xref: /linux/drivers/base/auxiliary.c (revision 9d230d500b0e5f7be863e2bf2386be5f80dd18aa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2019-2020 Intel Corporation
4  *
5  * Please see Documentation/driver-api/auxiliary_bus.rst for more information.
6  */
7 
8 #define pr_fmt(fmt) "%s:%s: " fmt, KBUILD_MODNAME, __func__
9 
10 #include <linux/device.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/module.h>
14 #include <linux/pm_domain.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/string.h>
17 #include <linux/auxiliary_bus.h>
18 #include "base.h"
19 
20 /**
21  * DOC: PURPOSE
22  *
23  * In some subsystems, the functionality of the core device (PCI/ACPI/other) is
24  * too complex for a single device to be managed by a monolithic driver (e.g.
25  * Sound Open Firmware), multiple devices might implement a common intersection
26  * of functionality (e.g. NICs + RDMA), or a driver may want to export an
27  * interface for another subsystem to drive (e.g. SIOV Physical Function export
28  * Virtual Function management).  A split of the functionality into child-
29  * devices representing sub-domains of functionality makes it possible to
30  * compartmentalize, layer, and distribute domain-specific concerns via a Linux
31  * device-driver model.
32  *
33  * An example for this kind of requirement is the audio subsystem where a
34  * single IP is handling multiple entities such as HDMI, Soundwire, local
35  * devices such as mics/speakers etc. The split for the core's functionality
36  * can be arbitrary or be defined by the DSP firmware topology and include
37  * hooks for test/debug. This allows for the audio core device to be minimal
38  * and focused on hardware-specific control and communication.
39  *
40  * Each auxiliary_device represents a part of its parent functionality. The
41  * generic behavior can be extended and specialized as needed by encapsulating
42  * an auxiliary_device within other domain-specific structures and the use of
43  * .ops callbacks. Devices on the auxiliary bus do not share any structures and
44  * the use of a communication channel with the parent is domain-specific.
45  *
46  * Note that ops are intended as a way to augment instance behavior within a
47  * class of auxiliary devices, it is not the mechanism for exporting common
48  * infrastructure from the parent. Consider EXPORT_SYMBOL_NS() to convey
49  * infrastructure from the parent module to the auxiliary module(s).
50  */
51 
52 /**
53  * DOC: USAGE
54  *
55  * The auxiliary bus is to be used when a driver and one or more kernel
56  * modules, who share a common header file with the driver, need a mechanism to
57  * connect and provide access to a shared object allocated by the
58  * auxiliary_device's registering driver.  The registering driver for the
59  * auxiliary_device(s) and the kernel module(s) registering auxiliary_drivers
60  * can be from the same subsystem, or from multiple subsystems.
61  *
62  * The emphasis here is on a common generic interface that keeps subsystem
63  * customization out of the bus infrastructure.
64  *
65  * One example is a PCI network device that is RDMA-capable and exports a child
66  * device to be driven by an auxiliary_driver in the RDMA subsystem.  The PCI
67  * driver allocates and registers an auxiliary_device for each physical
68  * function on the NIC.  The RDMA driver registers an auxiliary_driver that
69  * claims each of these auxiliary_devices.  This conveys data/ops published by
70  * the parent PCI device/driver to the RDMA auxiliary_driver.
71  *
72  * Another use case is for the PCI device to be split out into multiple sub
73  * functions.  For each sub function an auxiliary_device is created.  A PCI sub
74  * function driver binds to such devices that creates its own one or more class
75  * devices.  A PCI sub function auxiliary device is likely to be contained in a
76  * struct with additional attributes such as user defined sub function number
77  * and optional attributes such as resources and a link to the parent device.
78  * These attributes could be used by systemd/udev; and hence should be
79  * initialized before a driver binds to an auxiliary_device.
80  *
81  * A key requirement for utilizing the auxiliary bus is that there is no
82  * dependency on a physical bus, device, register accesses or regmap support.
83  * These individual devices split from the core cannot live on the platform bus
84  * as they are not physical devices that are controlled by DT/ACPI.  The same
85  * argument applies for not using MFD in this scenario as MFD relies on
86  * individual function devices being physical devices.
87  */
88 
89 /**
90  * DOC: EXAMPLE
91  *
92  * Auxiliary devices are created and registered by a subsystem-level core
93  * device that needs to break up its functionality into smaller fragments. One
94  * way to extend the scope of an auxiliary_device is to encapsulate it within a
95  * domain-specific structure defined by the parent device. This structure
96  * contains the auxiliary_device and any associated shared data/callbacks
97  * needed to establish the connection with the parent.
98  *
99  * An example is:
100  *
101  * .. code-block:: c
102  *
103  *         struct foo {
104  *		struct auxiliary_device auxdev;
105  *		void (*connect)(struct auxiliary_device *auxdev);
106  *		void (*disconnect)(struct auxiliary_device *auxdev);
107  *		void *data;
108  *        };
109  *
110  * The parent device then registers the auxiliary_device by calling
111  * auxiliary_device_init(), and then auxiliary_device_add(), with the pointer
112  * to the auxdev member of the above structure. The parent provides a name for
113  * the auxiliary_device that, combined with the parent's KBUILD_MODNAME,
114  * creates a match_name that is be used for matching and binding with a driver.
115  *
116  * Whenever an auxiliary_driver is registered, based on the match_name, the
117  * auxiliary_driver's probe() is invoked for the matching devices.  The
118  * auxiliary_driver can also be encapsulated inside custom drivers that make
119  * the core device's functionality extensible by adding additional
120  * domain-specific ops as follows:
121  *
122  * .. code-block:: c
123  *
124  *	struct my_ops {
125  *		void (*send)(struct auxiliary_device *auxdev);
126  *		void (*receive)(struct auxiliary_device *auxdev);
127  *	};
128  *
129  *
130  *	struct my_driver {
131  *		struct auxiliary_driver auxiliary_drv;
132  *		const struct my_ops ops;
133  *	};
134  *
135  * An example of this type of usage is:
136  *
137  * .. code-block:: c
138  *
139  *	const struct auxiliary_device_id my_auxiliary_id_table[] = {
140  *		{ .name = "foo_mod.foo_dev" },
141  *		{ },
142  *	};
143  *
144  *	const struct my_ops my_custom_ops = {
145  *		.send = my_tx,
146  *		.receive = my_rx,
147  *	};
148  *
149  *	const struct my_driver my_drv = {
150  *		.auxiliary_drv = {
151  *			.name = "myauxiliarydrv",
152  *			.id_table = my_auxiliary_id_table,
153  *			.probe = my_probe,
154  *			.remove = my_remove,
155  *			.shutdown = my_shutdown,
156  *		},
157  *		.ops = my_custom_ops,
158  *	};
159  *
160  * Please note that such custom ops approach is valid, but it is hard to implement
161  * it right without global locks per-device to protect from auxiliary_drv removal
162  * during call to that ops. In addition, this implementation lacks proper module
163  * dependency, which causes to load/unload races between auxiliary parent and devices
164  * modules.
165  *
166  * The most easiest way to provide these ops reliably without needing to
167  * have a lock is to EXPORT_SYMBOL*() them and rely on already existing
168  * modules infrastructure for validity and correct dependencies chains.
169  */
170 
auxiliary_match_id(const struct auxiliary_device_id * id,const struct auxiliary_device * auxdev)171 static const struct auxiliary_device_id *auxiliary_match_id(const struct auxiliary_device_id *id,
172 							    const struct auxiliary_device *auxdev)
173 {
174 	for (; id->name[0]; id++) {
175 		const char *p = strrchr(dev_name(&auxdev->dev), '.');
176 		int match_size;
177 
178 		if (!p)
179 			continue;
180 		match_size = p - dev_name(&auxdev->dev);
181 
182 		/* use dev_name(&auxdev->dev) prefix before last '.' char to match to */
183 		if (strlen(id->name) == match_size &&
184 		    !strncmp(dev_name(&auxdev->dev), id->name, match_size))
185 			return id;
186 	}
187 	return NULL;
188 }
189 
auxiliary_match(struct device * dev,const struct device_driver * drv)190 static int auxiliary_match(struct device *dev, const struct device_driver *drv)
191 {
192 	struct auxiliary_device *auxdev = to_auxiliary_dev(dev);
193 	const struct auxiliary_driver *auxdrv = to_auxiliary_drv(drv);
194 
195 	return !!auxiliary_match_id(auxdrv->id_table, auxdev);
196 }
197 
auxiliary_uevent(const struct device * dev,struct kobj_uevent_env * env)198 static int auxiliary_uevent(const struct device *dev, struct kobj_uevent_env *env)
199 {
200 	const char *name, *p;
201 
202 	name = dev_name(dev);
203 	p = strrchr(name, '.');
204 
205 	return add_uevent_var(env, "MODALIAS=%s%.*s", AUXILIARY_MODULE_PREFIX,
206 			      (int)(p - name), name);
207 }
208 
209 static const struct dev_pm_ops auxiliary_dev_pm_ops = {
210 	SET_RUNTIME_PM_OPS(pm_generic_runtime_suspend, pm_generic_runtime_resume, NULL)
211 	SET_SYSTEM_SLEEP_PM_OPS(pm_generic_suspend, pm_generic_resume)
212 };
213 
auxiliary_bus_probe(struct device * dev)214 static int auxiliary_bus_probe(struct device *dev)
215 {
216 	const struct auxiliary_driver *auxdrv = to_auxiliary_drv(dev->driver);
217 	struct auxiliary_device *auxdev = to_auxiliary_dev(dev);
218 	int ret;
219 
220 	ret = dev_pm_domain_attach(dev, true);
221 	if (ret) {
222 		dev_warn(dev, "Failed to attach to PM Domain : %d\n", ret);
223 		return ret;
224 	}
225 
226 	ret = auxdrv->probe(auxdev, auxiliary_match_id(auxdrv->id_table, auxdev));
227 	if (ret)
228 		dev_pm_domain_detach(dev, true);
229 
230 	return ret;
231 }
232 
auxiliary_bus_remove(struct device * dev)233 static void auxiliary_bus_remove(struct device *dev)
234 {
235 	const struct auxiliary_driver *auxdrv = to_auxiliary_drv(dev->driver);
236 	struct auxiliary_device *auxdev = to_auxiliary_dev(dev);
237 
238 	if (auxdrv->remove)
239 		auxdrv->remove(auxdev);
240 	dev_pm_domain_detach(dev, true);
241 }
242 
auxiliary_bus_shutdown(struct device * dev)243 static void auxiliary_bus_shutdown(struct device *dev)
244 {
245 	const struct auxiliary_driver *auxdrv = NULL;
246 	struct auxiliary_device *auxdev;
247 
248 	if (dev->driver) {
249 		auxdrv = to_auxiliary_drv(dev->driver);
250 		auxdev = to_auxiliary_dev(dev);
251 	}
252 
253 	if (auxdrv && auxdrv->shutdown)
254 		auxdrv->shutdown(auxdev);
255 }
256 
257 static const struct bus_type auxiliary_bus_type = {
258 	.name = "auxiliary",
259 	.probe = auxiliary_bus_probe,
260 	.remove = auxiliary_bus_remove,
261 	.shutdown = auxiliary_bus_shutdown,
262 	.match = auxiliary_match,
263 	.uevent = auxiliary_uevent,
264 	.pm = &auxiliary_dev_pm_ops,
265 };
266 
267 /**
268  * auxiliary_device_init - check auxiliary_device and initialize
269  * @auxdev: auxiliary device struct
270  *
271  * This is the second step in the three-step process to register an
272  * auxiliary_device.
273  *
274  * When this function returns an error code, then the device_initialize will
275  * *not* have been performed, and the caller will be responsible to free any
276  * memory allocated for the auxiliary_device in the error path directly.
277  *
278  * It returns 0 on success.  On success, the device_initialize has been
279  * performed.  After this point any error unwinding will need to include a call
280  * to auxiliary_device_uninit().  In this post-initialize error scenario, a call
281  * to the device's .release callback will be triggered, and all memory clean-up
282  * is expected to be handled there.
283  */
auxiliary_device_init(struct auxiliary_device * auxdev)284 int auxiliary_device_init(struct auxiliary_device *auxdev)
285 {
286 	struct device *dev = &auxdev->dev;
287 
288 	if (!dev->parent) {
289 		pr_err("auxiliary_device has a NULL dev->parent\n");
290 		return -EINVAL;
291 	}
292 
293 	if (!auxdev->name) {
294 		pr_err("auxiliary_device has a NULL name\n");
295 		return -EINVAL;
296 	}
297 
298 	dev->bus = &auxiliary_bus_type;
299 	device_initialize(&auxdev->dev);
300 	mutex_init(&auxdev->sysfs.lock);
301 	return 0;
302 }
303 EXPORT_SYMBOL_GPL(auxiliary_device_init);
304 
305 /**
306  * __auxiliary_device_add - add an auxiliary bus device
307  * @auxdev: auxiliary bus device to add to the bus
308  * @modname: name of the parent device's driver module
309  *
310  * This is the third step in the three-step process to register an
311  * auxiliary_device.
312  *
313  * This function must be called after a successful call to
314  * auxiliary_device_init(), which will perform the device_initialize.  This
315  * means that if this returns an error code, then a call to
316  * auxiliary_device_uninit() must be performed so that the .release callback
317  * will be triggered to free the memory associated with the auxiliary_device.
318  *
319  * The expectation is that users will call the "auxiliary_device_add" macro so
320  * that the caller's KBUILD_MODNAME is automatically inserted for the modname
321  * parameter.  Only if a user requires a custom name would this version be
322  * called directly.
323  */
__auxiliary_device_add(struct auxiliary_device * auxdev,const char * modname)324 int __auxiliary_device_add(struct auxiliary_device *auxdev, const char *modname)
325 {
326 	struct device *dev = &auxdev->dev;
327 	int ret;
328 
329 	if (!modname) {
330 		dev_err(dev, "auxiliary device modname is NULL\n");
331 		return -EINVAL;
332 	}
333 
334 	ret = dev_set_name(dev, "%s.%s.%d", modname, auxdev->name, auxdev->id);
335 	if (ret) {
336 		dev_err(dev, "auxiliary device dev_set_name failed: %d\n", ret);
337 		return ret;
338 	}
339 
340 	ret = device_add(dev);
341 	if (ret)
342 		dev_err(dev, "adding auxiliary device failed!: %d\n", ret);
343 
344 	return ret;
345 }
346 EXPORT_SYMBOL_GPL(__auxiliary_device_add);
347 
348 /**
349  * __auxiliary_driver_register - register a driver for auxiliary bus devices
350  * @auxdrv: auxiliary_driver structure
351  * @owner: owning module/driver
352  * @modname: KBUILD_MODNAME for parent driver
353  *
354  * The expectation is that users will call the "auxiliary_driver_register"
355  * macro so that the caller's KBUILD_MODNAME is automatically inserted for the
356  * modname parameter.  Only if a user requires a custom name would this version
357  * be called directly.
358  */
__auxiliary_driver_register(struct auxiliary_driver * auxdrv,struct module * owner,const char * modname)359 int __auxiliary_driver_register(struct auxiliary_driver *auxdrv,
360 				struct module *owner, const char *modname)
361 {
362 	int ret;
363 
364 	if (WARN_ON(!auxdrv->probe) || WARN_ON(!auxdrv->id_table))
365 		return -EINVAL;
366 
367 	if (auxdrv->name)
368 		auxdrv->driver.name = kasprintf(GFP_KERNEL, "%s.%s", modname,
369 						auxdrv->name);
370 	else
371 		auxdrv->driver.name = kasprintf(GFP_KERNEL, "%s", modname);
372 	if (!auxdrv->driver.name)
373 		return -ENOMEM;
374 
375 	auxdrv->driver.owner = owner;
376 	auxdrv->driver.bus = &auxiliary_bus_type;
377 	auxdrv->driver.mod_name = modname;
378 
379 	ret = driver_register(&auxdrv->driver);
380 	if (ret)
381 		kfree(auxdrv->driver.name);
382 
383 	return ret;
384 }
385 EXPORT_SYMBOL_GPL(__auxiliary_driver_register);
386 
387 /**
388  * auxiliary_driver_unregister - unregister a driver
389  * @auxdrv: auxiliary_driver structure
390  */
auxiliary_driver_unregister(struct auxiliary_driver * auxdrv)391 void auxiliary_driver_unregister(struct auxiliary_driver *auxdrv)
392 {
393 	driver_unregister(&auxdrv->driver);
394 	kfree(auxdrv->driver.name);
395 }
396 EXPORT_SYMBOL_GPL(auxiliary_driver_unregister);
397 
auxiliary_device_release(struct device * dev)398 static void auxiliary_device_release(struct device *dev)
399 {
400 	struct auxiliary_device *auxdev = to_auxiliary_dev(dev);
401 
402 	kfree(auxdev);
403 }
404 
405 /**
406  * auxiliary_device_create - create a device on the auxiliary bus
407  * @dev: parent device
408  * @modname: module name used to create the auxiliary driver name.
409  * @devname: auxiliary bus device name
410  * @platform_data: auxiliary bus device platform data
411  * @id: auxiliary bus device id
412  *
413  * Helper to create an auxiliary bus device.
414  * The device created matches driver 'modname.devname' on the auxiliary bus.
415  */
auxiliary_device_create(struct device * dev,const char * modname,const char * devname,void * platform_data,int id)416 struct auxiliary_device *auxiliary_device_create(struct device *dev,
417 						 const char *modname,
418 						 const char *devname,
419 						 void *platform_data,
420 						 int id)
421 {
422 	struct auxiliary_device *auxdev;
423 	int ret;
424 
425 	auxdev = kzalloc(sizeof(*auxdev), GFP_KERNEL);
426 	if (!auxdev)
427 		return NULL;
428 
429 	auxdev->id = id;
430 	auxdev->name = devname;
431 	auxdev->dev.parent = dev;
432 	auxdev->dev.platform_data = platform_data;
433 	auxdev->dev.release = auxiliary_device_release;
434 	device_set_of_node_from_dev(&auxdev->dev, dev);
435 
436 	ret = auxiliary_device_init(auxdev);
437 	if (ret) {
438 		kfree(auxdev);
439 		return NULL;
440 	}
441 
442 	ret = __auxiliary_device_add(auxdev, modname);
443 	if (ret) {
444 		/*
445 		 * It may look odd but auxdev should not be freed here.
446 		 * auxiliary_device_uninit() calls device_put() which call
447 		 * the device release function, freeing auxdev.
448 		 */
449 		auxiliary_device_uninit(auxdev);
450 		return NULL;
451 	}
452 
453 	return auxdev;
454 }
455 EXPORT_SYMBOL_GPL(auxiliary_device_create);
456 
457 /**
458  * auxiliary_device_destroy - remove an auxiliary device
459  * @auxdev: pointer to the auxdev to be removed
460  *
461  * Helper to remove an auxiliary device created with
462  * auxiliary_device_create()
463  */
auxiliary_device_destroy(void * auxdev)464 void auxiliary_device_destroy(void *auxdev)
465 {
466 	struct auxiliary_device *_auxdev = auxdev;
467 
468 	auxiliary_device_delete(_auxdev);
469 	auxiliary_device_uninit(_auxdev);
470 }
471 EXPORT_SYMBOL_GPL(auxiliary_device_destroy);
472 
473 /**
474  * __devm_auxiliary_device_create - create a managed device on the auxiliary bus
475  * @dev: parent device
476  * @modname: module name used to create the auxiliary driver name.
477  * @devname: auxiliary bus device name
478  * @platform_data: auxiliary bus device platform data
479  * @id: auxiliary bus device id
480  *
481  * Device managed helper to create an auxiliary bus device.
482  * The device created matches driver 'modname.devname' on the auxiliary bus.
483  */
__devm_auxiliary_device_create(struct device * dev,const char * modname,const char * devname,void * platform_data,int id)484 struct auxiliary_device *__devm_auxiliary_device_create(struct device *dev,
485 							const char *modname,
486 							const char *devname,
487 							void *platform_data,
488 							int id)
489 {
490 	struct auxiliary_device *auxdev;
491 	int ret;
492 
493 	auxdev = auxiliary_device_create(dev, modname, devname, platform_data, id);
494 	if (!auxdev)
495 		return NULL;
496 
497 	ret = devm_add_action_or_reset(dev, auxiliary_device_destroy,
498 				       auxdev);
499 	if (ret)
500 		return NULL;
501 
502 	return auxdev;
503 }
504 EXPORT_SYMBOL_GPL(__devm_auxiliary_device_create);
505 
auxiliary_bus_init(void)506 void __init auxiliary_bus_init(void)
507 {
508 	WARN_ON(bus_register(&auxiliary_bus_type));
509 }
510