1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * A fairly generic DMA-API to IOMMU-API glue layer.
4 *
5 * Copyright (C) 2014-2015 ARM Ltd.
6 *
7 * based in part on arch/arm/mm/dma-mapping.c:
8 * Copyright (C) 2000-2004 Russell King
9 */
10
11 #include <linux/acpi_iort.h>
12 #include <linux/atomic.h>
13 #include <linux/crash_dump.h>
14 #include <linux/device.h>
15 #include <linux/dma-direct.h>
16 #include <linux/dma-map-ops.h>
17 #include <linux/gfp.h>
18 #include <linux/huge_mm.h>
19 #include <linux/iommu.h>
20 #include <linux/iommu-dma.h>
21 #include <linux/iova.h>
22 #include <linux/irq.h>
23 #include <linux/list_sort.h>
24 #include <linux/memremap.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/msi.h>
28 #include <linux/of_iommu.h>
29 #include <linux/pci.h>
30 #include <linux/scatterlist.h>
31 #include <linux/spinlock.h>
32 #include <linux/swiotlb.h>
33 #include <linux/vmalloc.h>
34 #include <trace/events/swiotlb.h>
35
36 #include "dma-iommu.h"
37 #include "iommu-pages.h"
38
39 struct iommu_dma_msi_page {
40 struct list_head list;
41 dma_addr_t iova;
42 phys_addr_t phys;
43 };
44
45 enum iommu_dma_cookie_type {
46 IOMMU_DMA_IOVA_COOKIE,
47 IOMMU_DMA_MSI_COOKIE,
48 };
49
50 enum iommu_dma_queue_type {
51 IOMMU_DMA_OPTS_PER_CPU_QUEUE,
52 IOMMU_DMA_OPTS_SINGLE_QUEUE,
53 };
54
55 struct iommu_dma_options {
56 enum iommu_dma_queue_type qt;
57 size_t fq_size;
58 unsigned int fq_timeout;
59 };
60
61 struct iommu_dma_cookie {
62 enum iommu_dma_cookie_type type;
63 union {
64 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
65 struct {
66 struct iova_domain iovad;
67 /* Flush queue */
68 union {
69 struct iova_fq *single_fq;
70 struct iova_fq __percpu *percpu_fq;
71 };
72 /* Number of TLB flushes that have been started */
73 atomic64_t fq_flush_start_cnt;
74 /* Number of TLB flushes that have been finished */
75 atomic64_t fq_flush_finish_cnt;
76 /* Timer to regularily empty the flush queues */
77 struct timer_list fq_timer;
78 /* 1 when timer is active, 0 when not */
79 atomic_t fq_timer_on;
80 };
81 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
82 dma_addr_t msi_iova;
83 };
84 struct list_head msi_page_list;
85
86 /* Domain for flush queue callback; NULL if flush queue not in use */
87 struct iommu_domain *fq_domain;
88 /* Options for dma-iommu use */
89 struct iommu_dma_options options;
90 };
91
92 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
93 bool iommu_dma_forcedac __read_mostly;
94
iommu_dma_forcedac_setup(char * str)95 static int __init iommu_dma_forcedac_setup(char *str)
96 {
97 int ret = kstrtobool(str, &iommu_dma_forcedac);
98
99 if (!ret && iommu_dma_forcedac)
100 pr_info("Forcing DAC for PCI devices\n");
101 return ret;
102 }
103 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
104
105 static int iommu_dma_sw_msi(struct iommu_domain *domain, struct msi_desc *desc,
106 phys_addr_t msi_addr);
107
108 /* Number of entries per flush queue */
109 #define IOVA_DEFAULT_FQ_SIZE 256
110 #define IOVA_SINGLE_FQ_SIZE 32768
111
112 /* Timeout (in ms) after which entries are flushed from the queue */
113 #define IOVA_DEFAULT_FQ_TIMEOUT 10
114 #define IOVA_SINGLE_FQ_TIMEOUT 1000
115
116 /* Flush queue entry for deferred flushing */
117 struct iova_fq_entry {
118 unsigned long iova_pfn;
119 unsigned long pages;
120 struct list_head freelist;
121 u64 counter; /* Flush counter when this entry was added */
122 };
123
124 /* Per-CPU flush queue structure */
125 struct iova_fq {
126 spinlock_t lock;
127 unsigned int head, tail;
128 unsigned int mod_mask;
129 struct iova_fq_entry entries[];
130 };
131
132 #define fq_ring_for_each(i, fq) \
133 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) & (fq)->mod_mask)
134
fq_full(struct iova_fq * fq)135 static inline bool fq_full(struct iova_fq *fq)
136 {
137 assert_spin_locked(&fq->lock);
138 return (((fq->tail + 1) & fq->mod_mask) == fq->head);
139 }
140
fq_ring_add(struct iova_fq * fq)141 static inline unsigned int fq_ring_add(struct iova_fq *fq)
142 {
143 unsigned int idx = fq->tail;
144
145 assert_spin_locked(&fq->lock);
146
147 fq->tail = (idx + 1) & fq->mod_mask;
148
149 return idx;
150 }
151
fq_ring_free_locked(struct iommu_dma_cookie * cookie,struct iova_fq * fq)152 static void fq_ring_free_locked(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
153 {
154 u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
155 unsigned int idx;
156
157 assert_spin_locked(&fq->lock);
158
159 fq_ring_for_each(idx, fq) {
160
161 if (fq->entries[idx].counter >= counter)
162 break;
163
164 iommu_put_pages_list(&fq->entries[idx].freelist);
165 free_iova_fast(&cookie->iovad,
166 fq->entries[idx].iova_pfn,
167 fq->entries[idx].pages);
168
169 fq->head = (fq->head + 1) & fq->mod_mask;
170 }
171 }
172
fq_ring_free(struct iommu_dma_cookie * cookie,struct iova_fq * fq)173 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
174 {
175 unsigned long flags;
176
177 spin_lock_irqsave(&fq->lock, flags);
178 fq_ring_free_locked(cookie, fq);
179 spin_unlock_irqrestore(&fq->lock, flags);
180 }
181
fq_flush_iotlb(struct iommu_dma_cookie * cookie)182 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
183 {
184 atomic64_inc(&cookie->fq_flush_start_cnt);
185 cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
186 atomic64_inc(&cookie->fq_flush_finish_cnt);
187 }
188
fq_flush_timeout(struct timer_list * t)189 static void fq_flush_timeout(struct timer_list *t)
190 {
191 struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
192 int cpu;
193
194 atomic_set(&cookie->fq_timer_on, 0);
195 fq_flush_iotlb(cookie);
196
197 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) {
198 fq_ring_free(cookie, cookie->single_fq);
199 } else {
200 for_each_possible_cpu(cpu)
201 fq_ring_free(cookie, per_cpu_ptr(cookie->percpu_fq, cpu));
202 }
203 }
204
queue_iova(struct iommu_dma_cookie * cookie,unsigned long pfn,unsigned long pages,struct list_head * freelist)205 static void queue_iova(struct iommu_dma_cookie *cookie,
206 unsigned long pfn, unsigned long pages,
207 struct list_head *freelist)
208 {
209 struct iova_fq *fq;
210 unsigned long flags;
211 unsigned int idx;
212
213 /*
214 * Order against the IOMMU driver's pagetable update from unmapping
215 * @pte, to guarantee that fq_flush_iotlb() observes that if called
216 * from a different CPU before we release the lock below. Full barrier
217 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
218 * written fq state here.
219 */
220 smp_mb();
221
222 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
223 fq = cookie->single_fq;
224 else
225 fq = raw_cpu_ptr(cookie->percpu_fq);
226
227 spin_lock_irqsave(&fq->lock, flags);
228
229 /*
230 * First remove all entries from the flush queue that have already been
231 * flushed out on another CPU. This makes the fq_full() check below less
232 * likely to be true.
233 */
234 fq_ring_free_locked(cookie, fq);
235
236 if (fq_full(fq)) {
237 fq_flush_iotlb(cookie);
238 fq_ring_free_locked(cookie, fq);
239 }
240
241 idx = fq_ring_add(fq);
242
243 fq->entries[idx].iova_pfn = pfn;
244 fq->entries[idx].pages = pages;
245 fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt);
246 list_splice(freelist, &fq->entries[idx].freelist);
247
248 spin_unlock_irqrestore(&fq->lock, flags);
249
250 /* Avoid false sharing as much as possible. */
251 if (!atomic_read(&cookie->fq_timer_on) &&
252 !atomic_xchg(&cookie->fq_timer_on, 1))
253 mod_timer(&cookie->fq_timer,
254 jiffies + msecs_to_jiffies(cookie->options.fq_timeout));
255 }
256
iommu_dma_free_fq_single(struct iova_fq * fq)257 static void iommu_dma_free_fq_single(struct iova_fq *fq)
258 {
259 int idx;
260
261 fq_ring_for_each(idx, fq)
262 iommu_put_pages_list(&fq->entries[idx].freelist);
263 vfree(fq);
264 }
265
iommu_dma_free_fq_percpu(struct iova_fq __percpu * percpu_fq)266 static void iommu_dma_free_fq_percpu(struct iova_fq __percpu *percpu_fq)
267 {
268 int cpu, idx;
269
270 /* The IOVAs will be torn down separately, so just free our queued pages */
271 for_each_possible_cpu(cpu) {
272 struct iova_fq *fq = per_cpu_ptr(percpu_fq, cpu);
273
274 fq_ring_for_each(idx, fq)
275 iommu_put_pages_list(&fq->entries[idx].freelist);
276 }
277
278 free_percpu(percpu_fq);
279 }
280
iommu_dma_free_fq(struct iommu_dma_cookie * cookie)281 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
282 {
283 if (!cookie->fq_domain)
284 return;
285
286 del_timer_sync(&cookie->fq_timer);
287 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
288 iommu_dma_free_fq_single(cookie->single_fq);
289 else
290 iommu_dma_free_fq_percpu(cookie->percpu_fq);
291 }
292
iommu_dma_init_one_fq(struct iova_fq * fq,size_t fq_size)293 static void iommu_dma_init_one_fq(struct iova_fq *fq, size_t fq_size)
294 {
295 int i;
296
297 fq->head = 0;
298 fq->tail = 0;
299 fq->mod_mask = fq_size - 1;
300
301 spin_lock_init(&fq->lock);
302
303 for (i = 0; i < fq_size; i++)
304 INIT_LIST_HEAD(&fq->entries[i].freelist);
305 }
306
iommu_dma_init_fq_single(struct iommu_dma_cookie * cookie)307 static int iommu_dma_init_fq_single(struct iommu_dma_cookie *cookie)
308 {
309 size_t fq_size = cookie->options.fq_size;
310 struct iova_fq *queue;
311
312 queue = vmalloc(struct_size(queue, entries, fq_size));
313 if (!queue)
314 return -ENOMEM;
315 iommu_dma_init_one_fq(queue, fq_size);
316 cookie->single_fq = queue;
317
318 return 0;
319 }
320
iommu_dma_init_fq_percpu(struct iommu_dma_cookie * cookie)321 static int iommu_dma_init_fq_percpu(struct iommu_dma_cookie *cookie)
322 {
323 size_t fq_size = cookie->options.fq_size;
324 struct iova_fq __percpu *queue;
325 int cpu;
326
327 queue = __alloc_percpu(struct_size(queue, entries, fq_size),
328 __alignof__(*queue));
329 if (!queue)
330 return -ENOMEM;
331
332 for_each_possible_cpu(cpu)
333 iommu_dma_init_one_fq(per_cpu_ptr(queue, cpu), fq_size);
334 cookie->percpu_fq = queue;
335 return 0;
336 }
337
338 /* sysfs updates are serialised by the mutex of the group owning @domain */
iommu_dma_init_fq(struct iommu_domain * domain)339 int iommu_dma_init_fq(struct iommu_domain *domain)
340 {
341 struct iommu_dma_cookie *cookie = domain->iova_cookie;
342 int rc;
343
344 if (cookie->fq_domain)
345 return 0;
346
347 atomic64_set(&cookie->fq_flush_start_cnt, 0);
348 atomic64_set(&cookie->fq_flush_finish_cnt, 0);
349
350 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
351 rc = iommu_dma_init_fq_single(cookie);
352 else
353 rc = iommu_dma_init_fq_percpu(cookie);
354
355 if (rc) {
356 pr_warn("iova flush queue initialization failed\n");
357 return -ENOMEM;
358 }
359
360 timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
361 atomic_set(&cookie->fq_timer_on, 0);
362 /*
363 * Prevent incomplete fq state being observable. Pairs with path from
364 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
365 */
366 smp_wmb();
367 WRITE_ONCE(cookie->fq_domain, domain);
368 return 0;
369 }
370
cookie_msi_granule(struct iommu_dma_cookie * cookie)371 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
372 {
373 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
374 return cookie->iovad.granule;
375 return PAGE_SIZE;
376 }
377
cookie_alloc(enum iommu_dma_cookie_type type)378 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
379 {
380 struct iommu_dma_cookie *cookie;
381
382 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
383 if (cookie) {
384 INIT_LIST_HEAD(&cookie->msi_page_list);
385 cookie->type = type;
386 }
387 return cookie;
388 }
389
390 /**
391 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
392 * @domain: IOMMU domain to prepare for DMA-API usage
393 */
iommu_get_dma_cookie(struct iommu_domain * domain)394 int iommu_get_dma_cookie(struct iommu_domain *domain)
395 {
396 if (domain->iova_cookie)
397 return -EEXIST;
398
399 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
400 if (!domain->iova_cookie)
401 return -ENOMEM;
402
403 iommu_domain_set_sw_msi(domain, iommu_dma_sw_msi);
404 return 0;
405 }
406
407 /**
408 * iommu_get_msi_cookie - Acquire just MSI remapping resources
409 * @domain: IOMMU domain to prepare
410 * @base: Start address of IOVA region for MSI mappings
411 *
412 * Users who manage their own IOVA allocation and do not want DMA API support,
413 * but would still like to take advantage of automatic MSI remapping, can use
414 * this to initialise their own domain appropriately. Users should reserve a
415 * contiguous IOVA region, starting at @base, large enough to accommodate the
416 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
417 * used by the devices attached to @domain.
418 */
iommu_get_msi_cookie(struct iommu_domain * domain,dma_addr_t base)419 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
420 {
421 struct iommu_dma_cookie *cookie;
422
423 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
424 return -EINVAL;
425
426 if (domain->iova_cookie)
427 return -EEXIST;
428
429 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
430 if (!cookie)
431 return -ENOMEM;
432
433 cookie->msi_iova = base;
434 domain->iova_cookie = cookie;
435 iommu_domain_set_sw_msi(domain, iommu_dma_sw_msi);
436 return 0;
437 }
438 EXPORT_SYMBOL(iommu_get_msi_cookie);
439
440 /**
441 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
442 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
443 * iommu_get_msi_cookie()
444 */
iommu_put_dma_cookie(struct iommu_domain * domain)445 void iommu_put_dma_cookie(struct iommu_domain *domain)
446 {
447 struct iommu_dma_cookie *cookie = domain->iova_cookie;
448 struct iommu_dma_msi_page *msi, *tmp;
449
450 #if IS_ENABLED(CONFIG_IRQ_MSI_IOMMU)
451 if (domain->sw_msi != iommu_dma_sw_msi)
452 return;
453 #endif
454
455 if (!cookie)
456 return;
457
458 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
459 iommu_dma_free_fq(cookie);
460 put_iova_domain(&cookie->iovad);
461 }
462
463 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
464 list_del(&msi->list);
465 kfree(msi);
466 }
467 kfree(cookie);
468 domain->iova_cookie = NULL;
469 }
470
471 /**
472 * iommu_dma_get_resv_regions - Reserved region driver helper
473 * @dev: Device from iommu_get_resv_regions()
474 * @list: Reserved region list from iommu_get_resv_regions()
475 *
476 * IOMMU drivers can use this to implement their .get_resv_regions callback
477 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
478 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
479 * reservation.
480 */
iommu_dma_get_resv_regions(struct device * dev,struct list_head * list)481 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
482 {
483
484 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
485 iort_iommu_get_resv_regions(dev, list);
486
487 if (dev->of_node)
488 of_iommu_get_resv_regions(dev, list);
489 }
490 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
491
cookie_init_hw_msi_region(struct iommu_dma_cookie * cookie,phys_addr_t start,phys_addr_t end)492 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
493 phys_addr_t start, phys_addr_t end)
494 {
495 struct iova_domain *iovad = &cookie->iovad;
496 struct iommu_dma_msi_page *msi_page;
497 int i, num_pages;
498
499 start -= iova_offset(iovad, start);
500 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
501
502 for (i = 0; i < num_pages; i++) {
503 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
504 if (!msi_page)
505 return -ENOMEM;
506
507 msi_page->phys = start;
508 msi_page->iova = start;
509 INIT_LIST_HEAD(&msi_page->list);
510 list_add(&msi_page->list, &cookie->msi_page_list);
511 start += iovad->granule;
512 }
513
514 return 0;
515 }
516
iommu_dma_ranges_sort(void * priv,const struct list_head * a,const struct list_head * b)517 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
518 const struct list_head *b)
519 {
520 struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
521 struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
522
523 return res_a->res->start > res_b->res->start;
524 }
525
iova_reserve_pci_windows(struct pci_dev * dev,struct iova_domain * iovad)526 static int iova_reserve_pci_windows(struct pci_dev *dev,
527 struct iova_domain *iovad)
528 {
529 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
530 struct resource_entry *window;
531 unsigned long lo, hi;
532 phys_addr_t start = 0, end;
533
534 resource_list_for_each_entry(window, &bridge->windows) {
535 if (resource_type(window->res) != IORESOURCE_MEM)
536 continue;
537
538 lo = iova_pfn(iovad, window->res->start - window->offset);
539 hi = iova_pfn(iovad, window->res->end - window->offset);
540 reserve_iova(iovad, lo, hi);
541 }
542
543 /* Get reserved DMA windows from host bridge */
544 list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
545 resource_list_for_each_entry(window, &bridge->dma_ranges) {
546 end = window->res->start - window->offset;
547 resv_iova:
548 if (end > start) {
549 lo = iova_pfn(iovad, start);
550 hi = iova_pfn(iovad, end);
551 reserve_iova(iovad, lo, hi);
552 } else if (end < start) {
553 /* DMA ranges should be non-overlapping */
554 dev_err(&dev->dev,
555 "Failed to reserve IOVA [%pa-%pa]\n",
556 &start, &end);
557 return -EINVAL;
558 }
559
560 start = window->res->end - window->offset + 1;
561 /* If window is last entry */
562 if (window->node.next == &bridge->dma_ranges &&
563 end != ~(phys_addr_t)0) {
564 end = ~(phys_addr_t)0;
565 goto resv_iova;
566 }
567 }
568
569 return 0;
570 }
571
iova_reserve_iommu_regions(struct device * dev,struct iommu_domain * domain)572 static int iova_reserve_iommu_regions(struct device *dev,
573 struct iommu_domain *domain)
574 {
575 struct iommu_dma_cookie *cookie = domain->iova_cookie;
576 struct iova_domain *iovad = &cookie->iovad;
577 struct iommu_resv_region *region;
578 LIST_HEAD(resv_regions);
579 int ret = 0;
580
581 if (dev_is_pci(dev)) {
582 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
583 if (ret)
584 return ret;
585 }
586
587 iommu_get_resv_regions(dev, &resv_regions);
588 list_for_each_entry(region, &resv_regions, list) {
589 unsigned long lo, hi;
590
591 /* We ARE the software that manages these! */
592 if (region->type == IOMMU_RESV_SW_MSI)
593 continue;
594
595 lo = iova_pfn(iovad, region->start);
596 hi = iova_pfn(iovad, region->start + region->length - 1);
597 reserve_iova(iovad, lo, hi);
598
599 if (region->type == IOMMU_RESV_MSI)
600 ret = cookie_init_hw_msi_region(cookie, region->start,
601 region->start + region->length);
602 if (ret)
603 break;
604 }
605 iommu_put_resv_regions(dev, &resv_regions);
606
607 return ret;
608 }
609
dev_is_untrusted(struct device * dev)610 static bool dev_is_untrusted(struct device *dev)
611 {
612 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
613 }
614
dev_use_swiotlb(struct device * dev,size_t size,enum dma_data_direction dir)615 static bool dev_use_swiotlb(struct device *dev, size_t size,
616 enum dma_data_direction dir)
617 {
618 return IS_ENABLED(CONFIG_SWIOTLB) &&
619 (dev_is_untrusted(dev) ||
620 dma_kmalloc_needs_bounce(dev, size, dir));
621 }
622
dev_use_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)623 static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg,
624 int nents, enum dma_data_direction dir)
625 {
626 struct scatterlist *s;
627 int i;
628
629 if (!IS_ENABLED(CONFIG_SWIOTLB))
630 return false;
631
632 if (dev_is_untrusted(dev))
633 return true;
634
635 /*
636 * If kmalloc() buffers are not DMA-safe for this device and
637 * direction, check the individual lengths in the sg list. If any
638 * element is deemed unsafe, use the swiotlb for bouncing.
639 */
640 if (!dma_kmalloc_safe(dev, dir)) {
641 for_each_sg(sg, s, nents, i)
642 if (!dma_kmalloc_size_aligned(s->length))
643 return true;
644 }
645
646 return false;
647 }
648
649 /**
650 * iommu_dma_init_options - Initialize dma-iommu options
651 * @options: The options to be initialized
652 * @dev: Device the options are set for
653 *
654 * This allows tuning dma-iommu specific to device properties
655 */
iommu_dma_init_options(struct iommu_dma_options * options,struct device * dev)656 static void iommu_dma_init_options(struct iommu_dma_options *options,
657 struct device *dev)
658 {
659 /* Shadowing IOTLB flushes do better with a single large queue */
660 if (dev->iommu->shadow_on_flush) {
661 options->qt = IOMMU_DMA_OPTS_SINGLE_QUEUE;
662 options->fq_timeout = IOVA_SINGLE_FQ_TIMEOUT;
663 options->fq_size = IOVA_SINGLE_FQ_SIZE;
664 } else {
665 options->qt = IOMMU_DMA_OPTS_PER_CPU_QUEUE;
666 options->fq_size = IOVA_DEFAULT_FQ_SIZE;
667 options->fq_timeout = IOVA_DEFAULT_FQ_TIMEOUT;
668 }
669 }
670
671 /**
672 * iommu_dma_init_domain - Initialise a DMA mapping domain
673 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
674 * @dev: Device the domain is being initialised for
675 *
676 * If the geometry and dma_range_map include address 0, we reserve that page
677 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
678 * any change which could make prior IOVAs invalid will fail.
679 */
iommu_dma_init_domain(struct iommu_domain * domain,struct device * dev)680 static int iommu_dma_init_domain(struct iommu_domain *domain, struct device *dev)
681 {
682 struct iommu_dma_cookie *cookie = domain->iova_cookie;
683 const struct bus_dma_region *map = dev->dma_range_map;
684 unsigned long order, base_pfn;
685 struct iova_domain *iovad;
686 int ret;
687
688 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
689 return -EINVAL;
690
691 iovad = &cookie->iovad;
692
693 /* Use the smallest supported page size for IOVA granularity */
694 order = __ffs(domain->pgsize_bitmap);
695 base_pfn = 1;
696
697 /* Check the domain allows at least some access to the device... */
698 if (map) {
699 if (dma_range_map_min(map) > domain->geometry.aperture_end ||
700 dma_range_map_max(map) < domain->geometry.aperture_start) {
701 pr_warn("specified DMA range outside IOMMU capability\n");
702 return -EFAULT;
703 }
704 }
705 /* ...then finally give it a kicking to make sure it fits */
706 base_pfn = max_t(unsigned long, base_pfn,
707 domain->geometry.aperture_start >> order);
708
709 /* start_pfn is always nonzero for an already-initialised domain */
710 if (iovad->start_pfn) {
711 if (1UL << order != iovad->granule ||
712 base_pfn != iovad->start_pfn) {
713 pr_warn("Incompatible range for DMA domain\n");
714 return -EFAULT;
715 }
716
717 return 0;
718 }
719
720 init_iova_domain(iovad, 1UL << order, base_pfn);
721 ret = iova_domain_init_rcaches(iovad);
722 if (ret)
723 return ret;
724
725 iommu_dma_init_options(&cookie->options, dev);
726
727 /* If the FQ fails we can simply fall back to strict mode */
728 if (domain->type == IOMMU_DOMAIN_DMA_FQ &&
729 (!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain)))
730 domain->type = IOMMU_DOMAIN_DMA;
731
732 return iova_reserve_iommu_regions(dev, domain);
733 }
734
735 /**
736 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
737 * page flags.
738 * @dir: Direction of DMA transfer
739 * @coherent: Is the DMA master cache-coherent?
740 * @attrs: DMA attributes for the mapping
741 *
742 * Return: corresponding IOMMU API page protection flags
743 */
dma_info_to_prot(enum dma_data_direction dir,bool coherent,unsigned long attrs)744 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
745 unsigned long attrs)
746 {
747 int prot = coherent ? IOMMU_CACHE : 0;
748
749 if (attrs & DMA_ATTR_PRIVILEGED)
750 prot |= IOMMU_PRIV;
751
752 switch (dir) {
753 case DMA_BIDIRECTIONAL:
754 return prot | IOMMU_READ | IOMMU_WRITE;
755 case DMA_TO_DEVICE:
756 return prot | IOMMU_READ;
757 case DMA_FROM_DEVICE:
758 return prot | IOMMU_WRITE;
759 default:
760 return 0;
761 }
762 }
763
iommu_dma_alloc_iova(struct iommu_domain * domain,size_t size,u64 dma_limit,struct device * dev)764 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
765 size_t size, u64 dma_limit, struct device *dev)
766 {
767 struct iommu_dma_cookie *cookie = domain->iova_cookie;
768 struct iova_domain *iovad = &cookie->iovad;
769 unsigned long shift, iova_len, iova;
770
771 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
772 cookie->msi_iova += size;
773 return cookie->msi_iova - size;
774 }
775
776 shift = iova_shift(iovad);
777 iova_len = size >> shift;
778
779 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
780
781 if (domain->geometry.force_aperture)
782 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
783
784 /*
785 * Try to use all the 32-bit PCI addresses first. The original SAC vs.
786 * DAC reasoning loses relevance with PCIe, but enough hardware and
787 * firmware bugs are still lurking out there that it's safest not to
788 * venture into the 64-bit space until necessary.
789 *
790 * If your device goes wrong after seeing the notice then likely either
791 * its driver is not setting DMA masks accurately, the hardware has
792 * some inherent bug in handling >32-bit addresses, or not all the
793 * expected address bits are wired up between the device and the IOMMU.
794 */
795 if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) {
796 iova = alloc_iova_fast(iovad, iova_len,
797 DMA_BIT_MASK(32) >> shift, false);
798 if (iova)
799 goto done;
800
801 dev->iommu->pci_32bit_workaround = false;
802 dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit));
803 }
804
805 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true);
806 done:
807 return (dma_addr_t)iova << shift;
808 }
809
iommu_dma_free_iova(struct iommu_dma_cookie * cookie,dma_addr_t iova,size_t size,struct iommu_iotlb_gather * gather)810 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
811 dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
812 {
813 struct iova_domain *iovad = &cookie->iovad;
814
815 /* The MSI case is only ever cleaning up its most recent allocation */
816 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
817 cookie->msi_iova -= size;
818 else if (gather && gather->queued)
819 queue_iova(cookie, iova_pfn(iovad, iova),
820 size >> iova_shift(iovad),
821 &gather->freelist);
822 else
823 free_iova_fast(iovad, iova_pfn(iovad, iova),
824 size >> iova_shift(iovad));
825 }
826
__iommu_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t size)827 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
828 size_t size)
829 {
830 struct iommu_domain *domain = iommu_get_dma_domain(dev);
831 struct iommu_dma_cookie *cookie = domain->iova_cookie;
832 struct iova_domain *iovad = &cookie->iovad;
833 size_t iova_off = iova_offset(iovad, dma_addr);
834 struct iommu_iotlb_gather iotlb_gather;
835 size_t unmapped;
836
837 dma_addr -= iova_off;
838 size = iova_align(iovad, size + iova_off);
839 iommu_iotlb_gather_init(&iotlb_gather);
840 iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
841
842 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
843 WARN_ON(unmapped != size);
844
845 if (!iotlb_gather.queued)
846 iommu_iotlb_sync(domain, &iotlb_gather);
847 iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
848 }
849
__iommu_dma_map(struct device * dev,phys_addr_t phys,size_t size,int prot,u64 dma_mask)850 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
851 size_t size, int prot, u64 dma_mask)
852 {
853 struct iommu_domain *domain = iommu_get_dma_domain(dev);
854 struct iommu_dma_cookie *cookie = domain->iova_cookie;
855 struct iova_domain *iovad = &cookie->iovad;
856 size_t iova_off = iova_offset(iovad, phys);
857 dma_addr_t iova;
858
859 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
860 iommu_deferred_attach(dev, domain))
861 return DMA_MAPPING_ERROR;
862
863 /* If anyone ever wants this we'd need support in the IOVA allocator */
864 if (dev_WARN_ONCE(dev, dma_get_min_align_mask(dev) > iova_mask(iovad),
865 "Unsupported alignment constraint\n"))
866 return DMA_MAPPING_ERROR;
867
868 size = iova_align(iovad, size + iova_off);
869
870 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
871 if (!iova)
872 return DMA_MAPPING_ERROR;
873
874 if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) {
875 iommu_dma_free_iova(cookie, iova, size, NULL);
876 return DMA_MAPPING_ERROR;
877 }
878 return iova + iova_off;
879 }
880
__iommu_dma_free_pages(struct page ** pages,int count)881 static void __iommu_dma_free_pages(struct page **pages, int count)
882 {
883 while (count--)
884 __free_page(pages[count]);
885 kvfree(pages);
886 }
887
__iommu_dma_alloc_pages(struct device * dev,unsigned int count,unsigned long order_mask,gfp_t gfp)888 static struct page **__iommu_dma_alloc_pages(struct device *dev,
889 unsigned int count, unsigned long order_mask, gfp_t gfp)
890 {
891 struct page **pages;
892 unsigned int i = 0, nid = dev_to_node(dev);
893
894 order_mask &= GENMASK(MAX_PAGE_ORDER, 0);
895 if (!order_mask)
896 return NULL;
897
898 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
899 if (!pages)
900 return NULL;
901
902 /* IOMMU can map any pages, so himem can also be used here */
903 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
904
905 while (count) {
906 struct page *page = NULL;
907 unsigned int order_size;
908
909 /*
910 * Higher-order allocations are a convenience rather
911 * than a necessity, hence using __GFP_NORETRY until
912 * falling back to minimum-order allocations.
913 */
914 for (order_mask &= GENMASK(__fls(count), 0);
915 order_mask; order_mask &= ~order_size) {
916 unsigned int order = __fls(order_mask);
917 gfp_t alloc_flags = gfp;
918
919 order_size = 1U << order;
920 if (order_mask > order_size)
921 alloc_flags |= __GFP_NORETRY;
922 page = alloc_pages_node(nid, alloc_flags, order);
923 if (!page)
924 continue;
925 if (order)
926 split_page(page, order);
927 break;
928 }
929 if (!page) {
930 __iommu_dma_free_pages(pages, i);
931 return NULL;
932 }
933 count -= order_size;
934 while (order_size--)
935 pages[i++] = page++;
936 }
937 return pages;
938 }
939
940 /*
941 * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
942 * but an IOMMU which supports smaller pages might not map the whole thing.
943 */
__iommu_dma_alloc_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,gfp_t gfp,unsigned long attrs)944 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
945 size_t size, struct sg_table *sgt, gfp_t gfp, unsigned long attrs)
946 {
947 struct iommu_domain *domain = iommu_get_dma_domain(dev);
948 struct iommu_dma_cookie *cookie = domain->iova_cookie;
949 struct iova_domain *iovad = &cookie->iovad;
950 bool coherent = dev_is_dma_coherent(dev);
951 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
952 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
953 struct page **pages;
954 dma_addr_t iova;
955 ssize_t ret;
956
957 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
958 iommu_deferred_attach(dev, domain))
959 return NULL;
960
961 min_size = alloc_sizes & -alloc_sizes;
962 if (min_size < PAGE_SIZE) {
963 min_size = PAGE_SIZE;
964 alloc_sizes |= PAGE_SIZE;
965 } else {
966 size = ALIGN(size, min_size);
967 }
968 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
969 alloc_sizes = min_size;
970
971 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
972 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
973 gfp);
974 if (!pages)
975 return NULL;
976
977 size = iova_align(iovad, size);
978 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
979 if (!iova)
980 goto out_free_pages;
981
982 /*
983 * Remove the zone/policy flags from the GFP - these are applied to the
984 * __iommu_dma_alloc_pages() but are not used for the supporting
985 * internal allocations that follow.
986 */
987 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP);
988
989 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp))
990 goto out_free_iova;
991
992 if (!(ioprot & IOMMU_CACHE)) {
993 struct scatterlist *sg;
994 int i;
995
996 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
997 arch_dma_prep_coherent(sg_page(sg), sg->length);
998 }
999
1000 ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot,
1001 gfp);
1002 if (ret < 0 || ret < size)
1003 goto out_free_sg;
1004
1005 sgt->sgl->dma_address = iova;
1006 sgt->sgl->dma_length = size;
1007 return pages;
1008
1009 out_free_sg:
1010 sg_free_table(sgt);
1011 out_free_iova:
1012 iommu_dma_free_iova(cookie, iova, size, NULL);
1013 out_free_pages:
1014 __iommu_dma_free_pages(pages, count);
1015 return NULL;
1016 }
1017
iommu_dma_alloc_remap(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)1018 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
1019 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
1020 {
1021 struct page **pages;
1022 struct sg_table sgt;
1023 void *vaddr;
1024 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1025
1026 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, attrs);
1027 if (!pages)
1028 return NULL;
1029 *dma_handle = sgt.sgl->dma_address;
1030 sg_free_table(&sgt);
1031 vaddr = dma_common_pages_remap(pages, size, prot,
1032 __builtin_return_address(0));
1033 if (!vaddr)
1034 goto out_unmap;
1035 return vaddr;
1036
1037 out_unmap:
1038 __iommu_dma_unmap(dev, *dma_handle, size);
1039 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
1040 return NULL;
1041 }
1042
1043 /*
1044 * This is the actual return value from the iommu_dma_alloc_noncontiguous.
1045 *
1046 * The users of the DMA API should only care about the sg_table, but to make
1047 * the DMA-API internal vmaping and freeing easier we stash away the page
1048 * array as well (except for the fallback case). This can go away any time,
1049 * e.g. when a vmap-variant that takes a scatterlist comes along.
1050 */
1051 struct dma_sgt_handle {
1052 struct sg_table sgt;
1053 struct page **pages;
1054 };
1055 #define sgt_handle(sgt) \
1056 container_of((sgt), struct dma_sgt_handle, sgt)
1057
iommu_dma_alloc_noncontiguous(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp,unsigned long attrs)1058 struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, size_t size,
1059 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
1060 {
1061 struct dma_sgt_handle *sh;
1062
1063 sh = kmalloc(sizeof(*sh), gfp);
1064 if (!sh)
1065 return NULL;
1066
1067 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, attrs);
1068 if (!sh->pages) {
1069 kfree(sh);
1070 return NULL;
1071 }
1072 return &sh->sgt;
1073 }
1074
iommu_dma_free_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)1075 void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
1076 struct sg_table *sgt, enum dma_data_direction dir)
1077 {
1078 struct dma_sgt_handle *sh = sgt_handle(sgt);
1079
1080 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
1081 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
1082 sg_free_table(&sh->sgt);
1083 kfree(sh);
1084 }
1085
iommu_dma_vmap_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt)1086 void *iommu_dma_vmap_noncontiguous(struct device *dev, size_t size,
1087 struct sg_table *sgt)
1088 {
1089 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1090
1091 return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
1092 }
1093
iommu_dma_mmap_noncontiguous(struct device * dev,struct vm_area_struct * vma,size_t size,struct sg_table * sgt)1094 int iommu_dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
1095 size_t size, struct sg_table *sgt)
1096 {
1097 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1098
1099 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
1100 return -ENXIO;
1101 return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
1102 }
1103
iommu_dma_sync_single_for_cpu(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)1104 void iommu_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
1105 size_t size, enum dma_data_direction dir)
1106 {
1107 phys_addr_t phys;
1108
1109 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
1110 return;
1111
1112 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
1113 if (!dev_is_dma_coherent(dev))
1114 arch_sync_dma_for_cpu(phys, size, dir);
1115
1116 swiotlb_sync_single_for_cpu(dev, phys, size, dir);
1117 }
1118
iommu_dma_sync_single_for_device(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)1119 void iommu_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
1120 size_t size, enum dma_data_direction dir)
1121 {
1122 phys_addr_t phys;
1123
1124 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
1125 return;
1126
1127 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
1128 swiotlb_sync_single_for_device(dev, phys, size, dir);
1129
1130 if (!dev_is_dma_coherent(dev))
1131 arch_sync_dma_for_device(phys, size, dir);
1132 }
1133
iommu_dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)1134 void iommu_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
1135 int nelems, enum dma_data_direction dir)
1136 {
1137 struct scatterlist *sg;
1138 int i;
1139
1140 if (sg_dma_is_swiotlb(sgl))
1141 for_each_sg(sgl, sg, nelems, i)
1142 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
1143 sg->length, dir);
1144 else if (!dev_is_dma_coherent(dev))
1145 for_each_sg(sgl, sg, nelems, i)
1146 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
1147 }
1148
iommu_dma_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)1149 void iommu_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
1150 int nelems, enum dma_data_direction dir)
1151 {
1152 struct scatterlist *sg;
1153 int i;
1154
1155 if (sg_dma_is_swiotlb(sgl))
1156 for_each_sg(sgl, sg, nelems, i)
1157 iommu_dma_sync_single_for_device(dev,
1158 sg_dma_address(sg),
1159 sg->length, dir);
1160 else if (!dev_is_dma_coherent(dev))
1161 for_each_sg(sgl, sg, nelems, i)
1162 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
1163 }
1164
iommu_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)1165 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
1166 unsigned long offset, size_t size, enum dma_data_direction dir,
1167 unsigned long attrs)
1168 {
1169 phys_addr_t phys = page_to_phys(page) + offset;
1170 bool coherent = dev_is_dma_coherent(dev);
1171 int prot = dma_info_to_prot(dir, coherent, attrs);
1172 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1173 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1174 struct iova_domain *iovad = &cookie->iovad;
1175 dma_addr_t iova, dma_mask = dma_get_mask(dev);
1176
1177 /*
1178 * If both the physical buffer start address and size are
1179 * page aligned, we don't need to use a bounce page.
1180 */
1181 if (dev_use_swiotlb(dev, size, dir) &&
1182 iova_offset(iovad, phys | size)) {
1183 if (!is_swiotlb_active(dev)) {
1184 dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
1185 return DMA_MAPPING_ERROR;
1186 }
1187
1188 trace_swiotlb_bounced(dev, phys, size);
1189
1190 phys = swiotlb_tbl_map_single(dev, phys, size,
1191 iova_mask(iovad), dir, attrs);
1192
1193 if (phys == DMA_MAPPING_ERROR)
1194 return DMA_MAPPING_ERROR;
1195
1196 /*
1197 * Untrusted devices should not see padding areas with random
1198 * leftover kernel data, so zero the pre- and post-padding.
1199 * swiotlb_tbl_map_single() has initialized the bounce buffer
1200 * proper to the contents of the original memory buffer.
1201 */
1202 if (dev_is_untrusted(dev)) {
1203 size_t start, virt = (size_t)phys_to_virt(phys);
1204
1205 /* Pre-padding */
1206 start = iova_align_down(iovad, virt);
1207 memset((void *)start, 0, virt - start);
1208
1209 /* Post-padding */
1210 start = virt + size;
1211 memset((void *)start, 0,
1212 iova_align(iovad, start) - start);
1213 }
1214 }
1215
1216 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1217 arch_sync_dma_for_device(phys, size, dir);
1218
1219 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
1220 if (iova == DMA_MAPPING_ERROR)
1221 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1222 return iova;
1223 }
1224
iommu_dma_unmap_page(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1225 void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1226 size_t size, enum dma_data_direction dir, unsigned long attrs)
1227 {
1228 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1229 phys_addr_t phys;
1230
1231 phys = iommu_iova_to_phys(domain, dma_handle);
1232 if (WARN_ON(!phys))
1233 return;
1234
1235 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1236 arch_sync_dma_for_cpu(phys, size, dir);
1237
1238 __iommu_dma_unmap(dev, dma_handle, size);
1239
1240 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1241 }
1242
1243 /*
1244 * Prepare a successfully-mapped scatterlist to give back to the caller.
1245 *
1246 * At this point the segments are already laid out by iommu_dma_map_sg() to
1247 * avoid individually crossing any boundaries, so we merely need to check a
1248 * segment's start address to avoid concatenating across one.
1249 */
__finalise_sg(struct device * dev,struct scatterlist * sg,int nents,dma_addr_t dma_addr)1250 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1251 dma_addr_t dma_addr)
1252 {
1253 struct scatterlist *s, *cur = sg;
1254 unsigned long seg_mask = dma_get_seg_boundary(dev);
1255 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1256 int i, count = 0;
1257
1258 for_each_sg(sg, s, nents, i) {
1259 /* Restore this segment's original unaligned fields first */
1260 dma_addr_t s_dma_addr = sg_dma_address(s);
1261 unsigned int s_iova_off = sg_dma_address(s);
1262 unsigned int s_length = sg_dma_len(s);
1263 unsigned int s_iova_len = s->length;
1264
1265 sg_dma_address(s) = DMA_MAPPING_ERROR;
1266 sg_dma_len(s) = 0;
1267
1268 if (sg_dma_is_bus_address(s)) {
1269 if (i > 0)
1270 cur = sg_next(cur);
1271
1272 sg_dma_unmark_bus_address(s);
1273 sg_dma_address(cur) = s_dma_addr;
1274 sg_dma_len(cur) = s_length;
1275 sg_dma_mark_bus_address(cur);
1276 count++;
1277 cur_len = 0;
1278 continue;
1279 }
1280
1281 s->offset += s_iova_off;
1282 s->length = s_length;
1283
1284 /*
1285 * Now fill in the real DMA data. If...
1286 * - there is a valid output segment to append to
1287 * - and this segment starts on an IOVA page boundary
1288 * - but doesn't fall at a segment boundary
1289 * - and wouldn't make the resulting output segment too long
1290 */
1291 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1292 (max_len - cur_len >= s_length)) {
1293 /* ...then concatenate it with the previous one */
1294 cur_len += s_length;
1295 } else {
1296 /* Otherwise start the next output segment */
1297 if (i > 0)
1298 cur = sg_next(cur);
1299 cur_len = s_length;
1300 count++;
1301
1302 sg_dma_address(cur) = dma_addr + s_iova_off;
1303 }
1304
1305 sg_dma_len(cur) = cur_len;
1306 dma_addr += s_iova_len;
1307
1308 if (s_length + s_iova_off < s_iova_len)
1309 cur_len = 0;
1310 }
1311 return count;
1312 }
1313
1314 /*
1315 * If mapping failed, then just restore the original list,
1316 * but making sure the DMA fields are invalidated.
1317 */
__invalidate_sg(struct scatterlist * sg,int nents)1318 static void __invalidate_sg(struct scatterlist *sg, int nents)
1319 {
1320 struct scatterlist *s;
1321 int i;
1322
1323 for_each_sg(sg, s, nents, i) {
1324 if (sg_dma_is_bus_address(s)) {
1325 sg_dma_unmark_bus_address(s);
1326 } else {
1327 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1328 s->offset += sg_dma_address(s);
1329 if (sg_dma_len(s))
1330 s->length = sg_dma_len(s);
1331 }
1332 sg_dma_address(s) = DMA_MAPPING_ERROR;
1333 sg_dma_len(s) = 0;
1334 }
1335 }
1336
iommu_dma_unmap_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1337 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1338 int nents, enum dma_data_direction dir, unsigned long attrs)
1339 {
1340 struct scatterlist *s;
1341 int i;
1342
1343 for_each_sg(sg, s, nents, i)
1344 iommu_dma_unmap_page(dev, sg_dma_address(s),
1345 sg_dma_len(s), dir, attrs);
1346 }
1347
iommu_dma_map_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1348 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1349 int nents, enum dma_data_direction dir, unsigned long attrs)
1350 {
1351 struct scatterlist *s;
1352 int i;
1353
1354 sg_dma_mark_swiotlb(sg);
1355
1356 for_each_sg(sg, s, nents, i) {
1357 sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
1358 s->offset, s->length, dir, attrs);
1359 if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1360 goto out_unmap;
1361 sg_dma_len(s) = s->length;
1362 }
1363
1364 return nents;
1365
1366 out_unmap:
1367 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
1368 return -EIO;
1369 }
1370
1371 /*
1372 * The DMA API client is passing in a scatterlist which could describe
1373 * any old buffer layout, but the IOMMU API requires everything to be
1374 * aligned to IOMMU pages. Hence the need for this complicated bit of
1375 * impedance-matching, to be able to hand off a suitably-aligned list,
1376 * but still preserve the original offsets and sizes for the caller.
1377 */
iommu_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1378 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1379 enum dma_data_direction dir, unsigned long attrs)
1380 {
1381 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1382 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1383 struct iova_domain *iovad = &cookie->iovad;
1384 struct scatterlist *s, *prev = NULL;
1385 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1386 struct pci_p2pdma_map_state p2pdma_state = {};
1387 enum pci_p2pdma_map_type map;
1388 dma_addr_t iova;
1389 size_t iova_len = 0;
1390 unsigned long mask = dma_get_seg_boundary(dev);
1391 ssize_t ret;
1392 int i;
1393
1394 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1395 ret = iommu_deferred_attach(dev, domain);
1396 if (ret)
1397 goto out;
1398 }
1399
1400 if (dev_use_sg_swiotlb(dev, sg, nents, dir))
1401 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1402
1403 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1404 iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1405
1406 /*
1407 * Work out how much IOVA space we need, and align the segments to
1408 * IOVA granules for the IOMMU driver to handle. With some clever
1409 * trickery we can modify the list in-place, but reversibly, by
1410 * stashing the unaligned parts in the as-yet-unused DMA fields.
1411 */
1412 for_each_sg(sg, s, nents, i) {
1413 size_t s_iova_off = iova_offset(iovad, s->offset);
1414 size_t s_length = s->length;
1415 size_t pad_len = (mask - iova_len + 1) & mask;
1416
1417 if (is_pci_p2pdma_page(sg_page(s))) {
1418 map = pci_p2pdma_map_segment(&p2pdma_state, dev, s);
1419 switch (map) {
1420 case PCI_P2PDMA_MAP_BUS_ADDR:
1421 /*
1422 * iommu_map_sg() will skip this segment as
1423 * it is marked as a bus address,
1424 * __finalise_sg() will copy the dma address
1425 * into the output segment.
1426 */
1427 continue;
1428 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1429 /*
1430 * Mapping through host bridge should be
1431 * mapped with regular IOVAs, thus we
1432 * do nothing here and continue below.
1433 */
1434 break;
1435 default:
1436 ret = -EREMOTEIO;
1437 goto out_restore_sg;
1438 }
1439 }
1440
1441 sg_dma_address(s) = s_iova_off;
1442 sg_dma_len(s) = s_length;
1443 s->offset -= s_iova_off;
1444 s_length = iova_align(iovad, s_length + s_iova_off);
1445 s->length = s_length;
1446
1447 /*
1448 * Due to the alignment of our single IOVA allocation, we can
1449 * depend on these assumptions about the segment boundary mask:
1450 * - If mask size >= IOVA size, then the IOVA range cannot
1451 * possibly fall across a boundary, so we don't care.
1452 * - If mask size < IOVA size, then the IOVA range must start
1453 * exactly on a boundary, therefore we can lay things out
1454 * based purely on segment lengths without needing to know
1455 * the actual addresses beforehand.
1456 * - The mask must be a power of 2, so pad_len == 0 if
1457 * iova_len == 0, thus we cannot dereference prev the first
1458 * time through here (i.e. before it has a meaningful value).
1459 */
1460 if (pad_len && pad_len < s_length - 1) {
1461 prev->length += pad_len;
1462 iova_len += pad_len;
1463 }
1464
1465 iova_len += s_length;
1466 prev = s;
1467 }
1468
1469 if (!iova_len)
1470 return __finalise_sg(dev, sg, nents, 0);
1471
1472 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1473 if (!iova) {
1474 ret = -ENOMEM;
1475 goto out_restore_sg;
1476 }
1477
1478 /*
1479 * We'll leave any physical concatenation to the IOMMU driver's
1480 * implementation - it knows better than we do.
1481 */
1482 ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
1483 if (ret < 0 || ret < iova_len)
1484 goto out_free_iova;
1485
1486 return __finalise_sg(dev, sg, nents, iova);
1487
1488 out_free_iova:
1489 iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1490 out_restore_sg:
1491 __invalidate_sg(sg, nents);
1492 out:
1493 if (ret != -ENOMEM && ret != -EREMOTEIO)
1494 return -EINVAL;
1495 return ret;
1496 }
1497
iommu_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1498 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1499 enum dma_data_direction dir, unsigned long attrs)
1500 {
1501 dma_addr_t end = 0, start;
1502 struct scatterlist *tmp;
1503 int i;
1504
1505 if (sg_dma_is_swiotlb(sg)) {
1506 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1507 return;
1508 }
1509
1510 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1511 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1512
1513 /*
1514 * The scatterlist segments are mapped into a single
1515 * contiguous IOVA allocation, the start and end points
1516 * just have to be determined.
1517 */
1518 for_each_sg(sg, tmp, nents, i) {
1519 if (sg_dma_is_bus_address(tmp)) {
1520 sg_dma_unmark_bus_address(tmp);
1521 continue;
1522 }
1523
1524 if (sg_dma_len(tmp) == 0)
1525 break;
1526
1527 start = sg_dma_address(tmp);
1528 break;
1529 }
1530
1531 nents -= i;
1532 for_each_sg(tmp, tmp, nents, i) {
1533 if (sg_dma_is_bus_address(tmp)) {
1534 sg_dma_unmark_bus_address(tmp);
1535 continue;
1536 }
1537
1538 if (sg_dma_len(tmp) == 0)
1539 break;
1540
1541 end = sg_dma_address(tmp) + sg_dma_len(tmp);
1542 }
1543
1544 if (end)
1545 __iommu_dma_unmap(dev, start, end - start);
1546 }
1547
iommu_dma_map_resource(struct device * dev,phys_addr_t phys,size_t size,enum dma_data_direction dir,unsigned long attrs)1548 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1549 size_t size, enum dma_data_direction dir, unsigned long attrs)
1550 {
1551 return __iommu_dma_map(dev, phys, size,
1552 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1553 dma_get_mask(dev));
1554 }
1555
iommu_dma_unmap_resource(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1556 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1557 size_t size, enum dma_data_direction dir, unsigned long attrs)
1558 {
1559 __iommu_dma_unmap(dev, handle, size);
1560 }
1561
__iommu_dma_free(struct device * dev,size_t size,void * cpu_addr)1562 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1563 {
1564 size_t alloc_size = PAGE_ALIGN(size);
1565 int count = alloc_size >> PAGE_SHIFT;
1566 struct page *page = NULL, **pages = NULL;
1567
1568 /* Non-coherent atomic allocation? Easy */
1569 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1570 dma_free_from_pool(dev, cpu_addr, alloc_size))
1571 return;
1572
1573 if (is_vmalloc_addr(cpu_addr)) {
1574 /*
1575 * If it the address is remapped, then it's either non-coherent
1576 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1577 */
1578 pages = dma_common_find_pages(cpu_addr);
1579 if (!pages)
1580 page = vmalloc_to_page(cpu_addr);
1581 dma_common_free_remap(cpu_addr, alloc_size);
1582 } else {
1583 /* Lowmem means a coherent atomic or CMA allocation */
1584 page = virt_to_page(cpu_addr);
1585 }
1586
1587 if (pages)
1588 __iommu_dma_free_pages(pages, count);
1589 if (page)
1590 dma_free_contiguous(dev, page, alloc_size);
1591 }
1592
iommu_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)1593 void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1594 dma_addr_t handle, unsigned long attrs)
1595 {
1596 __iommu_dma_unmap(dev, handle, size);
1597 __iommu_dma_free(dev, size, cpu_addr);
1598 }
1599
iommu_dma_alloc_pages(struct device * dev,size_t size,struct page ** pagep,gfp_t gfp,unsigned long attrs)1600 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1601 struct page **pagep, gfp_t gfp, unsigned long attrs)
1602 {
1603 bool coherent = dev_is_dma_coherent(dev);
1604 size_t alloc_size = PAGE_ALIGN(size);
1605 int node = dev_to_node(dev);
1606 struct page *page = NULL;
1607 void *cpu_addr;
1608
1609 page = dma_alloc_contiguous(dev, alloc_size, gfp);
1610 if (!page)
1611 page = alloc_pages_node(node, gfp, get_order(alloc_size));
1612 if (!page)
1613 return NULL;
1614
1615 if (!coherent || PageHighMem(page)) {
1616 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1617
1618 cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1619 prot, __builtin_return_address(0));
1620 if (!cpu_addr)
1621 goto out_free_pages;
1622
1623 if (!coherent)
1624 arch_dma_prep_coherent(page, size);
1625 } else {
1626 cpu_addr = page_address(page);
1627 }
1628
1629 *pagep = page;
1630 memset(cpu_addr, 0, alloc_size);
1631 return cpu_addr;
1632 out_free_pages:
1633 dma_free_contiguous(dev, page, alloc_size);
1634 return NULL;
1635 }
1636
iommu_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)1637 void *iommu_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
1638 gfp_t gfp, unsigned long attrs)
1639 {
1640 bool coherent = dev_is_dma_coherent(dev);
1641 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1642 struct page *page = NULL;
1643 void *cpu_addr;
1644
1645 gfp |= __GFP_ZERO;
1646
1647 if (gfpflags_allow_blocking(gfp) &&
1648 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1649 return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs);
1650 }
1651
1652 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1653 !gfpflags_allow_blocking(gfp) && !coherent)
1654 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1655 gfp, NULL);
1656 else
1657 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1658 if (!cpu_addr)
1659 return NULL;
1660
1661 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1662 dev->coherent_dma_mask);
1663 if (*handle == DMA_MAPPING_ERROR) {
1664 __iommu_dma_free(dev, size, cpu_addr);
1665 return NULL;
1666 }
1667
1668 return cpu_addr;
1669 }
1670
iommu_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1671 int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1672 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1673 unsigned long attrs)
1674 {
1675 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1676 unsigned long pfn, off = vma->vm_pgoff;
1677 int ret;
1678
1679 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1680
1681 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1682 return ret;
1683
1684 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1685 return -ENXIO;
1686
1687 if (is_vmalloc_addr(cpu_addr)) {
1688 struct page **pages = dma_common_find_pages(cpu_addr);
1689
1690 if (pages)
1691 return vm_map_pages(vma, pages, nr_pages);
1692 pfn = vmalloc_to_pfn(cpu_addr);
1693 } else {
1694 pfn = page_to_pfn(virt_to_page(cpu_addr));
1695 }
1696
1697 return remap_pfn_range(vma, vma->vm_start, pfn + off,
1698 vma->vm_end - vma->vm_start,
1699 vma->vm_page_prot);
1700 }
1701
iommu_dma_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1702 int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1703 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1704 unsigned long attrs)
1705 {
1706 struct page *page;
1707 int ret;
1708
1709 if (is_vmalloc_addr(cpu_addr)) {
1710 struct page **pages = dma_common_find_pages(cpu_addr);
1711
1712 if (pages) {
1713 return sg_alloc_table_from_pages(sgt, pages,
1714 PAGE_ALIGN(size) >> PAGE_SHIFT,
1715 0, size, GFP_KERNEL);
1716 }
1717
1718 page = vmalloc_to_page(cpu_addr);
1719 } else {
1720 page = virt_to_page(cpu_addr);
1721 }
1722
1723 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1724 if (!ret)
1725 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1726 return ret;
1727 }
1728
iommu_dma_get_merge_boundary(struct device * dev)1729 unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1730 {
1731 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1732
1733 return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1734 }
1735
iommu_dma_opt_mapping_size(void)1736 size_t iommu_dma_opt_mapping_size(void)
1737 {
1738 return iova_rcache_range();
1739 }
1740
iommu_dma_max_mapping_size(struct device * dev)1741 size_t iommu_dma_max_mapping_size(struct device *dev)
1742 {
1743 if (dev_is_untrusted(dev))
1744 return swiotlb_max_mapping_size(dev);
1745
1746 return SIZE_MAX;
1747 }
1748
iommu_setup_dma_ops(struct device * dev)1749 void iommu_setup_dma_ops(struct device *dev)
1750 {
1751 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1752
1753 if (dev_is_pci(dev))
1754 dev->iommu->pci_32bit_workaround = !iommu_dma_forcedac;
1755
1756 dev->dma_iommu = iommu_is_dma_domain(domain);
1757 if (dev->dma_iommu && iommu_dma_init_domain(domain, dev))
1758 goto out_err;
1759
1760 return;
1761 out_err:
1762 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1763 dev_name(dev));
1764 dev->dma_iommu = false;
1765 }
1766
iommu_dma_get_msi_page(struct device * dev,phys_addr_t msi_addr,struct iommu_domain * domain)1767 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1768 phys_addr_t msi_addr, struct iommu_domain *domain)
1769 {
1770 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1771 struct iommu_dma_msi_page *msi_page;
1772 dma_addr_t iova;
1773 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1774 size_t size = cookie_msi_granule(cookie);
1775
1776 msi_addr &= ~(phys_addr_t)(size - 1);
1777 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1778 if (msi_page->phys == msi_addr)
1779 return msi_page;
1780
1781 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1782 if (!msi_page)
1783 return NULL;
1784
1785 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1786 if (!iova)
1787 goto out_free_page;
1788
1789 if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL))
1790 goto out_free_iova;
1791
1792 INIT_LIST_HEAD(&msi_page->list);
1793 msi_page->phys = msi_addr;
1794 msi_page->iova = iova;
1795 list_add(&msi_page->list, &cookie->msi_page_list);
1796 return msi_page;
1797
1798 out_free_iova:
1799 iommu_dma_free_iova(cookie, iova, size, NULL);
1800 out_free_page:
1801 kfree(msi_page);
1802 return NULL;
1803 }
1804
iommu_dma_sw_msi(struct iommu_domain * domain,struct msi_desc * desc,phys_addr_t msi_addr)1805 static int iommu_dma_sw_msi(struct iommu_domain *domain, struct msi_desc *desc,
1806 phys_addr_t msi_addr)
1807 {
1808 struct device *dev = msi_desc_to_dev(desc);
1809 const struct iommu_dma_msi_page *msi_page;
1810
1811 if (!domain->iova_cookie) {
1812 msi_desc_set_iommu_msi_iova(desc, 0, 0);
1813 return 0;
1814 }
1815
1816 iommu_group_mutex_assert(dev);
1817 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1818 if (!msi_page)
1819 return -ENOMEM;
1820
1821 msi_desc_set_iommu_msi_iova(
1822 desc, msi_page->iova,
1823 ilog2(cookie_msi_granule(domain->iova_cookie)));
1824 return 0;
1825 }
1826
iommu_dma_init(void)1827 static int iommu_dma_init(void)
1828 {
1829 if (is_kdump_kernel())
1830 static_branch_enable(&iommu_deferred_attach_enabled);
1831
1832 return iova_cache_get();
1833 }
1834 arch_initcall(iommu_dma_init);
1835