 				 struct r5dev *dev,
3319 				 struct stripe_head_state *s)
3320 {
3321 	/* case 1 above */
3322 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3323 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3324 		return true;
3325 	/* case 2 above */
3326 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3327 	    s->injournal > 0)
3328 		return true;
3329 	/* case 3 above */
3330 	if (s->log_failed && s->injournal)
3331 		return true;
3332 	return false;
3333 }
3334 
3335 static void
schedule_reconstruction(struct stripe_head * sh,struct stripe_head_state * s,int rcw,int expand)3336 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3337 			 int rcw, int expand)
3338 {
3339 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3340 	struct r5conf *conf = sh->raid_conf;
3341 	int level = conf->level;
3342 
3343 	if (rcw) {
3344 		/*
3345 		 * In some cases, handle_stripe_dirtying initially decided to
3346 		 * run rmw and allocates extra page for prexor. However, rcw is
3347 		 * cheaper later on. We need to free the extra page now,
3348 		 * because we won't be able to do that in ops_complete_prexor().
3349 		 */
3350 		r5c_release_extra_page(sh);
3351 
3352 		for (i = disks; i--; ) {
3353 			struct r5dev *dev = &sh->dev[i];
3354 
3355 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3356 				set_bit(R5_LOCKED, &dev->flags);
3357 				set_bit(R5_Wantdrain, &dev->flags);
3358 				if (!expand)
3359 					clear_bit(R5_UPTODATE, &dev->flags);
3360 				s->locked++;
3361 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3362 				set_bit(R5_LOCKED, &dev->flags);
3363 				s->locked++;
3364 			}
3365 		}
3366 		/* if we are not expanding this is a proper write request, and
3367 		 * there will be bios with new data to be drained into the
3368 		 * stripe cache
3369 		 */
3370 		if (!expand) {
3371 			if (!s->locked)
3372 				/* False alarm, nothing to do */
3373 				return;
3374 			sh->reconstruct_state = reconstruct_state_drain_run;
3375 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3376 		} else
3377 			sh->reconstruct_state = reconstruct_state_run;
3378 
3379 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3380 
3381 		if (s->locked + conf->max_degraded == disks)
3382 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3383 				atomic_inc(&conf->pending_full_writes);
3384 	} else {
3385 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3386 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3387 		BUG_ON(level == 6 &&
3388 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3389 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3390 
3391 		for (i = disks; i--; ) {
3392 			struct r5dev *dev = &sh->dev[i];
3393 			if (i == pd_idx || i == qd_idx)
3394 				continue;
3395 
3396 			if (dev->towrite &&
3397 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3398 			     test_bit(R5_Wantcompute, &dev->flags))) {
3399 				set_bit(R5_Wantdrain, &dev->flags);
3400 				set_bit(R5_LOCKED, &dev->flags);
3401 				clear_bit(R5_UPTODATE, &dev->flags);
3402 				s->locked++;
3403 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3404 				set_bit(R5_LOCKED, &dev->flags);
3405 				s->locked++;
3406 			}
3407 		}
3408 		if (!s->locked)
3409 			/* False alarm - nothing to do */
3410 			return;
3411 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3412 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3413 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3414 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3415 	}
3416 
3417 	/* keep the parity disk(s) locked while asynchronous operations
3418 	 * are in flight
3419 	 */
3420 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3421 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3422 	s->locked++;
3423 
3424 	if (level == 6) {
3425 		int qd_idx = sh->qd_idx;
3426 		struct r5dev *dev = &sh->dev[qd_idx];
3427 
3428 		set_bit(R5_LOCKED, &dev->flags);
3429 		clear_bit(R5_UPTODATE, &dev->flags);
3430 		s->locked++;
3431 	}
3432 
3433 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3434 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3435 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3436 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3437 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3438 
3439 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3440 		__func__, (unsigned long long)sh->sector,
3441 		s->locked, s->ops_request);
3442 }
3443 
stripe_bio_overlaps(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite)3444 static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
3445 				int dd_idx, int forwrite)
3446 {
3447 	struct r5conf *conf = sh->raid_conf;
3448 	struct bio **bip;
3449 
3450 	pr_debug("checking bi b#%llu to stripe s#%llu\n",
3451 		 bi->bi_iter.bi_sector, sh->sector);
3452 
3453 	/* Don't allow new IO added to stripes in batch list */
3454 	if (sh->batch_head)
3455 		return true;
3456 
3457 	if (forwrite)
3458 		bip = &sh->dev[dd_idx].towrite;
3459 	else
3460 		bip = &sh->dev[dd_idx].toread;
3461 
3462 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3463 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3464 			return true;
3465 		bip = &(*bip)->bi_next;
3466 	}
3467 
3468 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3469 		return true;
3470 
3471 	if (forwrite && raid5_has_ppl(conf)) {
3472 		/*
3473 		 * With PPL only writes to consecutive data chunks within a
3474 		 * stripe are allowed because for a single stripe_head we can
3475 		 * only have one PPL entry at a time, which describes one data
3476 		 * range. Not really an overlap, but R5_Overlap can be
3477 		 * used to handle this.
3478 		 */
3479 		sector_t sector;
3480 		sector_t first = 0;
3481 		sector_t last = 0;
3482 		int count = 0;
3483 		int i;
3484 
3485 		for (i = 0; i < sh->disks; i++) {
3486 			if (i != sh->pd_idx &&
3487 			    (i == dd_idx || sh->dev[i].towrite)) {
3488 				sector = sh->dev[i].sector;
3489 				if (count == 0 || sector < first)
3490 					first = sector;
3491 				if (sector > last)
3492 					last = sector;
3493 				count++;
3494 			}
3495 		}
3496 
3497 		if (first + conf->chunk_sectors * (count - 1) != last)
3498 			return true;
3499 	}
3500 
3501 	return false;
3502 }
3503 
__add_stripe_bio(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite,int previous)3504 static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3505 			     int dd_idx, int forwrite, int previous)
3506 {
3507 	struct r5conf *conf = sh->raid_conf;
3508 	struct bio **bip;
3509 	int firstwrite = 0;
3510 
3511 	if (forwrite) {
3512 		bip = &sh->dev[dd_idx].towrite;
3513 		if (!*bip)
3514 			firstwrite = 1;
3515 	} else {
3516 		bip = &sh->dev[dd_idx].toread;
3517 	}
3518 
3519 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector)
3520 		bip = &(*bip)->bi_next;
3521 
3522 	if (!forwrite || previous)
3523 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3524 
3525 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3526 	if (*bip)
3527 		bi->bi_next = *bip;
3528 	*bip = bi;
3529 	bio_inc_remaining(bi);
3530 	md_write_inc(conf->mddev, bi);
3531 
3532 	if (forwrite) {
3533 		/* check if page is covered */
3534 		sector_t sector = sh->dev[dd_idx].sector;
3535 		for (bi=sh->dev[dd_idx].towrite;
3536 		     sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3537 			     bi && bi->bi_iter.bi_sector <= sector;
3538 		     bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3539 			if (bio_end_sector(bi) >= sector)
3540 				sector = bio_end_sector(bi);
3541 		}
3542 		if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3543 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3544 				sh->overwrite_disks++;
3545 	}
3546 
3547 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
3548 		 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx,
3549 		 sh->dev[dd_idx].sector);
3550 
3551 	if (conf->mddev->bitmap && firstwrite) {
3552 		/* Cannot hold spinlock over bitmap_startwrite,
3553 		 * but must ensure this isn't added to a batch until
3554 		 * we have added to the bitmap and set bm_seq.
3555 		 * So set STRIPE_BITMAP_PENDING to prevent
3556 		 * batching.
3557 		 * If multiple __add_stripe_bio() calls race here they
3558 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3559 		 * to complete "bitmap_startwrite" gets to set
3560 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3561 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3562 		 * any more.
3563 		 */
3564 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3565 		spin_unlock_irq(&sh->stripe_lock);
3566 		conf->mddev->bitmap_ops->startwrite(conf->mddev, sh->sector,
3567 					RAID5_STRIPE_SECTORS(conf), false);
3568 		spin_lock_irq(&sh->stripe_lock);
3569 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3570 		if (!sh->batch_head) {
3571 			sh->bm_seq = conf->seq_flush+1;
3572 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3573 		}
3574 	}
3575 }
3576 
3577 /*
3578  * Each stripe/dev can have one or more bios attached.
3579  * toread/towrite point to the first in a chain.
3580  * The bi_next chain must be in order.
3581  */
add_stripe_bio(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite,int previous)3582 static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3583 			   int dd_idx, int forwrite, int previous)
3584 {
3585 	spin_lock_irq(&sh->stripe_lock);
3586 
3587 	if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
3588 		set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3589 		spin_unlock_irq(&sh->stripe_lock);
3590 		return false;
3591 	}
3592 
3593 	__add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
3594 	spin_unlock_irq(&sh->stripe_lock);
3595 	return true;
3596 }
3597 
3598 static void end_reshape(struct r5conf *conf);
3599 
stripe_set_idx(sector_t stripe,struct r5conf * conf,int previous,struct stripe_head * sh)3600 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3601 			    struct stripe_head *sh)
3602 {
3603 	int sectors_per_chunk =
3604 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3605 	int dd_idx;
3606 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3607 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3608 
3609 	raid5_compute_sector(conf,
3610 			     stripe * (disks - conf->max_degraded)
3611 			     *sectors_per_chunk + chunk_offset,
3612 			     previous,
3613 			     &dd_idx, sh);
3614 }
3615 
3616 static void
handle_failed_stripe(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3617 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3618 		     struct stripe_head_state *s, int disks)
3619 {
3620 	int i;
3621 	BUG_ON(sh->batch_head);
3622 	for (i = disks; i--; ) {
3623 		struct bio *bi;
3624 		int bitmap_end = 0;
3625 
3626 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3627 			struct md_rdev *rdev = conf->disks[i].rdev;
3628 
3629 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3630 			    !test_bit(Faulty, &rdev->flags))
3631 				atomic_inc(&rdev->nr_pending);
3632 			else
3633 				rdev = NULL;
3634 			if (rdev) {
3635 				if (!rdev_set_badblocks(
3636 					    rdev,
3637 					    sh->sector,
3638 					    RAID5_STRIPE_SECTORS(conf), 0))
3639 					md_error(conf->mddev, rdev);
3640 				rdev_dec_pending(rdev, conf->mddev);
3641 			}
3642 		}
3643 		spin_lock_irq(&sh->stripe_lock);
3644 		/* fail all writes first */
3645 		bi = sh->dev[i].towrite;
3646 		sh->dev[i].towrite = NULL;
3647 		sh->overwrite_disks = 0;
3648 		spin_unlock_irq(&sh->stripe_lock);
3649 		if (bi)
3650 			bitmap_end = 1;
3651 
3652 		log_stripe_write_finished(sh);
3653 
3654 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3655 			wake_up_bit(&sh->dev[i].flags, R5_Overlap);
3656 
3657 		while (bi && bi->bi_iter.bi_sector <
3658 			sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3659 			struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3660 
3661 			md_write_end(conf->mddev);
3662 			bio_io_error(bi);
3663 			bi = nextbi;
3664 		}
3665 		if (bitmap_end)
3666 			conf->mddev->bitmap_ops->endwrite(conf->mddev,
3667 					sh->sector, RAID5_STRIPE_SECTORS(conf),
3668 					false, false);
3669 		bitmap_end = 0;
3670 		/* and fail all 'written' */
3671 		bi = sh->dev[i].written;
3672 		sh->dev[i].written = NULL;
3673 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3674 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3675 			sh->dev[i].page = sh->dev[i].orig_page;
3676 		}
3677 
3678 		if (bi) bitmap_end = 1;
3679 		while (bi && bi->bi_iter.bi_sector <
3680 		       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3681 			struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3682 
3683 			md_write_end(conf->mddev);
3684 			bio_io_error(bi);
3685 			bi = bi2;
3686 		}
3687 
3688 		/* fail any reads if this device is non-operational and
3689 		 * the data has not reached the cache yet.
3690 		 */
3691 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3692 		    s->failed > conf->max_degraded &&
3693 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3694 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3695 			spin_lock_irq(&sh->stripe_lock);
3696 			bi = sh->dev[i].toread;
3697 			sh->dev[i].toread = NULL;
3698 			spin_unlock_irq(&sh->stripe_lock);
3699 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3700 				wake_up_bit(&sh->dev[i].flags, R5_Overlap);
3701 			if (bi)
3702 				s->to_read--;
3703 			while (bi && bi->bi_iter.bi_sector <
3704 			       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3705 				struct bio *nextbi =
3706 					r5_next_bio(conf, bi, sh->dev[i].sector);
3707 
3708 				bio_io_error(bi);
3709 				bi = nextbi;
3710 			}
3711 		}
3712 		if (bitmap_end)
3713 			conf->mddev->bitmap_ops->endwrite(conf->mddev,
3714 					sh->sector, RAID5_STRIPE_SECTORS(conf),
3715 					false, false);
3716 		/* If we were in the middle of a write the parity block might
3717 		 * still be locked - so just clear all R5_LOCKED flags
3718 		 */
3719 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3720 	}
3721 	s->to_write = 0;
3722 	s->written = 0;
3723 
3724 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3725 		if (atomic_dec_and_test(&conf->pending_full_writes))
3726 			md_wakeup_thread(conf->mddev->thread);
3727 }
3728 
3729 static void
handle_failed_sync(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s)3730 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3731 		   struct stripe_head_state *s)
3732 {
3733 	int abort = 0;
3734 	int i;
3735 
3736 	BUG_ON(sh->batch_head);
3737 	clear_bit(STRIPE_SYNCING, &sh->state);
3738 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3739 		wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap);
3740 	s->syncing = 0;
3741 	s->replacing = 0;
3742 	/* There is nothing more to do for sync/check/repair.
3743 	 * Don't even need to abort as that is handled elsewhere
3744 	 * if needed, and not always wanted e.g. if there is a known
3745 	 * bad block here.
3746 	 * For recover/replace we need to record a bad block on all
3747 	 * non-sync devices, or abort the recovery
3748 	 */
3749 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3750 		/* During recovery devices cannot be removed, so
3751 		 * locking and refcounting of rdevs is not needed
3752 		 */
3753 		for (i = 0; i < conf->raid_disks; i++) {
3754 			struct md_rdev *rdev = conf->disks[i].rdev;
3755 
3756 			if (rdev
3757 			    && !test_bit(Faulty, &rdev->flags)
3758 			    && !test_bit(In_sync, &rdev->flags)
3759 			    && !rdev_set_badblocks(rdev, sh->sector,
3760 						   RAID5_STRIPE_SECTORS(conf), 0))
3761 				abort = 1;
3762 			rdev = conf->disks[i].replacement;
3763 
3764 			if (rdev
3765 			    && !test_bit(Faulty, &rdev->flags)
3766 			    && !test_bit(In_sync, &rdev->flags)
3767 			    && !rdev_set_badblocks(rdev, sh->sector,
3768 						   RAID5_STRIPE_SECTORS(conf), 0))
3769 				abort = 1;
3770 		}
3771 		if (abort)
3772 			conf->recovery_disabled =
3773 				conf->mddev->recovery_disabled;
3774 	}
3775 	md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3776 }
3777 
want_replace(struct stripe_head * sh,int disk_idx)3778 static int want_replace(struct stripe_head *sh, int disk_idx)
3779 {
3780 	struct md_rdev *rdev;
3781 	int rv = 0;
3782 
3783 	rdev = sh->raid_conf->disks[disk_idx].replacement;
3784 	if (rdev
3785 	    && !test_bit(Faulty, &rdev->flags)
3786 	    && !test_bit(In_sync, &rdev->flags)
3787 	    && (rdev->recovery_offset <= sh->sector
3788 		|| rdev->mddev->recovery_cp <= sh->sector))
3789 		rv = 1;
3790 	return rv;
3791 }
3792 
need_this_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3793 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3794 			   int disk_idx, int disks)
3795 {
3796 	struct r5dev *dev = &sh->dev[disk_idx];
3797 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3798 				  &sh->dev[s->failed_num[1]] };
3799 	int i;
3800 	bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3801 
3802 
3803 	if (test_bit(R5_LOCKED, &dev->flags) ||
3804 	    test_bit(R5_UPTODATE, &dev->flags))
3805 		/* No point reading this as we already have it or have
3806 		 * decided to get it.
3807 		 */
3808 		return 0;
3809 
3810 	if (dev->toread ||
3811 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3812 		/* We need this block to directly satisfy a request */
3813 		return 1;
3814 
3815 	if (s->syncing || s->expanding ||
3816 	    (s->replacing && want_replace(sh, disk_idx)))
3817 		/* When syncing, or expanding we read everything.
3818 		 * When replacing, we need the replaced block.
3819 		 */
3820 		return 1;
3821 
3822 	if ((s->failed >= 1 && fdev[0]->toread) ||
3823 	    (s->failed >= 2 && fdev[1]->toread))
3824 		/* If we want to read from a failed device, then
3825 		 * we need to actually read every other device.
3826 		 */
3827 		return 1;
3828 
3829 	/* Sometimes neither read-modify-write nor reconstruct-write
3830 	 * cycles can work.  In those cases we read every block we
3831 	 * can.  Then the parity-update is certain to have enough to
3832 	 * work with.
3833 	 * This can only be a problem when we need to write something,
3834 	 * and some device has failed.  If either of those tests
3835 	 * fail we need look no further.
3836 	 */
3837 	if (!s->failed || !s->to_write)
3838 		return 0;
3839 
3840 	if (test_bit(R5_Insync, &dev->flags) &&
3841 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3842 		/* Pre-reads at not permitted until after short delay
3843 		 * to gather multiple requests.  However if this
3844 		 * device is no Insync, the block could only be computed
3845 		 * and there is no need to delay that.
3846 		 */
3847 		return 0;
3848 
3849 	for (i = 0; i < s->failed && i < 2; i++) {
3850 		if (fdev[i]->towrite &&
3851 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3852 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3853 			/* If we have a partial write to a failed
3854 			 * device, then we will need to reconstruct
3855 			 * the content of that device, so all other
3856 			 * devices must be read.
3857 			 */
3858 			return 1;
3859 
3860 		if (s->failed >= 2 &&
3861 		    (fdev[i]->towrite ||
3862 		     s->failed_num[i] == sh->pd_idx ||
3863 		     s->failed_num[i] == sh->qd_idx) &&
3864 		    !test_bit(R5_UPTODATE, &fdev[i]->flags))
3865 			/* In max degraded raid6, If the failed disk is P, Q,
3866 			 * or we want to read the failed disk, we need to do
3867 			 * reconstruct-write.
3868 			 */
3869 			force_rcw = true;
3870 	}
3871 
3872 	/* If we are forced to do a reconstruct-write, because parity
3873 	 * cannot be trusted and we are currently recovering it, there
3874 	 * is extra need to be careful.
3875 	 * If one of the devices that we would need to read, because
3876 	 * it is not being overwritten (and maybe not written at all)
3877 	 * is missing/faulty, then we need to read everything we can.
3878 	 */
3879 	if (!force_rcw &&
3880 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3881 		/* reconstruct-write isn't being forced */
3882 		return 0;
3883 	for (i = 0; i < s->failed && i < 2; i++) {
3884 		if (s->failed_num[i] != sh->pd_idx &&
3885 		    s->failed_num[i] != sh->qd_idx &&
3886 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3887 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3888 			return 1;
3889 	}
3890 
3891 	return 0;
3892 }
3893 
3894 /* fetch_block - checks the given member device to see if its data needs
3895  * to be read or computed to satisfy a request.
3896  *
3897  * Returns 1 when no more member devices need to be checked, otherwise returns
3898  * 0 to tell the loop in handle_stripe_fill to continue
3899  */
fetch_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3900 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3901 		       int disk_idx, int disks)
3902 {
3903 	struct r5dev *dev = &sh->dev[disk_idx];
3904 
3905 	/* is the data in this block needed, and can we get it? */
3906 	if (need_this_block(sh, s, disk_idx, disks)) {
3907 		/* we would like to get this block, possibly by computing it,
3908 		 * otherwise read it if the backing disk is insync
3909 		 */
3910 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3911 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3912 		BUG_ON(sh->batch_head);
3913 
3914 		/*
3915 		 * In the raid6 case if the only non-uptodate disk is P
3916 		 * then we already trusted P to compute the other failed
3917 		 * drives. It is safe to compute rather than re-read P.
3918 		 * In other cases we only compute blocks from failed
3919 		 * devices, otherwise check/repair might fail to detect
3920 		 * a real inconsistency.
3921 		 */
3922 
3923 		if ((s->uptodate == disks - 1) &&
3924 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3925 		    (s->failed && (disk_idx == s->failed_num[0] ||
3926 				   disk_idx == s->failed_num[1])))) {
3927 			/* have disk failed, and we're requested to fetch it;
3928 			 * do compute it
3929 			 */
3930 			pr_debug("Computing stripe %llu block %d\n",
3931 			       (unsigned long long)sh->sector, disk_idx);
3932 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3933 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3934 			set_bit(R5_Wantcompute, &dev->flags);
3935 			sh->ops.target = disk_idx;
3936 			sh->ops.target2 = -1; /* no 2nd target */
3937 			s->req_compute = 1;
3938 			/* Careful: from this point on 'uptodate' is in the eye
3939 			 * of raid_run_ops which services 'compute' operations
3940 			 * before writes. R5_Wantcompute flags a block that will
3941 			 * be R5_UPTODATE by the time it is needed for a
3942 			 * subsequent operation.
3943 			 */
3944 			s->uptodate++;
3945 			return 1;
3946 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3947 			/* Computing 2-failure is *very* expensive; only
3948 			 * do it if failed >= 2
3949 			 */
3950 			int other;
3951 			for (other = disks; other--; ) {
3952 				if (other == disk_idx)
3953 					continue;
3954 				if (!test_bit(R5_UPTODATE,
3955 				      &sh->dev[other].flags))
3956 					break;
3957 			}
3958 			BUG_ON(other < 0);
3959 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3960 			       (unsigned long long)sh->sector,
3961 			       disk_idx, other);
3962 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3963 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3964 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3965 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3966 			sh->ops.target = disk_idx;
3967 			sh->ops.target2 = other;
3968 			s->uptodate += 2;
3969 			s->req_compute = 1;
3970 			return 1;
3971 		} else if (test_bit(R5_Insync, &dev->flags)) {
3972 			set_bit(R5_LOCKED, &dev->flags);
3973 			set_bit(R5_Wantread, &dev->flags);
3974 			s->locked++;
3975 			pr_debug("Reading block %d (sync=%d)\n",
3976 				disk_idx, s->syncing);
3977 		}
3978 	}
3979 
3980 	return 0;
3981 }
3982 
3983 /*
3984  * handle_stripe_fill - read or compute data to satisfy pending requests.
3985  */
handle_stripe_fill(struct stripe_head * sh,struct stripe_head_state * s,int disks)3986 static void handle_stripe_fill(struct stripe_head *sh,
3987 			       struct stripe_head_state *s,
3988 			       int disks)
3989 {
3990 	int i;
3991 
3992 	/* look for blocks to read/compute, skip this if a compute
3993 	 * is already in flight, or if the stripe contents are in the
3994 	 * midst of changing due to a write
3995 	 */
3996 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3997 	    !sh->reconstruct_state) {
3998 
3999 		/*
4000 		 * For degraded stripe with data in journal, do not handle
4001 		 * read requests yet, instead, flush the stripe to raid
4002 		 * disks first, this avoids handling complex rmw of write
4003 		 * back cache (prexor with orig_page, and then xor with
4004 		 * page) in the read path
4005 		 */
4006 		if (s->to_read && s->injournal && s->failed) {
4007 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
4008 				r5c_make_stripe_write_out(sh);
4009 			goto out;
4010 		}
4011 
4012 		for (i = disks; i--; )
4013 			if (fetch_block(sh, s, i, disks))
4014 				break;
4015 	}
4016 out:
4017 	set_bit(STRIPE_HANDLE, &sh->state);
4018 }
4019 
4020 static void break_stripe_batch_list(struct stripe_head *head_sh,
4021 				    unsigned long handle_flags);
4022 /* handle_stripe_clean_event
4023  * any written block on an uptodate or failed drive can be returned.
4024  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
4025  * never LOCKED, so we don't need to test 'failed' directly.
4026  */
handle_stripe_clean_event(struct r5conf * conf,struct stripe_head * sh,int disks)4027 static void handle_stripe_clean_event(struct r5conf *conf,
4028 	struct stripe_head *sh, int disks)
4029 {
4030 	int i;
4031 	struct r5dev *dev;
4032 	int discard_pending = 0;
4033 	struct stripe_head *head_sh = sh;
4034 	bool do_endio = false;
4035 
4036 	for (i = disks; i--; )
4037 		if (sh->dev[i].written) {
4038 			dev = &sh->dev[i];
4039 			if (!test_bit(R5_LOCKED, &dev->flags) &&
4040 			    (test_bit(R5_UPTODATE, &dev->flags) ||
4041 			     test_bit(R5_Discard, &dev->flags) ||
4042 			     test_bit(R5_SkipCopy, &dev->flags))) {
4043 				/* We can return any write requests */
4044 				struct bio *wbi, *wbi2;
4045 				pr_debug("Return write for disc %d\n", i);
4046 				if (test_and_clear_bit(R5_Discard, &dev->flags))
4047 					clear_bit(R5_UPTODATE, &dev->flags);
4048 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
4049 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
4050 				}
4051 				do_endio = true;
4052 
4053 returnbi:
4054 				dev->page = dev->orig_page;
4055 				wbi = dev->written;
4056 				dev->written = NULL;
4057 				while (wbi && wbi->bi_iter.bi_sector <
4058 					dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4059 					wbi2 = r5_next_bio(conf, wbi, dev->sector);
4060 					md_write_end(conf->mddev);
4061 					bio_endio(wbi);
4062 					wbi = wbi2;
4063 				}
4064 				conf->mddev->bitmap_ops->endwrite(conf->mddev,
4065 					sh->sector, RAID5_STRIPE_SECTORS(conf),
4066 					!test_bit(STRIPE_DEGRADED, &sh->state),
4067 					false);
4068 				if (head_sh->batch_head) {
4069 					sh = list_first_entry(&sh->batch_list,
4070 							      struct stripe_head,
4071 							      batch_list);
4072 					if (sh != head_sh) {
4073 						dev = &sh->dev[i];
4074 						goto returnbi;
4075 					}
4076 				}
4077 				sh = head_sh;
4078 				dev = &sh->dev[i];
4079 			} else if (test_bit(R5_Discard, &dev->flags))
4080 				discard_pending = 1;
4081 		}
4082 
4083 	log_stripe_write_finished(sh);
4084 
4085 	if (!discard_pending &&
4086 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4087 		int hash;
4088 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4089 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4090 		if (sh->qd_idx >= 0) {
4091 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4092 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4093 		}
4094 		/* now that discard is done we can proceed with any sync */
4095 		clear_bit(STRIPE_DISCARD, &sh->state);
4096 		/*
4097 		 * SCSI discard will change some bio fields and the stripe has
4098 		 * no updated data, so remove it from hash list and the stripe
4099 		 * will be reinitialized
4100 		 */
4101 unhash:
4102 		hash = sh->hash_lock_index;
4103 		spin_lock_irq(conf->hash_locks + hash);
4104 		remove_hash(sh);
4105 		spin_unlock_irq(conf->hash_locks + hash);
4106 		if (head_sh->batch_head) {
4107 			sh = list_first_entry(&sh->batch_list,
4108 					      struct stripe_head, batch_list);
4109 			if (sh != head_sh)
4110 					goto unhash;
4111 		}
4112 		sh = head_sh;
4113 
4114 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4115 			set_bit(STRIPE_HANDLE, &sh->state);
4116 
4117 	}
4118 
4119 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4120 		if (atomic_dec_and_test(&conf->pending_full_writes))
4121 			md_wakeup_thread(conf->mddev->thread);
4122 
4123 	if (head_sh->batch_head && do_endio)
4124 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4125 }
4126 
4127 /*
4128  * For RMW in write back cache, we need extra page in prexor to store the
4129  * old data. This page is stored in dev->orig_page.
4130  *
4131  * This function checks whether we have data for prexor. The exact logic
4132  * is:
4133  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4134  */
uptodate_for_rmw(struct r5dev * dev)4135 static inline bool uptodate_for_rmw(struct r5dev *dev)
4136 {
4137 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
4138 		(!test_bit(R5_InJournal, &dev->flags) ||
4139 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4140 }
4141 
handle_stripe_dirtying(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4142 static int handle_stripe_dirtying(struct r5conf *conf,
4143 				  struct stripe_head *sh,
4144 				  struct stripe_head_state *s,
4145 				  int disks)
4146 {
4147 	int rmw = 0, rcw = 0, i;
4148 	sector_t recovery_cp = conf->mddev->recovery_cp;
4149 
4150 	/* Check whether resync is now happening or should start.
4151 	 * If yes, then the array is dirty (after unclean shutdown or
4152 	 * initial creation), so parity in some stripes might be inconsistent.
4153 	 * In this case, we need to always do reconstruct-write, to ensure
4154 	 * that in case of drive failure or read-error correction, we
4155 	 * generate correct data from the parity.
4156 	 */
4157 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
4158 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4159 	     s->failed == 0)) {
4160 		/* Calculate the real rcw later - for now make it
4161 		 * look like rcw is cheaper
4162 		 */
4163 		rcw = 1; rmw = 2;
4164 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4165 			 conf->rmw_level, (unsigned long long)recovery_cp,
4166 			 (unsigned long long)sh->sector);
4167 	} else for (i = disks; i--; ) {
4168 		/* would I have to read this buffer for read_modify_write */
4169 		struct r5dev *dev = &sh->dev[i];
4170 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4171 		     i == sh->pd_idx || i == sh->qd_idx ||
4172 		     test_bit(R5_InJournal, &dev->flags)) &&
4173 		    !test_bit(R5_LOCKED, &dev->flags) &&
4174 		    !(uptodate_for_rmw(dev) ||
4175 		      test_bit(R5_Wantcompute, &dev->flags))) {
4176 			if (test_bit(R5_Insync, &dev->flags))
4177 				rmw++;
4178 			else
4179 				rmw += 2*disks;  /* cannot read it */
4180 		}
4181 		/* Would I have to read this buffer for reconstruct_write */
4182 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4183 		    i != sh->pd_idx && i != sh->qd_idx &&
4184 		    !test_bit(R5_LOCKED, &dev->flags) &&
4185 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
4186 		      test_bit(R5_Wantcompute, &dev->flags))) {
4187 			if (test_bit(R5_Insync, &dev->flags))
4188 				rcw++;
4189 			else
4190 				rcw += 2*disks;
4191 		}
4192 	}
4193 
4194 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4195 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4196 	set_bit(STRIPE_HANDLE, &sh->state);
4197 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4198 		/* prefer read-modify-write, but need to get some data */
4199 		mddev_add_trace_msg(conf->mddev, "raid5 rmw %llu %d",
4200 				sh->sector, rmw);
4201 
4202 		for (i = disks; i--; ) {
4203 			struct r5dev *dev = &sh->dev[i];
4204 			if (test_bit(R5_InJournal, &dev->flags) &&
4205 			    dev->page == dev->orig_page &&
4206 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4207 				/* alloc page for prexor */
4208 				struct page *p = alloc_page(GFP_NOIO);
4209 
4210 				if (p) {
4211 					dev->orig_page = p;
4212 					continue;
4213 				}
4214 
4215 				/*
4216 				 * alloc_page() failed, try use
4217 				 * disk_info->extra_page
4218 				 */
4219 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4220 						      &conf->cache_state)) {
4221 					r5c_use_extra_page(sh);
4222 					break;
4223 				}
4224 
4225 				/* extra_page in use, add to delayed_list */
4226 				set_bit(STRIPE_DELAYED, &sh->state);
4227 				s->waiting_extra_page = 1;
4228 				return -EAGAIN;
4229 			}
4230 		}
4231 
4232 		for (i = disks; i--; ) {
4233 			struct r5dev *dev = &sh->dev[i];
4234 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4235 			     i == sh->pd_idx || i == sh->qd_idx ||
4236 			     test_bit(R5_InJournal, &dev->flags)) &&
4237 			    !test_bit(R5_LOCKED, &dev->flags) &&
4238 			    !(uptodate_for_rmw(dev) ||
4239 			      test_bit(R5_Wantcompute, &dev->flags)) &&
4240 			    test_bit(R5_Insync, &dev->flags)) {
4241 				if (test_bit(STRIPE_PREREAD_ACTIVE,
4242 					     &sh->state)) {
4243 					pr_debug("Read_old block %d for r-m-w\n",
4244 						 i);
4245 					set_bit(R5_LOCKED, &dev->flags);
4246 					set_bit(R5_Wantread, &dev->flags);
4247 					s->locked++;
4248 				} else
4249 					set_bit(STRIPE_DELAYED, &sh->state);
4250 			}
4251 		}
4252 	}
4253 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4254 		/* want reconstruct write, but need to get some data */
4255 		int qread =0;
4256 		rcw = 0;
4257 		for (i = disks; i--; ) {
4258 			struct r5dev *dev = &sh->dev[i];
4259 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4260 			    i != sh->pd_idx && i != sh->qd_idx &&
4261 			    !test_bit(R5_LOCKED, &dev->flags) &&
4262 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
4263 			      test_bit(R5_Wantcompute, &dev->flags))) {
4264 				rcw++;
4265 				if (test_bit(R5_Insync, &dev->flags) &&
4266 				    test_bit(STRIPE_PREREAD_ACTIVE,
4267 					     &sh->state)) {
4268 					pr_debug("Read_old block "
4269 						"%d for Reconstruct\n", i);
4270 					set_bit(R5_LOCKED, &dev->flags);
4271 					set_bit(R5_Wantread, &dev->flags);
4272 					s->locked++;
4273 					qread++;
4274 				} else
4275 					set_bit(STRIPE_DELAYED, &sh->state);
4276 			}
4277 		}
4278 		if (rcw && !mddev_is_dm(conf->mddev))
4279 			blk_add_trace_msg(conf->mddev->gendisk->queue,
4280 				"raid5 rcw %llu %d %d %d",
4281 				(unsigned long long)sh->sector, rcw, qread,
4282 				test_bit(STRIPE_DELAYED, &sh->state));
4283 	}
4284 
4285 	if (rcw > disks && rmw > disks &&
4286 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4287 		set_bit(STRIPE_DELAYED, &sh->state);
4288 
4289 	/* now if nothing is locked, and if we have enough data,
4290 	 * we can start a write request
4291 	 */
4292 	/* since handle_stripe can be called at any time we need to handle the
4293 	 * case where a compute block operation has been submitted and then a
4294 	 * subsequent call wants to start a write request.  raid_run_ops only
4295 	 * handles the case where compute block and reconstruct are requested
4296 	 * simultaneously.  If this is not the case then new writes need to be
4297 	 * held off until the compute completes.
4298 	 */
4299 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4300 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4301 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4302 		schedule_reconstruction(sh, s, rcw == 0, 0);
4303 	return 0;
4304 }
4305 
handle_parity_checks5(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4306 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4307 				struct stripe_head_state *s, int disks)
4308 {
4309 	struct r5dev *dev = NULL;
4310 
4311 	BUG_ON(sh->batch_head);
4312 	set_bit(STRIPE_HANDLE, &sh->state);
4313 
4314 	switch (sh->check_state) {
4315 	case check_state_idle:
4316 		/* start a new check operation if there are no failures */
4317 		if (s->failed == 0) {
4318 			BUG_ON(s->uptodate != disks);
4319 			sh->check_state = check_state_run;
4320 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4321 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4322 			s->uptodate--;
4323 			break;
4324 		}
4325 		dev = &sh->dev[s->failed_num[0]];
4326 		fallthrough;
4327 	case check_state_compute_result:
4328 		sh->check_state = check_state_idle;
4329 		if (!dev)
4330 			dev = &sh->dev[sh->pd_idx];
4331 
4332 		/* check that a write has not made the stripe insync */
4333 		if (test_bit(STRIPE_INSYNC, &sh->state))
4334 			break;
4335 
4336 		/* either failed parity check, or recovery is happening */
4337 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4338 		BUG_ON(s->uptodate != disks);
4339 
4340 		set_bit(R5_LOCKED, &dev->flags);
4341 		s->locked++;
4342 		set_bit(R5_Wantwrite, &dev->flags);
4343 
4344 		clear_bit(STRIPE_DEGRADED, &sh->state);
4345 		set_bit(STRIPE_INSYNC, &sh->state);
4346 		break;
4347 	case check_state_run:
4348 		break; /* we will be called again upon completion */
4349 	case check_state_check_result:
4350 		sh->check_state = check_state_idle;
4351 
4352 		/* if a failure occurred during the check operation, leave
4353 		 * STRIPE_INSYNC not set and let the stripe be handled again
4354 		 */
4355 		if (s->failed)
4356 			break;
4357 
4358 		/* handle a successful check operation, if parity is correct
4359 		 * we are done.  Otherwise update the mismatch count and repair
4360 		 * parity if !MD_RECOVERY_CHECK
4361 		 */
4362 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4363 			/* parity is correct (on disc,
4364 			 * not in buffer any more)
4365 			 */
4366 			set_bit(STRIPE_INSYNC, &sh->state);
4367 		else {
4368 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4369 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4370 				/* don't try to repair!! */
4371 				set_bit(STRIPE_INSYNC, &sh->state);
4372 				pr_warn_ratelimited("%s: mismatch sector in range "
4373 						    "%llu-%llu\n", mdname(conf->mddev),
4374 						    (unsigned long long) sh->sector,
4375 						    (unsigned long long) sh->sector +
4376 						    RAID5_STRIPE_SECTORS(conf));
4377 			} else {
4378 				sh->check_state = check_state_compute_run;
4379 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4380 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4381 				set_bit(R5_Wantcompute,
4382 					&sh->dev[sh->pd_idx].flags);
4383 				sh->ops.target = sh->pd_idx;
4384 				sh->ops.target2 = -1;
4385 				s->uptodate++;
4386 			}
4387 		}
4388 		break;
4389 	case check_state_compute_run:
4390 		break;
4391 	default:
4392 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4393 		       __func__, sh->check_state,
4394 		       (unsigned long long) sh->sector);
4395 		BUG();
4396 	}
4397 }
4398 
handle_parity_checks6(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4399 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4400 				  struct stripe_head_state *s,
4401 				  int disks)
4402 {
4403 	int pd_idx = sh->pd_idx;
4404 	int qd_idx = sh->qd_idx;
4405 	struct r5dev *dev;
4406 
4407 	BUG_ON(sh->batch_head);
4408 	set_bit(STRIPE_HANDLE, &sh->state);
4409 
4410 	BUG_ON(s->failed > 2);
4411 
4412 	/* Want to check and possibly repair P and Q.
4413 	 * However there could be one 'failed' device, in which
4414 	 * case we can only check one of them, possibly using the
4415 	 * other to generate missing data
4416 	 */
4417 
4418 	switch (sh->check_state) {
4419 	case check_state_idle:
4420 		/* start a new check operation if there are < 2 failures */
4421 		if (s->failed == s->q_failed) {
4422 			/* The only possible failed device holds Q, so it
4423 			 * makes sense to check P (If anything else were failed,
4424 			 * we would have used P to recreate it).
4425 			 */
4426 			sh->check_state = check_state_run;
4427 		}
4428 		if (!s->q_failed && s->failed < 2) {
4429 			/* Q is not failed, and we didn't use it to generate
4430 			 * anything, so it makes sense to check it
4431 			 */
4432 			if (sh->check_state == check_state_run)
4433 				sh->check_state = check_state_run_pq;
4434 			else
4435 				sh->check_state = check_state_run_q;
4436 		}
4437 
4438 		/* discard potentially stale zero_sum_result */
4439 		sh->ops.zero_sum_result = 0;
4440 
4441 		if (sh->check_state == check_state_run) {
4442 			/* async_xor_zero_sum destroys the contents of P */
4443 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4444 			s->uptodate--;
4445 		}
4446 		if (sh->check_state >= check_state_run &&
4447 		    sh->check_state <= check_state_run_pq) {
4448 			/* async_syndrome_zero_sum preserves P and Q, so
4449 			 * no need to mark them !uptodate here
4450 			 */
4451 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4452 			break;
4453 		}
4454 
4455 		/* we have 2-disk failure */
4456 		BUG_ON(s->failed != 2);
4457 		fallthrough;
4458 	case check_state_compute_result:
4459 		sh->check_state = check_state_idle;
4460 
4461 		/* check that a write has not made the stripe insync */
4462 		if (test_bit(STRIPE_INSYNC, &sh->state))
4463 			break;
4464 
4465 		/* now write out any block on a failed drive,
4466 		 * or P or Q if they were recomputed
4467 		 */
4468 		dev = NULL;
4469 		if (s->failed == 2) {
4470 			dev = &sh->dev[s->failed_num[1]];
4471 			s->locked++;
4472 			set_bit(R5_LOCKED, &dev->flags);
4473 			set_bit(R5_Wantwrite, &dev->flags);
4474 		}
4475 		if (s->failed >= 1) {
4476 			dev = &sh->dev[s->failed_num[0]];
4477 			s->locked++;
4478 			set_bit(R5_LOCKED, &dev->flags);
4479 			set_bit(R5_Wantwrite, &dev->flags);
4480 		}
4481 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4482 			dev = &sh->dev[pd_idx];
4483 			s->locked++;
4484 			set_bit(R5_LOCKED, &dev->flags);
4485 			set_bit(R5_Wantwrite, &dev->flags);
4486 		}
4487 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4488 			dev = &sh->dev[qd_idx];
4489 			s->locked++;
4490 			set_bit(R5_LOCKED, &dev->flags);
4491 			set_bit(R5_Wantwrite, &dev->flags);
4492 		}
4493 		if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4494 			      "%s: disk%td not up to date\n",
4495 			      mdname(conf->mddev),
4496 			      dev - (struct r5dev *) &sh->dev)) {
4497 			clear_bit(R5_LOCKED, &dev->flags);
4498 			clear_bit(R5_Wantwrite, &dev->flags);
4499 			s->locked--;
4500 		}
4501 		clear_bit(STRIPE_DEGRADED, &sh->state);
4502 
4503 		set_bit(STRIPE_INSYNC, &sh->state);
4504 		break;
4505 	case check_state_run:
4506 	case check_state_run_q:
4507 	case check_state_run_pq:
4508 		break; /* we will be called again upon completion */
4509 	case check_state_check_result:
4510 		sh->check_state = check_state_idle;
4511 
4512 		/* handle a successful check operation, if parity is correct
4513 		 * we are done.  Otherwise update the mismatch count and repair
4514 		 * parity if !MD_RECOVERY_CHECK
4515 		 */
4516 		if (sh->ops.zero_sum_result == 0) {
4517 			/* both parities are correct */
4518 			if (!s->failed)
4519 				set_bit(STRIPE_INSYNC, &sh->state);
4520 			else {
4521 				/* in contrast to the raid5 case we can validate
4522 				 * parity, but still have a failure to write
4523 				 * back
4524 				 */
4525 				sh->check_state = check_state_compute_result;
4526 				/* Returning at this point means that we may go
4527 				 * off and bring p and/or q uptodate again so
4528 				 * we make sure to check zero_sum_result again
4529 				 * to verify if p or q need writeback
4530 				 */
4531 			}
4532 		} else {
4533 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4534 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4535 				/* don't try to repair!! */
4536 				set_bit(STRIPE_INSYNC, &sh->state);
4537 				pr_warn_ratelimited("%s: mismatch sector in range "
4538 						    "%llu-%llu\n", mdname(conf->mddev),
4539 						    (unsigned long long) sh->sector,
4540 						    (unsigned long long) sh->sector +
4541 						    RAID5_STRIPE_SECTORS(conf));
4542 			} else {
4543 				int *target = &sh->ops.target;
4544 
4545 				sh->ops.target = -1;
4546 				sh->ops.target2 = -1;
4547 				sh->check_state = check_state_compute_run;
4548 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4549 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4550 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4551 					set_bit(R5_Wantcompute,
4552 						&sh->dev[pd_idx].flags);
4553 					*target = pd_idx;
4554 					target = &sh->ops.target2;
4555 					s->uptodate++;
4556 				}
4557 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4558 					set_bit(R5_Wantcompute,
4559 						&sh->dev[qd_idx].flags);
4560 					*target = qd_idx;
4561 					s->uptodate++;
4562 				}
4563 			}
4564 		}
4565 		break;
4566 	case check_state_compute_run:
4567 		break;
4568 	default:
4569 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4570 			__func__, sh->check_state,
4571 			(unsigned long long) sh->sector);
4572 		BUG();
4573 	}
4574 }
4575 
handle_stripe_expansion(struct r5conf * conf,struct stripe_head * sh)4576 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4577 {
4578 	int i;
4579 
4580 	/* We have read all the blocks in this stripe and now we need to
4581 	 * copy some of them into a target stripe for expand.
4582 	 */
4583 	struct dma_async_tx_descriptor *tx = NULL;
4584 	BUG_ON(sh->batch_head);
4585 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4586 	for (i = 0; i < sh->disks; i++)
4587 		if (i != sh->pd_idx && i != sh->qd_idx) {
4588 			int dd_idx, j;
4589 			struct stripe_head *sh2;
4590 			struct async_submit_ctl submit;
4591 
4592 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4593 			sector_t s = raid5_compute_sector(conf, bn, 0,
4594 							  &dd_idx, NULL);
4595 			sh2 = raid5_get_active_stripe(conf, NULL, s,
4596 				R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
4597 			if (sh2 == NULL)
4598 				/* so far only the early blocks of this stripe
4599 				 * have been requested.  When later blocks
4600 				 * get requested, we will try again
4601 				 */
4602 				continue;
4603 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4604 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4605 				/* must have already done this block */
4606 				raid5_release_stripe(sh2);
4607 				continue;
4608 			}
4609 
4610 			/* place all the copies on one channel */
4611 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4612 			tx = async_memcpy(sh2->dev[dd_idx].page,
4613 					  sh->dev[i].page, sh2->dev[dd_idx].offset,
4614 					  sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4615 					  &submit);
4616 
4617 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4618 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4619 			for (j = 0; j < conf->raid_disks; j++)
4620 				if (j != sh2->pd_idx &&
4621 				    j != sh2->qd_idx &&
4622 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4623 					break;
4624 			if (j == conf->raid_disks) {
4625 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4626 				set_bit(STRIPE_HANDLE, &sh2->state);
4627 			}
4628 			raid5_release_stripe(sh2);
4629 
4630 		}
4631 	/* done submitting copies, wait for them to complete */
4632 	async_tx_quiesce(&tx);
4633 }
4634 
4635 /*
4636  * handle_stripe - do things to a stripe.
4637  *
4638  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4639  * state of various bits to see what needs to be done.
4640  * Possible results:
4641  *    return some read requests which now have data
4642  *    return some write requests which are safely on storage
4643  *    schedule a read on some buffers
4644  *    schedule a write of some buffers
4645  *    return confirmation of parity correctness
4646  *
4647  */
4648 
analyse_stripe(struct stripe_head * sh,struct stripe_head_state * s)4649 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4650 {
4651 	struct r5conf *conf = sh->raid_conf;
4652 	int disks = sh->disks;
4653 	struct r5dev *dev;
4654 	int i;
4655 	int do_recovery = 0;
4656 
4657 	memset(s, 0, sizeof(*s));
4658 
4659 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4660 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4661 	s->failed_num[0] = -1;
4662 	s->failed_num[1] = -1;
4663 	s->log_failed = r5l_log_disk_error(conf);
4664 
4665 	/* Now to look around and see what can be done */
4666 	for (i=disks; i--; ) {
4667 		struct md_rdev *rdev;
4668 		int is_bad = 0;
4669 
4670 		dev = &sh->dev[i];
4671 
4672 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4673 			 i, dev->flags,
4674 			 dev->toread, dev->towrite, dev->written);
4675 		/* maybe we can reply to a read
4676 		 *
4677 		 * new wantfill requests are only permitted while
4678 		 * ops_complete_biofill is guaranteed to be inactive
4679 		 */
4680 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4681 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4682 			set_bit(R5_Wantfill, &dev->flags);
4683 
4684 		/* now count some things */
4685 		if (test_bit(R5_LOCKED, &dev->flags))
4686 			s->locked++;
4687 		if (test_bit(R5_UPTODATE, &dev->flags))
4688 			s->uptodate++;
4689 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4690 			s->compute++;
4691 			BUG_ON(s->compute > 2);
4692 		}
4693 
4694 		if (test_bit(R5_Wantfill, &dev->flags))
4695 			s->to_fill++;
4696 		else if (dev->toread)
4697 			s->to_read++;
4698 		if (dev->towrite) {
4699 			s->to_write++;
4700 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4701 				s->non_overwrite++;
4702 		}
4703 		if (dev->written)
4704 			s->written++;
4705 		/* Prefer to use the replacement for reads, but only
4706 		 * if it is recovered enough and has no bad blocks.
4707 		 */
4708 		rdev = conf->disks[i].replacement;
4709 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4710 		    rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4711 		    !rdev_has_badblock(rdev, sh->sector,
4712 				       RAID5_STRIPE_SECTORS(conf)))
4713 			set_bit(R5_ReadRepl, &dev->flags);
4714 		else {
4715 			if (rdev && !test_bit(Faulty, &rdev->flags))
4716 				set_bit(R5_NeedReplace, &dev->flags);
4717 			else
4718 				clear_bit(R5_NeedReplace, &dev->flags);
4719 			rdev = conf->disks[i].rdev;
4720 			clear_bit(R5_ReadRepl, &dev->flags);
4721 		}
4722 		if (rdev && test_bit(Faulty, &rdev->flags))
4723 			rdev = NULL;
4724 		if (rdev) {
4725 			is_bad = rdev_has_badblock(rdev, sh->sector,
4726 						   RAID5_STRIPE_SECTORS(conf));
4727 			if (s->blocked_rdev == NULL
4728 			    && (test_bit(Blocked, &rdev->flags)
4729 				|| is_bad < 0)) {
4730 				if (is_bad < 0)
4731 					set_bit(BlockedBadBlocks,
4732 						&rdev->flags);
4733 				s->blocked_rdev = rdev;
4734 				atomic_inc(&rdev->nr_pending);
4735 			}
4736 		}
4737 		clear_bit(R5_Insync, &dev->flags);
4738 		if (!rdev)
4739 			/* Not in-sync */;
4740 		else if (is_bad) {
4741 			/* also not in-sync */
4742 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4743 			    test_bit(R5_UPTODATE, &dev->flags)) {
4744 				/* treat as in-sync, but with a read error
4745 				 * which we can now try to correct
4746 				 */
4747 				set_bit(R5_Insync, &dev->flags);
4748 				set_bit(R5_ReadError, &dev->flags);
4749 			}
4750 		} else if (test_bit(In_sync, &rdev->flags))
4751 			set_bit(R5_Insync, &dev->flags);
4752 		else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4753 			/* in sync if before recovery_offset */
4754 			set_bit(R5_Insync, &dev->flags);
4755 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4756 			 test_bit(R5_Expanded, &dev->flags))
4757 			/* If we've reshaped into here, we assume it is Insync.
4758 			 * We will shortly update recovery_offset to make
4759 			 * it official.
4760 			 */
4761 			set_bit(R5_Insync, &dev->flags);
4762 
4763 		if (test_bit(R5_WriteError, &dev->flags)) {
4764 			/* This flag does not apply to '.replacement'
4765 			 * only to .rdev, so make sure to check that*/
4766 			struct md_rdev *rdev2 = conf->disks[i].rdev;
4767 
4768 			if (rdev2 == rdev)
4769 				clear_bit(R5_Insync, &dev->flags);
4770 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4771 				s->handle_bad_blocks = 1;
4772 				atomic_inc(&rdev2->nr_pending);
4773 			} else
4774 				clear_bit(R5_WriteError, &dev->flags);
4775 		}
4776 		if (test_bit(R5_MadeGood, &dev->flags)) {
4777 			/* This flag does not apply to '.replacement'
4778 			 * only to .rdev, so make sure to check that*/
4779 			struct md_rdev *rdev2 = conf->disks[i].rdev;
4780 
4781 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4782 				s->handle_bad_blocks = 1;
4783 				atomic_inc(&rdev2->nr_pending);
4784 			} else
4785 				clear_bit(R5_MadeGood, &dev->flags);
4786 		}
4787 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4788 			struct md_rdev *rdev2 = conf->disks[i].replacement;
4789 
4790 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4791 				s->handle_bad_blocks = 1;
4792 				atomic_inc(&rdev2->nr_pending);
4793 			} else
4794 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4795 		}
4796 		if (!test_bit(R5_Insync, &dev->flags)) {
4797 			/* The ReadError flag will just be confusing now */
4798 			clear_bit(R5_ReadError, &dev->flags);
4799 			clear_bit(R5_ReWrite, &dev->flags);
4800 		}
4801 		if (test_bit(R5_ReadError, &dev->flags))
4802 			clear_bit(R5_Insync, &dev->flags);
4803 		if (!test_bit(R5_Insync, &dev->flags)) {
4804 			if (s->failed < 2)
4805 				s->failed_num[s->failed] = i;
4806 			s->failed++;
4807 			if (rdev && !test_bit(Faulty, &rdev->flags))
4808 				do_recovery = 1;
4809 			else if (!rdev) {
4810 				rdev = conf->disks[i].replacement;
4811 				if (rdev && !test_bit(Faulty, &rdev->flags))
4812 					do_recovery = 1;
4813 			}
4814 		}
4815 
4816 		if (test_bit(R5_InJournal, &dev->flags))
4817 			s->injournal++;
4818 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4819 			s->just_cached++;
4820 	}
4821 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4822 		/* If there is a failed device being replaced,
4823 		 *     we must be recovering.
4824 		 * else if we are after recovery_cp, we must be syncing
4825 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4826 		 * else we can only be replacing
4827 		 * sync and recovery both need to read all devices, and so
4828 		 * use the same flag.
4829 		 */
4830 		if (do_recovery ||
4831 		    sh->sector >= conf->mddev->recovery_cp ||
4832 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4833 			s->syncing = 1;
4834 		else
4835 			s->replacing = 1;
4836 	}
4837 }
4838 
4839 /*
4840  * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4841  * a head which can now be handled.
4842  */
clear_batch_ready(struct stripe_head * sh)4843 static int clear_batch_ready(struct stripe_head *sh)
4844 {
4845 	struct stripe_head *tmp;
4846 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4847 		return (sh->batch_head && sh->batch_head != sh);
4848 	spin_lock(&sh->stripe_lock);
4849 	if (!sh->batch_head) {
4850 		spin_unlock(&sh->stripe_lock);
4851 		return 0;
4852 	}
4853 
4854 	/*
4855 	 * this stripe could be added to a batch list before we check
4856 	 * BATCH_READY, skips it
4857 	 */
4858 	if (sh->batch_head != sh) {
4859 		spin_unlock(&sh->stripe_lock);
4860 		return 1;
4861 	}
4862 	spin_lock(&sh->batch_lock);
4863 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4864 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4865 	spin_unlock(&sh->batch_lock);
4866 	spin_unlock(&sh->stripe_lock);
4867 
4868 	/*
4869 	 * BATCH_READY is cleared, no new stripes can be added.
4870 	 * batch_list can be accessed without lock
4871 	 */
4872 	return 0;
4873 }
4874 
break_stripe_batch_list(struct stripe_head * head_sh,unsigned long handle_flags)4875 static void break_stripe_batch_list(struct stripe_head *head_sh,
4876 				    unsigned long handle_flags)
4877 {
4878 	struct stripe_head *sh, *next;
4879 	int i;
4880 
4881 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4882 
4883 		list_del_init(&sh->batch_list);
4884 
4885 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4886 					  (1 << STRIPE_SYNCING) |
4887 					  (1 << STRIPE_REPLACED) |
4888 					  (1 << STRIPE_DELAYED) |
4889 					  (1 << STRIPE_BIT_DELAY) |
4890 					  (1 << STRIPE_FULL_WRITE) |
4891 					  (1 << STRIPE_BIOFILL_RUN) |
4892 					  (1 << STRIPE_COMPUTE_RUN)  |
4893 					  (1 << STRIPE_DISCARD) |
4894 					  (1 << STRIPE_BATCH_READY) |
4895 					  (1 << STRIPE_BATCH_ERR) |
4896 					  (1 << STRIPE_BITMAP_PENDING)),
4897 			"stripe state: %lx\n", sh->state);
4898 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4899 					      (1 << STRIPE_REPLACED)),
4900 			"head stripe state: %lx\n", head_sh->state);
4901 
4902 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4903 					    (1 << STRIPE_PREREAD_ACTIVE) |
4904 					    (1 << STRIPE_DEGRADED) |
4905 					    (1 << STRIPE_ON_UNPLUG_LIST)),
4906 			      head_sh->state & (1 << STRIPE_INSYNC));
4907 
4908 		sh->check_state = head_sh->check_state;
4909 		sh->reconstruct_state = head_sh->reconstruct_state;
4910 		spin_lock_irq(&sh->stripe_lock);
4911 		sh->batch_head = NULL;
4912 		spin_unlock_irq(&sh->stripe_lock);
4913 		for (i = 0; i < sh->disks; i++) {
4914 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4915 				wake_up_bit(&sh->dev[i].flags, R5_Overlap);
4916 			sh->dev[i].flags = head_sh->dev[i].flags &
4917 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4918 		}
4919 		if (handle_flags == 0 ||
4920 		    sh->state & handle_flags)
4921 			set_bit(STRIPE_HANDLE, &sh->state);
4922 		raid5_release_stripe(sh);
4923 	}
4924 	spin_lock_irq(&head_sh->stripe_lock);
4925 	head_sh->batch_head = NULL;
4926 	spin_unlock_irq(&head_sh->stripe_lock);
4927 	for (i = 0; i < head_sh->disks; i++)
4928 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4929 			wake_up_bit(&head_sh->dev[i].flags, R5_Overlap);
4930 	if (head_sh->state & handle_flags)
4931 		set_bit(STRIPE_HANDLE, &head_sh->state);
4932 }
4933 
handle_stripe(struct stripe_head * sh)4934 static void handle_stripe(struct stripe_head *sh)
4935 {
4936 	struct stripe_head_state s;
4937 	struct r5conf *conf = sh->raid_conf;
4938 	int i;
4939 	int prexor;
4940 	int disks = sh->disks;
4941 	struct r5dev *pdev, *qdev;
4942 
4943 	clear_bit(STRIPE_HANDLE, &sh->state);
4944 
4945 	/*
4946 	 * handle_stripe should not continue handle the batched stripe, only
4947 	 * the head of batch list or lone stripe can continue. Otherwise we
4948 	 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4949 	 * is set for the batched stripe.
4950 	 */
4951 	if (clear_batch_ready(sh))
4952 		return;
4953 
4954 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4955 		/* already being handled, ensure it gets handled
4956 		 * again when current action finishes */
4957 		set_bit(STRIPE_HANDLE, &sh->state);
4958 		return;
4959 	}
4960 
4961 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4962 		break_stripe_batch_list(sh, 0);
4963 
4964 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4965 		spin_lock(&sh->stripe_lock);
4966 		/*
4967 		 * Cannot process 'sync' concurrently with 'discard'.
4968 		 * Flush data in r5cache before 'sync'.
4969 		 */
4970 		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4971 		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4972 		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4973 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4974 			set_bit(STRIPE_SYNCING, &sh->state);
4975 			clear_bit(STRIPE_INSYNC, &sh->state);
4976 			clear_bit(STRIPE_REPLACED, &sh->state);
4977 		}
4978 		spin_unlock(&sh->stripe_lock);
4979 	}
4980 	clear_bit(STRIPE_DELAYED, &sh->state);
4981 
4982 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4983 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4984 	       (unsigned long long)sh->sector, sh->state,
4985 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4986 	       sh->check_state, sh->reconstruct_state);
4987 
4988 	analyse_stripe(sh, &s);
4989 
4990 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4991 		goto finish;
4992 
4993 	if (s.handle_bad_blocks ||
4994 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4995 		set_bit(STRIPE_HANDLE, &sh->state);
4996 		goto finish;
4997 	}
4998 
4999 	if (unlikely(s.blocked_rdev)) {
5000 		if (s.syncing || s.expanding || s.expanded ||
5001 		    s.replacing || s.to_write || s.written) {
5002 			set_bit(STRIPE_HANDLE, &sh->state);
5003 			goto finish;
5004 		}
5005 		/* There is nothing for the blocked_rdev to block */
5006 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
5007 		s.blocked_rdev = NULL;
5008 	}
5009 
5010 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
5011 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
5012 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
5013 	}
5014 
5015 	pr_debug("locked=%d uptodate=%d to_read=%d"
5016 	       " to_write=%d failed=%d failed_num=%d,%d\n",
5017 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
5018 	       s.failed_num[0], s.failed_num[1]);
5019 	/*
5020 	 * check if the array has lost more than max_degraded devices and,
5021 	 * if so, some requests might need to be failed.
5022 	 *
5023 	 * When journal device failed (log_failed), we will only process
5024 	 * the stripe if there is data need write to raid disks
5025 	 */
5026 	if (s.failed > conf->max_degraded ||
5027 	    (s.log_failed && s.injournal == 0)) {
5028 		sh->check_state = 0;
5029 		sh->reconstruct_state = 0;
5030 		break_stripe_batch_list(sh, 0);
5031 		if (s.to_read+s.to_write+s.written)
5032 			handle_failed_stripe(conf, sh, &s, disks);
5033 		if (s.syncing + s.replacing)
5034 			handle_failed_sync(conf, sh, &s);
5035 	}
5036 
5037 	/* Now we check to see if any write operations have recently
5038 	 * completed
5039 	 */
5040 	prexor = 0;
5041 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
5042 		prexor = 1;
5043 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
5044 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
5045 		sh->reconstruct_state = reconstruct_state_idle;
5046 
5047 		/* All the 'written' buffers and the parity block are ready to
5048 		 * be written back to disk
5049 		 */
5050 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
5051 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
5052 		BUG_ON(sh->qd_idx >= 0 &&
5053 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5054 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
5055 		for (i = disks; i--; ) {
5056 			struct r5dev *dev = &sh->dev[i];
5057 			if (test_bit(R5_LOCKED, &dev->flags) &&
5058 				(i == sh->pd_idx || i == sh->qd_idx ||
5059 				 dev->written || test_bit(R5_InJournal,
5060 							  &dev->flags))) {
5061 				pr_debug("Writing block %d\n", i);
5062 				set_bit(R5_Wantwrite, &dev->flags);
5063 				if (prexor)
5064 					continue;
5065 				if (s.failed > 1)
5066 					continue;
5067 				if (!test_bit(R5_Insync, &dev->flags) ||
5068 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
5069 				     s.failed == 0))
5070 					set_bit(STRIPE_INSYNC, &sh->state);
5071 			}
5072 		}
5073 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5074 			s.dec_preread_active = 1;
5075 	}
5076 
5077 	/*
5078 	 * might be able to return some write requests if the parity blocks
5079 	 * are safe, or on a failed drive
5080 	 */
5081 	pdev = &sh->dev[sh->pd_idx];
5082 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5083 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5084 	qdev = &sh->dev[sh->qd_idx];
5085 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5086 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5087 		|| conf->level < 6;
5088 
5089 	if (s.written &&
5090 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5091 			     && !test_bit(R5_LOCKED, &pdev->flags)
5092 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
5093 				 test_bit(R5_Discard, &pdev->flags))))) &&
5094 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5095 			     && !test_bit(R5_LOCKED, &qdev->flags)
5096 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
5097 				 test_bit(R5_Discard, &qdev->flags))))))
5098 		handle_stripe_clean_event(conf, sh, disks);
5099 
5100 	if (s.just_cached)
5101 		r5c_handle_cached_data_endio(conf, sh, disks);
5102 	log_stripe_write_finished(sh);
5103 
5104 	/* Now we might consider reading some blocks, either to check/generate
5105 	 * parity, or to satisfy requests
5106 	 * or to load a block that is being partially written.
5107 	 */
5108 	if (s.to_read || s.non_overwrite
5109 	    || (s.to_write && s.failed)
5110 	    || (s.syncing && (s.uptodate + s.compute < disks))
5111 	    || s.replacing
5112 	    || s.expanding)
5113 		handle_stripe_fill(sh, &s, disks);
5114 
5115 	/*
5116 	 * When the stripe finishes full journal write cycle (write to journal
5117 	 * and raid disk), this is the clean up procedure so it is ready for
5118 	 * next operation.
5119 	 */
5120 	r5c_finish_stripe_write_out(conf, sh, &s);
5121 
5122 	/*
5123 	 * Now to consider new write requests, cache write back and what else,
5124 	 * if anything should be read.  We do not handle new writes when:
5125 	 * 1/ A 'write' operation (copy+xor) is already in flight.
5126 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
5127 	 *    block.
5128 	 * 3/ A r5c cache log write is in flight.
5129 	 */
5130 
5131 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5132 		if (!r5c_is_writeback(conf->log)) {
5133 			if (s.to_write)
5134 				handle_stripe_dirtying(conf, sh, &s, disks);
5135 		} else { /* write back cache */
5136 			int ret = 0;
5137 
5138 			/* First, try handle writes in caching phase */
5139 			if (s.to_write)
5140 				ret = r5c_try_caching_write(conf, sh, &s,
5141 							    disks);
5142 			/*
5143 			 * If caching phase failed: ret == -EAGAIN
5144 			 *    OR
5145 			 * stripe under reclaim: !caching && injournal
5146 			 *
5147 			 * fall back to handle_stripe_dirtying()
5148 			 */
5149 			if (ret == -EAGAIN ||
5150 			    /* stripe under reclaim: !caching && injournal */
5151 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5152 			     s.injournal > 0)) {
5153 				ret = handle_stripe_dirtying(conf, sh, &s,
5154 							     disks);
5155 				if (ret == -EAGAIN)
5156 					goto finish;
5157 			}
5158 		}
5159 	}
5160 
5161 	/* maybe we need to check and possibly fix the parity for this stripe
5162 	 * Any reads will already have been scheduled, so we just see if enough
5163 	 * data is available.  The parity check is held off while parity
5164 	 * dependent operations are in flight.
5165 	 */
5166 	if (sh->check_state ||
5167 	    (s.syncing && s.locked == 0 &&
5168 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5169 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
5170 		if (conf->level == 6)
5171 			handle_parity_checks6(conf, sh, &s, disks);
5172 		else
5173 			handle_parity_checks5(conf, sh, &s, disks);
5174 	}
5175 
5176 	if ((s.replacing || s.syncing) && s.locked == 0
5177 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5178 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
5179 		/* Write out to replacement devices where possible */
5180 		for (i = 0; i < conf->raid_disks; i++)
5181 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5182 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5183 				set_bit(R5_WantReplace, &sh->dev[i].flags);
5184 				set_bit(R5_LOCKED, &sh->dev[i].flags);
5185 				s.locked++;
5186 			}
5187 		if (s.replacing)
5188 			set_bit(STRIPE_INSYNC, &sh->state);
5189 		set_bit(STRIPE_REPLACED, &sh->state);
5190 	}
5191 	if ((s.syncing || s.replacing) && s.locked == 0 &&
5192 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5193 	    test_bit(STRIPE_INSYNC, &sh->state)) {
5194 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5195 		clear_bit(STRIPE_SYNCING, &sh->state);
5196 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5197 			wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap);
5198 	}
5199 
5200 	/* If the failed drives are just a ReadError, then we might need
5201 	 * to progress the repair/check process
5202 	 */
5203 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5204 		for (i = 0; i < s.failed; i++) {
5205 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
5206 			if (test_bit(R5_ReadError, &dev->flags)
5207 			    && !test_bit(R5_LOCKED, &dev->flags)
5208 			    && test_bit(R5_UPTODATE, &dev->flags)
5209 				) {
5210 				if (!test_bit(R5_ReWrite, &dev->flags)) {
5211 					set_bit(R5_Wantwrite, &dev->flags);
5212 					set_bit(R5_ReWrite, &dev->flags);
5213 				} else
5214 					/* let's read it back */
5215 					set_bit(R5_Wantread, &dev->flags);
5216 				set_bit(R5_LOCKED, &dev->flags);
5217 				s.locked++;
5218 			}
5219 		}
5220 
5221 	/* Finish reconstruct operations initiated by the expansion process */
5222 	if (sh->reconstruct_state == reconstruct_state_result) {
5223 		struct stripe_head *sh_src
5224 			= raid5_get_active_stripe(conf, NULL, sh->sector,
5225 					R5_GAS_PREVIOUS | R5_GAS_NOBLOCK |
5226 					R5_GAS_NOQUIESCE);
5227 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5228 			/* sh cannot be written until sh_src has been read.
5229 			 * so arrange for sh to be delayed a little
5230 			 */
5231 			set_bit(STRIPE_DELAYED, &sh->state);
5232 			set_bit(STRIPE_HANDLE, &sh->state);
5233 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5234 					      &sh_src->state))
5235 				atomic_inc(&conf->preread_active_stripes);
5236 			raid5_release_stripe(sh_src);
5237 			goto finish;
5238 		}
5239 		if (sh_src)
5240 			raid5_release_stripe(sh_src);
5241 
5242 		sh->reconstruct_state = reconstruct_state_idle;
5243 		clear_bit(STRIPE_EXPANDING, &sh->state);
5244 		for (i = conf->raid_disks; i--; ) {
5245 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
5246 			set_bit(R5_LOCKED, &sh->dev[i].flags);
5247 			s.locked++;
5248 		}
5249 	}
5250 
5251 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5252 	    !sh->reconstruct_state) {
5253 		/* Need to write out all blocks after computing parity */
5254 		sh->disks = conf->raid_disks;
5255 		stripe_set_idx(sh->sector, conf, 0, sh);
5256 		schedule_reconstruction(sh, &s, 1, 1);
5257 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5258 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
5259 		atomic_dec(&conf->reshape_stripes);
5260 		wake_up(&conf->wait_for_reshape);
5261 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5262 	}
5263 
5264 	if (s.expanding && s.locked == 0 &&
5265 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5266 		handle_stripe_expansion(conf, sh);
5267 
5268 finish:
5269 	/* wait for this device to become unblocked */
5270 	if (unlikely(s.blocked_rdev)) {
5271 		if (conf->mddev->external)
5272 			md_wait_for_blocked_rdev(s.blocked_rdev,
5273 						 conf->mddev);
5274 		else
5275 			/* Internal metadata will immediately
5276 			 * be written by raid5d, so we don't
5277 			 * need to wait here.
5278 			 */
5279 			rdev_dec_pending(s.blocked_rdev,
5280 					 conf->mddev);
5281 	}
5282 
5283 	if (s.handle_bad_blocks)
5284 		for (i = disks; i--; ) {
5285 			struct md_rdev *rdev;
5286 			struct r5dev *dev = &sh->dev[i];
5287 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5288 				/* We own a safe reference to the rdev */
5289 				rdev = conf->disks[i].rdev;
5290 				if (!rdev_set_badblocks(rdev, sh->sector,
5291 							RAID5_STRIPE_SECTORS(conf), 0))
5292 					md_error(conf->mddev, rdev);
5293 				rdev_dec_pending(rdev, conf->mddev);
5294 			}
5295 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5296 				rdev = conf->disks[i].rdev;
5297 				rdev_clear_badblocks(rdev, sh->sector,
5298 						     RAID5_STRIPE_SECTORS(conf), 0);
5299 				rdev_dec_pending(rdev, conf->mddev);
5300 			}
5301 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5302 				rdev = conf->disks[i].replacement;
5303 				if (!rdev)
5304 					/* rdev have been moved down */
5305 					rdev = conf->disks[i].rdev;
5306 				rdev_clear_badblocks(rdev, sh->sector,
5307 						     RAID5_STRIPE_SECTORS(conf), 0);
5308 				rdev_dec_pending(rdev, conf->mddev);
5309 			}
5310 		}
5311 
5312 	if (s.ops_request)
5313 		raid_run_ops(sh, s.ops_request);
5314 
5315 	ops_run_io(sh, &s);
5316 
5317 	if (s.dec_preread_active) {
5318 		/* We delay this until after ops_run_io so that if make_request
5319 		 * is waiting on a flush, it won't continue until the writes
5320 		 * have actually been submitted.
5321 		 */
5322 		atomic_dec(&conf->preread_active_stripes);
5323 		if (atomic_read(&conf->preread_active_stripes) <
5324 		    IO_THRESHOLD)
5325 			md_wakeup_thread(conf->mddev->thread);
5326 	}
5327 
5328 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5329 }
5330 
raid5_activate_delayed(struct r5conf * conf)5331 static void raid5_activate_delayed(struct r5conf *conf)
5332 	__must_hold(&conf->device_lock)
5333 {
5334 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5335 		while (!list_empty(&conf->delayed_list)) {
5336 			struct list_head *l = conf->delayed_list.next;
5337 			struct stripe_head *sh;
5338 			sh = list_entry(l, struct stripe_head, lru);
5339 			list_del_init(l);
5340 			clear_bit(STRIPE_DELAYED, &sh->state);
5341 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5342 				atomic_inc(&conf->preread_active_stripes);
5343 			list_add_tail(&sh->lru, &conf->hold_list);
5344 			raid5_wakeup_stripe_thread(sh);
5345 		}
5346 	}
5347 }
5348 
activate_bit_delay(struct r5conf * conf,struct list_head * temp_inactive_list)5349 static void activate_bit_delay(struct r5conf *conf,
5350 		struct list_head *temp_inactive_list)
5351 	__must_hold(&conf->device_lock)
5352 {
5353 	struct list_head head;
5354 	list_add(&head, &conf->bitmap_list);
5355 	list_del_init(&conf->bitmap_list);
5356 	while (!list_empty(&head)) {
5357 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5358 		int hash;
5359 		list_del_init(&sh->lru);
5360 		atomic_inc(&sh->count);
5361 		hash = sh->hash_lock_index;
5362 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5363 	}
5364 }
5365 
in_chunk_boundary(struct mddev * mddev,struct bio * bio)5366 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5367 {
5368 	struct r5conf *conf = mddev->private;
5369 	sector_t sector = bio->bi_iter.bi_sector;
5370 	unsigned int chunk_sectors;
5371 	unsigned int bio_sectors = bio_sectors(bio);
5372 
5373 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5374 	return  chunk_sectors >=
5375 		((sector & (chunk_sectors - 1)) + bio_sectors);
5376 }
5377 
5378 /*
5379  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5380  *  later sampled by raid5d.
5381  */
add_bio_to_retry(struct bio * bi,struct r5conf * conf)5382 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5383 {
5384 	unsigned long flags;
5385 
5386 	spin_lock_irqsave(&conf->device_lock, flags);
5387 
5388 	bi->bi_next = conf->retry_read_aligned_list;
5389 	conf->retry_read_aligned_list = bi;
5390 
5391 	spin_unlock_irqrestore(&conf->device_lock, flags);
5392 	md_wakeup_thread(conf->mddev->thread);
5393 }
5394 
remove_bio_from_retry(struct r5conf * conf,unsigned int * offset)5395 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5396 					 unsigned int *offset)
5397 {
5398 	struct bio *bi;
5399 
5400 	bi = conf->retry_read_aligned;
5401 	if (bi) {
5402 		*offset = conf->retry_read_offset;
5403 		conf->retry_read_aligned = NULL;
5404 		return bi;
5405 	}
5406 	bi = conf->retry_read_aligned_list;
5407 	if(bi) {
5408 		conf->retry_read_aligned_list = bi->bi_next;
5409 		bi->bi_next = NULL;
5410 		*offset = 0;
5411 	}
5412 
5413 	return bi;
5414 }
5415 
5416 /*
5417  *  The "raid5_align_endio" should check if the read succeeded and if it
5418  *  did, call bio_endio on the original bio (having bio_put the new bio
5419  *  first).
5420  *  If the read failed..
5421  */
raid5_align_endio(struct bio * bi)5422 static void raid5_align_endio(struct bio *bi)
5423 {
5424 	struct bio *raid_bi = bi->bi_private;
5425 	struct md_rdev *rdev = (void *)raid_bi->bi_next;
5426 	struct mddev *mddev = rdev->mddev;
5427 	struct r5conf *conf = mddev->private;
5428 	blk_status_t error = bi->bi_status;
5429 
5430 	bio_put(bi);
5431 	raid_bi->bi_next = NULL;
5432 	rdev_dec_pending(rdev, conf->mddev);
5433 
5434 	if (!error) {
5435 		bio_endio(raid_bi);
5436 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5437 			wake_up(&conf->wait_for_quiescent);
5438 		return;
5439 	}
5440 
5441 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5442 
5443 	add_bio_to_retry(raid_bi, conf);
5444 }
5445 
raid5_read_one_chunk(struct mddev * mddev,struct bio * raid_bio)5446 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5447 {
5448 	struct r5conf *conf = mddev->private;
5449 	struct bio *align_bio;
5450 	struct md_rdev *rdev;
5451 	sector_t sector, end_sector;
5452 	int dd_idx;
5453 	bool did_inc;
5454 
5455 	if (!in_chunk_boundary(mddev, raid_bio)) {
5456 		pr_debug("%s: non aligned\n", __func__);
5457 		return 0;
5458 	}
5459 
5460 	sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5461 				      &dd_idx, NULL);
5462 	end_sector = sector + bio_sectors(raid_bio);
5463 
5464 	if (r5c_big_stripe_cached(conf, sector))
5465 		return 0;
5466 
5467 	rdev = conf->disks[dd_idx].replacement;
5468 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5469 	    rdev->recovery_offset < end_sector) {
5470 		rdev = conf->disks[dd_idx].rdev;
5471 		if (!rdev)
5472 			return 0;
5473 		if (test_bit(Faulty, &rdev->flags) ||
5474 		    !(test_bit(In_sync, &rdev->flags) ||
5475 		      rdev->recovery_offset >= end_sector))
5476 			return 0;
5477 	}
5478 
5479 	atomic_inc(&rdev->nr_pending);
5480 
5481 	if (rdev_has_badblock(rdev, sector, bio_sectors(raid_bio))) {
5482 		rdev_dec_pending(rdev, mddev);
5483 		return 0;
5484 	}
5485 
5486 	md_account_bio(mddev, &raid_bio);
5487 	raid_bio->bi_next = (void *)rdev;
5488 
5489 	align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5490 				    &mddev->bio_set);
5491 	align_bio->bi_end_io = raid5_align_endio;
5492 	align_bio->bi_private = raid_bio;
5493 	align_bio->bi_iter.bi_sector = sector;
5494 
5495 	/* No reshape active, so we can trust rdev->data_offset */
5496 	align_bio->bi_iter.bi_sector += rdev->data_offset;
5497 
5498 	did_inc = false;
5499 	if (conf->quiesce == 0) {
5500 		atomic_inc(&conf->active_aligned_reads);
5501 		did_inc = true;
5502 	}
5503 	/* need a memory barrier to detect the race with raid5_quiesce() */
5504 	if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5505 		/* quiesce is in progress, so we need to undo io activation and wait
5506 		 * for it to finish
5507 		 */
5508 		if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5509 			wake_up(&conf->wait_for_quiescent);
5510 		spin_lock_irq(&conf->device_lock);
5511 		wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5512 				    conf->device_lock);
5513 		atomic_inc(&conf->active_aligned_reads);
5514 		spin_unlock_irq(&conf->device_lock);
5515 	}
5516 
5517 	mddev_trace_remap(mddev, align_bio, raid_bio->bi_iter.bi_sector);
5518 	submit_bio_noacct(align_bio);
5519 	return 1;
5520 }
5521 
chunk_aligned_read(struct mddev * mddev,struct bio * raid_bio)5522 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5523 {
5524 	struct bio *split;
5525 	sector_t sector = raid_bio->bi_iter.bi_sector;
5526 	unsigned chunk_sects = mddev->chunk_sectors;
5527 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5528 
5529 	if (sectors < bio_sectors(raid_bio)) {
5530 		struct r5conf *conf = mddev->private;
5531 		split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5532 		bio_chain(split, raid_bio);
5533 		submit_bio_noacct(raid_bio);
5534 		raid_bio = split;
5535 	}
5536 
5537 	if (!raid5_read_one_chunk(mddev, raid_bio))
5538 		return raid_bio;
5539 
5540 	return NULL;
5541 }
5542 
5543 /* __get_priority_stripe - get the next stripe to process
5544  *
5545  * Full stripe writes are allowed to pass preread active stripes up until
5546  * the bypass_threshold is exceeded.  In general the bypass_count
5547  * increments when the handle_list is handled before the hold_list; however, it
5548  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5549  * stripe with in flight i/o.  The bypass_count will be reset when the
5550  * head of the hold_list has changed, i.e. the head was promoted to the
5551  * handle_list.
5552  */
__get_priority_stripe(struct r5conf * conf,int group)5553 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5554 	__must_hold(&conf->device_lock)
5555 {
5556 	struct stripe_head *sh, *tmp;
5557 	struct list_head *handle_list = NULL;
5558 	struct r5worker_group *wg;
5559 	bool second_try = !r5c_is_writeback(conf->log) &&
5560 		!r5l_log_disk_error(conf);
5561 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5562 		r5l_log_disk_error(conf);
5563 
5564 again:
5565 	wg = NULL;
5566 	sh = NULL;
5567 	if (conf->worker_cnt_per_group == 0) {
5568 		handle_list = try_loprio ? &conf->loprio_list :
5569 					&conf->handle_list;
5570 	} else if (group != ANY_GROUP) {
5571 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5572 				&conf->worker_groups[group].handle_list;
5573 		wg = &conf->worker_groups[group];
5574 	} else {
5575 		int i;
5576 		for (i = 0; i < conf->group_cnt; i++) {
5577 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5578 				&conf->worker_groups[i].handle_list;
5579 			wg = &conf->worker_groups[i];
5580 			if (!list_empty(handle_list))
5581 				break;
5582 		}
5583 	}
5584 
5585 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5586 		  __func__,
5587 		  list_empty(handle_list) ? "empty" : "busy",
5588 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5589 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5590 
5591 	if (!list_empty(handle_list)) {
5592 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5593 
5594 		if (list_empty(&conf->hold_list))
5595 			conf->bypass_count = 0;
5596 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5597 			if (conf->hold_list.next == conf->last_hold)
5598 				conf->bypass_count++;
5599 			else {
5600 				conf->last_hold = conf->hold_list.next;
5601 				conf->bypass_count -= conf->bypass_threshold;
5602 				if (conf->bypass_count < 0)
5603 					conf->bypass_count = 0;
5604 			}
5605 		}
5606 	} else if (!list_empty(&conf->hold_list) &&
5607 		   ((conf->bypass_threshold &&
5608 		     conf->bypass_count > conf->bypass_threshold) ||
5609 		    atomic_read(&conf->pending_full_writes) == 0)) {
5610 
5611 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5612 			if (conf->worker_cnt_per_group == 0 ||
5613 			    group == ANY_GROUP ||
5614 			    !cpu_online(tmp->cpu) ||
5615 			    cpu_to_group(tmp->cpu) == group) {
5616 				sh = tmp;
5617 				break;
5618 			}
5619 		}
5620 
5621 		if (sh) {
5622 			conf->bypass_count -= conf->bypass_threshold;
5623 			if (conf->bypass_count < 0)
5624 				conf->bypass_count = 0;
5625 		}
5626 		wg = NULL;
5627 	}
5628 
5629 	if (!sh) {
5630 		if (second_try)
5631 			return NULL;
5632 		second_try = true;
5633 		try_loprio = !try_loprio;
5634 		goto again;
5635 	}
5636 
5637 	if (wg) {
5638 		wg->stripes_cnt--;
5639 		sh->group = NULL;
5640 	}
5641 	list_del_init(&sh->lru);
5642 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5643 	return sh;
5644 }
5645 
5646 struct raid5_plug_cb {
5647 	struct blk_plug_cb	cb;
5648 	struct list_head	list;
5649 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5650 };
5651 
raid5_unplug(struct blk_plug_cb * blk_cb,bool from_schedule)5652 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5653 {
5654 	struct raid5_plug_cb *cb = container_of(
5655 		blk_cb, struct raid5_plug_cb, cb);
5656 	struct stripe_head *sh;
5657 	struct mddev *mddev = cb->cb.data;
5658 	struct r5conf *conf = mddev->private;
5659 	int cnt = 0;
5660 	int hash;
5661 
5662 	if (cb->list.next && !list_empty(&cb->list)) {
5663 		spin_lock_irq(&conf->device_lock);
5664 		while (!list_empty(&cb->list)) {
5665 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5666 			list_del_init(&sh->lru);
5667 			/*
5668 			 * avoid race release_stripe_plug() sees
5669 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5670 			 * is still in our list
5671 			 */
5672 			smp_mb__before_atomic();
5673 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5674 			/*
5675 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5676 			 * case, the count is always > 1 here
5677 			 */
5678 			hash = sh->hash_lock_index;
5679 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5680 			cnt++;
5681 		}
5682 		spin_unlock_irq(&conf->device_lock);
5683 	}
5684 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5685 				     NR_STRIPE_HASH_LOCKS);
5686 	if (!mddev_is_dm(mddev))
5687 		trace_block_unplug(mddev->gendisk->queue, cnt, !from_schedule);
5688 	kfree(cb);
5689 }
5690 
release_stripe_plug(struct mddev * mddev,struct stripe_head * sh)5691 static void release_stripe_plug(struct mddev *mddev,
5692 				struct stripe_head *sh)
5693 {
5694 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5695 		raid5_unplug, mddev,
5696 		sizeof(struct raid5_plug_cb));
5697 	struct raid5_plug_cb *cb;
5698 
5699 	if (!blk_cb) {
5700 		raid5_release_stripe(sh);
5701 		return;
5702 	}
5703 
5704 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5705 
5706 	if (cb->list.next == NULL) {
5707 		int i;
5708 		INIT_LIST_HEAD(&cb->list);
5709 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5710 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5711 	}
5712 
5713 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5714 		list_add_tail(&sh->lru, &cb->list);
5715 	else
5716 		raid5_release_stripe(sh);
5717 }
5718 
make_discard_request(struct mddev * mddev,struct bio * bi)5719 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5720 {
5721 	struct r5conf *conf = mddev->private;
5722 	sector_t logical_sector, last_sector;
5723 	struct stripe_head *sh;
5724 	int stripe_sectors;
5725 
5726 	/* We need to handle this when io_uring supports discard/trim */
5727 	if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5728 		return;
5729 
5730 	if (mddev->reshape_position != MaxSector)
5731 		/* Skip discard while reshape is happening */
5732 		return;
5733 
5734 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5735 	last_sector = bio_end_sector(bi);
5736 
5737 	bi->bi_next = NULL;
5738 
5739 	stripe_sectors = conf->chunk_sectors *
5740 		(conf->raid_disks - conf->max_degraded);
5741 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5742 					       stripe_sectors);
5743 	sector_div(last_sector, stripe_sectors);
5744 
5745 	logical_sector *= conf->chunk_sectors;
5746 	last_sector *= conf->chunk_sectors;
5747 
5748 	for (; logical_sector < last_sector;
5749 	     logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5750 		DEFINE_WAIT(w);
5751 		int d;
5752 	again:
5753 		sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0);
5754 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5755 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5756 			raid5_release_stripe(sh);
5757 			wait_on_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap,
5758 				    TASK_UNINTERRUPTIBLE);
5759 			goto again;
5760 		}
5761 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5762 		spin_lock_irq(&sh->stripe_lock);
5763 		for (d = 0; d < conf->raid_disks; d++) {
5764 			if (d == sh->pd_idx || d == sh->qd_idx)
5765 				continue;
5766 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5767 				set_bit(R5_Overlap, &sh->dev[d].flags);
5768 				spin_unlock_irq(&sh->stripe_lock);
5769 				raid5_release_stripe(sh);
5770 				wait_on_bit(&sh->dev[d].flags, R5_Overlap,
5771 					    TASK_UNINTERRUPTIBLE);
5772 				goto again;
5773 			}
5774 		}
5775 		set_bit(STRIPE_DISCARD, &sh->state);
5776 		sh->overwrite_disks = 0;
5777 		for (d = 0; d < conf->raid_disks; d++) {
5778 			if (d == sh->pd_idx || d == sh->qd_idx)
5779 				continue;
5780 			sh->dev[d].towrite = bi;
5781 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5782 			bio_inc_remaining(bi);
5783 			md_write_inc(mddev, bi);
5784 			sh->overwrite_disks++;
5785 		}
5786 		spin_unlock_irq(&sh->stripe_lock);
5787 		if (conf->mddev->bitmap) {
5788 			for (d = 0; d < conf->raid_disks - conf->max_degraded;
5789 			     d++)
5790 				mddev->bitmap_ops->startwrite(mddev, sh->sector,
5791 					RAID5_STRIPE_SECTORS(conf), false);
5792 			sh->bm_seq = conf->seq_flush + 1;
5793 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5794 		}
5795 
5796 		set_bit(STRIPE_HANDLE, &sh->state);
5797 		clear_bit(STRIPE_DELAYED, &sh->state);
5798 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5799 			atomic_inc(&conf->preread_active_stripes);
5800 		release_stripe_plug(mddev, sh);
5801 	}
5802 
5803 	bio_endio(bi);
5804 }
5805 
ahead_of_reshape(struct mddev * mddev,sector_t sector,sector_t reshape_sector)5806 static bool ahead_of_reshape(struct mddev *mddev, sector_t sector,
5807 			     sector_t reshape_sector)
5808 {
5809 	return mddev->reshape_backwards ? sector < reshape_sector :
5810 					  sector >= reshape_sector;
5811 }
5812 
range_ahead_of_reshape(struct mddev * mddev,sector_t min,sector_t max,sector_t reshape_sector)5813 static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min,
5814 				   sector_t max, sector_t reshape_sector)
5815 {
5816 	return mddev->reshape_backwards ? max < reshape_sector :
5817 					  min >= reshape_sector;
5818 }
5819 
stripe_ahead_of_reshape(struct mddev * mddev,struct r5conf * conf,struct stripe_head * sh)5820 static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf,
5821 				    struct stripe_head *sh)
5822 {
5823 	sector_t max_sector = 0, min_sector = MaxSector;
5824 	bool ret = false;
5825 	int dd_idx;
5826 
5827 	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5828 		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5829 			continue;
5830 
5831 		min_sector = min(min_sector, sh->dev[dd_idx].sector);
5832 		max_sector = max(max_sector, sh->dev[dd_idx].sector);
5833 	}
5834 
5835 	spin_lock_irq(&conf->device_lock);
5836 
5837 	if (!range_ahead_of_reshape(mddev, min_sector, max_sector,
5838 				     conf->reshape_progress))
5839 		/* mismatch, need to try again */
5840 		ret = true;
5841 
5842 	spin_unlock_irq(&conf->device_lock);
5843 
5844 	return ret;
5845 }
5846 
add_all_stripe_bios(struct r5conf * conf,struct stripe_request_ctx * ctx,struct stripe_head * sh,struct bio * bi,int forwrite,int previous)5847 static int add_all_stripe_bios(struct r5conf *conf,
5848 		struct stripe_request_ctx *ctx, struct stripe_head *sh,
5849 		struct bio *bi, int forwrite, int previous)
5850 {
5851 	int dd_idx;
5852 
5853 	spin_lock_irq(&sh->stripe_lock);
5854 
5855 	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5856 		struct r5dev *dev = &sh->dev[dd_idx];
5857 
5858 		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5859 			continue;
5860 
5861 		if (dev->sector < ctx->first_sector ||
5862 		    dev->sector >= ctx->last_sector)
5863 			continue;
5864 
5865 		if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
5866 			set_bit(R5_Overlap, &dev->flags);
5867 			spin_unlock_irq(&sh->stripe_lock);
5868 			raid5_release_stripe(sh);
5869 			/* release batch_last before wait to avoid risk of deadlock */
5870 			if (ctx->batch_last) {
5871 				raid5_release_stripe(ctx->batch_last);
5872 				ctx->batch_last = NULL;
5873 			}
5874 			md_wakeup_thread(conf->mddev->thread);
5875 			wait_on_bit(&dev->flags, R5_Overlap, TASK_UNINTERRUPTIBLE);
5876 			return 0;
5877 		}
5878 	}
5879 
5880 	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5881 		struct r5dev *dev = &sh->dev[dd_idx];
5882 
5883 		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5884 			continue;
5885 
5886 		if (dev->sector < ctx->first_sector ||
5887 		    dev->sector >= ctx->last_sector)
5888 			continue;
5889 
5890 		__add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
5891 		clear_bit((dev->sector - ctx->first_sector) >>
5892 			  RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do);
5893 	}
5894 
5895 	spin_unlock_irq(&sh->stripe_lock);
5896 	return 1;
5897 }
5898 
5899 enum reshape_loc {
5900 	LOC_NO_RESHAPE,
5901 	LOC_AHEAD_OF_RESHAPE,
5902 	LOC_INSIDE_RESHAPE,
5903 	LOC_BEHIND_RESHAPE,
5904 };
5905 
get_reshape_loc(struct mddev * mddev,struct r5conf * conf,sector_t logical_sector)5906 static enum reshape_loc get_reshape_loc(struct mddev *mddev,
5907 		struct r5conf *conf, sector_t logical_sector)
5908 {
5909 	sector_t reshape_progress, reshape_safe;
5910 	/*
5911 	 * Spinlock is needed as reshape_progress may be
5912 	 * 64bit on a 32bit platform, and so it might be
5913 	 * possible to see a half-updated value
5914 	 * Of course reshape_progress could change after
5915 	 * the lock is dropped, so once we get a reference
5916 	 * to the stripe that we think it is, we will have
5917 	 * to check again.
5918 	 */
5919 	spin_lock_irq(&conf->device_lock);
5920 	reshape_progress = conf->reshape_progress;
5921 	reshape_safe = conf->reshape_safe;
5922 	spin_unlock_irq(&conf->device_lock);
5923 	if (reshape_progress == MaxSector)
5924 		return LOC_NO_RESHAPE;
5925 	if (ahead_of_reshape(mddev, logical_sector, reshape_progress))
5926 		return LOC_AHEAD_OF_RESHAPE;
5927 	if (ahead_of_reshape(mddev, logical_sector, reshape_safe))
5928 		return LOC_INSIDE_RESHAPE;
5929 	return LOC_BEHIND_RESHAPE;
5930 }
5931 
make_stripe_request(struct mddev * mddev,struct r5conf * conf,struct stripe_request_ctx * ctx,sector_t logical_sector,struct bio * bi)5932 static enum stripe_result make_stripe_request(struct mddev *mddev,
5933 		struct r5conf *conf, struct stripe_request_ctx *ctx,
5934 		sector_t logical_sector, struct bio *bi)
5935 {
5936 	const int rw = bio_data_dir(bi);
5937 	enum stripe_result ret;
5938 	struct stripe_head *sh;
5939 	sector_t new_sector;
5940 	int previous = 0, flags = 0;
5941 	int seq, dd_idx;
5942 
5943 	seq = read_seqcount_begin(&conf->gen_lock);
5944 
5945 	if (unlikely(conf->reshape_progress != MaxSector)) {
5946 		enum reshape_loc loc = get_reshape_loc(mddev, conf,
5947 						       logical_sector);
5948 		if (loc == LOC_INSIDE_RESHAPE) {
5949 			ret = STRIPE_SCHEDULE_AND_RETRY;
5950 			goto out;
5951 		}
5952 		if (loc == LOC_AHEAD_OF_RESHAPE)
5953 			previous = 1;
5954 	}
5955 
5956 	new_sector = raid5_compute_sector(conf, logical_sector, previous,
5957 					  &dd_idx, NULL);
5958 	pr_debug("raid456: %s, sector %llu logical %llu\n", __func__,
5959 		 new_sector, logical_sector);
5960 
5961 	if (previous)
5962 		flags |= R5_GAS_PREVIOUS;
5963 	if (bi->bi_opf & REQ_RAHEAD)
5964 		flags |= R5_GAS_NOBLOCK;
5965 	sh = raid5_get_active_stripe(conf, ctx, new_sector, flags);
5966 	if (unlikely(!sh)) {
5967 		/* cannot get stripe, just give-up */
5968 		bi->bi_status = BLK_STS_IOERR;
5969 		return STRIPE_FAIL;
5970 	}
5971 
5972 	if (unlikely(previous) &&
5973 	    stripe_ahead_of_reshape(mddev, conf, sh)) {
5974 		/*
5975 		 * Expansion moved on while waiting for a stripe.
5976 		 * Expansion could still move past after this
5977 		 * test, but as we are holding a reference to
5978 		 * 'sh', we know that if that happens,
5979 		 *  STRIPE_EXPANDING will get set and the expansion
5980 		 * won't proceed until we finish with the stripe.
5981 		 */
5982 		ret = STRIPE_SCHEDULE_AND_RETRY;
5983 		goto out_release;
5984 	}
5985 
5986 	if (read_seqcount_retry(&conf->gen_lock, seq)) {
5987 		/* Might have got the wrong stripe_head by accident */
5988 		ret = STRIPE_RETRY;
5989 		goto out_release;
5990 	}
5991 
5992 	if (test_bit(STRIPE_EXPANDING, &sh->state)) {
5993 		md_wakeup_thread(mddev->thread);
5994 		ret = STRIPE_SCHEDULE_AND_RETRY;
5995 		goto out_release;
5996 	}
5997 
5998 	if (!add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
5999 		ret = STRIPE_RETRY;
6000 		goto out;
6001 	}
6002 
6003 	if (stripe_can_batch(sh)) {
6004 		stripe_add_to_batch_list(conf, sh, ctx->batch_last);
6005 		if (ctx->batch_last)
6006 			raid5_release_stripe(ctx->batch_last);
6007 		atomic_inc(&sh->count);
6008 		ctx->batch_last = sh;
6009 	}
6010 
6011 	if (ctx->do_flush) {
6012 		set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
6013 		/* we only need flush for one stripe */
6014 		ctx->do_flush = false;
6015 	}
6016 
6017 	set_bit(STRIPE_HANDLE, &sh->state);
6018 	clear_bit(STRIPE_DELAYED, &sh->state);
6019 	if ((!sh->batch_head || sh == sh->batch_head) &&
6020 	    (bi->bi_opf & REQ_SYNC) &&
6021 	    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
6022 		atomic_inc(&conf->preread_active_stripes);
6023 
6024 	release_stripe_plug(mddev, sh);
6025 	return STRIPE_SUCCESS;
6026 
6027 out_release:
6028 	raid5_release_stripe(sh);
6029 out:
6030 	if (ret == STRIPE_SCHEDULE_AND_RETRY && reshape_interrupted(mddev)) {
6031 		bi->bi_status = BLK_STS_RESOURCE;
6032 		ret = STRIPE_WAIT_RESHAPE;
6033 		pr_err_ratelimited("dm-raid456: io across reshape position while reshape can't make progress");
6034 	}
6035 	return ret;
6036 }
6037 
6038 /*
6039  * If the bio covers multiple data disks, find sector within the bio that has
6040  * the lowest chunk offset in the first chunk.
6041  */
raid5_bio_lowest_chunk_sector(struct r5conf * conf,struct bio * bi)6042 static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf,
6043 					      struct bio *bi)
6044 {
6045 	int sectors_per_chunk = conf->chunk_sectors;
6046 	int raid_disks = conf->raid_disks;
6047 	int dd_idx;
6048 	struct stripe_head sh;
6049 	unsigned int chunk_offset;
6050 	sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6051 	sector_t sector;
6052 
6053 	/* We pass in fake stripe_head to get back parity disk numbers */
6054 	sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh);
6055 	chunk_offset = sector_div(sector, sectors_per_chunk);
6056 	if (sectors_per_chunk - chunk_offset >= bio_sectors(bi))
6057 		return r_sector;
6058 	/*
6059 	 * Bio crosses to the next data disk. Check whether it's in the same
6060 	 * chunk.
6061 	 */
6062 	dd_idx++;
6063 	while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx)
6064 		dd_idx++;
6065 	if (dd_idx >= raid_disks)
6066 		return r_sector;
6067 	return r_sector + sectors_per_chunk - chunk_offset;
6068 }
6069 
raid5_make_request(struct mddev * mddev,struct bio * bi)6070 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
6071 {
6072 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
6073 	bool on_wq;
6074 	struct r5conf *conf = mddev->private;
6075 	sector_t logical_sector;
6076 	struct stripe_request_ctx ctx = {};
6077 	const int rw = bio_data_dir(bi);
6078 	enum stripe_result res;
6079 	int s, stripe_cnt;
6080 
6081 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
6082 		int ret = log_handle_flush_request(conf, bi);
6083 
6084 		if (ret == 0)
6085 			return true;
6086 		if (ret == -ENODEV) {
6087 			if (md_flush_request(mddev, bi))
6088 				return true;
6089 		}
6090 		/* ret == -EAGAIN, fallback */
6091 		/*
6092 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
6093 		 * we need to flush journal device
6094 		 */
6095 		ctx.do_flush = bi->bi_opf & REQ_PREFLUSH;
6096 	}
6097 
6098 	md_write_start(mddev, bi);
6099 	/*
6100 	 * If array is degraded, better not do chunk aligned read because
6101 	 * later we might have to read it again in order to reconstruct
6102 	 * data on failed drives.
6103 	 */
6104 	if (rw == READ && mddev->degraded == 0 &&
6105 	    mddev->reshape_position == MaxSector) {
6106 		bi = chunk_aligned_read(mddev, bi);
6107 		if (!bi)
6108 			return true;
6109 	}
6110 
6111 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
6112 		make_discard_request(mddev, bi);
6113 		md_write_end(mddev);
6114 		return true;
6115 	}
6116 
6117 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6118 	ctx.first_sector = logical_sector;
6119 	ctx.last_sector = bio_end_sector(bi);
6120 	bi->bi_next = NULL;
6121 
6122 	stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector,
6123 					   RAID5_STRIPE_SECTORS(conf));
6124 	bitmap_set(ctx.sectors_to_do, 0, stripe_cnt);
6125 
6126 	pr_debug("raid456: %s, logical %llu to %llu\n", __func__,
6127 		 bi->bi_iter.bi_sector, ctx.last_sector);
6128 
6129 	/* Bail out if conflicts with reshape and REQ_NOWAIT is set */
6130 	if ((bi->bi_opf & REQ_NOWAIT) &&
6131 	    (conf->reshape_progress != MaxSector) &&
6132 	    get_reshape_loc(mddev, conf, logical_sector) == LOC_INSIDE_RESHAPE) {
6133 		bio_wouldblock_error(bi);
6134 		if (rw == WRITE)
6135 			md_write_end(mddev);
6136 		return true;
6137 	}
6138 	md_account_bio(mddev, &bi);
6139 
6140 	/*
6141 	 * Lets start with the stripe with the lowest chunk offset in the first
6142 	 * chunk. That has the best chances of creating IOs adjacent to
6143 	 * previous IOs in case of sequential IO and thus creates the most
6144 	 * sequential IO pattern. We don't bother with the optimization when
6145 	 * reshaping as the performance benefit is not worth the complexity.
6146 	 */
6147 	if (likely(conf->reshape_progress == MaxSector)) {
6148 		logical_sector = raid5_bio_lowest_chunk_sector(conf, bi);
6149 		on_wq = false;
6150 	} else {
6151 		add_wait_queue(&conf->wait_for_reshape, &wait);
6152 		on_wq = true;
6153 	}
6154 	s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf);
6155 
6156 	while (1) {
6157 		res = make_stripe_request(mddev, conf, &ctx, logical_sector,
6158 					  bi);
6159 		if (res == STRIPE_FAIL || res == STRIPE_WAIT_RESHAPE)
6160 			break;
6161 
6162 		if (res == STRIPE_RETRY)
6163 			continue;
6164 
6165 		if (res == STRIPE_SCHEDULE_AND_RETRY) {
6166 			WARN_ON_ONCE(!on_wq);
6167 			/*
6168 			 * Must release the reference to batch_last before
6169 			 * scheduling and waiting for work to be done,
6170 			 * otherwise the batch_last stripe head could prevent
6171 			 * raid5_activate_delayed() from making progress
6172 			 * and thus deadlocking.
6173 			 */
6174 			if (ctx.batch_last) {
6175 				raid5_release_stripe(ctx.batch_last);
6176 				ctx.batch_last = NULL;
6177 			}
6178 
6179 			wait_woken(&wait, TASK_UNINTERRUPTIBLE,
6180 				   MAX_SCHEDULE_TIMEOUT);
6181 			continue;
6182 		}
6183 
6184 		s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s);
6185 		if (s == stripe_cnt)
6186 			break;
6187 
6188 		logical_sector = ctx.first_sector +
6189 			(s << RAID5_STRIPE_SHIFT(conf));
6190 	}
6191 	if (unlikely(on_wq))
6192 		remove_wait_queue(&conf->wait_for_reshape, &wait);
6193 
6194 	if (ctx.batch_last)
6195 		raid5_release_stripe(ctx.batch_last);
6196 
6197 	if (rw == WRITE)
6198 		md_write_end(mddev);
6199 	if (res == STRIPE_WAIT_RESHAPE) {
6200 		md_free_cloned_bio(bi);
6201 		return false;
6202 	}
6203 
6204 	bio_endio(bi);
6205 	return true;
6206 }
6207 
6208 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
6209 
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)6210 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
6211 {
6212 	/* reshaping is quite different to recovery/resync so it is
6213 	 * handled quite separately ... here.
6214 	 *
6215 	 * On each call to sync_request, we gather one chunk worth of
6216 	 * destination stripes and flag them as expanding.
6217 	 * Then we find all the source stripes and request reads.
6218 	 * As the reads complete, handle_stripe will copy the data
6219 	 * into the destination stripe and release that stripe.
6220 	 */
6221 	struct r5conf *conf = mddev->private;
6222 	struct stripe_head *sh;
6223 	struct md_rdev *rdev;
6224 	sector_t first_sector, last_sector;
6225 	int raid_disks = conf->previous_raid_disks;
6226 	int data_disks = raid_disks - conf->max_degraded;
6227 	int new_data_disks = conf->raid_disks - conf->max_degraded;
6228 	int i;
6229 	int dd_idx;
6230 	sector_t writepos, readpos, safepos;
6231 	sector_t stripe_addr;
6232 	int reshape_sectors;
6233 	struct list_head stripes;
6234 	sector_t retn;
6235 
6236 	if (sector_nr == 0) {
6237 		/* If restarting in the middle, skip the initial sectors */
6238 		if (mddev->reshape_backwards &&
6239 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6240 			sector_nr = raid5_size(mddev, 0, 0)
6241 				- conf->reshape_progress;
6242 		} else if (mddev->reshape_backwards &&
6243 			   conf->reshape_progress == MaxSector) {
6244 			/* shouldn't happen, but just in case, finish up.*/
6245 			sector_nr = MaxSector;
6246 		} else if (!mddev->reshape_backwards &&
6247 			   conf->reshape_progress > 0)
6248 			sector_nr = conf->reshape_progress;
6249 		sector_div(sector_nr, new_data_disks);
6250 		if (sector_nr) {
6251 			mddev->curr_resync_completed = sector_nr;
6252 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
6253 			*skipped = 1;
6254 			retn = sector_nr;
6255 			goto finish;
6256 		}
6257 	}
6258 
6259 	/* We need to process a full chunk at a time.
6260 	 * If old and new chunk sizes differ, we need to process the
6261 	 * largest of these
6262 	 */
6263 
6264 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6265 
6266 	/* We update the metadata at least every 10 seconds, or when
6267 	 * the data about to be copied would over-write the source of
6268 	 * the data at the front of the range.  i.e. one new_stripe
6269 	 * along from reshape_progress new_maps to after where
6270 	 * reshape_safe old_maps to
6271 	 */
6272 	writepos = conf->reshape_progress;
6273 	sector_div(writepos, new_data_disks);
6274 	readpos = conf->reshape_progress;
6275 	sector_div(readpos, data_disks);
6276 	safepos = conf->reshape_safe;
6277 	sector_div(safepos, data_disks);
6278 	if (mddev->reshape_backwards) {
6279 		if (WARN_ON(writepos < reshape_sectors))
6280 			return MaxSector;
6281 
6282 		writepos -= reshape_sectors;
6283 		readpos += reshape_sectors;
6284 		safepos += reshape_sectors;
6285 	} else {
6286 		writepos += reshape_sectors;
6287 		/* readpos and safepos are worst-case calculations.
6288 		 * A negative number is overly pessimistic, and causes
6289 		 * obvious problems for unsigned storage.  So clip to 0.
6290 		 */
6291 		readpos -= min_t(sector_t, reshape_sectors, readpos);
6292 		safepos -= min_t(sector_t, reshape_sectors, safepos);
6293 	}
6294 
6295 	/* Having calculated the 'writepos' possibly use it
6296 	 * to set 'stripe_addr' which is where we will write to.
6297 	 */
6298 	if (mddev->reshape_backwards) {
6299 		if (WARN_ON(conf->reshape_progress == 0))
6300 			return MaxSector;
6301 
6302 		stripe_addr = writepos;
6303 		if (WARN_ON((mddev->dev_sectors &
6304 		    ~((sector_t)reshape_sectors - 1)) -
6305 		    reshape_sectors - stripe_addr != sector_nr))
6306 			return MaxSector;
6307 	} else {
6308 		if (WARN_ON(writepos != sector_nr + reshape_sectors))
6309 			return MaxSector;
6310 
6311 		stripe_addr = sector_nr;
6312 	}
6313 
6314 	/* 'writepos' is the most advanced device address we might write.
6315 	 * 'readpos' is the least advanced device address we might read.
6316 	 * 'safepos' is the least address recorded in the metadata as having
6317 	 *     been reshaped.
6318 	 * If there is a min_offset_diff, these are adjusted either by
6319 	 * increasing the safepos/readpos if diff is negative, or
6320 	 * increasing writepos if diff is positive.
6321 	 * If 'readpos' is then behind 'writepos', there is no way that we can
6322 	 * ensure safety in the face of a crash - that must be done by userspace
6323 	 * making a backup of the data.  So in that case there is no particular
6324 	 * rush to update metadata.
6325 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6326 	 * update the metadata to advance 'safepos' to match 'readpos' so that
6327 	 * we can be safe in the event of a crash.
6328 	 * So we insist on updating metadata if safepos is behind writepos and
6329 	 * readpos is beyond writepos.
6330 	 * In any case, update the metadata every 10 seconds.
6331 	 * Maybe that number should be configurable, but I'm not sure it is
6332 	 * worth it.... maybe it could be a multiple of safemode_delay???
6333 	 */
6334 	if (conf->min_offset_diff < 0) {
6335 		safepos += -conf->min_offset_diff;
6336 		readpos += -conf->min_offset_diff;
6337 	} else
6338 		writepos += conf->min_offset_diff;
6339 
6340 	if ((mddev->reshape_backwards
6341 	     ? (safepos > writepos && readpos < writepos)
6342 	     : (safepos < writepos && readpos > writepos)) ||
6343 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6344 		/* Cannot proceed until we've updated the superblock... */
6345 		wait_event(conf->wait_for_reshape,
6346 			   atomic_read(&conf->reshape_stripes)==0
6347 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6348 		if (atomic_read(&conf->reshape_stripes) != 0)
6349 			return 0;
6350 		mddev->reshape_position = conf->reshape_progress;
6351 		mddev->curr_resync_completed = sector_nr;
6352 		if (!mddev->reshape_backwards)
6353 			/* Can update recovery_offset */
6354 			rdev_for_each(rdev, mddev)
6355 				if (rdev->raid_disk >= 0 &&
6356 				    !test_bit(Journal, &rdev->flags) &&
6357 				    !test_bit(In_sync, &rdev->flags) &&
6358 				    rdev->recovery_offset < sector_nr)
6359 					rdev->recovery_offset = sector_nr;
6360 
6361 		conf->reshape_checkpoint = jiffies;
6362 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6363 		md_wakeup_thread(mddev->thread);
6364 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6365 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6366 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6367 			return 0;
6368 		spin_lock_irq(&conf->device_lock);
6369 		conf->reshape_safe = mddev->reshape_position;
6370 		spin_unlock_irq(&conf->device_lock);
6371 		wake_up(&conf->wait_for_reshape);
6372 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6373 	}
6374 
6375 	INIT_LIST_HEAD(&stripes);
6376 	for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6377 		int j;
6378 		int skipped_disk = 0;
6379 		sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i,
6380 					     R5_GAS_NOQUIESCE);
6381 		set_bit(STRIPE_EXPANDING, &sh->state);
6382 		atomic_inc(&conf->reshape_stripes);
6383 		/* If any of this stripe is beyond the end of the old
6384 		 * array, then we need to zero those blocks
6385 		 */
6386 		for (j=sh->disks; j--;) {
6387 			sector_t s;
6388 			if (j == sh->pd_idx)
6389 				continue;
6390 			if (conf->level == 6 &&
6391 			    j == sh->qd_idx)
6392 				continue;
6393 			s = raid5_compute_blocknr(sh, j, 0);
6394 			if (s < raid5_size(mddev, 0, 0)) {
6395 				skipped_disk = 1;
6396 				continue;
6397 			}
6398 			memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6399 			set_bit(R5_Expanded, &sh->dev[j].flags);
6400 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
6401 		}
6402 		if (!skipped_disk) {
6403 			set_bit(STRIPE_EXPAND_READY, &sh->state);
6404 			set_bit(STRIPE_HANDLE, &sh->state);
6405 		}
6406 		list_add(&sh->lru, &stripes);
6407 	}
6408 	spin_lock_irq(&conf->device_lock);
6409 	if (mddev->reshape_backwards)
6410 		conf->reshape_progress -= reshape_sectors * new_data_disks;
6411 	else
6412 		conf->reshape_progress += reshape_sectors * new_data_disks;
6413 	spin_unlock_irq(&conf->device_lock);
6414 	/* Ok, those stripe are ready. We can start scheduling
6415 	 * reads on the source stripes.
6416 	 * The source stripes are determined by mapping the first and last
6417 	 * block on the destination stripes.
6418 	 */
6419 	first_sector =
6420 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6421 				     1, &dd_idx, NULL);
6422 	last_sector =
6423 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6424 					    * new_data_disks - 1),
6425 				     1, &dd_idx, NULL);
6426 	if (last_sector >= mddev->dev_sectors)
6427 		last_sector = mddev->dev_sectors - 1;
6428 	while (first_sector <= last_sector) {
6429 		sh = raid5_get_active_stripe(conf, NULL, first_sector,
6430 				R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE);
6431 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6432 		set_bit(STRIPE_HANDLE, &sh->state);
6433 		raid5_release_stripe(sh);
6434 		first_sector += RAID5_STRIPE_SECTORS(conf);
6435 	}
6436 	/* Now that the sources are clearly marked, we can release
6437 	 * the destination stripes
6438 	 */
6439 	while (!list_empty(&stripes)) {
6440 		sh = list_entry(stripes.next, struct stripe_head, lru);
6441 		list_del_init(&sh->lru);
6442 		raid5_release_stripe(sh);
6443 	}
6444 	/* If this takes us to the resync_max point where we have to pause,
6445 	 * then we need to write out the superblock.
6446 	 */
6447 	sector_nr += reshape_sectors;
6448 	retn = reshape_sectors;
6449 finish:
6450 	if (mddev->curr_resync_completed > mddev->resync_max ||
6451 	    (sector_nr - mddev->curr_resync_completed) * 2
6452 	    >= mddev->resync_max - mddev->curr_resync_completed) {
6453 		/* Cannot proceed until we've updated the superblock... */
6454 		wait_event(conf->wait_for_reshape,
6455 			   atomic_read(&conf->reshape_stripes) == 0
6456 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6457 		if (atomic_read(&conf->reshape_stripes) != 0)
6458 			goto ret;
6459 		mddev->reshape_position = conf->reshape_progress;
6460 		mddev->curr_resync_completed = sector_nr;
6461 		if (!mddev->reshape_backwards)
6462 			/* Can update recovery_offset */
6463 			rdev_for_each(rdev, mddev)
6464 				if (rdev->raid_disk >= 0 &&
6465 				    !test_bit(Journal, &rdev->flags) &&
6466 				    !test_bit(In_sync, &rdev->flags) &&
6467 				    rdev->recovery_offset < sector_nr)
6468 					rdev->recovery_offset = sector_nr;
6469 		conf->reshape_checkpoint = jiffies;
6470 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6471 		md_wakeup_thread(mddev->thread);
6472 		wait_event(mddev->sb_wait,
6473 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6474 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6475 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6476 			goto ret;
6477 		spin_lock_irq(&conf->device_lock);
6478 		conf->reshape_safe = mddev->reshape_position;
6479 		spin_unlock_irq(&conf->device_lock);
6480 		wake_up(&conf->wait_for_reshape);
6481 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6482 	}
6483 ret:
6484 	return retn;
6485 }
6486 
raid5_sync_request(struct mddev * mddev,sector_t sector_nr,sector_t max_sector,int * skipped)6487 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6488 					  sector_t max_sector, int *skipped)
6489 {
6490 	struct r5conf *conf = mddev->private;
6491 	struct stripe_head *sh;
6492 	sector_t sync_blocks;
6493 	bool still_degraded = false;
6494 	int i;
6495 
6496 	if (sector_nr >= max_sector) {
6497 		/* just being told to finish up .. nothing much to do */
6498 
6499 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6500 			end_reshape(conf);
6501 			return 0;
6502 		}
6503 
6504 		if (mddev->curr_resync < max_sector) /* aborted */
6505 			mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync,
6506 						    &sync_blocks);
6507 		else /* completed sync */
6508 			conf->fullsync = 0;
6509 		mddev->bitmap_ops->close_sync(mddev);
6510 
6511 		return 0;
6512 	}
6513 
6514 	/* Allow raid5_quiesce to complete */
6515 	wait_event(conf->wait_for_reshape, conf->quiesce != 2);
6516 
6517 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6518 		return reshape_request(mddev, sector_nr, skipped);
6519 
6520 	/* No need to check resync_max as we never do more than one
6521 	 * stripe, and as resync_max will always be on a chunk boundary,
6522 	 * if the check in md_do_sync didn't fire, there is no chance
6523 	 * of overstepping resync_max here
6524 	 */
6525 
6526 	/* if there is too many failed drives and we are trying
6527 	 * to resync, then assert that we are finished, because there is
6528 	 * nothing we can do.
6529 	 */
6530 	if (mddev->degraded >= conf->max_degraded &&
6531 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6532 		sector_t rv = mddev->dev_sectors - sector_nr;
6533 		*skipped = 1;
6534 		return rv;
6535 	}
6536 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6537 	    !conf->fullsync &&
6538 	    !mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks,
6539 					   true) &&
6540 	    sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6541 		/* we can skip this block, and probably more */
6542 		do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6543 		*skipped = 1;
6544 		/* keep things rounded to whole stripes */
6545 		return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6546 	}
6547 
6548 	mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, false);
6549 
6550 	sh = raid5_get_active_stripe(conf, NULL, sector_nr,
6551 				     R5_GAS_NOBLOCK);
6552 	if (sh == NULL) {
6553 		sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0);
6554 		/* make sure we don't swamp the stripe cache if someone else
6555 		 * is trying to get access
6556 		 */
6557 		schedule_timeout_uninterruptible(1);
6558 	}
6559 	/* Need to check if array will still be degraded after recovery/resync
6560 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6561 	 * one drive while leaving another faulty drive in array.
6562 	 */
6563 	for (i = 0; i < conf->raid_disks; i++) {
6564 		struct md_rdev *rdev = conf->disks[i].rdev;
6565 
6566 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6567 			still_degraded = true;
6568 	}
6569 
6570 	mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks,
6571 				      still_degraded);
6572 
6573 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6574 	set_bit(STRIPE_HANDLE, &sh->state);
6575 
6576 	raid5_release_stripe(sh);
6577 
6578 	return RAID5_STRIPE_SECTORS(conf);
6579 }
6580 
retry_aligned_read(struct r5conf * conf,struct bio * raid_bio,unsigned int offset)6581 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6582 			       unsigned int offset)
6583 {
6584 	/* We may not be able to submit a whole bio at once as there
6585 	 * may not be enough stripe_heads available.
6586 	 * We cannot pre-allocate enough stripe_heads as we may need
6587 	 * more than exist in the cache (if we allow ever large chunks).
6588 	 * So we do one stripe head at a time and record in
6589 	 * ->bi_hw_segments how many have been done.
6590 	 *
6591 	 * We *know* that this entire raid_bio is in one chunk, so
6592 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6593 	 */
6594 	struct stripe_head *sh;
6595 	int dd_idx;
6596 	sector_t sector, logical_sector, last_sector;
6597 	int scnt = 0;
6598 	int handled = 0;
6599 
6600 	logical_sector = raid_bio->bi_iter.bi_sector &
6601 		~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6602 	sector = raid5_compute_sector(conf, logical_sector,
6603 				      0, &dd_idx, NULL);
6604 	last_sector = bio_end_sector(raid_bio);
6605 
6606 	for (; logical_sector < last_sector;
6607 	     logical_sector += RAID5_STRIPE_SECTORS(conf),
6608 		     sector += RAID5_STRIPE_SECTORS(conf),
6609 		     scnt++) {
6610 
6611 		if (scnt < offset)
6612 			/* already done this stripe */
6613 			continue;
6614 
6615 		sh = raid5_get_active_stripe(conf, NULL, sector,
6616 				R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
6617 		if (!sh) {
6618 			/* failed to get a stripe - must wait */
6619 			conf->retry_read_aligned = raid_bio;
6620 			conf->retry_read_offset = scnt;
6621 			return handled;
6622 		}
6623 
6624 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6625 			raid5_release_stripe(sh);
6626 			conf->retry_read_aligned = raid_bio;
6627 			conf->retry_read_offset = scnt;
6628 			return handled;
6629 		}
6630 
6631 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6632 		handle_stripe(sh);
6633 		raid5_release_stripe(sh);
6634 		handled++;
6635 	}
6636 
6637 	bio_endio(raid_bio);
6638 
6639 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6640 		wake_up(&conf->wait_for_quiescent);
6641 	return handled;
6642 }
6643 
handle_active_stripes(struct r5conf * conf,int group,struct r5worker * worker,struct list_head * temp_inactive_list)6644 static int handle_active_stripes(struct r5conf *conf, int group,
6645 				 struct r5worker *worker,
6646 				 struct list_head *temp_inactive_list)
6647 		__must_hold(&conf->device_lock)
6648 {
6649 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6650 	int i, batch_size = 0, hash;
6651 	bool release_inactive = false;
6652 
6653 	while (batch_size < MAX_STRIPE_BATCH &&
6654 			(sh = __get_priority_stripe(conf, group)) != NULL)
6655 		batch[batch_size++] = sh;
6656 
6657 	if (batch_size == 0) {
6658 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6659 			if (!list_empty(temp_inactive_list + i))
6660 				break;
6661 		if (i == NR_STRIPE_HASH_LOCKS) {
6662 			spin_unlock_irq(&conf->device_lock);
6663 			log_flush_stripe_to_raid(conf);
6664 			spin_lock_irq(&conf->device_lock);
6665 			return batch_size;
6666 		}
6667 		release_inactive = true;
6668 	}
6669 	spin_unlock_irq(&conf->device_lock);
6670 
6671 	release_inactive_stripe_list(conf, temp_inactive_list,
6672 				     NR_STRIPE_HASH_LOCKS);
6673 
6674 	r5l_flush_stripe_to_raid(conf->log);
6675 	if (release_inactive) {
6676 		spin_lock_irq(&conf->device_lock);
6677 		return 0;
6678 	}
6679 
6680 	for (i = 0; i < batch_size; i++)
6681 		handle_stripe(batch[i]);
6682 	log_write_stripe_run(conf);
6683 
6684 	cond_resched();
6685 
6686 	spin_lock_irq(&conf->device_lock);
6687 	for (i = 0; i < batch_size; i++) {
6688 		hash = batch[i]->hash_lock_index;
6689 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6690 	}
6691 	return batch_size;
6692 }
6693 
raid5_do_work(struct work_struct * work)6694 static void raid5_do_work(struct work_struct *work)
6695 {
6696 	struct r5worker *worker = container_of(work, struct r5worker, work);
6697 	struct r5worker_group *group = worker->group;
6698 	struct r5conf *conf = group->conf;
6699 	struct mddev *mddev = conf->mddev;
6700 	int group_id = group - conf->worker_groups;
6701 	int handled;
6702 	struct blk_plug plug;
6703 
6704 	pr_debug("+++ raid5worker active\n");
6705 
6706 	blk_start_plug(&plug);
6707 	handled = 0;
6708 	spin_lock_irq(&conf->device_lock);
6709 	while (1) {
6710 		int batch_size, released;
6711 
6712 		released = release_stripe_list(conf, worker->temp_inactive_list);
6713 
6714 		batch_size = handle_active_stripes(conf, group_id, worker,
6715 						   worker->temp_inactive_list);
6716 		worker->working = false;
6717 		if (!batch_size && !released)
6718 			break;
6719 		handled += batch_size;
6720 		wait_event_lock_irq(mddev->sb_wait,
6721 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6722 			conf->device_lock);
6723 	}
6724 	pr_debug("%d stripes handled\n", handled);
6725 
6726 	spin_unlock_irq(&conf->device_lock);
6727 
6728 	flush_deferred_bios(conf);
6729 
6730 	r5l_flush_stripe_to_raid(conf->log);
6731 
6732 	async_tx_issue_pending_all();
6733 	blk_finish_plug(&plug);
6734 
6735 	pr_debug("--- raid5worker inactive\n");
6736 }
6737 
6738 /*
6739  * This is our raid5 kernel thread.
6740  *
6741  * We scan the hash table for stripes which can be handled now.
6742  * During the scan, completed stripes are saved for us by the interrupt
6743  * handler, so that they will not have to wait for our next wakeup.
6744  */
raid5d(struct md_thread * thread)6745 static void raid5d(struct md_thread *thread)
6746 {
6747 	struct mddev *mddev = thread->mddev;
6748 	struct r5conf *conf = mddev->private;
6749 	int handled;
6750 	struct blk_plug plug;
6751 
6752 	pr_debug("+++ raid5d active\n");
6753 
6754 	md_check_recovery(mddev);
6755 
6756 	blk_start_plug(&plug);
6757 	handled = 0;
6758 	spin_lock_irq(&conf->device_lock);
6759 	while (1) {
6760 		struct bio *bio;
6761 		int batch_size, released;
6762 		unsigned int offset;
6763 
6764 		if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6765 			break;
6766 
6767 		released = release_stripe_list(conf, conf->temp_inactive_list);
6768 		if (released)
6769 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6770 
6771 		if (
6772 		    !list_empty(&conf->bitmap_list)) {
6773 			/* Now is a good time to flush some bitmap updates */
6774 			conf->seq_flush++;
6775 			spin_unlock_irq(&conf->device_lock);
6776 			mddev->bitmap_ops->unplug(mddev, true);
6777 			spin_lock_irq(&conf->device_lock);
6778 			conf->seq_write = conf->seq_flush;
6779 			activate_bit_delay(conf, conf->temp_inactive_list);
6780 		}
6781 		raid5_activate_delayed(conf);
6782 
6783 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6784 			int ok;
6785 			spin_unlock_irq(&conf->device_lock);
6786 			ok = retry_aligned_read(conf, bio, offset);
6787 			spin_lock_irq(&conf->device_lock);
6788 			if (!ok)
6789 				break;
6790 			handled++;
6791 		}
6792 
6793 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6794 						   conf->temp_inactive_list);
6795 		if (!batch_size && !released)
6796 			break;
6797 		handled += batch_size;
6798 
6799 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6800 			spin_unlock_irq(&conf->device_lock);
6801 			md_check_recovery(mddev);
6802 			spin_lock_irq(&conf->device_lock);
6803 		}
6804 	}
6805 	pr_debug("%d stripes handled\n", handled);
6806 
6807 	spin_unlock_irq(&conf->device_lock);
6808 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6809 	    mutex_trylock(&conf->cache_size_mutex)) {
6810 		grow_one_stripe(conf, __GFP_NOWARN);
6811 		/* Set flag even if allocation failed.  This helps
6812 		 * slow down allocation requests when mem is short
6813 		 */
6814 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6815 		mutex_unlock(&conf->cache_size_mutex);
6816 	}
6817 
6818 	flush_deferred_bios(conf);
6819 
6820 	r5l_flush_stripe_to_raid(conf->log);
6821 
6822 	async_tx_issue_pending_all();
6823 	blk_finish_plug(&plug);
6824 
6825 	pr_debug("--- raid5d inactive\n");
6826 }
6827 
6828 static ssize_t
raid5_show_stripe_cache_size(struct mddev * mddev,char * page)6829 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6830 {
6831 	struct r5conf *conf;
6832 	int ret = 0;
6833 	spin_lock(&mddev->lock);
6834 	conf = mddev->private;
6835 	if (conf)
6836 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6837 	spin_unlock(&mddev->lock);
6838 	return ret;
6839 }
6840 
6841 int
raid5_set_cache_size(struct mddev * mddev,int size)6842 raid5_set_cache_size(struct mddev *mddev, int size)
6843 {
6844 	int result = 0;
6845 	struct r5conf *conf = mddev->private;
6846 
6847 	if (size <= 16 || size > 32768)
6848 		return -EINVAL;
6849 
6850 	WRITE_ONCE(conf->min_nr_stripes, size);
6851 	mutex_lock(&conf->cache_size_mutex);
6852 	while (size < conf->max_nr_stripes &&
6853 	       drop_one_stripe(conf))
6854 		;
6855 	mutex_unlock(&conf->cache_size_mutex);
6856 
6857 	md_allow_write(mddev);
6858 
6859 	mutex_lock(&conf->cache_size_mutex);
6860 	while (size > conf->max_nr_stripes)
6861 		if (!grow_one_stripe(conf, GFP_KERNEL)) {
6862 			WRITE_ONCE(conf->min_nr_stripes, conf->max_nr_stripes);
6863 			result = -ENOMEM;
6864 			break;
6865 		}
6866 	mutex_unlock(&conf->cache_size_mutex);
6867 
6868 	return result;
6869 }
6870 EXPORT_SYMBOL(raid5_set_cache_size);
6871 
6872 static ssize_t
raid5_store_stripe_cache_size(struct mddev * mddev,const char * page,size_t len)6873 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6874 {
6875 	struct r5conf *conf;
6876 	unsigned long new;
6877 	int err;
6878 
6879 	if (len >= PAGE_SIZE)
6880 		return -EINVAL;
6881 	if (kstrtoul(page, 10, &new))
6882 		return -EINVAL;
6883 	err = mddev_lock(mddev);
6884 	if (err)
6885 		return err;
6886 	conf = mddev->private;
6887 	if (!conf)
6888 		err = -ENODEV;
6889 	else
6890 		err = raid5_set_cache_size(mddev, new);
6891 	mddev_unlock(mddev);
6892 
6893 	return err ?: len;
6894 }
6895 
6896 static struct md_sysfs_entry
6897 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6898 				raid5_show_stripe_cache_size,
6899 				raid5_store_stripe_cache_size);
6900 
6901 static ssize_t
raid5_show_rmw_level(struct mddev * mddev,char * page)6902 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6903 {
6904 	struct r5conf *conf = mddev->private;
6905 	if (conf)
6906 		return sprintf(page, "%d\n", conf->rmw_level);
6907 	else
6908 		return 0;
6909 }
6910 
6911 static ssize_t
raid5_store_rmw_level(struct mddev * mddev,const char * page,size_t len)6912 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6913 {
6914 	struct r5conf *conf = mddev->private;
6915 	unsigned long new;
6916 
6917 	if (!conf)
6918 		return -ENODEV;
6919 
6920 	if (len >= PAGE_SIZE)
6921 		return -EINVAL;
6922 
6923 	if (kstrtoul(page, 10, &new))
6924 		return -EINVAL;
6925 
6926 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6927 		return -EINVAL;
6928 
6929 	if (new != PARITY_DISABLE_RMW &&
6930 	    new != PARITY_ENABLE_RMW &&
6931 	    new != PARITY_PREFER_RMW)
6932 		return -EINVAL;
6933 
6934 	conf->rmw_level = new;
6935 	return len;
6936 }
6937 
6938 static struct md_sysfs_entry
6939 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6940 			 raid5_show_rmw_level,
6941 			 raid5_store_rmw_level);
6942 
6943 static ssize_t
raid5_show_stripe_size(struct mddev * mddev,char * page)6944 raid5_show_stripe_size(struct mddev  *mddev, char *page)
6945 {
6946 	struct r5conf *conf;
6947 	int ret = 0;
6948 
6949 	spin_lock(&mddev->lock);
6950 	conf = mddev->private;
6951 	if (conf)
6952 		ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6953 	spin_unlock(&mddev->lock);
6954 	return ret;
6955 }
6956 
6957 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6958 static ssize_t
raid5_store_stripe_size(struct mddev * mddev,const char * page,size_t len)6959 raid5_store_stripe_size(struct mddev  *mddev, const char *page, size_t len)
6960 {
6961 	struct r5conf *conf;
6962 	unsigned long new;
6963 	int err;
6964 	int size;
6965 
6966 	if (len >= PAGE_SIZE)
6967 		return -EINVAL;
6968 	if (kstrtoul(page, 10, &new))
6969 		return -EINVAL;
6970 
6971 	/*
6972 	 * The value should not be bigger than PAGE_SIZE. It requires to
6973 	 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6974 	 * of two.
6975 	 */
6976 	if (new % DEFAULT_STRIPE_SIZE != 0 ||
6977 			new > PAGE_SIZE || new == 0 ||
6978 			new != roundup_pow_of_two(new))
6979 		return -EINVAL;
6980 
6981 	err = mddev_suspend_and_lock(mddev);
6982 	if (err)
6983 		return err;
6984 
6985 	conf = mddev->private;
6986 	if (!conf) {
6987 		err = -ENODEV;
6988 		goto out_unlock;
6989 	}
6990 
6991 	if (new == conf->stripe_size)
6992 		goto out_unlock;
6993 
6994 	pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6995 			conf->stripe_size, new);
6996 
6997 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6998 	    mddev->reshape_position != MaxSector || mddev->sysfs_active) {
6999 		err = -EBUSY;
7000 		goto out_unlock;
7001 	}
7002 
7003 	mutex_lock(&conf->cache_size_mutex);
7004 	size = conf->max_nr_stripes;
7005 
7006 	shrink_stripes(conf);
7007 
7008 	conf->stripe_size = new;
7009 	conf->stripe_shift = ilog2(new) - 9;
7010 	conf->stripe_sectors = new >> 9;
7011 	if (grow_stripes(conf, size)) {
7012 		pr_warn("md/raid:%s: couldn't allocate buffers\n",
7013 				mdname(mddev));
7014 		err = -ENOMEM;
7015 	}
7016 	mutex_unlock(&conf->cache_size_mutex);
7017 
7018 out_unlock:
7019 	mddev_unlock_and_resume(mddev);
7020 	return err ?: len;
7021 }
7022 
7023 static struct md_sysfs_entry
7024 raid5_stripe_size = __ATTR(stripe_size, 0644,
7025 			 raid5_show_stripe_size,
7026 			 raid5_store_stripe_size);
7027 #else
7028 static struct md_sysfs_entry
7029 raid5_stripe_size = __ATTR(stripe_size, 0444,
7030 			 raid5_show_stripe_size,
7031 			 NULL);
7032 #endif
7033 
7034 static ssize_t
raid5_show_preread_threshold(struct mddev * mddev,char * page)7035 raid5_show_preread_threshold(struct mddev *mddev, char *page)
7036 {
7037 	struct r5conf *conf;
7038 	int ret = 0;
7039 	spin_lock(&mddev->lock);
7040 	conf = mddev->private;
7041 	if (conf)
7042 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
7043 	spin_unlock(&mddev->lock);
7044 	return ret;
7045 }
7046 
7047 static ssize_t
raid5_store_preread_threshold(struct mddev * mddev,const char * page,size_t len)7048 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
7049 {
7050 	struct r5conf *conf;
7051 	unsigned long new;
7052 	int err;
7053 
7054 	if (len >= PAGE_SIZE)
7055 		return -EINVAL;
7056 	if (kstrtoul(page, 10, &new))
7057 		return -EINVAL;
7058 
7059 	err = mddev_lock(mddev);
7060 	if (err)
7061 		return err;
7062 	conf = mddev->private;
7063 	if (!conf)
7064 		err = -ENODEV;
7065 	else if (new > conf->min_nr_stripes)
7066 		err = -EINVAL;
7067 	else
7068 		conf->bypass_threshold = new;
7069 	mddev_unlock(mddev);
7070 	return err ?: len;
7071 }
7072 
7073 static struct md_sysfs_entry
7074 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
7075 					S_IRUGO | S_IWUSR,
7076 					raid5_show_preread_threshold,
7077 					raid5_store_preread_threshold);
7078 
7079 static ssize_t
raid5_show_skip_copy(struct mddev * mddev,char * page)7080 raid5_show_skip_copy(struct mddev *mddev, char *page)
7081 {
7082 	struct r5conf *conf;
7083 	int ret = 0;
7084 	spin_lock(&mddev->lock);
7085 	conf = mddev->private;
7086 	if (conf)
7087 		ret = sprintf(page, "%d\n", conf->skip_copy);
7088 	spin_unlock(&mddev->lock);
7089 	return ret;
7090 }
7091 
7092 static ssize_t
raid5_store_skip_copy(struct mddev * mddev,const char * page,size_t len)7093 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
7094 {
7095 	struct r5conf *conf;
7096 	unsigned long new;
7097 	int err;
7098 
7099 	if (len >= PAGE_SIZE)
7100 		return -EINVAL;
7101 	if (kstrtoul(page, 10, &new))
7102 		return -EINVAL;
7103 	new = !!new;
7104 
7105 	err = mddev_suspend_and_lock(mddev);
7106 	if (err)
7107 		return err;
7108 	conf = mddev->private;
7109 	if (!conf)
7110 		err = -ENODEV;
7111 	else if (new != conf->skip_copy) {
7112 		struct request_queue *q = mddev->gendisk->queue;
7113 		struct queue_limits lim = queue_limits_start_update(q);
7114 
7115 		conf->skip_copy = new;
7116 		if (new)
7117 			lim.features |= BLK_FEAT_STABLE_WRITES;
7118 		else
7119 			lim.features &= ~BLK_FEAT_STABLE_WRITES;
7120 		err = queue_limits_commit_update(q, &lim);
7121 	}
7122 	mddev_unlock_and_resume(mddev);
7123 	return err ?: len;
7124 }
7125 
7126 static struct md_sysfs_entry
7127 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
7128 					raid5_show_skip_copy,
7129 					raid5_store_skip_copy);
7130 
7131 static ssize_t
stripe_cache_active_show(struct mddev * mddev,char * page)7132 stripe_cache_active_show(struct mddev *mddev, char *page)
7133 {
7134 	struct r5conf *conf = mddev->private;
7135 	if (conf)
7136 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
7137 	else
7138 		return 0;
7139 }
7140 
7141 static struct md_sysfs_entry
7142 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
7143 
7144 static ssize_t
raid5_show_group_thread_cnt(struct mddev * mddev,char * page)7145 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
7146 {
7147 	struct r5conf *conf;
7148 	int ret = 0;
7149 	spin_lock(&mddev->lock);
7150 	conf = mddev->private;
7151 	if (conf)
7152 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
7153 	spin_unlock(&mddev->lock);
7154 	return ret;
7155 }
7156 
7157 static int alloc_thread_groups(struct r5conf *conf, int cnt,
7158 			       int *group_cnt,
7159 			       struct r5worker_group **worker_groups);
7160 static ssize_t
raid5_store_group_thread_cnt(struct mddev * mddev,const char * page,size_t len)7161 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
7162 {
7163 	struct r5conf *conf;
7164 	unsigned int new;
7165 	int err;
7166 	struct r5worker_group *new_groups, *old_groups;
7167 	int group_cnt;
7168 
7169 	if (len >= PAGE_SIZE)
7170 		return -EINVAL;
7171 	if (kstrtouint(page, 10, &new))
7172 		return -EINVAL;
7173 	/* 8192 should be big enough */
7174 	if (new > 8192)
7175 		return -EINVAL;
7176 
7177 	err = mddev_suspend_and_lock(mddev);
7178 	if (err)
7179 		return err;
7180 	conf = mddev->private;
7181 	if (!conf)
7182 		err = -ENODEV;
7183 	else if (new != conf->worker_cnt_per_group) {
7184 		old_groups = conf->worker_groups;
7185 		if (old_groups)
7186 			flush_workqueue(raid5_wq);
7187 
7188 		err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
7189 		if (!err) {
7190 			spin_lock_irq(&conf->device_lock);
7191 			conf->group_cnt = group_cnt;
7192 			conf->worker_cnt_per_group = new;
7193 			conf->worker_groups = new_groups;
7194 			spin_unlock_irq(&conf->device_lock);
7195 
7196 			if (old_groups)
7197 				kfree(old_groups[0].workers);
7198 			kfree(old_groups);
7199 		}
7200 	}
7201 	mddev_unlock_and_resume(mddev);
7202 
7203 	return err ?: len;
7204 }
7205 
7206 static struct md_sysfs_entry
7207 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
7208 				raid5_show_group_thread_cnt,
7209 				raid5_store_group_thread_cnt);
7210 
7211 static struct attribute *raid5_attrs[] =  {
7212 	&raid5_stripecache_size.attr,
7213 	&raid5_stripecache_active.attr,
7214 	&raid5_preread_bypass_threshold.attr,
7215 	&raid5_group_thread_cnt.attr,
7216 	&raid5_skip_copy.attr,
7217 	&raid5_rmw_level.attr,
7218 	&raid5_stripe_size.attr,
7219 	&r5c_journal_mode.attr,
7220 	&ppl_write_hint.attr,
7221 	NULL,
7222 };
7223 static const struct attribute_group raid5_attrs_group = {
7224 	.name = NULL,
7225 	.attrs = raid5_attrs,
7226 };
7227 
alloc_thread_groups(struct r5conf * conf,int cnt,int * group_cnt,struct r5worker_group ** worker_groups)7228 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
7229 			       struct r5worker_group **worker_groups)
7230 {
7231 	int i, j, k;
7232 	ssize_t size;
7233 	struct r5worker *workers;
7234 
7235 	if (cnt == 0) {
7236 		*group_cnt = 0;
7237 		*worker_groups = NULL;
7238 		return 0;
7239 	}
7240 	*group_cnt = num_possible_nodes();
7241 	size = sizeof(struct r5worker) * cnt;
7242 	workers = kcalloc(size, *group_cnt, GFP_NOIO);
7243 	*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7244 				 GFP_NOIO);
7245 	if (!*worker_groups || !workers) {
7246 		kfree(workers);
7247 		kfree(*worker_groups);
7248 		return -ENOMEM;
7249 	}
7250 
7251 	for (i = 0; i < *group_cnt; i++) {
7252 		struct r5worker_group *group;
7253 
7254 		group = &(*worker_groups)[i];
7255 		INIT_LIST_HEAD(&group->handle_list);
7256 		INIT_LIST_HEAD(&group->loprio_list);
7257 		group->conf = conf;
7258 		group->workers = workers + i * cnt;
7259 
7260 		for (j = 0; j < cnt; j++) {
7261 			struct r5worker *worker = group->workers + j;
7262 			worker->group = group;
7263 			INIT_WORK(&worker->work, raid5_do_work);
7264 
7265 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7266 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
7267 		}
7268 	}
7269 
7270 	return 0;
7271 }
7272 
free_thread_groups(struct r5conf * conf)7273 static void free_thread_groups(struct r5conf *conf)
7274 {
7275 	if (conf->worker_groups)
7276 		kfree(conf->worker_groups[0].workers);
7277 	kfree(conf->worker_groups);
7278 	conf->worker_groups = NULL;
7279 }
7280 
7281 static sector_t
raid5_size(struct mddev * mddev,sector_t sectors,int raid_disks)7282 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7283 {
7284 	struct r5conf *conf = mddev->private;
7285 
7286 	if (!sectors)
7287 		sectors = mddev->dev_sectors;
7288 	if (!raid_disks)
7289 		/* size is defined by the smallest of previous and new size */
7290 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7291 
7292 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7293 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7294 	return sectors * (raid_disks - conf->max_degraded);
7295 }
7296 
free_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)7297 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7298 {
7299 	safe_put_page(percpu->spare_page);
7300 	percpu->spare_page = NULL;
7301 	kvfree(percpu->scribble);
7302 	percpu->scribble = NULL;
7303 }
7304 
alloc_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)7305 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7306 {
7307 	if (conf->level == 6 && !percpu->spare_page) {
7308 		percpu->spare_page = alloc_page(GFP_KERNEL);
7309 		if (!percpu->spare_page)
7310 			return -ENOMEM;
7311 	}
7312 
7313 	if (scribble_alloc(percpu,
7314 			   max(conf->raid_disks,
7315 			       conf->previous_raid_disks),
7316 			   max(conf->chunk_sectors,
7317 			       conf->prev_chunk_sectors)
7318 			   / RAID5_STRIPE_SECTORS(conf))) {
7319 		free_scratch_buffer(conf, percpu);
7320 		return -ENOMEM;
7321 	}
7322 
7323 	local_lock_init(&percpu->lock);
7324 	return 0;
7325 }
7326 
raid456_cpu_dead(unsigned int cpu,struct hlist_node * node)7327 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7328 {
7329 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7330 
7331 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7332 	return 0;
7333 }
7334 
raid5_free_percpu(struct r5conf * conf)7335 static void raid5_free_percpu(struct r5conf *conf)
7336 {
7337 	if (!conf->percpu)
7338 		return;
7339 
7340 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7341 	free_percpu(conf->percpu);
7342 }
7343 
free_conf(struct r5conf * conf)7344 static void free_conf(struct r5conf *conf)
7345 {
7346 	int i;
7347 
7348 	log_exit(conf);
7349 
7350 	shrinker_free(conf->shrinker);
7351 	free_thread_groups(conf);
7352 	shrink_stripes(conf);
7353 	raid5_free_percpu(conf);
7354 	for (i = 0; i < conf->pool_size; i++)
7355 		if (conf->disks[i].extra_page)
7356 			put_page(conf->disks[i].extra_page);
7357 	kfree(conf->disks);
7358 	bioset_exit(&conf->bio_split);
7359 	kfree(conf->stripe_hashtbl);
7360 	kfree(conf->pending_data);
7361 	kfree(conf);
7362 }
7363 
raid456_cpu_up_prepare(unsigned int cpu,struct hlist_node * node)7364 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7365 {
7366 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7367 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7368 
7369 	if (alloc_scratch_buffer(conf, percpu)) {
7370 		pr_warn("%s: failed memory allocation for cpu%u\n",
7371 			__func__, cpu);
7372 		return -ENOMEM;
7373 	}
7374 	return 0;
7375 }
7376 
raid5_alloc_percpu(struct r5conf * conf)7377 static int raid5_alloc_percpu(struct r5conf *conf)
7378 {
7379 	int err = 0;
7380 
7381 	conf->percpu = alloc_percpu(struct raid5_percpu);
7382 	if (!conf->percpu)
7383 		return -ENOMEM;
7384 
7385 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7386 	if (!err) {
7387 		conf->scribble_disks = max(conf->raid_disks,
7388 			conf->previous_raid_disks);
7389 		conf->scribble_sectors = max(conf->chunk_sectors,
7390 			conf->prev_chunk_sectors);
7391 	}
7392 	return err;
7393 }
7394 
raid5_cache_scan(struct shrinker * shrink,struct shrink_control * sc)7395 static unsigned long raid5_cache_scan(struct shrinker *shrink,
7396 				      struct shrink_control *sc)
7397 {
7398 	struct r5conf *conf = shrink->private_data;
7399 	unsigned long ret = SHRINK_STOP;
7400 
7401 	if (mutex_trylock(&conf->cache_size_mutex)) {
7402 		ret= 0;
7403 		while (ret < sc->nr_to_scan &&
7404 		       conf->max_nr_stripes > conf->min_nr_stripes) {
7405 			if (drop_one_stripe(conf) == 0) {
7406 				ret = SHRINK_STOP;
7407 				break;
7408 			}
7409 			ret++;
7410 		}
7411 		mutex_unlock(&conf->cache_size_mutex);
7412 	}
7413 	return ret;
7414 }
7415 
raid5_cache_count(struct shrinker * shrink,struct shrink_control * sc)7416 static unsigned long raid5_cache_count(struct shrinker *shrink,
7417 				       struct shrink_control *sc)
7418 {
7419 	struct r5conf *conf = shrink->private_data;
7420 	int max_stripes = READ_ONCE(conf->max_nr_stripes);
7421 	int min_stripes = READ_ONCE(conf->min_nr_stripes);
7422 
7423 	if (max_stripes < min_stripes)
7424 		/* unlikely, but not impossible */
7425 		return 0;
7426 	return max_stripes - min_stripes;
7427 }
7428 
setup_conf(struct mddev * mddev)7429 static struct r5conf *setup_conf(struct mddev *mddev)
7430 {
7431 	struct r5conf *conf;
7432 	int raid_disk, memory, max_disks;
7433 	struct md_rdev *rdev;
7434 	struct disk_info *disk;
7435 	char pers_name[6];
7436 	int i;
7437 	int group_cnt;
7438 	struct r5worker_group *new_group;
7439 	int ret = -ENOMEM;
7440 
7441 	if (mddev->new_level != 5
7442 	    && mddev->new_level != 4
7443 	    && mddev->new_level != 6) {
7444 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7445 			mdname(mddev), mddev->new_level);
7446 		return ERR_PTR(-EIO);
7447 	}
7448 	if ((mddev->new_level == 5
7449 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
7450 	    (mddev->new_level == 6
7451 	     && !algorithm_valid_raid6(mddev->new_layout))) {
7452 		pr_warn("md/raid:%s: layout %d not supported\n",
7453 			mdname(mddev), mddev->new_layout);
7454 		return ERR_PTR(-EIO);
7455 	}
7456 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7457 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7458 			mdname(mddev), mddev->raid_disks);
7459 		return ERR_PTR(-EINVAL);
7460 	}
7461 
7462 	if (!mddev->new_chunk_sectors ||
7463 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7464 	    !is_power_of_2(mddev->new_chunk_sectors)) {
7465 		pr_warn("md/raid:%s: invalid chunk size %d\n",
7466 			mdname(mddev), mddev->new_chunk_sectors << 9);
7467 		return ERR_PTR(-EINVAL);
7468 	}
7469 
7470 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7471 	if (conf == NULL)
7472 		goto abort;
7473 
7474 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7475 	conf->stripe_size = DEFAULT_STRIPE_SIZE;
7476 	conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7477 	conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7478 #endif
7479 	INIT_LIST_HEAD(&conf->free_list);
7480 	INIT_LIST_HEAD(&conf->pending_list);
7481 	conf->pending_data = kcalloc(PENDING_IO_MAX,
7482 				     sizeof(struct r5pending_data),
7483 				     GFP_KERNEL);
7484 	if (!conf->pending_data)
7485 		goto abort;
7486 	for (i = 0; i < PENDING_IO_MAX; i++)
7487 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
7488 	/* Don't enable multi-threading by default*/
7489 	if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7490 		conf->group_cnt = group_cnt;
7491 		conf->worker_cnt_per_group = 0;
7492 		conf->worker_groups = new_group;
7493 	} else
7494 		goto abort;
7495 	spin_lock_init(&conf->device_lock);
7496 	seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7497 	mutex_init(&conf->cache_size_mutex);
7498 
7499 	init_waitqueue_head(&conf->wait_for_quiescent);
7500 	init_waitqueue_head(&conf->wait_for_stripe);
7501 	init_waitqueue_head(&conf->wait_for_reshape);
7502 	INIT_LIST_HEAD(&conf->handle_list);
7503 	INIT_LIST_HEAD(&conf->loprio_list);
7504 	INIT_LIST_HEAD(&conf->hold_list);
7505 	INIT_LIST_HEAD(&conf->delayed_list);
7506 	INIT_LIST_HEAD(&conf->bitmap_list);
7507 	init_llist_head(&conf->released_stripes);
7508 	atomic_set(&conf->active_stripes, 0);
7509 	atomic_set(&conf->preread_active_stripes, 0);
7510 	atomic_set(&conf->active_aligned_reads, 0);
7511 	spin_lock_init(&conf->pending_bios_lock);
7512 	conf->batch_bio_dispatch = true;
7513 	rdev_for_each(rdev, mddev) {
7514 		if (test_bit(Journal, &rdev->flags))
7515 			continue;
7516 		if (bdev_nonrot(rdev->bdev)) {
7517 			conf->batch_bio_dispatch = false;
7518 			break;
7519 		}
7520 	}
7521 
7522 	conf->bypass_threshold = BYPASS_THRESHOLD;
7523 	conf->recovery_disabled = mddev->recovery_disabled - 1;
7524 
7525 	conf->raid_disks = mddev->raid_disks;
7526 	if (mddev->reshape_position == MaxSector)
7527 		conf->previous_raid_disks = mddev->raid_disks;
7528 	else
7529 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7530 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7531 
7532 	conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7533 			      GFP_KERNEL);
7534 
7535 	if (!conf->disks)
7536 		goto abort;
7537 
7538 	for (i = 0; i < max_disks; i++) {
7539 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7540 		if (!conf->disks[i].extra_page)
7541 			goto abort;
7542 	}
7543 
7544 	ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7545 	if (ret)
7546 		goto abort;
7547 	conf->mddev = mddev;
7548 
7549 	ret = -ENOMEM;
7550 	conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
7551 	if (!conf->stripe_hashtbl)
7552 		goto abort;
7553 
7554 	/* We init hash_locks[0] separately to that it can be used
7555 	 * as the reference lock in the spin_lock_nest_lock() call
7556 	 * in lock_all_device_hash_locks_irq in order to convince
7557 	 * lockdep that we know what we are doing.
7558 	 */
7559 	spin_lock_init(conf->hash_locks);
7560 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7561 		spin_lock_init(conf->hash_locks + i);
7562 
7563 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7564 		INIT_LIST_HEAD(conf->inactive_list + i);
7565 
7566 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7567 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
7568 
7569 	atomic_set(&conf->r5c_cached_full_stripes, 0);
7570 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7571 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
7572 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7573 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
7574 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7575 
7576 	conf->level = mddev->new_level;
7577 	conf->chunk_sectors = mddev->new_chunk_sectors;
7578 	ret = raid5_alloc_percpu(conf);
7579 	if (ret)
7580 		goto abort;
7581 
7582 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7583 
7584 	ret = -EIO;
7585 	rdev_for_each(rdev, mddev) {
7586 		raid_disk = rdev->raid_disk;
7587 		if (raid_disk >= max_disks
7588 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7589 			continue;
7590 		disk = conf->disks + raid_disk;
7591 
7592 		if (test_bit(Replacement, &rdev->flags)) {
7593 			if (disk->replacement)
7594 				goto abort;
7595 			disk->replacement = rdev;
7596 		} else {
7597 			if (disk->rdev)
7598 				goto abort;
7599 			disk->rdev = rdev;
7600 		}
7601 
7602 		if (test_bit(In_sync, &rdev->flags)) {
7603 			pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7604 				mdname(mddev), rdev->bdev, raid_disk);
7605 		} else if (rdev->saved_raid_disk != raid_disk)
7606 			/* Cannot rely on bitmap to complete recovery */
7607 			conf->fullsync = 1;
7608 	}
7609 
7610 	conf->level = mddev->new_level;
7611 	if (conf->level == 6) {
7612 		conf->max_degraded = 2;
7613 		if (raid6_call.xor_syndrome)
7614 			conf->rmw_level = PARITY_ENABLE_RMW;
7615 		else
7616 			conf->rmw_level = PARITY_DISABLE_RMW;
7617 	} else {
7618 		conf->max_degraded = 1;
7619 		conf->rmw_level = PARITY_ENABLE_RMW;
7620 	}
7621 	conf->algorithm = mddev->new_layout;
7622 	conf->reshape_progress = mddev->reshape_position;
7623 	if (conf->reshape_progress != MaxSector) {
7624 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7625 		conf->prev_algo = mddev->layout;
7626 	} else {
7627 		conf->prev_chunk_sectors = conf->chunk_sectors;
7628 		conf->prev_algo = conf->algorithm;
7629 	}
7630 
7631 	conf->min_nr_stripes = NR_STRIPES;
7632 	if (mddev->reshape_position != MaxSector) {
7633 		int stripes = max_t(int,
7634 			((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7635 			((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7636 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7637 		if (conf->min_nr_stripes != NR_STRIPES)
7638 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7639 				mdname(mddev), conf->min_nr_stripes);
7640 	}
7641 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7642 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7643 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7644 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7645 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7646 			mdname(mddev), memory);
7647 		ret = -ENOMEM;
7648 		goto abort;
7649 	} else
7650 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7651 	/*
7652 	 * Losing a stripe head costs more than the time to refill it,
7653 	 * it reduces the queue depth and so can hurt throughput.
7654 	 * So set it rather large, scaled by number of devices.
7655 	 */
7656 	conf->shrinker = shrinker_alloc(0, "md-raid5:%s", mdname(mddev));
7657 	if (!conf->shrinker) {
7658 		ret = -ENOMEM;
7659 		pr_warn("md/raid:%s: couldn't allocate shrinker.\n",
7660 			mdname(mddev));
7661 		goto abort;
7662 	}
7663 
7664 	conf->shrinker->seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7665 	conf->shrinker->scan_objects = raid5_cache_scan;
7666 	conf->shrinker->count_objects = raid5_cache_count;
7667 	conf->shrinker->batch = 128;
7668 	conf->shrinker->private_data = conf;
7669 
7670 	shrinker_register(conf->shrinker);
7671 
7672 	sprintf(pers_name, "raid%d", mddev->new_level);
7673 	rcu_assign_pointer(conf->thread,
7674 			   md_register_thread(raid5d, mddev, pers_name));
7675 	if (!conf->thread) {
7676 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7677 			mdname(mddev));
7678 		ret = -ENOMEM;
7679 		goto abort;
7680 	}
7681 
7682 	return conf;
7683 
7684  abort:
7685 	if (conf)
7686 		free_conf(conf);
7687 	return ERR_PTR(ret);
7688 }
7689 
only_parity(int raid_disk,int algo,int raid_disks,int max_degraded)7690 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7691 {
7692 	switch (algo) {
7693 	case ALGORITHM_PARITY_0:
7694 		if (raid_disk < max_degraded)
7695 			return 1;
7696 		break;
7697 	case ALGORITHM_PARITY_N:
7698 		if (raid_disk >= raid_disks - max_degraded)
7699 			return 1;
7700 		break;
7701 	case ALGORITHM_PARITY_0_6:
7702 		if (raid_disk == 0 ||
7703 		    raid_disk == raid_disks - 1)
7704 			return 1;
7705 		break;
7706 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7707 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7708 	case ALGORITHM_LEFT_SYMMETRIC_6:
7709 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7710 		if (raid_disk == raid_disks - 1)
7711 			return 1;
7712 	}
7713 	return 0;
7714 }
7715 
raid5_set_limits(struct mddev * mddev)7716 static int raid5_set_limits(struct mddev *mddev)
7717 {
7718 	struct r5conf *conf = mddev->private;
7719 	struct queue_limits lim;
7720 	int data_disks, stripe;
7721 	struct md_rdev *rdev;
7722 
7723 	/*
7724 	 * The read-ahead size must cover two whole stripes, which is
7725 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices.
7726 	 */
7727 	data_disks = conf->previous_raid_disks - conf->max_degraded;
7728 
7729 	/*
7730 	 * We can only discard a whole stripe. It doesn't make sense to
7731 	 * discard data disk but write parity disk
7732 	 */
7733 	stripe = roundup_pow_of_two(data_disks * (mddev->chunk_sectors << 9));
7734 
7735 	md_init_stacking_limits(&lim);
7736 	lim.io_min = mddev->chunk_sectors << 9;
7737 	lim.io_opt = lim.io_min * (conf->raid_disks - conf->max_degraded);
7738 	lim.features |= BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE;
7739 	lim.discard_granularity = stripe;
7740 	lim.max_write_zeroes_sectors = 0;
7741 	mddev_stack_rdev_limits(mddev, &lim, 0);
7742 	rdev_for_each(rdev, mddev)
7743 		queue_limits_stack_bdev(&lim, rdev->bdev, rdev->new_data_offset,
7744 				mddev->gendisk->disk_name);
7745 
7746 	/*
7747 	 * Zeroing is required for discard, otherwise data could be lost.
7748 	 *
7749 	 * Consider a scenario: discard a stripe (the stripe could be
7750 	 * inconsistent if discard_zeroes_data is 0); write one disk of the
7751 	 * stripe (the stripe could be inconsistent again depending on which
7752 	 * disks are used to calculate parity); the disk is broken; The stripe
7753 	 * data of this disk is lost.
7754 	 *
7755 	 * We only allow DISCARD if the sysadmin has confirmed that only safe
7756 	 * devices are in use by setting a module parameter.  A better idea
7757 	 * might be to turn DISCARD into WRITE_ZEROES requests, as that is
7758 	 * required to be safe.
7759 	 */
7760 	if (!devices_handle_discard_safely ||
7761 	    lim.max_discard_sectors < (stripe >> 9) ||
7762 	    lim.discard_granularity < stripe)
7763 		lim.max_hw_discard_sectors = 0;
7764 
7765 	/*
7766 	 * Requests require having a bitmap for each stripe.
7767 	 * Limit the max sectors based on this.
7768 	 */
7769 	lim.max_hw_sectors = RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf);
7770 
7771 	/* No restrictions on the number of segments in the request */
7772 	lim.max_segments = USHRT_MAX;
7773 
7774 	return queue_limits_set(mddev->gendisk->queue, &lim);
7775 }
7776 
raid5_run(struct mddev * mddev)7777 static int raid5_run(struct mddev *mddev)
7778 {
7779 	struct r5conf *conf;
7780 	int dirty_parity_disks = 0;
7781 	struct md_rdev *rdev;
7782 	struct md_rdev *journal_dev = NULL;
7783 	sector_t reshape_offset = 0;
7784 	int i;
7785 	long long min_offset_diff = 0;
7786 	int first = 1;
7787 	int ret = -EIO;
7788 
7789 	if (mddev->recovery_cp != MaxSector)
7790 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7791 			  mdname(mddev));
7792 
7793 	rdev_for_each(rdev, mddev) {
7794 		long long diff;
7795 
7796 		if (test_bit(Journal, &rdev->flags)) {
7797 			journal_dev = rdev;
7798 			continue;
7799 		}
7800 		if (rdev->raid_disk < 0)
7801 			continue;
7802 		diff = (rdev->new_data_offset - rdev->data_offset);
7803 		if (first) {
7804 			min_offset_diff = diff;
7805 			first = 0;
7806 		} else if (mddev->reshape_backwards &&
7807 			 diff < min_offset_diff)
7808 			min_offset_diff = diff;
7809 		else if (!mddev->reshape_backwards &&
7810 			 diff > min_offset_diff)
7811 			min_offset_diff = diff;
7812 	}
7813 
7814 	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7815 	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7816 		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7817 			  mdname(mddev));
7818 		return -EINVAL;
7819 	}
7820 
7821 	if (mddev->reshape_position != MaxSector) {
7822 		/* Check that we can continue the reshape.
7823 		 * Difficulties arise if the stripe we would write to
7824 		 * next is at or after the stripe we would read from next.
7825 		 * For a reshape that changes the number of devices, this
7826 		 * is only possible for a very short time, and mdadm makes
7827 		 * sure that time appears to have past before assembling
7828 		 * the array.  So we fail if that time hasn't passed.
7829 		 * For a reshape that keeps the number of devices the same
7830 		 * mdadm must be monitoring the reshape can keeping the
7831 		 * critical areas read-only and backed up.  It will start
7832 		 * the array in read-only mode, so we check for that.
7833 		 */
7834 		sector_t here_new, here_old;
7835 		int old_disks;
7836 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7837 		int chunk_sectors;
7838 		int new_data_disks;
7839 
7840 		if (journal_dev) {
7841 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7842 				mdname(mddev));
7843 			return -EINVAL;
7844 		}
7845 
7846 		if (mddev->new_level != mddev->level) {
7847 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7848 				mdname(mddev));
7849 			return -EINVAL;
7850 		}
7851 		old_disks = mddev->raid_disks - mddev->delta_disks;
7852 		/* reshape_position must be on a new-stripe boundary, and one
7853 		 * further up in new geometry must map after here in old
7854 		 * geometry.
7855 		 * If the chunk sizes are different, then as we perform reshape
7856 		 * in units of the largest of the two, reshape_position needs
7857 		 * be a multiple of the largest chunk size times new data disks.
7858 		 */
7859 		here_new = mddev->reshape_position;
7860 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7861 		new_data_disks = mddev->raid_disks - max_degraded;
7862 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7863 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7864 				mdname(mddev));
7865 			return -EINVAL;
7866 		}
7867 		reshape_offset = here_new * chunk_sectors;
7868 		/* here_new is the stripe we will write to */
7869 		here_old = mddev->reshape_position;
7870 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7871 		/* here_old is the first stripe that we might need to read
7872 		 * from */
7873 		if (mddev->delta_disks == 0) {
7874 			/* We cannot be sure it is safe to start an in-place
7875 			 * reshape.  It is only safe if user-space is monitoring
7876 			 * and taking constant backups.
7877 			 * mdadm always starts a situation like this in
7878 			 * readonly mode so it can take control before
7879 			 * allowing any writes.  So just check for that.
7880 			 */
7881 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7882 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7883 				/* not really in-place - so OK */;
7884 			else if (mddev->ro == 0) {
7885 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7886 					mdname(mddev));
7887 				return -EINVAL;
7888 			}
7889 		} else if (mddev->reshape_backwards
7890 		    ? (here_new * chunk_sectors + min_offset_diff <=
7891 		       here_old * chunk_sectors)
7892 		    : (here_new * chunk_sectors >=
7893 		       here_old * chunk_sectors + (-min_offset_diff))) {
7894 			/* Reading from the same stripe as writing to - bad */
7895 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7896 				mdname(mddev));
7897 			return -EINVAL;
7898 		}
7899 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7900 		/* OK, we should be able to continue; */
7901 	} else {
7902 		BUG_ON(mddev->level != mddev->new_level);
7903 		BUG_ON(mddev->layout != mddev->new_layout);
7904 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7905 		BUG_ON(mddev->delta_disks != 0);
7906 	}
7907 
7908 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7909 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7910 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7911 			mdname(mddev));
7912 		clear_bit(MD_HAS_PPL, &mddev->flags);
7913 		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7914 	}
7915 
7916 	if (mddev->private == NULL)
7917 		conf = setup_conf(mddev);
7918 	else
7919 		conf = mddev->private;
7920 
7921 	if (IS_ERR(conf))
7922 		return PTR_ERR(conf);
7923 
7924 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7925 		if (!journal_dev) {
7926 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7927 				mdname(mddev));
7928 			mddev->ro = 1;
7929 			set_disk_ro(mddev->gendisk, 1);
7930 		} else if (mddev->recovery_cp == MaxSector)
7931 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7932 	}
7933 
7934 	conf->min_offset_diff = min_offset_diff;
7935 	rcu_assign_pointer(mddev->thread, conf->thread);
7936 	rcu_assign_pointer(conf->thread, NULL);
7937 	mddev->private = conf;
7938 
7939 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7940 	     i++) {
7941 		rdev = conf->disks[i].rdev;
7942 		if (!rdev)
7943 			continue;
7944 		if (conf->disks[i].replacement &&
7945 		    conf->reshape_progress != MaxSector) {
7946 			/* replacements and reshape simply do not mix. */
7947 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7948 			goto abort;
7949 		}
7950 		if (test_bit(In_sync, &rdev->flags))
7951 			continue;
7952 		/* This disc is not fully in-sync.  However if it
7953 		 * just stored parity (beyond the recovery_offset),
7954 		 * when we don't need to be concerned about the
7955 		 * array being dirty.
7956 		 * When reshape goes 'backwards', we never have
7957 		 * partially completed devices, so we only need
7958 		 * to worry about reshape going forwards.
7959 		 */
7960 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7961 		if (mddev->major_version == 0 &&
7962 		    mddev->minor_version > 90)
7963 			rdev->recovery_offset = reshape_offset;
7964 
7965 		if (rdev->recovery_offset < reshape_offset) {
7966 			/* We need to check old and new layout */
7967 			if (!only_parity(rdev->raid_disk,
7968 					 conf->algorithm,
7969 					 conf->raid_disks,
7970 					 conf->max_degraded))
7971 				continue;
7972 		}
7973 		if (!only_parity(rdev->raid_disk,
7974 				 conf->prev_algo,
7975 				 conf->previous_raid_disks,
7976 				 conf->max_degraded))
7977 			continue;
7978 		dirty_parity_disks++;
7979 	}
7980 
7981 	/*
7982 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7983 	 */
7984 	mddev->degraded = raid5_calc_degraded(conf);
7985 
7986 	if (has_failed(conf)) {
7987 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7988 			mdname(mddev), mddev->degraded, conf->raid_disks);
7989 		goto abort;
7990 	}
7991 
7992 	/* device size must be a multiple of chunk size */
7993 	mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7994 	mddev->resync_max_sectors = mddev->dev_sectors;
7995 
7996 	if (mddev->degraded > dirty_parity_disks &&
7997 	    mddev->recovery_cp != MaxSector) {
7998 		if (test_bit(MD_HAS_PPL, &mddev->flags))
7999 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
8000 				mdname(mddev));
8001 		else if (mddev->ok_start_degraded)
8002 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
8003 				mdname(mddev));
8004 		else {
8005 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
8006 				mdname(mddev));
8007 			goto abort;
8008 		}
8009 	}
8010 
8011 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
8012 		mdname(mddev), conf->level,
8013 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
8014 		mddev->new_layout);
8015 
8016 	print_raid5_conf(conf);
8017 
8018 	if (conf->reshape_progress != MaxSector) {
8019 		conf->reshape_safe = conf->reshape_progress;
8020 		atomic_set(&conf->reshape_stripes, 0);
8021 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8022 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8023 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8024 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8025 	}
8026 
8027 	/* Ok, everything is just fine now */
8028 	if (mddev->to_remove == &raid5_attrs_group)
8029 		mddev->to_remove = NULL;
8030 	else if (mddev->kobj.sd &&
8031 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
8032 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
8033 			mdname(mddev));
8034 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
8035 
8036 	if (!mddev_is_dm(mddev)) {
8037 		ret = raid5_set_limits(mddev);
8038 		if (ret)
8039 			goto abort;
8040 	}
8041 
8042 	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
8043 		goto abort;
8044 
8045 	return 0;
8046 abort:
8047 	md_unregister_thread(mddev, &mddev->thread);
8048 	print_raid5_conf(conf);
8049 	free_conf(conf);
8050 	mddev->private = NULL;
8051 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
8052 	return ret;
8053 }
8054 
raid5_free(struct mddev * mddev,void * priv)8055 static void raid5_free(struct mddev *mddev, void *priv)
8056 {
8057 	struct r5conf *conf = priv;
8058 
8059 	free_conf(conf);
8060 	mddev->to_remove = &raid5_attrs_group;
8061 }
8062 
raid5_status(struct seq_file * seq,struct mddev * mddev)8063 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
8064 {
8065 	struct r5conf *conf = mddev->private;
8066 	int i;
8067 
8068 	lockdep_assert_held(&mddev->lock);
8069 
8070 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
8071 		conf->chunk_sectors / 2, mddev->layout);
8072 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
8073 	for (i = 0; i < conf->raid_disks; i++) {
8074 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
8075 
8076 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
8077 	}
8078 	seq_printf (seq, "]");
8079 }
8080 
print_raid5_conf(struct r5conf * conf)8081 static void print_raid5_conf(struct r5conf *conf)
8082 {
8083 	struct md_rdev *rdev;
8084 	int i;
8085 
8086 	pr_debug("RAID conf printout:\n");
8087 	if (!conf) {
8088 		pr_debug("(conf==NULL)\n");
8089 		return;
8090 	}
8091 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
8092 	       conf->raid_disks,
8093 	       conf->raid_disks - conf->mddev->degraded);
8094 
8095 	for (i = 0; i < conf->raid_disks; i++) {
8096 		rdev = conf->disks[i].rdev;
8097 		if (rdev)
8098 			pr_debug(" disk %d, o:%d, dev:%pg\n",
8099 			       i, !test_bit(Faulty, &rdev->flags),
8100 			       rdev->bdev);
8101 	}
8102 }
8103 
raid5_spare_active(struct mddev * mddev)8104 static int raid5_spare_active(struct mddev *mddev)
8105 {
8106 	int i;
8107 	struct r5conf *conf = mddev->private;
8108 	struct md_rdev *rdev, *replacement;
8109 	int count = 0;
8110 	unsigned long flags;
8111 
8112 	for (i = 0; i < conf->raid_disks; i++) {
8113 		rdev = conf->disks[i].rdev;
8114 		replacement = conf->disks[i].replacement;
8115 		if (replacement
8116 		    && replacement->recovery_offset == MaxSector
8117 		    && !test_bit(Faulty, &replacement->flags)
8118 		    && !test_and_set_bit(In_sync, &replacement->flags)) {
8119 			/* Replacement has just become active. */
8120 			if (!rdev
8121 			    || !test_and_clear_bit(In_sync, &rdev->flags))
8122 				count++;
8123 			if (rdev) {
8124 				/* Replaced device not technically faulty,
8125 				 * but we need to be sure it gets removed
8126 				 * and never re-added.
8127 				 */
8128 				set_bit(Faulty, &rdev->flags);
8129 				sysfs_notify_dirent_safe(
8130 					rdev->sysfs_state);
8131 			}
8132 			sysfs_notify_dirent_safe(replacement->sysfs_state);
8133 		} else if (rdev
8134 		    && rdev->recovery_offset == MaxSector
8135 		    && !test_bit(Faulty, &rdev->flags)
8136 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
8137 			count++;
8138 			sysfs_notify_dirent_safe(rdev->sysfs_state);
8139 		}
8140 	}
8141 	spin_lock_irqsave(&conf->device_lock, flags);
8142 	mddev->degraded = raid5_calc_degraded(conf);
8143 	spin_unlock_irqrestore(&conf->device_lock, flags);
8144 	print_raid5_conf(conf);
8145 	return count;
8146 }
8147 
raid5_remove_disk(struct mddev * mddev,struct md_rdev * rdev)8148 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
8149 {
8150 	struct r5conf *conf = mddev->private;
8151 	int err = 0;
8152 	int number = rdev->raid_disk;
8153 	struct md_rdev **rdevp;
8154 	struct disk_info *p;
8155 	struct md_rdev *tmp;
8156 
8157 	print_raid5_conf(conf);
8158 	if (test_bit(Journal, &rdev->flags) && conf->log) {
8159 		/*
8160 		 * we can't wait pending write here, as this is called in
8161 		 * raid5d, wait will deadlock.
8162 		 * neilb: there is no locking about new writes here,
8163 		 * so this cannot be safe.
8164 		 */
8165 		if (atomic_read(&conf->active_stripes) ||
8166 		    atomic_read(&conf->r5c_cached_full_stripes) ||
8167 		    atomic_read(&conf->r5c_cached_partial_stripes)) {
8168 			return -EBUSY;
8169 		}
8170 		log_exit(conf);
8171 		return 0;
8172 	}
8173 	if (unlikely(number >= conf->pool_size))
8174 		return 0;
8175 	p = conf->disks + number;
8176 	if (rdev == p->rdev)
8177 		rdevp = &p->rdev;
8178 	else if (rdev == p->replacement)
8179 		rdevp = &p->replacement;
8180 	else
8181 		return 0;
8182 
8183 	if (number >= conf->raid_disks &&
8184 	    conf->reshape_progress == MaxSector)
8185 		clear_bit(In_sync, &rdev->flags);
8186 
8187 	if (test_bit(In_sync, &rdev->flags) ||
8188 	    atomic_read(&rdev->nr_pending)) {
8189 		err = -EBUSY;
8190 		goto abort;
8191 	}
8192 	/* Only remove non-faulty devices if recovery
8193 	 * isn't possible.
8194 	 */
8195 	if (!test_bit(Faulty, &rdev->flags) &&
8196 	    mddev->recovery_disabled != conf->recovery_disabled &&
8197 	    !has_failed(conf) &&
8198 	    (!p->replacement || p->replacement == rdev) &&
8199 	    number < conf->raid_disks) {
8200 		err = -EBUSY;
8201 		goto abort;
8202 	}
8203 	WRITE_ONCE(*rdevp, NULL);
8204 	if (!err) {
8205 		err = log_modify(conf, rdev, false);
8206 		if (err)
8207 			goto abort;
8208 	}
8209 
8210 	tmp = p->replacement;
8211 	if (tmp) {
8212 		/* We must have just cleared 'rdev' */
8213 		WRITE_ONCE(p->rdev, tmp);
8214 		clear_bit(Replacement, &tmp->flags);
8215 		WRITE_ONCE(p->replacement, NULL);
8216 
8217 		if (!err)
8218 			err = log_modify(conf, tmp, true);
8219 	}
8220 
8221 	clear_bit(WantReplacement, &rdev->flags);
8222 abort:
8223 
8224 	print_raid5_conf(conf);
8225 	return err;
8226 }
8227 
raid5_add_disk(struct mddev * mddev,struct md_rdev * rdev)8228 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
8229 {
8230 	struct r5conf *conf = mddev->private;
8231 	int ret, err = -EEXIST;
8232 	int disk;
8233 	struct disk_info *p;
8234 	struct md_rdev *tmp;
8235 	int first = 0;
8236 	int last = conf->raid_disks - 1;
8237 
8238 	if (test_bit(Journal, &rdev->flags)) {
8239 		if (conf->log)
8240 			return -EBUSY;
8241 
8242 		rdev->raid_disk = 0;
8243 		/*
8244 		 * The array is in readonly mode if journal is missing, so no
8245 		 * write requests running. We should be safe
8246 		 */
8247 		ret = log_init(conf, rdev, false);
8248 		if (ret)
8249 			return ret;
8250 
8251 		ret = r5l_start(conf->log);
8252 		if (ret)
8253 			return ret;
8254 
8255 		return 0;
8256 	}
8257 	if (mddev->recovery_disabled == conf->recovery_disabled)
8258 		return -EBUSY;
8259 
8260 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
8261 		/* no point adding a device */
8262 		return -EINVAL;
8263 
8264 	if (rdev->raid_disk >= 0)
8265 		first = last = rdev->raid_disk;
8266 
8267 	/*
8268 	 * find the disk ... but prefer rdev->saved_raid_disk
8269 	 * if possible.
8270 	 */
8271 	if (rdev->saved_raid_disk >= first &&
8272 	    rdev->saved_raid_disk <= last &&
8273 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
8274 		first = rdev->saved_raid_disk;
8275 
8276 	for (disk = first; disk <= last; disk++) {
8277 		p = conf->disks + disk;
8278 		if (p->rdev == NULL) {
8279 			clear_bit(In_sync, &rdev->flags);
8280 			rdev->raid_disk = disk;
8281 			if (rdev->saved_raid_disk != disk)
8282 				conf->fullsync = 1;
8283 			WRITE_ONCE(p->rdev, rdev);
8284 
8285 			err = log_modify(conf, rdev, true);
8286 
8287 			goto out;
8288 		}
8289 	}
8290 	for (disk = first; disk <= last; disk++) {
8291 		p = conf->disks + disk;
8292 		tmp = p->rdev;
8293 		if (test_bit(WantReplacement, &tmp->flags) &&
8294 		    mddev->reshape_position == MaxSector &&
8295 		    p->replacement == NULL) {
8296 			clear_bit(In_sync, &rdev->flags);
8297 			set_bit(Replacement, &rdev->flags);
8298 			rdev->raid_disk = disk;
8299 			err = 0;
8300 			conf->fullsync = 1;
8301 			WRITE_ONCE(p->replacement, rdev);
8302 			break;
8303 		}
8304 	}
8305 out:
8306 	print_raid5_conf(conf);
8307 	return err;
8308 }
8309 
raid5_resize(struct mddev * mddev,sector_t sectors)8310 static int raid5_resize(struct mddev *mddev, sector_t sectors)
8311 {
8312 	/* no resync is happening, and there is enough space
8313 	 * on all devices, so we can resize.
8314 	 * We need to make sure resync covers any new space.
8315 	 * If the array is shrinking we should possibly wait until
8316 	 * any io in the removed space completes, but it hardly seems
8317 	 * worth it.
8318 	 */
8319 	sector_t newsize;
8320 	struct r5conf *conf = mddev->private;
8321 	int ret;
8322 
8323 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8324 		return -EINVAL;
8325 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
8326 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8327 	if (mddev->external_size &&
8328 	    mddev->array_sectors > newsize)
8329 		return -EINVAL;
8330 
8331 	ret = mddev->bitmap_ops->resize(mddev, sectors, 0, false);
8332 	if (ret)
8333 		return ret;
8334 
8335 	md_set_array_sectors(mddev, newsize);
8336 	if (sectors > mddev->dev_sectors &&
8337 	    mddev->recovery_cp > mddev->dev_sectors) {
8338 		mddev->recovery_cp = mddev->dev_sectors;
8339 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8340 	}
8341 	mddev->dev_sectors = sectors;
8342 	mddev->resync_max_sectors = sectors;
8343 	return 0;
8344 }
8345 
check_stripe_cache(struct mddev * mddev)8346 static int check_stripe_cache(struct mddev *mddev)
8347 {
8348 	/* Can only proceed if there are plenty of stripe_heads.
8349 	 * We need a minimum of one full stripe,, and for sensible progress
8350 	 * it is best to have about 4 times that.
8351 	 * If we require 4 times, then the default 256 4K stripe_heads will
8352 	 * allow for chunk sizes up to 256K, which is probably OK.
8353 	 * If the chunk size is greater, user-space should request more
8354 	 * stripe_heads first.
8355 	 */
8356 	struct r5conf *conf = mddev->private;
8357 	if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8358 	    > conf->min_nr_stripes ||
8359 	    ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8360 	    > conf->min_nr_stripes) {
8361 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
8362 			mdname(mddev),
8363 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8364 			 / RAID5_STRIPE_SIZE(conf))*4);
8365 		return 0;
8366 	}
8367 	return 1;
8368 }
8369 
check_reshape(struct mddev * mddev)8370 static int check_reshape(struct mddev *mddev)
8371 {
8372 	struct r5conf *conf = mddev->private;
8373 
8374 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8375 		return -EINVAL;
8376 	if (mddev->delta_disks == 0 &&
8377 	    mddev->new_layout == mddev->layout &&
8378 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
8379 		return 0; /* nothing to do */
8380 	if (has_failed(conf))
8381 		return -EINVAL;
8382 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8383 		/* We might be able to shrink, but the devices must
8384 		 * be made bigger first.
8385 		 * For raid6, 4 is the minimum size.
8386 		 * Otherwise 2 is the minimum
8387 		 */
8388 		int min = 2;
8389 		if (mddev->level == 6)
8390 			min = 4;
8391 		if (mddev->raid_disks + mddev->delta_disks < min)
8392 			return -EINVAL;
8393 	}
8394 
8395 	if (!check_stripe_cache(mddev))
8396 		return -ENOSPC;
8397 
8398 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8399 	    mddev->delta_disks > 0)
8400 		if (resize_chunks(conf,
8401 				  conf->previous_raid_disks
8402 				  + max(0, mddev->delta_disks),
8403 				  max(mddev->new_chunk_sectors,
8404 				      mddev->chunk_sectors)
8405 			    ) < 0)
8406 			return -ENOMEM;
8407 
8408 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8409 		return 0; /* never bother to shrink */
8410 	return resize_stripes(conf, (conf->previous_raid_disks
8411 				     + mddev->delta_disks));
8412 }
8413 
raid5_start_reshape(struct mddev * mddev)8414 static int raid5_start_reshape(struct mddev *mddev)
8415 {
8416 	struct r5conf *conf = mddev->private;
8417 	struct md_rdev *rdev;
8418 	int spares = 0;
8419 	int i;
8420 	unsigned long flags;
8421 
8422 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8423 		return -EBUSY;
8424 
8425 	if (!check_stripe_cache(mddev))
8426 		return -ENOSPC;
8427 
8428 	if (has_failed(conf))
8429 		return -EINVAL;
8430 
8431 	/* raid5 can't handle concurrent reshape and recovery */
8432 	if (mddev->recovery_cp < MaxSector)
8433 		return -EBUSY;
8434 	for (i = 0; i < conf->raid_disks; i++)
8435 		if (conf->disks[i].replacement)
8436 			return -EBUSY;
8437 
8438 	rdev_for_each(rdev, mddev) {
8439 		if (!test_bit(In_sync, &rdev->flags)
8440 		    && !test_bit(Faulty, &rdev->flags))
8441 			spares++;
8442 	}
8443 
8444 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8445 		/* Not enough devices even to make a degraded array
8446 		 * of that size
8447 		 */
8448 		return -EINVAL;
8449 
8450 	/* Refuse to reduce size of the array.  Any reductions in
8451 	 * array size must be through explicit setting of array_size
8452 	 * attribute.
8453 	 */
8454 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8455 	    < mddev->array_sectors) {
8456 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8457 			mdname(mddev));
8458 		return -EINVAL;
8459 	}
8460 
8461 	atomic_set(&conf->reshape_stripes, 0);
8462 	spin_lock_irq(&conf->device_lock);
8463 	write_seqcount_begin(&conf->gen_lock);
8464 	conf->previous_raid_disks = conf->raid_disks;
8465 	conf->raid_disks += mddev->delta_disks;
8466 	conf->prev_chunk_sectors = conf->chunk_sectors;
8467 	conf->chunk_sectors = mddev->new_chunk_sectors;
8468 	conf->prev_algo = conf->algorithm;
8469 	conf->algorithm = mddev->new_layout;
8470 	conf->generation++;
8471 	/* Code that selects data_offset needs to see the generation update
8472 	 * if reshape_progress has been set - so a memory barrier needed.
8473 	 */
8474 	smp_mb();
8475 	if (mddev->reshape_backwards)
8476 		conf->reshape_progress = raid5_size(mddev, 0, 0);
8477 	else
8478 		conf->reshape_progress = 0;
8479 	conf->reshape_safe = conf->reshape_progress;
8480 	write_seqcount_end(&conf->gen_lock);
8481 	spin_unlock_irq(&conf->device_lock);
8482 
8483 	/* Now make sure any requests that proceeded on the assumption
8484 	 * the reshape wasn't running - like Discard or Read - have
8485 	 * completed.
8486 	 */
8487 	raid5_quiesce(mddev, true);
8488 	raid5_quiesce(mddev, false);
8489 
8490 	/* Add some new drives, as many as will fit.
8491 	 * We know there are enough to make the newly sized array work.
8492 	 * Don't add devices if we are reducing the number of
8493 	 * devices in the array.  This is because it is not possible
8494 	 * to correctly record the "partially reconstructed" state of
8495 	 * such devices during the reshape and confusion could result.
8496 	 */
8497 	if (mddev->delta_disks >= 0) {
8498 		rdev_for_each(rdev, mddev)
8499 			if (rdev->raid_disk < 0 &&
8500 			    !test_bit(Faulty, &rdev->flags)) {
8501 				if (raid5_add_disk(mddev, rdev) == 0) {
8502 					if (rdev->raid_disk
8503 					    >= conf->previous_raid_disks)
8504 						set_bit(In_sync, &rdev->flags);
8505 					else
8506 						rdev->recovery_offset = 0;
8507 
8508 					/* Failure here is OK */
8509 					sysfs_link_rdev(mddev, rdev);
8510 				}
8511 			} else if (rdev->raid_disk >= conf->previous_raid_disks
8512 				   && !test_bit(Faulty, &rdev->flags)) {
8513 				/* This is a spare that was manually added */
8514 				set_bit(In_sync, &rdev->flags);
8515 			}
8516 
8517 		/* When a reshape changes the number of devices,
8518 		 * ->degraded is measured against the larger of the
8519 		 * pre and post number of devices.
8520 		 */
8521 		spin_lock_irqsave(&conf->device_lock, flags);
8522 		mddev->degraded = raid5_calc_degraded(conf);
8523 		spin_unlock_irqrestore(&conf->device_lock, flags);
8524 	}
8525 	mddev->raid_disks = conf->raid_disks;
8526 	mddev->reshape_position = conf->reshape_progress;
8527 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8528 
8529 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8530 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8531 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8532 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8533 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8534 	conf->reshape_checkpoint = jiffies;
8535 	md_new_event();
8536 	return 0;
8537 }
8538 
8539 /* This is called from the reshape thread and should make any
8540  * changes needed in 'conf'
8541  */
end_reshape(struct r5conf * conf)8542 static void end_reshape(struct r5conf *conf)
8543 {
8544 
8545 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8546 		struct md_rdev *rdev;
8547 
8548 		spin_lock_irq(&conf->device_lock);
8549 		conf->previous_raid_disks = conf->raid_disks;
8550 		md_finish_reshape(conf->mddev);
8551 		smp_wmb();
8552 		conf->reshape_progress = MaxSector;
8553 		conf->mddev->reshape_position = MaxSector;
8554 		rdev_for_each(rdev, conf->mddev)
8555 			if (rdev->raid_disk >= 0 &&
8556 			    !test_bit(Journal, &rdev->flags) &&
8557 			    !test_bit(In_sync, &rdev->flags))
8558 				rdev->recovery_offset = MaxSector;
8559 		spin_unlock_irq(&conf->device_lock);
8560 		wake_up(&conf->wait_for_reshape);
8561 
8562 		mddev_update_io_opt(conf->mddev,
8563 			conf->raid_disks - conf->max_degraded);
8564 	}
8565 }
8566 
8567 /* This is called from the raid5d thread with mddev_lock held.
8568  * It makes config changes to the device.
8569  */
raid5_finish_reshape(struct mddev * mddev)8570 static void raid5_finish_reshape(struct mddev *mddev)
8571 {
8572 	struct r5conf *conf = mddev->private;
8573 	struct md_rdev *rdev;
8574 
8575 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8576 
8577 		if (mddev->delta_disks <= 0) {
8578 			int d;
8579 			spin_lock_irq(&conf->device_lock);
8580 			mddev->degraded = raid5_calc_degraded(conf);
8581 			spin_unlock_irq(&conf->device_lock);
8582 			for (d = conf->raid_disks ;
8583 			     d < conf->raid_disks - mddev->delta_disks;
8584 			     d++) {
8585 				rdev = conf->disks[d].rdev;
8586 				if (rdev)
8587 					clear_bit(In_sync, &rdev->flags);
8588 				rdev = conf->disks[d].replacement;
8589 				if (rdev)
8590 					clear_bit(In_sync, &rdev->flags);
8591 			}
8592 		}
8593 		mddev->layout = conf->algorithm;
8594 		mddev->chunk_sectors = conf->chunk_sectors;
8595 		mddev->reshape_position = MaxSector;
8596 		mddev->delta_disks = 0;
8597 		mddev->reshape_backwards = 0;
8598 	}
8599 }
8600 
raid5_quiesce(struct mddev * mddev,int quiesce)8601 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8602 {
8603 	struct r5conf *conf = mddev->private;
8604 
8605 	if (quiesce) {
8606 		/* stop all writes */
8607 		lock_all_device_hash_locks_irq(conf);
8608 		/* '2' tells resync/reshape to pause so that all
8609 		 * active stripes can drain
8610 		 */
8611 		r5c_flush_cache(conf, INT_MAX);
8612 		/* need a memory barrier to make sure read_one_chunk() sees
8613 		 * quiesce started and reverts to slow (locked) path.
8614 		 */
8615 		smp_store_release(&conf->quiesce, 2);
8616 		wait_event_cmd(conf->wait_for_quiescent,
8617 				    atomic_read(&conf->active_stripes) == 0 &&
8618 				    atomic_read(&conf->active_aligned_reads) == 0,
8619 				    unlock_all_device_hash_locks_irq(conf),
8620 				    lock_all_device_hash_locks_irq(conf));
8621 		conf->quiesce = 1;
8622 		unlock_all_device_hash_locks_irq(conf);
8623 		/* allow reshape to continue */
8624 		wake_up(&conf->wait_for_reshape);
8625 	} else {
8626 		/* re-enable writes */
8627 		lock_all_device_hash_locks_irq(conf);
8628 		conf->quiesce = 0;
8629 		wake_up(&conf->wait_for_quiescent);
8630 		wake_up(&conf->wait_for_reshape);
8631 		unlock_all_device_hash_locks_irq(conf);
8632 	}
8633 	log_quiesce(conf, quiesce);
8634 }
8635 
raid45_takeover_raid0(struct mddev * mddev,int level)8636 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8637 {
8638 	struct r0conf *raid0_conf = mddev->private;
8639 	sector_t sectors;
8640 
8641 	/* for raid0 takeover only one zone is supported */
8642 	if (raid0_conf->nr_strip_zones > 1) {
8643 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8644 			mdname(mddev));
8645 		return ERR_PTR(-EINVAL);
8646 	}
8647 
8648 	sectors = raid0_conf->strip_zone[0].zone_end;
8649 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8650 	mddev->dev_sectors = sectors;
8651 	mddev->new_level = level;
8652 	mddev->new_layout = ALGORITHM_PARITY_N;
8653 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8654 	mddev->raid_disks += 1;
8655 	mddev->delta_disks = 1;
8656 	/* make sure it will be not marked as dirty */
8657 	mddev->recovery_cp = MaxSector;
8658 
8659 	return setup_conf(mddev);
8660 }
8661 
raid5_takeover_raid1(struct mddev * mddev)8662 static void *raid5_takeover_raid1(struct mddev *mddev)
8663 {
8664 	int chunksect;
8665 	void *ret;
8666 
8667 	if (mddev->raid_disks != 2 ||
8668 	    mddev->degraded > 1)
8669 		return ERR_PTR(-EINVAL);
8670 
8671 	/* Should check if there are write-behind devices? */
8672 
8673 	chunksect = 64*2; /* 64K by default */
8674 
8675 	/* The array must be an exact multiple of chunksize */
8676 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8677 		chunksect >>= 1;
8678 
8679 	if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8680 		/* array size does not allow a suitable chunk size */
8681 		return ERR_PTR(-EINVAL);
8682 
8683 	mddev->new_level = 5;
8684 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8685 	mddev->new_chunk_sectors = chunksect;
8686 
8687 	ret = setup_conf(mddev);
8688 	if (!IS_ERR(ret))
8689 		mddev_clear_unsupported_flags(mddev,
8690 			UNSUPPORTED_MDDEV_FLAGS);
8691 	return ret;
8692 }
8693 
raid5_takeover_raid6(struct mddev * mddev)8694 static void *raid5_takeover_raid6(struct mddev *mddev)
8695 {
8696 	int new_layout;
8697 
8698 	switch (mddev->layout) {
8699 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8700 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8701 		break;
8702 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8703 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8704 		break;
8705 	case ALGORITHM_LEFT_SYMMETRIC_6:
8706 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8707 		break;
8708 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8709 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8710 		break;
8711 	case ALGORITHM_PARITY_0_6:
8712 		new_layout = ALGORITHM_PARITY_0;
8713 		break;
8714 	case ALGORITHM_PARITY_N:
8715 		new_layout = ALGORITHM_PARITY_N;
8716 		break;
8717 	default:
8718 		return ERR_PTR(-EINVAL);
8719 	}
8720 	mddev->new_level = 5;
8721 	mddev->new_layout = new_layout;
8722 	mddev->delta_disks = -1;
8723 	mddev->raid_disks -= 1;
8724 	return setup_conf(mddev);
8725 }
8726 
raid5_check_reshape(struct mddev * mddev)8727 static int raid5_check_reshape(struct mddev *mddev)
8728 {
8729 	/* For a 2-drive array, the layout and chunk size can be changed
8730 	 * immediately as not restriping is needed.
8731 	 * For larger arrays we record the new value - after validation
8732 	 * to be used by a reshape pass.
8733 	 */
8734 	struct r5conf *conf = mddev->private;
8735 	int new_chunk = mddev->new_chunk_sectors;
8736 
8737 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8738 		return -EINVAL;
8739 	if (new_chunk > 0) {
8740 		if (!is_power_of_2(new_chunk))
8741 			return -EINVAL;
8742 		if (new_chunk < (PAGE_SIZE>>9))
8743 			return -EINVAL;
8744 		if (mddev->array_sectors & (new_chunk-1))
8745 			/* not factor of array size */
8746 			return -EINVAL;
8747 	}
8748 
8749 	/* They look valid */
8750 
8751 	if (mddev->raid_disks == 2) {
8752 		/* can make the change immediately */
8753 		if (mddev->new_layout >= 0) {
8754 			conf->algorithm = mddev->new_layout;
8755 			mddev->layout = mddev->new_layout;
8756 		}
8757 		if (new_chunk > 0) {
8758 			conf->chunk_sectors = new_chunk ;
8759 			mddev->chunk_sectors = new_chunk;
8760 		}
8761 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8762 		md_wakeup_thread(mddev->thread);
8763 	}
8764 	return check_reshape(mddev);
8765 }
8766 
raid6_check_reshape(struct mddev * mddev)8767 static int raid6_check_reshape(struct mddev *mddev)
8768 {
8769 	int new_chunk = mddev->new_chunk_sectors;
8770 
8771 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8772 		return -EINVAL;
8773 	if (new_chunk > 0) {
8774 		if (!is_power_of_2(new_chunk))
8775 			return -EINVAL;
8776 		if (new_chunk < (PAGE_SIZE >> 9))
8777 			return -EINVAL;
8778 		if (mddev->array_sectors & (new_chunk-1))
8779 			/* not factor of array size */
8780 			return -EINVAL;
8781 	}
8782 
8783 	/* They look valid */
8784 	return check_reshape(mddev);
8785 }
8786 
raid5_takeover(struct mddev * mddev)8787 static void *raid5_takeover(struct mddev *mddev)
8788 {
8789 	/* raid5 can take over:
8790 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8791 	 *  raid1 - if there are two drives.  We need to know the chunk size
8792 	 *  raid4 - trivial - just use a raid4 layout.
8793 	 *  raid6 - Providing it is a *_6 layout
8794 	 */
8795 	if (mddev->level == 0)
8796 		return raid45_takeover_raid0(mddev, 5);
8797 	if (mddev->level == 1)
8798 		return raid5_takeover_raid1(mddev);
8799 	if (mddev->level == 4) {
8800 		mddev->new_layout = ALGORITHM_PARITY_N;
8801 		mddev->new_level = 5;
8802 		return setup_conf(mddev);
8803 	}
8804 	if (mddev->level == 6)
8805 		return raid5_takeover_raid6(mddev);
8806 
8807 	return ERR_PTR(-EINVAL);
8808 }
8809 
raid4_takeover(struct mddev * mddev)8810 static void *raid4_takeover(struct mddev *mddev)
8811 {
8812 	/* raid4 can take over:
8813 	 *  raid0 - if there is only one strip zone
8814 	 *  raid5 - if layout is right
8815 	 */
8816 	if (mddev->level == 0)
8817 		return raid45_takeover_raid0(mddev, 4);
8818 	if (mddev->level == 5 &&
8819 	    mddev->layout == ALGORITHM_PARITY_N) {
8820 		mddev->new_layout = 0;
8821 		mddev->new_level = 4;
8822 		return setup_conf(mddev);
8823 	}
8824 	return ERR_PTR(-EINVAL);
8825 }
8826 
8827 static struct md_personality raid5_personality;
8828 
raid6_takeover(struct mddev * mddev)8829 static void *raid6_takeover(struct mddev *mddev)
8830 {
8831 	/* Currently can only take over a raid5.  We map the
8832 	 * personality to an equivalent raid6 personality
8833 	 * with the Q block at the end.
8834 	 */
8835 	int new_layout;
8836 
8837 	if (mddev->pers != &raid5_personality)
8838 		return ERR_PTR(-EINVAL);
8839 	if (mddev->degraded > 1)
8840 		return ERR_PTR(-EINVAL);
8841 	if (mddev->raid_disks > 253)
8842 		return ERR_PTR(-EINVAL);
8843 	if (mddev->raid_disks < 3)
8844 		return ERR_PTR(-EINVAL);
8845 
8846 	switch (mddev->layout) {
8847 	case ALGORITHM_LEFT_ASYMMETRIC:
8848 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8849 		break;
8850 	case ALGORITHM_RIGHT_ASYMMETRIC:
8851 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8852 		break;
8853 	case ALGORITHM_LEFT_SYMMETRIC:
8854 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8855 		break;
8856 	case ALGORITHM_RIGHT_SYMMETRIC:
8857 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8858 		break;
8859 	case ALGORITHM_PARITY_0:
8860 		new_layout = ALGORITHM_PARITY_0_6;
8861 		break;
8862 	case ALGORITHM_PARITY_N:
8863 		new_layout = ALGORITHM_PARITY_N;
8864 		break;
8865 	default:
8866 		return ERR_PTR(-EINVAL);
8867 	}
8868 	mddev->new_level = 6;
8869 	mddev->new_layout = new_layout;
8870 	mddev->delta_disks = 1;
8871 	mddev->raid_disks += 1;
8872 	return setup_conf(mddev);
8873 }
8874 
raid5_change_consistency_policy(struct mddev * mddev,const char * buf)8875 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8876 {
8877 	struct r5conf *conf;
8878 	int err;
8879 
8880 	err = mddev_suspend_and_lock(mddev);
8881 	if (err)
8882 		return err;
8883 	conf = mddev->private;
8884 	if (!conf) {
8885 		mddev_unlock_and_resume(mddev);
8886 		return -ENODEV;
8887 	}
8888 
8889 	if (strncmp(buf, "ppl", 3) == 0) {
8890 		/* ppl only works with RAID 5 */
8891 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8892 			err = log_init(conf, NULL, true);
8893 			if (!err) {
8894 				err = resize_stripes(conf, conf->pool_size);
8895 				if (err)
8896 					log_exit(conf);
8897 			}
8898 		} else
8899 			err = -EINVAL;
8900 	} else if (strncmp(buf, "resync", 6) == 0) {
8901 		if (raid5_has_ppl(conf)) {
8902 			log_exit(conf);
8903 			err = resize_stripes(conf, conf->pool_size);
8904 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8905 			   r5l_log_disk_error(conf)) {
8906 			bool journal_dev_exists = false;
8907 			struct md_rdev *rdev;
8908 
8909 			rdev_for_each(rdev, mddev)
8910 				if (test_bit(Journal, &rdev->flags)) {
8911 					journal_dev_exists = true;
8912 					break;
8913 				}
8914 
8915 			if (!journal_dev_exists)
8916 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8917 			else  /* need remove journal device first */
8918 				err = -EBUSY;
8919 		} else
8920 			err = -EINVAL;
8921 	} else {
8922 		err = -EINVAL;
8923 	}
8924 
8925 	if (!err)
8926 		md_update_sb(mddev, 1);
8927 
8928 	mddev_unlock_and_resume(mddev);
8929 
8930 	return err;
8931 }
8932 
raid5_start(struct mddev * mddev)8933 static int raid5_start(struct mddev *mddev)
8934 {
8935 	struct r5conf *conf = mddev->private;
8936 
8937 	return r5l_start(conf->log);
8938 }
8939 
8940 /*
8941  * This is only used for dm-raid456, caller already frozen sync_thread, hence
8942  * if rehsape is still in progress, io that is waiting for reshape can never be
8943  * done now, hence wake up and handle those IO.
8944  */
raid5_prepare_suspend(struct mddev * mddev)8945 static void raid5_prepare_suspend(struct mddev *mddev)
8946 {
8947 	struct r5conf *conf = mddev->private;
8948 
8949 	wake_up(&conf->wait_for_reshape);
8950 }
8951 
8952 static struct md_personality raid6_personality =
8953 {
8954 	.name		= "raid6",
8955 	.level		= 6,
8956 	.owner		= THIS_MODULE,
8957 	.make_request	= raid5_make_request,
8958 	.run		= raid5_run,
8959 	.start		= raid5_start,
8960 	.free		= raid5_free,
8961 	.status		= raid5_status,
8962 	.error_handler	= raid5_error,
8963 	.hot_add_disk	= raid5_add_disk,
8964 	.hot_remove_disk= raid5_remove_disk,
8965 	.spare_active	= raid5_spare_active,
8966 	.sync_request	= raid5_sync_request,
8967 	.resize		= raid5_resize,
8968 	.size		= raid5_size,
8969 	.check_reshape	= raid6_check_reshape,
8970 	.start_reshape  = raid5_start_reshape,
8971 	.finish_reshape = raid5_finish_reshape,
8972 	.quiesce	= raid5_quiesce,
8973 	.takeover	= raid6_takeover,
8974 	.change_consistency_policy = raid5_change_consistency_policy,
8975 	.prepare_suspend = raid5_prepare_suspend,
8976 };
8977 static struct md_personality raid5_personality =
8978 {
8979 	.name		= "raid5",
8980 	.level		= 5,
8981 	.owner		= THIS_MODULE,
8982 	.make_request	= raid5_make_request,
8983 	.run		= raid5_run,
8984 	.start		= raid5_start,
8985 	.free		= raid5_free,
8986 	.status		= raid5_status,
8987 	.error_handler	= raid5_error,
8988 	.hot_add_disk	= raid5_add_disk,
8989 	.hot_remove_disk= raid5_remove_disk,
8990 	.spare_active	= raid5_spare_active,
8991 	.sync_request	= raid5_sync_request,
8992 	.resize		= raid5_resize,
8993 	.size		= raid5_size,
8994 	.check_reshape	= raid5_check_reshape,
8995 	.start_reshape  = raid5_start_reshape,
8996 	.finish_reshape = raid5_finish_reshape,
8997 	.quiesce	= raid5_quiesce,
8998 	.takeover	= raid5_takeover,
8999 	.change_consistency_policy = raid5_change_consistency_policy,
9000 	.prepare_suspend = raid5_prepare_suspend,
9001 };
9002 
9003 static struct md_personality raid4_personality =
9004 {
9005 	.name		= "raid4",
9006 	.level		= 4,
9007 	.owner		= THIS_MODULE,
9008 	.make_request	= raid5_make_request,
9009 	.run		= raid5_run,
9010 	.start		= raid5_start,
9011 	.free		= raid5_free,
9012 	.status		= raid5_status,
9013 	.error_handler	= raid5_error,
9014 	.hot_add_disk	= raid5_add_disk,
9015 	.hot_remove_disk= raid5_remove_disk,
9016 	.spare_active	= raid5_spare_active,
9017 	.sync_request	= raid5_sync_request,
9018 	.resize		= raid5_resize,
9019 	.size		= raid5_size,
9020 	.check_reshape	= raid5_check_reshape,
9021 	.start_reshape  = raid5_start_reshape,
9022 	.finish_reshape = raid5_finish_reshape,
9023 	.quiesce	= raid5_quiesce,
9024 	.takeover	= raid4_takeover,
9025 	.change_consistency_policy = raid5_change_consistency_policy,
9026 	.prepare_suspend = raid5_prepare_suspend,
9027 };
9028 
raid5_init(void)9029 static int __init raid5_init(void)
9030 {
9031 	int ret;
9032 
9033 	raid5_wq = alloc_workqueue("raid5wq",
9034 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
9035 	if (!raid5_wq)
9036 		return -ENOMEM;
9037 
9038 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
9039 				      "md/raid5:prepare",
9040 				      raid456_cpu_up_prepare,
9041 				      raid456_cpu_dead);
9042 	if (ret) {
9043 		destroy_workqueue(raid5_wq);
9044 		return ret;
9045 	}
9046 	register_md_personality(&raid6_personality);
9047 	register_md_personality(&raid5_personality);
9048 	register_md_personality(&raid4_personality);
9049 	return 0;
9050 }
9051 
raid5_exit(void)9052 static void raid5_exit(void)
9053 {
9054 	unregister_md_personality(&raid6_personality);
9055 	unregister_md_personality(&raid5_personality);
9056 	unregister_md_personality(&raid4_personality);
9057 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9058 	destroy_workqueue(raid5_wq);
9059 }
9060 
9061 module_init(raid5_init);
9062 module_exit(raid5_exit);
9063 MODULE_LICENSE("GPL");
9064 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
9065 MODULE_ALIAS("md-personality-4"); /* RAID5 */
9066 MODULE_ALIAS("md-raid5");
9067 MODULE_ALIAS("md-raid4");
9068 MODULE_ALIAS("md-level-5");
9069 MODULE_ALIAS("md-level-4");
9070 MODULE_ALIAS("md-personality-8"); /* RAID6 */
9071 MODULE_ALIAS("md-raid6");
9072 MODULE_ALIAS("md-level-6");
9073 
9074 /* This used to be two separate modules, they were: */
9075 MODULE_ALIAS("raid5");
9076 MODULE_ALIAS("raid6");
9077