xref: /linux/drivers/gpu/drm/i915/gt/uc/intel_guc_submission.c (revision e332935a540eb76dd656663ca908eb0544d96757)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 
8 #include "gem/i915_gem_context.h"
9 #include "gem/i915_gem_lmem.h"
10 #include "gt/gen8_engine_cs.h"
11 #include "gt/intel_breadcrumbs.h"
12 #include "gt/intel_context.h"
13 #include "gt/intel_engine_heartbeat.h"
14 #include "gt/intel_engine_pm.h"
15 #include "gt/intel_engine_regs.h"
16 #include "gt/intel_gpu_commands.h"
17 #include "gt/intel_gt.h"
18 #include "gt/intel_gt_clock_utils.h"
19 #include "gt/intel_gt_irq.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_gt_regs.h"
22 #include "gt/intel_gt_requests.h"
23 #include "gt/intel_lrc.h"
24 #include "gt/intel_lrc_reg.h"
25 #include "gt/intel_mocs.h"
26 #include "gt/intel_ring.h"
27 
28 #include "intel_guc_ads.h"
29 #include "intel_guc_capture.h"
30 #include "intel_guc_print.h"
31 #include "intel_guc_submission.h"
32 
33 #include "i915_drv.h"
34 #include "i915_reg.h"
35 #include "i915_irq.h"
36 #include "i915_trace.h"
37 
38 /**
39  * DOC: GuC-based command submission
40  *
41  * The Scratch registers:
42  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
43  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
44  * triggers an interrupt on the GuC via another register write (0xC4C8).
45  * Firmware writes a success/fail code back to the action register after
46  * processes the request. The kernel driver polls waiting for this update and
47  * then proceeds.
48  *
49  * Command Transport buffers (CTBs):
50  * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
51  * - G2H) are a message interface between the i915 and GuC.
52  *
53  * Context registration:
54  * Before a context can be submitted it must be registered with the GuC via a
55  * H2G. A unique guc_id is associated with each context. The context is either
56  * registered at request creation time (normal operation) or at submission time
57  * (abnormal operation, e.g. after a reset).
58  *
59  * Context submission:
60  * The i915 updates the LRC tail value in memory. The i915 must enable the
61  * scheduling of the context within the GuC for the GuC to actually consider it.
62  * Therefore, the first time a disabled context is submitted we use a schedule
63  * enable H2G, while follow up submissions are done via the context submit H2G,
64  * which informs the GuC that a previously enabled context has new work
65  * available.
66  *
67  * Context unpin:
68  * To unpin a context a H2G is used to disable scheduling. When the
69  * corresponding G2H returns indicating the scheduling disable operation has
70  * completed it is safe to unpin the context. While a disable is in flight it
71  * isn't safe to resubmit the context so a fence is used to stall all future
72  * requests of that context until the G2H is returned. Because this interaction
73  * with the GuC takes a non-zero amount of time we delay the disabling of
74  * scheduling after the pin count goes to zero by a configurable period of time
75  * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of
76  * time to resubmit something on the context before doing this costly operation.
77  * This delay is only done if the context isn't closed and the guc_id usage is
78  * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD).
79  *
80  * Context deregistration:
81  * Before a context can be destroyed or if we steal its guc_id we must
82  * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
83  * safe to submit anything to this guc_id until the deregister completes so a
84  * fence is used to stall all requests associated with this guc_id until the
85  * corresponding G2H returns indicating the guc_id has been deregistered.
86  *
87  * submission_state.guc_ids:
88  * Unique number associated with private GuC context data passed in during
89  * context registration / submission / deregistration. 64k available. Simple ida
90  * is used for allocation.
91  *
92  * Stealing guc_ids:
93  * If no guc_ids are available they can be stolen from another context at
94  * request creation time if that context is unpinned. If a guc_id can't be found
95  * we punt this problem to the user as we believe this is near impossible to hit
96  * during normal use cases.
97  *
98  * Locking:
99  * In the GuC submission code we have 3 basic spin locks which protect
100  * everything. Details about each below.
101  *
102  * sched_engine->lock
103  * This is the submission lock for all contexts that share an i915 schedule
104  * engine (sched_engine), thus only one of the contexts which share a
105  * sched_engine can be submitting at a time. Currently only one sched_engine is
106  * used for all of GuC submission but that could change in the future.
107  *
108  * guc->submission_state.lock
109  * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
110  * list.
111  *
112  * ce->guc_state.lock
113  * Protects everything under ce->guc_state. Ensures that a context is in the
114  * correct state before issuing a H2G. e.g. We don't issue a schedule disable
115  * on a disabled context (bad idea), we don't issue a schedule enable when a
116  * schedule disable is in flight, etc... Also protects list of inflight requests
117  * on the context and the priority management state. Lock is individual to each
118  * context.
119  *
120  * Lock ordering rules:
121  * sched_engine->lock -> ce->guc_state.lock
122  * guc->submission_state.lock -> ce->guc_state.lock
123  *
124  * Reset races:
125  * When a full GT reset is triggered it is assumed that some G2H responses to
126  * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
127  * fatal as we do certain operations upon receiving a G2H (e.g. destroy
128  * contexts, release guc_ids, etc...). When this occurs we can scrub the
129  * context state and cleanup appropriately, however this is quite racey.
130  * To avoid races, the reset code must disable submission before scrubbing for
131  * the missing G2H, while the submission code must check for submission being
132  * disabled and skip sending H2Gs and updating context states when it is. Both
133  * sides must also make sure to hold the relevant locks.
134  */
135 
136 /* GuC Virtual Engine */
137 struct guc_virtual_engine {
138 	struct intel_engine_cs base;
139 	struct intel_context context;
140 };
141 
142 static struct intel_context *
143 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
144 		   unsigned long flags);
145 
146 static struct intel_context *
147 guc_create_parallel(struct intel_engine_cs **engines,
148 		    unsigned int num_siblings,
149 		    unsigned int width);
150 
151 #define GUC_REQUEST_SIZE 64 /* bytes */
152 
153 /*
154  * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
155  * per the GuC submission interface. A different allocation algorithm is used
156  * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
157  * partition the guc_id space. We believe the number of multi-lrc contexts in
158  * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
159  * multi-lrc.
160  */
161 #define NUMBER_MULTI_LRC_GUC_ID(guc)	\
162 	((guc)->submission_state.num_guc_ids / 16)
163 
164 /*
165  * Below is a set of functions which control the GuC scheduling state which
166  * require a lock.
167  */
168 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER	BIT(0)
169 #define SCHED_STATE_DESTROYED				BIT(1)
170 #define SCHED_STATE_PENDING_DISABLE			BIT(2)
171 #define SCHED_STATE_BANNED				BIT(3)
172 #define SCHED_STATE_ENABLED				BIT(4)
173 #define SCHED_STATE_PENDING_ENABLE			BIT(5)
174 #define SCHED_STATE_REGISTERED				BIT(6)
175 #define SCHED_STATE_POLICY_REQUIRED			BIT(7)
176 #define SCHED_STATE_CLOSED				BIT(8)
177 #define SCHED_STATE_BLOCKED_SHIFT			9
178 #define SCHED_STATE_BLOCKED		BIT(SCHED_STATE_BLOCKED_SHIFT)
179 #define SCHED_STATE_BLOCKED_MASK	(0xfff << SCHED_STATE_BLOCKED_SHIFT)
180 
init_sched_state(struct intel_context * ce)181 static inline void init_sched_state(struct intel_context *ce)
182 {
183 	lockdep_assert_held(&ce->guc_state.lock);
184 	ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
185 }
186 
187 /*
188  * Kernel contexts can have SCHED_STATE_REGISTERED after suspend.
189  * A context close can race with the submission path, so SCHED_STATE_CLOSED
190  * can be set immediately before we try to register.
191  */
192 #define SCHED_STATE_VALID_INIT \
193 	(SCHED_STATE_BLOCKED_MASK | \
194 	 SCHED_STATE_CLOSED | \
195 	 SCHED_STATE_REGISTERED)
196 
197 __maybe_unused
sched_state_is_init(struct intel_context * ce)198 static bool sched_state_is_init(struct intel_context *ce)
199 {
200 	return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT);
201 }
202 
203 static inline bool
context_wait_for_deregister_to_register(struct intel_context * ce)204 context_wait_for_deregister_to_register(struct intel_context *ce)
205 {
206 	return ce->guc_state.sched_state &
207 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
208 }
209 
210 static inline void
set_context_wait_for_deregister_to_register(struct intel_context * ce)211 set_context_wait_for_deregister_to_register(struct intel_context *ce)
212 {
213 	lockdep_assert_held(&ce->guc_state.lock);
214 	ce->guc_state.sched_state |=
215 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
216 }
217 
218 static inline void
clr_context_wait_for_deregister_to_register(struct intel_context * ce)219 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
220 {
221 	lockdep_assert_held(&ce->guc_state.lock);
222 	ce->guc_state.sched_state &=
223 		~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
224 }
225 
226 static inline bool
context_destroyed(struct intel_context * ce)227 context_destroyed(struct intel_context *ce)
228 {
229 	return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
230 }
231 
232 static inline void
set_context_destroyed(struct intel_context * ce)233 set_context_destroyed(struct intel_context *ce)
234 {
235 	lockdep_assert_held(&ce->guc_state.lock);
236 	ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
237 }
238 
239 static inline void
clr_context_destroyed(struct intel_context * ce)240 clr_context_destroyed(struct intel_context *ce)
241 {
242 	lockdep_assert_held(&ce->guc_state.lock);
243 	ce->guc_state.sched_state &= ~SCHED_STATE_DESTROYED;
244 }
245 
context_pending_disable(struct intel_context * ce)246 static inline bool context_pending_disable(struct intel_context *ce)
247 {
248 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
249 }
250 
set_context_pending_disable(struct intel_context * ce)251 static inline void set_context_pending_disable(struct intel_context *ce)
252 {
253 	lockdep_assert_held(&ce->guc_state.lock);
254 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
255 }
256 
clr_context_pending_disable(struct intel_context * ce)257 static inline void clr_context_pending_disable(struct intel_context *ce)
258 {
259 	lockdep_assert_held(&ce->guc_state.lock);
260 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
261 }
262 
context_banned(struct intel_context * ce)263 static inline bool context_banned(struct intel_context *ce)
264 {
265 	return ce->guc_state.sched_state & SCHED_STATE_BANNED;
266 }
267 
set_context_banned(struct intel_context * ce)268 static inline void set_context_banned(struct intel_context *ce)
269 {
270 	lockdep_assert_held(&ce->guc_state.lock);
271 	ce->guc_state.sched_state |= SCHED_STATE_BANNED;
272 }
273 
clr_context_banned(struct intel_context * ce)274 static inline void clr_context_banned(struct intel_context *ce)
275 {
276 	lockdep_assert_held(&ce->guc_state.lock);
277 	ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
278 }
279 
context_enabled(struct intel_context * ce)280 static inline bool context_enabled(struct intel_context *ce)
281 {
282 	return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
283 }
284 
set_context_enabled(struct intel_context * ce)285 static inline void set_context_enabled(struct intel_context *ce)
286 {
287 	lockdep_assert_held(&ce->guc_state.lock);
288 	ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
289 }
290 
clr_context_enabled(struct intel_context * ce)291 static inline void clr_context_enabled(struct intel_context *ce)
292 {
293 	lockdep_assert_held(&ce->guc_state.lock);
294 	ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
295 }
296 
context_pending_enable(struct intel_context * ce)297 static inline bool context_pending_enable(struct intel_context *ce)
298 {
299 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
300 }
301 
set_context_pending_enable(struct intel_context * ce)302 static inline void set_context_pending_enable(struct intel_context *ce)
303 {
304 	lockdep_assert_held(&ce->guc_state.lock);
305 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
306 }
307 
clr_context_pending_enable(struct intel_context * ce)308 static inline void clr_context_pending_enable(struct intel_context *ce)
309 {
310 	lockdep_assert_held(&ce->guc_state.lock);
311 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
312 }
313 
context_registered(struct intel_context * ce)314 static inline bool context_registered(struct intel_context *ce)
315 {
316 	return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
317 }
318 
set_context_registered(struct intel_context * ce)319 static inline void set_context_registered(struct intel_context *ce)
320 {
321 	lockdep_assert_held(&ce->guc_state.lock);
322 	ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
323 }
324 
clr_context_registered(struct intel_context * ce)325 static inline void clr_context_registered(struct intel_context *ce)
326 {
327 	lockdep_assert_held(&ce->guc_state.lock);
328 	ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
329 }
330 
context_policy_required(struct intel_context * ce)331 static inline bool context_policy_required(struct intel_context *ce)
332 {
333 	return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
334 }
335 
set_context_policy_required(struct intel_context * ce)336 static inline void set_context_policy_required(struct intel_context *ce)
337 {
338 	lockdep_assert_held(&ce->guc_state.lock);
339 	ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
340 }
341 
clr_context_policy_required(struct intel_context * ce)342 static inline void clr_context_policy_required(struct intel_context *ce)
343 {
344 	lockdep_assert_held(&ce->guc_state.lock);
345 	ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
346 }
347 
context_close_done(struct intel_context * ce)348 static inline bool context_close_done(struct intel_context *ce)
349 {
350 	return ce->guc_state.sched_state & SCHED_STATE_CLOSED;
351 }
352 
set_context_close_done(struct intel_context * ce)353 static inline void set_context_close_done(struct intel_context *ce)
354 {
355 	lockdep_assert_held(&ce->guc_state.lock);
356 	ce->guc_state.sched_state |= SCHED_STATE_CLOSED;
357 }
358 
context_blocked(struct intel_context * ce)359 static inline u32 context_blocked(struct intel_context *ce)
360 {
361 	return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
362 		SCHED_STATE_BLOCKED_SHIFT;
363 }
364 
incr_context_blocked(struct intel_context * ce)365 static inline void incr_context_blocked(struct intel_context *ce)
366 {
367 	lockdep_assert_held(&ce->guc_state.lock);
368 
369 	ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
370 
371 	GEM_BUG_ON(!context_blocked(ce));	/* Overflow check */
372 }
373 
decr_context_blocked(struct intel_context * ce)374 static inline void decr_context_blocked(struct intel_context *ce)
375 {
376 	lockdep_assert_held(&ce->guc_state.lock);
377 
378 	GEM_BUG_ON(!context_blocked(ce));	/* Underflow check */
379 
380 	ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
381 }
382 
383 static struct intel_context *
request_to_scheduling_context(struct i915_request * rq)384 request_to_scheduling_context(struct i915_request *rq)
385 {
386 	return intel_context_to_parent(rq->context);
387 }
388 
context_guc_id_invalid(struct intel_context * ce)389 static inline bool context_guc_id_invalid(struct intel_context *ce)
390 {
391 	return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
392 }
393 
set_context_guc_id_invalid(struct intel_context * ce)394 static inline void set_context_guc_id_invalid(struct intel_context *ce)
395 {
396 	ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
397 }
398 
ce_to_guc(struct intel_context * ce)399 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
400 {
401 	return gt_to_guc(ce->engine->gt);
402 }
403 
to_priolist(struct rb_node * rb)404 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
405 {
406 	return rb_entry(rb, struct i915_priolist, node);
407 }
408 
409 /*
410  * When using multi-lrc submission a scratch memory area is reserved in the
411  * parent's context state for the process descriptor, work queue, and handshake
412  * between the parent + children contexts to insert safe preemption points
413  * between each of the BBs. Currently the scratch area is sized to a page.
414  *
415  * The layout of this scratch area is below:
416  * 0						guc_process_desc
417  * + sizeof(struct guc_process_desc)		child go
418  * + CACHELINE_BYTES				child join[0]
419  * ...
420  * + CACHELINE_BYTES				child join[n - 1]
421  * ...						unused
422  * PARENT_SCRATCH_SIZE / 2			work queue start
423  * ...						work queue
424  * PARENT_SCRATCH_SIZE - 1			work queue end
425  */
426 #define WQ_SIZE			(PARENT_SCRATCH_SIZE / 2)
427 #define WQ_OFFSET		(PARENT_SCRATCH_SIZE - WQ_SIZE)
428 
429 struct sync_semaphore {
430 	u32 semaphore;
431 	u8 unused[CACHELINE_BYTES - sizeof(u32)];
432 };
433 
434 struct parent_scratch {
435 	union guc_descs {
436 		struct guc_sched_wq_desc wq_desc;
437 		struct guc_process_desc_v69 pdesc;
438 	} descs;
439 
440 	struct sync_semaphore go;
441 	struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
442 
443 	u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
444 		sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
445 
446 	u32 wq[WQ_SIZE / sizeof(u32)];
447 };
448 
__get_parent_scratch_offset(struct intel_context * ce)449 static u32 __get_parent_scratch_offset(struct intel_context *ce)
450 {
451 	GEM_BUG_ON(!ce->parallel.guc.parent_page);
452 
453 	return ce->parallel.guc.parent_page * PAGE_SIZE;
454 }
455 
__get_wq_offset(struct intel_context * ce)456 static u32 __get_wq_offset(struct intel_context *ce)
457 {
458 	BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
459 
460 	return __get_parent_scratch_offset(ce) + WQ_OFFSET;
461 }
462 
463 static struct parent_scratch *
__get_parent_scratch(struct intel_context * ce)464 __get_parent_scratch(struct intel_context *ce)
465 {
466 	BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
467 	BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
468 
469 	/*
470 	 * Need to subtract LRC_STATE_OFFSET here as the
471 	 * parallel.guc.parent_page is the offset into ce->state while
472 	 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
473 	 */
474 	return (struct parent_scratch *)
475 		(ce->lrc_reg_state +
476 		 ((__get_parent_scratch_offset(ce) -
477 		   LRC_STATE_OFFSET) / sizeof(u32)));
478 }
479 
480 static struct guc_process_desc_v69 *
__get_process_desc_v69(struct intel_context * ce)481 __get_process_desc_v69(struct intel_context *ce)
482 {
483 	struct parent_scratch *ps = __get_parent_scratch(ce);
484 
485 	return &ps->descs.pdesc;
486 }
487 
488 static struct guc_sched_wq_desc *
__get_wq_desc_v70(struct intel_context * ce)489 __get_wq_desc_v70(struct intel_context *ce)
490 {
491 	struct parent_scratch *ps = __get_parent_scratch(ce);
492 
493 	return &ps->descs.wq_desc;
494 }
495 
get_wq_pointer(struct intel_context * ce,u32 wqi_size)496 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
497 {
498 	/*
499 	 * Check for space in work queue. Caching a value of head pointer in
500 	 * intel_context structure in order reduce the number accesses to shared
501 	 * GPU memory which may be across a PCIe bus.
502 	 */
503 #define AVAILABLE_SPACE	\
504 	CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
505 	if (wqi_size > AVAILABLE_SPACE) {
506 		ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
507 
508 		if (wqi_size > AVAILABLE_SPACE)
509 			return NULL;
510 	}
511 #undef AVAILABLE_SPACE
512 
513 	return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
514 }
515 
__get_context(struct intel_guc * guc,u32 id)516 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
517 {
518 	struct intel_context *ce = xa_load(&guc->context_lookup, id);
519 
520 	GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
521 
522 	return ce;
523 }
524 
__get_lrc_desc_v69(struct intel_guc * guc,u32 index)525 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
526 {
527 	struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
528 
529 	if (!base)
530 		return NULL;
531 
532 	GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
533 
534 	return &base[index];
535 }
536 
guc_lrc_desc_pool_create_v69(struct intel_guc * guc)537 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
538 {
539 	u32 size;
540 	int ret;
541 
542 	size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
543 			  GUC_MAX_CONTEXT_ID);
544 	ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
545 					     (void **)&guc->lrc_desc_pool_vaddr_v69);
546 	if (ret)
547 		return ret;
548 
549 	return 0;
550 }
551 
guc_lrc_desc_pool_destroy_v69(struct intel_guc * guc)552 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
553 {
554 	if (!guc->lrc_desc_pool_vaddr_v69)
555 		return;
556 
557 	guc->lrc_desc_pool_vaddr_v69 = NULL;
558 	i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
559 }
560 
guc_submission_initialized(struct intel_guc * guc)561 static inline bool guc_submission_initialized(struct intel_guc *guc)
562 {
563 	return guc->submission_initialized;
564 }
565 
_reset_lrc_desc_v69(struct intel_guc * guc,u32 id)566 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
567 {
568 	struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
569 
570 	if (desc)
571 		memset(desc, 0, sizeof(*desc));
572 }
573 
ctx_id_mapped(struct intel_guc * guc,u32 id)574 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
575 {
576 	return __get_context(guc, id);
577 }
578 
set_ctx_id_mapping(struct intel_guc * guc,u32 id,struct intel_context * ce)579 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
580 				      struct intel_context *ce)
581 {
582 	unsigned long flags;
583 
584 	/*
585 	 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
586 	 * lower level functions directly.
587 	 */
588 	xa_lock_irqsave(&guc->context_lookup, flags);
589 	__xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
590 	xa_unlock_irqrestore(&guc->context_lookup, flags);
591 }
592 
clr_ctx_id_mapping(struct intel_guc * guc,u32 id)593 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
594 {
595 	unsigned long flags;
596 
597 	if (unlikely(!guc_submission_initialized(guc)))
598 		return;
599 
600 	_reset_lrc_desc_v69(guc, id);
601 
602 	/*
603 	 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
604 	 * the lower level functions directly.
605 	 */
606 	xa_lock_irqsave(&guc->context_lookup, flags);
607 	__xa_erase(&guc->context_lookup, id);
608 	xa_unlock_irqrestore(&guc->context_lookup, flags);
609 }
610 
decr_outstanding_submission_g2h(struct intel_guc * guc)611 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
612 {
613 	if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
614 		wake_up_all(&guc->ct.wq);
615 }
616 
guc_submission_send_busy_loop(struct intel_guc * guc,const u32 * action,u32 len,u32 g2h_len_dw,bool loop)617 static int guc_submission_send_busy_loop(struct intel_guc *guc,
618 					 const u32 *action,
619 					 u32 len,
620 					 u32 g2h_len_dw,
621 					 bool loop)
622 {
623 	int ret;
624 
625 	/*
626 	 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
627 	 * so we don't handle the case where we don't get a reply because we
628 	 * aborted the send due to the channel being busy.
629 	 */
630 	GEM_BUG_ON(g2h_len_dw && !loop);
631 
632 	if (g2h_len_dw)
633 		atomic_inc(&guc->outstanding_submission_g2h);
634 
635 	ret = intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
636 	if (ret && g2h_len_dw)
637 		atomic_dec(&guc->outstanding_submission_g2h);
638 
639 	return ret;
640 }
641 
intel_guc_wait_for_pending_msg(struct intel_guc * guc,atomic_t * wait_var,bool interruptible,long timeout)642 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
643 				   atomic_t *wait_var,
644 				   bool interruptible,
645 				   long timeout)
646 {
647 	const int state = interruptible ?
648 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
649 	DEFINE_WAIT(wait);
650 
651 	might_sleep();
652 	GEM_BUG_ON(timeout < 0);
653 
654 	if (!atomic_read(wait_var))
655 		return 0;
656 
657 	if (!timeout)
658 		return -ETIME;
659 
660 	for (;;) {
661 		prepare_to_wait(&guc->ct.wq, &wait, state);
662 
663 		if (!atomic_read(wait_var))
664 			break;
665 
666 		if (signal_pending_state(state, current)) {
667 			timeout = -EINTR;
668 			break;
669 		}
670 
671 		if (!timeout) {
672 			timeout = -ETIME;
673 			break;
674 		}
675 
676 		timeout = io_schedule_timeout(timeout);
677 	}
678 	finish_wait(&guc->ct.wq, &wait);
679 
680 	return (timeout < 0) ? timeout : 0;
681 }
682 
intel_guc_wait_for_idle(struct intel_guc * guc,long timeout)683 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
684 {
685 	if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
686 		return 0;
687 
688 	return intel_guc_wait_for_pending_msg(guc,
689 					      &guc->outstanding_submission_g2h,
690 					      true, timeout);
691 }
692 
693 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
694 static int try_context_registration(struct intel_context *ce, bool loop);
695 
__guc_add_request(struct intel_guc * guc,struct i915_request * rq)696 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
697 {
698 	int err = 0;
699 	struct intel_context *ce = request_to_scheduling_context(rq);
700 	u32 action[3];
701 	int len = 0;
702 	u32 g2h_len_dw = 0;
703 	bool enabled;
704 
705 	lockdep_assert_held(&rq->engine->sched_engine->lock);
706 
707 	/*
708 	 * Corner case where requests were sitting in the priority list or a
709 	 * request resubmitted after the context was banned.
710 	 */
711 	if (unlikely(!intel_context_is_schedulable(ce))) {
712 		i915_request_put(i915_request_mark_eio(rq));
713 		intel_engine_signal_breadcrumbs(ce->engine);
714 		return 0;
715 	}
716 
717 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
718 	GEM_BUG_ON(context_guc_id_invalid(ce));
719 
720 	if (context_policy_required(ce)) {
721 		err = guc_context_policy_init_v70(ce, false);
722 		if (err)
723 			return err;
724 	}
725 
726 	spin_lock(&ce->guc_state.lock);
727 
728 	/*
729 	 * The request / context will be run on the hardware when scheduling
730 	 * gets enabled in the unblock. For multi-lrc we still submit the
731 	 * context to move the LRC tails.
732 	 */
733 	if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
734 		goto out;
735 
736 	enabled = context_enabled(ce) || context_blocked(ce);
737 
738 	if (!enabled) {
739 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
740 		action[len++] = ce->guc_id.id;
741 		action[len++] = GUC_CONTEXT_ENABLE;
742 		set_context_pending_enable(ce);
743 		intel_context_get(ce);
744 		g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
745 	} else {
746 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
747 		action[len++] = ce->guc_id.id;
748 	}
749 
750 	err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
751 	if (!enabled && !err) {
752 		trace_intel_context_sched_enable(ce);
753 		atomic_inc(&guc->outstanding_submission_g2h);
754 		set_context_enabled(ce);
755 
756 		/*
757 		 * Without multi-lrc KMD does the submission step (moving the
758 		 * lrc tail) so enabling scheduling is sufficient to submit the
759 		 * context. This isn't the case in multi-lrc submission as the
760 		 * GuC needs to move the tails, hence the need for another H2G
761 		 * to submit a multi-lrc context after enabling scheduling.
762 		 */
763 		if (intel_context_is_parent(ce)) {
764 			action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
765 			err = intel_guc_send_nb(guc, action, len - 1, 0);
766 		}
767 	} else if (!enabled) {
768 		clr_context_pending_enable(ce);
769 		intel_context_put(ce);
770 	}
771 	if (likely(!err))
772 		trace_i915_request_guc_submit(rq);
773 
774 out:
775 	spin_unlock(&ce->guc_state.lock);
776 	return err;
777 }
778 
guc_add_request(struct intel_guc * guc,struct i915_request * rq)779 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
780 {
781 	int ret = __guc_add_request(guc, rq);
782 
783 	if (unlikely(ret == -EBUSY)) {
784 		guc->stalled_request = rq;
785 		guc->submission_stall_reason = STALL_ADD_REQUEST;
786 	}
787 
788 	return ret;
789 }
790 
guc_set_lrc_tail(struct i915_request * rq)791 static inline void guc_set_lrc_tail(struct i915_request *rq)
792 {
793 	rq->context->lrc_reg_state[CTX_RING_TAIL] =
794 		intel_ring_set_tail(rq->ring, rq->tail);
795 }
796 
rq_prio(const struct i915_request * rq)797 static inline int rq_prio(const struct i915_request *rq)
798 {
799 	return rq->sched.attr.priority;
800 }
801 
is_multi_lrc_rq(struct i915_request * rq)802 static bool is_multi_lrc_rq(struct i915_request *rq)
803 {
804 	return intel_context_is_parallel(rq->context);
805 }
806 
can_merge_rq(struct i915_request * rq,struct i915_request * last)807 static bool can_merge_rq(struct i915_request *rq,
808 			 struct i915_request *last)
809 {
810 	return request_to_scheduling_context(rq) ==
811 		request_to_scheduling_context(last);
812 }
813 
wq_space_until_wrap(struct intel_context * ce)814 static u32 wq_space_until_wrap(struct intel_context *ce)
815 {
816 	return (WQ_SIZE - ce->parallel.guc.wqi_tail);
817 }
818 
write_wqi(struct intel_context * ce,u32 wqi_size)819 static void write_wqi(struct intel_context *ce, u32 wqi_size)
820 {
821 	BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
822 
823 	/*
824 	 * Ensure WQI are visible before updating tail
825 	 */
826 	intel_guc_write_barrier(ce_to_guc(ce));
827 
828 	ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
829 		(WQ_SIZE - 1);
830 	WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
831 }
832 
guc_wq_noop_append(struct intel_context * ce)833 static int guc_wq_noop_append(struct intel_context *ce)
834 {
835 	u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
836 	u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
837 
838 	if (!wqi)
839 		return -EBUSY;
840 
841 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
842 
843 	*wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
844 		FIELD_PREP(WQ_LEN_MASK, len_dw);
845 	ce->parallel.guc.wqi_tail = 0;
846 
847 	return 0;
848 }
849 
__guc_wq_item_append(struct i915_request * rq)850 static int __guc_wq_item_append(struct i915_request *rq)
851 {
852 	struct intel_context *ce = request_to_scheduling_context(rq);
853 	struct intel_context *child;
854 	unsigned int wqi_size = (ce->parallel.number_children + 4) *
855 		sizeof(u32);
856 	u32 *wqi;
857 	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
858 	int ret;
859 
860 	/* Ensure context is in correct state updating work queue */
861 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
862 	GEM_BUG_ON(context_guc_id_invalid(ce));
863 	GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
864 	GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
865 
866 	/* Insert NOOP if this work queue item will wrap the tail pointer. */
867 	if (wqi_size > wq_space_until_wrap(ce)) {
868 		ret = guc_wq_noop_append(ce);
869 		if (ret)
870 			return ret;
871 	}
872 
873 	wqi = get_wq_pointer(ce, wqi_size);
874 	if (!wqi)
875 		return -EBUSY;
876 
877 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
878 
879 	*wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
880 		FIELD_PREP(WQ_LEN_MASK, len_dw);
881 	*wqi++ = ce->lrc.lrca;
882 	*wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
883 	       FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
884 	*wqi++ = 0;	/* fence_id */
885 	for_each_child(ce, child)
886 		*wqi++ = child->ring->tail / sizeof(u64);
887 
888 	write_wqi(ce, wqi_size);
889 
890 	return 0;
891 }
892 
guc_wq_item_append(struct intel_guc * guc,struct i915_request * rq)893 static int guc_wq_item_append(struct intel_guc *guc,
894 			      struct i915_request *rq)
895 {
896 	struct intel_context *ce = request_to_scheduling_context(rq);
897 	int ret;
898 
899 	if (unlikely(!intel_context_is_schedulable(ce)))
900 		return 0;
901 
902 	ret = __guc_wq_item_append(rq);
903 	if (unlikely(ret == -EBUSY)) {
904 		guc->stalled_request = rq;
905 		guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
906 	}
907 
908 	return ret;
909 }
910 
multi_lrc_submit(struct i915_request * rq)911 static bool multi_lrc_submit(struct i915_request *rq)
912 {
913 	struct intel_context *ce = request_to_scheduling_context(rq);
914 
915 	intel_ring_set_tail(rq->ring, rq->tail);
916 
917 	/*
918 	 * We expect the front end (execbuf IOCTL) to set this flag on the last
919 	 * request generated from a multi-BB submission. This indicates to the
920 	 * backend (GuC interface) that we should submit this context thus
921 	 * submitting all the requests generated in parallel.
922 	 */
923 	return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
924 	       !intel_context_is_schedulable(ce);
925 }
926 
guc_dequeue_one_context(struct intel_guc * guc)927 static int guc_dequeue_one_context(struct intel_guc *guc)
928 {
929 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
930 	struct i915_request *last = NULL;
931 	bool submit = false;
932 	struct rb_node *rb;
933 	int ret;
934 
935 	lockdep_assert_held(&sched_engine->lock);
936 
937 	if (guc->stalled_request) {
938 		submit = true;
939 		last = guc->stalled_request;
940 
941 		switch (guc->submission_stall_reason) {
942 		case STALL_REGISTER_CONTEXT:
943 			goto register_context;
944 		case STALL_MOVE_LRC_TAIL:
945 			goto move_lrc_tail;
946 		case STALL_ADD_REQUEST:
947 			goto add_request;
948 		default:
949 			MISSING_CASE(guc->submission_stall_reason);
950 		}
951 	}
952 
953 	while ((rb = rb_first_cached(&sched_engine->queue))) {
954 		struct i915_priolist *p = to_priolist(rb);
955 		struct i915_request *rq, *rn;
956 
957 		priolist_for_each_request_consume(rq, rn, p) {
958 			if (last && !can_merge_rq(rq, last))
959 				goto register_context;
960 
961 			list_del_init(&rq->sched.link);
962 
963 			__i915_request_submit(rq);
964 
965 			trace_i915_request_in(rq, 0);
966 			last = rq;
967 
968 			if (is_multi_lrc_rq(rq)) {
969 				/*
970 				 * We need to coalesce all multi-lrc requests in
971 				 * a relationship into a single H2G. We are
972 				 * guaranteed that all of these requests will be
973 				 * submitted sequentially.
974 				 */
975 				if (multi_lrc_submit(rq)) {
976 					submit = true;
977 					goto register_context;
978 				}
979 			} else {
980 				submit = true;
981 			}
982 		}
983 
984 		rb_erase_cached(&p->node, &sched_engine->queue);
985 		i915_priolist_free(p);
986 	}
987 
988 register_context:
989 	if (submit) {
990 		struct intel_context *ce = request_to_scheduling_context(last);
991 
992 		if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
993 			     intel_context_is_schedulable(ce))) {
994 			ret = try_context_registration(ce, false);
995 			if (unlikely(ret == -EPIPE)) {
996 				goto deadlk;
997 			} else if (ret == -EBUSY) {
998 				guc->stalled_request = last;
999 				guc->submission_stall_reason =
1000 					STALL_REGISTER_CONTEXT;
1001 				goto schedule_tasklet;
1002 			} else if (ret != 0) {
1003 				GEM_WARN_ON(ret);	/* Unexpected */
1004 				goto deadlk;
1005 			}
1006 		}
1007 
1008 move_lrc_tail:
1009 		if (is_multi_lrc_rq(last)) {
1010 			ret = guc_wq_item_append(guc, last);
1011 			if (ret == -EBUSY) {
1012 				goto schedule_tasklet;
1013 			} else if (ret != 0) {
1014 				GEM_WARN_ON(ret);	/* Unexpected */
1015 				goto deadlk;
1016 			}
1017 		} else {
1018 			guc_set_lrc_tail(last);
1019 		}
1020 
1021 add_request:
1022 		ret = guc_add_request(guc, last);
1023 		if (unlikely(ret == -EPIPE)) {
1024 			goto deadlk;
1025 		} else if (ret == -EBUSY) {
1026 			goto schedule_tasklet;
1027 		} else if (ret != 0) {
1028 			GEM_WARN_ON(ret);	/* Unexpected */
1029 			goto deadlk;
1030 		}
1031 	}
1032 
1033 	guc->stalled_request = NULL;
1034 	guc->submission_stall_reason = STALL_NONE;
1035 	return submit;
1036 
1037 deadlk:
1038 	sched_engine->tasklet.callback = NULL;
1039 	tasklet_disable_nosync(&sched_engine->tasklet);
1040 	return false;
1041 
1042 schedule_tasklet:
1043 	tasklet_schedule(&sched_engine->tasklet);
1044 	return false;
1045 }
1046 
guc_submission_tasklet(struct tasklet_struct * t)1047 static void guc_submission_tasklet(struct tasklet_struct *t)
1048 {
1049 	struct i915_sched_engine *sched_engine =
1050 		from_tasklet(sched_engine, t, tasklet);
1051 	unsigned long flags;
1052 	bool loop;
1053 
1054 	spin_lock_irqsave(&sched_engine->lock, flags);
1055 
1056 	do {
1057 		loop = guc_dequeue_one_context(sched_engine->private_data);
1058 	} while (loop);
1059 
1060 	i915_sched_engine_reset_on_empty(sched_engine);
1061 
1062 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1063 }
1064 
cs_irq_handler(struct intel_engine_cs * engine,u16 iir)1065 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1066 {
1067 	if (iir & GT_RENDER_USER_INTERRUPT)
1068 		intel_engine_signal_breadcrumbs(engine);
1069 }
1070 
1071 static void __guc_context_destroy(struct intel_context *ce);
1072 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1073 static void guc_signal_context_fence(struct intel_context *ce);
1074 static void guc_cancel_context_requests(struct intel_context *ce);
1075 static void guc_blocked_fence_complete(struct intel_context *ce);
1076 
scrub_guc_desc_for_outstanding_g2h(struct intel_guc * guc)1077 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1078 {
1079 	struct intel_context *ce;
1080 	unsigned long index, flags;
1081 	bool pending_disable, pending_enable, deregister, destroyed, banned;
1082 
1083 	xa_lock_irqsave(&guc->context_lookup, flags);
1084 	xa_for_each(&guc->context_lookup, index, ce) {
1085 		/*
1086 		 * Corner case where the ref count on the object is zero but and
1087 		 * deregister G2H was lost. In this case we don't touch the ref
1088 		 * count and finish the destroy of the context.
1089 		 */
1090 		bool do_put = kref_get_unless_zero(&ce->ref);
1091 
1092 		xa_unlock(&guc->context_lookup);
1093 
1094 		if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
1095 		    (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) {
1096 			/* successful cancel so jump straight to close it */
1097 			intel_context_sched_disable_unpin(ce);
1098 		}
1099 
1100 		spin_lock(&ce->guc_state.lock);
1101 
1102 		/*
1103 		 * Once we are at this point submission_disabled() is guaranteed
1104 		 * to be visible to all callers who set the below flags (see above
1105 		 * flush and flushes in reset_prepare). If submission_disabled()
1106 		 * is set, the caller shouldn't set these flags.
1107 		 */
1108 
1109 		destroyed = context_destroyed(ce);
1110 		pending_enable = context_pending_enable(ce);
1111 		pending_disable = context_pending_disable(ce);
1112 		deregister = context_wait_for_deregister_to_register(ce);
1113 		banned = context_banned(ce);
1114 		init_sched_state(ce);
1115 
1116 		spin_unlock(&ce->guc_state.lock);
1117 
1118 		if (pending_enable || destroyed || deregister) {
1119 			decr_outstanding_submission_g2h(guc);
1120 			if (deregister)
1121 				guc_signal_context_fence(ce);
1122 			if (destroyed) {
1123 				intel_gt_pm_put_async_untracked(guc_to_gt(guc));
1124 				release_guc_id(guc, ce);
1125 				__guc_context_destroy(ce);
1126 			}
1127 			if (pending_enable || deregister)
1128 				intel_context_put(ce);
1129 		}
1130 
1131 		/* Not mutualy exclusive with above if statement. */
1132 		if (pending_disable) {
1133 			guc_signal_context_fence(ce);
1134 			if (banned) {
1135 				guc_cancel_context_requests(ce);
1136 				intel_engine_signal_breadcrumbs(ce->engine);
1137 			}
1138 			intel_context_sched_disable_unpin(ce);
1139 			decr_outstanding_submission_g2h(guc);
1140 
1141 			spin_lock(&ce->guc_state.lock);
1142 			guc_blocked_fence_complete(ce);
1143 			spin_unlock(&ce->guc_state.lock);
1144 
1145 			intel_context_put(ce);
1146 		}
1147 
1148 		if (do_put)
1149 			intel_context_put(ce);
1150 		xa_lock(&guc->context_lookup);
1151 	}
1152 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1153 }
1154 
1155 /*
1156  * GuC stores busyness stats for each engine at context in/out boundaries. A
1157  * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1158  * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1159  * GuC.
1160  *
1161  * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1162  * is valid (!= ~0) and start is non-zero, the engine is considered to be
1163  * active. For an active engine total busyness = total + (now - start), where
1164  * 'now' is the time at which the busyness is sampled. For inactive engine,
1165  * total busyness = total.
1166  *
1167  * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1168  *
1169  * The start and total values provided by GuC are 32 bits and wrap around in a
1170  * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1171  * increasing ns values, there is a need for this implementation to account for
1172  * overflows and extend the GuC provided values to 64 bits before returning
1173  * busyness to the user. In order to do that, a worker runs periodically at
1174  * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1175  * 27 seconds for a gt clock frequency of 19.2 MHz).
1176  */
1177 
1178 #define WRAP_TIME_CLKS U32_MAX
1179 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1180 
1181 static void
__extend_last_switch(struct intel_guc * guc,u64 * prev_start,u32 new_start)1182 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1183 {
1184 	u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1185 	u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1186 
1187 	if (new_start == lower_32_bits(*prev_start))
1188 		return;
1189 
1190 	/*
1191 	 * When gt is unparked, we update the gt timestamp and start the ping
1192 	 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1193 	 * is unparked, all switched in contexts will have a start time that is
1194 	 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1195 	 *
1196 	 * If neither gt_stamp nor new_start has rolled over, then the
1197 	 * gt_stamp_hi does not need to be adjusted, however if one of them has
1198 	 * rolled over, we need to adjust gt_stamp_hi accordingly.
1199 	 *
1200 	 * The below conditions address the cases of new_start rollover and
1201 	 * gt_stamp_last rollover respectively.
1202 	 */
1203 	if (new_start < gt_stamp_last &&
1204 	    (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1205 		gt_stamp_hi++;
1206 
1207 	if (new_start > gt_stamp_last &&
1208 	    (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1209 		gt_stamp_hi--;
1210 
1211 	*prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1212 }
1213 
1214 #define record_read(map_, field_) \
1215 	iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1216 
1217 /*
1218  * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1219  * we run into a race where the value read is inconsistent. Sometimes the
1220  * inconsistency is in reading the upper MSB bytes of the last_in value when
1221  * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1222  * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1223  * determine validity of these values. Instead we read the values multiple times
1224  * until they are consistent. In test runs, 3 attempts results in consistent
1225  * values. The upper bound is set to 6 attempts and may need to be tuned as per
1226  * any new occurrences.
1227  */
__get_engine_usage_record(struct intel_engine_cs * engine,u32 * last_in,u32 * id,u32 * total)1228 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1229 				      u32 *last_in, u32 *id, u32 *total)
1230 {
1231 	struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1232 	int i = 0;
1233 
1234 	do {
1235 		*last_in = record_read(&rec_map, last_switch_in_stamp);
1236 		*id = record_read(&rec_map, current_context_index);
1237 		*total = record_read(&rec_map, total_runtime);
1238 
1239 		if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1240 		    record_read(&rec_map, current_context_index) == *id &&
1241 		    record_read(&rec_map, total_runtime) == *total)
1242 			break;
1243 	} while (++i < 6);
1244 }
1245 
__set_engine_usage_record(struct intel_engine_cs * engine,u32 last_in,u32 id,u32 total)1246 static void __set_engine_usage_record(struct intel_engine_cs *engine,
1247 				      u32 last_in, u32 id, u32 total)
1248 {
1249 	struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1250 
1251 #define record_write(map_, field_, val_) \
1252 	iosys_map_wr_field(map_, 0, struct guc_engine_usage_record, field_, val_)
1253 
1254 	record_write(&rec_map, last_switch_in_stamp, last_in);
1255 	record_write(&rec_map, current_context_index, id);
1256 	record_write(&rec_map, total_runtime, total);
1257 
1258 #undef record_write
1259 }
1260 
guc_update_engine_gt_clks(struct intel_engine_cs * engine)1261 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1262 {
1263 	struct intel_engine_guc_stats *stats = &engine->stats.guc;
1264 	struct intel_guc *guc = gt_to_guc(engine->gt);
1265 	u32 last_switch, ctx_id, total;
1266 
1267 	lockdep_assert_held(&guc->timestamp.lock);
1268 
1269 	__get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1270 
1271 	stats->running = ctx_id != ~0U && last_switch;
1272 	if (stats->running)
1273 		__extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1274 
1275 	/*
1276 	 * Instead of adjusting the total for overflow, just add the
1277 	 * difference from previous sample stats->total_gt_clks
1278 	 */
1279 	if (total && total != ~0U) {
1280 		stats->total_gt_clks += (u32)(total - stats->prev_total);
1281 		stats->prev_total = total;
1282 	}
1283 }
1284 
gpm_timestamp_shift(struct intel_gt * gt)1285 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1286 {
1287 	intel_wakeref_t wakeref;
1288 	u32 reg;
1289 
1290 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1291 		reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1292 
1293 	return 3 - REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK, reg);
1294 }
1295 
guc_update_pm_timestamp(struct intel_guc * guc,ktime_t * now)1296 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1297 {
1298 	struct intel_gt *gt = guc_to_gt(guc);
1299 	u32 gt_stamp_lo, gt_stamp_hi;
1300 	u64 gpm_ts;
1301 
1302 	lockdep_assert_held(&guc->timestamp.lock);
1303 
1304 	gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1305 	gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1306 					  MISC_STATUS1) >> guc->timestamp.shift;
1307 	gt_stamp_lo = lower_32_bits(gpm_ts);
1308 	*now = ktime_get();
1309 
1310 	if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1311 		gt_stamp_hi++;
1312 
1313 	guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1314 }
1315 
1316 /*
1317  * Unlike the execlist mode of submission total and active times are in terms of
1318  * gt clocks. The *now parameter is retained to return the cpu time at which the
1319  * busyness was sampled.
1320  */
guc_engine_busyness(struct intel_engine_cs * engine,ktime_t * now)1321 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1322 {
1323 	struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1324 	struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1325 	struct intel_gt *gt = engine->gt;
1326 	struct intel_guc *guc = gt_to_guc(gt);
1327 	u64 total, gt_stamp_saved;
1328 	unsigned long flags;
1329 	u32 reset_count;
1330 	bool in_reset;
1331 	intel_wakeref_t wakeref;
1332 
1333 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1334 
1335 	/*
1336 	 * If a reset happened, we risk reading partially updated engine
1337 	 * busyness from GuC, so we just use the driver stored copy of busyness.
1338 	 * Synchronize with gt reset using reset_count and the
1339 	 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1340 	 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1341 	 * usable by checking the flag afterwards.
1342 	 */
1343 	reset_count = i915_reset_count(gpu_error);
1344 	in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1345 
1346 	*now = ktime_get();
1347 
1348 	/*
1349 	 * The active busyness depends on start_gt_clk and gt_stamp.
1350 	 * gt_stamp is updated by i915 only when gt is awake and the
1351 	 * start_gt_clk is derived from GuC state. To get a consistent
1352 	 * view of activity, we query the GuC state only if gt is awake.
1353 	 */
1354 	wakeref = in_reset ? NULL : intel_gt_pm_get_if_awake(gt);
1355 	if (wakeref) {
1356 		stats_saved = *stats;
1357 		gt_stamp_saved = guc->timestamp.gt_stamp;
1358 		/*
1359 		 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1360 		 * start_gt_clk' calculation below for active engines.
1361 		 */
1362 		guc_update_engine_gt_clks(engine);
1363 		guc_update_pm_timestamp(guc, now);
1364 		intel_gt_pm_put_async(gt, wakeref);
1365 		if (i915_reset_count(gpu_error) != reset_count) {
1366 			*stats = stats_saved;
1367 			guc->timestamp.gt_stamp = gt_stamp_saved;
1368 		}
1369 	}
1370 
1371 	total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1372 	if (stats->running) {
1373 		u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1374 
1375 		total += intel_gt_clock_interval_to_ns(gt, clk);
1376 	}
1377 
1378 	if (total > stats->total)
1379 		stats->total = total;
1380 
1381 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1382 
1383 	return ns_to_ktime(stats->total);
1384 }
1385 
guc_enable_busyness_worker(struct intel_guc * guc)1386 static void guc_enable_busyness_worker(struct intel_guc *guc)
1387 {
1388 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay);
1389 }
1390 
guc_cancel_busyness_worker(struct intel_guc * guc)1391 static void guc_cancel_busyness_worker(struct intel_guc *guc)
1392 {
1393 	/*
1394 	 * There are many different call stacks that can get here. Some of them
1395 	 * hold the reset mutex. The busyness worker also attempts to acquire the
1396 	 * reset mutex. Synchronously flushing a worker thread requires acquiring
1397 	 * the worker mutex. Lockdep sees this as a conflict. It thinks that the
1398 	 * flush can deadlock because it holds the worker mutex while waiting for
1399 	 * the reset mutex, but another thread is holding the reset mutex and might
1400 	 * attempt to use other worker functions.
1401 	 *
1402 	 * In practice, this scenario does not exist because the busyness worker
1403 	 * does not block waiting for the reset mutex. It does a try-lock on it and
1404 	 * immediately exits if the lock is already held. Unfortunately, the mutex
1405 	 * in question (I915_RESET_BACKOFF) is an i915 implementation which has lockdep
1406 	 * annotation but not to the extent of explaining the 'might lock' is also a
1407 	 * 'does not need to lock'. So one option would be to add more complex lockdep
1408 	 * annotations to ignore the issue (if at all possible). A simpler option is to
1409 	 * just not flush synchronously when a rest in progress. Given that the worker
1410 	 * will just early exit and re-schedule itself anyway, there is no advantage
1411 	 * to running it immediately.
1412 	 *
1413 	 * If a reset is not in progress, then the synchronous flush may be required.
1414 	 * As noted many call stacks lead here, some during suspend and driver unload
1415 	 * which do require a synchronous flush to make sure the worker is stopped
1416 	 * before memory is freed.
1417 	 *
1418 	 * Trying to pass a 'need_sync' or 'in_reset' flag all the way down through
1419 	 * every possible call stack is unfeasible. It would be too intrusive to many
1420 	 * areas that really don't care about the GuC backend. However, there is the
1421 	 * I915_RESET_BACKOFF flag and the gt->reset.mutex can be tested for is_locked.
1422 	 * So just use those. Note that testing both is required due to the hideously
1423 	 * complex nature of the i915 driver's reset code paths.
1424 	 *
1425 	 * And note that in the case of a reset occurring during driver unload
1426 	 * (wedged_on_fini), skipping the cancel in reset_prepare/reset_fini (when the
1427 	 * reset flag/mutex are set) is fine because there is another explicit cancel in
1428 	 * intel_guc_submission_fini (when the reset flag/mutex are not).
1429 	 */
1430 	if (mutex_is_locked(&guc_to_gt(guc)->reset.mutex) ||
1431 	    test_bit(I915_RESET_BACKOFF, &guc_to_gt(guc)->reset.flags))
1432 		cancel_delayed_work(&guc->timestamp.work);
1433 	else
1434 		cancel_delayed_work_sync(&guc->timestamp.work);
1435 }
1436 
__reset_guc_busyness_stats(struct intel_guc * guc)1437 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1438 {
1439 	struct intel_gt *gt = guc_to_gt(guc);
1440 	struct intel_engine_cs *engine;
1441 	enum intel_engine_id id;
1442 	unsigned long flags;
1443 	ktime_t unused;
1444 
1445 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1446 
1447 	guc_update_pm_timestamp(guc, &unused);
1448 	for_each_engine(engine, gt, id) {
1449 		struct intel_engine_guc_stats *stats = &engine->stats.guc;
1450 
1451 		guc_update_engine_gt_clks(engine);
1452 
1453 		/*
1454 		 * If resetting a running context, accumulate the active
1455 		 * time as well since there will be no context switch.
1456 		 */
1457 		if (stats->running) {
1458 			u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1459 
1460 			stats->total_gt_clks += clk;
1461 		}
1462 		stats->prev_total = 0;
1463 		stats->running = 0;
1464 	}
1465 
1466 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1467 }
1468 
__update_guc_busyness_running_state(struct intel_guc * guc)1469 static void __update_guc_busyness_running_state(struct intel_guc *guc)
1470 {
1471 	struct intel_gt *gt = guc_to_gt(guc);
1472 	struct intel_engine_cs *engine;
1473 	enum intel_engine_id id;
1474 	unsigned long flags;
1475 
1476 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1477 	for_each_engine(engine, gt, id)
1478 		engine->stats.guc.running = false;
1479 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1480 }
1481 
__update_guc_busyness_stats(struct intel_guc * guc)1482 static void __update_guc_busyness_stats(struct intel_guc *guc)
1483 {
1484 	struct intel_gt *gt = guc_to_gt(guc);
1485 	struct intel_engine_cs *engine;
1486 	enum intel_engine_id id;
1487 	unsigned long flags;
1488 	ktime_t unused;
1489 
1490 	guc->timestamp.last_stat_jiffies = jiffies;
1491 
1492 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1493 
1494 	guc_update_pm_timestamp(guc, &unused);
1495 	for_each_engine(engine, gt, id)
1496 		guc_update_engine_gt_clks(engine);
1497 
1498 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1499 }
1500 
__guc_context_update_stats(struct intel_context * ce)1501 static void __guc_context_update_stats(struct intel_context *ce)
1502 {
1503 	struct intel_guc *guc = ce_to_guc(ce);
1504 	unsigned long flags;
1505 
1506 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1507 	lrc_update_runtime(ce);
1508 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1509 }
1510 
guc_context_update_stats(struct intel_context * ce)1511 static void guc_context_update_stats(struct intel_context *ce)
1512 {
1513 	if (!intel_context_pin_if_active(ce))
1514 		return;
1515 
1516 	__guc_context_update_stats(ce);
1517 	intel_context_unpin(ce);
1518 }
1519 
guc_timestamp_ping(struct work_struct * wrk)1520 static void guc_timestamp_ping(struct work_struct *wrk)
1521 {
1522 	struct intel_guc *guc = container_of(wrk, typeof(*guc),
1523 					     timestamp.work.work);
1524 	struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1525 	struct intel_gt *gt = guc_to_gt(guc);
1526 	struct intel_context *ce;
1527 	intel_wakeref_t wakeref;
1528 	unsigned long index;
1529 	int srcu, ret;
1530 
1531 	/*
1532 	 * Ideally the busyness worker should take a gt pm wakeref because the
1533 	 * worker only needs to be active while gt is awake. However, the
1534 	 * gt_park path cancels the worker synchronously and this complicates
1535 	 * the flow if the worker is also running at the same time. The cancel
1536 	 * waits for the worker and when the worker releases the wakeref, that
1537 	 * would call gt_park and would lead to a deadlock.
1538 	 *
1539 	 * The resolution is to take the global pm wakeref if runtime pm is
1540 	 * already active. If not, we don't need to update the busyness stats as
1541 	 * the stats would already be updated when the gt was parked.
1542 	 *
1543 	 * Note:
1544 	 * - We do not requeue the worker if we cannot take a reference to runtime
1545 	 *   pm since intel_guc_busyness_unpark would requeue the worker in the
1546 	 *   resume path.
1547 	 *
1548 	 * - If the gt was parked longer than time taken for GT timestamp to roll
1549 	 *   over, we ignore those rollovers since we don't care about tracking
1550 	 *   the exact GT time. We only care about roll overs when the gt is
1551 	 *   active and running workloads.
1552 	 *
1553 	 * - There is a window of time between gt_park and runtime suspend,
1554 	 *   where the worker may run. This is acceptable since the worker will
1555 	 *   not find any new data to update busyness.
1556 	 */
1557 	wakeref = intel_runtime_pm_get_if_active(&gt->i915->runtime_pm);
1558 	if (!wakeref)
1559 		return;
1560 
1561 	/*
1562 	 * Synchronize with gt reset to make sure the worker does not
1563 	 * corrupt the engine/guc stats. NB: can't actually block waiting
1564 	 * for a reset to complete as the reset requires flushing out
1565 	 * this worker thread if started. So waiting would deadlock.
1566 	 */
1567 	ret = intel_gt_reset_trylock(gt, &srcu);
1568 	if (ret)
1569 		goto err_trylock;
1570 
1571 	__update_guc_busyness_stats(guc);
1572 
1573 	/* adjust context stats for overflow */
1574 	xa_for_each(&guc->context_lookup, index, ce)
1575 		guc_context_update_stats(ce);
1576 
1577 	intel_gt_reset_unlock(gt, srcu);
1578 
1579 	guc_enable_busyness_worker(guc);
1580 
1581 err_trylock:
1582 	intel_runtime_pm_put(&gt->i915->runtime_pm, wakeref);
1583 }
1584 
guc_action_enable_usage_stats(struct intel_guc * guc)1585 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1586 {
1587 	struct intel_gt *gt = guc_to_gt(guc);
1588 	struct intel_engine_cs *engine;
1589 	enum intel_engine_id id;
1590 	u32 offset = intel_guc_engine_usage_offset(guc);
1591 	u32 action[] = {
1592 		INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1593 		offset,
1594 		0,
1595 	};
1596 
1597 	for_each_engine(engine, gt, id)
1598 		__set_engine_usage_record(engine, 0, 0xffffffff, 0);
1599 
1600 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
1601 }
1602 
guc_init_engine_stats(struct intel_guc * guc)1603 static int guc_init_engine_stats(struct intel_guc *guc)
1604 {
1605 	struct intel_gt *gt = guc_to_gt(guc);
1606 	intel_wakeref_t wakeref;
1607 	int ret;
1608 
1609 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
1610 		ret = guc_action_enable_usage_stats(guc);
1611 
1612 	if (ret)
1613 		guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret));
1614 	else
1615 		guc_enable_busyness_worker(guc);
1616 
1617 	return ret;
1618 }
1619 
guc_fini_engine_stats(struct intel_guc * guc)1620 static void guc_fini_engine_stats(struct intel_guc *guc)
1621 {
1622 	guc_cancel_busyness_worker(guc);
1623 }
1624 
intel_guc_busyness_park(struct intel_gt * gt)1625 void intel_guc_busyness_park(struct intel_gt *gt)
1626 {
1627 	struct intel_guc *guc = gt_to_guc(gt);
1628 
1629 	if (!guc_submission_initialized(guc))
1630 		return;
1631 
1632 	/* Assume no engines are running and set running state to false */
1633 	__update_guc_busyness_running_state(guc);
1634 
1635 	/*
1636 	 * There is a race with suspend flow where the worker runs after suspend
1637 	 * and causes an unclaimed register access warning. Cancel the worker
1638 	 * synchronously here.
1639 	 */
1640 	guc_cancel_busyness_worker(guc);
1641 
1642 	/*
1643 	 * Before parking, we should sample engine busyness stats if we need to.
1644 	 * We can skip it if we are less than half a ping from the last time we
1645 	 * sampled the busyness stats.
1646 	 */
1647 	if (guc->timestamp.last_stat_jiffies &&
1648 	    !time_after(jiffies, guc->timestamp.last_stat_jiffies +
1649 			(guc->timestamp.ping_delay / 2)))
1650 		return;
1651 
1652 	__update_guc_busyness_stats(guc);
1653 }
1654 
intel_guc_busyness_unpark(struct intel_gt * gt)1655 void intel_guc_busyness_unpark(struct intel_gt *gt)
1656 {
1657 	struct intel_guc *guc = gt_to_guc(gt);
1658 	unsigned long flags;
1659 	ktime_t unused;
1660 
1661 	if (!guc_submission_initialized(guc))
1662 		return;
1663 
1664 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1665 	guc_update_pm_timestamp(guc, &unused);
1666 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1667 	guc_enable_busyness_worker(guc);
1668 }
1669 
1670 static inline bool
submission_disabled(struct intel_guc * guc)1671 submission_disabled(struct intel_guc *guc)
1672 {
1673 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1674 
1675 	return unlikely(!sched_engine ||
1676 			!__tasklet_is_enabled(&sched_engine->tasklet) ||
1677 			intel_gt_is_wedged(guc_to_gt(guc)));
1678 }
1679 
disable_submission(struct intel_guc * guc)1680 static void disable_submission(struct intel_guc *guc)
1681 {
1682 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1683 
1684 	if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1685 		GEM_BUG_ON(!guc->ct.enabled);
1686 		__tasklet_disable_sync_once(&sched_engine->tasklet);
1687 		sched_engine->tasklet.callback = NULL;
1688 	}
1689 }
1690 
enable_submission(struct intel_guc * guc)1691 static void enable_submission(struct intel_guc *guc)
1692 {
1693 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1694 	unsigned long flags;
1695 
1696 	spin_lock_irqsave(&guc->sched_engine->lock, flags);
1697 	sched_engine->tasklet.callback = guc_submission_tasklet;
1698 	wmb();	/* Make sure callback visible */
1699 	if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1700 	    __tasklet_enable(&sched_engine->tasklet)) {
1701 		GEM_BUG_ON(!guc->ct.enabled);
1702 
1703 		/* And kick in case we missed a new request submission. */
1704 		tasklet_hi_schedule(&sched_engine->tasklet);
1705 	}
1706 	spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1707 }
1708 
guc_flush_submissions(struct intel_guc * guc)1709 static void guc_flush_submissions(struct intel_guc *guc)
1710 {
1711 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1712 	unsigned long flags;
1713 
1714 	spin_lock_irqsave(&sched_engine->lock, flags);
1715 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1716 }
1717 
intel_guc_submission_flush_work(struct intel_guc * guc)1718 void intel_guc_submission_flush_work(struct intel_guc *guc)
1719 {
1720 	flush_work(&guc->submission_state.destroyed_worker);
1721 }
1722 
1723 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1724 
intel_guc_submission_reset_prepare(struct intel_guc * guc)1725 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1726 {
1727 	if (unlikely(!guc_submission_initialized(guc))) {
1728 		/* Reset called during driver load? GuC not yet initialised! */
1729 		return;
1730 	}
1731 
1732 	intel_gt_park_heartbeats(guc_to_gt(guc));
1733 	disable_submission(guc);
1734 	guc->interrupts.disable(guc);
1735 	__reset_guc_busyness_stats(guc);
1736 
1737 	/* Flush IRQ handler */
1738 	spin_lock_irq(guc_to_gt(guc)->irq_lock);
1739 	spin_unlock_irq(guc_to_gt(guc)->irq_lock);
1740 
1741 	/* Flush tasklet */
1742 	tasklet_disable(&guc->ct.receive_tasklet);
1743 	tasklet_enable(&guc->ct.receive_tasklet);
1744 
1745 	guc_flush_submissions(guc);
1746 	guc_flush_destroyed_contexts(guc);
1747 	flush_work(&guc->ct.requests.worker);
1748 
1749 	scrub_guc_desc_for_outstanding_g2h(guc);
1750 }
1751 
1752 static struct intel_engine_cs *
guc_virtual_get_sibling(struct intel_engine_cs * ve,unsigned int sibling)1753 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1754 {
1755 	struct intel_engine_cs *engine;
1756 	intel_engine_mask_t tmp, mask = ve->mask;
1757 	unsigned int num_siblings = 0;
1758 
1759 	for_each_engine_masked(engine, ve->gt, mask, tmp)
1760 		if (num_siblings++ == sibling)
1761 			return engine;
1762 
1763 	return NULL;
1764 }
1765 
1766 static inline struct intel_engine_cs *
__context_to_physical_engine(struct intel_context * ce)1767 __context_to_physical_engine(struct intel_context *ce)
1768 {
1769 	struct intel_engine_cs *engine = ce->engine;
1770 
1771 	if (intel_engine_is_virtual(engine))
1772 		engine = guc_virtual_get_sibling(engine, 0);
1773 
1774 	return engine;
1775 }
1776 
guc_reset_state(struct intel_context * ce,u32 head,bool scrub)1777 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1778 {
1779 	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1780 
1781 	if (!intel_context_is_schedulable(ce))
1782 		return;
1783 
1784 	GEM_BUG_ON(!intel_context_is_pinned(ce));
1785 
1786 	/*
1787 	 * We want a simple context + ring to execute the breadcrumb update.
1788 	 * We cannot rely on the context being intact across the GPU hang,
1789 	 * so clear it and rebuild just what we need for the breadcrumb.
1790 	 * All pending requests for this context will be zapped, and any
1791 	 * future request will be after userspace has had the opportunity
1792 	 * to recreate its own state.
1793 	 */
1794 	if (scrub)
1795 		lrc_init_regs(ce, engine, true);
1796 
1797 	/* Rerun the request; its payload has been neutered (if guilty). */
1798 	lrc_update_regs(ce, engine, head);
1799 }
1800 
guc_engine_reset_prepare(struct intel_engine_cs * engine)1801 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1802 {
1803 	/*
1804 	 * Wa_22011802037: In addition to stopping the cs, we need
1805 	 * to wait for any pending mi force wakeups
1806 	 */
1807 	if (intel_engine_reset_needs_wa_22011802037(engine->gt)) {
1808 		intel_engine_stop_cs(engine);
1809 		intel_engine_wait_for_pending_mi_fw(engine);
1810 	}
1811 }
1812 
guc_reset_nop(struct intel_engine_cs * engine)1813 static void guc_reset_nop(struct intel_engine_cs *engine)
1814 {
1815 }
1816 
guc_rewind_nop(struct intel_engine_cs * engine,bool stalled)1817 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1818 {
1819 }
1820 
1821 static void
__unwind_incomplete_requests(struct intel_context * ce)1822 __unwind_incomplete_requests(struct intel_context *ce)
1823 {
1824 	struct i915_request *rq, *rn;
1825 	struct list_head *pl;
1826 	int prio = I915_PRIORITY_INVALID;
1827 	struct i915_sched_engine * const sched_engine =
1828 		ce->engine->sched_engine;
1829 	unsigned long flags;
1830 
1831 	spin_lock_irqsave(&sched_engine->lock, flags);
1832 	spin_lock(&ce->guc_state.lock);
1833 	list_for_each_entry_safe_reverse(rq, rn,
1834 					 &ce->guc_state.requests,
1835 					 sched.link) {
1836 		if (i915_request_completed(rq))
1837 			continue;
1838 
1839 		list_del_init(&rq->sched.link);
1840 		__i915_request_unsubmit(rq);
1841 
1842 		/* Push the request back into the queue for later resubmission. */
1843 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1844 		if (rq_prio(rq) != prio) {
1845 			prio = rq_prio(rq);
1846 			pl = i915_sched_lookup_priolist(sched_engine, prio);
1847 		}
1848 		GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1849 
1850 		list_add(&rq->sched.link, pl);
1851 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1852 	}
1853 	spin_unlock(&ce->guc_state.lock);
1854 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1855 }
1856 
__guc_reset_context(struct intel_context * ce,intel_engine_mask_t stalled)1857 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1858 {
1859 	bool guilty;
1860 	struct i915_request *rq;
1861 	unsigned long flags;
1862 	u32 head;
1863 	int i, number_children = ce->parallel.number_children;
1864 	struct intel_context *parent = ce;
1865 
1866 	GEM_BUG_ON(intel_context_is_child(ce));
1867 
1868 	intel_context_get(ce);
1869 
1870 	/*
1871 	 * GuC will implicitly mark the context as non-schedulable when it sends
1872 	 * the reset notification. Make sure our state reflects this change. The
1873 	 * context will be marked enabled on resubmission.
1874 	 */
1875 	spin_lock_irqsave(&ce->guc_state.lock, flags);
1876 	clr_context_enabled(ce);
1877 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1878 
1879 	/*
1880 	 * For each context in the relationship find the hanging request
1881 	 * resetting each context / request as needed
1882 	 */
1883 	for (i = 0; i < number_children + 1; ++i) {
1884 		if (!intel_context_is_pinned(ce))
1885 			goto next_context;
1886 
1887 		guilty = false;
1888 		rq = intel_context_get_active_request(ce);
1889 		if (!rq) {
1890 			head = ce->ring->tail;
1891 			goto out_replay;
1892 		}
1893 
1894 		if (i915_request_started(rq))
1895 			guilty = stalled & ce->engine->mask;
1896 
1897 		GEM_BUG_ON(i915_active_is_idle(&ce->active));
1898 		head = intel_ring_wrap(ce->ring, rq->head);
1899 
1900 		__i915_request_reset(rq, guilty);
1901 		i915_request_put(rq);
1902 out_replay:
1903 		guc_reset_state(ce, head, guilty);
1904 next_context:
1905 		if (i != number_children)
1906 			ce = list_next_entry(ce, parallel.child_link);
1907 	}
1908 
1909 	__unwind_incomplete_requests(parent);
1910 	intel_context_put(parent);
1911 }
1912 
wake_up_all_tlb_invalidate(struct intel_guc * guc)1913 void wake_up_all_tlb_invalidate(struct intel_guc *guc)
1914 {
1915 	struct intel_guc_tlb_wait *wait;
1916 	unsigned long i;
1917 
1918 	if (!intel_guc_tlb_invalidation_is_available(guc))
1919 		return;
1920 
1921 	xa_lock_irq(&guc->tlb_lookup);
1922 	xa_for_each(&guc->tlb_lookup, i, wait)
1923 		wake_up(&wait->wq);
1924 	xa_unlock_irq(&guc->tlb_lookup);
1925 }
1926 
intel_guc_submission_reset(struct intel_guc * guc,intel_engine_mask_t stalled)1927 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1928 {
1929 	struct intel_context *ce;
1930 	unsigned long index;
1931 	unsigned long flags;
1932 
1933 	if (unlikely(!guc_submission_initialized(guc))) {
1934 		/* Reset called during driver load? GuC not yet initialised! */
1935 		return;
1936 	}
1937 
1938 	xa_lock_irqsave(&guc->context_lookup, flags);
1939 	xa_for_each(&guc->context_lookup, index, ce) {
1940 		if (!kref_get_unless_zero(&ce->ref))
1941 			continue;
1942 
1943 		xa_unlock(&guc->context_lookup);
1944 
1945 		if (intel_context_is_pinned(ce) &&
1946 		    !intel_context_is_child(ce))
1947 			__guc_reset_context(ce, stalled);
1948 
1949 		intel_context_put(ce);
1950 
1951 		xa_lock(&guc->context_lookup);
1952 	}
1953 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1954 
1955 	/* GuC is blown away, drop all references to contexts */
1956 	xa_destroy(&guc->context_lookup);
1957 }
1958 
guc_cancel_context_requests(struct intel_context * ce)1959 static void guc_cancel_context_requests(struct intel_context *ce)
1960 {
1961 	struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1962 	struct i915_request *rq;
1963 	unsigned long flags;
1964 
1965 	/* Mark all executing requests as skipped. */
1966 	spin_lock_irqsave(&sched_engine->lock, flags);
1967 	spin_lock(&ce->guc_state.lock);
1968 	list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1969 		i915_request_put(i915_request_mark_eio(rq));
1970 	spin_unlock(&ce->guc_state.lock);
1971 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1972 }
1973 
1974 static void
guc_cancel_sched_engine_requests(struct i915_sched_engine * sched_engine)1975 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1976 {
1977 	struct i915_request *rq, *rn;
1978 	struct rb_node *rb;
1979 	unsigned long flags;
1980 
1981 	/* Can be called during boot if GuC fails to load */
1982 	if (!sched_engine)
1983 		return;
1984 
1985 	/*
1986 	 * Before we call engine->cancel_requests(), we should have exclusive
1987 	 * access to the submission state. This is arranged for us by the
1988 	 * caller disabling the interrupt generation, the tasklet and other
1989 	 * threads that may then access the same state, giving us a free hand
1990 	 * to reset state. However, we still need to let lockdep be aware that
1991 	 * we know this state may be accessed in hardirq context, so we
1992 	 * disable the irq around this manipulation and we want to keep
1993 	 * the spinlock focused on its duties and not accidentally conflate
1994 	 * coverage to the submission's irq state. (Similarly, although we
1995 	 * shouldn't need to disable irq around the manipulation of the
1996 	 * submission's irq state, we also wish to remind ourselves that
1997 	 * it is irq state.)
1998 	 */
1999 	spin_lock_irqsave(&sched_engine->lock, flags);
2000 
2001 	/* Flush the queued requests to the timeline list (for retiring). */
2002 	while ((rb = rb_first_cached(&sched_engine->queue))) {
2003 		struct i915_priolist *p = to_priolist(rb);
2004 
2005 		priolist_for_each_request_consume(rq, rn, p) {
2006 			list_del_init(&rq->sched.link);
2007 
2008 			__i915_request_submit(rq);
2009 
2010 			i915_request_put(i915_request_mark_eio(rq));
2011 		}
2012 
2013 		rb_erase_cached(&p->node, &sched_engine->queue);
2014 		i915_priolist_free(p);
2015 	}
2016 
2017 	/* Remaining _unready_ requests will be nop'ed when submitted */
2018 
2019 	sched_engine->queue_priority_hint = INT_MIN;
2020 	sched_engine->queue = RB_ROOT_CACHED;
2021 
2022 	spin_unlock_irqrestore(&sched_engine->lock, flags);
2023 }
2024 
intel_guc_submission_cancel_requests(struct intel_guc * guc)2025 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
2026 {
2027 	struct intel_context *ce;
2028 	unsigned long index;
2029 	unsigned long flags;
2030 
2031 	xa_lock_irqsave(&guc->context_lookup, flags);
2032 	xa_for_each(&guc->context_lookup, index, ce) {
2033 		if (!kref_get_unless_zero(&ce->ref))
2034 			continue;
2035 
2036 		xa_unlock(&guc->context_lookup);
2037 
2038 		if (intel_context_is_pinned(ce) &&
2039 		    !intel_context_is_child(ce))
2040 			guc_cancel_context_requests(ce);
2041 
2042 		intel_context_put(ce);
2043 
2044 		xa_lock(&guc->context_lookup);
2045 	}
2046 	xa_unlock_irqrestore(&guc->context_lookup, flags);
2047 
2048 	guc_cancel_sched_engine_requests(guc->sched_engine);
2049 
2050 	/* GuC is blown away, drop all references to contexts */
2051 	xa_destroy(&guc->context_lookup);
2052 
2053 	/*
2054 	 * Wedged GT won't respond to any TLB invalidation request. Simply
2055 	 * release all the blocked waiters.
2056 	 */
2057 	wake_up_all_tlb_invalidate(guc);
2058 }
2059 
intel_guc_submission_reset_finish(struct intel_guc * guc)2060 void intel_guc_submission_reset_finish(struct intel_guc *guc)
2061 {
2062 	int outstanding;
2063 
2064 	/* Reset called during driver load or during wedge? */
2065 	if (unlikely(!guc_submission_initialized(guc) ||
2066 		     !intel_guc_is_fw_running(guc) ||
2067 		     intel_gt_is_wedged(guc_to_gt(guc)))) {
2068 		return;
2069 	}
2070 
2071 	/*
2072 	 * Technically possible for either of these values to be non-zero here,
2073 	 * but very unlikely + harmless. Regardless let's add an error so we can
2074 	 * see in CI if this happens frequently / a precursor to taking down the
2075 	 * machine.
2076 	 */
2077 	outstanding = atomic_read(&guc->outstanding_submission_g2h);
2078 	if (outstanding)
2079 		guc_err(guc, "Unexpected outstanding GuC to Host response(s) in reset finish: %d\n",
2080 			outstanding);
2081 	atomic_set(&guc->outstanding_submission_g2h, 0);
2082 
2083 	intel_guc_global_policies_update(guc);
2084 	enable_submission(guc);
2085 	intel_gt_unpark_heartbeats(guc_to_gt(guc));
2086 
2087 	/*
2088 	 * The full GT reset will have cleared the TLB caches and flushed the
2089 	 * G2H message queue; we can release all the blocked waiters.
2090 	 */
2091 	wake_up_all_tlb_invalidate(guc);
2092 }
2093 
2094 static void destroyed_worker_func(struct work_struct *w);
2095 static void reset_fail_worker_func(struct work_struct *w);
2096 
intel_guc_tlb_invalidation_is_available(struct intel_guc * guc)2097 bool intel_guc_tlb_invalidation_is_available(struct intel_guc *guc)
2098 {
2099 	return HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915) &&
2100 		intel_guc_is_ready(guc);
2101 }
2102 
init_tlb_lookup(struct intel_guc * guc)2103 static int init_tlb_lookup(struct intel_guc *guc)
2104 {
2105 	struct intel_guc_tlb_wait *wait;
2106 	int err;
2107 
2108 	if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2109 		return 0;
2110 
2111 	xa_init_flags(&guc->tlb_lookup, XA_FLAGS_ALLOC);
2112 
2113 	wait = kzalloc(sizeof(*wait), GFP_KERNEL);
2114 	if (!wait)
2115 		return -ENOMEM;
2116 
2117 	init_waitqueue_head(&wait->wq);
2118 
2119 	/* Preallocate a shared id for use under memory pressure. */
2120 	err = xa_alloc_cyclic_irq(&guc->tlb_lookup, &guc->serial_slot, wait,
2121 				  xa_limit_32b, &guc->next_seqno, GFP_KERNEL);
2122 	if (err < 0) {
2123 		kfree(wait);
2124 		return err;
2125 	}
2126 
2127 	return 0;
2128 }
2129 
fini_tlb_lookup(struct intel_guc * guc)2130 static void fini_tlb_lookup(struct intel_guc *guc)
2131 {
2132 	struct intel_guc_tlb_wait *wait;
2133 
2134 	if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2135 		return;
2136 
2137 	wait = xa_load(&guc->tlb_lookup, guc->serial_slot);
2138 	if (wait && wait->busy)
2139 		guc_err(guc, "Unexpected busy item in tlb_lookup on fini\n");
2140 	kfree(wait);
2141 
2142 	xa_destroy(&guc->tlb_lookup);
2143 }
2144 
2145 /*
2146  * Set up the memory resources to be shared with the GuC (via the GGTT)
2147  * at firmware loading time.
2148  */
intel_guc_submission_init(struct intel_guc * guc)2149 int intel_guc_submission_init(struct intel_guc *guc)
2150 {
2151 	struct intel_gt *gt = guc_to_gt(guc);
2152 	int ret;
2153 
2154 	if (guc->submission_initialized)
2155 		return 0;
2156 
2157 	if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) {
2158 		ret = guc_lrc_desc_pool_create_v69(guc);
2159 		if (ret)
2160 			return ret;
2161 	}
2162 
2163 	ret = init_tlb_lookup(guc);
2164 	if (ret)
2165 		goto destroy_pool;
2166 
2167 	guc->submission_state.guc_ids_bitmap =
2168 		bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
2169 	if (!guc->submission_state.guc_ids_bitmap) {
2170 		ret = -ENOMEM;
2171 		goto destroy_tlb;
2172 	}
2173 
2174 	guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
2175 	guc->timestamp.shift = gpm_timestamp_shift(gt);
2176 	guc->submission_initialized = true;
2177 
2178 	return 0;
2179 
2180 destroy_tlb:
2181 	fini_tlb_lookup(guc);
2182 destroy_pool:
2183 	guc_lrc_desc_pool_destroy_v69(guc);
2184 	return ret;
2185 }
2186 
intel_guc_submission_fini(struct intel_guc * guc)2187 void intel_guc_submission_fini(struct intel_guc *guc)
2188 {
2189 	if (!guc->submission_initialized)
2190 		return;
2191 
2192 	guc_fini_engine_stats(guc);
2193 	guc_flush_destroyed_contexts(guc);
2194 	guc_lrc_desc_pool_destroy_v69(guc);
2195 	i915_sched_engine_put(guc->sched_engine);
2196 	bitmap_free(guc->submission_state.guc_ids_bitmap);
2197 	fini_tlb_lookup(guc);
2198 	guc->submission_initialized = false;
2199 }
2200 
queue_request(struct i915_sched_engine * sched_engine,struct i915_request * rq,int prio)2201 static inline void queue_request(struct i915_sched_engine *sched_engine,
2202 				 struct i915_request *rq,
2203 				 int prio)
2204 {
2205 	GEM_BUG_ON(!list_empty(&rq->sched.link));
2206 	list_add_tail(&rq->sched.link,
2207 		      i915_sched_lookup_priolist(sched_engine, prio));
2208 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2209 	tasklet_hi_schedule(&sched_engine->tasklet);
2210 }
2211 
guc_bypass_tasklet_submit(struct intel_guc * guc,struct i915_request * rq)2212 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
2213 				     struct i915_request *rq)
2214 {
2215 	int ret = 0;
2216 
2217 	__i915_request_submit(rq);
2218 
2219 	trace_i915_request_in(rq, 0);
2220 
2221 	if (is_multi_lrc_rq(rq)) {
2222 		if (multi_lrc_submit(rq)) {
2223 			ret = guc_wq_item_append(guc, rq);
2224 			if (!ret)
2225 				ret = guc_add_request(guc, rq);
2226 		}
2227 	} else {
2228 		guc_set_lrc_tail(rq);
2229 		ret = guc_add_request(guc, rq);
2230 	}
2231 
2232 	if (unlikely(ret == -EPIPE))
2233 		disable_submission(guc);
2234 
2235 	return ret;
2236 }
2237 
need_tasklet(struct intel_guc * guc,struct i915_request * rq)2238 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
2239 {
2240 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2241 	struct intel_context *ce = request_to_scheduling_context(rq);
2242 
2243 	return submission_disabled(guc) || guc->stalled_request ||
2244 		!i915_sched_engine_is_empty(sched_engine) ||
2245 		!ctx_id_mapped(guc, ce->guc_id.id);
2246 }
2247 
guc_submit_request(struct i915_request * rq)2248 static void guc_submit_request(struct i915_request *rq)
2249 {
2250 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2251 	struct intel_guc *guc = gt_to_guc(rq->engine->gt);
2252 	unsigned long flags;
2253 
2254 	/* Will be called from irq-context when using foreign fences. */
2255 	spin_lock_irqsave(&sched_engine->lock, flags);
2256 
2257 	if (need_tasklet(guc, rq))
2258 		queue_request(sched_engine, rq, rq_prio(rq));
2259 	else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
2260 		tasklet_hi_schedule(&sched_engine->tasklet);
2261 
2262 	spin_unlock_irqrestore(&sched_engine->lock, flags);
2263 }
2264 
new_guc_id(struct intel_guc * guc,struct intel_context * ce)2265 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
2266 {
2267 	int ret;
2268 
2269 	GEM_BUG_ON(intel_context_is_child(ce));
2270 
2271 	if (intel_context_is_parent(ce))
2272 		ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
2273 					      NUMBER_MULTI_LRC_GUC_ID(guc),
2274 					      order_base_2(ce->parallel.number_children
2275 							   + 1));
2276 	else
2277 		ret = ida_alloc_range(&guc->submission_state.guc_ids,
2278 				      NUMBER_MULTI_LRC_GUC_ID(guc),
2279 				      guc->submission_state.num_guc_ids - 1,
2280 				      GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
2281 	if (unlikely(ret < 0))
2282 		return ret;
2283 
2284 	if (!intel_context_is_parent(ce))
2285 		++guc->submission_state.guc_ids_in_use;
2286 
2287 	ce->guc_id.id = ret;
2288 	return 0;
2289 }
2290 
__release_guc_id(struct intel_guc * guc,struct intel_context * ce)2291 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2292 {
2293 	GEM_BUG_ON(intel_context_is_child(ce));
2294 
2295 	if (!context_guc_id_invalid(ce)) {
2296 		if (intel_context_is_parent(ce)) {
2297 			bitmap_release_region(guc->submission_state.guc_ids_bitmap,
2298 					      ce->guc_id.id,
2299 					      order_base_2(ce->parallel.number_children
2300 							   + 1));
2301 		} else {
2302 			--guc->submission_state.guc_ids_in_use;
2303 			ida_free(&guc->submission_state.guc_ids,
2304 				 ce->guc_id.id);
2305 		}
2306 		clr_ctx_id_mapping(guc, ce->guc_id.id);
2307 		set_context_guc_id_invalid(ce);
2308 	}
2309 	if (!list_empty(&ce->guc_id.link))
2310 		list_del_init(&ce->guc_id.link);
2311 }
2312 
release_guc_id(struct intel_guc * guc,struct intel_context * ce)2313 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2314 {
2315 	unsigned long flags;
2316 
2317 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2318 	__release_guc_id(guc, ce);
2319 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2320 }
2321 
steal_guc_id(struct intel_guc * guc,struct intel_context * ce)2322 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2323 {
2324 	struct intel_context *cn;
2325 
2326 	lockdep_assert_held(&guc->submission_state.lock);
2327 	GEM_BUG_ON(intel_context_is_child(ce));
2328 	GEM_BUG_ON(intel_context_is_parent(ce));
2329 
2330 	if (!list_empty(&guc->submission_state.guc_id_list)) {
2331 		cn = list_first_entry(&guc->submission_state.guc_id_list,
2332 				      struct intel_context,
2333 				      guc_id.link);
2334 
2335 		GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2336 		GEM_BUG_ON(context_guc_id_invalid(cn));
2337 		GEM_BUG_ON(intel_context_is_child(cn));
2338 		GEM_BUG_ON(intel_context_is_parent(cn));
2339 
2340 		list_del_init(&cn->guc_id.link);
2341 		ce->guc_id.id = cn->guc_id.id;
2342 
2343 		spin_lock(&cn->guc_state.lock);
2344 		clr_context_registered(cn);
2345 		spin_unlock(&cn->guc_state.lock);
2346 
2347 		set_context_guc_id_invalid(cn);
2348 
2349 #ifdef CONFIG_DRM_I915_SELFTEST
2350 		guc->number_guc_id_stolen++;
2351 #endif
2352 
2353 		return 0;
2354 	} else {
2355 		return -EAGAIN;
2356 	}
2357 }
2358 
assign_guc_id(struct intel_guc * guc,struct intel_context * ce)2359 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2360 {
2361 	int ret;
2362 
2363 	lockdep_assert_held(&guc->submission_state.lock);
2364 	GEM_BUG_ON(intel_context_is_child(ce));
2365 
2366 	ret = new_guc_id(guc, ce);
2367 	if (unlikely(ret < 0)) {
2368 		if (intel_context_is_parent(ce))
2369 			return -ENOSPC;
2370 
2371 		ret = steal_guc_id(guc, ce);
2372 		if (ret < 0)
2373 			return ret;
2374 	}
2375 
2376 	if (intel_context_is_parent(ce)) {
2377 		struct intel_context *child;
2378 		int i = 1;
2379 
2380 		for_each_child(ce, child)
2381 			child->guc_id.id = ce->guc_id.id + i++;
2382 	}
2383 
2384 	return 0;
2385 }
2386 
2387 #define PIN_GUC_ID_TRIES	4
pin_guc_id(struct intel_guc * guc,struct intel_context * ce)2388 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2389 {
2390 	int ret = 0;
2391 	unsigned long flags, tries = PIN_GUC_ID_TRIES;
2392 
2393 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2394 
2395 try_again:
2396 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2397 
2398 	might_lock(&ce->guc_state.lock);
2399 
2400 	if (context_guc_id_invalid(ce)) {
2401 		ret = assign_guc_id(guc, ce);
2402 		if (ret)
2403 			goto out_unlock;
2404 		ret = 1;	/* Indidcates newly assigned guc_id */
2405 	}
2406 	if (!list_empty(&ce->guc_id.link))
2407 		list_del_init(&ce->guc_id.link);
2408 	atomic_inc(&ce->guc_id.ref);
2409 
2410 out_unlock:
2411 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2412 
2413 	/*
2414 	 * -EAGAIN indicates no guc_id are available, let's retire any
2415 	 * outstanding requests to see if that frees up a guc_id. If the first
2416 	 * retire didn't help, insert a sleep with the timeslice duration before
2417 	 * attempting to retire more requests. Double the sleep period each
2418 	 * subsequent pass before finally giving up. The sleep period has max of
2419 	 * 100ms and minimum of 1ms.
2420 	 */
2421 	if (ret == -EAGAIN && --tries) {
2422 		if (PIN_GUC_ID_TRIES - tries > 1) {
2423 			unsigned int timeslice_shifted =
2424 				ce->engine->props.timeslice_duration_ms <<
2425 				(PIN_GUC_ID_TRIES - tries - 2);
2426 			unsigned int max = min_t(unsigned int, 100,
2427 						 timeslice_shifted);
2428 
2429 			msleep(max_t(unsigned int, max, 1));
2430 		}
2431 		intel_gt_retire_requests(guc_to_gt(guc));
2432 		goto try_again;
2433 	}
2434 
2435 	return ret;
2436 }
2437 
unpin_guc_id(struct intel_guc * guc,struct intel_context * ce)2438 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2439 {
2440 	unsigned long flags;
2441 
2442 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2443 	GEM_BUG_ON(intel_context_is_child(ce));
2444 
2445 	if (unlikely(context_guc_id_invalid(ce) ||
2446 		     intel_context_is_parent(ce)))
2447 		return;
2448 
2449 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2450 	if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2451 	    !atomic_read(&ce->guc_id.ref))
2452 		list_add_tail(&ce->guc_id.link,
2453 			      &guc->submission_state.guc_id_list);
2454 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2455 }
2456 
__guc_action_register_multi_lrc_v69(struct intel_guc * guc,struct intel_context * ce,u32 guc_id,u32 offset,bool loop)2457 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2458 					       struct intel_context *ce,
2459 					       u32 guc_id,
2460 					       u32 offset,
2461 					       bool loop)
2462 {
2463 	struct intel_context *child;
2464 	u32 action[4 + MAX_ENGINE_INSTANCE];
2465 	int len = 0;
2466 
2467 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2468 
2469 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2470 	action[len++] = guc_id;
2471 	action[len++] = ce->parallel.number_children + 1;
2472 	action[len++] = offset;
2473 	for_each_child(ce, child) {
2474 		offset += sizeof(struct guc_lrc_desc_v69);
2475 		action[len++] = offset;
2476 	}
2477 
2478 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2479 }
2480 
__guc_action_register_multi_lrc_v70(struct intel_guc * guc,struct intel_context * ce,struct guc_ctxt_registration_info * info,bool loop)2481 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2482 					       struct intel_context *ce,
2483 					       struct guc_ctxt_registration_info *info,
2484 					       bool loop)
2485 {
2486 	struct intel_context *child;
2487 	u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2488 	int len = 0;
2489 	u32 next_id;
2490 
2491 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2492 
2493 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2494 	action[len++] = info->flags;
2495 	action[len++] = info->context_idx;
2496 	action[len++] = info->engine_class;
2497 	action[len++] = info->engine_submit_mask;
2498 	action[len++] = info->wq_desc_lo;
2499 	action[len++] = info->wq_desc_hi;
2500 	action[len++] = info->wq_base_lo;
2501 	action[len++] = info->wq_base_hi;
2502 	action[len++] = info->wq_size;
2503 	action[len++] = ce->parallel.number_children + 1;
2504 	action[len++] = info->hwlrca_lo;
2505 	action[len++] = info->hwlrca_hi;
2506 
2507 	next_id = info->context_idx + 1;
2508 	for_each_child(ce, child) {
2509 		GEM_BUG_ON(next_id++ != child->guc_id.id);
2510 
2511 		/*
2512 		 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2513 		 * only supports 32 bit currently.
2514 		 */
2515 		action[len++] = lower_32_bits(child->lrc.lrca);
2516 		action[len++] = upper_32_bits(child->lrc.lrca);
2517 	}
2518 
2519 	GEM_BUG_ON(len > ARRAY_SIZE(action));
2520 
2521 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2522 }
2523 
__guc_action_register_context_v69(struct intel_guc * guc,u32 guc_id,u32 offset,bool loop)2524 static int __guc_action_register_context_v69(struct intel_guc *guc,
2525 					     u32 guc_id,
2526 					     u32 offset,
2527 					     bool loop)
2528 {
2529 	u32 action[] = {
2530 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2531 		guc_id,
2532 		offset,
2533 	};
2534 
2535 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2536 					     0, loop);
2537 }
2538 
__guc_action_register_context_v70(struct intel_guc * guc,struct guc_ctxt_registration_info * info,bool loop)2539 static int __guc_action_register_context_v70(struct intel_guc *guc,
2540 					     struct guc_ctxt_registration_info *info,
2541 					     bool loop)
2542 {
2543 	u32 action[] = {
2544 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2545 		info->flags,
2546 		info->context_idx,
2547 		info->engine_class,
2548 		info->engine_submit_mask,
2549 		info->wq_desc_lo,
2550 		info->wq_desc_hi,
2551 		info->wq_base_lo,
2552 		info->wq_base_hi,
2553 		info->wq_size,
2554 		info->hwlrca_lo,
2555 		info->hwlrca_hi,
2556 	};
2557 
2558 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2559 					     0, loop);
2560 }
2561 
2562 static void prepare_context_registration_info_v69(struct intel_context *ce);
2563 static void prepare_context_registration_info_v70(struct intel_context *ce,
2564 						  struct guc_ctxt_registration_info *info);
2565 
2566 static int
register_context_v69(struct intel_guc * guc,struct intel_context * ce,bool loop)2567 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2568 {
2569 	u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2570 		ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2571 
2572 	prepare_context_registration_info_v69(ce);
2573 
2574 	if (intel_context_is_parent(ce))
2575 		return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2576 							   offset, loop);
2577 	else
2578 		return __guc_action_register_context_v69(guc, ce->guc_id.id,
2579 							 offset, loop);
2580 }
2581 
2582 static int
register_context_v70(struct intel_guc * guc,struct intel_context * ce,bool loop)2583 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2584 {
2585 	struct guc_ctxt_registration_info info;
2586 
2587 	prepare_context_registration_info_v70(ce, &info);
2588 
2589 	if (intel_context_is_parent(ce))
2590 		return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2591 	else
2592 		return __guc_action_register_context_v70(guc, &info, loop);
2593 }
2594 
register_context(struct intel_context * ce,bool loop)2595 static int register_context(struct intel_context *ce, bool loop)
2596 {
2597 	struct intel_guc *guc = ce_to_guc(ce);
2598 	int ret;
2599 
2600 	GEM_BUG_ON(intel_context_is_child(ce));
2601 	trace_intel_context_register(ce);
2602 
2603 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2604 		ret = register_context_v70(guc, ce, loop);
2605 	else
2606 		ret = register_context_v69(guc, ce, loop);
2607 
2608 	if (likely(!ret)) {
2609 		unsigned long flags;
2610 
2611 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2612 		set_context_registered(ce);
2613 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2614 
2615 		if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2616 			guc_context_policy_init_v70(ce, loop);
2617 	}
2618 
2619 	return ret;
2620 }
2621 
__guc_action_deregister_context(struct intel_guc * guc,u32 guc_id)2622 static int __guc_action_deregister_context(struct intel_guc *guc,
2623 					   u32 guc_id)
2624 {
2625 	u32 action[] = {
2626 		INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2627 		guc_id,
2628 	};
2629 
2630 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2631 					     G2H_LEN_DW_DEREGISTER_CONTEXT,
2632 					     true);
2633 }
2634 
deregister_context(struct intel_context * ce,u32 guc_id)2635 static int deregister_context(struct intel_context *ce, u32 guc_id)
2636 {
2637 	struct intel_guc *guc = ce_to_guc(ce);
2638 
2639 	GEM_BUG_ON(intel_context_is_child(ce));
2640 	trace_intel_context_deregister(ce);
2641 
2642 	return __guc_action_deregister_context(guc, guc_id);
2643 }
2644 
clear_children_join_go_memory(struct intel_context * ce)2645 static inline void clear_children_join_go_memory(struct intel_context *ce)
2646 {
2647 	struct parent_scratch *ps = __get_parent_scratch(ce);
2648 	int i;
2649 
2650 	ps->go.semaphore = 0;
2651 	for (i = 0; i < ce->parallel.number_children + 1; ++i)
2652 		ps->join[i].semaphore = 0;
2653 }
2654 
get_children_go_value(struct intel_context * ce)2655 static inline u32 get_children_go_value(struct intel_context *ce)
2656 {
2657 	return __get_parent_scratch(ce)->go.semaphore;
2658 }
2659 
get_children_join_value(struct intel_context * ce,u8 child_index)2660 static inline u32 get_children_join_value(struct intel_context *ce,
2661 					  u8 child_index)
2662 {
2663 	return __get_parent_scratch(ce)->join[child_index].semaphore;
2664 }
2665 
2666 struct context_policy {
2667 	u32 count;
2668 	struct guc_update_context_policy h2g;
2669 };
2670 
__guc_context_policy_action_size(struct context_policy * policy)2671 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2672 {
2673 	size_t bytes = sizeof(policy->h2g.header) +
2674 		       (sizeof(policy->h2g.klv[0]) * policy->count);
2675 
2676 	return bytes / sizeof(u32);
2677 }
2678 
__guc_context_policy_start_klv(struct context_policy * policy,u16 guc_id)2679 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2680 {
2681 	policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2682 	policy->h2g.header.ctx_id = guc_id;
2683 	policy->count = 0;
2684 }
2685 
2686 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2687 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2688 { \
2689 	GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2690 	policy->h2g.klv[policy->count].kl = \
2691 		FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2692 		FIELD_PREP(GUC_KLV_0_LEN, 1); \
2693 	policy->h2g.klv[policy->count].value = data; \
2694 	policy->count++; \
2695 }
2696 
MAKE_CONTEXT_POLICY_ADD(execution_quantum,EXECUTION_QUANTUM)2697 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2698 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2699 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2700 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2701 MAKE_CONTEXT_POLICY_ADD(slpc_ctx_freq_req, SLPM_GT_FREQUENCY)
2702 
2703 #undef MAKE_CONTEXT_POLICY_ADD
2704 
2705 static int __guc_context_set_context_policies(struct intel_guc *guc,
2706 					      struct context_policy *policy,
2707 					      bool loop)
2708 {
2709 	return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2710 					__guc_context_policy_action_size(policy),
2711 					0, loop);
2712 }
2713 
guc_context_policy_init_v70(struct intel_context * ce,bool loop)2714 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2715 {
2716 	struct intel_engine_cs *engine = ce->engine;
2717 	struct intel_guc *guc = gt_to_guc(engine->gt);
2718 	struct context_policy policy;
2719 	u32 execution_quantum;
2720 	u32 preemption_timeout;
2721 	u32 slpc_ctx_freq_req = 0;
2722 	unsigned long flags;
2723 	int ret;
2724 
2725 	/* NB: For both of these, zero means disabled. */
2726 	GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2727 				  execution_quantum));
2728 	GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2729 				  preemption_timeout));
2730 	execution_quantum = engine->props.timeslice_duration_ms * 1000;
2731 	preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2732 
2733 	if (ce->flags & BIT(CONTEXT_LOW_LATENCY))
2734 		slpc_ctx_freq_req |= SLPC_CTX_FREQ_REQ_IS_COMPUTE;
2735 
2736 	__guc_context_policy_start_klv(&policy, ce->guc_id.id);
2737 
2738 	__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2739 	__guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2740 	__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2741 	__guc_context_policy_add_slpc_ctx_freq_req(&policy, slpc_ctx_freq_req);
2742 
2743 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2744 		__guc_context_policy_add_preempt_to_idle(&policy, 1);
2745 
2746 	ret = __guc_context_set_context_policies(guc, &policy, loop);
2747 
2748 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2749 	if (ret != 0)
2750 		set_context_policy_required(ce);
2751 	else
2752 		clr_context_policy_required(ce);
2753 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2754 
2755 	return ret;
2756 }
2757 
guc_context_policy_init_v69(struct intel_engine_cs * engine,struct guc_lrc_desc_v69 * desc)2758 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2759 					struct guc_lrc_desc_v69 *desc)
2760 {
2761 	desc->policy_flags = 0;
2762 
2763 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2764 		desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2765 
2766 	/* NB: For both of these, zero means disabled. */
2767 	GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2768 				  desc->execution_quantum));
2769 	GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2770 				  desc->preemption_timeout));
2771 	desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2772 	desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2773 }
2774 
map_guc_prio_to_lrc_desc_prio(u8 prio)2775 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2776 {
2777 	/*
2778 	 * this matches the mapping we do in map_i915_prio_to_guc_prio()
2779 	 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2780 	 */
2781 	switch (prio) {
2782 	default:
2783 		MISSING_CASE(prio);
2784 		fallthrough;
2785 	case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2786 		return GEN12_CTX_PRIORITY_NORMAL;
2787 	case GUC_CLIENT_PRIORITY_NORMAL:
2788 		return GEN12_CTX_PRIORITY_LOW;
2789 	case GUC_CLIENT_PRIORITY_HIGH:
2790 	case GUC_CLIENT_PRIORITY_KMD_HIGH:
2791 		return GEN12_CTX_PRIORITY_HIGH;
2792 	}
2793 }
2794 
prepare_context_registration_info_v69(struct intel_context * ce)2795 static void prepare_context_registration_info_v69(struct intel_context *ce)
2796 {
2797 	struct intel_engine_cs *engine = ce->engine;
2798 	struct intel_guc *guc = gt_to_guc(engine->gt);
2799 	u32 ctx_id = ce->guc_id.id;
2800 	struct guc_lrc_desc_v69 *desc;
2801 	struct intel_context *child;
2802 
2803 	GEM_BUG_ON(!engine->mask);
2804 
2805 	/*
2806 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2807 	 * based on CT vma region.
2808 	 */
2809 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2810 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2811 
2812 	desc = __get_lrc_desc_v69(guc, ctx_id);
2813 	GEM_BUG_ON(!desc);
2814 	desc->engine_class = engine_class_to_guc_class(engine->class);
2815 	desc->engine_submit_mask = engine->logical_mask;
2816 	desc->hw_context_desc = ce->lrc.lrca;
2817 	desc->priority = ce->guc_state.prio;
2818 	desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2819 	guc_context_policy_init_v69(engine, desc);
2820 
2821 	/*
2822 	 * If context is a parent, we need to register a process descriptor
2823 	 * describing a work queue and register all child contexts.
2824 	 */
2825 	if (intel_context_is_parent(ce)) {
2826 		struct guc_process_desc_v69 *pdesc;
2827 
2828 		ce->parallel.guc.wqi_tail = 0;
2829 		ce->parallel.guc.wqi_head = 0;
2830 
2831 		desc->process_desc = i915_ggtt_offset(ce->state) +
2832 			__get_parent_scratch_offset(ce);
2833 		desc->wq_addr = i915_ggtt_offset(ce->state) +
2834 			__get_wq_offset(ce);
2835 		desc->wq_size = WQ_SIZE;
2836 
2837 		pdesc = __get_process_desc_v69(ce);
2838 		memset(pdesc, 0, sizeof(*(pdesc)));
2839 		pdesc->stage_id = ce->guc_id.id;
2840 		pdesc->wq_base_addr = desc->wq_addr;
2841 		pdesc->wq_size_bytes = desc->wq_size;
2842 		pdesc->wq_status = WQ_STATUS_ACTIVE;
2843 
2844 		ce->parallel.guc.wq_head = &pdesc->head;
2845 		ce->parallel.guc.wq_tail = &pdesc->tail;
2846 		ce->parallel.guc.wq_status = &pdesc->wq_status;
2847 
2848 		for_each_child(ce, child) {
2849 			desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2850 
2851 			desc->engine_class =
2852 				engine_class_to_guc_class(engine->class);
2853 			desc->hw_context_desc = child->lrc.lrca;
2854 			desc->priority = ce->guc_state.prio;
2855 			desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2856 			guc_context_policy_init_v69(engine, desc);
2857 		}
2858 
2859 		clear_children_join_go_memory(ce);
2860 	}
2861 }
2862 
prepare_context_registration_info_v70(struct intel_context * ce,struct guc_ctxt_registration_info * info)2863 static void prepare_context_registration_info_v70(struct intel_context *ce,
2864 						  struct guc_ctxt_registration_info *info)
2865 {
2866 	struct intel_engine_cs *engine = ce->engine;
2867 	struct intel_guc *guc = gt_to_guc(engine->gt);
2868 	u32 ctx_id = ce->guc_id.id;
2869 
2870 	GEM_BUG_ON(!engine->mask);
2871 
2872 	/*
2873 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2874 	 * based on CT vma region.
2875 	 */
2876 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2877 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2878 
2879 	memset(info, 0, sizeof(*info));
2880 	info->context_idx = ctx_id;
2881 	info->engine_class = engine_class_to_guc_class(engine->class);
2882 	info->engine_submit_mask = engine->logical_mask;
2883 	/*
2884 	 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2885 	 * only supports 32 bit currently.
2886 	 */
2887 	info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2888 	info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2889 	if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2890 		info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2891 	info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2892 
2893 	/*
2894 	 * If context is a parent, we need to register a process descriptor
2895 	 * describing a work queue and register all child contexts.
2896 	 */
2897 	if (intel_context_is_parent(ce)) {
2898 		struct guc_sched_wq_desc *wq_desc;
2899 		u64 wq_desc_offset, wq_base_offset;
2900 
2901 		ce->parallel.guc.wqi_tail = 0;
2902 		ce->parallel.guc.wqi_head = 0;
2903 
2904 		wq_desc_offset = (u64)i915_ggtt_offset(ce->state) +
2905 				 __get_parent_scratch_offset(ce);
2906 		wq_base_offset = (u64)i915_ggtt_offset(ce->state) +
2907 				 __get_wq_offset(ce);
2908 		info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2909 		info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2910 		info->wq_base_lo = lower_32_bits(wq_base_offset);
2911 		info->wq_base_hi = upper_32_bits(wq_base_offset);
2912 		info->wq_size = WQ_SIZE;
2913 
2914 		wq_desc = __get_wq_desc_v70(ce);
2915 		memset(wq_desc, 0, sizeof(*wq_desc));
2916 		wq_desc->wq_status = WQ_STATUS_ACTIVE;
2917 
2918 		ce->parallel.guc.wq_head = &wq_desc->head;
2919 		ce->parallel.guc.wq_tail = &wq_desc->tail;
2920 		ce->parallel.guc.wq_status = &wq_desc->wq_status;
2921 
2922 		clear_children_join_go_memory(ce);
2923 	}
2924 }
2925 
try_context_registration(struct intel_context * ce,bool loop)2926 static int try_context_registration(struct intel_context *ce, bool loop)
2927 {
2928 	struct intel_engine_cs *engine = ce->engine;
2929 	struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2930 	struct intel_guc *guc = gt_to_guc(engine->gt);
2931 	intel_wakeref_t wakeref;
2932 	u32 ctx_id = ce->guc_id.id;
2933 	bool context_registered;
2934 	int ret = 0;
2935 
2936 	GEM_BUG_ON(!sched_state_is_init(ce));
2937 
2938 	context_registered = ctx_id_mapped(guc, ctx_id);
2939 
2940 	clr_ctx_id_mapping(guc, ctx_id);
2941 	set_ctx_id_mapping(guc, ctx_id, ce);
2942 
2943 	/*
2944 	 * The context_lookup xarray is used to determine if the hardware
2945 	 * context is currently registered. There are two cases in which it
2946 	 * could be registered either the guc_id has been stolen from another
2947 	 * context or the lrc descriptor address of this context has changed. In
2948 	 * either case the context needs to be deregistered with the GuC before
2949 	 * registering this context.
2950 	 */
2951 	if (context_registered) {
2952 		bool disabled;
2953 		unsigned long flags;
2954 
2955 		trace_intel_context_steal_guc_id(ce);
2956 		GEM_BUG_ON(!loop);
2957 
2958 		/* Seal race with Reset */
2959 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2960 		disabled = submission_disabled(guc);
2961 		if (likely(!disabled)) {
2962 			set_context_wait_for_deregister_to_register(ce);
2963 			intel_context_get(ce);
2964 		}
2965 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2966 		if (unlikely(disabled)) {
2967 			clr_ctx_id_mapping(guc, ctx_id);
2968 			return 0;	/* Will get registered later */
2969 		}
2970 
2971 		/*
2972 		 * If stealing the guc_id, this ce has the same guc_id as the
2973 		 * context whose guc_id was stolen.
2974 		 */
2975 		with_intel_runtime_pm(runtime_pm, wakeref)
2976 			ret = deregister_context(ce, ce->guc_id.id);
2977 		if (unlikely(ret == -ENODEV))
2978 			ret = 0;	/* Will get registered later */
2979 	} else {
2980 		with_intel_runtime_pm(runtime_pm, wakeref)
2981 			ret = register_context(ce, loop);
2982 		if (unlikely(ret == -EBUSY)) {
2983 			clr_ctx_id_mapping(guc, ctx_id);
2984 		} else if (unlikely(ret == -ENODEV)) {
2985 			clr_ctx_id_mapping(guc, ctx_id);
2986 			ret = 0;	/* Will get registered later */
2987 		}
2988 	}
2989 
2990 	return ret;
2991 }
2992 
__guc_context_pre_pin(struct intel_context * ce,struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,void ** vaddr)2993 static int __guc_context_pre_pin(struct intel_context *ce,
2994 				 struct intel_engine_cs *engine,
2995 				 struct i915_gem_ww_ctx *ww,
2996 				 void **vaddr)
2997 {
2998 	return lrc_pre_pin(ce, engine, ww, vaddr);
2999 }
3000 
__guc_context_pin(struct intel_context * ce,struct intel_engine_cs * engine,void * vaddr)3001 static int __guc_context_pin(struct intel_context *ce,
3002 			     struct intel_engine_cs *engine,
3003 			     void *vaddr)
3004 {
3005 	if (i915_ggtt_offset(ce->state) !=
3006 	    (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
3007 		set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3008 
3009 	/*
3010 	 * GuC context gets pinned in guc_request_alloc. See that function for
3011 	 * explanation of why.
3012 	 */
3013 
3014 	return lrc_pin(ce, engine, vaddr);
3015 }
3016 
guc_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)3017 static int guc_context_pre_pin(struct intel_context *ce,
3018 			       struct i915_gem_ww_ctx *ww,
3019 			       void **vaddr)
3020 {
3021 	return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
3022 }
3023 
guc_context_pin(struct intel_context * ce,void * vaddr)3024 static int guc_context_pin(struct intel_context *ce, void *vaddr)
3025 {
3026 	int ret = __guc_context_pin(ce, ce->engine, vaddr);
3027 
3028 	if (likely(!ret && !intel_context_is_barrier(ce)))
3029 		intel_engine_pm_get(ce->engine);
3030 
3031 	return ret;
3032 }
3033 
guc_context_unpin(struct intel_context * ce)3034 static void guc_context_unpin(struct intel_context *ce)
3035 {
3036 	struct intel_guc *guc = ce_to_guc(ce);
3037 
3038 	__guc_context_update_stats(ce);
3039 	unpin_guc_id(guc, ce);
3040 	lrc_unpin(ce);
3041 
3042 	if (likely(!intel_context_is_barrier(ce)))
3043 		intel_engine_pm_put_async(ce->engine);
3044 }
3045 
guc_context_post_unpin(struct intel_context * ce)3046 static void guc_context_post_unpin(struct intel_context *ce)
3047 {
3048 	lrc_post_unpin(ce);
3049 }
3050 
__guc_context_sched_enable(struct intel_guc * guc,struct intel_context * ce)3051 static void __guc_context_sched_enable(struct intel_guc *guc,
3052 				       struct intel_context *ce)
3053 {
3054 	u32 action[] = {
3055 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
3056 		ce->guc_id.id,
3057 		GUC_CONTEXT_ENABLE
3058 	};
3059 
3060 	trace_intel_context_sched_enable(ce);
3061 
3062 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
3063 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
3064 }
3065 
__guc_context_sched_disable(struct intel_guc * guc,struct intel_context * ce,u16 guc_id)3066 static void __guc_context_sched_disable(struct intel_guc *guc,
3067 					struct intel_context *ce,
3068 					u16 guc_id)
3069 {
3070 	u32 action[] = {
3071 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
3072 		guc_id,	/* ce->guc_id.id not stable */
3073 		GUC_CONTEXT_DISABLE
3074 	};
3075 
3076 	GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
3077 
3078 	GEM_BUG_ON(intel_context_is_child(ce));
3079 	trace_intel_context_sched_disable(ce);
3080 
3081 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
3082 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
3083 }
3084 
guc_blocked_fence_complete(struct intel_context * ce)3085 static void guc_blocked_fence_complete(struct intel_context *ce)
3086 {
3087 	lockdep_assert_held(&ce->guc_state.lock);
3088 
3089 	if (!i915_sw_fence_done(&ce->guc_state.blocked))
3090 		i915_sw_fence_complete(&ce->guc_state.blocked);
3091 }
3092 
guc_blocked_fence_reinit(struct intel_context * ce)3093 static void guc_blocked_fence_reinit(struct intel_context *ce)
3094 {
3095 	lockdep_assert_held(&ce->guc_state.lock);
3096 	GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
3097 
3098 	/*
3099 	 * This fence is always complete unless a pending schedule disable is
3100 	 * outstanding. We arm the fence here and complete it when we receive
3101 	 * the pending schedule disable complete message.
3102 	 */
3103 	i915_sw_fence_fini(&ce->guc_state.blocked);
3104 	i915_sw_fence_reinit(&ce->guc_state.blocked);
3105 	i915_sw_fence_await(&ce->guc_state.blocked);
3106 	i915_sw_fence_commit(&ce->guc_state.blocked);
3107 }
3108 
prep_context_pending_disable(struct intel_context * ce)3109 static u16 prep_context_pending_disable(struct intel_context *ce)
3110 {
3111 	lockdep_assert_held(&ce->guc_state.lock);
3112 
3113 	set_context_pending_disable(ce);
3114 	clr_context_enabled(ce);
3115 	guc_blocked_fence_reinit(ce);
3116 	intel_context_get(ce);
3117 
3118 	return ce->guc_id.id;
3119 }
3120 
guc_context_block(struct intel_context * ce)3121 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
3122 {
3123 	struct intel_guc *guc = ce_to_guc(ce);
3124 	unsigned long flags;
3125 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3126 	intel_wakeref_t wakeref;
3127 	u16 guc_id;
3128 	bool enabled;
3129 
3130 	GEM_BUG_ON(intel_context_is_child(ce));
3131 
3132 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3133 
3134 	incr_context_blocked(ce);
3135 
3136 	enabled = context_enabled(ce);
3137 	if (unlikely(!enabled || submission_disabled(guc))) {
3138 		if (enabled)
3139 			clr_context_enabled(ce);
3140 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3141 		return &ce->guc_state.blocked;
3142 	}
3143 
3144 	/*
3145 	 * We add +2 here as the schedule disable complete CTB handler calls
3146 	 * intel_context_sched_disable_unpin (-2 to pin_count).
3147 	 */
3148 	atomic_add(2, &ce->pin_count);
3149 
3150 	guc_id = prep_context_pending_disable(ce);
3151 
3152 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3153 
3154 	with_intel_runtime_pm(runtime_pm, wakeref)
3155 		__guc_context_sched_disable(guc, ce, guc_id);
3156 
3157 	return &ce->guc_state.blocked;
3158 }
3159 
3160 #define SCHED_STATE_MULTI_BLOCKED_MASK \
3161 	(SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
3162 #define SCHED_STATE_NO_UNBLOCK \
3163 	(SCHED_STATE_MULTI_BLOCKED_MASK | \
3164 	 SCHED_STATE_PENDING_DISABLE | \
3165 	 SCHED_STATE_BANNED)
3166 
context_cant_unblock(struct intel_context * ce)3167 static bool context_cant_unblock(struct intel_context *ce)
3168 {
3169 	lockdep_assert_held(&ce->guc_state.lock);
3170 
3171 	return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
3172 		context_guc_id_invalid(ce) ||
3173 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
3174 		!intel_context_is_pinned(ce);
3175 }
3176 
guc_context_unblock(struct intel_context * ce)3177 static void guc_context_unblock(struct intel_context *ce)
3178 {
3179 	struct intel_guc *guc = ce_to_guc(ce);
3180 	unsigned long flags;
3181 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3182 	intel_wakeref_t wakeref;
3183 	bool enable;
3184 
3185 	GEM_BUG_ON(context_enabled(ce));
3186 	GEM_BUG_ON(intel_context_is_child(ce));
3187 
3188 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3189 
3190 	if (unlikely(submission_disabled(guc) ||
3191 		     context_cant_unblock(ce))) {
3192 		enable = false;
3193 	} else {
3194 		enable = true;
3195 		set_context_pending_enable(ce);
3196 		set_context_enabled(ce);
3197 		intel_context_get(ce);
3198 	}
3199 
3200 	decr_context_blocked(ce);
3201 
3202 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3203 
3204 	if (enable) {
3205 		with_intel_runtime_pm(runtime_pm, wakeref)
3206 			__guc_context_sched_enable(guc, ce);
3207 	}
3208 }
3209 
guc_context_cancel_request(struct intel_context * ce,struct i915_request * rq)3210 static void guc_context_cancel_request(struct intel_context *ce,
3211 				       struct i915_request *rq)
3212 {
3213 	struct intel_context *block_context =
3214 		request_to_scheduling_context(rq);
3215 
3216 	if (i915_sw_fence_signaled(&rq->submit)) {
3217 		struct i915_sw_fence *fence;
3218 
3219 		intel_context_get(ce);
3220 		fence = guc_context_block(block_context);
3221 		i915_sw_fence_wait(fence);
3222 		if (!i915_request_completed(rq)) {
3223 			__i915_request_skip(rq);
3224 			guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
3225 					true);
3226 		}
3227 
3228 		guc_context_unblock(block_context);
3229 		intel_context_put(ce);
3230 	}
3231 }
3232 
__guc_context_set_preemption_timeout(struct intel_guc * guc,u16 guc_id,u32 preemption_timeout)3233 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
3234 						 u16 guc_id,
3235 						 u32 preemption_timeout)
3236 {
3237 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3238 		struct context_policy policy;
3239 
3240 		__guc_context_policy_start_klv(&policy, guc_id);
3241 		__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
3242 		__guc_context_set_context_policies(guc, &policy, true);
3243 	} else {
3244 		u32 action[] = {
3245 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
3246 			guc_id,
3247 			preemption_timeout
3248 		};
3249 
3250 		intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3251 	}
3252 }
3253 
3254 static void
guc_context_revoke(struct intel_context * ce,struct i915_request * rq,unsigned int preempt_timeout_ms)3255 guc_context_revoke(struct intel_context *ce, struct i915_request *rq,
3256 		   unsigned int preempt_timeout_ms)
3257 {
3258 	struct intel_guc *guc = ce_to_guc(ce);
3259 	struct intel_runtime_pm *runtime_pm =
3260 		&ce->engine->gt->i915->runtime_pm;
3261 	intel_wakeref_t wakeref;
3262 	unsigned long flags;
3263 
3264 	GEM_BUG_ON(intel_context_is_child(ce));
3265 
3266 	guc_flush_submissions(guc);
3267 
3268 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3269 	set_context_banned(ce);
3270 
3271 	if (submission_disabled(guc) ||
3272 	    (!context_enabled(ce) && !context_pending_disable(ce))) {
3273 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3274 
3275 		guc_cancel_context_requests(ce);
3276 		intel_engine_signal_breadcrumbs(ce->engine);
3277 	} else if (!context_pending_disable(ce)) {
3278 		u16 guc_id;
3279 
3280 		/*
3281 		 * We add +2 here as the schedule disable complete CTB handler
3282 		 * calls intel_context_sched_disable_unpin (-2 to pin_count).
3283 		 */
3284 		atomic_add(2, &ce->pin_count);
3285 
3286 		guc_id = prep_context_pending_disable(ce);
3287 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3288 
3289 		/*
3290 		 * In addition to disabling scheduling, set the preemption
3291 		 * timeout to the minimum value (1 us) so the banned context
3292 		 * gets kicked off the HW ASAP.
3293 		 */
3294 		with_intel_runtime_pm(runtime_pm, wakeref) {
3295 			__guc_context_set_preemption_timeout(guc, guc_id,
3296 							     preempt_timeout_ms);
3297 			__guc_context_sched_disable(guc, ce, guc_id);
3298 		}
3299 	} else {
3300 		if (!context_guc_id_invalid(ce))
3301 			with_intel_runtime_pm(runtime_pm, wakeref)
3302 				__guc_context_set_preemption_timeout(guc,
3303 								     ce->guc_id.id,
3304 								     preempt_timeout_ms);
3305 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3306 	}
3307 }
3308 
do_sched_disable(struct intel_guc * guc,struct intel_context * ce,unsigned long flags)3309 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce,
3310 			     unsigned long flags)
3311 	__releases(ce->guc_state.lock)
3312 {
3313 	struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3314 	intel_wakeref_t wakeref;
3315 	u16 guc_id;
3316 
3317 	lockdep_assert_held(&ce->guc_state.lock);
3318 	guc_id = prep_context_pending_disable(ce);
3319 
3320 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3321 
3322 	with_intel_runtime_pm(runtime_pm, wakeref)
3323 		__guc_context_sched_disable(guc, ce, guc_id);
3324 }
3325 
bypass_sched_disable(struct intel_guc * guc,struct intel_context * ce)3326 static bool bypass_sched_disable(struct intel_guc *guc,
3327 				 struct intel_context *ce)
3328 {
3329 	lockdep_assert_held(&ce->guc_state.lock);
3330 	GEM_BUG_ON(intel_context_is_child(ce));
3331 
3332 	if (submission_disabled(guc) || context_guc_id_invalid(ce) ||
3333 	    !ctx_id_mapped(guc, ce->guc_id.id)) {
3334 		clr_context_enabled(ce);
3335 		return true;
3336 	}
3337 
3338 	return !context_enabled(ce);
3339 }
3340 
__delay_sched_disable(struct work_struct * wrk)3341 static void __delay_sched_disable(struct work_struct *wrk)
3342 {
3343 	struct intel_context *ce =
3344 		container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work);
3345 	struct intel_guc *guc = ce_to_guc(ce);
3346 	unsigned long flags;
3347 
3348 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3349 
3350 	if (bypass_sched_disable(guc, ce)) {
3351 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3352 		intel_context_sched_disable_unpin(ce);
3353 	} else {
3354 		do_sched_disable(guc, ce, flags);
3355 	}
3356 }
3357 
guc_id_pressure(struct intel_guc * guc,struct intel_context * ce)3358 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce)
3359 {
3360 	/*
3361 	 * parent contexts are perma-pinned, if we are unpinning do schedule
3362 	 * disable immediately.
3363 	 */
3364 	if (intel_context_is_parent(ce))
3365 		return true;
3366 
3367 	/*
3368 	 * If we are beyond the threshold for avail guc_ids, do schedule disable immediately.
3369 	 */
3370 	return guc->submission_state.guc_ids_in_use >
3371 		guc->submission_state.sched_disable_gucid_threshold;
3372 }
3373 
guc_context_sched_disable(struct intel_context * ce)3374 static void guc_context_sched_disable(struct intel_context *ce)
3375 {
3376 	struct intel_guc *guc = ce_to_guc(ce);
3377 	u64 delay = guc->submission_state.sched_disable_delay_ms;
3378 	unsigned long flags;
3379 
3380 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3381 
3382 	if (bypass_sched_disable(guc, ce)) {
3383 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3384 		intel_context_sched_disable_unpin(ce);
3385 	} else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) &&
3386 		   delay) {
3387 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3388 		mod_delayed_work(system_unbound_wq,
3389 				 &ce->guc_state.sched_disable_delay_work,
3390 				 msecs_to_jiffies(delay));
3391 	} else {
3392 		do_sched_disable(guc, ce, flags);
3393 	}
3394 }
3395 
guc_context_close(struct intel_context * ce)3396 static void guc_context_close(struct intel_context *ce)
3397 {
3398 	unsigned long flags;
3399 
3400 	if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
3401 	    cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))
3402 		__delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work);
3403 
3404 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3405 	set_context_close_done(ce);
3406 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3407 }
3408 
guc_lrc_desc_unpin(struct intel_context * ce)3409 static inline int guc_lrc_desc_unpin(struct intel_context *ce)
3410 {
3411 	struct intel_guc *guc = ce_to_guc(ce);
3412 	struct intel_gt *gt = guc_to_gt(guc);
3413 	unsigned long flags;
3414 	bool disabled;
3415 	int ret;
3416 
3417 	GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3418 	GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3419 	GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3420 	GEM_BUG_ON(context_enabled(ce));
3421 
3422 	/* Seal race with Reset */
3423 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3424 	disabled = submission_disabled(guc);
3425 	if (likely(!disabled)) {
3426 		/*
3427 		 * Take a gt-pm ref and change context state to be destroyed.
3428 		 * NOTE: a G2H IRQ that comes after will put this gt-pm ref back
3429 		 */
3430 		__intel_gt_pm_get(gt);
3431 		set_context_destroyed(ce);
3432 		clr_context_registered(ce);
3433 	}
3434 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3435 
3436 	if (unlikely(disabled)) {
3437 		release_guc_id(guc, ce);
3438 		__guc_context_destroy(ce);
3439 		return 0;
3440 	}
3441 
3442 	/*
3443 	 * GuC is active, lets destroy this context, but at this point we can still be racing
3444 	 * with suspend, so we undo everything if the H2G fails in deregister_context so
3445 	 * that GuC reset will find this context during clean up.
3446 	 *
3447 	 * There is a race condition where the reset code could have altered
3448 	 * this context's state and done a wakeref put before we try to
3449 	 * deregister it here. So check if the context is still set to be
3450 	 * destroyed before undoing earlier changes, to avoid two wakeref puts
3451 	 * on the same context.
3452 	 */
3453 	ret = deregister_context(ce, ce->guc_id.id);
3454 	if (ret) {
3455 		bool pending_destroyed;
3456 		spin_lock_irqsave(&ce->guc_state.lock, flags);
3457 		pending_destroyed = context_destroyed(ce);
3458 		if (pending_destroyed) {
3459 			set_context_registered(ce);
3460 			clr_context_destroyed(ce);
3461 		}
3462 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3463 		/*
3464 		 * As gt-pm is awake at function entry, intel_wakeref_put_async merely decrements
3465 		 * the wakeref immediately but per function spec usage call this after unlock.
3466 		 */
3467 		if (pending_destroyed)
3468 			intel_wakeref_put_async(&gt->wakeref);
3469 	}
3470 
3471 	return ret;
3472 }
3473 
__guc_context_destroy(struct intel_context * ce)3474 static void __guc_context_destroy(struct intel_context *ce)
3475 {
3476 	GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3477 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3478 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3479 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3480 
3481 	lrc_fini(ce);
3482 	intel_context_fini(ce);
3483 
3484 	if (intel_engine_is_virtual(ce->engine)) {
3485 		struct guc_virtual_engine *ve =
3486 			container_of(ce, typeof(*ve), context);
3487 
3488 		if (ve->base.breadcrumbs)
3489 			intel_breadcrumbs_put(ve->base.breadcrumbs);
3490 
3491 		kfree(ve);
3492 	} else {
3493 		intel_context_free(ce);
3494 	}
3495 }
3496 
guc_flush_destroyed_contexts(struct intel_guc * guc)3497 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3498 {
3499 	struct intel_context *ce;
3500 	unsigned long flags;
3501 
3502 	GEM_BUG_ON(!submission_disabled(guc) &&
3503 		   guc_submission_initialized(guc));
3504 
3505 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3506 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3507 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3508 					      struct intel_context,
3509 					      destroyed_link);
3510 		if (ce)
3511 			list_del_init(&ce->destroyed_link);
3512 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3513 
3514 		if (!ce)
3515 			break;
3516 
3517 		release_guc_id(guc, ce);
3518 		__guc_context_destroy(ce);
3519 	}
3520 }
3521 
deregister_destroyed_contexts(struct intel_guc * guc)3522 static void deregister_destroyed_contexts(struct intel_guc *guc)
3523 {
3524 	struct intel_context *ce;
3525 	unsigned long flags;
3526 
3527 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3528 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3529 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3530 					      struct intel_context,
3531 					      destroyed_link);
3532 		if (ce)
3533 			list_del_init(&ce->destroyed_link);
3534 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3535 
3536 		if (!ce)
3537 			break;
3538 
3539 		if (guc_lrc_desc_unpin(ce)) {
3540 			/*
3541 			 * This means GuC's CT link severed mid-way which could happen
3542 			 * in suspend-resume corner cases. In this case, put the
3543 			 * context back into the destroyed_contexts list which will
3544 			 * get picked up on the next context deregistration event or
3545 			 * purged in a GuC sanitization event (reset/unload/wedged/...).
3546 			 */
3547 			spin_lock_irqsave(&guc->submission_state.lock, flags);
3548 			list_add_tail(&ce->destroyed_link,
3549 				      &guc->submission_state.destroyed_contexts);
3550 			spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3551 			/* Bail now since the list might never be emptied if h2gs fail */
3552 			break;
3553 		}
3554 
3555 	}
3556 }
3557 
destroyed_worker_func(struct work_struct * w)3558 static void destroyed_worker_func(struct work_struct *w)
3559 {
3560 	struct intel_guc *guc = container_of(w, struct intel_guc,
3561 					     submission_state.destroyed_worker);
3562 	struct intel_gt *gt = guc_to_gt(guc);
3563 	intel_wakeref_t wakeref;
3564 
3565 	/*
3566 	 * In rare cases we can get here via async context-free fence-signals that
3567 	 * come very late in suspend flow or very early in resume flows. In these
3568 	 * cases, GuC won't be ready but just skipping it here is fine as these
3569 	 * pending-destroy-contexts get destroyed totally at GuC reset time at the
3570 	 * end of suspend.. OR.. this worker can be picked up later on the next
3571 	 * context destruction trigger after resume-completes
3572 	 */
3573 	if (!intel_guc_is_ready(guc))
3574 		return;
3575 
3576 	with_intel_gt_pm(gt, wakeref)
3577 		deregister_destroyed_contexts(guc);
3578 }
3579 
guc_context_destroy(struct kref * kref)3580 static void guc_context_destroy(struct kref *kref)
3581 {
3582 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3583 	struct intel_guc *guc = ce_to_guc(ce);
3584 	unsigned long flags;
3585 	bool destroy;
3586 
3587 	/*
3588 	 * If the guc_id is invalid this context has been stolen and we can free
3589 	 * it immediately. Also can be freed immediately if the context is not
3590 	 * registered with the GuC or the GuC is in the middle of a reset.
3591 	 */
3592 	spin_lock_irqsave(&guc->submission_state.lock, flags);
3593 	destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3594 		!ctx_id_mapped(guc, ce->guc_id.id);
3595 	if (likely(!destroy)) {
3596 		if (!list_empty(&ce->guc_id.link))
3597 			list_del_init(&ce->guc_id.link);
3598 		list_add_tail(&ce->destroyed_link,
3599 			      &guc->submission_state.destroyed_contexts);
3600 	} else {
3601 		__release_guc_id(guc, ce);
3602 	}
3603 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3604 	if (unlikely(destroy)) {
3605 		__guc_context_destroy(ce);
3606 		return;
3607 	}
3608 
3609 	/*
3610 	 * We use a worker to issue the H2G to deregister the context as we can
3611 	 * take the GT PM for the first time which isn't allowed from an atomic
3612 	 * context.
3613 	 */
3614 	queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3615 }
3616 
guc_context_alloc(struct intel_context * ce)3617 static int guc_context_alloc(struct intel_context *ce)
3618 {
3619 	return lrc_alloc(ce, ce->engine);
3620 }
3621 
__guc_context_set_prio(struct intel_guc * guc,struct intel_context * ce)3622 static void __guc_context_set_prio(struct intel_guc *guc,
3623 				   struct intel_context *ce)
3624 {
3625 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3626 		struct context_policy policy;
3627 
3628 		__guc_context_policy_start_klv(&policy, ce->guc_id.id);
3629 		__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3630 		__guc_context_set_context_policies(guc, &policy, true);
3631 	} else {
3632 		u32 action[] = {
3633 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3634 			ce->guc_id.id,
3635 			ce->guc_state.prio,
3636 		};
3637 
3638 		guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3639 	}
3640 }
3641 
guc_context_set_prio(struct intel_guc * guc,struct intel_context * ce,u8 prio)3642 static void guc_context_set_prio(struct intel_guc *guc,
3643 				 struct intel_context *ce,
3644 				 u8 prio)
3645 {
3646 	GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3647 		   prio > GUC_CLIENT_PRIORITY_NORMAL);
3648 	lockdep_assert_held(&ce->guc_state.lock);
3649 
3650 	if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3651 	    !context_registered(ce)) {
3652 		ce->guc_state.prio = prio;
3653 		return;
3654 	}
3655 
3656 	ce->guc_state.prio = prio;
3657 	__guc_context_set_prio(guc, ce);
3658 
3659 	trace_intel_context_set_prio(ce);
3660 }
3661 
map_i915_prio_to_guc_prio(int prio)3662 static inline u8 map_i915_prio_to_guc_prio(int prio)
3663 {
3664 	if (prio == I915_PRIORITY_NORMAL)
3665 		return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3666 	else if (prio < I915_PRIORITY_NORMAL)
3667 		return GUC_CLIENT_PRIORITY_NORMAL;
3668 	else if (prio < I915_PRIORITY_DISPLAY)
3669 		return GUC_CLIENT_PRIORITY_HIGH;
3670 	else
3671 		return GUC_CLIENT_PRIORITY_KMD_HIGH;
3672 }
3673 
add_context_inflight_prio(struct intel_context * ce,u8 guc_prio)3674 static inline void add_context_inflight_prio(struct intel_context *ce,
3675 					     u8 guc_prio)
3676 {
3677 	lockdep_assert_held(&ce->guc_state.lock);
3678 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3679 
3680 	++ce->guc_state.prio_count[guc_prio];
3681 
3682 	/* Overflow protection */
3683 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3684 }
3685 
sub_context_inflight_prio(struct intel_context * ce,u8 guc_prio)3686 static inline void sub_context_inflight_prio(struct intel_context *ce,
3687 					     u8 guc_prio)
3688 {
3689 	lockdep_assert_held(&ce->guc_state.lock);
3690 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3691 
3692 	/* Underflow protection */
3693 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3694 
3695 	--ce->guc_state.prio_count[guc_prio];
3696 }
3697 
update_context_prio(struct intel_context * ce)3698 static inline void update_context_prio(struct intel_context *ce)
3699 {
3700 	struct intel_guc *guc = &ce->engine->gt->uc.guc;
3701 	int i;
3702 
3703 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3704 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3705 
3706 	lockdep_assert_held(&ce->guc_state.lock);
3707 
3708 	for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3709 		if (ce->guc_state.prio_count[i]) {
3710 			guc_context_set_prio(guc, ce, i);
3711 			break;
3712 		}
3713 	}
3714 }
3715 
new_guc_prio_higher(u8 old_guc_prio,u8 new_guc_prio)3716 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3717 {
3718 	/* Lower value is higher priority */
3719 	return new_guc_prio < old_guc_prio;
3720 }
3721 
add_to_context(struct i915_request * rq)3722 static void add_to_context(struct i915_request *rq)
3723 {
3724 	struct intel_context *ce = request_to_scheduling_context(rq);
3725 	u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3726 
3727 	GEM_BUG_ON(intel_context_is_child(ce));
3728 	GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3729 
3730 	spin_lock(&ce->guc_state.lock);
3731 	list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3732 
3733 	if (rq->guc_prio == GUC_PRIO_INIT) {
3734 		rq->guc_prio = new_guc_prio;
3735 		add_context_inflight_prio(ce, rq->guc_prio);
3736 	} else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3737 		sub_context_inflight_prio(ce, rq->guc_prio);
3738 		rq->guc_prio = new_guc_prio;
3739 		add_context_inflight_prio(ce, rq->guc_prio);
3740 	}
3741 	update_context_prio(ce);
3742 
3743 	spin_unlock(&ce->guc_state.lock);
3744 }
3745 
guc_prio_fini(struct i915_request * rq,struct intel_context * ce)3746 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3747 {
3748 	lockdep_assert_held(&ce->guc_state.lock);
3749 
3750 	if (rq->guc_prio != GUC_PRIO_INIT &&
3751 	    rq->guc_prio != GUC_PRIO_FINI) {
3752 		sub_context_inflight_prio(ce, rq->guc_prio);
3753 		update_context_prio(ce);
3754 	}
3755 	rq->guc_prio = GUC_PRIO_FINI;
3756 }
3757 
remove_from_context(struct i915_request * rq)3758 static void remove_from_context(struct i915_request *rq)
3759 {
3760 	struct intel_context *ce = request_to_scheduling_context(rq);
3761 
3762 	GEM_BUG_ON(intel_context_is_child(ce));
3763 
3764 	spin_lock_irq(&ce->guc_state.lock);
3765 
3766 	list_del_init(&rq->sched.link);
3767 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3768 
3769 	/* Prevent further __await_execution() registering a cb, then flush */
3770 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3771 
3772 	guc_prio_fini(rq, ce);
3773 
3774 	spin_unlock_irq(&ce->guc_state.lock);
3775 
3776 	atomic_dec(&ce->guc_id.ref);
3777 	i915_request_notify_execute_cb_imm(rq);
3778 }
3779 
3780 static const struct intel_context_ops guc_context_ops = {
3781 	.flags = COPS_RUNTIME_CYCLES,
3782 	.alloc = guc_context_alloc,
3783 
3784 	.close = guc_context_close,
3785 
3786 	.pre_pin = guc_context_pre_pin,
3787 	.pin = guc_context_pin,
3788 	.unpin = guc_context_unpin,
3789 	.post_unpin = guc_context_post_unpin,
3790 
3791 	.revoke = guc_context_revoke,
3792 
3793 	.cancel_request = guc_context_cancel_request,
3794 
3795 	.enter = intel_context_enter_engine,
3796 	.exit = intel_context_exit_engine,
3797 
3798 	.sched_disable = guc_context_sched_disable,
3799 
3800 	.update_stats = guc_context_update_stats,
3801 
3802 	.reset = lrc_reset,
3803 	.destroy = guc_context_destroy,
3804 
3805 	.create_virtual = guc_create_virtual,
3806 	.create_parallel = guc_create_parallel,
3807 };
3808 
submit_work_cb(struct irq_work * wrk)3809 static void submit_work_cb(struct irq_work *wrk)
3810 {
3811 	struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3812 
3813 	might_lock(&rq->engine->sched_engine->lock);
3814 	i915_sw_fence_complete(&rq->submit);
3815 }
3816 
__guc_signal_context_fence(struct intel_context * ce)3817 static void __guc_signal_context_fence(struct intel_context *ce)
3818 {
3819 	struct i915_request *rq, *rn;
3820 
3821 	lockdep_assert_held(&ce->guc_state.lock);
3822 
3823 	if (!list_empty(&ce->guc_state.fences))
3824 		trace_intel_context_fence_release(ce);
3825 
3826 	/*
3827 	 * Use an IRQ to ensure locking order of sched_engine->lock ->
3828 	 * ce->guc_state.lock is preserved.
3829 	 */
3830 	list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3831 				 guc_fence_link) {
3832 		list_del(&rq->guc_fence_link);
3833 		irq_work_queue(&rq->submit_work);
3834 	}
3835 
3836 	INIT_LIST_HEAD(&ce->guc_state.fences);
3837 }
3838 
guc_signal_context_fence(struct intel_context * ce)3839 static void guc_signal_context_fence(struct intel_context *ce)
3840 {
3841 	unsigned long flags;
3842 
3843 	GEM_BUG_ON(intel_context_is_child(ce));
3844 
3845 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3846 	clr_context_wait_for_deregister_to_register(ce);
3847 	__guc_signal_context_fence(ce);
3848 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3849 }
3850 
context_needs_register(struct intel_context * ce,bool new_guc_id)3851 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3852 {
3853 	return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3854 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3855 		!submission_disabled(ce_to_guc(ce));
3856 }
3857 
guc_context_init(struct intel_context * ce)3858 static void guc_context_init(struct intel_context *ce)
3859 {
3860 	const struct i915_gem_context *ctx;
3861 	int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3862 
3863 	rcu_read_lock();
3864 	ctx = rcu_dereference(ce->gem_context);
3865 	if (ctx)
3866 		prio = ctx->sched.priority;
3867 	rcu_read_unlock();
3868 
3869 	ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3870 
3871 	INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work,
3872 			  __delay_sched_disable);
3873 
3874 	set_bit(CONTEXT_GUC_INIT, &ce->flags);
3875 }
3876 
guc_request_alloc(struct i915_request * rq)3877 static int guc_request_alloc(struct i915_request *rq)
3878 {
3879 	struct intel_context *ce = request_to_scheduling_context(rq);
3880 	struct intel_guc *guc = ce_to_guc(ce);
3881 	unsigned long flags;
3882 	int ret;
3883 
3884 	GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3885 
3886 	/*
3887 	 * Flush enough space to reduce the likelihood of waiting after
3888 	 * we start building the request - in which case we will just
3889 	 * have to repeat work.
3890 	 */
3891 	rq->reserved_space += GUC_REQUEST_SIZE;
3892 
3893 	/*
3894 	 * Note that after this point, we have committed to using
3895 	 * this request as it is being used to both track the
3896 	 * state of engine initialisation and liveness of the
3897 	 * golden renderstate above. Think twice before you try
3898 	 * to cancel/unwind this request now.
3899 	 */
3900 
3901 	/* Unconditionally invalidate GPU caches and TLBs. */
3902 	ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3903 	if (ret)
3904 		return ret;
3905 
3906 	rq->reserved_space -= GUC_REQUEST_SIZE;
3907 
3908 	if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3909 		guc_context_init(ce);
3910 
3911 	/*
3912 	 * If the context gets closed while the execbuf is ongoing, the context
3913 	 * close code will race with the below code to cancel the delayed work.
3914 	 * If the context close wins the race and cancels the work, it will
3915 	 * immediately call the sched disable (see guc_context_close), so there
3916 	 * is a chance we can get past this check while the sched_disable code
3917 	 * is being executed. To make sure that code completes before we check
3918 	 * the status further down, we wait for the close process to complete.
3919 	 * Else, this code path could send a request down thinking that the
3920 	 * context is still in a schedule-enable mode while the GuC ends up
3921 	 * dropping the request completely because the disable did go from the
3922 	 * context_close path right to GuC just prior. In the event the CT is
3923 	 * full, we could potentially need to wait up to 1.5 seconds.
3924 	 */
3925 	if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work))
3926 		intel_context_sched_disable_unpin(ce);
3927 	else if (intel_context_is_closed(ce))
3928 		if (wait_for(context_close_done(ce), 1500))
3929 			guc_warn(guc, "timed out waiting on context sched close before realloc\n");
3930 	/*
3931 	 * Call pin_guc_id here rather than in the pinning step as with
3932 	 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3933 	 * guc_id and creating horrible race conditions. This is especially bad
3934 	 * when guc_id are being stolen due to over subscription. By the time
3935 	 * this function is reached, it is guaranteed that the guc_id will be
3936 	 * persistent until the generated request is retired. Thus, sealing these
3937 	 * race conditions. It is still safe to fail here if guc_id are
3938 	 * exhausted and return -EAGAIN to the user indicating that they can try
3939 	 * again in the future.
3940 	 *
3941 	 * There is no need for a lock here as the timeline mutex ensures at
3942 	 * most one context can be executing this code path at once. The
3943 	 * guc_id_ref is incremented once for every request in flight and
3944 	 * decremented on each retire. When it is zero, a lock around the
3945 	 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3946 	 */
3947 	if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3948 		goto out;
3949 
3950 	ret = pin_guc_id(guc, ce);	/* returns 1 if new guc_id assigned */
3951 	if (unlikely(ret < 0))
3952 		return ret;
3953 	if (context_needs_register(ce, !!ret)) {
3954 		ret = try_context_registration(ce, true);
3955 		if (unlikely(ret)) {	/* unwind */
3956 			if (ret == -EPIPE) {
3957 				disable_submission(guc);
3958 				goto out;	/* GPU will be reset */
3959 			}
3960 			atomic_dec(&ce->guc_id.ref);
3961 			unpin_guc_id(guc, ce);
3962 			return ret;
3963 		}
3964 	}
3965 
3966 	clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3967 
3968 out:
3969 	/*
3970 	 * We block all requests on this context if a G2H is pending for a
3971 	 * schedule disable or context deregistration as the GuC will fail a
3972 	 * schedule enable or context registration if either G2H is pending
3973 	 * respectfully. Once a G2H returns, the fence is released that is
3974 	 * blocking these requests (see guc_signal_context_fence).
3975 	 */
3976 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3977 	if (context_wait_for_deregister_to_register(ce) ||
3978 	    context_pending_disable(ce)) {
3979 		init_irq_work(&rq->submit_work, submit_work_cb);
3980 		i915_sw_fence_await(&rq->submit);
3981 
3982 		list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3983 	}
3984 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3985 
3986 	return 0;
3987 }
3988 
guc_virtual_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)3989 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3990 				       struct i915_gem_ww_ctx *ww,
3991 				       void **vaddr)
3992 {
3993 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3994 
3995 	return __guc_context_pre_pin(ce, engine, ww, vaddr);
3996 }
3997 
guc_virtual_context_pin(struct intel_context * ce,void * vaddr)3998 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3999 {
4000 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4001 	int ret = __guc_context_pin(ce, engine, vaddr);
4002 	intel_engine_mask_t tmp, mask = ce->engine->mask;
4003 
4004 	if (likely(!ret))
4005 		for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
4006 			intel_engine_pm_get(engine);
4007 
4008 	return ret;
4009 }
4010 
guc_virtual_context_unpin(struct intel_context * ce)4011 static void guc_virtual_context_unpin(struct intel_context *ce)
4012 {
4013 	intel_engine_mask_t tmp, mask = ce->engine->mask;
4014 	struct intel_engine_cs *engine;
4015 	struct intel_guc *guc = ce_to_guc(ce);
4016 
4017 	GEM_BUG_ON(context_enabled(ce));
4018 	GEM_BUG_ON(intel_context_is_barrier(ce));
4019 
4020 	unpin_guc_id(guc, ce);
4021 	lrc_unpin(ce);
4022 
4023 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
4024 		intel_engine_pm_put_async(engine);
4025 }
4026 
guc_virtual_context_enter(struct intel_context * ce)4027 static void guc_virtual_context_enter(struct intel_context *ce)
4028 {
4029 	intel_engine_mask_t tmp, mask = ce->engine->mask;
4030 	struct intel_engine_cs *engine;
4031 
4032 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
4033 		intel_engine_pm_get(engine);
4034 
4035 	intel_timeline_enter(ce->timeline);
4036 }
4037 
guc_virtual_context_exit(struct intel_context * ce)4038 static void guc_virtual_context_exit(struct intel_context *ce)
4039 {
4040 	intel_engine_mask_t tmp, mask = ce->engine->mask;
4041 	struct intel_engine_cs *engine;
4042 
4043 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
4044 		intel_engine_pm_put(engine);
4045 
4046 	intel_timeline_exit(ce->timeline);
4047 }
4048 
guc_virtual_context_alloc(struct intel_context * ce)4049 static int guc_virtual_context_alloc(struct intel_context *ce)
4050 {
4051 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4052 
4053 	return lrc_alloc(ce, engine);
4054 }
4055 
4056 static const struct intel_context_ops virtual_guc_context_ops = {
4057 	.flags = COPS_RUNTIME_CYCLES,
4058 	.alloc = guc_virtual_context_alloc,
4059 
4060 	.close = guc_context_close,
4061 
4062 	.pre_pin = guc_virtual_context_pre_pin,
4063 	.pin = guc_virtual_context_pin,
4064 	.unpin = guc_virtual_context_unpin,
4065 	.post_unpin = guc_context_post_unpin,
4066 
4067 	.revoke = guc_context_revoke,
4068 
4069 	.cancel_request = guc_context_cancel_request,
4070 
4071 	.enter = guc_virtual_context_enter,
4072 	.exit = guc_virtual_context_exit,
4073 
4074 	.sched_disable = guc_context_sched_disable,
4075 	.update_stats = guc_context_update_stats,
4076 
4077 	.destroy = guc_context_destroy,
4078 
4079 	.get_sibling = guc_virtual_get_sibling,
4080 };
4081 
guc_parent_context_pin(struct intel_context * ce,void * vaddr)4082 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
4083 {
4084 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4085 	struct intel_guc *guc = ce_to_guc(ce);
4086 	int ret;
4087 
4088 	GEM_BUG_ON(!intel_context_is_parent(ce));
4089 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4090 
4091 	ret = pin_guc_id(guc, ce);
4092 	if (unlikely(ret < 0))
4093 		return ret;
4094 
4095 	return __guc_context_pin(ce, engine, vaddr);
4096 }
4097 
guc_child_context_pin(struct intel_context * ce,void * vaddr)4098 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
4099 {
4100 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4101 
4102 	GEM_BUG_ON(!intel_context_is_child(ce));
4103 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4104 
4105 	__intel_context_pin(ce->parallel.parent);
4106 	return __guc_context_pin(ce, engine, vaddr);
4107 }
4108 
guc_parent_context_unpin(struct intel_context * ce)4109 static void guc_parent_context_unpin(struct intel_context *ce)
4110 {
4111 	struct intel_guc *guc = ce_to_guc(ce);
4112 
4113 	GEM_BUG_ON(context_enabled(ce));
4114 	GEM_BUG_ON(intel_context_is_barrier(ce));
4115 	GEM_BUG_ON(!intel_context_is_parent(ce));
4116 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4117 
4118 	unpin_guc_id(guc, ce);
4119 	lrc_unpin(ce);
4120 }
4121 
guc_child_context_unpin(struct intel_context * ce)4122 static void guc_child_context_unpin(struct intel_context *ce)
4123 {
4124 	GEM_BUG_ON(context_enabled(ce));
4125 	GEM_BUG_ON(intel_context_is_barrier(ce));
4126 	GEM_BUG_ON(!intel_context_is_child(ce));
4127 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4128 
4129 	lrc_unpin(ce);
4130 }
4131 
guc_child_context_post_unpin(struct intel_context * ce)4132 static void guc_child_context_post_unpin(struct intel_context *ce)
4133 {
4134 	GEM_BUG_ON(!intel_context_is_child(ce));
4135 	GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
4136 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4137 
4138 	lrc_post_unpin(ce);
4139 	intel_context_unpin(ce->parallel.parent);
4140 }
4141 
guc_child_context_destroy(struct kref * kref)4142 static void guc_child_context_destroy(struct kref *kref)
4143 {
4144 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
4145 
4146 	__guc_context_destroy(ce);
4147 }
4148 
4149 static const struct intel_context_ops virtual_parent_context_ops = {
4150 	.alloc = guc_virtual_context_alloc,
4151 
4152 	.close = guc_context_close,
4153 
4154 	.pre_pin = guc_context_pre_pin,
4155 	.pin = guc_parent_context_pin,
4156 	.unpin = guc_parent_context_unpin,
4157 	.post_unpin = guc_context_post_unpin,
4158 
4159 	.revoke = guc_context_revoke,
4160 
4161 	.cancel_request = guc_context_cancel_request,
4162 
4163 	.enter = guc_virtual_context_enter,
4164 	.exit = guc_virtual_context_exit,
4165 
4166 	.sched_disable = guc_context_sched_disable,
4167 
4168 	.destroy = guc_context_destroy,
4169 
4170 	.get_sibling = guc_virtual_get_sibling,
4171 };
4172 
4173 static const struct intel_context_ops virtual_child_context_ops = {
4174 	.alloc = guc_virtual_context_alloc,
4175 
4176 	.pre_pin = guc_context_pre_pin,
4177 	.pin = guc_child_context_pin,
4178 	.unpin = guc_child_context_unpin,
4179 	.post_unpin = guc_child_context_post_unpin,
4180 
4181 	.cancel_request = guc_context_cancel_request,
4182 
4183 	.enter = guc_virtual_context_enter,
4184 	.exit = guc_virtual_context_exit,
4185 
4186 	.destroy = guc_child_context_destroy,
4187 
4188 	.get_sibling = guc_virtual_get_sibling,
4189 };
4190 
4191 /*
4192  * The below override of the breadcrumbs is enabled when the user configures a
4193  * context for parallel submission (multi-lrc, parent-child).
4194  *
4195  * The overridden breadcrumbs implements an algorithm which allows the GuC to
4196  * safely preempt all the hw contexts configured for parallel submission
4197  * between each BB. The contract between the i915 and GuC is if the parent
4198  * context can be preempted, all the children can be preempted, and the GuC will
4199  * always try to preempt the parent before the children. A handshake between the
4200  * parent / children breadcrumbs ensures the i915 holds up its end of the deal
4201  * creating a window to preempt between each set of BBs.
4202  */
4203 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
4204 						     u64 offset, u32 len,
4205 						     const unsigned int flags);
4206 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
4207 						    u64 offset, u32 len,
4208 						    const unsigned int flags);
4209 static u32 *
4210 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4211 						 u32 *cs);
4212 static u32 *
4213 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
4214 						u32 *cs);
4215 
4216 static struct intel_context *
guc_create_parallel(struct intel_engine_cs ** engines,unsigned int num_siblings,unsigned int width)4217 guc_create_parallel(struct intel_engine_cs **engines,
4218 		    unsigned int num_siblings,
4219 		    unsigned int width)
4220 {
4221 	struct intel_engine_cs **siblings = NULL;
4222 	struct intel_context *parent = NULL, *ce, *err;
4223 	int i, j;
4224 
4225 	siblings = kmalloc_array(num_siblings,
4226 				 sizeof(*siblings),
4227 				 GFP_KERNEL);
4228 	if (!siblings)
4229 		return ERR_PTR(-ENOMEM);
4230 
4231 	for (i = 0; i < width; ++i) {
4232 		for (j = 0; j < num_siblings; ++j)
4233 			siblings[j] = engines[i * num_siblings + j];
4234 
4235 		ce = intel_engine_create_virtual(siblings, num_siblings,
4236 						 FORCE_VIRTUAL);
4237 		if (IS_ERR(ce)) {
4238 			err = ERR_CAST(ce);
4239 			goto unwind;
4240 		}
4241 
4242 		if (i == 0) {
4243 			parent = ce;
4244 			parent->ops = &virtual_parent_context_ops;
4245 		} else {
4246 			ce->ops = &virtual_child_context_ops;
4247 			intel_context_bind_parent_child(parent, ce);
4248 		}
4249 	}
4250 
4251 	parent->parallel.fence_context = dma_fence_context_alloc(1);
4252 
4253 	parent->engine->emit_bb_start =
4254 		emit_bb_start_parent_no_preempt_mid_batch;
4255 	parent->engine->emit_fini_breadcrumb =
4256 		emit_fini_breadcrumb_parent_no_preempt_mid_batch;
4257 	parent->engine->emit_fini_breadcrumb_dw =
4258 		12 + 4 * parent->parallel.number_children;
4259 	for_each_child(parent, ce) {
4260 		ce->engine->emit_bb_start =
4261 			emit_bb_start_child_no_preempt_mid_batch;
4262 		ce->engine->emit_fini_breadcrumb =
4263 			emit_fini_breadcrumb_child_no_preempt_mid_batch;
4264 		ce->engine->emit_fini_breadcrumb_dw = 16;
4265 	}
4266 
4267 	kfree(siblings);
4268 	return parent;
4269 
4270 unwind:
4271 	if (parent)
4272 		intel_context_put(parent);
4273 	kfree(siblings);
4274 	return err;
4275 }
4276 
4277 static bool
guc_irq_enable_breadcrumbs(struct intel_breadcrumbs * b)4278 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
4279 {
4280 	struct intel_engine_cs *sibling;
4281 	intel_engine_mask_t tmp, mask = b->engine_mask;
4282 	bool result = false;
4283 
4284 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4285 		result |= intel_engine_irq_enable(sibling);
4286 
4287 	return result;
4288 }
4289 
4290 static void
guc_irq_disable_breadcrumbs(struct intel_breadcrumbs * b)4291 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
4292 {
4293 	struct intel_engine_cs *sibling;
4294 	intel_engine_mask_t tmp, mask = b->engine_mask;
4295 
4296 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4297 		intel_engine_irq_disable(sibling);
4298 }
4299 
guc_init_breadcrumbs(struct intel_engine_cs * engine)4300 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
4301 {
4302 	int i;
4303 
4304 	/*
4305 	 * In GuC submission mode we do not know which physical engine a request
4306 	 * will be scheduled on, this creates a problem because the breadcrumb
4307 	 * interrupt is per physical engine. To work around this we attach
4308 	 * requests and direct all breadcrumb interrupts to the first instance
4309 	 * of an engine per class. In addition all breadcrumb interrupts are
4310 	 * enabled / disabled across an engine class in unison.
4311 	 */
4312 	for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
4313 		struct intel_engine_cs *sibling =
4314 			engine->gt->engine_class[engine->class][i];
4315 
4316 		if (sibling) {
4317 			if (engine->breadcrumbs != sibling->breadcrumbs) {
4318 				intel_breadcrumbs_put(engine->breadcrumbs);
4319 				engine->breadcrumbs =
4320 					intel_breadcrumbs_get(sibling->breadcrumbs);
4321 			}
4322 			break;
4323 		}
4324 	}
4325 
4326 	if (engine->breadcrumbs) {
4327 		engine->breadcrumbs->engine_mask |= engine->mask;
4328 		engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
4329 		engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
4330 	}
4331 }
4332 
guc_bump_inflight_request_prio(struct i915_request * rq,int prio)4333 static void guc_bump_inflight_request_prio(struct i915_request *rq,
4334 					   int prio)
4335 {
4336 	struct intel_context *ce = request_to_scheduling_context(rq);
4337 	u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
4338 
4339 	/* Short circuit function */
4340 	if (prio < I915_PRIORITY_NORMAL)
4341 		return;
4342 
4343 	spin_lock(&ce->guc_state.lock);
4344 
4345 	if (rq->guc_prio == GUC_PRIO_FINI)
4346 		goto exit;
4347 
4348 	if (!new_guc_prio_higher(rq->guc_prio, new_guc_prio))
4349 		goto exit;
4350 
4351 	if (rq->guc_prio != GUC_PRIO_INIT)
4352 		sub_context_inflight_prio(ce, rq->guc_prio);
4353 
4354 	rq->guc_prio = new_guc_prio;
4355 	add_context_inflight_prio(ce, rq->guc_prio);
4356 	update_context_prio(ce);
4357 
4358 exit:
4359 	spin_unlock(&ce->guc_state.lock);
4360 }
4361 
guc_retire_inflight_request_prio(struct i915_request * rq)4362 static void guc_retire_inflight_request_prio(struct i915_request *rq)
4363 {
4364 	struct intel_context *ce = request_to_scheduling_context(rq);
4365 
4366 	spin_lock(&ce->guc_state.lock);
4367 	guc_prio_fini(rq, ce);
4368 	spin_unlock(&ce->guc_state.lock);
4369 }
4370 
sanitize_hwsp(struct intel_engine_cs * engine)4371 static void sanitize_hwsp(struct intel_engine_cs *engine)
4372 {
4373 	struct intel_timeline *tl;
4374 
4375 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
4376 		intel_timeline_reset_seqno(tl);
4377 }
4378 
guc_sanitize(struct intel_engine_cs * engine)4379 static void guc_sanitize(struct intel_engine_cs *engine)
4380 {
4381 	/*
4382 	 * Poison residual state on resume, in case the suspend didn't!
4383 	 *
4384 	 * We have to assume that across suspend/resume (or other loss
4385 	 * of control) that the contents of our pinned buffers has been
4386 	 * lost, replaced by garbage. Since this doesn't always happen,
4387 	 * let's poison such state so that we more quickly spot when
4388 	 * we falsely assume it has been preserved.
4389 	 */
4390 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
4391 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
4392 
4393 	/*
4394 	 * The kernel_context HWSP is stored in the status_page. As above,
4395 	 * that may be lost on resume/initialisation, and so we need to
4396 	 * reset the value in the HWSP.
4397 	 */
4398 	sanitize_hwsp(engine);
4399 
4400 	/* And scrub the dirty cachelines for the HWSP */
4401 	drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
4402 
4403 	intel_engine_reset_pinned_contexts(engine);
4404 }
4405 
setup_hwsp(struct intel_engine_cs * engine)4406 static void setup_hwsp(struct intel_engine_cs *engine)
4407 {
4408 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4409 
4410 	ENGINE_WRITE_FW(engine,
4411 			RING_HWS_PGA,
4412 			i915_ggtt_offset(engine->status_page.vma));
4413 }
4414 
start_engine(struct intel_engine_cs * engine)4415 static void start_engine(struct intel_engine_cs *engine)
4416 {
4417 	ENGINE_WRITE_FW(engine,
4418 			RING_MODE_GEN7,
4419 			_MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
4420 
4421 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4422 	ENGINE_POSTING_READ(engine, RING_MI_MODE);
4423 }
4424 
guc_resume(struct intel_engine_cs * engine)4425 static int guc_resume(struct intel_engine_cs *engine)
4426 {
4427 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4428 
4429 	intel_mocs_init_engine(engine);
4430 
4431 	intel_breadcrumbs_reset(engine->breadcrumbs);
4432 
4433 	setup_hwsp(engine);
4434 	start_engine(engine);
4435 
4436 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
4437 		xehp_enable_ccs_engines(engine);
4438 
4439 	return 0;
4440 }
4441 
guc_sched_engine_disabled(struct i915_sched_engine * sched_engine)4442 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
4443 {
4444 	return !sched_engine->tasklet.callback;
4445 }
4446 
guc_set_default_submission(struct intel_engine_cs * engine)4447 static void guc_set_default_submission(struct intel_engine_cs *engine)
4448 {
4449 	engine->submit_request = guc_submit_request;
4450 }
4451 
guc_kernel_context_pin(struct intel_guc * guc,struct intel_context * ce)4452 static inline int guc_kernel_context_pin(struct intel_guc *guc,
4453 					 struct intel_context *ce)
4454 {
4455 	int ret;
4456 
4457 	/*
4458 	 * Note: we purposefully do not check the returns below because
4459 	 * the registration can only fail if a reset is just starting.
4460 	 * This is called at the end of reset so presumably another reset
4461 	 * isn't happening and even it did this code would be run again.
4462 	 */
4463 
4464 	if (context_guc_id_invalid(ce)) {
4465 		ret = pin_guc_id(guc, ce);
4466 
4467 		if (ret < 0)
4468 			return ret;
4469 	}
4470 
4471 	if (!test_bit(CONTEXT_GUC_INIT, &ce->flags))
4472 		guc_context_init(ce);
4473 
4474 	ret = try_context_registration(ce, true);
4475 	if (ret)
4476 		unpin_guc_id(guc, ce);
4477 
4478 	return ret;
4479 }
4480 
guc_init_submission(struct intel_guc * guc)4481 static inline int guc_init_submission(struct intel_guc *guc)
4482 {
4483 	struct intel_gt *gt = guc_to_gt(guc);
4484 	struct intel_engine_cs *engine;
4485 	enum intel_engine_id id;
4486 
4487 	/* make sure all descriptors are clean... */
4488 	xa_destroy(&guc->context_lookup);
4489 
4490 	/*
4491 	 * A reset might have occurred while we had a pending stalled request,
4492 	 * so make sure we clean that up.
4493 	 */
4494 	guc->stalled_request = NULL;
4495 	guc->submission_stall_reason = STALL_NONE;
4496 
4497 	/*
4498 	 * Some contexts might have been pinned before we enabled GuC
4499 	 * submission, so we need to add them to the GuC bookeeping.
4500 	 * Also, after a reset the of the GuC we want to make sure that the
4501 	 * information shared with GuC is properly reset. The kernel LRCs are
4502 	 * not attached to the gem_context, so they need to be added separately.
4503 	 */
4504 	for_each_engine(engine, gt, id) {
4505 		struct intel_context *ce;
4506 
4507 		list_for_each_entry(ce, &engine->pinned_contexts_list,
4508 				    pinned_contexts_link) {
4509 			int ret = guc_kernel_context_pin(guc, ce);
4510 
4511 			if (ret) {
4512 				/* No point in trying to clean up as i915 will wedge on failure */
4513 				return ret;
4514 			}
4515 		}
4516 	}
4517 
4518 	return 0;
4519 }
4520 
guc_release(struct intel_engine_cs * engine)4521 static void guc_release(struct intel_engine_cs *engine)
4522 {
4523 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4524 
4525 	intel_engine_cleanup_common(engine);
4526 	lrc_fini_wa_ctx(engine);
4527 }
4528 
virtual_guc_bump_serial(struct intel_engine_cs * engine)4529 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4530 {
4531 	struct intel_engine_cs *e;
4532 	intel_engine_mask_t tmp, mask = engine->mask;
4533 
4534 	for_each_engine_masked(e, engine->gt, mask, tmp)
4535 		e->serial++;
4536 }
4537 
guc_default_vfuncs(struct intel_engine_cs * engine)4538 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4539 {
4540 	/* Default vfuncs which can be overridden by each engine. */
4541 
4542 	engine->resume = guc_resume;
4543 
4544 	engine->cops = &guc_context_ops;
4545 	engine->request_alloc = guc_request_alloc;
4546 	engine->add_active_request = add_to_context;
4547 	engine->remove_active_request = remove_from_context;
4548 
4549 	engine->sched_engine->schedule = i915_schedule;
4550 
4551 	engine->reset.prepare = guc_engine_reset_prepare;
4552 	engine->reset.rewind = guc_rewind_nop;
4553 	engine->reset.cancel = guc_reset_nop;
4554 	engine->reset.finish = guc_reset_nop;
4555 
4556 	engine->emit_flush = gen8_emit_flush_xcs;
4557 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4558 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4559 	if (GRAPHICS_VER(engine->i915) >= 12) {
4560 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4561 		engine->emit_flush = gen12_emit_flush_xcs;
4562 	}
4563 	engine->set_default_submission = guc_set_default_submission;
4564 	engine->busyness = guc_engine_busyness;
4565 
4566 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4567 	engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4568 	engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4569 
4570 	/* Wa_14014475959:dg2 */
4571 	if (engine->class == COMPUTE_CLASS)
4572 		if (IS_GFX_GT_IP_STEP(engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
4573 		    IS_DG2(engine->i915))
4574 			engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT;
4575 
4576 	/* Wa_16019325821 */
4577 	/* Wa_14019159160 */
4578 	if ((engine->class == COMPUTE_CLASS || engine->class == RENDER_CLASS) &&
4579 	    IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
4580 		engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT;
4581 
4582 	/*
4583 	 * TODO: GuC supports timeslicing and semaphores as well, but they're
4584 	 * handled by the firmware so some minor tweaks are required before
4585 	 * enabling.
4586 	 *
4587 	 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4588 	 */
4589 
4590 	engine->emit_bb_start = gen8_emit_bb_start;
4591 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
4592 		engine->emit_bb_start = xehp_emit_bb_start;
4593 }
4594 
rcs_submission_override(struct intel_engine_cs * engine)4595 static void rcs_submission_override(struct intel_engine_cs *engine)
4596 {
4597 	switch (GRAPHICS_VER(engine->i915)) {
4598 	case 12:
4599 		engine->emit_flush = gen12_emit_flush_rcs;
4600 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4601 		break;
4602 	case 11:
4603 		engine->emit_flush = gen11_emit_flush_rcs;
4604 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4605 		break;
4606 	default:
4607 		engine->emit_flush = gen8_emit_flush_rcs;
4608 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4609 		break;
4610 	}
4611 }
4612 
guc_default_irqs(struct intel_engine_cs * engine)4613 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4614 {
4615 	engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4616 	intel_engine_set_irq_handler(engine, cs_irq_handler);
4617 }
4618 
guc_sched_engine_destroy(struct kref * kref)4619 static void guc_sched_engine_destroy(struct kref *kref)
4620 {
4621 	struct i915_sched_engine *sched_engine =
4622 		container_of(kref, typeof(*sched_engine), ref);
4623 	struct intel_guc *guc = sched_engine->private_data;
4624 
4625 	guc->sched_engine = NULL;
4626 	tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4627 	kfree(sched_engine);
4628 }
4629 
intel_guc_submission_setup(struct intel_engine_cs * engine)4630 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4631 {
4632 	struct drm_i915_private *i915 = engine->i915;
4633 	struct intel_guc *guc = gt_to_guc(engine->gt);
4634 
4635 	/*
4636 	 * The setup relies on several assumptions (e.g. irqs always enabled)
4637 	 * that are only valid on gen11+
4638 	 */
4639 	GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4640 
4641 	if (!guc->sched_engine) {
4642 		guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4643 		if (!guc->sched_engine)
4644 			return -ENOMEM;
4645 
4646 		guc->sched_engine->schedule = i915_schedule;
4647 		guc->sched_engine->disabled = guc_sched_engine_disabled;
4648 		guc->sched_engine->private_data = guc;
4649 		guc->sched_engine->destroy = guc_sched_engine_destroy;
4650 		guc->sched_engine->bump_inflight_request_prio =
4651 			guc_bump_inflight_request_prio;
4652 		guc->sched_engine->retire_inflight_request_prio =
4653 			guc_retire_inflight_request_prio;
4654 		tasklet_setup(&guc->sched_engine->tasklet,
4655 			      guc_submission_tasklet);
4656 	}
4657 	i915_sched_engine_put(engine->sched_engine);
4658 	engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4659 
4660 	guc_default_vfuncs(engine);
4661 	guc_default_irqs(engine);
4662 	guc_init_breadcrumbs(engine);
4663 
4664 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4665 		rcs_submission_override(engine);
4666 
4667 	lrc_init_wa_ctx(engine);
4668 
4669 	/* Finally, take ownership and responsibility for cleanup! */
4670 	engine->sanitize = guc_sanitize;
4671 	engine->release = guc_release;
4672 
4673 	return 0;
4674 }
4675 
4676 struct scheduling_policy {
4677 	/* internal data */
4678 	u32 max_words, num_words;
4679 	u32 count;
4680 	/* API data */
4681 	struct guc_update_scheduling_policy h2g;
4682 };
4683 
__guc_scheduling_policy_action_size(struct scheduling_policy * policy)4684 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy)
4685 {
4686 	u32 *start = (void *)&policy->h2g;
4687 	u32 *end = policy->h2g.data + policy->num_words;
4688 	size_t delta = end - start;
4689 
4690 	return delta;
4691 }
4692 
__guc_scheduling_policy_start_klv(struct scheduling_policy * policy)4693 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy)
4694 {
4695 	policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV;
4696 	policy->max_words = ARRAY_SIZE(policy->h2g.data);
4697 	policy->num_words = 0;
4698 	policy->count = 0;
4699 
4700 	return policy;
4701 }
4702 
__guc_scheduling_policy_add_klv(struct scheduling_policy * policy,u32 action,u32 * data,u32 len)4703 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy,
4704 					    u32 action, u32 *data, u32 len)
4705 {
4706 	u32 *klv_ptr = policy->h2g.data + policy->num_words;
4707 
4708 	GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words);
4709 	*(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) |
4710 		       FIELD_PREP(GUC_KLV_0_LEN, len);
4711 	memcpy(klv_ptr, data, sizeof(u32) * len);
4712 	policy->num_words += 1 + len;
4713 	policy->count++;
4714 }
4715 
__guc_action_set_scheduling_policies(struct intel_guc * guc,struct scheduling_policy * policy)4716 static int __guc_action_set_scheduling_policies(struct intel_guc *guc,
4717 						struct scheduling_policy *policy)
4718 {
4719 	int ret;
4720 
4721 	ret = intel_guc_send(guc, (u32 *)&policy->h2g,
4722 			     __guc_scheduling_policy_action_size(policy));
4723 	if (ret < 0) {
4724 		guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n",
4725 				ERR_PTR(ret));
4726 		return ret;
4727 	}
4728 
4729 	if (ret != policy->count) {
4730 		guc_warn(guc, "global scheduler policy processed %d of %d KLVs!",
4731 			 ret, policy->count);
4732 		if (ret > policy->count)
4733 			return -EPROTO;
4734 	}
4735 
4736 	return 0;
4737 }
4738 
guc_init_global_schedule_policy(struct intel_guc * guc)4739 static int guc_init_global_schedule_policy(struct intel_guc *guc)
4740 {
4741 	struct scheduling_policy policy;
4742 	struct intel_gt *gt = guc_to_gt(guc);
4743 	intel_wakeref_t wakeref;
4744 	int ret;
4745 
4746 	if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0))
4747 		return 0;
4748 
4749 	__guc_scheduling_policy_start_klv(&policy);
4750 
4751 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
4752 		u32 yield[] = {
4753 			GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION,
4754 			GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO,
4755 		};
4756 
4757 		__guc_scheduling_policy_add_klv(&policy,
4758 						GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD,
4759 						yield, ARRAY_SIZE(yield));
4760 
4761 		ret = __guc_action_set_scheduling_policies(guc, &policy);
4762 	}
4763 
4764 	return ret;
4765 }
4766 
guc_route_semaphores(struct intel_guc * guc,bool to_guc)4767 static void guc_route_semaphores(struct intel_guc *guc, bool to_guc)
4768 {
4769 	struct intel_gt *gt = guc_to_gt(guc);
4770 	u32 val;
4771 
4772 	if (GRAPHICS_VER(gt->i915) < 12)
4773 		return;
4774 
4775 	if (to_guc)
4776 		val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL;
4777 	else
4778 		val = 0;
4779 
4780 	intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val);
4781 }
4782 
intel_guc_submission_enable(struct intel_guc * guc)4783 int intel_guc_submission_enable(struct intel_guc *guc)
4784 {
4785 	int ret;
4786 
4787 	/* Semaphore interrupt enable and route to GuC */
4788 	guc_route_semaphores(guc, true);
4789 
4790 	ret = guc_init_submission(guc);
4791 	if (ret)
4792 		goto fail_sem;
4793 
4794 	ret = guc_init_engine_stats(guc);
4795 	if (ret)
4796 		goto fail_sem;
4797 
4798 	ret = guc_init_global_schedule_policy(guc);
4799 	if (ret)
4800 		goto fail_stats;
4801 
4802 	return 0;
4803 
4804 fail_stats:
4805 	guc_fini_engine_stats(guc);
4806 fail_sem:
4807 	guc_route_semaphores(guc, false);
4808 	return ret;
4809 }
4810 
4811 /* Note: By the time we're here, GuC may have already been reset */
intel_guc_submission_disable(struct intel_guc * guc)4812 void intel_guc_submission_disable(struct intel_guc *guc)
4813 {
4814 	guc_cancel_busyness_worker(guc);
4815 
4816 	/* Semaphore interrupt disable and route to host */
4817 	guc_route_semaphores(guc, false);
4818 }
4819 
__guc_submission_supported(struct intel_guc * guc)4820 static bool __guc_submission_supported(struct intel_guc *guc)
4821 {
4822 	/* GuC submission is unavailable for pre-Gen11 */
4823 	return intel_guc_is_supported(guc) &&
4824 	       GRAPHICS_VER(guc_to_i915(guc)) >= 11;
4825 }
4826 
__guc_submission_selected(struct intel_guc * guc)4827 static bool __guc_submission_selected(struct intel_guc *guc)
4828 {
4829 	struct drm_i915_private *i915 = guc_to_i915(guc);
4830 
4831 	if (!intel_guc_submission_is_supported(guc))
4832 		return false;
4833 
4834 	return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4835 }
4836 
intel_guc_sched_disable_gucid_threshold_max(struct intel_guc * guc)4837 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc)
4838 {
4839 	return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc);
4840 }
4841 
4842 /*
4843  * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher
4844  * workloads are able to enjoy the latency reduction when delaying the schedule-disable
4845  * operation. This matches the 30fps game-render + encode (real world) workload this
4846  * knob was tested against.
4847  */
4848 #define SCHED_DISABLE_DELAY_MS	34
4849 
4850 /*
4851  * A threshold of 75% is a reasonable starting point considering that real world apps
4852  * generally don't get anywhere near this.
4853  */
4854 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \
4855 	(((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4)
4856 
intel_guc_submission_init_early(struct intel_guc * guc)4857 void intel_guc_submission_init_early(struct intel_guc *guc)
4858 {
4859 	xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4860 
4861 	spin_lock_init(&guc->submission_state.lock);
4862 	INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4863 	ida_init(&guc->submission_state.guc_ids);
4864 	INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4865 	INIT_WORK(&guc->submission_state.destroyed_worker,
4866 		  destroyed_worker_func);
4867 	INIT_WORK(&guc->submission_state.reset_fail_worker,
4868 		  reset_fail_worker_func);
4869 
4870 	spin_lock_init(&guc->timestamp.lock);
4871 	INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4872 
4873 	guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS;
4874 	guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4875 	guc->submission_state.sched_disable_gucid_threshold =
4876 		NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc);
4877 	guc->submission_supported = __guc_submission_supported(guc);
4878 	guc->submission_selected = __guc_submission_selected(guc);
4879 }
4880 
4881 static inline struct intel_context *
g2h_context_lookup(struct intel_guc * guc,u32 ctx_id)4882 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4883 {
4884 	struct intel_context *ce;
4885 
4886 	if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4887 		guc_err(guc, "Invalid ctx_id %u\n", ctx_id);
4888 		return NULL;
4889 	}
4890 
4891 	ce = __get_context(guc, ctx_id);
4892 	if (unlikely(!ce)) {
4893 		guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id);
4894 		return NULL;
4895 	}
4896 
4897 	if (unlikely(intel_context_is_child(ce))) {
4898 		guc_err(guc, "Context is child, ctx_id %u\n", ctx_id);
4899 		return NULL;
4900 	}
4901 
4902 	return ce;
4903 }
4904 
wait_wake_outstanding_tlb_g2h(struct intel_guc * guc,u32 seqno)4905 static void wait_wake_outstanding_tlb_g2h(struct intel_guc *guc, u32 seqno)
4906 {
4907 	struct intel_guc_tlb_wait *wait;
4908 	unsigned long flags;
4909 
4910 	xa_lock_irqsave(&guc->tlb_lookup, flags);
4911 	wait = xa_load(&guc->tlb_lookup, seqno);
4912 
4913 	if (wait)
4914 		wake_up(&wait->wq);
4915 	else
4916 		guc_dbg(guc,
4917 			"Stale TLB invalidation response with seqno %d\n", seqno);
4918 
4919 	xa_unlock_irqrestore(&guc->tlb_lookup, flags);
4920 }
4921 
intel_guc_tlb_invalidation_done(struct intel_guc * guc,const u32 * payload,u32 len)4922 int intel_guc_tlb_invalidation_done(struct intel_guc *guc,
4923 				    const u32 *payload, u32 len)
4924 {
4925 	if (len < 1)
4926 		return -EPROTO;
4927 
4928 	wait_wake_outstanding_tlb_g2h(guc, payload[0]);
4929 	return 0;
4930 }
4931 
must_wait_woken(struct wait_queue_entry * wq_entry,long timeout)4932 static long must_wait_woken(struct wait_queue_entry *wq_entry, long timeout)
4933 {
4934 	/*
4935 	 * This is equivalent to wait_woken() with the exception that
4936 	 * we do not wake up early if the kthread task has been completed.
4937 	 * As we are called from page reclaim in any task context,
4938 	 * we may be invoked from stopped kthreads, but we *must*
4939 	 * complete the wait from the HW.
4940 	 */
4941 	do {
4942 		set_current_state(TASK_UNINTERRUPTIBLE);
4943 		if (wq_entry->flags & WQ_FLAG_WOKEN)
4944 			break;
4945 
4946 		timeout = schedule_timeout(timeout);
4947 	} while (timeout);
4948 
4949 	/* See wait_woken() and woken_wake_function() */
4950 	__set_current_state(TASK_RUNNING);
4951 	smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN);
4952 
4953 	return timeout;
4954 }
4955 
intel_gt_is_enabled(const struct intel_gt * gt)4956 static bool intel_gt_is_enabled(const struct intel_gt *gt)
4957 {
4958 	/* Check if GT is wedged or suspended */
4959 	if (intel_gt_is_wedged(gt) || !intel_irqs_enabled(gt->i915))
4960 		return false;
4961 	return true;
4962 }
4963 
guc_send_invalidate_tlb(struct intel_guc * guc,enum intel_guc_tlb_invalidation_type type)4964 static int guc_send_invalidate_tlb(struct intel_guc *guc,
4965 				   enum intel_guc_tlb_invalidation_type type)
4966 {
4967 	struct intel_guc_tlb_wait _wq, *wq = &_wq;
4968 	struct intel_gt *gt = guc_to_gt(guc);
4969 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
4970 	int err;
4971 	u32 seqno;
4972 	u32 action[] = {
4973 		INTEL_GUC_ACTION_TLB_INVALIDATION,
4974 		0,
4975 		REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_TYPE_MASK, type) |
4976 			REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_MODE_MASK,
4977 				       INTEL_GUC_TLB_INVAL_MODE_HEAVY) |
4978 			INTEL_GUC_TLB_INVAL_FLUSH_CACHE,
4979 	};
4980 	u32 size = ARRAY_SIZE(action);
4981 
4982 	/*
4983 	 * Early guard against GT enablement.  TLB invalidation should not be
4984 	 * attempted if the GT is disabled due to suspend/wedge.
4985 	 */
4986 	if (!intel_gt_is_enabled(gt))
4987 		return -EINVAL;
4988 
4989 	init_waitqueue_head(&_wq.wq);
4990 
4991 	if (xa_alloc_cyclic_irq(&guc->tlb_lookup, &seqno, wq,
4992 				xa_limit_32b, &guc->next_seqno,
4993 				GFP_ATOMIC | __GFP_NOWARN) < 0) {
4994 		/* Under severe memory pressure? Serialise TLB allocations */
4995 		xa_lock_irq(&guc->tlb_lookup);
4996 		wq = xa_load(&guc->tlb_lookup, guc->serial_slot);
4997 		wait_event_lock_irq(wq->wq,
4998 				    !READ_ONCE(wq->busy),
4999 				    guc->tlb_lookup.xa_lock);
5000 		/*
5001 		 * Update wq->busy under lock to ensure only one waiter can
5002 		 * issue the TLB invalidation command using the serial slot at a
5003 		 * time. The condition is set to true before releasing the lock
5004 		 * so that other caller continue to wait until woken up again.
5005 		 */
5006 		wq->busy = true;
5007 		xa_unlock_irq(&guc->tlb_lookup);
5008 
5009 		seqno = guc->serial_slot;
5010 	}
5011 
5012 	action[1] = seqno;
5013 
5014 	add_wait_queue(&wq->wq, &wait);
5015 
5016 	/* This is a critical reclaim path and thus we must loop here. */
5017 	err = intel_guc_send_busy_loop(guc, action, size, G2H_LEN_DW_INVALIDATE_TLB, true);
5018 	if (err)
5019 		goto out;
5020 
5021 	/*
5022 	 * Late guard against GT enablement.  It is not an error for the TLB
5023 	 * invalidation to time out if the GT is disabled during the process
5024 	 * due to suspend/wedge.  In fact, the TLB invalidation is cancelled
5025 	 * in this case.
5026 	 */
5027 	if (!must_wait_woken(&wait, intel_guc_ct_max_queue_time_jiffies()) &&
5028 	    intel_gt_is_enabled(gt)) {
5029 		guc_err(guc,
5030 			"TLB invalidation response timed out for seqno %u\n", seqno);
5031 		err = -ETIME;
5032 	}
5033 out:
5034 	remove_wait_queue(&wq->wq, &wait);
5035 	if (seqno != guc->serial_slot)
5036 		xa_erase_irq(&guc->tlb_lookup, seqno);
5037 
5038 	return err;
5039 }
5040 
5041 /* Send a H2G command to invalidate the TLBs at engine level and beyond. */
intel_guc_invalidate_tlb_engines(struct intel_guc * guc)5042 int intel_guc_invalidate_tlb_engines(struct intel_guc *guc)
5043 {
5044 	return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_ENGINES);
5045 }
5046 
5047 /* Send a H2G command to invalidate the GuC's internal TLB. */
intel_guc_invalidate_tlb_guc(struct intel_guc * guc)5048 int intel_guc_invalidate_tlb_guc(struct intel_guc *guc)
5049 {
5050 	return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_GUC);
5051 }
5052 
intel_guc_deregister_done_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5053 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
5054 					  const u32 *msg,
5055 					  u32 len)
5056 {
5057 	struct intel_context *ce;
5058 	u32 ctx_id;
5059 
5060 	if (unlikely(len < 1)) {
5061 		guc_err(guc, "Invalid length %u\n", len);
5062 		return -EPROTO;
5063 	}
5064 	ctx_id = msg[0];
5065 
5066 	ce = g2h_context_lookup(guc, ctx_id);
5067 	if (unlikely(!ce))
5068 		return -EPROTO;
5069 
5070 	trace_intel_context_deregister_done(ce);
5071 
5072 #ifdef CONFIG_DRM_I915_SELFTEST
5073 	if (unlikely(ce->drop_deregister)) {
5074 		ce->drop_deregister = false;
5075 		return 0;
5076 	}
5077 #endif
5078 
5079 	if (context_wait_for_deregister_to_register(ce)) {
5080 		struct intel_runtime_pm *runtime_pm =
5081 			&ce->engine->gt->i915->runtime_pm;
5082 		intel_wakeref_t wakeref;
5083 
5084 		/*
5085 		 * Previous owner of this guc_id has been deregistered, now safe
5086 		 * register this context.
5087 		 */
5088 		with_intel_runtime_pm(runtime_pm, wakeref)
5089 			register_context(ce, true);
5090 		guc_signal_context_fence(ce);
5091 		intel_context_put(ce);
5092 	} else if (context_destroyed(ce)) {
5093 		/* Context has been destroyed */
5094 		intel_gt_pm_put_async_untracked(guc_to_gt(guc));
5095 		release_guc_id(guc, ce);
5096 		__guc_context_destroy(ce);
5097 	}
5098 
5099 	decr_outstanding_submission_g2h(guc);
5100 
5101 	return 0;
5102 }
5103 
intel_guc_sched_done_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5104 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
5105 				     const u32 *msg,
5106 				     u32 len)
5107 {
5108 	struct intel_context *ce;
5109 	unsigned long flags;
5110 	u32 ctx_id;
5111 
5112 	if (unlikely(len < 2)) {
5113 		guc_err(guc, "Invalid length %u\n", len);
5114 		return -EPROTO;
5115 	}
5116 	ctx_id = msg[0];
5117 
5118 	ce = g2h_context_lookup(guc, ctx_id);
5119 	if (unlikely(!ce))
5120 		return -EPROTO;
5121 
5122 	if (unlikely(context_destroyed(ce) ||
5123 		     (!context_pending_enable(ce) &&
5124 		     !context_pending_disable(ce)))) {
5125 		guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n",
5126 			ce->guc_state.sched_state, ctx_id);
5127 		return -EPROTO;
5128 	}
5129 
5130 	trace_intel_context_sched_done(ce);
5131 
5132 	if (context_pending_enable(ce)) {
5133 #ifdef CONFIG_DRM_I915_SELFTEST
5134 		if (unlikely(ce->drop_schedule_enable)) {
5135 			ce->drop_schedule_enable = false;
5136 			return 0;
5137 		}
5138 #endif
5139 
5140 		spin_lock_irqsave(&ce->guc_state.lock, flags);
5141 		clr_context_pending_enable(ce);
5142 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
5143 	} else if (context_pending_disable(ce)) {
5144 		bool banned;
5145 
5146 #ifdef CONFIG_DRM_I915_SELFTEST
5147 		if (unlikely(ce->drop_schedule_disable)) {
5148 			ce->drop_schedule_disable = false;
5149 			return 0;
5150 		}
5151 #endif
5152 
5153 		/*
5154 		 * Unpin must be done before __guc_signal_context_fence,
5155 		 * otherwise a race exists between the requests getting
5156 		 * submitted + retired before this unpin completes resulting in
5157 		 * the pin_count going to zero and the context still being
5158 		 * enabled.
5159 		 */
5160 		intel_context_sched_disable_unpin(ce);
5161 
5162 		spin_lock_irqsave(&ce->guc_state.lock, flags);
5163 		banned = context_banned(ce);
5164 		clr_context_banned(ce);
5165 		clr_context_pending_disable(ce);
5166 		__guc_signal_context_fence(ce);
5167 		guc_blocked_fence_complete(ce);
5168 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
5169 
5170 		if (banned) {
5171 			guc_cancel_context_requests(ce);
5172 			intel_engine_signal_breadcrumbs(ce->engine);
5173 		}
5174 	}
5175 
5176 	decr_outstanding_submission_g2h(guc);
5177 	intel_context_put(ce);
5178 
5179 	return 0;
5180 }
5181 
capture_error_state(struct intel_guc * guc,struct intel_context * ce)5182 static void capture_error_state(struct intel_guc *guc,
5183 				struct intel_context *ce)
5184 {
5185 	struct intel_gt *gt = guc_to_gt(guc);
5186 	struct drm_i915_private *i915 = gt->i915;
5187 	intel_wakeref_t wakeref;
5188 	intel_engine_mask_t engine_mask;
5189 
5190 	if (intel_engine_is_virtual(ce->engine)) {
5191 		struct intel_engine_cs *e;
5192 		intel_engine_mask_t tmp, virtual_mask = ce->engine->mask;
5193 
5194 		engine_mask = 0;
5195 		for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) {
5196 			bool match = intel_guc_capture_is_matching_engine(gt, ce, e);
5197 
5198 			if (match) {
5199 				intel_engine_set_hung_context(e, ce);
5200 				engine_mask |= e->mask;
5201 				i915_increase_reset_engine_count(&i915->gpu_error,
5202 								 e);
5203 			}
5204 		}
5205 
5206 		if (!engine_mask) {
5207 			guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s",
5208 				 ce->guc_id.id, ce->engine->name);
5209 			engine_mask = ~0U;
5210 		}
5211 	} else {
5212 		intel_engine_set_hung_context(ce->engine, ce);
5213 		engine_mask = ce->engine->mask;
5214 		i915_increase_reset_engine_count(&i915->gpu_error, ce->engine);
5215 	}
5216 
5217 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
5218 		i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
5219 }
5220 
guc_context_replay(struct intel_context * ce)5221 static void guc_context_replay(struct intel_context *ce)
5222 {
5223 	struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
5224 
5225 	__guc_reset_context(ce, ce->engine->mask);
5226 	tasklet_hi_schedule(&sched_engine->tasklet);
5227 }
5228 
guc_handle_context_reset(struct intel_guc * guc,struct intel_context * ce)5229 static void guc_handle_context_reset(struct intel_guc *guc,
5230 				     struct intel_context *ce)
5231 {
5232 	bool capture = intel_context_is_schedulable(ce);
5233 
5234 	trace_intel_context_reset(ce);
5235 
5236 	guc_dbg(guc, "%s context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n",
5237 		capture ? "Got" : "Ignoring",
5238 		ce->guc_id.id, ce->engine->name,
5239 		str_yes_no(intel_context_is_exiting(ce)),
5240 		str_yes_no(intel_context_is_banned(ce)));
5241 
5242 	if (capture) {
5243 		capture_error_state(guc, ce);
5244 		guc_context_replay(ce);
5245 	}
5246 }
5247 
intel_guc_context_reset_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5248 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
5249 					const u32 *msg, u32 len)
5250 {
5251 	struct intel_context *ce;
5252 	unsigned long flags;
5253 	int ctx_id;
5254 
5255 	if (unlikely(len != 1)) {
5256 		guc_err(guc, "Invalid length %u", len);
5257 		return -EPROTO;
5258 	}
5259 
5260 	ctx_id = msg[0];
5261 
5262 	/*
5263 	 * The context lookup uses the xarray but lookups only require an RCU lock
5264 	 * not the full spinlock. So take the lock explicitly and keep it until the
5265 	 * context has been reference count locked to ensure it can't be destroyed
5266 	 * asynchronously until the reset is done.
5267 	 */
5268 	xa_lock_irqsave(&guc->context_lookup, flags);
5269 	ce = g2h_context_lookup(guc, ctx_id);
5270 	if (ce)
5271 		intel_context_get(ce);
5272 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5273 
5274 	if (unlikely(!ce))
5275 		return -EPROTO;
5276 
5277 	guc_handle_context_reset(guc, ce);
5278 	intel_context_put(ce);
5279 
5280 	return 0;
5281 }
5282 
intel_guc_error_capture_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5283 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
5284 					const u32 *msg, u32 len)
5285 {
5286 	u32 status;
5287 
5288 	if (unlikely(len != 1)) {
5289 		guc_dbg(guc, "Invalid length %u", len);
5290 		return -EPROTO;
5291 	}
5292 
5293 	status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
5294 	if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
5295 		guc_warn(guc, "No space for error capture");
5296 
5297 	intel_guc_capture_process(guc);
5298 
5299 	return 0;
5300 }
5301 
5302 struct intel_engine_cs *
intel_guc_lookup_engine(struct intel_guc * guc,u8 guc_class,u8 instance)5303 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
5304 {
5305 	struct intel_gt *gt = guc_to_gt(guc);
5306 	u8 engine_class = guc_class_to_engine_class(guc_class);
5307 
5308 	/* Class index is checked in class converter */
5309 	GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
5310 
5311 	return gt->engine_class[engine_class][instance];
5312 }
5313 
reset_fail_worker_func(struct work_struct * w)5314 static void reset_fail_worker_func(struct work_struct *w)
5315 {
5316 	struct intel_guc *guc = container_of(w, struct intel_guc,
5317 					     submission_state.reset_fail_worker);
5318 	struct intel_gt *gt = guc_to_gt(guc);
5319 	intel_engine_mask_t reset_fail_mask;
5320 	unsigned long flags;
5321 
5322 	spin_lock_irqsave(&guc->submission_state.lock, flags);
5323 	reset_fail_mask = guc->submission_state.reset_fail_mask;
5324 	guc->submission_state.reset_fail_mask = 0;
5325 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5326 
5327 	if (likely(reset_fail_mask)) {
5328 		struct intel_engine_cs *engine;
5329 		enum intel_engine_id id;
5330 
5331 		/*
5332 		 * GuC is toast at this point - it dead loops after sending the failed
5333 		 * reset notification. So need to manually determine the guilty context.
5334 		 * Note that it should be reliable to do this here because the GuC is
5335 		 * toast and will not be scheduling behind the KMD's back.
5336 		 */
5337 		for_each_engine_masked(engine, gt, reset_fail_mask, id)
5338 			intel_guc_find_hung_context(engine);
5339 
5340 		intel_gt_handle_error(gt, reset_fail_mask,
5341 				      I915_ERROR_CAPTURE,
5342 				      "GuC failed to reset engine mask=0x%x",
5343 				      reset_fail_mask);
5344 	}
5345 }
5346 
intel_guc_engine_failure_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5347 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
5348 					 const u32 *msg, u32 len)
5349 {
5350 	struct intel_engine_cs *engine;
5351 	u8 guc_class, instance;
5352 	u32 reason;
5353 	unsigned long flags;
5354 
5355 	if (unlikely(len != 3)) {
5356 		guc_err(guc, "Invalid length %u", len);
5357 		return -EPROTO;
5358 	}
5359 
5360 	guc_class = msg[0];
5361 	instance = msg[1];
5362 	reason = msg[2];
5363 
5364 	engine = intel_guc_lookup_engine(guc, guc_class, instance);
5365 	if (unlikely(!engine)) {
5366 		guc_err(guc, "Invalid engine %d:%d", guc_class, instance);
5367 		return -EPROTO;
5368 	}
5369 
5370 	/*
5371 	 * This is an unexpected failure of a hardware feature. So, log a real
5372 	 * error message not just the informational that comes with the reset.
5373 	 */
5374 	guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X",
5375 		guc_class, instance, engine->name, reason);
5376 
5377 	spin_lock_irqsave(&guc->submission_state.lock, flags);
5378 	guc->submission_state.reset_fail_mask |= engine->mask;
5379 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5380 
5381 	/*
5382 	 * A GT reset flushes this worker queue (G2H handler) so we must use
5383 	 * another worker to trigger a GT reset.
5384 	 */
5385 	queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
5386 
5387 	return 0;
5388 }
5389 
intel_guc_find_hung_context(struct intel_engine_cs * engine)5390 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
5391 {
5392 	struct intel_guc *guc = gt_to_guc(engine->gt);
5393 	struct intel_context *ce;
5394 	struct i915_request *rq;
5395 	unsigned long index;
5396 	unsigned long flags;
5397 
5398 	/* Reset called during driver load? GuC not yet initialised! */
5399 	if (unlikely(!guc_submission_initialized(guc)))
5400 		return;
5401 
5402 	xa_lock_irqsave(&guc->context_lookup, flags);
5403 	xa_for_each(&guc->context_lookup, index, ce) {
5404 		bool found;
5405 
5406 		if (!kref_get_unless_zero(&ce->ref))
5407 			continue;
5408 
5409 		xa_unlock(&guc->context_lookup);
5410 
5411 		if (!intel_context_is_pinned(ce))
5412 			goto next;
5413 
5414 		if (intel_engine_is_virtual(ce->engine)) {
5415 			if (!(ce->engine->mask & engine->mask))
5416 				goto next;
5417 		} else {
5418 			if (ce->engine != engine)
5419 				goto next;
5420 		}
5421 
5422 		found = false;
5423 		spin_lock(&ce->guc_state.lock);
5424 		list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
5425 			if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
5426 				continue;
5427 
5428 			found = true;
5429 			break;
5430 		}
5431 		spin_unlock(&ce->guc_state.lock);
5432 
5433 		if (found) {
5434 			intel_engine_set_hung_context(engine, ce);
5435 
5436 			/* Can only cope with one hang at a time... */
5437 			intel_context_put(ce);
5438 			xa_lock(&guc->context_lookup);
5439 			goto done;
5440 		}
5441 
5442 next:
5443 		intel_context_put(ce);
5444 		xa_lock(&guc->context_lookup);
5445 	}
5446 done:
5447 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5448 }
5449 
intel_guc_dump_active_requests(struct intel_engine_cs * engine,struct i915_request * hung_rq,struct drm_printer * m)5450 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
5451 				    struct i915_request *hung_rq,
5452 				    struct drm_printer *m)
5453 {
5454 	struct intel_guc *guc = gt_to_guc(engine->gt);
5455 	struct intel_context *ce;
5456 	unsigned long index;
5457 	unsigned long flags;
5458 
5459 	/* Reset called during driver load? GuC not yet initialised! */
5460 	if (unlikely(!guc_submission_initialized(guc)))
5461 		return;
5462 
5463 	xa_lock_irqsave(&guc->context_lookup, flags);
5464 	xa_for_each(&guc->context_lookup, index, ce) {
5465 		if (!kref_get_unless_zero(&ce->ref))
5466 			continue;
5467 
5468 		xa_unlock(&guc->context_lookup);
5469 
5470 		if (!intel_context_is_pinned(ce))
5471 			goto next;
5472 
5473 		if (intel_engine_is_virtual(ce->engine)) {
5474 			if (!(ce->engine->mask & engine->mask))
5475 				goto next;
5476 		} else {
5477 			if (ce->engine != engine)
5478 				goto next;
5479 		}
5480 
5481 		spin_lock(&ce->guc_state.lock);
5482 		intel_engine_dump_active_requests(&ce->guc_state.requests,
5483 						  hung_rq, m);
5484 		spin_unlock(&ce->guc_state.lock);
5485 
5486 next:
5487 		intel_context_put(ce);
5488 		xa_lock(&guc->context_lookup);
5489 	}
5490 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5491 }
5492 
intel_guc_submission_print_info(struct intel_guc * guc,struct drm_printer * p)5493 void intel_guc_submission_print_info(struct intel_guc *guc,
5494 				     struct drm_printer *p)
5495 {
5496 	struct i915_sched_engine *sched_engine = guc->sched_engine;
5497 	struct rb_node *rb;
5498 	unsigned long flags;
5499 
5500 	if (!sched_engine)
5501 		return;
5502 
5503 	drm_printf(p, "GuC Submission API Version: %d.%d.%d\n",
5504 		   guc->submission_version.major, guc->submission_version.minor,
5505 		   guc->submission_version.patch);
5506 	drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
5507 		   atomic_read(&guc->outstanding_submission_g2h));
5508 	drm_printf(p, "GuC tasklet count: %u\n",
5509 		   atomic_read(&sched_engine->tasklet.count));
5510 
5511 	spin_lock_irqsave(&sched_engine->lock, flags);
5512 	drm_printf(p, "Requests in GuC submit tasklet:\n");
5513 	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
5514 		struct i915_priolist *pl = to_priolist(rb);
5515 		struct i915_request *rq;
5516 
5517 		priolist_for_each_request(rq, pl)
5518 			drm_printf(p, "guc_id=%u, seqno=%llu\n",
5519 				   rq->context->guc_id.id,
5520 				   rq->fence.seqno);
5521 	}
5522 	spin_unlock_irqrestore(&sched_engine->lock, flags);
5523 	drm_printf(p, "\n");
5524 }
5525 
guc_log_context_priority(struct drm_printer * p,struct intel_context * ce)5526 static inline void guc_log_context_priority(struct drm_printer *p,
5527 					    struct intel_context *ce)
5528 {
5529 	int i;
5530 
5531 	drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
5532 	drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
5533 	for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
5534 	     i < GUC_CLIENT_PRIORITY_NUM; ++i) {
5535 		drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
5536 			   i, ce->guc_state.prio_count[i]);
5537 	}
5538 	drm_printf(p, "\n");
5539 }
5540 
guc_log_context(struct drm_printer * p,struct intel_context * ce)5541 static inline void guc_log_context(struct drm_printer *p,
5542 				   struct intel_context *ce)
5543 {
5544 	drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
5545 	drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
5546 	if (intel_context_pin_if_active(ce)) {
5547 		drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
5548 			   ce->ring->head,
5549 			   ce->lrc_reg_state[CTX_RING_HEAD]);
5550 		drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
5551 			   ce->ring->tail,
5552 			   ce->lrc_reg_state[CTX_RING_TAIL]);
5553 		intel_context_unpin(ce);
5554 	} else {
5555 		drm_printf(p, "\t\tLRC Head: Internal %u, Memory not pinned\n",
5556 			   ce->ring->head);
5557 		drm_printf(p, "\t\tLRC Tail: Internal %u, Memory not pinned\n",
5558 			   ce->ring->tail);
5559 	}
5560 	drm_printf(p, "\t\tContext Pin Count: %u\n",
5561 		   atomic_read(&ce->pin_count));
5562 	drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
5563 		   atomic_read(&ce->guc_id.ref));
5564 	drm_printf(p, "\t\tSchedule State: 0x%x\n",
5565 		   ce->guc_state.sched_state);
5566 }
5567 
intel_guc_submission_print_context_info(struct intel_guc * guc,struct drm_printer * p)5568 void intel_guc_submission_print_context_info(struct intel_guc *guc,
5569 					     struct drm_printer *p)
5570 {
5571 	struct intel_context *ce;
5572 	unsigned long index;
5573 	unsigned long flags;
5574 
5575 	xa_lock_irqsave(&guc->context_lookup, flags);
5576 	xa_for_each(&guc->context_lookup, index, ce) {
5577 		GEM_BUG_ON(intel_context_is_child(ce));
5578 
5579 		guc_log_context(p, ce);
5580 		guc_log_context_priority(p, ce);
5581 
5582 		if (intel_context_is_parent(ce)) {
5583 			struct intel_context *child;
5584 
5585 			drm_printf(p, "\t\tNumber children: %u\n",
5586 				   ce->parallel.number_children);
5587 
5588 			if (ce->parallel.guc.wq_status) {
5589 				drm_printf(p, "\t\tWQI Head: %u\n",
5590 					   READ_ONCE(*ce->parallel.guc.wq_head));
5591 				drm_printf(p, "\t\tWQI Tail: %u\n",
5592 					   READ_ONCE(*ce->parallel.guc.wq_tail));
5593 				drm_printf(p, "\t\tWQI Status: %u\n",
5594 					   READ_ONCE(*ce->parallel.guc.wq_status));
5595 			}
5596 
5597 			if (ce->engine->emit_bb_start ==
5598 			    emit_bb_start_parent_no_preempt_mid_batch) {
5599 				u8 i;
5600 
5601 				drm_printf(p, "\t\tChildren Go: %u\n",
5602 					   get_children_go_value(ce));
5603 				for (i = 0; i < ce->parallel.number_children; ++i)
5604 					drm_printf(p, "\t\tChildren Join: %u\n",
5605 						   get_children_join_value(ce, i));
5606 			}
5607 
5608 			for_each_child(ce, child)
5609 				guc_log_context(p, child);
5610 		}
5611 	}
5612 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5613 }
5614 
get_children_go_addr(struct intel_context * ce)5615 static inline u32 get_children_go_addr(struct intel_context *ce)
5616 {
5617 	GEM_BUG_ON(!intel_context_is_parent(ce));
5618 
5619 	return i915_ggtt_offset(ce->state) +
5620 		__get_parent_scratch_offset(ce) +
5621 		offsetof(struct parent_scratch, go.semaphore);
5622 }
5623 
get_children_join_addr(struct intel_context * ce,u8 child_index)5624 static inline u32 get_children_join_addr(struct intel_context *ce,
5625 					 u8 child_index)
5626 {
5627 	GEM_BUG_ON(!intel_context_is_parent(ce));
5628 
5629 	return i915_ggtt_offset(ce->state) +
5630 		__get_parent_scratch_offset(ce) +
5631 		offsetof(struct parent_scratch, join[child_index].semaphore);
5632 }
5633 
5634 #define PARENT_GO_BB			1
5635 #define PARENT_GO_FINI_BREADCRUMB	0
5636 #define CHILD_GO_BB			1
5637 #define CHILD_GO_FINI_BREADCRUMB	0
emit_bb_start_parent_no_preempt_mid_batch(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)5638 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
5639 						     u64 offset, u32 len,
5640 						     const unsigned int flags)
5641 {
5642 	struct intel_context *ce = rq->context;
5643 	u32 *cs;
5644 	u8 i;
5645 
5646 	GEM_BUG_ON(!intel_context_is_parent(ce));
5647 
5648 	cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
5649 	if (IS_ERR(cs))
5650 		return PTR_ERR(cs);
5651 
5652 	/* Wait on children */
5653 	for (i = 0; i < ce->parallel.number_children; ++i) {
5654 		*cs++ = (MI_SEMAPHORE_WAIT |
5655 			 MI_SEMAPHORE_GLOBAL_GTT |
5656 			 MI_SEMAPHORE_POLL |
5657 			 MI_SEMAPHORE_SAD_EQ_SDD);
5658 		*cs++ = PARENT_GO_BB;
5659 		*cs++ = get_children_join_addr(ce, i);
5660 		*cs++ = 0;
5661 	}
5662 
5663 	/* Turn off preemption */
5664 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5665 	*cs++ = MI_NOOP;
5666 
5667 	/* Tell children go */
5668 	cs = gen8_emit_ggtt_write(cs,
5669 				  CHILD_GO_BB,
5670 				  get_children_go_addr(ce),
5671 				  0);
5672 
5673 	/* Jump to batch */
5674 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
5675 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5676 	*cs++ = lower_32_bits(offset);
5677 	*cs++ = upper_32_bits(offset);
5678 	*cs++ = MI_NOOP;
5679 
5680 	intel_ring_advance(rq, cs);
5681 
5682 	return 0;
5683 }
5684 
emit_bb_start_child_no_preempt_mid_batch(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)5685 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
5686 						    u64 offset, u32 len,
5687 						    const unsigned int flags)
5688 {
5689 	struct intel_context *ce = rq->context;
5690 	struct intel_context *parent = intel_context_to_parent(ce);
5691 	u32 *cs;
5692 
5693 	GEM_BUG_ON(!intel_context_is_child(ce));
5694 
5695 	cs = intel_ring_begin(rq, 12);
5696 	if (IS_ERR(cs))
5697 		return PTR_ERR(cs);
5698 
5699 	/* Signal parent */
5700 	cs = gen8_emit_ggtt_write(cs,
5701 				  PARENT_GO_BB,
5702 				  get_children_join_addr(parent,
5703 							 ce->parallel.child_index),
5704 				  0);
5705 
5706 	/* Wait on parent for go */
5707 	*cs++ = (MI_SEMAPHORE_WAIT |
5708 		 MI_SEMAPHORE_GLOBAL_GTT |
5709 		 MI_SEMAPHORE_POLL |
5710 		 MI_SEMAPHORE_SAD_EQ_SDD);
5711 	*cs++ = CHILD_GO_BB;
5712 	*cs++ = get_children_go_addr(parent);
5713 	*cs++ = 0;
5714 
5715 	/* Turn off preemption */
5716 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5717 
5718 	/* Jump to batch */
5719 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
5720 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5721 	*cs++ = lower_32_bits(offset);
5722 	*cs++ = upper_32_bits(offset);
5723 
5724 	intel_ring_advance(rq, cs);
5725 
5726 	return 0;
5727 }
5728 
5729 static u32 *
__emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5730 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5731 						   u32 *cs)
5732 {
5733 	struct intel_context *ce = rq->context;
5734 	u8 i;
5735 
5736 	GEM_BUG_ON(!intel_context_is_parent(ce));
5737 
5738 	/* Wait on children */
5739 	for (i = 0; i < ce->parallel.number_children; ++i) {
5740 		*cs++ = (MI_SEMAPHORE_WAIT |
5741 			 MI_SEMAPHORE_GLOBAL_GTT |
5742 			 MI_SEMAPHORE_POLL |
5743 			 MI_SEMAPHORE_SAD_EQ_SDD);
5744 		*cs++ = PARENT_GO_FINI_BREADCRUMB;
5745 		*cs++ = get_children_join_addr(ce, i);
5746 		*cs++ = 0;
5747 	}
5748 
5749 	/* Turn on preemption */
5750 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5751 	*cs++ = MI_NOOP;
5752 
5753 	/* Tell children go */
5754 	cs = gen8_emit_ggtt_write(cs,
5755 				  CHILD_GO_FINI_BREADCRUMB,
5756 				  get_children_go_addr(ce),
5757 				  0);
5758 
5759 	return cs;
5760 }
5761 
5762 /*
5763  * If this true, a submission of multi-lrc requests had an error and the
5764  * requests need to be skipped. The front end (execuf IOCTL) should've called
5765  * i915_request_skip which squashes the BB but we still need to emit the fini
5766  * breadrcrumbs seqno write. At this point we don't know how many of the
5767  * requests in the multi-lrc submission were generated so we can't do the
5768  * handshake between the parent and children (e.g. if 4 requests should be
5769  * generated but 2nd hit an error only 1 would be seen by the GuC backend).
5770  * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
5771  * has occurred on any of the requests in submission / relationship.
5772  */
skip_handshake(struct i915_request * rq)5773 static inline bool skip_handshake(struct i915_request *rq)
5774 {
5775 	return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
5776 }
5777 
5778 #define NON_SKIP_LEN	6
5779 static u32 *
emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5780 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5781 						 u32 *cs)
5782 {
5783 	struct intel_context *ce = rq->context;
5784 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5785 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5786 
5787 	GEM_BUG_ON(!intel_context_is_parent(ce));
5788 
5789 	if (unlikely(skip_handshake(rq))) {
5790 		/*
5791 		 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
5792 		 * the NON_SKIP_LEN comes from the length of the emits below.
5793 		 */
5794 		memset(cs, 0, sizeof(u32) *
5795 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5796 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5797 	} else {
5798 		cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
5799 	}
5800 
5801 	/* Emit fini breadcrumb */
5802 	before_fini_breadcrumb_user_interrupt_cs = cs;
5803 	cs = gen8_emit_ggtt_write(cs,
5804 				  rq->fence.seqno,
5805 				  i915_request_active_timeline(rq)->hwsp_offset,
5806 				  0);
5807 
5808 	/* User interrupt */
5809 	*cs++ = MI_USER_INTERRUPT;
5810 	*cs++ = MI_NOOP;
5811 
5812 	/* Ensure our math for skip + emit is correct */
5813 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5814 		   cs);
5815 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5816 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5817 
5818 	rq->tail = intel_ring_offset(rq, cs);
5819 
5820 	return cs;
5821 }
5822 
5823 static u32 *
__emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5824 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5825 						  u32 *cs)
5826 {
5827 	struct intel_context *ce = rq->context;
5828 	struct intel_context *parent = intel_context_to_parent(ce);
5829 
5830 	GEM_BUG_ON(!intel_context_is_child(ce));
5831 
5832 	/* Turn on preemption */
5833 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5834 	*cs++ = MI_NOOP;
5835 
5836 	/* Signal parent */
5837 	cs = gen8_emit_ggtt_write(cs,
5838 				  PARENT_GO_FINI_BREADCRUMB,
5839 				  get_children_join_addr(parent,
5840 							 ce->parallel.child_index),
5841 				  0);
5842 
5843 	/* Wait parent on for go */
5844 	*cs++ = (MI_SEMAPHORE_WAIT |
5845 		 MI_SEMAPHORE_GLOBAL_GTT |
5846 		 MI_SEMAPHORE_POLL |
5847 		 MI_SEMAPHORE_SAD_EQ_SDD);
5848 	*cs++ = CHILD_GO_FINI_BREADCRUMB;
5849 	*cs++ = get_children_go_addr(parent);
5850 	*cs++ = 0;
5851 
5852 	return cs;
5853 }
5854 
5855 static u32 *
emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5856 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5857 						u32 *cs)
5858 {
5859 	struct intel_context *ce = rq->context;
5860 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5861 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5862 
5863 	GEM_BUG_ON(!intel_context_is_child(ce));
5864 
5865 	if (unlikely(skip_handshake(rq))) {
5866 		/*
5867 		 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5868 		 * the NON_SKIP_LEN comes from the length of the emits below.
5869 		 */
5870 		memset(cs, 0, sizeof(u32) *
5871 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5872 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5873 	} else {
5874 		cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5875 	}
5876 
5877 	/* Emit fini breadcrumb */
5878 	before_fini_breadcrumb_user_interrupt_cs = cs;
5879 	cs = gen8_emit_ggtt_write(cs,
5880 				  rq->fence.seqno,
5881 				  i915_request_active_timeline(rq)->hwsp_offset,
5882 				  0);
5883 
5884 	/* User interrupt */
5885 	*cs++ = MI_USER_INTERRUPT;
5886 	*cs++ = MI_NOOP;
5887 
5888 	/* Ensure our math for skip + emit is correct */
5889 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5890 		   cs);
5891 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5892 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5893 
5894 	rq->tail = intel_ring_offset(rq, cs);
5895 
5896 	return cs;
5897 }
5898 
5899 #undef NON_SKIP_LEN
5900 
5901 static struct intel_context *
guc_create_virtual(struct intel_engine_cs ** siblings,unsigned int count,unsigned long flags)5902 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5903 		   unsigned long flags)
5904 {
5905 	struct guc_virtual_engine *ve;
5906 	struct intel_guc *guc;
5907 	unsigned int n;
5908 	int err;
5909 
5910 	ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5911 	if (!ve)
5912 		return ERR_PTR(-ENOMEM);
5913 
5914 	guc = gt_to_guc(siblings[0]->gt);
5915 
5916 	ve->base.i915 = siblings[0]->i915;
5917 	ve->base.gt = siblings[0]->gt;
5918 	ve->base.uncore = siblings[0]->uncore;
5919 	ve->base.id = -1;
5920 
5921 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5922 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5923 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5924 	ve->base.saturated = ALL_ENGINES;
5925 
5926 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5927 
5928 	ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5929 
5930 	ve->base.cops = &virtual_guc_context_ops;
5931 	ve->base.request_alloc = guc_request_alloc;
5932 	ve->base.bump_serial = virtual_guc_bump_serial;
5933 
5934 	ve->base.submit_request = guc_submit_request;
5935 
5936 	ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5937 
5938 	BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES);
5939 	ve->base.mask = VIRTUAL_ENGINES;
5940 
5941 	intel_context_init(&ve->context, &ve->base);
5942 
5943 	for (n = 0; n < count; n++) {
5944 		struct intel_engine_cs *sibling = siblings[n];
5945 
5946 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
5947 		if (sibling->mask & ve->base.mask) {
5948 			guc_dbg(guc, "duplicate %s entry in load balancer\n",
5949 				sibling->name);
5950 			err = -EINVAL;
5951 			goto err_put;
5952 		}
5953 
5954 		ve->base.mask |= sibling->mask;
5955 		ve->base.logical_mask |= sibling->logical_mask;
5956 
5957 		if (n != 0 && ve->base.class != sibling->class) {
5958 			guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n",
5959 				sibling->class, ve->base.class);
5960 			err = -EINVAL;
5961 			goto err_put;
5962 		} else if (n == 0) {
5963 			ve->base.class = sibling->class;
5964 			ve->base.uabi_class = sibling->uabi_class;
5965 			snprintf(ve->base.name, sizeof(ve->base.name),
5966 				 "v%dx%d", ve->base.class, count);
5967 			ve->base.context_size = sibling->context_size;
5968 
5969 			ve->base.add_active_request =
5970 				sibling->add_active_request;
5971 			ve->base.remove_active_request =
5972 				sibling->remove_active_request;
5973 			ve->base.emit_bb_start = sibling->emit_bb_start;
5974 			ve->base.emit_flush = sibling->emit_flush;
5975 			ve->base.emit_init_breadcrumb =
5976 				sibling->emit_init_breadcrumb;
5977 			ve->base.emit_fini_breadcrumb =
5978 				sibling->emit_fini_breadcrumb;
5979 			ve->base.emit_fini_breadcrumb_dw =
5980 				sibling->emit_fini_breadcrumb_dw;
5981 			ve->base.breadcrumbs =
5982 				intel_breadcrumbs_get(sibling->breadcrumbs);
5983 
5984 			ve->base.flags |= sibling->flags;
5985 
5986 			ve->base.props.timeslice_duration_ms =
5987 				sibling->props.timeslice_duration_ms;
5988 			ve->base.props.preempt_timeout_ms =
5989 				sibling->props.preempt_timeout_ms;
5990 		}
5991 	}
5992 
5993 	return &ve->context;
5994 
5995 err_put:
5996 	intel_context_put(&ve->context);
5997 	return ERR_PTR(err);
5998 }
5999 
intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs * ve)6000 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
6001 {
6002 	struct intel_engine_cs *engine;
6003 	intel_engine_mask_t tmp, mask = ve->mask;
6004 
6005 	for_each_engine_masked(engine, ve->gt, mask, tmp)
6006 		if (READ_ONCE(engine->props.heartbeat_interval_ms))
6007 			return true;
6008 
6009 	return false;
6010 }
6011 
6012 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6013 #include "selftest_guc.c"
6014 #include "selftest_guc_multi_lrc.c"
6015 #include "selftest_guc_hangcheck.c"
6016 #endif
6017